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Abstract The artificial neural networks (ANN) by their capacities of training,
classification, and decision, give a solution to bearing diagnosis problem by the
automatic classification of the vibratory signals corresponding to the various states
the machines. They are intended to increase the precision(accuracy) and to reduce
errors caused by subjective human judgments. However it is important to note that
the ANNs in the aids to diagnosis must be set for optimum performance. The
non-existence of predefined rules for ANNs parameters setting (number of hidden
neurons in each hidden layers etc…) obstruct the achievement of optimal perfor-
mances. The use of genetic algorithm (GA) can solve this problem by the param-
eters and structure optimization of ANN. This paper discusses the use of the ANN
multilayer Perceptron (MLP), for the diagnosis of electric motor bearings, by the
automatic classification of the various operating conditions the machine .The sig-
nals taken from the experimental test rig are processed by using various methods of
signal processing. The calculated indicators were used to build the patterns vector,
which is used for the following to train and test of the network. The GA are used to
search(optimize) the structure and the various parameters of the network, which
simplifies the neural network structure and makes the training process more efficient
and giving the best performances of the network.
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1 Introduction

Rolling element bearings are widely used elements in electric motors. Their failure
is one of the most frequent reasons for electric motor breakdown. In order to
enhance motor’s reliability and reduce maintenance cost, bearing condition moni-
toring becomes an important measure to ensure machine safety [1].

Considerable research has been carried out previously to develop various
algorithms and methods for bearing fault detection and diagnosis [2–6].

Nowadays, Artificial Neural Network (ANN) are proving their effectiveness in
several research areas especially for classification problems in many different
environments, including business, science and engineering. The ANN is an infor-
mation processing paradigm inspired by biological nervous systems [7]. The human
learning process maybe partially automated with ANN’s. It can be configured for a
specific application, such as pattern recognition or data classification, through a
learning process. As the neural network theory is still in progress, there is not a set
of ways to guide the design process. Now, the design of neural network and finding
the optimal parameters in order to maximize the performance of ANN is one of the
major challenges in the uses of ANN [8].
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2 Background

2.1 Rolling Element Bearings

The main components of rolling bearings are: the inner ring; the outer ring, the
rolling elements and the cage (Fig. 1). Typically, the inner ring of the bearing is
mounted on a rotating shaft, and the outer ring is mounted to a stationary housing.
Commonly rolling elements are balls or rollers. The roller elements transfer the load
over a very small surface (ideally, point contact) on the raceways [9].

Local or wear defects cause periodic impulses in vibration signals. Amplitude
and periodic of these impulses are related to the shaft rotational speed and fault
location. The formula for the various defect frequencies is given by:

Ball pass frequency, outer race:

BPFO ¼ nfr
2

1� d
D
cos að Þ

� �
ð1Þ

Ball pass frequency, inner race:

BPFI ¼ nfr
2

1þ d
D
cosðaÞ

� �
ð2Þ

Fundamental train frequency (cage speed):

FTF ¼ fr
2
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� �
ð3Þ

Fig. 1 Components of the bearing
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Ball (roller) spins frequency:

BSF ¼ D
2d

1� d
D
cos að Þ2

� �
ð4Þ

where fr is the shaft speed, n is the number of rolling elements, and α is the angle of
the load from the radial plane. Note that the ball spin frequency (BSF) is the
frequency with which the fault strikes the same race (inner or outer).

2.2 Bearing Fault Diagnosis Techniques

A wide variety of techniques, were developed for the detection and diagnosis of
faults in rolling element bearings. They have been introduced to inspect raw
vibration signals. These algorithms can be classified into time domain, frequency
domain, time- frequency domain, higher order spectral analysis, and model based
techniques [10, 11].

2.3 MultiLayer Perceptron (MLP)

The multilayer Perceptron (MLP) is the simplest and most known type of neural
networks. Its structure, showed by Fig. 2, is relatively simple: an input layer, an
output layer and one or more hidden layers. Each neuron is connected fully to the
neurons of its preceding and the following layers [12].

MLP is one of the most successful feed-forward neural networks for diagnosis.
A review of some works on fault diagnosis vibration based on ANN has been
presented in [13].

Fig. 2 Multi-layer perceptron
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The challenges for constructing a MLP network are: the determination of a
sufficient number of hidden layers; neurons within each layer; learning rate; the
activation function, and the connections initial weights. These parameters have a
great impact on the learning methods convergence. Although a formal methodology
to express the number of hidden neurons does not been developed yet. Many
studies on this subject were launched [14–20]. However, as a known fact more
neurons and layers in the network result a longer training period and convergence
problems.

2.4 Genetic Algorithms (GA)

The Genetic Algorithm (GA) has been introduced by J. HOLLAND to solve a large
number of complex optimization problems. Each solution represents an individual
coded in one or several chromosomes. These chromosomes represent the problem’s
variables. First, an initial population composed by a fixed number of individuals is
generated; then, an operator of reproduction is applied on a number of individuals
selected according to their fitness score. This procedure is repeated until the
maximum number of iterations is reached. GA has been applied in a large number
of optimization problems in several domains, telecommunication, routing, sched-
uling, and it proves its efficiency to obtain a good solution [21].

2.5 Artificial Neural Networks Optimized by the Genetic
Algorithm

However it is important to note that the ANNs parameters (number of hidden
neurons in each layer, number of hidden layers etc.) (Fig. 3), in the aids to diagnosis
must be set for optimum performance.

These parameters are often chosen empirically seeking desired results, which
makes the use of this method very difficult. In this work GA are proposed for the
optimization and the search of the best(optimal)structure and parameters of ANN.

3 Materials and Methods

In this research work, the procedure of diagnosis consists of two stages, namely
preprocessing using some signal processing methods for feature extraction, and the
design of the appropriate neural network.
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3.1 Data Acquisition

The experimented data base was extracted from the test rig shown in Fig. 4.
The web site provides access to ball bearing test data for normal and faulty

bearings [23]. Experiments were conducted using a 2HP Reliance Electric motor,
and acceleration data was measured at locations near to and remote from the motor
bearings. These web pages are unique in that the actual test conditions of the motor
as well as the bearing fault status have been carefully documented for each
experiment Motor bearings were seeded with faults using electro-discharge
machining (EDM). Faults ranging from 0.17 mm in diameter to 0.71 mm in

Fig. 3 Scheme of optimization of ANN by GA

Fig. 4 a The bearing test rig. b The schematic description of the test rig. [22]
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diameter were introduced separately at the inner raceway, rolling element (i.e. ball)
and outer raceway. Faulted bearings were reinstalled into the test motor vibration
data was recorded for motor loads of 0–3 horsepower (motor speeds of 1797–
1720 RPM).Vibration data was collected using accelerometers, attached to the
housing with magnetic bases. Accelerometers were placed at the 12 o’clock posi-
tion at both the drive end and fan end of the motor housing. The time domain
presentation of signal is shown in Fig. 5.

3.2 Fault Diagnosis Scheme

The flow chart of the Bearing fault diagnosis based on ANN is shown as Fig. 6.

4 Results and Discussion

4.1 Preprocessing of Vibration Signals

A signal conditioning step is required to remove useless information, and facilitate
the task of indicators extraction from each signal the some of the most commonly

Fig. 5 The time domain signal
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used indicators for bearing monitoring were extracted [24–27], namely: the RMS
value, crest factor, peak to peak value, kurtosis, and the energy from the spectrum
envelope.

After a preliminary analysis [28], we chose to calculate these indicators as
follows:

Time domain indicators Each signal was pass band filtered in four adjacent 1.5 kHz
band: [1–1500 Hz], [1500–3000 Hz], [3000–4500 HZ], [4500–6000 Hz] and [1–
6000 Hz]. From each filtered signal were extracted: RMS, Crest factor, Crest-Crest
Value and Kurtosis. Figure 7 presents the variation of time domain indicators.

Frequency domain indicators The frequencies domain indicators are calculated
from the spectrum envelope in five frequency bands: [1–1000 Hz], [1000–
2000 Hz], [2000–3000 Hz], [3000–4000 Hz], [4000–5000 Hz] and [1000–
6000 Hz]. The variation of Frequency domain indicators are shown as Fig. 8.

Fig. 6 Bearing fault diagnosis scheme
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4.2 Constitution of the Patterns Vector (Networks Input)

The patterns vector is consisted of the described above time and frequency domain
indicators. The data that have been be treated, categorized, and stored in an
observations/variables array.

4.3 Choice of the Classes (Networks Output)

The networks output vector contains the various classes corresponding to each
operating conditions from the experimental test rig. five classes fixed, each one of
them corresponds to a defect diameter. Table 1 represents the labeling of the various
studied classes.

Fig. 7 Variation of time domain indicators

Fig. 8 Variation of frequency domain indicators
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4.4 Data Normalization

To improve the performance of the MLP, normalization of patterns vector data was
done. The obtained database was divided in three parts: training set, test and val-
idation set. the used normalization formula is given below,

xij ¼ xij � mj

rj
ð5Þ

where
rj is the standard deviation (SD) of du jth parameter
mj Is the average

4.5 The Neural Network Configuration

The employed MLP was configured as follow (Table 2) [29, 30].

Table 1 Labeling of the
classes(Inputs)

Classes Fault diameter Labels

1 Without fault 10000

2 0.17 mm 01000

3 0.35 mm 00100

4 0.53 mm 00010

5 0.71 mm 00001

Table 2 Neural network
configuration

Parameters Value/type Comment

Total set 140 –

Input 26 Monitoring
indicators

Hidden layer 1 –

Output 5 Classes

Transfer function tansig Hidden layer

Transfer function Purelin Output layer

Learning
algorithm

Backpropagation –

Performance Mse Mean square error
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4.6 The Genetic Algorithms

GAhave been used in different ways in optimizingANN; of themost common seeks the
optimization the elements of the pattern vector (training data and test data) [31–33].

In our papers, GAs were applied to optimize the number of neurons in the hidden
layer MLP. In this purpose, we created a fitness function whose formula is as
follows [34].

F ¼ C � ðE � HÞ=Hmax ð6Þ

C is a constant
E is the minimum error(performance)
H is the number of neurons in the hidden layer
Hmax is the maximum value of the neurons in the hidden layer

4.7 Results

The number of hidden neurons in the hidden layer range from 1 to 20, in order to
obtain the optimal value that gives the best performance of classification.

So, for the GA we use the following parameters:

• 15 populations
• mutation rate 0.05
• crossover rate 0.9
• binary coding

Figure 9 shows that the value of the objective function is minimal for a number
of hidden neuron equal 2.

Fig. 9 Optimal hidden neurons number
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So we can conclude that the number of neuron in the hidden layer that gives us
the best performance is 2 neurons.

5 Conclusion

The present article describes the use of ANN to automate the electric motor bearing
diagnosis, based on vibration signal analysis. Initially, the vibration signals collected
from the test bench (Bearing Data Center) are preprocessed, to extract the monitoring
indicators most appropriate to the health of the experimental device. Then we built the
database used to training and testing the MLP. Various possible kinds of faults (five
diameters) have been taken into consideration into this work. However, the ANN per-
formance depending on the size of the training data set, the size of the ANN (the number
of hidden layers and number of neurons per hidden layer). In order to finding the optimal
value of the number of hidden neurons, we use the GA. That allow us to obtain the value
that give us the best performance of ANN. We have stressed, that the efficiency of the
optimization depends of the choice the GA parameters.
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