
© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 239–246, 2015.
DOI: 10.1007/978-3-319-20466-6_26

An Artificial Bee Colony Algorithm
with History-Driven Scout Bees Phase

Xin Zhang1 and Zhou Wu2()

1 College of Electronic and Communication Engineering,
Tianjin Normal University, Tianjin, China
xinzhang9-c@my.cityu.edu.hk

2 Department of Electrical Electronic and Computer Engineering,
University of Pretoria, Hatfield, Pretoria, South Africa

wuzhsky@gmail.com

Abstract. The scout bees phase of artificial bee colony (ABC) algorithm emu-
lates a random restart and cannot make sure the quality of the solution generat-
ed. Thus, we propose to use the entire search history to improve the quality of
regenerated solutions, called history-driven scout bee ABC (HdABC). The pro-
posed algorithm has been tested on a set of 28 test functions. Experimental re-
sults show that ABC cannot significantly outperforms HdABC on all functions;
while HdABC significantly outperforms ABC in most test cases. Moreover,
when the number of restarts increases, the performance of HdABC improves.

Keywords: Artificial bee colony · Search history · Binary space partitioning tree

1 Introduction

Artificial bee colony (ABC) is a simple and powerful metaheuristic for solving global
optimization problems [1]. It is based on the intelligent behavior of honey bees. Many
researchers have tried to improve its performance and make it better. For example,
researchers propose to use the global best solution found so far to generate candidate
solutions [2], [3]. Inspired by particle swarm optimization, Zhu et al. propose Gbest-
guided ABC (GABC) algorithm [4]. Kang et al. propose Rosenbrock ABC which
combines Rosenbrock’s rotational direction method with the ABC algorithm [5].
Zhang et al. propose one-position inheritance and opposite directional search methods
respectively for the employed bees phase and onlooker bees phase [6]. Karaboga et al.
create a quick ABC algorithm which imitates the behavior of onlooker bees in a better
way than standard ABC [7]. Kiran et al. modify ABC with a directed method [8].
Applications of discrete variants of ABC include [9], [10], [11], [12].

None of the above mentioned algorithms focus on the scout bees phase. Actually,
the scout bees phase can be seen as a random search; the quality of the regenerated
solution is unpredictable and low quality solution causes a waste of resources. Thus,
we will concentrate on modifying the scout bees phase to improve the performance of
the ABC algorithm. In this paper, we propose a novel ABC algorithm which uses the
entire search history to improve the quality of solutions, called History-driven scout

240 X. Zhang and Z. Wu

bee Artificial Bee Colony (HdABC). It has been noticed that history is a good refer-
ence to help the search. There are already some works on applying the entire search
history in the EA field [13], [14], [15]. In our proposed algorithm, we apply BSP tree
to improve the performance of the ABC algorithm.

The paper is organized as follows. Section 2 describes standard ABC algorithm.
Section 3 explains the proposed HdABC algorithm in detail. Experimental results are
shown in Section 4 and Section 5 gives the conclusion.

2 Artificial Bee Colony Algorithm

Standard ABC algorithm can be divided into four phases as follows:

1. Initialization Phase
In the initialization phase, a population NP of solutions (food sources), i.e., ܠ௜ ൌ ൛ݔ௜,ଵ, ,௜,ଶݔ ,௜,ଷݔ … , .௜,஽ൟ, is initialized randomly in the search spaceݔ

2. Employed Bees phase
Each employed bee randomly communicates with another employed bee to search
a new location, i.e., ܞ௜ ൌ ൛ݒ௜,ଵ, ,௜,ଶݒ ,௜,ଷݒ … , -௜,஽ൟ. The equation to generate new loݒ
cation is shown in (1). ݒ௜,௝ ൌ ௜,௝ݔ ൅ ߶௜,௝൛ݔ௜,௝ െ ௞,௝ൟ . (1)ݔ

where the indices݆ ג ሼ1,2, … , ݇ ሽ andܦ ג ሼ1,2, … , ܰܲሽ, ݇ ് ݅ are randomly gener-
ated. A coefficient ߶௜,௝ is a random number between [-1, 1].
The employed bees evaluate the new food source ܞ௜, and compared with their cur-
rent food sourceܠ௜ by the fitness of solutions. The equation to calculate the fitness
is shown in (2), where ݂ሺܠ௜ሻ represents the objective value of the solution ܠ௜. ݂݅ݐሺ݅ܠሻ ൌ ൝ ଵଵା௙ሺܠ೔ሻ , ݂݅ ݂ሺܠ௜ሻ ൒ 0 1 ൅ ,௜ሻ൯ܠ൫݂ሺݏܾܽ ݂݅ ݂ሺܠ௜ሻ ൏ 0 . (2)

3. Onlooker Bees phase
Onlooker bees receive the information from the employed bees, and make decision
on selecting some food sources for further search. By using the equation shown in
(3), the probability ݌௜ is calculated by the fitness of the food sources. The onlook-
er bees go to the better food sources with higher probability. ݌௜ ൌ ௙௜௧೔∑ ௙௜௧೙ಿು೙సభ . (3)

4. Scout bees phase
During the search, some food sources will be abandoned. A user defined parameter
limit is introduced to control when to abandon a food source. The employed bee of
the abandoned food sources will become scout bee. A scout bee searches a new
food source randomly to replace the abandoned food source.

 An Artificial Bee Colony Algorithm with History-Driven Scout Bees Phase 241

3 The Proposed Algorithm

3.1 Idea of the Proposed Algorithm

In most of optimization problems, except that with illness condition, the landscape of
function is generally smooth. Thus starting at any point, if we move towards the near-
est optimal point, we may get a better solution. In this paper, all the evaluated solu-
tions and their fitness are memorized. By these search history, we estimate the fitness
landscape of the function. By that, the estimated local optimal point of any solution
can be found. Then we can find the better restarted solutions by moving them to-
wards the local optimal point. Therefore the efficiency of ABC algorithm can be im-
proved.

Fig. 1. Block diagram of HdABC

3.1 Structure of the Proposed Algorithm

The proposed algorithm has two main parts: 1) memory, and 2) history-driven scout
bees algorithm. The function of the memory is to store the entire search history. The
entire search history is used to build the estimated fitness landscape of the objective
function (surrogate model), which can be used to estimate the fitness of solutions.
Fig. 1 shows the block diagram of our proposed algorithm. In the beginning, the loca-
tion of food sources (solutions) are randomly generated and evaluated by the objec-
tive function. Once a solution is evaluated, it will be stored with its fitness value in
BSP tree. Then, starts the cycle of employed bees phase, onlooker bees phase and our
proposed history-driven scout bees phase. The differences between standard ABC
algorithm and our HdABC are that: HdABC stores all the evaluated solutions in BSP
tree and substitutes history-driven scout bees phase for the scout bees phase.

242 X. Zhang and Z. Wu

3.2 History-Driven Scout Bees Algorithm

Binary space partitioning (BSP) tree is built as a surrogate model for providing fitness
estimation. In [14], Chow and Yuen apply the idea of the nearest-neighbor search into
BSP tree. They stored both the evaluated solution and their fitness into BSP tree. In
this paper, we use the same tree as that in [14], [15].

To improve the quality of restarted solutions, the guided anisotropic search (GAS)
module [14] is used in this paper. The GAS module is a novel parameter-less adaptive
mutation operator, which applies a randomized gradient descent-like method to mu-
tate solutions towards the better solutions. Equation (4) shows the equation used to
generate the new solution v by using solution x, and the corresponding local optimal
point p. ܞ ൌ ܠ ൅ ܘሺߙ െ ሻ . (4)ܠ

In the equation, x is guided by the direction (p-x), it moves towards p with mutation
step sizeߙ. To balance the exploitive effect of the gradient descent-like direction as-
signment, the value of ߙ is a random number within the range [0,1] with uniform
distribution. Therefore, the solution v lies on the line determined by p and x.

In the proposed history-driven scout bees algorithm, the GAS is used in two differ-
ent ways: 1) local restart and 2) global restart. The usage of local restart is the same as
the GAS, which mutates the abandoned solutions towards the nearest local optimal
region. Different from the equation (3) that is used to generate solutions in ABC,
GAS provides a multi-dimensional mutation to the ABC algorithm. Comparing to the
local search method used in standard ABC, GAS allows solutions moving in a rela-
tively wider area and helps solutions in ABC converge faster to a better area. Howev-
er, when the ABC continuous running, the number of solutions stored in BSP tree
increases, the sizes of sub-regions in BSP tree decrease. In this case, the area for the
local restart will be decreased. Therefore, we introduce another usage of the GAS,
which is global restart, to override this problem. The global restart works like an en-
hanced version of global search. It firstly random regenerates a new solution in the
whole search space, and then applies the GAS to mutate it towards to a better area,
which helps the search to escape from the local optimal and ensures the new solution
has a relatively better quality. Nevertheless, the function of global restart is mainly
focus on preventing the premature convergence. It is expected that the improvement is
not significant when there is only global restart applied into the ABC algorithm.
Therefore, in the proposed history-driven scout bees algorithm, we introduce a para-
meter r to control the ratio of using local restart and global restart, where r is increas-
ing with the number of generations: ݎ ൌ ௡௨௠௕௘௥ ௢௙ ௚௘௡௘௥௔௧௜௢௡்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௚௘௡௘௥௔௧௜௢௡ . (5)

In each time a food source is abandoned, r will be calculated by (5). The history-
driven restarted algorithm generates a random number݀ א ሾ0, 1ሿ to make decision on
performing local restart or global restart, i.e., operation ൌ ൜݈ݐݎܽݐݏ݁ݎ ݈ܽܿ݋, if ݀ ൒ ,ݐݎܽݐݏ݁ݎ ݈ܾܽ݋݈݃ݎ if ݀ ൏ (6) . ݎ

 An Artificial Bee Colony Algorithm with History-Driven Scout Bees Phase 243

In the beginning of the search, the value is relatively smaller. The history-driven scout
bees algorithm concentrates more in local restart, which helps the search converge
faster. Then, at the middle of the search, the ratio of performing local restart and
global restart is 1:1, which balances the exploration and exportation in the search. At
the later stage of the search, the search is converged. Therefore the history-driven
scout bees algorithm focuses on the global restart to prevent the premature conver-
gence.

4 Experiment

In this paper, 28 real valued benchmark functions f1-f28 are used to test the perfor-
mance of test algorithms as shown in Table 1. All the functions are tested in D = 30.
Each test algorithm tries to solve each of the test function 30 times. For the maximum
number of evaluation in each trial, we run experiment with two different values: one
is MFEs=5000D, and the other is MFEs=10000D.

To verify the performance of the proposed HdABC algorithm, it is compared with
standard ABC. To compare the performance of test functions, the Mann-Whitney
Utest (U-test) is used. The detailed setup of the test algorithms is NP=25 and lim-
it=100.The values of NP and limit follow [2], [3], [6].

Table 1. Test function set

f1 Sphereical f15 Pathological
f2 Schwefel's Problem 2.22 f16 InvertedCosineWave
f3 Schwefel's Problem 1.02 f17 InvertedCosineMixture
f4 Schwefel's Problem 2.21 f18 EpistaticMichalewicz
f5 Rosenbrock f19 LevyMontalvo2
f6 Quartic f20 Neumaier3
f7 Generalized Rastrigin f21 OddSquare
f8 Generalized Griewank f22 Paviani
f9 Schwefel's Problem 2.26 f23 Periodic
f10 Ackley f24 Salomon
f11 High Conditioned Elliptic f25 Shubert
f12 Levy f26 Sinusoidal
f13 Zakharov f27 Michalewicz
f14 Alpine f28 Whitely

Tables 2 shows the average values of the best fitness, standard deviation and

p-values of the test algorithms found in 30 independent runs. To increase the readabil-
ity, the best results are typed in boldface. The performance of standard ABC is com-
pared with HdABC by using U-test to determine the significance. The p-value shows
the result of the U-test. By definition, the result is said to be significant if p<0.05. A
marker “*” is added to the p-values which shows the result is significant. Table 8 and
Table 9 illustrates the mean values of number of scout bees done by the test algo-
rithms in 30 independent runs with MFEs =150000 and MFEs = 300000, respectively.

From Table 2, compared with ABC, the performance of HdABC is clearly better
than ABC. HdABC obtains the best results in total 23 out of 28 functions. Among
these 23 functions, the result is significant in 14 functions. Besides, HdABC performs

244 X. Zhang and Z. Wu

worse than original ABC in only 5 functions, but all of them are not significant. It
shows that HdABC outperforms standard ABC in most cases.

In fact, the difference between standard ABC and HdABC is that HdABC replaces
the original scout bees phase to the proposed algorithm. Therefore, the results shown
in Table 2 are directly reflecting the contribution made by the proposed algorithm.
The proposed algorithm gives a significant improvement to original ABC, it makes
the HdABC greatly outperforms standard ABC. To further prove that the proposed
algorithm improves the original ABC, we have run another experiment with MFEs =
300000. In general, with the larger MFEs, the maximum number of generations will
be larger. Thus more employed bees will be abandoned during the search, and then
the contribution of our proposed algorithm should be shown clearly.

Table 2. The mean standard deviation (Std. D) and p-value (p) of the best function values
found by ABC and HdABC in f1–f28, MFES = 5000D

 f1 f2 f3 f4 f5 f6
ABC 6.99E-16 3.55E-16 5.28E+03 3.89E+01 3.52E-01 1.20E+01
Std.D 1.08E-16 8.46E-16 1.38E+03 5.86E+00 6.06E-01 5.17E-01

HdABC 2.38E-16 2.96E-16 5.09E+03 7.02E+00 1.99E-01 9.74E+00
Std.D 8.40E-17 6.62E-16 1.47E+03 1.50E+00 2.71E-01 6.17E-01

p *3.69E-11 9.64E-01 5.59E-01 *3.02E-11 7.39E-01 *3.69E-11

 f7 f8 f9 f10 f11 f12
ABC 1.07E-14 5.59E-14 -1.38E+04 5.81E-14 7.51E-16 6.71E-16
Std.D 2.29E-14 1.96E-13 1.63E-02 7.15E-15 1.61E-16 1.25E-16

HdABC 2.61E-15 3.87E-13 -1.38E+04 5.22E-14 7.02E-16 2.41E-16
Std.D 8.02E-15 1.31E-12 2.37E-02 6.40E-15 1.61E-16 1.05E-16

p *1.60E-03 7.73E-01 6.20E-01 *2.00E-03 1.41E-01 *3.69E-11

 f13 f14 f15 f16 f17 f18
ABC 2.19E+02 1.09E-08 4.45E+00 -2.54E+01 -8.73E-16 -2.41E+01
Std.D 3.02E+01 2.75E-08 3.41E-01 8.63E-01 2.69E-16 6.63E-01

HdABC 1.54E+02 1.74E-08 3.81E+00 -2.63E+01 -9.92E-16 -2.57E+01
Std.D 3.49E+01 5.68E-08 4.63E-01 1.04E+00 2.96E-16 6.03E-01

p *8.35E-08 8.53E-01 *1.16E-07 *5.56E-04 1.10E-01 *4.20E-10

 f19 f20 f21 f22 f23 f24
ABC 4.20E-03 -2.63E+03 -2.80E-03 -9.98E+05 1.00E+00 1.73E+00
Std.D 2.17E-02 8.55E+02 1.17E-02 5.18E-10 1.26E-05 2.41E-01

HdABC 3.35E-02 -3.78E+03 -5.90E-03 -9.98E+05 1.00E+00 1.40E+00
Std.D 1.75E-01 5.42E+02 1.30E-02 5.37E-10 6.04E-06 1.49E-01

p 2.28E-01 *7.04E-07 2.06E-01 2.49E-01 2.06E-01 *7.60E-07

 f25 f26 f27 f28

ABC -2.32E+34 -1.74E+00 -2.96E+01 1.33E+02
Std.D 5.05E+33 8.23E-01 2.17E-02 1.04E+02

HdABC -2.29E+34 -3.50E+00 -2.96E+01 1.30E+02
Std.D 4.01E+33 1.70E-03 2.72E-02 9.89E+01

p 8.42E-01 *6.52E-09 *4.51E-02 9.59E-01

The performance of ABC and HdABC in the case of MFEs = 300000 are not

shown in this paper for the saving of space. The results show that ABC gives the same

 An Artificial Bee Colony Algorithm with History-Driven Scout Bees Phase 245

performance as HdABC in 3 functions. It illustrates that both of them obtain the global
optimal solution. As it is no differences between ABC and HdABC in these 3 functions,
we simply discard these results. Compared to ABC in the rest of 25 functions, HdABC
obtains the best results in 22 out of 25 functions. Among these 22 functions, HdABC
performs significantly better than ABC in 17 functions. In only 3 test functions, ABC
outperforms HdABC, but the results of all of them are not significant. Compared to the
results in Table 2, it is clearly shown that the number of the test functions that HdABC
outperforms ABC is significantly increased, and the number of the test functions that
HdABC performs worse than ABC is decreased. The experimental results prove that the
proposed algorithm brings a positive effect to the original ABC.

Table 3. The mean of the number of scout bees done by ABC and HdABC in f1–f28 ,MFES =
5000D and 10000D, respectively

5000D f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
ABC 50 25 2.87 559 4.87 312 25.1 30.3 2.43 25.1

HdABC 81.4 28 3.17 572 4.73 518 35.8 46.4 2 32.3

 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
ABC 25.1 50 15.8 0.2 97.1 37.7 50 102 20.1 15.3

HdABC 36.1 80.7 14.2 0.17 103 40.7 75.1 103 24.3 18.7

 f21 f22 f23 f24 f25 f26 f27 f28
ABC 76.6 50 26.7 85.3 32.7 26.9 6.17 57.8

HdABC 95.4 63.7 21.7 137 26 34.6 4.83 67.8
10000D f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ABC 96 48 8.7 982 21.6 591 68.1 72.6 26.2 48.3
HdABC 184 56.3 8.2 1030 24.9 1003 102 132 38.9 75.2

 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
ABC 72.1 96 31.1 24.2 193 78.5 96.1 198 48.7 34

HdABC 105 193 27.6 32.6 202 88.7 181 200 80.4 53.4
 f21 f22 f23 f24 f25 f26 f27 f28

ABC 141 96 57.5 169 63.3 55.4 31 114
HdABC 187 148 63.1 290 59.9 101 50.7 133

Table 3 shows the mean of numbers of scout bees done by ABC and HdABC in the

28 test functions. Through comparison, it shows that with the larger value of MFEs,
the number of scout bees is significantly increased.

5 Conclusion

History-driven scout bees Artificial Bee Colony (HdABC) algorithm is proposed. It
uses a memory archive called Binary Space Partitioning tree to store the entire search
history, and applies the Guided Anisotropic Search (GAS) module to find a better
solution. The proposed algorithm contains two parts. One is for global search and the
other is for local search. Experimental results show that the use of entire search histo-
ry and the GAS module bring positive effects to ABC algorithm.

For the future direction, the GAS module can be applied to employed bees phase or
onlooker bees phase to further improve the performance of ABC algorithm. Hybrid
gravitational evolution [16], [17] or neighborhood field optimization [18] methods
with ABC are also interesting.

246 X. Zhang and Z. Wu

References

1. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function op-
timization: artificial bee colony (ABC) algorithms. Journal of Global Optimization. 39,
459–471 (2007)

2. Diwold, K., Aderhold, A., Scheidler, A., Middendorf, M.: Performance evaluation of ar-
tificial bee colony optimization and new selection schemes. Memetic Computing. 3, 149–
162 (2011)

3. Zhang, X., Zhang, X., Ho, S.L., Fu, W.N.: A modification of artificial bee colony algo-
rithm applied to loudspeaker design problem. IEEE Transactions on Magnetics. 50, 737–
740 (2014)

4. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function
optimization. Applied Mathematics and Computation. 217, 3166–3173 (2010)

5. Kang, F., Li, J., Ma, Z.: Rosenbrock artificial bee colony algorithm for accurate global op-
timization of numerical function. Information Sciences. 181, 3509–3531 (2011)

6. Zhang, X., Zhang, X., Yuen, S.Y., Ho, S.L., Fu, W.N.: An improved artificial bee colony
algorithm for optimal design of electromagnetic devices. IEEE Transactions on Magnetics.
49, 4811–4816 (2013)

7. Karaboga, D., Gorkemli, B.: A quick artificial bee colony (qABC) algorithm and its per-
formance on optimization problems. Applied Soft Computing 23, 227–238 (2014)

8. Kiran, M.S., Findik, O.: A directed artificial bee colony algorithm. Applied Soft Compu-
ting 26, 454–462 (2015)

9. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary artificial
bee colony algorithm. Applied Soft Computing 28, 69–80 (2015)

10. Ozturk, C., Hancer, E., Karaboga, D.: Improved clustering criterion for image clustering
with artificial bee colony algorithm. Pattern Analysis and Applications, 1–13 (2014)

11. Pan, Q.K., Wang, L., Li, J.Q., et al.: A novel discrete artificial bee colony algorithm for the
hybrid flowshop scheduling problem with makespan inimisation. Omega 45, 42–56 (2014)

12. Cui, Z., Gu, X.: An improved discrete artificial bee colony algorithm to minimize the ma-
kespan on hybrid flow shop problems. Neurocomputing 148, 248–259 (2015)

13. Yuen, S.Y., Chow, C.K.: A genetic algorithm that adaptively mutates and never revisits.
IEEE Transactions on Evolutionary Computation. 13, 454–472 (2009)

14. Chow, C.K., Yuen, S.Y.: An Evolutionary Algorithm that Makes Decision Based on the
Entire Previous Search History. IEEE Transactions on Evolutionary Computation 15,
741–769 (2011)

15. Leung, S.W., Yuen, S.Y., Chow, C.K.: Parameter control system of evolutionary algorithm
that is aided by the entire search history. Applied Soft Computing. 12, 3063–3078 (2012)

16. Lou, Y., Li, J., Shi, Y., Jin, L.: Gravitational co-evolution and opposition-based optimiza-
tion algorithm. International Journal of Computational Intelligence Systems 6, 849–861
(2013)

17. Lou, Y., Li, J., Jin, L., Li, G.: A coEvolutionary algorithm based on elitism and gravita-
tional evolution strategies. Journal of Computational Information Systems 8,
2741–2750 (2012)

18. Wu, Z., Chow, T.W.S.: Neighborhood field for cooperative optimization. Soft Computing
17, 819–834 (2013)

	An Artificial Bee Colony Algorithm with History-Driven Scout Bees Phase
	1 Introduction
	2 Artificial Bee Colony Algorithm
	3 The Proposed Algorithm
	3.1 Idea of the Proposed Algorithm
	3.2 History-Driven Scout Bees Algorithm

	4 Experiment
	5 Conclusion
	References

