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Preface

This book presents the proceedings of the 4th edition of the conference on
Condition Monitoring of Machinery in Non-stationary Operations CMMNO’2014
held in Lyon-France from 15 to 17 December 2014. This conference series follows
three other successful conferences which took place in Ferrara (Italy) in 2013,
Hammamet (Tunisia) in 2012 and Wroclaw (Poland) in 2011. This edition of the
conference attracted about 70 participants who had the opportunity to discuss a
number of important topics in the field condition monitoring of machinery in
non-stationary operations.

To simplify problem of condition monitoring of machines, many researches a
priori assumes several critical conditions: test rig with simple design (one stage
gearbox), single damage artificially introduced in the system and constant loading
conditions (or even no load is applied in the system). Such assumption might be
good to clearly present new signal processing technique etc, however, to validate
new findings in industrial applications probably more complex signals should be
considered. Last decade brought many papers proving that this rough assumptions
are no longer valid since in reality machines are subjected to complex condition
such us variable loads, speed, multiple faults, severe operations, etc.

The objectives of CMMNO’2014 conference is to offer a forum for researchers
to present and discuss their latest advances with theoretical and applied develop-
ment of methods and techniques related to the condition monitoring of machinery in
such complex conditions.

The papers presented in this book are classified into 3 mains topics that were
discussed during CMMNO’2014: Condition monitoring techniques (in general) and
two special sections focused on key steps in Condition monitoring, namely Signal
processing for condition monitoring and Data mining for condition monitoring.

In Part I (Signal Processing) several topics are discussed. In modern condition
monitoring there is an active group of researchers focused on electrical signals
analysis for fault detection. In the book, among others, authors combine two
directions, electrical signals and angular speed approach. Recently, Instantaneous
Angular Speed Measurement is very promising direction for condition monitoring
of rotating machines.
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In this part also identification of vibration signals, especially for complex sys-
tems (bearings damage in gearbox, bearings in presence of non-Gaussian noise) is
discussed. It was noticed by researchers, that automatic processing and robustness
of techniques is very important for industrial applications. Often techniques should
not require extra information that requires being blind, adaptive or data-driven as
EMD. For complex system a decision might be based on multidimensional data
analysis.

Also tracking issue of non-stationary signal’s components is noticed by using
time frequency method. All these mentioned issues are discussed in Part I—signal
processing for condition monitoring.

Due to intensive data acquisition systems development, one might say that it is
relatively easy to acquire data from industrial systems nowadays. Unfortunately,
problem of data analysis from such systems still exists and even maybe it is more
critical (due to number of available data) then before. Part II in the book contains
methodologies of how to deal with such problems. It might be related directly to
SCADA data analysis, as well as fundamental issues for condition monitoring as for
example an optimal threshold or decision boundaries selection.

Very often to classify/recognize data there is a need to use advanced tools based
on artificial intelligence including neural network, genetic algorithm etc. However,
industrial application would be interested in whole systems rather than single
procedures, so example of expert system shell for mining industry is also presented.

Part III of this book will be dedicated to latest advances in techniques used for
condition monitoring of machinery in non-stationary operations including
model-based approaches. Several case studies concerning methods and techniques
for detection of defects in machinery were presented. Papers on bearing fault diag-
nosis in wind turbines generators, planetary gearbox will show implementation of
amplitude and phase demodulation techniques, acoustic emission and adaptive
vibration diagnostic techniques for complicated machinery. Fatigue life estimation of
bearings running under non-stationary conditions will also discussed. Other inter-
esting case studies will be presented concerning crack identification in structures,
influence of sensors mounting on condition monitoring of aircraft engine rotor. Two
other papers will be interested to conveyor belts behavior, maintenance and safety.
Three papers will be interested to dynamic models of transmission running under
non-stationary operating conditions. They will discuss gear systems and elevators.

The chapters presented in this book were peer reviewed. The editors would like
to thank all the members of the organizing committee, the scientific committee and
the referees, for their efforts in keeping high scientific level for CMMNO confer-
ence. The editors are also grateful to Springer for continuous support to this
conference.

Fakher Chaari
Radoslaw Zimroz
Walter Bartelmus
Mohamed Haddar
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Signal Processing



Method of Analysing Non-stationary
Electrical Signals

Georgia Cablea, Pierre Granjon and Christophe Bérenguer

Abstract Considering the non-stationary operating conditions of wind turbines,
electrical signals measured at the stator of their generators will also present vari-
ations around their fundamental frequency. This paper presents a method able to
efficiently analyse electric quantities measured at the generator stator. The obtained
outputs consist in electrical features that fully describe the electrical information
contained in the measured three-phase quantities. These features can be directly
used or further analysed to obtain efficient fault indicators. The proposed method
relies on using the instantaneous symmetrical components to describe the quantities
and complex-valued filtering to select the content around the fundamental fre-
quency. The obtained sample per sample algorithm can be implemented on-line,
and is able to process stationary or non-stationary quantities in order to extract the
useful information around the fundamental frequency. The performance of the
proposed method, as well as its capability to detect mechanical faults, is illustrated
using experimental data.

Keywords Condition monitoring � Wind turbine � Tree-phase electrical signals �
Non-stationary signals � Electrical signature analysis
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1 Introduction

In terms of renewable energy, wind farms provide a promising mean to extract
energy from the wind. Wind turbines, whether they are onshore or offshore, are still
a developing technology [1]. Though their reliability has improved in time, it can be
further increased by implementing efficient condition monitoring systems and
predictive maintenance strategies. Currently, vibration analysis seems to be the
most popular condition monitoring technique [2] for such systems. Nonetheless,
while vibration analysis focuses on mechanical faults, it has been shown [1] that the
electrical sub-assemblies (generator, converter, etc.) are also critical components in
wind turbines. In terms of monitoring the electrical sub-assemblies, using the sig-
nals measured at the output of the generator represents the obvious solution. The
main challenge in monitoring wind turbines is that they often run under
non-stationary operating conditions because of wind speed fluctuations. This
drastically limits the amount of stationary data generally used by classical condition
monitoring systems. An efficient CMS must then be able to manage and analyse
such non-stationary data in order to generate efficient fault indicators. Electrical
signals measured at the stator of a wind turbine generator contain most information
around the electrical fundamental frequency. Considering the non-stationary
operating conditions of the turbine, electrical signals will also present variations
around their fundamental frequency. Nonetheless, these variations are smaller than,
for example, variations in the vibrations signals.

In this paper, the proposed method relies on using the instantaneous symmetrical
components [3] to describe the quantities and complex-valued filtering [4] to select
the content around the fundamental frequency. The method of symmetrical com-
ponents decompositions is a widely used method in the fields of power network
calculations [3] (network modelling and control, power quality monitoring, fault
detection, etc.) and monitoring of three-phase electrical machines [5]. More
recently, an increased interest is shown towards monitoring mechanical faults in the
drive trains using electrical quantities measured at the stator of three-phase elec-
trical motors [6, 7] and generators [8, 9].

Section 2 presents the considered signals model and the method for estimating
the electrical quantities. A brief overview of the whole algorithm is then provided in
Sect. 2.2. The performance of the proposed method and its ability to be used in

4 G. Cablea et al.



mechanical fault detection applications is presented in Sect. 3 using experimental
signals obtained from a test-bench for a wind turbine.

2 Method for Electrical Signature Analysis

2.1 Model and Features of Three-Phase Signals

The three-phase electrical signals (currents and voltages) are generically denoted by
x in what follows. Such signals mainly consist in a fundamental component of
frequency f0, with possible amplitude and frequency modulations, some harmonics
and additive noise. Therefore they are usually analysed around their fundamental
frequency. Equation (1) gives a simple analytical signal model of three-phase
signals around f0. The relation between the real signal and the analytical one is
given by xðtÞ ¼ <fxðtÞg.

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5 ¼

X1ðtÞ
X2ðtÞe�j 2p

3þq1ðtÞð Þ
X3ðtÞe�j 4p

3þq2ðtÞð Þ

2
64

3
75ej2pR t

0
f0ðuÞdu þ

n1ðtÞ
n2ðtÞ
n3ðtÞ

2
4

3
5 ð1Þ

In Eq. (1) the signal on phase 1 is considered the reference signal and the
quantities described around f0 are:

• x1ðtÞ, x2ðtÞ and x3ðtÞ representing the three-phase signals;
• X1ðtÞ, X2ðtÞ and X3ðtÞ representing the instantaneous magnitudes of the signals

and containing possible amplitude modulations;
• q1ðtÞ and q2ðtÞ representing the small errors in phase shifts between phases;
• f0ðtÞ representing the instantaneous frequency of the components and containing

eventual frequency modulations;
• n1ðtÞ, n2ðtÞ and n3ðtÞ representing additive noise.

The magnitude and frequency modulations may be due to changes in the
operating point of the system or to fault occurrence (i.e. mechanical faults in
rotating machines [7], broken rotor bar [10], bearing faults [5], etc.).

Perfectly balanced three-phase quantities would have the same amplitude on all
phases and a phase shift of 2p

3 between each of the phases. This corresponds to
X1ðtÞ ¼ X2ðtÞ ¼ X3ðtÞ and qiðtÞ ¼ 0. However, real systems are never perfectly
balanced. The electrical unbalance is generally due to faults in the three-phase
systems (i.e. winding stator faults in rotating machines [11]). One way to separate
any three-phase unbalanced system into balanced components is to apply the Lyon
transform [3, 12, 13].
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xþðtÞ
x�ðtÞ
x0ðtÞ

2
4

3
5 ¼ 2

3

1 a a2

1 a2 a
1 1 1

2
4

3
5 x1ðtÞ

x2ðtÞ
x3ðtÞ

2
4

3
5 ð2Þ

where:

• a ¼ ej
2p
3 , called the Fortescue [14] operator, represents a phase shift of 2p

3 ;
• xþðtÞ, x�ðtÞ and x0ðtÞ are generically called instantaneous symmetrical com-

ponents and are the positive-, negative- and zero-sequence components
respectively.

Considering Eq. (1), which describes the content of the measured signal around
f0, and applying the transformation from Eq. (2) to split the signal into its balanced
and unbalanced parts, the instantaneous symmetrical components of the system
around þf0 are obtained. At each frequency, the instantaneous positive-sequence
component describes the balanced quantities in the system, whereas the instanta-
neous negative- and zero-sequence ones quantify the amount of unbalance in the
system for the respective frequencies [6]. While depending on the system config-
uration x0ðtÞ may not always be related to a fault (i.e. in four wire connections i0ðtÞ
is related to the neutral current), in what follows the more generic scenario in which
the zero-sequence component quantifies faults to ground is considered.

The linear transformation of Eq. (2) applied to the mono-component signals of
Eq. (1) leads to the mono-component signals of xþðtÞ, x�ðtÞ and x0ðtÞ, neglecting
the noise. Using the instantaneous symmetrical components one can demodulate the
amplitude and frequency [13, 15] as:

XþðtÞ ¼ jxþðtÞj X�ðtÞ ¼ jx�ðtÞj X0ðtÞ ¼ jx0ðtÞj ð3Þ

fxþðtÞ ¼
1
2p

dhþðtÞ
dt

; with: hþðtÞ ¼ \xþðtÞ ð4Þ

In order to quantify the amount of electrical unbalance in a system, one can use
the advantage provided by the use of symmetrical components, that is the separa-
tion into balanced and unbalanced quantities. Using the magnitudes of such com-
ponents, an electrical unbalance indicator can be defined as in (5). Regarding the
indicator presented in Eq. (5), it should be further emphasised that it only char-
acterises the electrical unbalance around the fundamental frequency f0 [13].

uxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx�ðtÞj2 þ jx0ðtÞj2
jxþðtÞj2 þ jx�ðtÞj2 þ jx0ðtÞj2

s
ð5Þ

If both currents and voltages are available, instantaneous three-phase electrical
powers can also be estimated using the instantaneous positive-sequence compo-
nents of the voltages and currents as:
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Complex power: pþðtÞ ¼
3
2
vþðtÞi�þðtÞ ð6Þ

Active power: PþðtÞ ¼ < pþðtÞ
n o

ð7Þ

Reactive power: QþðtÞ ¼ = pþðtÞ
n o

ð8Þ

Apparent power: SþðtÞ ¼ pþðtÞ
��� ��� ð9Þ

Power factor: cos u0ð Þ, whereu0 ¼ \pþðtÞ ð10Þ

2.2 Estimation Algorithm

In order to summarize the steps needed to implement this method, the estimation
algorithm has been graphically represented in Fig. 1a for the computed quantities
for the voltages and currents independently and in Fig. 1b for computing the
electrical power related quantities using the positive sequence components. In this
section the algorithm is briefly described, while more details are provided in [13].

In Fig. 1a, at the input of the algorithm there are the electrical three-phase
quantities. The first step of the algorithm is a down-sampling step. Considering that
the fundamental frequency of electrical signals is not a high frequency and in order
to save computation time this step may be implemented if needed, depending on the
sampling frequency used by the acquisition system. In order to select the frequency
content around the fundamental, a complex-valued bandpass filter [4] is used. The

Fig. 1 Estimation algorithm. a Algorithm estimating the electrical three-phase quantities.
b Algorithm estimating the electrical powers features
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filter is implemented as a finite impulse response filter with complex-valued
coefficients. Because of the linear time-invariant characteristic of the filter and of
the symmetrical components transformation, these operations can and have been
switched in the implementation of the algorithm. In the end, the instantaneous
symmetrical components are used to compute the electrical unbalance indicator.
The positive sequence component is also used for the amplitude and frequency
demodulation step, thus obtaining the instantaneous magnitude and frequency of
the positive sequence component around the fundamental frequency.

Figure 1b graphically depicts the algorithm for the estimation of the electrical
powers related features computed using the positive sequence components of the
voltages and currents. As emphasised by the figure, the operations used for these
estimations are simple and thus low time-consuming making this algorithm
appropriate for embedded implementations.

Considering that a filter is used to select the bandwidth around the fundamental
frequency of the electrical signals, if the frequency varies too much it may get out of
the assigned bandwidth. In most real wind turbine systems however, the generator
output would be connected to the main grid, which will impose a constant fun-
damental frequency. The output signals frequency would not be allowed to vary too
much, if at all. Another possible way to overcome this limitation could also be to
use an adaptive filtering approach for the complex bandpass filter.

3 Experimental Results

An experimental test-bench has been developed in the CETIM laboratory in Senlis,
France. This bench emulates the structure and behaviour of a wind turbine. The
structure is presented in Fig. 2a. The operating conditions are determined by
controlling the speed of the low speed shaft, which is considered to be the system
input. For this paper, the electrical signals are acquired at the output of the gen-
erator. An experiment was conducted for ≈200 h during which an accelerated
deterioration of the main bearing was induced by applying axial and radial forces on
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Fig. 2 Experimental set-up. a Experimental test bench. b Speed profile of the low speed shaft
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the main bearing. Throughout the experiment several operating conditions were
alternated. In this paper, two of the operating states are considered. Presented in
Fig. 2b, State A denotes the stationary conditions while State B uses non-stationary
input signals. All other operating parameters for the system are the same for both
states. At the end of the experiment, an inner race fault was observed in the main
bearing.

3.1 Electrical Indicators Behaviour

In what follows, the signals used have been recorded at ≈19 h into the experiment
for a duration of ≈145 s for state A and state B, consequently. The goal of this
section is to present the capability of the computed indicators to estimate and track
the evolution of the electrical quantities and to compare their behaviour in sta-
tionary and non-stationary conditions. For this purpose, the chosen measurements
are the voltages. Nonetheless, similar results have been obtained also by using the
currents and the estimated electrical powers.

For the non-stationary signal the time-frequency representation (spectrogram) of
the voltage positive sequence component is presented in Fig. 3. The evolution of the
fundamental frequency of the voltages can be observed in the figure. The profile of
the fundamental frequency of this estimated quantity bears a close resemblance to
the speed profile of the low speed shaft presented in Fig. 2b. The variations of the
instantaneous amplitude and frequency of the fundamental component contain
information related to changes in the operating conditions as well as to mechanical
phenomena occurring in the system, hence the need for demodulations.

Figure 4a depicts the estimation of the instantaneous fundamental frequency of
the electrical signals, computed using the voltage positive sequence component.
While for state A the value of the estimation is almost constant, for state B the time
evolution of the frequency bears a close resemblance to the speed variations of the
low speed shaft (see Fig. 2b), as expected. Figure 4b depicts the instantaneous
magnitude estimated for the voltage positive sequence components computed

Time−frequency representation for v
+
(t) for state B
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Fig. 3 Time-frequency representation around the fundamental frequency of the voltage positive
sequence component for non-stationary conditions
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around the fundamental frequency f0. While for the stationary case in state A this
magnitude remains almost constant, for the non-stationary case of state B the
magnitude is obviously influenced by the variation of the rotating speed imposed at
the input of the system.

Figure 5 depicts the results obtained for the unbalance indicator computed for
the voltages. While there was no electrical unbalance present in the system
throughout the whole experiment, the goal of presenting this result is to show that
this indicator is not influenced by the non-stationary conditions in state B. While
theoretically the value of this indicator should be 0 in case of electrically balanced
systems, in practice real systems are not perfectly balanced. This explains the small
value greater than null that this indicator presents.

In this section, the performance of the proposed indicators was illustrated using
the experimental results obtained using the voltages measurements. The presented
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Fig. 4 Frequency and amplitude modulations of the positive sequence component of the voltages.
a Estimation of the fundamental frequency of tþðtÞ. b Amplitude of the voltages positive sequence
component
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Fig. 5 Voltage unbalance indicator computed around f0

10 G. Cablea et al.



results show good performance in terms of estimating and tracking electrical fea-
tures. Moreover, it has been shown that the unbalance indicator is not affected by
the non-stationary operating conditions. Similar results have been obtained also for
the currents and electrical power estimations.

3.2 Mechanical Fault Detection Capabilities

The goal of the performed experiment was to induce accelerated deterioration of the
main bearing and to study the fault signature on various measured signals. At the
end of the test, an inner race bearing fault occurred in the main bearing. This fault
was confirmed by physical inspection after the experiment was finished. The fault
frequency is known to be ff ¼ 3:4506 Hz and the start of its evolution was deter-
mined by using vibration signals acquired by accelerometers placed on the
respective bearing. For this section, three sets of signals will be considered before
the fault and three sets after the fault occurred, for both stationary and
non-stationary conditions.

Figure 6a, b present the power spectral densities (PSDs) (using Welch’s method
[16]) computed for the magnitude of the positive sequence component of the
voltages. Figure 6a depicts these PSDs computed under the stationary conditions in
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Fig. 6 PSD of jtþðtÞj for a stationary and b non-stationary operating conditions
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state A. The blue curves show the results of the sets before the fault occurred while
the red profiles show the resulting PSDs after the inner race bearing fault occurred.
As it can be seen in the figure, after the fault a new peak appears at the fault
frequency ff . This fault frequency is also modulated by the rotating frequency of the
low speed shaft, thus two smaller peaks can be observed at ff þ frot and ff � frot. The
other peaks present in the PSD of the magnitude of the voltage positive sequence
component in Fig. 6a are accounted for by mechanical phenomena. For example,
the peak located at 2:33 Hz corresponds to the epicyclic gear train frequency
computed for a rotating speed of the low speed shaft of 20 rpm.

Figure 6b presents the same results computed for state B. By comparing to
Fig. 6a, one can observe that mainly the same peaks are present. However, in the
non-stationary case the peaks in the PSD are not as high and they are wider. It is
worth emphasising that this approach of analysing the spectral content of the signals
may not be the optimum in terms of estimation performance, but it can be observed
that for small variations in the signals, it can be used as a rough estimator. Due to
the fact that the rotating frequency is varying, the modulations induced by the fault
are not as clear as in the stationary case, but they are visible nonetheless.
Furthermore, constraints regarding the use of the complex valued band-pass filter
have to be considered when using this approach for non-stationary conditions with
higher speed variations.

Figures 7a, b depict the PSDs computed for the estimated fundamental frequency
of the positive sequence component of the voltages. As for the magnitude indicator,
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Fig. 7 PSD of the instantaneous fundamental frequency for a stationary and b non-stationary
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the frequency indicator also shows a peak at the fault frequency after the fault has
occurred in both stationary and non-stationary scenarios.

The choice to search for mechanical faults signatures in the voltage signals and
not in the currents is due to the fact that the system from which these signals are
measured is a voltage generator. In that case, its output voltages are obviously
influenced by the generator condition and the mechanical phenomena occurring on
its shaft. On the other hand, the load influence is not negligible in the currents and
may complicate fault detection.

4 Conclusions

In the first part of the paper, the theoretical tools used to describe electrical
three-phase quantities have been presented, as well a proposed set of electrical
features that are to be computed. The proposed approach can easily be implemented
as a sample-per-sample algorithm, thus making it suitable also for non-stationary
signals and on-line monitoring of systems. In the second half of the paper, it has
been shown that the proposed method of analysing electrical three-phase signals
presents good performance in terms of estimation and tracking of the evolution of
the quantities in both stationary and non-stationary conditions. This was achieved
by applying the method on electrical three-phase signals measured at the output of
the generator, in a complete system simulating a wind turbine. The proposed
electrical unbalance indicator has also been shown not to be affected by the
non-stationary operating conditions. Moreover, it has been shown that using these
estimated features, at least one type of mechanical fault (inner race bearing fault)
can be detected.

As future work, this method could be extended to automatically detect more
electrical and mechanical faults by further developing the definitions of specific
fault indicators. Moreover, by using an adaptive filtering approach for the complex
valued filter, the method can be extended for use in an even wider area of appli-
cations on electrical three-phase systems operating under non-stationary conditions.
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Electrical Modeling for Faults Detection
Based on Motor Current Signal Analysis
and Angular Approach

Aroua Fourati, Nabih Feki, Adeline Bourdon, Didier Rémond,
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Abstract Recently, Motor Current Signal Analysis (MCSA) appears as an effec-
tive tool for fault diagnosis in rotating machinery and proved to be sufficient for
detecting localized mechanical faults in electromechanical systems operating in
stationary conditions. In the case of non-stationary conditions, speed variations
must be distinguished from angular velocity perturbation caused by the presence of
a defect. In the framework of diagnosis of rotating machinery, angular approaches
are well suited to make monitoring resistive to speed disturbances. This paper
proposes a reformulation of the MCSA associated with angular approach in mod-
eling multiphysic behavior. The resulting model described in this paper can be used
to investigate of the influence of the Instantaneous Angular Speed (IAS) variations
on the electrical responses of the whole rotating system.
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1 Introduction

Induction motors connected to mechanical systems are widely used in industrial
applications due to their robustness, their compactness, low cost and high degree of
reliability. Condition monitoring and diagnosis of these systems by detecting small
variations of their dynamic behavior are among challenges to improve their
availability. The use of stator current signals constitutes a non-intrusive method to
acquire information necessary to diagnosing electromechanical systems and thus to
ensure effective monitoring. Many researches focused on this framework and
proved the capacity of this method to explicit mechanical defect localized on the
electromechanical system related to the motor [1, 2]. In a previous work, [3] an
analytical model of an asynchronous motor has been proposed and proved the
possibility to detect pitting in a geared system operating under stationary condi-
tions. The classical theory of these motors is based on the assumption that the
current produced by their stator winding is sinusoidally distributed in time. This
assumption is limited to systems operating under stationary conditions. However, in
real cases, current components related to faults are confused to those resulting from
dynamic variations, and thus, are very difficult to extract without a dedicated signal
processing. Moreover, some recent results in rotating machine monitoring have
proven that the shaft rotation speed contains dynamic responses of faulted com-
ponents in now well-known Instantaneous Angular Speed (IAS) signal [4].

To overcome these difficulties of non-stationary operating conditions, for
example, velocity variations that can hide the appearance of defects on the current
signal, angular approaches seems to be well suited. In [5], a new way of writing
differential equations in rotating machines by translation into the angular domain
was proposed and proved the interest of angular sampling in rotating machines [6].
When addressing the case of rotating machines operating under non-stationary
conditions, every time their rotating element passes through a disturbance, a per-
turbation takes place. These perturbations are managed by the rotation periodicity
of the machine whatever the overall rotational speed. This leads to the new
assumption that the stator current is periodically distributed in reference with the
angular position of the shaft of rotating machines.
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In this paper, the authors’ purpose is to develop a new approach to investigate
the MCSA method on electromechanical systems operating under non-stationary
conditions in order to analyze in a more efficient way the information given by
stator currents for the detection of defects. Firstly, stator’s current and torque
responses of a healthy motor are presented under this new formalism. In a second
step, the proposed study is extended to present the responses under two different
excitations mechanisms which are varying IAS due to the presence of bearing
faults.

2 Asynchronous Motor Model Formulation

For the framework of detecting faults in electromechanical systems, the common
assumption is based on the fact that a magnetic disturbance is created in the air gap
of the induction machine whenever the system passes through a mechanical fault
(like bearing spall for example). For this purpose, a permeance network model is
used Fig. 1. The interest in this model is motivated by its capacity to detect very
small magnetic disturbances and to offer a detailed representation of the machine
magnetic state which is sensitive to faults.

Fig. 1 A part of the permeance network model [7]

Electrical Modeling for Faults Detection … 17



In order to simulate its magnetical behavior, the induction machine is discretized
on a finite number of nodes. In The overall network, Nn nodes are uniformly
distributed. Between each two node there is a branch representing flux circulation.
Each flux tube is characterized by its permeance. Permeances in the stator and the
rotor are supposed to be constants whereas permeances of the air-gap are varying.
In the complete permeance network model, there are Nb branches and Nbent bran-
ches in the gap, these numbers are relative to the stator teeth and the rotor numbers
ns and nr, where Nbent ¼ ns � nr and Nb ¼ 3ns þ 3nr þ Nbent:

Where /sy;i, /st;i, /sl;i, /ry;j, /rt;j and /rl;j are stator yoke, stator teeth, stator
leakage, rotor leakage, rotor teeth and rotor yoke flux. Fst;i and Frt;j are stator teeth
and rotor teeth magnetomotive forces. Pi;j is the air-gap permeance which connect
the ith stator tooth and the jth rotor tooth.

In the temporal domain, an induction machine is modeled using a unique dif-
ferential equation combining its electrical and magnetical behavior as following [7]:

Lt½ �ðnphþnr ;nphþnrÞþ G tð Þ½ �ðnphþnr ;nphþnrÞ
h i d I tð Þf gðnphþnr ;1Þ

dt

þ Rt½ �ðnphþnr ;nphþnrÞþ
d G tð Þ½ �ðnphþnr ;nphþnrÞ

dt

" #
I tð Þf gðnphþnr ;1Þ¼ V tð Þf gðnphþnr ;1Þ

ð1Þ

where I tð Þf g is the generalized stator and rotor current vector, V tð Þf g is the stator
and rotor voltage supply vector, Lt½ � and Rt½ � are respectively matrix of inductances
and resistances of the rotor and the stator, nph and nr are respectively the number of
stator phases and the number of rotor teeth and G tð Þ½ � is the matrix describing the
electro-magnetical behavior of the induction machine.

These parameters will be involved to calculate the G tð Þ½ � matrix. In this model
we consider stator and rotor permeances as constant whereas permeances on the
air-gap depend dynamically from the angular displacement between the stator and
the rotor as shown in Fig. 2. This consideration induces the angular-depending
character of the induction machine.

Fig. 2 Evolution of the
angular position between a
couple of stator and rotor
teeth
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For each couple of teeth; ith stator tooth and jth rotor tooth, the value of the
permeance is updated for every rotor position relatively to the following expression
[8]:

P hij
� � ¼

Pmax if 0� hij � ht1 and 2p� ht1 � hij � 2p

Pmax
1þcos p h�ht1

ht�ht1
2 if ht1 � hij � ht

Pmax
1þcos p

h�2pþht1
ht�ht1

2 if 2p� ht � hij � 2p� ht1
0 if ht � hij � 2p� ht

8>>>><
>>>>:

ð2Þ

where h is the rotor angular displacement relatively to the stator, hij the jth rotor
tooth rotational displacement referring to ith stator tooth, ht and ht1 are limit angles
representing the angular variation of the permeance and Pmax is the maximal value
of the permeance of any couple of teeth.

The expression of Pmax depends on geometrical characteristics of the motor. It is
defined as:

Pmax ¼ l0LmLdr
e

ð3Þ

where l0 is the air-gap permeability, Lm is the machine length, Ldr is the rotor tooth
width and e is the air-gap thickness.

The starting point of the classical temporal approach for modeling the motor is
based on the fact that the temporal variable is linearly coupled to the angular
variable through a constant rotating speed as provided by Eq. (4), and then mod-
eling will be limited to a stationary operating conditions system.

h ¼ xt ð4Þ

To overcome these limitations, we proceeded by an angular sampling. This
approach was well defined in [4]. Let h be the angular position of the rotor. For
non-stationary rotating machines, the relation which links temporal to angular
variables is provided by means of the IAS function ~x as following:

dt
dh

¼ 1
~x hð Þ ð5Þ

Then, a reformulation of the permeance network model used to calculate vari-
ations of current signals in the case of an asynchronous motor in an angular domain
is proposed as following:
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Lh½ �ðnphþnr ;nphþnrÞþ G hð Þ½ �ðnphþnr ;nphþnrÞ
h i d I hð Þf gðnphþnr ;1Þ

dh
~x hð Þ

þ Rh½ �ðnphþnr ;nphþnrÞþ
d G hð Þ½ �ðnphþnr ;nphþnrÞ

dh
~x hð Þ

" #
I hð Þf gðnphþnr ;1Þ¼ V tð Þf gðnphþnr ;1Þ

dt
dh

¼ 1
~x hð Þ

8>>>>>>>><
>>>>>>>>:

ð6Þ

In order to minimize the number of equations and the dependence on the angular
variable, a basis change is defined. If we consider a relative frame whose axes are
rotating in accordance with the rotor angular displacement, resulting projected
currents are obtained according to the relation:

Id hð Þ
Iq hð Þ

� �
¼

ffiffiffi
2
3

r
cos xstð Þ cos xst � 2p

3

� �
cos xst þ 2p

3

� �
� sin xstð Þ � sin xst � 2p

3

� � � sin xst þ 2p
3

� �� �
�

I1 hð Þ
I2 hð Þ
I3 hð Þ

8<
:

9=
;
ð7Þ

Coupling the electrical model of the induction machine to a mechanical model of
a defective system, the magnetic torque is expressed as:

Cem hð Þ ¼ 1
2

Xns
i

Xnr
j

dPij

dh
e2ij ð8Þ

where ns and nr are respectively stator and rotor tooth number, Pij and eij are
respectively the permeance and the magnetic potential difference in the air-gap
which connects the ith stator tooth and the jth rotor tooth; Then it must be noticed
that differential equations expressed in the angular domain are nonlinear but with
parameters which can be explicitly calculated, therefore decreasing calculation
time.

3 Introducing Instantaneous Angular Speed Disturbances

Comparing to temporal domain, in the differential Eq. (6) the rotational speed
appears explicitly written in the angular domain. This allows integrating a distur-
bance of the IAS in the model, this dynamic behavior being proven to be induced
by typical bearing faults. The form of the disturbance is inspired from the model
developed in [9] as a function of the angular position of the shaft. The expression
proposed to characterize the disturbance is defined as a periodic function; each
occurrence is divided into 3 areas as shown in Fig. 3:
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Area1: Dx hð Þ ¼ xp sin
p
Lp

h� h1 þ L
2

	 
	 

Area2: Dx hð Þ ¼ 0

Area3: Dx hð Þ ¼ xp sin
p
Lp

h� h3ð Þ
	 
 ð9Þ

where xp and Lp are respectively the amplitude and angular length of the
perturbation.

4 Results and Discussions

In order to show results of the motor current signal analysis (MCSA) method
coupled to the angular approach, current signal of a machine has been simulated
without and with IAS perturbations. The considered model is a 50 kW, 50 Hz,
400 V, 2 poles, 24 stator slots, 30 rotor slots, star connected, standard squirrel cage
induction motor rotating at a stationary speed x ¼ 300 rad/s.

Figure 4 shows a sinusoidal stationary variation of the stator first phase current.
When projected onto d-axis, the combination of the three phase currents oscillates
stationary Fig. 5. Theses oscillations appear due to discontinuities of the magnetic
flux passing through the stator and rotor slots. Although the motor is currently
working in stationary conditions, we can, also notice some perturbations in the
torque curve Fig. 6. These perturbations are about 8 % of the torque value and
depend of geometrical parameters of the motor.

After adding the perturbation function to the constant rotational speed as recalled
in Fig. 7, the stator first phase current variations Fig. 8, the projection of stator
currents Fig. 9 and the torque Fig. 10 versus angular position of the rotor are
presented.

Through these figures, it was shown that a perturbation may not appear in either
the stator per phase current or the torque curve. On the contrary, it appears clearly
as a periodic perturbation in the d-axis projected signal. This perturbation appears
each time a speed perturbation takes a place. It was proven through this graph that a

Angle 
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n Area 3Area 2Area 1

Fig. 3 Angular variation of the disturbance function
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Fig. 4 Stator current versus angle of rotation for a constant rotational speed x ¼ 300 rad/s
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Fig. 6 Torque and zoom of the torque for a constant rotational speed x ¼ 300 rad/s
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very small perturbation in the rotation speed can be distinguished in the projected
signal, proving the capacity of this method to small faults detection. It remains to
address the sensitivity of the method to the perturbation amplitude.

The simulation demonstrates also the importance of considering angular domain
for modeling the motor in term of computation time. A comparison between model
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Fig. 7 Stator current versus angle of rotation for a disturbed rotational speed
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Fig. 8 Stator current versus angle of rotation for a disturbed rotational speed
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Fig. 9 d-axis current and zoom of the d-axis current for a disturbed rotational speed
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runs in time and angular domains was performed for 1 s of a stationary motor
rotation. Through this comparison is noticed that using angular domain reduce 70 %
of the simulating time. This is justified by the fact that a large part of the numerical
calculation was performed analytically. In fact, angular modeling allows deter-
mining the instantaneous angular variation of each coefficient of the G hð Þ½ � matrix
and its derivate with respect to angle. Regarding these coefficients, it is noticed that
they are depending on angularly periodic functions independently of the rotation
speed. This ascertainment strengthens our angular approach to modeling.

5 Conclusion and Perspectives

The work presented in this paper is an extension of a previous one aimed to
formulate an analytical modeling of the MCSA for systems operating under sta-
tionary conditions. By introducing angular approach in classical models, an original
reformulation of the method is presented to make it available for rotating systems
operating under non-stationary conditions. The validation of this new methodology
improves the use of MCSA. It also emphasizes the potential of the angular approach
to solve non-stationary problems and extend its application on electrical machines.
Results for constant and disturbed angular speed of the motor shows the importance
of dealing with non-stationary conditions to get effective monitoring.

From a modeling viewpoint, coupling the electrical model with a mechanical one
seems to be a natural extension of the present work in order to simulate pertur-
bations induced by the presence of a fault on stator current signals.

Acknowledgements Authors gratefully acknowledge Rhone-Alpes Council support via mobility
grant “Acceuil Doc” 13722.
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Electrical Induction Motor Higher
Harmonics Analysis Based
on Instantaneous Angular Speed
Measurement

Marco Spagnol, Luigi Bregant and Alessandro Boscarol

Abstract This paper proposes the measurement of Instantaneous Angular Speed
(IAS) as a condition monitoring tool for Induction Motors (IMs). The main
advantages with respect to vibration and Motor Current Signature Analysis
(MCSA) are the high resolution of the result obtained combined with small data
storage. The hi-quality information shows many hi-order harmonics that are not
easy to interpret and correlate with the machine construction. In this paper a review
of the analytic characteristics frequencies due to electromagnetic effects is reported
and, furthermore, theoretical results and experiments are compared. From the
comparison obtained, the authors conclude that IAS has the potential of extract
information due to the rotor’s skewness.

Keywords Instantaneous angular speed � Induction motor � Electromagnetic
noise � Frequency analysis � Condition monitoring
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1 Introduction

Induction motors (IMs) are frequently used in industries and can be one of the most
important components of a system. The maintenance of this equipment is very
important from a business and a safety point of view, so the electrical machine
reliability has been an hot topic in industry for decades. Three mayor surveys were
done in order to classify the major damages:

• 1983 by the Electric Power Research Institute (EPRI), project performed by
General Electric (GE)

• 1985 by the Institute of Electrical and Electronics Engineers, Inc. (IEEE)
• 1995 by the Institute of Electrical and Electronics Engineers, Inc. (IEEE)

These surveys are published in [1]. Other recent studies confirm the results of
former surveys, such as [2–4]. Bearings and stators are the components where
improvement of maintenance and redesign programs may most significantly
increase motor reliability. Note that the most frequently failing components are
ground insulation (18.5 %) and sleeve bearings (9.7 %), followed by ball bearings
(4.9 %) [5] (Table 1).

The previous studies showed that inadequate maintenance and poor
installation/testing are significant causes of failures. On-line condition monitoring
technologies and Precision Maintenance [6, 7] are proved to improve the motor
reliability. For instance, motor bearing failures would be significantly reduced if the
driven equipment is properly aligned through the operative life regardless of the
loading conditions.

Thanks to the collaboration between Nidec ASI S.p.A and Universitá degli Studi
di Trieste, a confirmation of this failure distribution was obtained.

Table 1 Main faults in electrical machines

Failure Percentage (%)

Bearings damaged (lubrication, misalignment, unbalance) 41

Stator faults 37

Rotor faults 10

Other faults 12
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1.1 Fault Diagnosis Techniques

This section introduces recent developments in fault diagnostics of IMs, by pro-
viding theoretical guidelines and practical considerations. Reference [8] reports a
complete bibliography on IMs Faults Detection and Diagnosis up to December
1999. Measurement techniques for fault detection are based on different measure-
ment approaches: stator current measurement, vibration measurements (accelera-
tion, velocity, displacement) as well as the method proposed in this work, the
Instantaneous Angular Speed (IAS) Analysis.

MCSA—Motor Current Signature Analysis the stator current is used as
diagnostic signal; “stator current is the most used diagnostic signal in the industrial
applications” [9], since it enables for non invasive diagnostic and does not require
the use of additional probes. A related problem during field measurements is the
exposure to live parts. This may result in exposing the persons involved in the test
set-up to electrical shock or arc-flash hazards [10]. A review of MCSA diagnostic
techniques is reported in [11, 12]. MCSA is not always reliable for bearing fault
detection [13], since the amplitude of fault signatures in the current signal is very
low, except in some dedicated operating conditions. In [9] the most common
algorithms applied to MCSA are reported. There is an inverse relationship between
the fault detection ease and the importance to the user of that fault detection. In fact,
there are dozens of papers published on broken rotor bars and only two or three on
the use of MCSA for bearing faults detection, in spite of several studies that show
bearing faults to account for almost 50 % of IM failures as opposed to around 10 %
for rotor cage problems [12].

Vibrations Many faults can be detected using acceleration, velocity or dis-
placement sensors. Many books explain how to implement a condition monitoring
system [14, 15]. Angular Resampling, Envelope Analysis and Cyclostationarity are
the common techniques used in order to remove the speed fluctuations, emphasize
the presence of a fault and find a signal that vary cyclically with time. Sometimes
the main problem is the transfer path of the vibration signal through the machine
walls.

IAS—Instantaneous Angular Speed Some work has been done recently in
order to show the capability of IAS to detect bearing faults [16, 17] and broken
rotor bars [18–20]. The IAS measurements is very informative for low speed and
high radial load situations, but can also be applied for higher speed motors with a
counter with high counting frequencies [21]. A common method used to acquire the
IAS is through an incremental optical encoder and a counter board in order to
measure the time elapsed between rising edge of the encoder’s signal. In this way,
the angular information is directly acquired. In a previous research, acceleration and
IAS were compared [22] and the slip effect due to IM behaviour was detected. In
this work, the behaviour of the electrical motor is explained from the IAS point of
view. The aim is to perform condition monitoring tasks using only the encoder
connected to the rotor.
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1.2 Mechanical-Electrical Interaction

In an electric motor, noise and vibration are related to the excitation forces pro-
duced by the electromagnetic field present in the stator and rotor of the motor. The
behaviour of a motor can be affected by the variation of these fields due, for
example, to the presence of an inverter (e.g. the switching frequency can be seen in
the vibration spectrum), by a grid variation [23, 24] or by the motor’s design. Thus,
the healthy IM also has a specific spectrum signature when there are no faults [25,
26]. In bibliography [27–31], different analytical formulas of the electromagnetic
forces are reported. In the next section these main frequencies are summarized.
These can be found in the current, vibration and IAS spectra.

2 Experimental Setup

The motor adopted for the test is an ELETTRONICA SANTERNO MJ 90 LA 4 B3
02/07, 1.5 kW 4 poles electric IM, driven by a 380 V, 50 Hz line current, Fig. 1.
The motor’s specifications are reported in Table 2. The encoder installed (Not
Driving End NDE) is a TEKEL TSW80P with 1024 pulses per revolution (ppr) and
its shaft is rigidly connected to the rotor, while the encoder’s case is fixed at the
stator through a joint, Fig. 2. The motor is provided of a fan with 7 blades made in
fiber reinforced plastic. In this setup there are also installed: a torquemeter, a
magnetic brake and a fly-wheel. The data acquisition system is based on National
Instruments hardware, using the internal 80 MHz counter and purposely developed
MATLAB software.

The IAS measurement uses the elapsed time counting method. The key feature
of this approach is the implicit angular sampling that, combined with an FFT
processing, generates an order spectrum. Quantities related to speed variation, such
as bearing faults, become fixed in the order spectrum.

The results presented in this paper show that IAS is very sensitive and not
filtered by structural resonance.

Fig. 1 Experimental test rig
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3 Characteristic Frequencies

Rotor and stator excite magnetic flux density waves in the air gap. The slots, the
distribution of windings in slot, the input current waveform distribution, the air gap
permeance fluctuation, the rotor eccentricity and the phase unbalance give rise to
mechanical deformations and vibrations. Magnetomotive force (MMF) space har-
monics, time harmonics, slot harmonics, eccentricity harmonics and saturation
harmonics, produce parasitic higher harmonic forces and torques. In order to
explain peaks found in IAS spectrum, a review of the analytical formulas of
electromagnetic fields generation in IM is done. In this paper only MMF space
harmonics in IAS spectrum are reported. In Table 3 the main parameters for an IM
are reported.

3.1 Magneto-Motive Force (MMF) Space Harmonics
in IAS Spectrum

The current flowing into the stator of an IM generates an electromagnetic excitation
which consists in an infinite number of harmonic MMFs changing in time
according to cosðxtÞ and in space according to cosðmphsÞ. A three-phase (m ¼ 3)
ideal motor with balanced sinusoidal currents is considered. Three windings are
shifted in space by 2p=3 electrical degrees. Three input currents are injected into the

Table 2 Motor MJ90LA4B3 specifications

Pn

(kW)
Nn

(rpm)
Tn
(Nm)

In 400 V
(A)

cos/ l
(%)

J
(kg m2)

m
(kg)

S R

1.5 1390 10.3 3.52 0.78 78.6 0.0035 14 24 22

Fig. 2 TEKEL TSW80P
encoder
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stator with theoretically the same amplitude and the same phase shift equal to 2p=3
electrical degrees. This generates a total MMF of:

F1 hs; tð Þ ¼
X1

m

Fmm cos ð2pf Þt � ðmpÞhs½ � ¼
X1

m

Fmm cos ðmpÞhs � ð2pf Þt½ � ð1Þ

with:

mþ ¼ 2kmþ 1 m� ¼ 2km� 1 m ¼ 2 km� 1 ð2Þ

or using another notation [25],

m ¼ 2gmþ 1 g ¼ 0;�1;�2; . . . m ¼ 1;�5; 7;�11; 13; . . . ð3Þ

F1ðhs; tÞ ¼
X1

m

Fmm cos ð2pf Þt � ðmpÞhs½ � ¼
X1

m

Fmm cos ðmpÞhs � ð2pf Þt½ � ð4Þ

In this specific case (three-phase stator winding), the harmonics present in the
spectrum m ¼ mk with k ¼ 1; 3; 5; . . . do not exist. The forward-rotating harmonics

Table 3 Induction machine main parameters

f Fundamental frequency s Slip

p Pole pair number m Number of phases

k; g Ordinal numbers m Harmonic order

mþ Harmonic order (forward) m� Harmonic order (backward)

R Rotor slot (bars) S Stator slot

Fmm MMF Amplitude hs Angle (stator ref)

om Order in IAS spectrum fr Frequency in current spectrum

sk Skewness

P ¼ 2p Poles

x ¼ 2pf Angular frequency

ns ¼ f =p Synchronous speed

nsm ¼ �f =ðmpÞ Synchronous speed for mth harmonic

nm ¼ ð1� sÞns Mechanical speed

ss ¼ 1=ns Synchronous speed period

sm ¼ 1=nm Mechanical speed period

nsl ¼ ns � nm Slip speed

s ¼ nsl=ns Slip definition

sf ¼ psns Slip frequency

sm ¼ 1� mð1� sÞ Slip for mth harmonic

fsm ¼ f ½1� mð1� sÞ� Slip frequency for mth harmonic

m ¼ 2mgþ 1 The order of the space harmonics

l ¼ gS2
p þ 1 The order of the rotor space harmonics
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mþ ¼ 1; 7; 13; 19; . . . are the arithmetic sum of waves in all three phases, while the
backward-rotating harmonics m� ¼ 5; 11; 17; 23; . . . are zero, [29]. m ¼ 5; 7 are a
consequence of trapezoidal phase MMF shape [25]. IM are characterized by the
presence of the slip s. This parameter is correlated to the load/speed of the machine.
At the motor’s startup the slip is 1, at no load is 0, with load 0\s\1. Other
slip-dependent parameters are defined in Table 3. The magnetic flux in the rotor and
in the stator are running with the same synchronous speed ns, since
ns ¼ nsð1� sÞ þ sns. Considering a constant fundamental frequency (the grid
supply frequency varies approximately between 49 and 51 Hz), the current in the
stator completes a revolution in hs, while the rotor does it in hm (with ss 6¼ sm)
owing to the slip. The encoder senses this latter speed. The Eq. 4 describes the
MMF with a periodicity wv of

wv ¼ 0; 12; 12; 24; 24; 36; 36; . . . ð5Þ

for

m ¼ 1;�5; 7;�11; 13;�17; 19; . . . ð6Þ

while in the IAS spectrum these orders can be found at om, Eq. 7. wv can be seen in
Fig. 3. This equation does not take into account the fundamental frequency because
it does not have an influence on the generated periodicity.

om ¼ p
1� s

ðm� 1Þ ð7Þ

In Fig. 4 the harmonics generated in IAS spectrum by the MMF space harmonics
are reported (m ¼ �20;�1; . . .; 1; 20 in order to consider a not ideal machine). Note
that m ¼ �5; 7 have the same absolute value om ¼ 12:425, m ¼ 3; 9; 15; . . . can be
correlated to stator eccentricity, while even space harmonics are due to mechanical
unbalance. These harmonics exactly excite the frequencies found calculating stator
and rotor combinations [30]

om ¼ 0; 4:142; 8:283; 12:425; 16:566; 20:708; 24:849; 28:991; 33:132; . . . ð8Þ

3.2 Time Harmonics and Other Frequencies

In the bibliography, it is suggested to analyze the second time harmonic in the
frequency spectrum. This allows to detect current supply unbalance as suggested in
[15, 22, 29, 32] (Table 4):

fr ¼ 2f ð9Þ
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that, for a 50 Hz supply frequency, is:

fr ¼ 2 � 50 ¼ 100 Hz ð10Þ

the existence of this frequency component could also be due to by the presence of
the MMF space harmonic m ¼ 3:

fr ¼ 2f ¼ o3 nm ð11Þ

with, Eq. 7:

o3 ¼ p
1� s

ð3� 1Þ ¼ 2p
1� s

ð12Þ

and:

fr ¼ 2f ¼ o3 nm ¼ 2p
1� s

1� s
p

f ¼ 2f ð13Þ

The consequence is that, in the IAS spectrum, the 100 Hz in frequency spectrum
seen in MCSA corresponds to the IAS’ order 4:1415 for a four-pole motor with a
50 Hz supply frequency and slip s ¼ 0:03417. Instead, the time harmonic fr ¼ 3f
(seen in MCSA) is related to the motor’s saturation and other causes [27].

Table 4 Current harmonic
frequencies, (p ¼ 2,
s ¼ 0:03417)

m 1 2 3 4 5

om 0 2.0708 4.1415 6.2123 8.2830

m 6 7 8 9 10

om 10.3538 12.4245 14.4953 16.5661 18.6368

m 11 12 13 14 15

om 20.7076 22.7783 24.8491 26.9199 28.9906

m 16 17 18 19 20

om 31.0614 33.1321 35.2029 37.2736 39.3444

m −1 −2 −3 −4 −5

om −4.1415 −6.2123 −8.2830 −10.3538 −12.4245

m −6 −7 −8 −9 −10

om −14.4953 −16.5661 −18.6368 −20.7076 −22.7783

m −11 −12 −13 −14 −15

om −24.8490 −26.9199 −28.9906 −31.0614 −33.1321

m −16 −17 −18 −19 −20

om −35.2029 −37.2736 −39.3444 −41.4152 −43.4859
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3.3 Slip Effect

Figure 5 shows the IAS measurement of the same motor in two different experi-
mental configurations:

• TR motor only (no load)

• 0.00 Nm RMS − s ¼ 0:00088

• EL torquemeter, magnetic brake (three loads) [21, 22]

• 0.00 Nm RMS (2.17 A RMS) − s ¼ 0:00175
• 2.60 Nm RMS (2.27 A RMS) − s ¼ 0:01466
• 6.16 Nm RMS (2.75 A RMS) − s ¼ 0:03417

In the EL case, there is a strong component owing to unbalanced currents or
stator eccentricity. In this specific case it is probably related to the eccentricity
because a new experimental setup, with the same motor and a stiffer coupling that
fixed the rotor in a better position, shows a lower amplitude of the MMF space
harmonic m ¼ 3. Order 3 keeps the same amplitude through the various measure-
ments, so it is an indicator of the measurement quality. Sidebands are present
around these orders at 2ps. The IAS spectrum of the IM can be divided into two
zones:

• orders 0–16: current space and time harmonics effect
• orders 16–40: rotor/stator slotting, skewness effect, saturation

In Table 5, the calculation of om (Eq. 7) is extended to the four different con-
figurations of slip (s ¼ 0:00088; 0:00175; 0:01466; 0:03417). In Fig. 6 these orders
are highlighted.

3.4 Rotor Influence

The conductors (bars) are often skewed slightly along the length of the rotor to
reduce noise and smooth out torque fluctuations that might result at some speeds
due to interactions with the pole pieces of the stator, Fig. 4. In Fig. 7, a phenomenon
correlated to the rotor skewness is present.

This effect can be seen in those orders integer order þ 2ps with sidebands. The
latter can be calculated with Eq. 14. In Table 6 these sidebands are calculated for
two different motors. The first involved in the experiment has a skew of 1 bar. The
value of om is very close to the experimental value 0.282. Considering geometric
tollerances, the value 1:033 can be assigned to the skewness parameter sk.
Sidebands are present also in the second motor, but further investigation is nec-
essary because it has R ¼ 32 and sk ¼ 1:5, so the result is osk ¼ 0:2813, Table 6.

The physical explanation of these sidebands is very simple: at every integer
order, the rotor feels the electromagnetic pull (main order correlated with 2ps) and
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Fig. 5 Harmonics in IAS spectrum, TR (only motor) and EL configuration (s1 ¼ 0:00088,
s2 ¼ 0:00175, s3 ¼ 0:01466, s4 ¼ 0:03417)
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Table 5 IAS current
harmonic frequencies om,
(p ¼ 2)

s 0.00088 0.00175 0.01466 0.03417

v = 11, −9 ±20.0176 ±20.0351 ±20.2976 ±20.7076
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Fig. 6 MMF Harmonics in IAS spectrum, TR (only motor) and EL configuration (s1 ¼ 0:00088,
s2 ¼ 0:00175, s3 ¼ 0:01466, s4 ¼ 0:03417)

20.7 20.8 20.9 21 21.1 21.2 21.3 21.4 21.5 21.6 21.7
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

A
m
p
 
[
r
a
d
/
s
]

Orders

O
r
d
e
r
:
 
 
 
 
 
2
1
.
1
4
0

S
i
d
e
b
a
n
d
:
 
 
 
0
.
2
8
2

O
r
d
e
r
:
 
 
 
 
 
2
1
.
0
6
0

S
i
d
e
b
a
n
d
:
 
 
 
0
.
2
8
2

O
r
d
e
r
:
 
 
 
 
 
2
1
.
0
0
7

S
i
d
e
b
a
n
d
:
 
 
 
0
.
2
8
2

Fig. 7 Skew Harmonics in IAS spectrum, TR (only motor) and EL configuration (s1 ¼ 0:00088,
s2 ¼ 0:00175, s3 ¼ 0:01466, s4 ¼ 0:03417)

38 M. Spagnol et al.



owing to the presence of skewness, the number of pole pairs, the number of phases
and the number of rotor bars, a modulation around the main order appears. If
confirmed, it may be a very interesting result because this effect probably cannot be
seen in MCSA due to the smearing of the peaks. The IAS spectrum, being fixed
with the rotor, allows this kind of information extraction.

osk ¼ pm sk
R

ð14Þ

4 Conclusions

This research shows the influence of current supply effect in the IAS measurement.
Motor noise and vibrations can be predicted using analytical formulas found in
bibliography. Nevertheless, further work must be done in order to identify all the
harmonics and sidebands present in the spectrum. From the experiments it is clear
that the saturation harmonics are very strong in induction machines. Sidebands were
found probably correlated to the rotor skewness.
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Evaluation and Improvement of Accuracy
in the Instantaneous Angular Speed
(IAS) and Torsional Vibration
Measurement Using Zebra Tapes

Antonio Palermo, Karl Janssens and Laurent Britte

Abstract This paper analyses from an experimental standpoint the measurement
error in the Instantaneous Angular Speed (IAS) and Torsional Vibration (TV)
measurement by means of zebra tapes. A precision gear test rig is exploited to
compare against calibrated high accuracy analog encoders and low-cost digital
encoders taken as angular references, after performing a measurement error anal-
ysis. It is shown analytically and experimentally how compensation of systematic
errors leads to a substantially increased measurement accuracy. The benefits
introduced by such compensation are demonstrated, leading to the conclusion that
zebra tapes show high potential for extremely accurate measurement of Torsional
Vibrations, both in terms of angular position and IAS.
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1 Introduction

Instantaneous Angular Speed (IAS) and, more in general, Torsional Vibrations
(TV) carry a considerable amount of information on the health and usage status of
rotating machinery, e.g. in vehicle [1], power generation [2], oil and gas [3], aviation
[4] and marine sectors [5]. It has been shown that IAS performs very well as a
sensitive and robust indicator for early detection of faults [6]. However, accurate IAS
and TV measurement poses several intrinsic challenges related to acquiring signals
from rotating mechanical components, often at high speed and in environments
difficult to access and to instrument. Traditional instrumentation for TV and IAS
analysis includes encoders, laser vibrometers or paired accelerometers which pose
significant limitations to practical implementation [7]. In an effort towards over-
coming such difficulties and aiming towards a simplification of the instrumentation
phase, a few measurement techniques have been introduced to use angular coders1

which allow minimal modifications of the components to be tested. A relatively new
technique in this group uses so-called zebra tapes (sensor2), which are constituted by
a sequence of black and white stripes, directly glued or engraved on the component of
interest. Therefore the angular position can be coded detecting the stripes passage by
means of an optical probe (measuring transducer). Recent investigations highlight
accuracy limitations for this technique, aside its great versatility and practical
instrumentation. Accuracy limitations of coder-based techniques can be due to the
combination of the sensor and measuring transducer or due to the acquisition and
processing of the angular position [8].Measurement errors related to the formers can
be due to mechanical mounting or due to the non-uniform distribution of angular
subdivisions [9, 10]. Provided that the measurement is free of aliasing, errors related
to the acquisition of the signal are mainly due to digital quantization of time [11],
while errors related to processing are mainly due to angular position reconstruction
starting from discrete samples [12, 13]. In this paper, the total measurement error of
zebra tapes is measured against a calibrated angular reference. A reliable measure-
ment is reached by exploiting a precision gear test rig for which a special positioning
system has been designed, in order to install on the same shaft a high-accuracy analog
encoder and a low-cost digital encoder.

1The term “coder” is used here to denote a measurement instrument which subdivides and enu-
merates one rotation in a discrete number of angular positions.
2Terms in italic are used according to the definition provided by the International Vocabulary of
Metrology (VIM) [15].
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2 Experimental Setup

2.1 Design Features and Instrumentation

The main aim of the adopted test rig, shown in Fig. 1, is to allow the heavy
instrumentation of a test gear pair which can be subject to tightly controlled
operating conditions and which has well-characterised boundary conditions.
Manufacturing tolerances were specified and verified using a coordinate measuring
machine and using Geometric Dimensioning and Tolerancing (GD&T) for each
mechanical component as well as for the assembly. As a general figure, tolerance
bands were kept at a component level within a few micron, with an assembly level
stack-up below 20 micron. These design features lend themselves well to per-
forming also accurate torsional vibration measurements. More detailed discussion
on the design as well as on the instrumentation of the test rig can be found in [14],
while the main specifications of the rig are reported in Table 1.

A relevant aspect for the purposes of the present paper is that both test shaft ends
are accessible. Each shaft end is instrumented with one high-accuracy analog
encoder and one low-cost digital encoder. However, only one shaft will be used for
the present study. Encoder specifications are reported in Table 2.

Fig. 1 Top Physical installation. Bottom Three-dimensional representation of the test rig: 1 Test
gears; 2 reaction gears; 3 bearings support plates; 4 flexible couplings; 5 flywheels; 6 clutch flange
for preload
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The high-accuracy encoders have a measurement error described by calibration
diagrams individually provided by the manufacturer, given that the encoders are
mounted according to the specified tolerances. Centering and alignment tolerances
are particularly important for these encoders, because the rotor and the stator allow
limited relative displacements. The low-cost encoders on the other hand do not have
a description for the distribution of their measurement error, therefore if success-
fully mounted on the same shaft they can be calibrated against the high-resolution
encoders. Positioning tolerances for these encoders are not critical, because the only
motion allowed between rotor and stator is relative rotation, thanks to an integrated
high-precision double-row ball bearing. Since the stator of the low-cost encoder
does not move with respect to the shaft, it can be taken (after coordinate machine
measurement) as reference to correctly center and align the stator of the
high-accuracy encoder. An encoders positioner has been manufactured to fulfil this
requirement, shown in Fig. 2 together with inner and outer positioning surfaces for
both the encoders. In this way, the high-accuracy encoder is not sensitive to the
misalignment which in future studies will be imposed to the shaft.

Finally, zebra tapes are installed on different shaft diameters (more details in
Sect. 3). Zebra tapes have been scanned using a round spot probe with 1 mm
diameter, mounted at a distance of circa 1 mm, and an Optel-Thevon 152 M sensor,
which is able to generate a TTL signal up to a bandwidth of about 1 × 106 pulses
per second and has also an analog output.

All signals are acquired using a Siemens LMS SCADAS Mobile acquisition
system equipped with voltage input channels for the analog encoder and the zebra

Table 1 Possible operating
conditions for the test gear
pair

Parameter Range Uncertainty

Speed 0–4500 rpm
(0–75 Hz)

Measured

Torque 0–500 Nm ±0.05 %

Angular
misalignments

0–2 mrad 0.1 mrad

Parallel
misalignments

0–0.3 mm 0.020 mm

Table 2 Encoder specifications

Encoder
model

Number of
divisions

Signal
type

One-revolution
accuracy

Spacing
accuracy

Recommended
measuring step

Heidenhain
RON 285C

18000 Analog
Sine

1.38 × 10−3 deg
(±5 arcsec)

±1 % 1.00 × 10−4 deg
(0.36 arcsec)

Heidenhain
ERN 120

5000 Digital
TTL

5.55 × 10−3 deg
(±20 arcsec)

– –
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tapes (24 bit ADC sampling at 204.8 kHz) and an RV4 module for rotational
vibration providing digital encoder channels (input pulse rate up to 204.8 kHz
synchronised with an 820 MHz clock).

2.2 Encoders Measurement Error

Since encoder assembly tolerances were taken into account when designing the test
rig and the encoders positioner, it is assumed according to specifications that
assembly errors do not play a significant role in the overall measurement error.
Given that the acquisition system has a timer clock of 820 MHz yielding a time
resolution of 1.2 ns, also the time quantization error is negligible [16]. Furthermore,
measurements have been performed at low speed (*20 rpm) for two reason.
Firstly, as explained in Sect. 3.1 and Eq. 7, the non-uniform spacing of gratings can
be characterized with respect to the angular position, which is independent of speed.
Secondly, the high-accuracy encoders saturate very quickly the sampling frequency
of 204 kHz. Figure 3 reports the measurement error for the high-accuracy encoders,
according to the calibration diagrams provided by the manufacturer, and for the
low-cost encoders, measured against the high-accuracy encoders using the
mounting system described in the previous paragraph.

It is evident from the graph that the overall peak to peak error magnitude for the
high-accuracy encoders (2.65 × 10−4 deg) is about one order of magnitude lower
than the one of the low-cost encoder (3.27 × 10−3 deg). However, a single mag-
nitude value provides only limited information about the measurement error: it is
useful, especially when processing data in the angle domain, to analyze the angular
frequency (order) distribution of the measurement error. By performing a Fourier
Transform of the errors in angle domain, it can be seen that the measurement error
is limited to the first few orders and that, above this band, both the high-accuracy
and the low-cost encoders have a measurement error well below 1 × 10−4 deg
(Fig. 4).

Fig. 2 a Encoders positioner and positioning surfaces (indicated by dashed lines); b encoders
installation
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3 Measurement Error of Zebra Tapes

3.1 Analytical Considerations

Zebra tapes are currently used to generate a voltage square waveform which is
periodic with the passage of a stripe pair. The rising or the falling edge of the square
wave can be used as a trigger to detect a discrete angular position increment given
in degrees by:

Dhe ¼ 360
N

ð1Þ

where Dhe is the estimated or nominal angle increment, and N is the number of
stripe pairs of the zebra tape. In reality, the angle increments are affected by a
measurement error. In this paper this error is assumed to be due to the non-uniform
distribution of angular subdivisions, given the discussion in Sect. 2.1. This
assumption is basically taking the measurement error as systematic and will be

Fig. 3 Measurement error of the high-accuracy (HA) and the low-cost (LC) encoders

Fig. 4 Order distribution for the measurement error of the HA and the LC encoders
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validated on the next paragraph. Under this assumption the total angular position
can be written as:

he ið Þ ¼ ht ið Þ þ ec ht ið Þ½ �; i ¼ 1; . . .;N ð2Þ

where he ið Þ is again an estimated angle and is also a discrete variable, as the index
i takes natural values which cycle over the total number of stripe pairs N. ht ið Þ has
the same characteristics, but represents true angular position. ec is the cumulative
measurement on the angular position and is a function of the true angular position,
since this error varies from stripe pair to stripe pair. While these variables are
periodic in the angle domain, they also have an associated time stamp which tracks
their occurrence in time.

It is useful to add one additional definition of error, the spacing error es:

es ht ið Þ½ � ¼ ec ht iþ 1ð Þ½ � � ec ht ið Þ½ � ð3Þ

The true angle can be retrieved by subtracting the cumulative measurement
error:

ht ið Þ ¼ he ið Þ � ec ht ið Þ½ � ð4Þ

This description of the angular position is sufficient for the purposes of this
paper. Besides the angular position, the IAS is defined as the time derivative:

Xe tð Þ ¼ dhe ið Þ
dt

ð5Þ

The subscript indicates again that this value is estimated. Even if the periodic
index has been replaced by time t, this time variable is still discrete so that the IAS
value is an average estimation between two subsequent angular increments and the
two related time stamps. To let the measurement error appear explicitly in the
definition of the IAS, Eq. 2 can be substituted in Eq. 5. In this way, the true value of

the IAS can also be calculated. Considering that Xt tð Þ ¼ dht ið Þ
dt and that ec is a

composite function of ht, Eq. 5 becomes:

Xe tð Þ ¼ Xt tð Þ þ dec ht ið Þ½ �
dht ið Þ � dht ið Þ

dt
¼ Xt tð Þ 1þ dec ht ið Þ½ �

dht ið Þ
� �

ð6Þ

From Eq. 6 it is clear that to have an accurate IAS measurement, the derivative
of the cumulative error in angle domain should be minimized. Since it is an additive
term to the ideal factor of 1 between Xt and Xe, this derivative can be interpreted as
a normalized percentage stray fluctuation of the estimated IAS. It should also be
pointed out that this error on the IAS does not vary with speed in angle domain (the
derivative is with respect to the function ht). In time domain, instead, this error
increases linearly with the true angular velocity.
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Among other methods, finite differencing on the discrete functions can be used
to compute the derivative of the cumulative error:

Xe tð Þ ¼ Xt tð Þ 1þ ec ht iþ 1ð Þ½ � � ec ht ið Þ½ �
ht iþ 1ð Þ � ht ið Þ

� �
¼ Xt tð Þ 1þ es ht ið Þ½ �

Dht ið Þ
� �

ð7Þ

The ratio between the spacing error and the angle increment is what drives the
accuracy of the IAS measurement. Namely, a higher number of stripe pairs is not
beneficial to accuracy if the spacing error does not also reduce. And this is typically
the case: the spacing error es is a property of the tape printing process and is
independent on the number of stripe pairs. An optimal accuracy trade-off should
therefore be thought for IAS measurement: more stripe pairs are beneficial for
bandwidth but increase the importance of keeping low the spacing error as the angle
increments Dht become smaller. Equivalently, given a rotor diameter to be
instrumented, accuracy is improved if its circumference is instrumented with fewer
stripe pairs of larger size.

3.2 Experimental Measurement

Zebra tape measurement error has been assessed at two different shaft diameters.
Two types of tape have been used: a 1 mm Optel-Thevon tape and a laser-printed
tape (1200 dpi resolution on 100 g/m2 copier paper) where stripes have a chosen
stripe width. The Optel-Thevon tape is supported by a tough and oil-resistant plastic
layer. However the laser-printed tape, although only suitable for clean environ-
ments, has been used to choose the stripe size to obtain a specific and integer
number of angular divisions over the full shaft circumference. This number can be
chosen as a multiple of the order of interest, e.g. to minimize leakage and avoid
windowing the signal. The analyzed cases are listed in Table 3 and shown in Fig. 5.

For the printed tape, it is useful to consider tape dimensions up to micron level,
as the total tape length comes from a stack-up. Moreover, the zebra tape is drawn
using vector graphics (and not by pixelated rasters) to improve accuracy and res-
olution. The stripes are in fact defined by analytically exact geometric entities
before being sent to the printer.

Table 3 Main characteristics of the analyzed zebra tape cases

Case
name

Shaft diameter
(mm)

Type of tape Number of stripe
pairs

Stripe pair width
(mm)

OT-40 40 Optel-Thevon 63 2.000

P-40 40 Paper 57 2.204

P-66 66 Paper 104 2.004
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True angles for obtaining the measurement error of the zebra tapes have been
measured using the low-cost encoders. Error magnitudes were found to be, in fact,
more than two orders of magnitude higher.

The measured cumulative error ec and the spacing error es are reported in Fig. 6,
and metrics of their variability along a full rotation are reported in Table 4.
Excluding from consideration the error due to the butt joint3 [17], it is possible to
compare the Optel-Thevon and the printed tape on the same shaft diameter. The
former performs substantially better than the latter.

All the tapes, at each location, show an extremely repeatable measurement error,
validating the assumption of systematic error: three full rotations are in fact plotted
in Fig. 6a and are very well overlapping. The trend for the error in the OT-40 case is
linear because the butt joint error is 1.7 deg larger, circa *30 %, with respect to the
nominal size, is distributed over the remaining stripes [17]. For the P-40 and P-66
cases, such trend is not visible because the butt joint effect is considerably more
limited.

It is interesting to look at the order distribution of the error (Fig. 7), which drops
with increasing order number, but remains at least three orders of magnitude higher
with respect to the encoder case (Fig. 3).

Fig. 5 Zebra tape instrumentation: a Ø40 mm shaft; b Ø66 mm shaft

3The butt joint occurs at the junction between the two ends of the tape folded around the full rotor
circumference.
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The systematic error can be compensated in the attempt of improving the
measurement accuracy of the zebra tapes. Calibration diagrams can be generated by
taking the average of the cumulative error ec (Fig. 6a) and can be used in Eq. 4 to
obtain the true value of the angular position. The result of this operation is shown in
Fig. 8.

Fig. 6 Zebra tapes measurement error: a cumulative (ec), b spacing (es)

Table 4 Variability metrics for Optel-Thevon and printed zebra tapes, excluding the butt joint
effect

Case name es P-P es StD Stripe pair width error StD

OT-40 0.159 deg ±0.036 deg ±0.013 mm

P-40 0.310 deg (+95 %) ±0.058 deg (+61 %) ±0.020 mm (+54 %)

P-66 0.177 deg ±0.033 deg ±0.019 mm

StD Standard Deviation, P-P peak to peak

Fig. 7 Order distribution of the cumulative measurement error
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The systematic error compensation reduces the error to a band of about one order
of magnitude, going from ±0.1 to ±0.01 deg. Furthermore, the trend of the
remaining measurement error is no longer repeatable and periodic. Thus, once the
systematic error component has been removed, the residual error can be further
attenuated by synchronous averaging on subsequent turns. The results of this
procedure are shown in Fig. 9 for the P-66 case: synchronous averaging allows

Fig. 8 Calibrated zebra tapes measurement error: a cumulative (ec), b Spacing (es)

Fig. 9 Synchronous averaging of measurement error for subsequent number of turns
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reducing progressively the residual error and entering the measurement accuracy
range of the optical encoders (circa ±0.001 deg).

Similar considerations can be performed for the IAS measurement. In particular,
the error term described in Eq. 7 has been calculated and plotted in Fig. 10a. The
error is dominated by the butt joint effect and it can be brought to around ±2 %
using the correction algorithm proposed in [17]. Calibration of the zebra tape
dramatically improves the measurement error, reducing it to about ±0.2 %
(Fig. 10b).

4 Conclusions

Measurement error for zebra tapes has been investigated exploiting accurate angular
references and a precision gear test rig. Different shaft locations have been ana-
lyzed, with high-quality and laser-printed zebra tapes. An analytical description of
the errors in terms of angular position and of IAS has been provided. In particular,
the spacing error is found to be an important parameter to describe the measurement
error. This parameter is periodic in angle domain and, be isolated in an error term
which is independent of angular velocity and can be interpreted as a normalized
error percentage. On the experimental side, for the analyzed case, it is found that the
dominant component of the error on the angular position is systematic and in the
order of ±0.1 deg. Calibration reduces this error of one order of magnitude to about
±0.01 deg. Synchronous averaging of the residual error brings the accuracy in the

Fig. 10 IAS percentage measurement error for zebra tapes a not calibrated, b calibrated
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range of ±0.001 deg. Similarly happens for the IAS, where the error is reduced from
about 2 % to about 0.2 % by tape calibration. These improvement can be sub-
stantially beneficial when high accuracy is required, e.g. in the case of early
detection of faults, gear transmission error measurement or angle of twist
measurement.

Zebra tapes show high potential to allow an extremely accurate measurement of
Torsional Vibrations, both in terms of angular position and IAS. Calibration and
synchronous averaging allow entering in the measurement error range of optical
encoders with minimal instrumentation complexity.

Acknowledgements The results described in this paper have been obtained through research
activities funded by the People Programme (Marie Curie Actions) of the 7th Framework
Programme of the European Union FP7/2007-2013, under the contract with the Research
Executive Agency (REA) n. 324336 and the related research project DEMETRA—“Design of
Mechanical Transmissions: Efficiency, Noise and Durability Optimization” (www.fp7demetra.eu).

References

1. Leclère Q, Pruvost L, Parizet E (2010) Angular and temporal determinism of rotating machine
signals: the diesel engine case. Mech Syst Signal Process 24:2012–2020

2. Borghesani P, Pennacchi P, Chatterton S, Ricci R (2014) The velocity synchronous discrete
Fourier transform for order tracking in the field of rotating machinery. Mech Syst Signal
Process 44:118–133

3. Rossi V, Naldi L, Depau V (2009) Torsional vibrations in rotordynamic systems: smart
investigation methods. ASME Turbo Expo 2009:607–616

4. Zhang X, Yu SD (2009) Torsional vibration of crankshaft in an engine–propeller nonlinear
dynamical system. J Sound Vib 319:491–514

5. Cardona-Morales O, Avendaño LD, Castellanos-Domínguez G (2014) Nonlinear model for
condition monitoring of non-stationary vibration signals in ship driveline application. Mech
Syst Signal Process 44:134–148

6. Renaudin L, Bonnardot F, Musy O, Doray JB, Rémond D (2010) Natural roller bearing fault
detection by angular measurement of true instantaneous angular speed. Mech Syst Signal
Process 24:1998–2011

7. Janssens K, Britte L (2014) Comparison of torsional vibration measurement techniques.
Advances in condition monitoring of machinery in non-stationary operations. Springer, Berlin,
pp 453–463

8. Li Y, Gu F, Harris G, Ball A, Bennett N, Travis K (2005) The measurement of instantaneous
angular speed. Mech Syst Signal Process 19:786–805

9. Resor BR, Trethewey MW, Maynard KP (2005) Compensation for encoder geometry and
shaft speed variation in time interval torsional vibration measurement. J Sound Vib 286:897–
920

10. Rivola A, Troncossi M (2014) Zebra tape identification for the instantaneous angular speed
computation and angular resampling of motorbike valve train measurements. Mech Syst
Signal Process 44:5–13

11. André H, Girardin F, Bourdon A, Antoni J, Rémond D (2014) Precision of the IAS monitoring
system based on the elapsed time method in the spectral domain. Mech Syst Signal Process
44:14–30

12. LMS International, a Siemens Business, Academy—Technology information, Torsional
vibration measurement and analysis white paper, http://www.lmsintl.com/torsional-vibration

Evaluation and Improvement of Accuracy in the Instantaneous Angular Speed (IAS) … 55

http://www.fp7demetra.eu
http://www.lmsintl.com/torsional-vibration


13. Remond D (1998) Practical performances of high-speed measurement of gear transmission
error or torsional vibrations with optical encoders. Meas Sci Technol 9:347

14. Palermo A, Anthonis J, Mundo D, Desmet W (2013) A novel gear test rig with adjustable shaft
compliance and misalignments, Part I: design and part II: instrumentation. In: Proceedings of
the CMMNO Conference 2013, University of Ferrara

15. ISO/IEC Guide 99:2007—International vocabulary of metrology—Basic and general concepts
and associated terms (VIM)

16. Palermo A, Britte L, Janssens K, Mundo D, Desmet W (2013) Gear transmission error
measurement accuracy using low-cost digital encoders. In: RASD Conference 2013, Pisa, Italy

17. Janssens K, Van Vlierberghe P, Claes W, Peeters B, Martens T, D’Hondt P (2010) Zebra tape
butt joint detection and correction algorithm for rotating shafts with torsional vibrations. In:
Proceedings of the ISMA, pp 20–22

56 A. Palermo et al.



Vibration Analysis of Copper Ore
Crushers Used in Mineral Processing
Plant—Problem of Bearings Damage
Detection in Presence of Heavy
Impulsive Noise

Radoslaw Zimroz, Jakub Obuchowski and Agnieszka Wyłomańska

Abstract Vibration analysis of rolling element bearings (REB) used in copper ore
crushers is discussed in the paper. The purpose of the analysis is to detect localized
damage in REB. The problem of damage detection in REB is widely described in
literature, in general. However, known techniques might be not successful in case
of crushers due to presence of heavy non-Gaussian, impulsive noise. Impulsiveness
of the signal from bearings is commonly used as an indicator of damage as well as a
filter optimization criterion in order to enhance raw observation (to extract infor-
mative part—signal of interest (SOI)). A crusher is a kind of machine which use a
metal surface to crumble materials into small fractional pieces. During this process,
as well as during entering material stream into the crusher, a lot of impacts/shocks
appear. They are present in vibration signal acquired from bearing’s housing. These
non-periodic, strong impulses are non-informative from diagnostic point of view
and should be removed from the raw signal before further processing, because they
mask completely informative, cyclic impulses related to damaged part of REB.
Unfortunately, impulsiveness cannot be basis for signal extraction anymore. So,
commonly used kurtosis-based optimization of pre-filtering (kurtogram, spectral
kurtosis) cannot be used here. Promising approach is to search for cyclic/periodic
nature of impulses (envelope analysis, spectral correlation density, protrugram,
etc.). However, as mentioned, even before enveloping there is also a need to
pre-filter the signal. In the paper we will introduce the problem including
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description of the machine, investigation on structure of vibration and we will
present preliminary results of vibration processing using protrugram approach. At
the end, we will propose an enhancement of protrugram in order to identify
cyclo-stationary signal in presence of randomly spaced impulses and narrowband
amplitude modulation of discrete components.

Keywords Crusher bearing diagnostics � Amplitude modulation � Rolling element
bearing � Non-Gaussian noise � Protrugam
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1 Introduction

One of the key steps in condition monitoring of machines is to extract information
about damage. A special class of damage detection problems is recognition of local
damage in rotating machines. When a vibration signal is used, extraction of the
information about damage often comes down to searching an informative signal, its
extraction and, finally, description of the informative signal using some parameter
(s) called diagnostic feature(s). The problem is widely investigated in the literature
[1–4]. For instance, one can find the informative signal using time-domain detec-
tors, among which some of the most known are based on kurtosis [3, 5–12]. A key
feature of the signal used as a basis for detection is its impulsiveness. However, for
damage detection at early stages, when signal to noise ratio is poor/informative
signal is weak [3, 13–15], in presence of high energy deterministic components,
damage detection becomes difficult and requires advanced signal processing
including averaging, model based filtering, decomposition or adaptive filtering [9,
16–20]. Mentioned above kurtosis is also used for pre-processing of the raw signal
in order to improve its signal-to-noise ratio (SNR). In this approach, detection (and
also diagnosis of the damage) is performed via envelope and envelope spectrum
analysis. In this method, damage detection is based on periodicity of the
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informative signal (more precisely, periodicity of the envelope of the signal). In our
case, the machine (copper ore crusher) produces randomly spaced in time heavy
impulsive disturbances related to normal operation of the machine, similarly as
reported in [7, 8, 11–13, 21]. It makes impossible detection of damage in time
domain, moreover due to very poor signal to noise ratio, even envelope spectrum
analysis is not able to detect damage based directly on the raw vibration.
Unfortunately, impulsiveness cannot be basis for signal extraction anymore. So, the
commonly used kurtosis-based optimization of pre-filtering (kurtogram, spectral
kurtosis) cannot be applied here. Due to serious influence of randomly spaced
impacts to statistical measures of the process, proposed recently by Obuchowski
et al. [11, 12] set of statistics did not provide good results, neither. Promising
approach is to search for cyclic/periodic nature of impulses. As mentioned, an
envelope analysis without pre-filtering do not provide acceptable results. Last
decades brought deep knowledge on cyclo-stationary approach [1, 2, 13, 22–28].
Preliminary results of application of spectral coherence density map to crusher
vibration were presented in [21]. Although, the problem is still challenging since
the SCDM is a computationally expansive tool. Moreover, it gives 2D map as
results that is not easy to interpret in industrial reality.

Jablonski and Barszcz proposed a method that incorporates periodicity of the
impacts related to damage, called protrugram [7]. It exploits kurtosis applied to
amplitude spectrum of envelope instead of time series. In this paper, we will
analyze performance of protrugam in context of our data. It will be shown that, the
protrugram is also encumbered with disadvantages, namely it is sensitive to nar-
rowband (sinusoidal) amplitude modulation of the discrete carrier. In the paper we
investigate possibility of using the protrugram and propose a kind of enhancement
to overcome the mentioned problem of narrowband amplitude modulation.
Proposed novel method is based on simple observation, that for local damage one
might see family of equally spaced components in the envelope spectrum that might
be considered as periodicity in the spectrum. In case of narrowband modulation,
envelope spectrum will have one component, definitely no periodicity can be
assumed. We will focus on simulation to present the idea of the proposed solution.
The paper is structured as follows: Sect. 2 contains a description of the investigated
machine and provides preliminary analysis of the vibration signal form the crusher.
In Sect. 3 we present analysis of a simulated signal with characteristics that closely
follow the real signal. The novel methodology designed to indicate the cyclic
impulsive signal in presence of non-impulsive amplitude modulated components is
described in Sect. 4. The last section contains conclusion.
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2 Motivation

2.1 Experiment Description

The machine discussed here is a heavy duty crusher used in a mineral processing
plant. The crusher is a kind of a machine which uses a metal surface to crumble
materials into small fractional pieces (Fig. 1). During this process, as well as during
entering material stream into the crusher, a lot of impacts/shocks appear. They are
present in vibration signal acquired from the bearing’s housing. Several crushers
were investigated in different conditions. Vibration from bearings housing in hor-
izontal and vertical direction and tacho signal have been measured using Endevco
accelerometers BruelKjaer Laser probe, NI DAQ card and Labview Signal Express.
Signals were acquired for idle mode as well as for different values of load (volume
and granulation of material stream) with approx 120 s duration each, however, for
further investigation shorter signals were selected. Sampling frequency was set to
25 kHz.

Apart from expected cyclic impulsive signal related to damage and
non-informative intense impulsive noise, several discrete components might appear
from rotating shafts of engine located nearby. Belt transmission is used to pass
torque from the electric motor to crusher. A 23264 SKF bearings are used in the
crusher. Assuming more or less stationary speed expected bearings fault frequen-
cies are presented in Table 1. In [21] it is reported that the signal we analyze
contains cyclic impulsive modulation and several harmonics of 30 Hz occur. Due to
Table 1, the damage reveals in the inner race.

Fig. 1 A crusher—general
view (note bearings with
yellow housing)
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2.2 Preliminary Real Data Analysis

Figures 2 and 3 present the time series and spectrogram of the raw vibration signal
acquired on the rolling element bearing using an accelerometer located on the
housing in vertical direction. Length of the signal is 10 s and frequency sampling
equals to 25 kHz. One can see a lot of impulses of different amplitudes in the time
series (Figs. 2a and 3a), but it is difficult to assess whether they are cyclic or not.

Table 1 Bearing frequencies: 23264 CCK/W33

No. Description Value/unit

1. ni—Rotational speed of the inner ring 180 r/min

2. ne—Rotational speed of the outer ring 0 r/min

3. Fi—Rotational frequency of the inner ring 3 Hz

4. Fe—Rotational frequency of the outer ring 0 Hz

5. Fc—Rotational frequency of the rolling element and cage assembly 1.3 Hz

6. Fr—Rotational frequency of a rolling element about its own axis 10.6 Hz

7. Fip—Over-rolling frequency of one point on the inner ring 30.7 Hz

8. Fep—Over-rolling frequency of one point on the outer ring 23.3 Hz

9. Frp—Over-rolling frequency of one point on a rolling element 21.1 Hz

Fig. 2 Time series (a) and spectrogram (b) of the raw vibration signal from the bearing operating
in a crusher
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The spectrogram demonstrates that there are a few resonances of the system, e.g.
2000–000 Hz and around 7500 Hz (Figs. 2b and 3b). Most of the energy is con-
tained below 10,000 Hz. Impulses present in the time series cover almost whole
spectrum. Envelope spectrum of this signal is presented in Fig. 4a. As it can be
noticed, none of the 30 Hz harmonics are indicated.

The largest amplitude among low frequencies is at the frequency of 3.4 Hz and
there is only one harmonic related to this frequency. It suggests that there are
amplitude modulated components and the modulating function is close to a sine

Fig. 3 Time series (a) and spectrogram (b) of the raw vibration signal from the bearing operating
in a crusher (first second only)

Fig. 4 Envelope spectrum (a) and spectral kurtosis (b) of the raw vibration signal from the
bearing operating in a crusher
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wave. Figure 4b presents the spectral kurtosis of the raw vibration signal calculated
from the time-frequency map in Fig. 2b. We calculate the spectral kurtosis from a
spectrogram, i.e. each value in Fig. 3b is a normalized fourth order moment of
absolute value of the short-time Fourier transform. For comprehensive definition of
the spectral kurtosis we refer to [6]. Parameters of the short-time Fourier transform
are: 500-sample length Kaiser window with parameter 5470 overlapping samples
(94 % overlap), FFT is calculated in 1024 points. As it can be seen, there are two
peaks in the spectral kurtosis at low frequencies and SK significantly exceeds 2 at
the whole frequency band above 3000 Hz except about 9000 Hz. The signal filtered
using the SK and its envelope spectrum (Fig. 5) do not reveal the fault frequency
(multiplies of 30 Hz).

3 Model of the Signal and Simulated Data Analysis

3.1 Simulation of Vibration Signal

Since the real vibration signal is very complex and the carrier frequencies of the
signal of interest (SOI) are unknown we propose to analyze a simulated signal. It is
designed to possess properties noticed during analysis of the real signal.

The simulated signal is a mixture of amplitude modulated sinusoidal compo-
nents with modulation frequency equal to 4 Hz and a sine wave as the modulation
function, cyclic impacts with cyclic frequency of 30 Hz and carrier frequencies
2500–3500 Hz as well as non-cyclic impulses with center frequency 5000 Hz,
different bandwidths. The SOI impulse was simulated using Matlab function
gauspuls with center frequency Fc = 3000 Hz and fractional bandwidth Bw that is
uniformly distributed on [0.2, 0.3] interval. Next, single impulse was repeated at
equally spaced intervals to get cyclic SOI signal. Noncyclic impulse was also
simulated with using Matlab function gauspuls but with center frequency

Fig. 5 Time series (a) and its envelope spectrum (b) of the raw vibration signal filtered using the
SK-based filter
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Fc = 5000 Hz and fractional bandwidth Bw with a uniform distribution on [0, 1]
interval. Locations of the non-cyclic impulses are randomly distributed on the time
axis and follow the uniform distribution. At the end we have added the amplitude
modulated sinusoidal components for frequencies 500 and 1000 Hz with modula-
tion frequency equal to 4 Hz.

The time series and spectrogram are presented in Fig. 6. Length of the signal is
1 s and frequency sampling equals to 25,000 Hz. Parameters of short-time Fourier
transform are the same as in the real signal case, i.e. 500-sample length Kaiser
window, 470 overlapping samples and 1024 FFT points.

3.2 Analysis of Simulated Signal

In order to be consistent with real data analysis, first we present the spectral kurtosis
of the simulated signal, see Fig. 7. As we observe, the classical method of damage
detection does not properly indicate the informative frequency band (2500–
3500 Hz). The highest values of kurtosis we observe for frequency band 3500–
7500 Hz where the non-cyclic impulses appear.

Because for the simulated signal the method based on the spectral kurtosis fails,
we propose here to use methods which are based not on the impulsiveness of the
examined signal but rather on its cyclic behavior. Since the simulated signal is

Fig. 6 Time series (a) and spectrogram (b) of the simulated vibration signal
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consisted of 3 components (AM discrete components at 500 and 1000 Hz, SOI at
around 3000 Hz and non-cyclic impulses at about 3500–7500 Hz), we perform
analysis of 3 signals obtained using band-pass filters. The first signal (cut-off fre-
quencies 250–1250 Hz) contains AM discrete components with carrier frequencies
500 and 1000 Hz modulated by a 4 Hz sine wave. The second signal (2500–
3500 Hz) is consisted of cyclic impulses that simulate the SOI. The last signal
(5500–6500 Hz) contains non-cyclic impulses with random amplitudes.

In Fig. 8 we present the time series and envelope spectra of the simulated signal
filtered using band-pass filters for three mentioned pairs of cut-off frequencies. As
we observe, there is a huge difference in behavior of envelope spectra of time series
corresponding to analyzed frequency bands, namely for the first time series cor-
responding to frequency band 250–1250 Hz (Fig. 8a) on the envelope spectrum
(Fig. 8b) we can observe the modulation frequency equal to 4 Hz, for the second
time series (Fig. 8c) the cyclic impulses are observable on the envelope spectrum
(Fig. 8d), while in Fig. 8e we observe impulses which are non-cyclic, thus the
corresponding envelope spectrum (Fig. 8f) does not indicate any specific frequency.

Since in the literature one can find a cyclicity indicator called the protrugram, we
follow this concept and calculate kurtosis of the envelope spectra. We recall that the
protrugram is defined as kurtosis of envelope spectrum of signals obtained using a
bank of band-pass filters. The set of central frequencies of the band-pass filters is
consisted of equally spaced points on the frequency axis (e.g. 200 points).
Bandwidth of the band-pass filters is chosen subjectively, e.g. 500 Hz. For com-
prehensive description of the protrugram and instruction on appropriate choose of
parameters (i.e. bandwidth and center frequencies) we refer to [7].

For the envelope spectrum presented in Fig. 8b the kurtosis is equal to 2593.27.
This huge value is strongly related to the two amplitude modulated discrete com-
ponents in the frequency band 250–1250 Hz. For the envelope spectrum presented
in Fig. 8d the kurtosis is equal to 198.84 and the large value of this statistic is
related to the cyclic impulses in the time series. For the envelope spectrum pre-
sented in Fig. 8f the kurtosis has the smallest value comparing to others.

In Fig. 9 we present the protrugram with bandwidth equal to 500 Hz for sim-
ulated signal presented in Fig. 6. It is worth mentioning that the bandwidth of the

Fig. 7 Spectral kurtosis of the simulated signal
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protrugram is narrower (500 Hz) than the bandwidth of bandpass filters involved in
signals presented in Fig. 8 (1000 Hz), thus values of kurtosis in the protrugram
(Fig. 9) does not follow values of kurtosis in Fig. 8b, d. Although, kurtosis of
envelope spectra of AM discrete components is still higher than for cyclic impulses
and the lowest kurtosis of those 3 components is reported by non-cyclic impulses.
As we observe the protrugram indicates two informative frequency bands, the first
one related to the amplitude modulation of discrete components (i.e. for frequency
band 250–1250 Hz) and the second one for frequency band 2500–3500 Hz for
which the cyclic impulses were simulated. This result indicates that for analyzed

Fig. 8 Time series (left panels) and envelope spectra (right panels) of the simulated signal filtered
using band-pass filters with cut-off frequencies: 250–1250 Hz (a–b), 2500–3500 Hz (c–d) and
5500–6500 Hz (e–f)

Fig. 9 Protrugram of the simulated signal. Bandwidth equal to 500 Hz
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signals corresponding to crusher’s vibration time series there is a need to extend the
methodology of bearings damage detection based on the protrugram. One of the
possible extensions is presented in the next section.

4 Adaptation of Protrugram

In this section we discuss a solution to the problem revealed in Sect. 3. We propose
to incorporate the fact that in the case of locally damaged bearing, the envelope
spectrum of the informative signal is consisted of at least several equally spaced
spectral components—harmonics of the fault frequency. The peaks are equally
distributed in the envelope spectrum, thus it is reasonable to consider testing of its
periodicity for example by using amplitude spectrum alternatively to kurtosis. If the
sub-signal (related to a given center frequency and bandwidth) is a cyclic pulse
train, then its envelope spectrum is consisted of a family of spikes at multiplies of
the fault frequency. Since amplitudes of these harmonics decrease with increasing
frequency, it is reasonable to calculate amplitude spectrum from a limited range of
the envelope spectrum. The upper bound of the range might be set as e.g. 15 times
the largest fault frequency among characteristic frequencies for a given machine.
Thus, upper bound might be easily set using information about the considered
machine. The lower bound is not necessary if the envelope spectrum is normalized
by subtracting its arithmetic mean. Finally, we propose to calculate a measure of
impulsiveness of the amplitude spectrum of the mean-normalized envelope spec-
trum, e.g. kurtosis.

START

x(t) – raw signal

sub-signals via bank of band-pass filters 
(parameters: bandwidth, center frequencies)

envelopes of the via Hilbert transform

amplitude spectra of the envelopes

amplitude spectra of envelope spectra
(parameters: upper bound, e.g. 15x maximum fault frequency)

kurtosis of a certain range of the amplitude spectra 
(parameters: lower bound, e.g. 4th sample)

Fig. 10 Block diagram of the
algorithm proposed in Sect. 4
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Since amplitude spectrum of the mean-normalized envelope spectrum might
contain large values at a few first points of frequency axis, we recommend to
calculate kurtosis of the whole amplitude spectrum except a few first values. Such
large values are related to slow variations of temporary mean of any envelope
spectrum. Figure 10 presents a block diagram with algorithm for calculating the
proposed indicator of a cyclic pulse train.

If the modulation function of a sub-signal is a sine wave, then its envelope
spectrum is dominated by a single harmonic related to the frequency of the mod-
ulation function (in Sect. 2 it is 3.4 Hz, in Sect. 3—4 Hz). Then, kurtosis of such
envelope spectrum is large and protrugram might indicate the related frequency
band as informative. On the other hand, amplitude spectrum of such envelope
spectrum dominated by the single-spike does not indicate any cyclic events, thus
such frequency band is not indicated as informative. If the considered sub-signal is
consisted of non-cyclic impulses or just a white Gaussian noise, then its envelope
spectrum does not contain any cyclic phenomena. Thus, amplitude spectrum of
such envelope spectrum does not contain any harmonics with amplitudes signifi-
cantly larger than others. To distinguish between informative and non-informative
amplitude spectra of envelope spectra one can calculate kurtosis of them, as it is
presented in Fig. 11. Here, kurtosis is calculated from the whole amplitude spec-
trum except three first values and amplitude spectrum is calculated from 300 first

Fig. 11 Amplitude spectra of envelope spectra of the simulated signal filtered using band-pass
filters with cut-off frequencies: 250–1250 Hz (a), 2500–3500 Hz (b) and 5500–6500 Hz (c)
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amplitudes of envelope spectrum (it covers frequencies between 0 Hz and about
450 Hz). The reason of such bounding has been already mentioned—a few first
values often dominate the amplitude spectrum of envelope spectrum. One can see,
that both shape and kurtosis of the amplitude spectra in Fig. 11a, c are quite similar
and both of them are significantly different from those presented in Fig. 11b.

5 Conclusion

In the paper a problem of impulsive cyclic signal (SOI) detection for bearings
diagnostics is discussed. Contrary to “classical” bearings signals, our vibration
signal is mixture of several deterministic components, SOI and—what is critical
issue for detection- impulsive noise. Commonly used kurtosis based detectors or
preprocessors cannot help in this case because they are more sensitive to high
energy non-informative, impulsive noise than for cyclic impulsive SOI. In this
paper we present results of application of protrugram, a relatively novel tool
developed by Jablonski and Barszcz for similar problem, however, some modifi-
cation of the protrugram has been done to overcome drawback of the method that
appeared during processing of vibration from the crusher.

To make the paper more clear, we decided to limit illustration of the method to
reality-inspired simulation signal. However, the final result is very good and we
believe that it will also work for real vibration signal from the crusher.
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Analysis and Signal Processing
of a Gearbox Vibration Signal
with a Defective Rolling Element Bearing

Nader Sawalhi and Suri Ganeriwala

Abstract This paper provides a systematic signal processing of a vibration signal
measured from a gearbox driven by a three phase motor, which is controlled by a
variable frequency drive (VFD). The vibration signal being processed was obtained
from a test rig with a defective bearing, thus the signal represents a rich content of
different types of signals. Power spectrum density (PSD) and time-frequency
analysis (using Morlet wavelets) were used after a visual inspection of the signal in
the time domain. The sidebands in the vicinity of the VFD carrier frequencies were
used to verify the speeds of each shaft in the gearbox and to provide information
about the amount of slippage between the VFD frequency and the shaft speed. As
no information was provided at the time of analysis about the number of teeth of
each gear, order tracking and harmonic/sideband cursors were used to deduce this
information and to later obtain a synchronous average for each shaft and a residual
signal for the diagnosis of the bearing fault. Finally, Bearing diagnosis was per-
formed on the residual signal obtained earlier using a semi automated bearing
diagnosis tool which includes whitening the signal, removing the transfer path
effect using minimum entropy deconvolution (MED) and finding the best band for
envelope analysis using spectral kurtosis (SK).
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1 Introduction

Vibration signals acquired from gearboxes contain rich information about the health
of gears and bearings. The analysis of acquired signals requires the knowledge of
the number of gear stages, the number of teeth on each gear and the input or output
angular velocities. A tachometer signal (speed reference) is usually acquired along
with the vibration signal. The presence of the tachometer signal provides the means
to estimate speed variations and to remove speed fluctuations from the vibration
signal using angular re-sampling (also known as order tracking) [1]. In the absence
of a tachometer signal, the vibration signal itself can be used to extract this
information [2, 3], which can be then used for order tracking [4, 5]. If no infor-
mation is available about the number of teeth in each gear, the order tracked signal
can be used to mine this information by setting families of harmonic and sideband
cursors and fine tuning these families to estimate the number of teeth for each
pinion/gear [6]. The use of time-frequency presentations has been discussed in a
number of publications and can be utilized very efficiently for the gear signals, e.g.
[1, 7, 8]. Bearing fault diagnosis in gearboxes has been discussed in a number of
publications, e.g. [9–11].

In this paper, the processing of a vibration signal from a gearbox with a defective
bearing is discussed. The paper serves the purpose of providing a systematic means
of handling and processing vibration signals from VFD driven gearboxes. The
paper is organized as follows: after this introductory section, the gearbox test rig
from which the vibration signal was acquired is presented in Sect. 2. Section 3
discusses the different stages of processing to provide an understanding of the
different features and frequencies presented. This includes inspecting the time
domain signal, the frequency domain (using power spectrum density), the
time-frequency joint presentation, the order tracked signal and shaft synchronous
averages. The bearing fault diagnosis is discussed in Sect. 4 utilizing the
semi-automated approach presented in Ref. [12]. Section 5 provides summary and
conclusions. Finally acknowledgment and references are given.
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2 Experimental Test Rig and Vibration Acquisition

Figure 1 shows a picture of the gearbox dynamic simulation test rig. The gearbox
has two parallel stages of helical gears. A notch fault was introduced into the inner
race of the bearing supporting the intermediate shaft. The load was applied through
the radial bearing loader. Both vibration and tachometer signals were collected at a
high sampling frequency of 102,400 Hz. The VFD frequency (input frequency) was
set to 18 Hz.

3 Vibration and Tachometer Signal Processing

3.1 Time Domain Overlaid with Tachometer

Figure 2 presents a first look into the vibration time domain signal overlaid with the
tachometer. Although it could be argued that no much information could be gained
from inspecting the time domain, it is however a fundamental practice to examine
the signal prior to any further analysis to ensure validity and gain some insight into
the nature of the signal. The four periods presented in Fig. 2 show the meshing
pattern as well as a number of impacts (impulse responses), associated with the
bearing fault.

Fig. 1 Gearbox dynamic simulation test rig
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3.2 Frequency Content and the Power Spectrum Density
(PSD)

The power spectrum density (PSD) of the vibration signal is presented in Fig. 3.
A first examination is provided in Fig. 3a using a low resolution of 12.5 Hz/line.
This enables the examining of structural resonances and frequencies dominating the
signal. For instance if an envelope analysis is to be carried out, a band between 20
and 22 kHz or any band between 25 and 35 kHz would be appropriate. A simple
band pass envelope analysis between 20 and 22 kHz was attempted and the result is
shown in Fig. 4. The envelope spectrum of Fig. 4 shows the presence of the Ball
Pass Frequency, inner race (BPFI) thus indicating the presence of an inner race
fault in the intermediate shaft bearing (BPFI = 52.2 Hz). A high resolution version
of the PSD (0.098 Hz/line) as shown in Fig. 3b highlights a family of harmonics
spaced at 6 kHz (VFD carrier frequency). A zoom in around one of the VFD carrier
frequencies and inspecting the sidebands (using sidebands cursors) gives very
helpful information about mechanical and electrical modulation as can be seen from
Figs. 5 and 6. The sidebands of Fig. 5 show the VFD frequency (18 Hz) while
Fig. 6a shows the intermediate shaft speed (approximately 9.48 Hz). The family of
sidebands of the high speed shaft frequency (input speed) of 16.39 Hz at is shown
in Fig. 6b. Further details about the low shaft speed, the gear mesh frequencies and
the frequency content of the signal are discussed in the next two sections.

3.3 Time-Frequency Analysis

Morlet Wavelet analysis [13] was selected to provide a sense about the
time-frequency content for the vibration signal. It is not an aim of this paper to
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Fig. 2 Vibration time domain signal overlaid with the tachometer signal
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compare between the different time-frequency presentations, but rather to show a
sample of what can be gained from such analysis. Time-frequency analysis nor-
mally provides information about speed fluctuations, transient events, verification
of information obtained from time and frequency domain data, extra observation
such distinguishing between electrical and mechanical faults, signal modulation and
more. The major two intense regions in the time-frequency plot (Fig. 7a, b) are
noticed around the 450 Hz and the 250 Hz. These are thought of as the 1st and 2nd
gear mesh frequencies respectively. At around 450 Hz (Fig. 7a) approximately 10
events in one second are observed. This corresponds to a modulation of approxi-
mately 10 Hz and corresponds to the intermediate shaft frequency. This was
observed as sidebands at 9.47 Hz (see Fig. 6a) around the VFD carrier. At around
250 Hz (Fig. 7b) four major events in one second can be seen. This corresponds to a
modulation of approximately 4 Hz which is recognized as the low speed shaft.

3.4 Order Tracking and Signal Separation

Order tracking (angular re-sampling) was performed on the signal and the proce-
dure described in [6] was used to estimate the number of teeth on each shaft. The
order tracked spectrum showing the 1st and 2nd gear mesh frequencies is presented
in Fig. 8. Note the use of scaling in Hz (virtual scale) rather than orders to show the
range of frequency of the first and second gear mesh frequencies. Figure 9 shows
the harmonics (order scaling).

Fig. 3 Power spectrum density (PSD) a coarse resolution of 12.5 Hz/line b fine resolution of
0.098 Hz/Line
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Figure 9 shows the finely tuned harmonics of the intermediate shaft over the
order tracked spectrum (two stages of tracking with respect to the intermediate
shaft). The gear mesh frequencies are matched at harmonics number 25 (second
gear mesh) and harmonic number 47 (1st gear mesh). This indicates that the number
of teeth of the pinion in the second stage is 25 while the gear of the first stage is 47.
Figure 10 shows the quality of the harmonic cursor of matching the gear mesh
frequency and its sidebands.
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Fig. 7 Time-frequency analysis using Morlet wavelets. a A zoom in analysis between 0 and
250 Hz. b A zoom in analysis between 0 and 700 Hz
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Figure 11 shows the determination of the number of teeth of the second stage
gear. This is found to be 56 by using the harmonic cursor tracking of the low speed
shaft. The last, but perhaps the least accurate is the pinion of the first stage. The
harmonics of the high speed shaft for the order tracked signal are shown in Fig. 12.
Analysis indicates that the number of teeth are 27 and the harmonic cursor align
with some frequencies, but these are not very clear as was the case for the inter-
mediate and low speed shafts.

This stage of analysis included also the extraction of a synchronous average for
each shaft as seen in Fig. 13 and a residual signal (Fig. 14) after subtracting the
synchronous averages from the raw signal
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4 Bearing Fault Diagnosis

The bearing fault processing stages are summarized in Fig. 15 [12]. The first stage
is to remove the discrete components of the shafts and gears and the discrete
components from the VFD. In this processing, discrete random separation
(DRS) [14] was use. This utilizes the signal itself by generating a linear transfer
function (using FFT methods) between the signal and a delayed version. The
second stage involves whitening the signal and removing the effect of the transfer
path [12]. The results of stages 1 and 2 of the processing are shown in Fig. 16,
where a clear visualization of the bearing impact impulses can be seen [minimum
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entropy deconvolution (MED) filter length of 4096 and an error tolerance of 0.001
were used]. The third and fourth stages of processing include using the wavelet
kurtogram [13] and envelope analysis to diagnose the fault. The kurtogram helps in
identifying the best band for envelope analysis and the result shown in Fig. 17
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indicates that bands between 20 and 30 kHz are suitable. The envelope analysis
based on the auto band selection (Fig. 18) shows clearly the ball pass frequency and
its harmonics, with strong sidebands (modulation) at the intermediate shaft speed as
well as harmonics of the intermediate shaft frequency.
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5 Summary and Conclusions

This paper has presented a systematic analysis and handling for a vibration signal of
a two stage gearbox, driven by a variable frequency drive (VFD) and with a notch
fault introduced to the inner race of the intermediate shaft bearing. The processing
included the examination of the time domain signal, the frequency domain (for
content and modulation) and the time-frequency domain for transients and modu-
lations. Modulations of VFD carrier frequency were used to identify shaft speeds
and slippage. This was clearly seen through using sideband cursors. An attempt to
identify the number of teeth on each gear was carried out by using order tracking
and finely tuned harmonic cursors. The number of teeth on the second stage and the
gear of the first stage were identified with confidence. The pinion of the first stage
couldn’t be firmly confirmed. The inner race fault in the intermediate stage has been
clearly identified. This was initially found by simple envelope analysis (guided by
inspecting the spectrum in dB scale) and later by a semi-automated analysis which
included signal separation and a number of enhancements.
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Monitoring Based on Time-Frequency
Tracking of Estimated Harmonic Series
and Modulation Sidebands

Timothée Gerber, Nadine Martin and Corinne Mailhes

Abstract A condition monitoring system (CMS) is a key element in a predictive
maintenance strategy allowing to reduce the operating costs of the monitored
system. However, the system-driven generation of health indicators requires the
knowledge of the system kinematics and the configuration of thresholds which may
induce lots of false alarms. In this paper, we propose a generic and data-driven
method to automatically generate system health indicators without any a priori
knowledge on the monitored system or the acquired signals. The proposed method
is based on the automatic detection of spectral content characterising every acquired
signal. Within these successive spectral contents, peaks, harmonics series and
modulation sidebands are then tracked over time and grouped in time trajectories
which will be used to generate the system health indicators.

Keywords Condition monitoring � Tracking � Surveillance � Fault diagnosis �
Harmonics � Sidebands � Signal processing � Wind turbines
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1 Introduction

The installation of a Condition Monitoring System (CMS) on a mechanical machine
(e.g., on a wind turbine) aims to reduce the operating costs by applying a predictive
maintenance strategy [1]. The CMS is composed of sensors acquiring signals from
which system health indicators are computed and monitored. System-driven com-
putation of these indicators requires the monitored system kinematics and is done
by averaging large or narrow spectral bands. The averaging and the need for
predefined thresholds for fault detection may induce lots of false alarms while
reducing the ability to detect a fault early.

To get precise health indicators whatever the system is, we propose a generic and
data-driven monitoring strategy without any a priori knowledge on the system or
the measured signals. The first step consists in analyzing and extracting the spectral
content of each successive signal acquired by the CMS. This content is composed
of single spectral peaks, or peaks grouped in more complex structures like harmonic
series or modulation sidebands. Each spectral structure is characterized by several
parameters, including for example the number of peaks, the characteristic fre-
quencies and the energy [2].

The second step is a time-frequency tracking of the spectral structures through
all available signals. It results in the creation of spectral structure trajectories from
which the system health indicators will be derived. This approach has the partic-
ularity to create meaningful indicators, each one describing a part of the system.
This assertion is particulary true in the mechanical domain where the spectral
frequencies allow to identify precisely the mechanical parts of the system [3]. In
comparison, the approach in [4] uses anonymous indicators, which are not easily
linkable to the system parts. Moreover, the decision in [4] about the system state is
made for each new signal, without taking the previous state into account. On the
contrary, the tracking used in this paper keeps record of the evolution of the
indicators, and thus of the system health.

The time-frequency tracking method proposed in this paper is based on the
McAulay and Quatieri method [5] which has been originally designed for a single
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peak tracking in speech signals. We have adapted [5] in order to account not only
for single spectral peak evolution but also for the evolution of more complex
structures such as harmonic series or modulation sidebands. Moreover, the pro-
posed method is made robust against the possible non-detection of spectral struc-
tures for some isolated signals among all the acquisitions thanks to a sleep state
adapted from [6]. Finally, in every trajectory the temporal evolution of each spectral
structure parameter can be monitored and used as precise system health indicators.

The paper is organised as follows. The identification of spectral peaks, har-
monics series and modulation sidebands is presented in Sect. 2. Section 3 details the
proposed time-frequency tracking method. In Sect. 4, the proposed method is
validated on real-world signals acquired on a wind turbine test rig. Conclusions and
perspectives are given in Sect. 5.

2 Identification of Spectral Peaks and Spectral Structures

Different kinds of signals are recorded by a CMS: vibration, acoustic or electrical
signals. In order to analyse a signal whatever its modality, we propose a generic and
data-driven method to automatically identify, inside the estimated spectrum, the
spectral peaks and the spectral structures. By “spectral structure”, we mean a set of
peaks linked by a mathematical relation. The two types of spectral structures
considered in this paper are (1) the harmonic series, where the peaks have a fre-
quency which is a multiple of a fundamental frequency, and (2) the modulation
sidebands, in which peaks are equally spaced around a carrier frequency. The
different steps of the method illustrated in Fig. 1 are fully automatic and do not need
any a priori knowledge or settings.

Let us consider a sensor acquiring signals sn at time instants tn, where n denotes
the signal index and tn is the time elapsed in operating hours since the beginning of
the surveillance. This time instant tn is also the beginning of the acquisition of the
signal sn for a given duration. Each signal is analysed independently by the fol-
lowing process. A preanalysis verifies that the signal has been correctly acquired.
For example, the preanalysis verifies that there is no saturation in the time signal or
that an anti-aliasing filter has been correctly used during the acquisition. Moreover,
the preanalysis extracts fundamental information about the signal sn [7], as an

Data 
Validation

Signal s Spectral
peaks...

Harmonics &
sidebands

identification

Peak 
identification

Signal
information

... grouped by
harmonic series and

modulation sidebands

IDID ID ID

Fig. 1 The different steps of spectral content extraction: the data validation step assesses some
global properties of the signal in order to ease the identification of spectral peaks which are finally
grouped in harmonic series or modulation sidebands
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estimation of its signal-to-noise ratio or its non-stationarity rate. Then, a
“multi-cycle” spectral analysis strategy [8] detects the peaks present in the spec-
trum, by merging the peak detected in several spectrum estimations. The list of
detected peaks Pn

i is sorted in ascending order of frequency, with i 2 f1; . . .;Nn
Pg

being the index of the peak and Nn
P being the total number of peaks.

Finally, the list of peaks is parsed to identify the harmonic series Hn
j and the

modulation sidebands Mn
k present in the spectrum [2], where j and k are the index

of the harmonic series and the modulation sideband respectively. These spectral
structures are characterised by several parameters, including for example the
number of peaks and the energy of the structure.

The identification of spectral peaks and structures in a sequence of signals sn is
summarized in Fig. 2 by the discrete time-frequency map. Each detected peak is
represented by a color and shape combination. Peaks with the same color and shape
belong to the same spectral structure while the grey circles represent the peaks
which does not belong to any structure. Further readings at [2, 8] for a detailed
presentation of this steps.

3 Time-Frequency Tracking of Peaks and Structures

Time-frequency tracking is a problematic already present in the literature. Several
methods are based on McAulay and Quatieri one [5] which is efficient but designed
for peak tracking only. In [9], the tracking algorithm is based on a hidden Markov
model and thus has a high computation complexity. Meanwhile, others methods
[10, 11] are able to track spectral structures like harmonic series. However, the
number of structure tracked should be low or given a priori.

In our CMS context, the tracking method should be: (1) able to track both peaks
and structures, (2) generic, thus necessitating no a priori information, and (3) able to

Fig. 2 A discrete time-frequency map illustrating the identification of peaks and structures for
every signal acquired. Peaks which belong to the same structure share the same shape and colour.
Grey circles represent the peaks which are not in a structure
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deal with a large amount of signals, with thousands of peaks and hundreds of
spectral structures. To our knowledge, none of the methods verifies all the criteria.
Therefore, we propose to derive a method from the one of McAulay and Quatieri
which is the one with the lowest complexity. We adapted their method to track not
only peaks but also spectral structures.

However, the CMS context is quite different from the audio signal one.
The CMS acquires signals on a irregular temporal basis meaning that the state of the
system could be completely different between two acquisitions. This is troublesome
for tracking operations. Therefore, the main hypothesis to use our proposed tracking
method is that the signals are all acquired in a “constant machine state”, where the
operational parameters are constant during the acquisition and are the same for
every acquisition. Angular resampling [12] may be performed as a pre-process to
assess that the constant machine state hypothesis is verified.

3.1 Tracking of Spectral Peaks

The peak tracking is done sequentially and peak by peak, starting from the lowest
frequencies. Suppose that the tracking is done up to time tn and up to peak Pn

i�1.
The trajectory T P of the next peak Pn

i will now be linked to a peak at time tnþ1 by
the following 2-step process.

Step 1: A search for candidate is made in the research interval Df around the
frequency f ni . If there is no candidate, the trajectory of the peak Pn

i dies. In the
case of multiple candidates, the one with the nearest frequency to f ni is elected as
the best candidate.
Step 2: The best candidate from step 1 has to verify the backward compatibility
condition. In other words, the frequency of the best candidate has to be closer to
f ni than to any other peak at time tn. When the backward condition is met, the
best candidate is added in the peak Pn

i trajectory. If there is no other candidate in
the search interval, the trajectory of the peak Pn

i dies. Else, the association is
made with the second best candidate in the search interval.

To sum up, the peak trajectories are constructed sequentially with

Pnþ1
j 2 T Pn

i if f ni � Df
2

� f nþ1
j � f ni � Df

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
search interval

with f nþ1
j ¼ arg min

l¼1;...;Nn
P

f ni � f nþ1
l

�� ��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

best candidate

and f ni � f nþ1
j

��� ���\ f niþ1 � f nþ1
j

��� ���|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
backward compatibility condition

:
ð1Þ

In the original method, every peak is part of a trajectory, even if it is alone in its
trajectory. We propose to start new trajectories only if at least two successive peaks
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will be included in it. Moreover, the original method is not robust against the
possible non-detection of peaks, as the trajectory directly dies. We propose to
introduce a sleep state as proposed in [6] to solve this problem. As a consequence, a
trajectory can fall asleep and wake up. If the trajectory sleeps for a too long time (2
successive signals in our algorithm), the trajectory finally dies.

In order to be as generic as possible, the search interval Df is chosen as a
multiple of the spectral resolution (10 times in our algorithm). This resolution only
depends on the signal length and is computed during the spectral peak identification
(see Sect. 2).

3.2 Tracking of Harmonic Series

The tracking of harmonic series is done by applying the strategy explained in
Sect. 3.1 to the set of fundamental frequencies f nj of all harmonic series Hn

j . When
two harmonic series are associated, the peaks inside the series are automatically
tracked according to their harmonic rank. This structural approach is more robust
than tracking each peak independently as the tracking is efficient even if some peaks
are missing in the harmonic series. One of the missing peak can even be the peak
representing the fundamental frequency.

3.3 Tracking of Modulation Sidebands

The modulation sidebands Mn
k are characterized by two parameters to track; the

carrier frequency f nk and the modulation frequency Df nk . However, in the proposed
method only the peaks belonging to at least one harmonic series could be con-
sidered as a potential carrier frequency. Therefore, the carrier frequency has already
been tracked during the tracking of harmonic series (see Sect. 3.2).

It becomes then possible to track the modulation sidebands thanks to the strategy
explained in Sect. 3.1 applied on the set of modulation frequencies Df nk present
around each carrier frequency trajectory.

As for harmonic series, when modulation sidebands are tracked, the peaks inside
the modulation are automatically tracked thanks to their modulation frequency. As a
consequence, to track all the spectral content without redundancy, the tracking
operations are done in the following order: (1) identification of the harmonic series
trajectories T H, (2) identification of the modulation sideband trajectories T M, and
(3) the identification of remaining peak trajectories T P . The remaining peaks are
the peaks which are not yet in any trajectory after harmonic and modulation
tracking.
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3.4 Generation of the System Health Indicators

The system health indicators are generated from the time evolution of a set of
parameters [2] characterising the spectral structure in the trajectories previously
computed. In a healthy system, the temporal behaviour of any parameter charac-
terizing the system should not evolve drastically, while a default should result in a
noticeable variation of some of them.

Thus, we have associated to each peak trajectory some classical parameters as its
frequency fi, associated with its frequency uncertainty Dfi and its related amplitude
Ai, while harmonic series and modulation sideband trajectories are associated with
more elaborated indicators: the fundamental/modulation frequency, the number of
peaks within the harmonic or modulation series, the energy, the density Dj, the
harmonic distortion THDj and the richness Rj. The three last parameters are detailed
in (2),

Dj ¼ cardðHjÞ
rmax
j

; THDj ¼
PNmax

j

i¼2 A2
i

A2
1

; Rj ¼
rmax
j

Nmax
j

; ð2Þ

with Hj denoting the harmonic/modulation series, rmax
j the rank of the last harmonic

in the series, Nmax
j being the maximum possible size of the series considering the

fundamental frequency and the highest frequency in the spectrum. Note that for
modulation sidebands these equations are adapted and computed both on the left
and the right side of the carrier frequency. Moreover, an optional demodulation step
[12] can be applied on each modulation sideband to have extra indicators like the
amplitude and frequency modulation indexes.

In the next section, experiments highlighting the interest of such indicators are
presented. However, in these detailed experiments not all the above indicators are
shown or used. At the present stage of our work, the idea is to characterize as finely
as possible the system evolution in order to be able to feed a classification tool
which will constitute the future system diagnosis automatic tool.

4 Experiments

4.1 Description of the Wind Turbine Test Rig

A test rig developed by the CETIM within the frame of the KAStrion project (http://
www.gipsa-lab.fr/projet/KASTRION/) has been designed according to a wind
turbine kinematics. Instead of the blades, a geared-motor of 10 kW generates the
rotation of the main shaft (around 20 RPM). A multiplier with a ratio of 100:1
increases the rotational speed, allowing the generator to operate around 2000 RPM.
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Among the several sensors installed on the test rig (accelerometers, thermo-
couples, torquemeters, tachometers, voltage and current probes), we will focus on
the 3 accelerometers which take place on the main bearing and which are illustrated
in Fig. 3. The +x accelerometer is in the axial direction while the +y and −z are in
radial directions.

The vibration acquisition is done while the test rig works under stationary
conditions which remain the same for every acquisition. Therefore, the hypothesis
of constant machine state is met. Each vibration signal lasts 150 s and is sampled at
39,062.5 Hz.

One of the rig tasks consists in damaging the main bearing thanks to a loading
unit and non-stationary working conditions which have been programmed to
simulate real wind speed profiles. The results of the proposed method on the
degradation of two different main bearings is presented in Sects. 4.2 and 4.3.

4.2 Medium Degradation of the Main Bearing

For each accelerometer, 12 vibration signals were recorded during the main bearing
medium degradation. In each signal, an average of 19,400 peaks were detected and
grouped in 750 harmonic series and 21,500 modulation sidebands. If these numbers
seem large, one has to remember that the identification methods operate over all the
signal frequency band without any a priori.

Let us first consider the �z accelerometer. After the tracking operations, 1084
harmonic series trajectories and 564 modulation sideband trajectories are identified.
Among the remaining peaks, 9327 trajectories are created.

One of the trajectory is particularly interesting. It is a harmonic series trajectory
which energy suddenly and rapidly increases from approximatively 0.011 to

+x +y

-z

Fig. 3 A picture of the wind turbine test rig. The 3 accelerometers are represented by green
arrows. The main bearing and its loading unit is circled in orange
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1.6 μm2 s−2 after 203 operating hours (see Fig. 4). The fundamental frequency of
this harmonic series is 2.72 Hz and corresponds to the Ball Pass Frequency of the
Outer ring (BPFO) of the main bearing.

The wear test is stopped after 214 operating hours although the rig is still able to
operate. The main bearing is dismantled for visual inspection; 3 small flaking were
present on the outer ring. This confirms the relevancy of the automatically gener-
ated indicator.

The results of the other accelerometers (+x, +y) will not be presented here as they
show high similarity to the result of accelerometer −z.

4.3 Full Degradation of the Main Bearing

For this second wear test, another kind of main bearing is used with a different
kinematics. Let us consider the +y accelerometer. 17 vibration signals were
recorded, containing an average of 9000 peaks, 600 harmonic series and 12,000
modulation sidebands. After the tracking operations, we get 828 harmonic series
trajectories and 9373 modulation sideband trajectories. 12,406 peak trajectories are
created among the remaining peaks.

Figure 5 shows one harmonic series trajectory deserving a special attention. On
the top of the figure, peaks are symbolised by small grey circles on the discrete
time-frequency map. The time localization of the peaks correspond to the signal
acquisition timestamp. The zoom in the top left corner shows the high peak density.
Among these detected peaks, a particular peak at 3.45 Hz is tracked from 44 to 189
operating hours and is represented by bigger and blue circles. About 129 h, this
peak trajectory evolves to become a harmonic series trajectory with more and more
peaks (see the increasing number of blue circles). Also, the energy of this trajectory
increases and is represented by the orange plot in the middle of Fig. 5. The last plot
in the bottom of Fig. 5 shows that the frequency of the trajectory is slightly
decreasing.
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Fig. 4 Medium degradation of the main bearing. The energy in the inner ring harmonic series
starts increasing around 200 operating hours. After 214 h, the test is stopped and the bearing is
dismantled for inspection
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Moreover, a 0.33 Hz modulation sidebands started to appear after 134 operating
hours around the 3.45 Hz carrier frequency. As shown in Fig. 6, the number of
sidebands increases accordingly to the severity of the fault.

The 3.45 Hz corresponds to the Ball Pass Frequency of the Inner ring (BPFI). The
apparition of harmonics and sidebands at 129 and 134 operating hours respectively
are early warnings of a fault birth. The fault severity is then characterized by the
increase in both energy and number of sidebands. The slightly decreasing frequency
is explained by the fact that the inner ring wear generates slipping.

A second harmonic series trajectory also deserves some attention. Its funda-
mental frequency of 2.54 Hz corresponds to the BPFO. As shown in Fig. 7, its
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Fig. 6 Evolution of the number of modulation sidebands around the slowly evolving carrier
frequency starting at 3.45 Hz. The modulation frequency is equal to 0.333 Hz
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energy starts increasing from 144 operating hours, that is 15 operating hours after
the early warning of the BPFI fault. It means that the fault is spreading in the main
bearing and its severity is increasing.

On the top of Fig. 5, it is possible to see on the time-frequency map that around
163 h few peaks were detected in the signal. The spectral analysis was not able to
identify the peaks and structures for this particular signal. Indeed, other tests [7]
were applied and concluded on the fact that this signal was highly non-stationary
due to a high impulse in the vibration signal. Nevertheless, the tracking of harmonic
series and modulation sidebands was not stopped as it is shown in Figs. 5, 6 and 7.
In fact, the sleep state allowed the tracking to continue. The sleep state is repre-
sented by a dotted line on the different curves.

The combination of the four automatically generated indicators (the energy and
the frequency of the harmonic series at 3.45 Hz, the number of sidebands around
the carrier frequency 3.45 Hz and the energy of the harmonic series at 2.54 Hz)
mirrors out the failure and confirms the value of the proposed data-driven method.
These four indicators are part of a long list of automatically generated indicators.

In order to deal with this long list of indicators, related work [12] focused on
using a posteriori the kinematic information (if available) to identify and to label the
trajectories linked to the kinematic of the monitored system. As a consequence, the
number of labelled trajectories is much smaller than the total number of trajectories
and several redundant modulation trajectories are then grouped under the same
label. This optional step of adding information is not mandatory for the proposed
method, although it allows to reduce the number of indicators to look at.

Moreover, the indicators of a healthy system will not vary much, while the
indicators of a faulty system will evolve drastically. Therefore, to make a full
automatic system health diagnosis, further work will focus on identifying auto-
matically the evolving indicators which are the most interesting ones.

5 Conclusions

We proposed in this paper a complete generic and data-driven method to auto-
matically generate system health indicators. The two steps of the proposed method
are (1) the identification of the spectral structures present in each signal spectrum,
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Fig. 7 Propagation of the fault: the energy of the outer ring harmonic series is also increasing after
145 operating hours
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and (2) the tracking of these spectral structures through all the available signals. The
trajectories constructed during the tracking operations are finally used to derive the
system health indicators from the structure parameters.

The proposed approach is validated on real-world signals, recorded on a wind
turbine test rig. Two different main bearings have been damaged. In both cases, the
system health indicators automatically generated could detect the fault in its early
stage. The severity of the faults is characterised by the time evolution of the health
indicators.

The number of system health indicators generated is large. Therefore, future
work will focus on sorting and classifying these indicators to make a fully auto-
matic tool for system diagnosis.
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Blind Extraction of Instantaneous
Frequency for Order Tracking in Rotating
Machines Under Non-stationary
Operating Conditions

O. Cardona-Morales, E.F. Sierra-Alonso
and G. Castellanos-Dominguez

Abstract Order tracking (OT) is a technique for vibration analysis under
non-stationary operating conditions, which considers the speed or load is
time-varying in order to obtain machine health indicators. Nonetheless, information
about the rotational speed implies a priori knowledge about the machine. Therefore,
in this paper is proposed a blind instantaneous rotational speed extraction meth-
odology that extracts a set of instantaneous frequencies (IF), from a filter bank
applied to the original signal, using the Hilbert transform. The signal is transformed
into order domain using velocity synchronous discrete Fourier transform (VSDFT),
taking each estimated IF as a possible reference shaft speed. Then, the kurtosis is
used as a non-stationarity criterion aiming to select a suitable instantaneous refer-
ence shaft speed. The methodology is tested in a simulated signal and a test rig
which exhibit non-stationary behavior. As a result the closest component to the
rotational speed is extracted without priori knowledge of the machine.
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1 Introduction

Vibration analysis under non-stationary conditions has become important inasmuch
as the first signs of damage can be identified in the machine transient state.
Non-stationarity is mainly caused by machine operation conditions such as variable
speed and load [1]. In that sense, one of the most used methods for vibration
analysis under non-stationary regime is order tracking (OT), particularly, traditional
methodologies such as Kalman-OT [2] and Computed-OT [3]. However, these
approaches require the rotational speed measurement that, in practice, its avail-
ability could be expensive or even impossible. As an alternative, rotational speed
can be extracted from the vibration signal using time-frequency representations,
nonetheless, either under low speed fluctuations [4] or large speed fluctuations [5,
6], a priori knowledge about the machine is required. Therefore, a blind identifi-
cation of instantaneous rotational speed, from the vibration signal, reduces the
necessity of a priori knowledge. In that sense, there are mainly two limitations: (i) a
lack of information about the multiplicity factor of the orders, due to generally the
state-of-the-art approaches use the rotational speed, i.e. the fundamental order is
known, and the extracted component is associated with the highest energy com-
ponent; and (ii) how to ensure that the extracted instantaneous frequency (IF) is
indeed related to the rotational speed. The proposed methodology solves the
aforementioned problems using a normalized version of the angle-order map
obtained by the velocity synchronous discrete Fourier transform (VSDFT), aiming
to remove the need of a priori knowledge about the multiplicity factor of the
spectral orders. In order to ensure that the extracted IF is highly related to rotational
speed, it is assumed that the extracted IF most correlated to reference rotational
speed produces the most stationary angle-order map. Therefore, two stationarity
measures are proposed: kurtosis coefficient of variation (Kurtosis-CV) and corre-
lation of angle instants based on principal component analysis (PCA index). The
methodology is carried out using a simulated signal and a vibration signal from a
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test rig under non-stationary operating conditions, where the proposed approach
selects successfully the IF more related to rotational speed.

2 Theoretical Background

2.1 Instantaneous Frequency Extraction

Let Sðt; f Þ the spectrogram of a signal xðtÞ 2 <; where ðt; f Þ denotes time and
frequency domains, respectively. The instantaneous frequency fmaxðtÞ; expressed in
Hz, can be extracted by an algorithm of maxima tracking [5] defined as follows:

fmaxðtÞ ¼ argmax
f

ðSðt; f ÞÞ:8f 2 Dfn

Dfn ¼ fmaxðt � dtÞ � d; fmaxðt � dtÞ þ d½ �
ð1Þ

where d is a constant that controls the width of search interval, Dfn: In order to
avoid drawbacks with vibration signals that have closed orders two steps are
needed: (i) the algorithm should be initialized in the global maximum of the
time-frequency map, and (ii) a forward-backward search is made from that maxi-
mum. For the sake of simplicity in the rest of the paper the variable is introduced
denoting the instantaneous frequency expressed in radians.

2.2 Order and Angular Domain Transform

Velocity Synchronous Discrete Fourier transform (VSDFT) is a parametric method
that allows mapping a signal xðtÞ; into its order domain fXg; using the instanta-
neous shaft speed xðtÞ as a reference parameter, and it is defined as follows:

=ðXÞ ¼
Z1
�1

xðtÞxðtÞe�jXhðtÞdt ð2Þ

where hðtÞ ¼ R
xðtÞdt; is the angular displacement, and the signal in angular

domain xðaÞ is obtained by the computation of inverse discrete Fourier transform
(IDFT) from =ðXÞ. Detailed explanation about the VSDFT and its analysis in
discrete time can be found in [7].

Since the VSDFT performance depends on the accuracy of the extracted xðtÞ;
the instantaneous frequency x̂ðtÞ ¼ bxðtÞ is used as reference speed, obtaining a
scaled version such that argmaxtðx̂ðtÞÞ ¼ 1; where the order and angular axis are
scaled by b and b�1 respectively. This scaled version of xðtÞ allows mapping xðtÞ
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to a “pseudo-angular domain”, providing the advantage that any order could be
used instead of basic rotational speed.

2.3 On the Angle-Order Map Stationarity

An angle-order map Aða;XÞ is computed by means the spectrogram of xðaÞ with
respect to X; and it is assumed that this map is highly stationary, for which the
probability distribution does not present considerable changes through the angle
domain. Thereby, it is possible to introduce two different measures of stationarity:
the kurtosis coefficient of variation (CV) and eigenvalue analysis so called PCA. It
is worth noting that the map is highly stationary only if the waveform of extracted
instantaneous frequency is close to the actual rotational speed.

2.3.1 Kurtosis Coefficient of Variation

The kurtosis is computed per angle instant, K ¼ fjða0Þ; jða1Þ; . . .; jðaM�1Þg;
where jðaiÞ is the kurtosis for the aith angular instant, i.e. the kurtosis of Aðai;XÞ
for all X in the order domain. Having that the energy into the angle-order map
should be distributed in the orders, it is expected that jðaiÞ presents low variation at
aj; for all i 6¼ j: Therefore, the kurtosis based-index that quantifies the stationarity of
the map is the CV of K defined as:

cvðKjAða;XÞÞ ¼ rðKÞ=lðKÞ ð3Þ

where rð�Þ and lð�Þ stand the standard deviation and mean operators, respectively.
It is important to notice that different scales per angular instants could affect the
kurtosis, for which a statistically normalization per ai is performed before kurtosis
computation.

2.3.2 Correlation of Angle Instants

In practice the angle-order map Aða;XÞ; could be associated with a matrix in <Xb�M

where Xb and M are the order bins and the amount of angular instants, respectively.
In that sense, a PCA problem is understood in terms of the correlation between
angular instants, being X2 <M�M the correlation matrix associated to Aða;XÞ and
ki the ith eigenvalue of X. Thereby, ki represents the variability of aith angular
instant, and in consequence, a stationarity index can be defined as:
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wðAða;XÞÞ ¼
XM�1

i¼0

ki; ð4Þ

where a map is highly stationary if it presents low values of ki:

3 Experimental Set-up

In this work, blind instantaneous rotational speed estimation algorithm is introduced
(Algorithm 1). Usually, the vibration signal presents a high broadband, therefore, it
is necessary to define a narrow band of frequencies that comprise a reasonable
amount of orders. Afterwards, an iterative search by partitions over frequency bands
is included, where a set of extracted and scaled IF per partition is built, and the
relationship between estimated IF and rotational speed is measured over its cor-
responding angle-order map. Lastly, the IF most related to rotational speed (i.e. the
most accurate) is selected when the obtained angle-order map presents maximum
stationarity.

Algorithm 1
Probabilistic identification of instantaneous rotational speed

Inputs: the vibration signal xðtÞ; and the work interval ½a; b�

1. Compute the spectrogram of xðtÞ; noted as Sðt; f Þ
2. Define an initial uniform partition for i ¼ 0; Pi ¼ jDpþ ajj ¼ 0; . . .; J � 1f g

such that J ¼ 3, where Dp ¼ ðb� aÞ=ðJ � 1Þ and J is the partition size.
3. Constrain the frequency domain of Sðt; f Þ to ½0; kDpþ a�; for each j; resulting

�Si;jðt; f Þ:
4. Extract an IF per �Si;jðt; f Þ and scale it to the unity, obtaining x̂i;jðtÞ:
5. Compute =i;jðXÞ which is the VSDFT using each x̂i;jðtÞ as reference shaft

speed.
6. Compute IDFT per =i;jðXÞ obtaining the vibration signal in “pseudo-angular

domain”, noted as xi;jðaÞ:
7. Obtain the pseudo-angle-order map Ai;jða;XÞ per xi;jðaÞ:
8. Compute the proposed stationarity measures, cvðKjAi;jða;XÞÞ or wðAi;jða;XÞÞ

per j:
9. Select the extracted IF x̂ðtÞ with the minimum variability value noted qi; as

the most closed to the rotational speed.
10. Stop when J ¼ fb½a;b�; where fb½a;b� is the amount of frequency bins in ½a; b�:

Blind Extraction of Instantaneous Frequency … 103



11. Construct a finer partition (i.e. Pi�Piþ1), Piþ1 ¼ jDpþ ajj ¼ 0; . . .; J � 1f g;
making J ¼ 2J� � 1; where J� is the previous value of J. Increase i ¼ iþ 1;
and then repeat step three.

Output: x̂ðtÞ

3.1 Probabilistic Identification of Instantaneous Rotational
Speed

Proposed stationarity measures of Aða;XÞ; in Sect. 2.3, are related to estimation
error between the estimated reference and the theoretical shaft speeds. This fact will
be evidenced in numerical experiment, in Sect. 3.2. In practice, the algorithm
converges for an iteration Np when the size of the partition PNp is greater than the
amount of frequency bins in the interval ½a; b�; because all qiji[Np

are equal to qNp
:

In order to avoid unnecessary iterations, a stop criterion can be defined as jqms
�

qmsþ1j\e for Np [ms [Ns; where Ns is a fixed value and e is small enough. The
stop criterion allows an error estimation, in the sense that it does not assure that
output x̂ðtÞ is the best extracted from Sðt; f Þ; but it reduces the partition size
achieving a solution.

3.2 Numerical Experiment

A simulated vibration signal xðtÞ is built as a superposition of orders {1, 2, 3, 7,
11.2}, with a theoretical shaft speed xðtÞ ¼ t6eð�4tÞ and a sampling frequency of
2.5 kHz. The signal is contaminated with additive white Gaussian noise (AWGN)
with signal to noise ratio of 3 dB. Simulated signal and its corresponding rotational
speed are shown in Fig. 1. The methodology includes a preprocessing stage, where
the signal is low-pass filtered at 300 Hz with a 9th order Chebyshev filter and
down-sampled to 625 Hz, because the rotational speed is associated to low spectral
range. The work interval ½a; b� for the Algorithm 1, is [35, 300]Hz, because the
maximum of the reference rotational speed is 30 Hz. Thereby, the selected interval
ensures enough orders for the extraction task. The width of the search interval d is
fixed to 1 Hz and the STFT parameters are a Hanning window of 256 points and
1024 frequency bins. The working interval and window are fixed considering the
minimum expected frequency in the signal, and the algorithm stops when the
partition size is greater than the amount of frequency bins inside the considered
interval.
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The experiment is carried out with the kurtosis and PCA approaches explained in
Sect. 2.3, determining the measure that selects the best extracted IF, and afterwards,
these measures are compared with the relative error between all the extracted
rotational speed x̂i;jðtÞ; and the theoretical xðtÞ by the following expression:

n ¼ 100 x̂i;jðtÞ � xðtÞ�� ��
2

.
xðtÞk k2 ð5Þ

where the relative error is n and �k k2 stands for the norm 2.

3.2.1 Kurtosis Approach

In Fig. 2 (left) is shown minimum value qi and relative error n per ith partition, and
Fig. 2 (right) shows the CV cvðKjA8;jða;XÞÞ and the relative error n for all the cut
frequencies for the 8th partition. The relative error shows that the best x̂ðtÞ is
estimated at first iteration; therefore the stop criterion, mentioned in Sect. 3.1,
reduces significantly the amount of iterations. Nonetheless, the relationship between
the relative error and the Kurtosis-CV for the finer partition Fig. 2 (right) is not
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Fig. 1 Simulated vibration signal (left) and its shaft reference speed (right)
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direct (i.e. the Kurtosis-CV does not have the same shape or is not highly correlated
with the relative error).

3.2.2 PCA Approach

Aiming to compare with the kurtosis approach, the same experiment was performed
using the stationarity measure PCA based. Figure 3 (left) shows the best value qi
and relative error per partition, and Fig. 3 (right) shows wðA8;jða;xÞÞ and relative
error for all cut frequencies defined by the finer partition. As well as Kurtosis-CV,
the best solution is achieved from the first iteration with a partition size of J ¼ 3;
taking into account that there are only 3 orders in the working interval. In conse-
quence, the initial partition captures the best extracted IF from the spectrogram of
the vibration signal.

In this case the PCA based stationarity measure and relative error are highly
correlated, and hence, it captures the behavior of the relative error for all possible
extracted IF from the vibration signal. As both measures select the same IF, x̂ðtÞ;
the angle order-map is the same. As a result, the best IF, bx̂ðtÞ; extracted with
Algorithm 1, is shown in Fig. 4 (left) as a white line inside of STFT, and Fig. 4
(right) shows the VSDFT and the angle-order map of the original signal using x̂ðtÞ
as reference shaft speed. In VSDFT is possible to observe the orders components 1,
2, 3 and 7, while the order 11.2 is not shown because it is outside of the working
interval [35, 300]Hz. Since the angular domain transformation is done with x̂ðtÞ
where the maximum is the unity, the map is not exactly an angle-order map,
inasmuch as the axis are scaled by the constant b ¼ 30; as mentioned in Sect. 2.1.
However, the desired effect of unfold the map by a transformation is hold.
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partition (right)
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3.3 Test Rig Experiment

The laboratory experiment was carried out in a test rig composed by a DC elec-
tromotor of 2HP (with a maximum speed of 1800 rpm), two drilling wheels for
emulating the shaft unbalance and rigid coupling for misalignment. It also has two
bearing housings where the sensor can be located. The sensor is a standard accel-
erometer and it is located perpendicularly to shaft in horizontal direction. The
measuring dynamic range was from 0 to 1800 rpm during 4 s, starting in steady state
and reaching maximum operating condition, with a sampling frequency of 20 kHz.
Vibration signal is preprocessed by means of a 9th order low-pass Chebyshev filter
with cut frequency at 1.2 kHz, and down-sampled to 2.5 kHz. Considering that
run-up test goes until 1800 rpm or 30 Hz. Inasmuch as the maximum speed is similar
to the simulated signal case, the work interval used is [35, 300]Hz, and the signal is
once again low-pass filtered to 300 Hz and down-sampled to 625 Hz. The STFT has
1024 frequency bins and a Hanning window of 256 points, and the parameter
d ¼ 1Hz: The Fig. 5 shows the pre-processed vibration signal (left) and the test rig
scheme (right). In this experiment the reference shaft speed was not measured;
therefore, the IF extraction performance is defined using the two proposed
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angle-order map stationarity measures. A visual validation is performed in the
obtained angle-order map by extracted IF.

3.3.1 Kurtosis and PCA Approaches

Figure 6 shows the minimum qi for each partition Pi and all variability values
obtained at 5th and 7th partition using Kurtosis-CV (left) and PCA index (right)
respectively. Kurtosis-CV achieves the best extracted IF constraining the frequency
with the low pass filter at a cutfrequency of 88.8 Hz, whereas PCA index uses
89.8 Hz, which means that both approaches provide a similar solution.
Nevertheless, Kurtosis-CV converges faster than PCA index because those use five
and seven partitions to achieve the optimal IF, respectively. In practical terms,
Kurtosis-CV requires a partition size J ¼ 65 and PCA index J ¼ 257; which
implies a high computational cost when PCA index is used. Moreover, it is possible
find an optimal IF taking into account at least 10 orders in the work interval, which
implies that the stop criterion can be applied after the fourth iteration i.e. Ns ¼ 3;
where the partition size is J ¼ 17:

In order to compare the selected IFs for Kurtosis-CV and PCA index, Fig. 7
shows in (a) spectrogram of the original signal with the selected bx̂ðtÞjb ¼ 30; for
Kurtosis-CV and PCA index, green and blue dash-dot lines respectively; and (b) a
zoom in spectral range [5, 32]Hz, allowing to observe a light difference between
optimal IF obtained with each approach, where the extracted IF using PCA index
reaches a maximum frequency of 30 Hz, whereas by means Kurtosis-CV it does not
happens. This result has a remarkable difference in angle-order map (shown in
Fig. 8) because using PCA index (Fig. 8) is possible seeing a better definition of
spectral orders such as 2 and 3. Nonetheless, the angle-order map obtained is
similar using both approaches, for practical purposes i.e. difference energy between
order components, and hence, PCA index based stationarity measure is a better
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indicator of the extracted IF quality than Kurtosis-CV because it is closer to relative
error. This fact is evidenced in the numerical experiment. Yet, PCA index requires
the computation of a correlation matrix which relates angular instants, and uses
more iterations to reach the best IF, therefore, it implies high computational cost in
comparison with Kurtosis-CV.

4 Conclusion

A blind instantaneous rotational speed extraction algorithm is proposed, which
iteratively constructs a set of possible instantaneous rotational speeds, and selects
the one that produces the most stationary angle-order map as the best. In order to
measure the stationarity of the angle-order map, two approaches were proposed
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(PCA index and Kurtosis-CV) and tested in a numerical and a real test rig exper-
iments. Both measures achieve high accuracy in terms of the selected IF, but
Kurtosis-CV employs a lower dimension, due to it does not require a computation
as large as a correlation matrix. Since IF estimation could be limited by trade-off in
time and frequency resolution of the spectrogram, as future work, the proposed
algorithm will be tested under different parametric or non-parametric
time-frequency representations, and more complex mechanical systems like wind
turbines.
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New Criteria for Adaptive Blind
Deconvolution of Vibration Signals
from Planetary Gearbox

Jakub Obuchowski, Agnieszka Wylomanska and Radoslaw Zimroz

Abstract In the paper performance of the adaptive blind deconvolution algorithm in
application to a vibration signal with time-varying informative frequency band
(IFB) is analyzed. The time-varying nature of the IFB might be caused by e.g.
time-varying load or speed, time-varying signal-to-noise ratio (SNR), presence of
other damages with distributed nature or time-varying transmission path, especially
for source signals that propagate through a rolling element bearing or a planetary
gearbox. Linear time-invariant filters cannot follow such phenomena, i.e. they might
indicate too wide or too narrow frequency band as informative. Thus, the filtered
signal contains too much noise or does not contain the whole information about the
damage, respectively. Adaptive blind deconvolution is a time-varying filter which in
each step tends to a filter that minimizes or maximizes given criterion of the de-
convolved signal. In the classical version it maximizes kurtosis of the deconvolved
signal, since high kurtosis (impulsiveness) is expected in the case of local damage.
There exist also alternative measures that might provide equivalent results, or
sometimes better in specific cases. Such combination of impulsiveness detection and
ability of adaptation due to non-stationary operational conditions seems to be very
promising. The methodology is illustrated by analysis of real data representing
vibration acceleration of a heavy-duty rotating machinery (planetary gearbox used in
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bucket wheel excavator) operating in industrial conditions of an open-pit mine. The
analyzed signal reveals strong dependency between time-varying load applied to the
gearbox and properties of cyclic impulses related to damage.

Keywords Planetary gearbox � Non-stationary operations � Local damage �
Time-varying damage signature � Adaptive blind deconvolution

Contents

1 Introduction........................................................................................................................ 112
2 Methodology ...................................................................................................................... 114

2.1 Adaptive Filter for Kurtosis Maximization .............................................................. 114
2.2 Generalization............................................................................................................ 116

3 Application of Adaptive Blind Deconvolution ................................................................. 117
4 Conclusion ......................................................................................................................... 123
References ................................................................................................................................ 123

1 Introduction

Vibration analysis is one of the most common technique used in the field of damage
diagnostics in rotating machines. Diagnostics of machines operating in stationary
conditions is a well-known problem and methods described in [1, 2] are sufficient.
In the literature a lot of signal processing algorithms (e.g. filters) that help to extract
information about the damage might be found. If the considered algorithm is a filter,
then the information might be contained in both filter’s coefficients or in the output
of the filter, called a residual signal. For instance, AR gram represents variability of
amplitude response of an autoregressive (AR) model fitted to subsequent short-time
windows of the considered signal [3]. Another example of application of an AR
model (extended to ARMA—AR moving average) to non-stationary signals is
called TARMA (time-varying autoregressive moving average). In this method the
coefficients of the ARMA model vary in time, for instance they might vary in a
stochastic way (SP-TARMA) or deterministic (FS-TARMA) [4]. The way in which
the coefficients vary provide an information about changes of the system. Another
example where the information is contained in time-varying coefficients of a filter is
an adaptive Schur algorithm [5–7]. In [6] authors proved that weighted summation
of the derivatives of reflection coefficients in the adaptive Schur algorithm might
provide an excellent indication of a damage in rolling element bearings. In this
paper we also focus on an adaptive filter, but here the coefficients are calculated
using different criterion than the mean square error (MSE). The choice of such filter
is motivated by a possibility that the filter with time-varying coefficients might track
time-varying structure of a vibration signal which occurs during non-stationary
operations. Moreover, even under stationary operational regime in the case of local
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damage the structure of the signal varies, i.e. a cyclic wide-band spectral excitation
occurs. The use of an optimization criterion that incorporate the idea of impul-
siveness, sparsity or non-Gaussianity detection might provide better noise cancel-
lation. The term “noise” refers to both signal in frequency bands outside the
informative band related to each impact and signal between impacts. In recent
years, such kind of filters have found many applications in processing of
non-stationary signals. For instance, adaptive filters driven by a maximum-kurtosis
or maximum-skewness criterion were used for speech signal dereverberation [8–12]
and ultra-wideband (UWB) signals processing [13].

Algorithm that incorporates a time-invariant filter with coefficients optimized
using maximum-kurtosis criterion is called “minimum entropy deconvolution”
(MED) and was originally developed for processing of seismic signals [14]. There
are also similar algorithms based on non-Gaussianity, sparsity or impulsiveness
detection and their applications [15–17]. In [15] a review on several different
measures might be found. Since the problems and needs in seismic signals pro-
cessing, speech signals dereverberation and vibration signals processing for damage
detection are somewhat similar, such kind of a blind deconvolution has been also
applied to machine diagnostics [18–24]. In this paper we investigate an adaptive
blind deconvolution driven by criteria different than kurtosis. Problems in damage
detection under non-stationary operations are often related with time-varying
informative frequency band (IFB). It might vary from short to wide bandwidth or
the IFB might even completely change during a sufficiently long measurement.
Such variations of IFB might be caused by e.g. time-varying rotational speed or
load. Even under constant speed and load regime the use of an adaptive filter might
be beneficial. For instance, in a case of rolling element local damage the amplitude
of the pulse train is time-varying [1] which might result in time-varying IFB.
Moreover, the vibration signal might be contaminated by vibrations from another
machines in the system. Frequency structure of such vibrations can also vary in
time, thus cancellation of such contamination constitutes another problem that
might be solved using an adaptive filter. If these problems are solved by the
adaptive filter driven by the maximum-kurtosis criterion or another measure of
sparsity, non-Gaussianity or impulsiveness then it would make it possible to
establish an on-line condition monitoring system, since such algorithms often
operate in real-time. In the paper we recall the adaptive algorithm with several
criteria for update of coefficients and provide some interesting results related to the
mentioned properties of the algorithm. Since there are a lot of variants of such
adaptive filter and many ways to determine its parameters, we do not provide a
meaningful comparison with many existing methods. Nevertheless, we compare the
results with those obtained by certain existing methods and explain the differences.

The paper is structured as follows: In Sect. 2 the classical version of the adaptive
filter driven by maximum-kurtosis criterion is recalled and its generalization is
provided, as well as a discussion concerning the meaning of parameters and
alternative versions of the algorithm. Section 3 contains results of application of the
adaptive filter to real vibration signals from machines that operate in non-stationary
operational conditions. The last section contains conclusions.
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2 Methodology

2.1 Adaptive Filter for Kurtosis Maximization

In this section we recall the basic algorithm for calculation of coefficients of
adaptive filter that maximizes kurtosis of residuals. The idea is presented in [8, 25,
26] and is based on a gradient-descent algorithm that maximizes the normalized
fourth-order moment of linear prediction (LP) residuals. Originally, there are two
versions of obtaining the output of the algorithm. The first one is to get the LP
residual signal, use it to calculate coefficients of the adaptive filter upon the given
gradient and obtain the final signal by applying the inverse LP filter. Alternative
way of obtaining the final signal is to run two-filters instead of using the inverse LP
filter, i.e. calculate the adaptive filter coefficients on the basis of LP residuals, copy
the coefficients and apply the filter directly to the measured signal. On the other
hand, in the literature related to damage diagnostics the step of impulsiveness
enhancement is often preceded by LP-residuals step (called pre-whitening [27, 28]),
but the inverse LP filter is not applied after impulsiveness enhancement. In this
paper we follow this concept, i.e. we calculate coefficients of the adaptive filter that
maximizes kurtosis (or other function) on the basis of LP residuals and the final
signal is obtained just by application of the adaptive filter to the LP residuals.

Let xn; n ¼ 1; . . .;N and ~xn; n ¼ 1; . . .;N be the raw vibration signal obtained
during data acquisition and the LP-residual signal, respectively. hðnÞ ¼
h1ðnÞ; . . .; hLðnÞ½ � denotes the L-tap adaptive filter coefficients at time n. The final
adaptive filter residuals yðnÞ at time n are calculated as follows [8, 25]:

yðnÞ ¼ hðnÞT~xðnÞ; ð1Þ

where ~xðnÞ ¼ ~xðnÞ; . . .;~xðn� Lþ 1Þ½ �. hðnÞ depends on the objective function JðnÞ
(called also the cost function [29]) which in the classical case is the normalized

fourth-order moment, i.e. JðnÞ ¼ E y4ðnÞf g
E
2 y2ðnÞf g � 3 [8]. General equation for filter’s

coefficients update is:

hðnþ 1Þ ¼ hðnÞ þ lf ðnÞ~xðnÞ; ð2Þ

where l 2 ð0; 1Þ is the step-size and f ðnÞ is the feedback function. l controls speed
of the adaptation and f ðnÞ depends on the gradient of the objective function JðnÞ.
The gradient is given by

@J
@h

¼ 4ðE y2
� �

E y3x
� �� E y4

� �
E y~xf gÞ

E
3 y2f g : ð3Þ

Using the stochastic approximation technique we obtain [8, 29, 30]
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@J
@h

� 4ðE y2
� �

y3 � E y4
� �

yÞ
E
3 y2f g ~x: ð4Þ

Thus,

f ðnÞ ¼ 4ðE y2ðnÞ� �
y3ðnÞ � E y4ðnÞ� �

yðnÞÞ
E
3 y2ðnÞf g ; ð5Þ

where

E ykðnÞ� � ¼ bE ykðn� 1Þ� �þ ð1� bÞykðnÞ; k ¼ 2; 4: ð6Þ

b 2 ð0; 1Þ controls smoothness of the moments estimates. In other words,
E ykðnÞ� �

is estimated using an exponential moving average (exponential
smoothing). The result of the adaptive filter depends on the parameters l and b, as
well as on the initial filter. Many authors propose l to be close to 0, often between
10−9 and 10−3 [8, 10]. b should be close to 1, e.g. b ¼ 0:99. High b gives smoother
estimate and low b might cause the estimator highly dependent on the current
output of the adaptive filter, thus it might be unstable. The initial filter is often
suggested to be the L-tap identity filter, i.e. hð0Þ ¼ ½1; . . .; 0� [8]. The flow chart of
the algorithm is presented in Fig. 1.

Such number of parameters exploited by this algorithm might disturb the reader.
In an industrial implementation it is highly undesirable if an algorithm has to be
carefully calibrated many times during monitoring of the system. Thus, there are
some attempts to make the number of subjectively chosen parameters lower by
incorporating known properties of the signal (e.g. short-time stationarity) or to

Fig. 1 Flow chart of the
adaptive blind deconvolution
algorithm
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substitute them with parameters to which the result is less sensitive. Several
researchers suggest that the time-domain implementation might provide poor results
in terms of convergence and stability and provide the solution, which is the
frequency-block implementation [10, 31]. The frequency-block implementation
estimates E ykðnÞ� �

in a different way and the parameter b is substituted by block
length. It allows to benefit from additional knowledge about the signal, because
block length should follow length of a signal portion where the signal might be
considered as stationary [8, 10]. In this approach also the output yðnÞ is calculated
block-by-block, thus it is updated once per block length instead of
sample-by-sample. The parameter l might be time-dependent and automatically
fitted. The idea comes from [32] where the authors estimate the step-size in NLMS
algorithm using temporary characteristics of the signal. Nevertheless, in this paper
we present that the classical, time-domain implementation with appropriately
chosen parameters might still provide interesting and motivating results, although
the future work should be focused on automation of the methodology. This would
make possible to implement it in real-time condition monitoring systems.

2.2 Generalization

In the literature related to filtering methods for signal of interest (SOI) extraction a
lot of measures that quantify performance of the resulting SOI estimate might be
found. One of the most classical ones is kurtosis, i.e. normalized fourth-order
moment. Kurtosis is the basis of several method for indication of the IFB, i.e.
Spectral Kurtosis, Kurtogram and Fast Kurtogram [33, 34]. This statistic has also
been used to optimize parameters in the Morlet wavelet function [35]. Kurtosis is
also used as the objective function for MED [14]—time-invariant equivalent of the
adaptive filter based on kurtosis maximization that is described in Sect. 2. Over the
years, researches found that kurtosis might not be the appropriate score function for
certain applications. Thus, a number of alternative score functions have been
introduced in the literature. For instance, one of the most general objective func-
tions is the Gray’s variability measure [16]. This function demonstrate many
interesting properties, thus we refer to [16, 36] for them. Another interesting
objective function is called D-norm, i.e. maximum of the absolute value of the
normalized signal. It was used in [37] as an alternative to classical MED for seismic
signal deconvolution. There are also other score functions that have been used in
the literature related to damage diagnostics in gears and bearings, e.g. protrusion
[38], sparsity [39], statistics based on quantiles or empirical cumulative distribution
function, as well as the Jarque-Bera (JB) test statistic [40, 41]. In this paper we
focus on the score functions driven by the Gray’s variable norm, Jarque-Bera test
statistic and the classical one—kurtosis. One of the most valuable properties of the
JB test statistic is the fact that it incorporates not only kurtosis or only skewness, but
both of them at the same time. Moreover, appropriate normalization of these
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statistics takes into account different variance of kurtosis and skewness which is
essential while signals of different length are compared [42, 43]. The cost function
based on JB statistic is given by

JJBðnÞ ¼ N
6

E y3ðnÞ� �
E

3
2 y2ðnÞf g

 !2

þ 1
4

E y4ðnÞ� �
E
2 y2ðnÞf g � 3

� �2
0
@

1
A: ð7Þ

The constant N6 does not change during adaptation, thus it might be omitted while
only one signal is being analyzed. Such normalization might be usable when the
equalization is applied to two or more signals of different lengths. The corre-
sponding feedback function fJB at time n related to the JB test statistic is as follows:

fJB ¼ 6E2 y3
� �

E
4 y2f g

E y2
� �

E y3f g y
2 � y

� �
þ 2E2 y4

� �
E
5 y2f g � 6

E y4
� �

E
3 y2f g

 !
E y2
� �

E y4f g y
3 � y

� �
:

ð8Þ

The time subscript has been omitted for simplicity of notation, although com-
ponents of (8) depend on time point n.

The next cost function we analyze in this paper is the Gray’s variable norm,
which is defined as

JGðp;qÞðnÞ ¼ E yj jpðnÞf g
E

p
q yj jqðnÞf g

: ð9Þ

For interpretation and widely described properties of such norm we refer to [16].
When p = 4 and q = 2 it simplifies to well-known kurtosis. The feedback function
fGðp;qÞðnÞ related to JGðp;qÞðnÞ is:

fGðp;qÞðnÞ ¼ p signðyÞ E yj jpðnÞf g
E

p
qþ1 yj jqðnÞf g

E yj jqðnÞf g
E yj jpðnÞf g yj jp�1� yj jq�1
� �

: ð10Þ

Since (9) constitutes a family of measures, we only focus on particular p and
q just to provide a general view on performance of the Gray’s variable norm.

3 Application of Adaptive Blind Deconvolution

In this section we present results of application of the adaptive blind deconvolution
driven by certain cost functions described in Sect. 2.2. The data we analyze is a
vibration signal from a planetary gearbox used for to drive a bucket wheel in a
bucket wheel excavator. This signal was analyzed in several previous works, e.g.
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[44–48]. To avoid unnecessary redundancy we just recall basic parameters of the
machine and signal. We refer to [44] for wider description. The excavation process
is cyclic, during one cycle external load varies in wide range, so frequencies of
components related to meshing phenomena vary in time, i.e. sinusoidal components
are frequency modulated. Due to the average rotational speed of the sun gear and
the numbers of teeth the fundamental gear mesh frequency is close to 435 Hz and
variation generally does not exceed 5 %. The gearbox has not been inspected after
the experiment, but the number of impacts in the acquired signal (11–12 impacts
per 2.5 s) results in a fault frequency close to the arm frequency. The arm frequency
is 4.67 Hz (upon an average rotational speed) and the task for a signal processing
method is to extract a series of impulses that are spaced in time every 0.214 s.

The signal was acquired using an accelerometer, duration of the signal is 2.5 s
and sampling frequency is 19,200 Hz. Every time series in the paper are normalized
by their maximum absolute value. The time series and spectrogram are presented in
Fig. 2. There are several high-energy harmonics related to gear mesh phenomena.
Since frequency modulation of these components is barely visible here we refer to
[47], where the frequency modulation property of a signal from a similar machine is
widely described. There are also wideband cyclic excitations marked with arrows,
mainly at 3000–5000 Hz. The impulses are different to each other, thus it is difficult
to set a time-invariant frequency band for demodulation that covers all of the
information and do not contain unnecessary noise. LP-residuals obtained using
Hamming windows of length 10,000 samples and LP-filter order equal to 200 is
presented in Fig. 3. It can be noticed that the harmonics related to gear mesh

Fig. 2 Time series (a) and spectrogram (b) of the raw vibration signal from the planetary gearbox
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phenomena are suppressed, but the signal is very noisy. This signal is the base for
the blind deconvolution algorithms driven by several cost functions described in
Sect. 2. Due to infinite number of cost functions described in Sect. 2 we present
only results obtained using JJB (Eq. 7) and Gray’s variable norm with parameters
ðp; qÞ 2 ð4; 2Þ; ð6; 2Þf g. Time series and spectrograms of the signals obtained using
three mentioned cost functions are presented in Figs. 4 and 5, respectively.

In every case the starting filter is hð0Þ ¼ ½1; . . .; 1� and b ¼ 0:99. The other
parameters ðl; LÞ (L stands for length of the adaptive filter) of the adaptive filter are:
JJB − ð0:05; 300Þ, JGð4;2Þ − ð0:02; 125Þ and JGð6;2Þ − ð0:006; 150Þ. The parameters
are chosen to present the best results obtained for a particular method. The choice
was preceded by comprehensive calculations using l 2 ð2e� 8; 1e� 1Þ and
L 2 ð10; 1500Þ, 720 pairs of parameters in total for every cost function. It can be
noticed that the most impulsive time series with the smallest amount of noise is
presented in Fig. 4c. It is worth to mention that most of these impulses actually
follow the blurred impulses in the raw signal and LP-residuals. There are also some
impulses that do not follow the time-spacing equal to 0.214 s. Their occurrence
might be caused by artifacts due to the time-domain implementation of the algo-
rithm (see [8, 31]) or another damage in early stage of development. Comparing
spectrogram in Fig. 3b with spectrograms in Fig. 5 one can notice general behavior
of the adaptive blind deconvolution algorithm for different step-sizes and different
cost functions. Generally, the results follow the fact that some of impulses are wider
in terms of their spectrum and some of them are narrower due to non-stationary

Fig. 3 Time series (a) and spectrogram (b) of the LP-residuals of the raw vibration signal from the
planetary gearbox
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operations of the considered planetary gearbox. The JB statistic value is larger for
both kurtosis lower and higher that 3, thus its result looks different that others, e.g.
at time points marked with the 2nd arrow (0.25 s) and 11th arrow (2.2 s). The
results seems to be promising, but there is still some of issues that need an
improvement before implementation of this method to industrial on-line monitoring
system. To enhance the result and prove consistency with the SOI seen on the
spectrogram in Fig. 2 in the band 3000–5000 Hz we performed additionally
analysis of badnpassed signals. In Fig. 6 time series of all the previously presented
signals are shown. These signals are bandpassed with cut-off frequencies 3000–
5000 Hz. One can see that impulses marked with arrows appear in every signal, but
the signals obtained using the adaptive blind deconvolution are much more
impulsive than those in Fig. 6a, b. It is worth to mention that the arrows in every
plot are in the same horizontal positions, although they are not equally spaced. Such
dispersion might be caused by the fact that the rotational speed of the gearbox
varies in time. It causes not only modulation of the deterministic components, but
dispersion of time lapse between impulses as well.

Fig. 4 Time series of the signals obtained using JGð4;2Þ (a), JJB (b) and JGð6;2Þ (c)
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In the future it is crucial to provide an objective way to set the step-size and
length of the filter. It would be also interesting to verify the adaptive blind
deconvolution algorithm on a signal in which the IFB is narrow and highly varies in
time.

Fig. 5 Spectrograms of the signals obtained using JGð4;2Þ (a), JJB (b) and JGð6;2Þ (c). Frequency
axis is limited to 0–6000 Hz for better visibility
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Fig. 6 Time series of band-pass filtered (3000–5000 Hz) signals: raw (a), LP-residual (b), signals
obtained using JGð4;2Þ (c), JJB (d) and JGð6;2Þ (e)
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4 Conclusion

In this paper we presented application of the adaptive blind deconvolution to
damage diagnostics in rotating machinery, namely a planetary gearbox that operates
under a non-stationary regime. In the classical version, the algorithm searches for
the time-varying filter that maximizes kurtosis of the residual signal. In the paper
we recalled another criterion for adaptive blind deconvolution, as well as provided a
gradient of a novel criterion based on the Jarque-Bera statistic. Such cost function
incorporates not only a ratio of specific statistical moments, but it measures
non-Gaussianity by incorporation of both skewness and kurtosis at the same time.
The motivation for using the adaptive blind deconvolution algorithm is that it might
extract the informative signal even if the impacts are not equally spaced in time and
there are a lot of frequency modulated deterministic components that contaminate
the damage signature. Since the algorithm implemented in time domain requires
setting the step-size, filter length and parameters of LP filter, we just subjectively
provided the best results obtained using kurtosis, Jarque-Bera statistic and Gray’s
variable norm with parameters p = 6 and q = 2 chosen among hundreds of
parameters’ combinations. Thus, it cannot be judged which criterion is the best for
extraction of damage signature in the real vibration signal analyzed in Sect. 3.
Every cost function lead to an impulsive signal in which the impulses meet the
blurred impacts in the raw signal. However, it can be noticed that the Gray’s
variable norm (p = 6, q = 2) provided the most impulsive signal. The JB-driven
adaptive deconvolution provided a signal which differs from two others in terms of
time-frequency representation. It might be caused by the fact that the JB statistic is a
general non-Gaussianity measure, i.e. it raises for kurtosis bot lower and larger than
3. Tu sum up, the results seems to be very promising and further work should be
focused on objective criteria for parameters setting. It might be also interesting to
analyze another cost functions which might exploit different signal characteristics
than empirical moments.
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Automatic and Full-Band Demodulation
for Fault Detection—Validation on a Wind
Turbine Test Rig

Marcin Firla, Zhong-Yang Li, Nadine Martin and Tomasz Barszcz

Abstract This paper proposes three algorithms for automatic diagnosis of
mechanical system. First of all, an angular resampling with speed measurement
correction is introduced. Secondly, a method for the association of detected spectral
patterns with the characteristic frequencies of the investigated system is presented.
This approach takes into consideration the slippage phenomenon of rolling element
bearings. Thirdly, a full-band sideband demodulation method is proposed. It fea-
tures with multi-rate filtering and offers new health indicators. All methods are
applied on the real-world signals of a wind turbine test rig for diagnosis a bearing
fault. The comparison of results shows the advantages of the proposed algorithms
over well-known health indicators.
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1 Introduction

An automatic interpretation of a big amount of data is crucial for health monitoring
of complex systems such as wind turbines. The Condition Monitoring System
(CMS) is a solution using automated data acquisition to detect the change in the
health of the investigated system [1–4]. Modern CMSs have to achieve a good
balance between the precision of diagnosis and the amount of information taken
into account. The proposition of relevant fault features is therefore essential.

In the case of wind turbines, components such as rolling element bearings,
gearboxes, and generators have to be replaced during the lifetime of a wind turbine
in order to achieve its assumed duration [1]. The faults of these components can be
characterized on the spectrum by the modulation sidebands around the character-
istic fault frequencies [5]. Therefore the sideband demodulation analysis is an
efficient tool for the diagnosis in this context [6, 7].

In this paper, we propose two steps of an automatic fault diagnosis method. The
first step is an association of the detected spectral patterns in the signal with the
characteristic fault frequencies of the mechanical components. The second step is a
sideband demodulation method to deduce health indicators highly indicative of
faults. The proposed method is fully automatic since both steps are data-driven
algorithms based on an automatic harmonic and sideband detection algorithm [8].

In order to cancel the non-stationarity caused by rotational speed fluctuation, we
firstly propose a new angular resampling approach which can tolerate and correct
the wrong tachometer measurements. It serves as a pre-processing step of the
proposed method.

All the above mentioned algorithms belong to an automatic full-band spectrum
analysis tool called AStrion. The data-driven property of the proposed method is
consistent with the goal of AStrion—the independence of the functionality. The
independence is a crucial issue for the implementation of AStrion in innovative
CMSs.
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The paper is organized as follows. Section 2 presents the angular resampling
method. Section 3 elaborates on the automatic characteristic fault frequencies
association and Sect. 4 describes an original approach to signal demodulation.
Section 5 presents the results of the methods applied on real-world data and a
comparison with the traditional diagnostic approaches. Section 6 gives the con-
clusions and future perspectives.

2 Angular Resampling

In order to cancel the non-stationary effect due to a varying rotational speed, the
signal is usually resampled with an equidistant angular rate [9] using the tachometer
signals from which we can extract the instantaneous phase. Note the impulsive raw
tachometer signal as I½n� (at instant ½n�) which contains an impulse every D/ radius
of rotation, and ni as the time instant of the ith impulse. The duration DT½i� between
two neighborhood impulses can be obtained by differentiating ni. The rotational
speed V ½i� proportional to the real phase shift D/½i� as

V ½i� ¼ D/½i� FsI

DT ½i� ð1Þ

with FsI the sampling frequency of the tachometer signal.
Since the rotational speed in a real machine cannot change drastically, the speed

measurement errors can be detected by finding the outliers of the rotational speed.

Theorem 1 The outlier ½i� in the rotational speed measurement is considered as
wrong. We thus assume true rotational speed equals to the average rotational

speed V. The real phase shift should be D/½i� ¼ D/ DT ½i�
DT

:

Theorem 2 For non-outlier measurements, the variations of the speed are con-
sidered as correct measurements, and can be calculated from T½i� according to (1).
Each waveform duration D/½i� corresponds to a unit phase shift D/.

Based on the above assumptions, we propose to distinguish the two types of
variations of V ½i� by identifying and correcting the outliers of the measurements.
The method gives a correct estimation of the phase shift D/½i� and the rotational
speed V ½i� in an iterative way. In each iteration p the algorithm consists of 3 steps.

Step 1: Calculate the z-score of all the measurements,

Zp½i� ¼ V ½i� � �Vp

rVp

; i ¼ 1; . . .;Nd ð2Þ
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where �Vp and rVp are respectively the mean and the standard deviation of all the
correct waveform duration measurements Op

Op ¼ ½1; . . .;Nd�nXp�1; ð3Þ

where Xp�1 is the set of waveform indices which are identified as wrong
measurements (outliers) in the previous iteration ðp� 1Þ.
Step 2: If the variation of the speed ctp ¼ �Vp

rVp
is inferior to a threshold gct (normally

10�6� gct� 10�1), the speed measurement is considered outlier-free. Thus the
algorithm terminates. Otherwise, it goes to Step 3.
Step 3: Locate the extrema xp of the z-score Zp½i� and update the outlier set by
Xp ¼ Xp�1

Sfxpg. Correct the angle shift D/½i� and the rotational speed V ½xp�
according to (1).
Finally, the interpolation of time domain signal y½n� (sampled at Fsy ) is performed
to obtain the resampled signal yh½l� in order domain [9].

3 Characteristic Fault Frequency Association

This section proposes an association algorithm of fault frequencies characteristic for
investigated system with patterns detected in the analysed signal. For the pattern
identification of harmonic series and modulation sideband series in the spectrum of
a signal the method proposed by Gerber et al. [8] has been used. Its final results
include fundamental frequency for harmonic series, central and modulation fre-
quency for sidebands series, as well as energy and density of each series.

The rotating machinery under operation generates characteristic frequencies
related to the rotational speed of the shaft Vr. The definition of characteristic fre-
quencies corresponding to mechanical components such as shafts, gearboxes, and
rolling elements bearings is presented in Table 1, where z is the number of teeth of
gear, nr is the number of rolling elements, dr is the diameter of rolling element, dp is
the pitch diameter, and / is the angle of the load from the radial plane.

Formulas presented in Table 1 allow for calculating theoretical values, however
the real values can vary slightly. The important difference between calculated and
measured values occurs in the case of rolling element bearings. The model used for
calculation does not assume slippage phenomenon, which is always present in
running bearings. According to [11] a random variation of theoretical characteristic
fault frequencies is of the order 1–2 %.
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3.1 Association Algorithm

Figure 1 presents the steps performed for each characteristic frequency in order to
find the best suited series representing it.

In the case of shaft speed and gear mesh frequencies the association is done by
finding the series with the lowest Relative Frequency Difference:

RFDi ¼ fd;i � ft;i
ft;i

100% ð4Þ

where i is the index of the harmonic series, fd;i is the fundamental frequency of the
series detected in investigated signal, ft;i is the theoretical frequency.

For rolling element bearing frequencies the additional parameter is calculated:

BSIi ¼
Ei

Emax;i
þ deni

2
ð5Þ

where Ei is the energy of the series under investigation, Emax is the energy of the
series with the highest energy among the series which met the condition
RFDi� 2%, and deni is the density of the series. Finally, the series with the highest
BSI is associated with characteristic fault frequency, which has been decided after
inspecting numerous examples.

Table 1 Formulas for calculating selected characteristic fault frequencies [10]

Fault frequency name Formula

Shaft speed frequency SSF ¼ Vr

Gear mesh frequency GMF ¼ Vr � z
Ball-pass frequency of outer race BPFO ¼ nrVr

2 1� dr
dp
cosð/Þ

n o
Ball-pass frequency of inner race BPFI ¼ nrVr

2 1þ dr
dp
cosð/Þ

n o
Fundamental train frequency FTF ¼ Vr

2 1� dr
dp
cosð/Þ

n o
Double ball spin frequency

BSF2 ¼ Vr � dp
dr

1� dr
dp
cosð/Þ

� �2
� �

Fig. 1 Flowchart of the characteristic fault frequency association algorithm
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4 Sideband Demodulation

In this paper we propose a fully automatic demodulation method to investigate an
arbitrary spectral band. The vibration signal y½n� is considered as the sum of a
wide-band random part e½n� and a band-limited deterministic part s½n�. The latter is
modulated in amplitude by A½n� and in frequency by F½n�

A½n� ¼ A0 1� a cosð2pfanÞð Þ; F½n� ¼ f0 þ bfU cosð2pfUnÞ: ð6Þ

where A0 represents the average amplitude, a is the amplitude modulation index and
fa the frequency of the amplitude modulation function. f0 represents the carrier
frequency which depends on the rotational speed and the resolution of the
tachometer. b is the frequency modulation index and fU is the frequency of the
frequency modulation index.

The demodulation algorithm starts by applying a band-pass filter around the
carrier frequency f0 and end up by calculating the amplitude and the frequency
modulation functions from the demodulated signal.

The filter is applied over a filter band B ¼ ½finf ; fsup�, where fsup the upper and finf
the lower bounds are determined by

½finf ; fsup� ¼ f0 þ ½Kinf ;Ksup� � fU; Kinf 2 Z
�; Ksup 2 Z

þ ð7Þ

where fU, f0, Kinf and Ksup are estimated by an automatic sideband detection
algorithm [8].

In order to design a stable filter which satisfies the desired performance even if
the normalized bandwidth is very small or if the normalized filter band is very close
to extreme values (0 and/or 0.5), we propose a new multi-rate filtering technique,
which automatically decomposes a difficult filtering task into Nq iterations. Each of
them is constituted by a chain of three essential operations:

Frequency shifting which applies a negative frequency shift �Dfq to the entire
frequency contents; Filtering which filters over the target filter band Bq; And down-
sampling which decimates the signal by a factor Dq.

Based on these 3 operations, the iterations of the algorithm are arranged as
follows

1. q ¼ 1, B0 ¼ B, y0½n� ¼ y½n� and Fs;0 ¼ Fs;y.
2. Verify if the stability criterion of the elliptic filter (0.005 dB of pass-band ripple

and −80 dB of roll-off) is satisfied over Bq. If so, perform a filtering operation
over Bq on yq�1½n� to get the filtered signal yB½n�; Fs ¼ Fs;q; and exit, otherwise
go to Step (4).

3. Perform a frequency shifting operation: Apply a Butterworth filter over

Dfq;
Fs;q�1
2

h i
on yq�1½n� and carry out a frequency shifting by �Dfq to yield

yshift;q½n�; Bq ¼ Bq�1 � Dfq.
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4. Perform a down-sampling operation: Apply a Butterworth filter over 0; Fs;q�1
2Dq

h i
on yq�1½n�, and down-sample the signal by Dq; Fs;q ¼ Fs;q�1

Dq
.

5. Update the signal for the next iteration yqþ1½n� ¼ ydown;q½n�. Increment the
iteration index q qþ 1 and go to Step (2).

Such a method is able to automatically choose the optimal number of iterations
and the configurations. The filters are designed at the highest orders which satisfy
the stability criterion: the maximum modulus of all the poles does not exceed 0.996
for an elliptic filter, or 0.95 for a Butterworth filter. The filter band is considered too
narrow if the highest order of a stable filter is below a given value. In this situation,
the down-sampling and the frequency shifting operations are required.

The overall down-sampling rate D depends on the final sampling frequency

Fs ¼ C � DB where C is a factor between 4 and 10. D is the closest integer to
Fsy

Fs

factorized into L(2) factors of 2 and L(3) factors of 3. All the factors are alternatively
arranged in a vector d. The down-sampling rate Dq in each downsampling operation
q is the product of Lq factors with Lq defining the narrowest band
0; ðFs;q�1Þ= 2Dq

� �� 	
where a low-pass Butterworth filter satisfies the stability cri-

terion. d is then updated by removing the first Lq factors.
The frequency shifting operations will carry the filter band B to ðB� finfÞ where

the inferior frequency bound is 0. The total frequency shift �finf is divided evenly
into M smaller portions. In each iteration (q) the algorithm calculates Mq by finding

the narrowest band Mqþ1
M finf ; ðFs;q�1Þ=2

h i
where a high-pass Butterworth filter

satisfies the stability criterion, and updates Df  Df � Dfq.
To eliminate all the spectral contents which are incoherent to the period, the time

synchronous averaging is applied on the filtered signal yB½n� to yield a period-wise
averaged signal yTZ ½s�, where s is the discrete time index. Then the amplitude Â½s�
and the frequency U½s� can be calculated from the analytical signal yH ½s� of yTZ ½s�.

The scalar features can be derived from the demodulated functions Â½s� and F̂½s�
as mechanical fault indicators, such as the mean �A and �F, The modulation index MIA
and MIF, the root mean square RMSA and RMSF, The peak-to-peak magnitude PPA
and PPF, The crest factor CA and CF and the Kurtosis KurtF . A further run of AStrion
yields the number of peaks and the energy of harmonic series on the spectrum of the
demodulated functions. These numbers contribute to 4 additional features.

5 Case Study

An advanced test rig, which simulates a wind turbine drive train, has been designed
at CETIM (http://www.cetim.fr) as a part of the KAStrion project (http://www.
gipsa-lab.fr/projet/KASTRION/). This test rig is equipped with hydraulic cylinders,
which are installed to generate external forces on bearing corresponding to a wind
turbine main bearing for its faster deterioration. In order to control the input speed
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of this test rig a 10 kW motor is installed in place of the blades of a wind turbine.
Figure 2 presents the main mechanical components of the test rig.

The characteristic fault orders of the low speed shaft equals to Vr ¼ 0:01 and the
values for the main bearing are: BPFO ¼ 0:076, BPFI ¼ 0:103, FTF ¼ 0:004, and
BSF2 ¼ 0:031.

All results presented in this paper are computed with signals sampled at
39062.5 Hz and 150 s long. The acquisition of signals is done with the rotational
speed of the low speed shaft around 20 rpm and under the same load conditions.
The test rig was working with the settings for fast deterioration of main bearing
between measurements.

Signals presented in this paper were recorded with two accelerometers placed on
the main bearing case in radial directions. One accelerometer AccH is situated in the
horizontal plane and another AccV in the vertical plane. The set of data corresponds
to a period from the beginning of degradation test until the 190th hour. There are 20
measurements for AccH and 16 for AccV. All signals used for computation of the
results of the proposed methods were treated with angular resampling algorithm
presented in Sect. 2. After this operation the angular sampling rate is equal to 1488
samples per revolution and its duration around 5000 revolutions.

5.1 Characteristic Frequency Association Results

Table 2 presents some results of association algorithm performed on one signal
from AccV. Two harmonic series, which were associated with the main bearing, are
presented. Moreover, the modulation sidebands of the series with the fundamental
order value equal to 0.102 are listed. One sideband modulation series is not asso-
ciated with any mechanical component, it is normal in case of real-world signals,
since the pattern detection algorithm detects huge amount of series. The algorithm
associated two sideband series with the low speed shaft, which appeared respec-
tively around the fundamental frequency and around the second harmonic of main
bearing BPFI harmonic series. The theoretical order value and the calculated RFD
is also presented in the table.

Fig. 2 Schematic representation of the test rig
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5.2 Sideband Demodulation Results

All health indicators proposed in Sect. 4 were computed from AccH and AccV data
sets. Among them only three selected indicators are presented in Fig. 3. Although,
the first sample used for the processing appeared in the 11th hour, the first results
presented in Fig. 3 are computed at the 138th hour. The latter is due to the fact that
there was no modulation sidebands series detected in prior signals [8]. Thus, this
time-stamp is considered as the beginning of the fault in the inner ring of the main
bearing. The early fault detection is thus the strength of the proposed methodologies.

The RMSA and PPA of AccH show a gradual increase of the parameters. On the
other hand the MIA of signals on this sensor starts with a high value and decreases
until the 168th hour. Afterwards this parameter has a growing trend. The evolution
of RMSA and PPA for the results of AccV is consistent. These features start with a
dynamic increase followed by a fluctuation period until the 168th hour. Afterwards
RMSA and PPA decreased rapidly and increased again in the end of the test. The
values of MIA of AccH are high at the beginning and decreases until the 168th hour.
After noticing the different behaviour of the indicators before and after the 168th
hour we can give additional information on the fault stage. From the presented
results the conclusion can be deduced that the early stage fault is present until the
168th hour and subsequently it spreads.

Moreover, the fully automatic and data-driven demodulation method proposed in
this paper is ready to use in CMS. Furthermore the method is robust thanks to not
using the parameters defined a priori.

5.3 Comparison with Traditional Health Indicators

Using the same set of data, the popular health indicators for rolling element
bearings were computed. In Fig. 4 crest factor and kurtosis calculated on the
full-length vibration signals, as well as the narrow-band RMS over a band of ±2 %
of the theoretical value of main bearing BPFI are presented.

Table 2 Example of harmonic and modulation sidebands series association on test rig data

Type Order Carrier Modulation Associated
component

Model
order

RFD

Harmonics 0.076 – – Main bearing
BPFO

0.076 0.868

Harmonics 0.102 – – Main bearing
BPFI

0.103 −0.645

Sidebands – 0.102 0.02 – – –

Sidebands – 0.102 0.01 Low speed shaft 0.01 0.041

Sidebands – 0.205 0.01 Low speed shaft 0.01 −0.025
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The fault of the main bearing is detected with the crest factor, but not earlier than
in 175th hour for AccH and 182th hour for AccV. Moreover, using this method it is
not possible to conclude which type of fault it is. Furthermore, it is impossible to
determine a faulty bearing in case of multiple bearing in the investigated system.
The kurtosis, presented in Fig. 4b, does not show sensitivity to investigated fault.
The narrow-band RMS is the most precise among the classical health indicators,
although it could happen that a band selected for this method will not correspond to
the real characteristic fault frequency of bearing due to the slippage phenomenon
described earlier. With a threshold value equal to 8 × 10−5 the detection of fault is
possible in 149th and 144th hours for AccH and AccV respectively. It is important to
notice that for AccH the fault detection is not obvious, since the value of parameter
decreased below the threshold and again crossed it.

The presented traditional health indicators allow to detect the beginning of the
fault of the main bearing, but later than above-proposed method. Another weakness
of the traditional approach is the possibility of false alarms which are clear in
Fig. 4a, c. In case of huge amount of data processed automatically the generated
false alarms could make a conventional CMS unusable.
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Fig. 3 Evolution of RMSA, PPA, and MIA calculated on signals from AccH and AccV through the
lifetime of the main bearing. a RMSA. b PPA. c MIA
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6 Conclusions

This paper presents three data-driven methods in order to contribute to an automatic
diagnosis of rotating machinery. First of all the adaptive angular resampling method
with a correction of the speed signal. Moreover, the association of the patterns
detected in the spectrum of the signal with characteristic fault frequencies is pro-
posed. This method is robust against the slippage phenomenon present in rolling
element bearings. Furthermore the automatic and full-band sideband demodulation
method is introduced.

The results presented in this paper illustrate the interest of the proposed methods
for the generation of automatic health indicators for CMS. Their comparison with a
diagnosis parameters shows that the usage of the proposed approaches allows for an
earlier detection of a main bearing fault of the test rig.

A further work will include tests of the proposed methods under varying speed
and load conditions.
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Robust Information Indices
for Diagnosing Mechanical Drives Under
Non-stationary Operating Conditions

Boštjan Dolenc, Pavle Boškoski and Ðani Juričić

Abstract Reliable fault diagnosis of mechanical drives can become nontrivial task
in case of restricted instrumentation and variable operating conditions. Under such
circumstances changes in the calculated features can not be unambiguously asso-
ciated with change in system condition. In this paper we propose a feature
appropriate for diagnosing faults in mechanical drives that is robust to fluctuations
in operating conditions. Therefore, its time evolution seems to be correlated only
with the machine condition. Instead of relying on spectral properties of the vibration
signal, we rather observe changes in the statistical patterns of the derived distri-
bution functions. The effectiveness of the algorithm was evaluated on three datasets
comprising both gear and bearing faults under constant and variable load.
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1 Introduction

Condition monitoring (CM) and diagnosis of mechanical drives aims to detect,
localise and identify the onset of a fault on a machine. Traditional diagnostic
techniques rely on monitoring of specific characteristic spectral components in
measured vibrations [1]. These methodologies proved effective under constant
operating conditions. However, without exact knowledge of the operating condi-
tions it is not easy to determine the cause of the increased feature value.

By definition a feature should be related solely to the machine condition, while
being insensitive to variations in the operating conditions. The currently available
diagnostic approaches can be separated into three main groups. Those from the first
group rely on features that require information about the operating conditions [2, 3].
The second group utilises statistical models for specifying gear health indices [4].
The approaches from the third group specify features that describe specific statis-
tical properties of the generated vibrations [5]. A feature robust to the variations in
operating conditions can be built by characterising the distribution of energy in the
generated vibrations [6]. Firstly, the feature values show non-monotonic behaviour.
Secondly, parameters required for feature calculation need to be estimated each
time a new machine is applied.

This paper proposes a feature based on generalised Jensen-Rényi
(JR) divergence of envelope distribution obtained from vibrations. Such a feature is
shown to be practically insensitive to variations in the rotational speed and applied
load. In particular, JR divergence is employed to measure the rate of change in the
vibrational envelope due to evolving degradation.

The paper is organised as follows. Section 2 presents two conceptual models
describing gear and bearing faults. The background of JR divergence and its
properties as well as its applicability for cm of gears and bearings is presented in
Sect. 3. Finally, the evaluation results are presented in Sect. 4.

2 Fault Models

Gears and bearings have different mechanisms that generate vibrations. At a first
glance it seems that each component should be considered separately. However it
will be shown that the distribution of the energy of the generated vibrations is
sufficiently accurate indicator of their condition [6].

Gear fault signature The main source of vibration in fault-free gears is varia-
tion in the contact stiffness [7]. Under constant rotational speed the generated
vibrations xðtÞ can be represented as:

xðtÞ ¼
XM
m¼1

Am 1þ amðtÞð Þ cos 2pmfgmf t þ bm þ bmðtÞ
� �

; ð1Þ
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where fgmf is gear mesh frequency, amðtÞ is modulating signal due to incipient
localized teeth damages, M is the highest harmonic of interest and Am is the
amplitude of the mth harmonic of the gear mesh frequency. The components bmðtÞ
represent phase modulations, and bm is the initial phase.

Faults in gears evolve through several stages: scuffing, initial pitting, pitting,
spalling [8]. Regardless of the severity, localised gear faults influence only a limited
number of teeth. Therefore, when these teeth mesh, the contact stiffness changes so
that the amplitude modulation amðtÞ in (1) changes accordingly. Hence, the
amplitude modulation amðtÞ contains all the essential diagnostic information [9].

Bearing fault signature Unlike gears, fault-free bearings produce negligible
vibrations. When surface fault occurs, each time a rolling element passes across the
damaged area, the impulse responses sðtÞ are excited. The generated vibrations xðtÞ
can be represented as [10]:

xðtÞ ¼
X1
i¼�1

Aisðt � siÞ þ nðtÞ; ð2Þ

where Ai is the amplitude of force that excites the entire structure and si is the time
of its occurrence. The term nðtÞ defines an additive random component. The time
moments si can be considered as random and distributed with inverse Gaussian
distribution [10]. Similarly, the amplitudes Ai of the impulses should be considered
as random process [11].

The diagnostic information is contained in the time impacts si. Under constant
rotational speed, the frequency of their occurrence can be directly related to a
localised bearing fault. From a macroscopic point of view, impacts can be con-
sidered as amplitude modulation of a carrier signal whose frequency is the same as
the excited eigenfrequency.

3 Application of the Jensen-Rényi Divergence
for Diagnostic Purposes

Changes in the envelope of vibrational signal can be associated with the change in
condition. Here we will explore the potential of the generalised Jensen-Rényi
(JR) divergence in quantifying the amount of change in envelope pdf due to change
in machine’s condition.

3.1 Entropy: from Shannon to Rényi

Entropy quantifies uncertainty involved in predicting the value of a random variable
(r.v.). Shannon entropy reads:
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HðPÞ ¼ �
XN
i¼1

pi ln pi; ð3Þ

where P is probability distribution of a discrete r.v., i.e. P ¼ fp1; . . .; pNg.
The results presented in this paper are based on a generalised version of the

Shannon entropy i.e. the Rényi entropy [12]:

HaðPÞ ¼ 1
1� a

ln
XN
i¼1

pai ð4Þ

By proper selection of parameter a one can place focus on a particular part of the
analysed probability distribution function. For a ! 1, (4) reduces to Shannon
entropy.

3.2 Jensen-Rényi Divergence

To quantify the distinction between two or more pdfs the relative entropy or
divergence is often employed. Several divergence measures are applicable
depending on the analysed data [13]. Here we employ the generalised Jensen-Rényi
divergence JRw

a to quantify dissimilarity among n pdfs:

JRw
a ðP1; . . .;PnÞ ¼ Ha

Xn
i¼1

wiPi

 !
�
Xn
i¼1

wiHa Pið Þ;where
Xn
i¼1

wi ¼ 1: ð5Þ

In (5), Ha is Rényi entropy. The selection of weights wi in (5) is in principle
arbitrary. With wi selected uniformly i.e. wi ¼ 1=n, the divergence reaches maximal
value. As shown later on, the selection of weights wi affects the behaviour of JR
divergence significantly.

JR divergence quantifies shared information among n random variables. If they
are identical, i.e. P1 ¼ P2 ¼ � � � ¼ Pn, divergence is zero. However, if one of them
deviates even slightly, the JR divergence becomes grater than zero. Therefore, JR
divergence carries information about dissimilarity among n pdfs.

A simple example demonstrates the basic concept of JR divergence. Figure 1a
shows three Rice pdfs with different scale and location parameters. Here we con-
sider JR divergence in its simplest pairwise form where only two pdfs are con-
sidered and wi ¼ 1

2:

JRw
a ðP;QÞ ¼ Ha

1
2
ðP þ QÞ

� �
� 1
2

Ha Pð Þ þ Ha Qð Þð Þ; ð6Þ
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where P and Q are pdfs of interest and a 2 ½0; 1�. JR divergence between P1 and
P2 from Fig. 1a is 0:017 (a ¼ 0:5). The dissimilarity between P1 and P3 is even
grater, hence higher value of JR divergence (0:0714). Clearly the divergence is able
to characterise relative dissimilarity among the analysed pdfs.

The effect of the parameter a is shown in Fig. 1b. Low value of að�0Þ
emphasizes the dissimilarity among pdfs in low probable region (x 2 ð6; 8Þ where
pdfs do not differ much, hence low divergence values. In the middle region (x � 4,
a � 0:2) the pdfs differ the most, hence the highest values of JR divergence.
Finally, for a 2 ð0:6; 1Þ which captures the region of the bulk probability masses
the divergence value drops in a relatively linear manner.

3.3 The Influence of Weights wi

The selection of weights wi has significant influence on behaviour of the JR
divergence. In this paper the exponential weights wi are suggested. The weights wi

are calculated using the exponential function of the following form:

wi ¼ C � e�k
ni ð7Þ

where k is sensitivity parameter, n is the number of components in (5), i ¼
1; 2; . . .; n and C is normalising constant. One can easily see that (7) reduces to the
uniform weighting for k ! 0 and n ! 1.

The influence of weights wi on JR divergence can be illustrated by a simple
simulated example. We first generate N sequences of a normal r.v. simulating
abrupt change in shape of a pdf. Than we calculate JR divergence using (5) which
results in divergence value after each measurement session i : JRw

a ðP1;P2; . . .;PiÞ
for i ¼ 1. . .21.

The generated signals simulate an abrupt change in pdfs’ shape. The corre-
sponding pdfs are shown in Fig. 2a. The JR divergence is calculated after each
measurement session. First 10 pdfs are identical, hence the measure of dissimilarity

(a) (b)

Fig. 1 Pdfs of the simulated signals and the resulting JR divergence. a Pdfs of the simulated
signal. b Pairwise JR divergence as a function of α
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among them equals 0. Once the 11th pdf is included in the calculation of JR
divergence (5) an increase in value is observed. The following 10 pdfs are identical
to the first one, therefore dissimilarity among them decreases. The rate of change in
JR divergence is conditioned with the selection of weights as shown in Fig. 2b. The
most notable increase is observed if uniform weighting is applied, while expo-
nential weighting alleviates the impact.

In this way the pdf belonging to the fault-free state have grater influence on JR
divergence. For the JR divergence to increase significantly, several consecutive pdfs
should be distinct in shape. Such a behaviour makes the proposed JR divergence
robust to variations in the operating conditions with acceptable decrease of the fault
sensitivity.

3.4 JR Divergence as a Diagnostic Feature for Gear
and Bearing Faults

JR divergence as a dissimilarity measure among N pdfs can be successfully
exploited as a feature for gear and bearing diagnostics. Vibrations caused by a fault
in gear couple or bearing alter the shape of the envelope pdf. Therefore the gen-
eralised divergence among envelope pdfs is an ideal candidate for diagnostic
purposes.

In a fault-free system the excited vibrational pattern does not vary significantly
over time. The resulting envelope pdfs are almost equal. Consequently generalised
JR divergence among these pdfs is zero. As soon as a fault occurs in the system the
vibrational pattern is altered affecting the shape of the envelope pdf. In turn, the JR
divergence among measured pdfs increases. With further system deterioration
changes in the envelope pdf become even more apparent.

(a) (b)

Fig. 2 The evolution of JR divergence after measurement sessions. Note that all pdfs are equal
except the pdf #11. a Pdfs of the simulated signals associated to the measurement sessions
1; . . .; 21. b JR divergence
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4 Experimental Evaluation

The proposed feature based on the generalised JR divergence was evaluated on
three different experiments:

1. natural evolution of gear faults under constant operating conditions;
2. natural evolution of gear faults under variable load and
3. evolution of bearing faults under constant operating conditions.

In order to show the performance of the generalised JR divergence, classical
spectral features were also calculated. It should be noted that the calculation of the
proposed feature was done without any information regarding the operating con-
ditions, although the employed experimental data include such information.

4.1 The Experiment

The first two experiments were performed using a motor generator test rig with one
stage gearbox with spur gears. In the first experiment the torque was kept constant
at 82 Nm, while for the second experiment the torque varied between 66 and 82 Nm
as shown in Fig. 4a. The same type of gears were used in both experiments. For the
third experiment the NASA data set [14] was used. Four bearings were subjected to
excessive load and run-to-failure.

Pdfs were estimated by means of histogram. The divergence
JRw

a ðP1;P2; . . .;PnÞ was calculated using (5). Parameter a in (4) was set to a ¼
0:9999 for gear, and a ¼ 0:8 for bearing experiment. The JR divergence was cal-
culated with exponential weights wi according to (7) where k ¼ 10.

4.2 Gear Experiments

Vibrations generated by running gears are dominated by low-frequency content.
Therefore, the generated vibrations were firstly low-pass filtered with cut-off fre-
quency 2 kHz. The envelope pdf was estimated using the resulting signals.

Figure 3a shows the time evolution of two classical spectral features from the
first gear experiment (under constant load). The first feature is the amplitude of the
spectral component at the GMF. The second feature is the sum of the amplitudes of
the side-bands around the GMF. As expected, the side-bands are more sensitive to
the localised gear faults. The first increase in the side-band energy is visible around
the 120th measurement. Although, an increasing trend is visible, both features show
local non-monotonic behaviour, despite constant operating conditions.

Figure 3b shows the time evolution of the generalised JR divergence. In the
beginning of the experiment, as the pdf of vibrations’ envelope are similar, JR
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divergence takes low value (� 10�3). As soon as a fault occurs in the gear couple,
its envelope changes and, unlike the classical spectral features, the value of the JR
divergence monotonically increases.

In case of variable load, classical spectral features were calculated from gener-
ated vibrations in the same manner as before. The time evolution of cumulative
side-band energy is shown in Fig. 4a. The influence of load variations is clearly
visible. Although an increasing trend can be seen, without precise load measure-
ments it is impossible to determine the proper cause for the abrupt changes in the
features’ values.

Conversely, the time evolution of the generalised JR divergence shows smooth
and monotonic increase, as shown in Fig. 4b. Therefore, the generalised JR
divergence can be considered as sufficiently robust to variations in the operating
conditions while preserving the fault sensitivity.

(a) (b)

Fig. 3 Time evolution of features related to the gear experiment under constant load. a Classical
spectral components. b Generalised JR divergence

(a) (b)

Fig. 4 Time evolution of features for gear experiment under variable load. a Classic features and
torque profile. b JR divergence feature
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4.3 Bearing Experiment

Generally, bearing’s condition is estimated based on the amplitude of the charac-
teristic spectral components such as: BPFO, BPFI, BSF and FTF. The time evo-
lution of the first three is shown in Fig. 6a. The amplitudes were extracted from
envelope of the band-pass filtered vibrations. The frequency interval was selected
using spectral kurtosis. An example of envelope spectrum of the envelope is shown
in Fig. 5, where characteristic frequency pattern of outer race fault can be recog-
nised. The peaks of the spectrum belong to the BPFO and its harmonics.

In Fig. 6a it is noticeable that the outer race fault occurs soon after the 130th
measurement session. However, the monotone behaviour of this feature is not
preserved. Towards the end of the experiment its value changes in a non-monotonic
manner. This can be attributed to the fixed band pass in which the envelope of the
generated vibrations is calculated.

Since the frequency band containing eigenfrequency of the system is unknown
prior to the fault initiation, the acquired vibration signals are filtered using 8
non-overlapping bandpass filters each spanning 1.25 kHz. Afterwards, the envelope
pdfs and the corresponding JR divergence are calculated for each band separately,

Fig. 5 Envelope spectrum of 300th measurement in frequency band f 2 ð4� 6Þ kHz: charac-
teristic frequency BPFO and its harmonics are clearly visible indicating outer race failure

(a) (b)

Fig. 6 Extracted features from the bearing dataset. a Classic features. b JR divergence feature
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resulting in 8 JR divergence values. The time evolution of the JR divergence are
shown in Fig. 6b.

As expected, at the beginning, the JR divergence is almost zero. As surface faults
start to emerge, around the 150th measurement session, the JR divergence starts to
increase. Unlike the standard features, the increase of the JR divergence is mono-
tone. JR divergence covering the 4th frequency band includes the frequency band
determined by the spectral kurtosis method. The same band covers frequencies
where the squared envelope spectrum from Fig. 5 was calculated.

5 Conclusion

The generalised JR divergence seems to be a suitable feature for cm. It characterises
changes in the pdf calculated from the envelope of the generated vibrations. As a
result, the calculated feature is robust to variations of the operating conditions,
while in the same time it preserves its monotone time evolution which seems to be
correlated with component degradation. Additionally, feature shows great potential
for remaining useful life estimation applicable to gears and bearings. This issue will
be studied in a more detail in the follow up of this research.
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Empirical Mode Decomposition Combined
with Empirical Wavelets for Extracting
Bearing Frequencies in a Noisy
Environment and Early Detection
of Defects

Mourad Kedadouche, Marc Thomas and Antoine Tahan

Abstract The amplitude demodulation of a bearing signal allows for the extraction
of component information-carrying defects on rotary machines. However, the
quality of the demodulated signal depends on the selected frequency band for
demodulation. Kurtogram is widely used to detect the frequency bandwidth which
is the most excited by a defect. However in presence of high noises, the Kurtogram
may be deficient in effectively detecting the resonances and it presents some
instabilities. In the last decade, the Empirical Mode Decomposition (EMD) tech-
nique has been used by a lot of researchers for the signal decomposition. In this
study, the EMD and Empirical Wavelet (EW) are used to generate a new feature.
The EW is used to generate a filter bank which depends on the content of the
component frequencies of the signal. A segmentation of the spectrum to define the
support boundaries of the filter is proposed. The new indicator is proposed in order
to track the frequency band that is more excited by a bearing fault. This study shows
that the proposed technique can detect the resonances in all cases of simulation. On
the other hand, the proposed method is able first to detect the resonance frequencies
and secondly to detect on which Intrinsic Mode Function (IMF), the bearing default
occurs. The proposed technique has confirmed its effectiveness by testing it on
experimental signals obtained from a test bench with defects on a bearing outer
race. A defect of only 40 μ on the outer race has been detected, which makes this
method very effective for an early detection of bearing defects.
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1 Introduction

Bearing defects excite the resonance frequencies at their early stage of degradation.
The High Frequency Resonance Technique (HFRT) allows for the extraction of
component information representing defects on rotating machinery [1]. A band-pass
filtering around the excited resonance frequency followed by an amplitude
demodulation step results in a signal whose most of energy is concentrated around
the fault frequency and its associated harmonics. However, the major challenge in
the application of the HFRT technique is a proper selection of the center frequency
and bandwidth of the band-pass filter. Many methods have been proposed for the
selection of the frequency bandwidth that is the more excited by the faults. Among
them, The STFT-based spectral kurtosis [2] has been proposed and applied to the
fault detection of rolling element bearings and gears [3]. However, in the case of a
strong and non-Gaussian noise with sudden high peaks, kurtosis shows extreme
high values and doesn’t really track the resonances [4]. Zhang and Randall [4]
proposed an optimal resonance demodulation technique using the combination of
the fast Kurtogram and genetic algorithm. Barszcz et al. [5] proposed a Portrugram.
Qiu et al. [6] used the minimal Shannon entropy to select the proper bandwidth and
Nikolaou et al. [7] and Lin et al. [8] selected the parameters of Morlet wavelet based
on a kurtosis maximization criterion.

At the early stage of degradation of bearings, impulses are created when a defect
on a rolling surface impacts with another surface. The impulses are generated
almost periodically. The impact excites the structural resonance and we can observe
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an increase of energy around the resonances [9]. For this reason, it is better to track
the band frequency which presents a strong energy compared with a healthy
bearing. Otherwise, High energy can be also related to other phenomena (gear
meshing, high noise). So using only the energy as indicator to detect the frequency
band excited by the defect is not a good way. The particularity of bearing defect is
that the increase of energy is caused by the shocks (high level of the kurtosis). So,
multiplying the energy by the kurtosis can make a difference between the energy
caused by bearing defect and the energy associated to other phenomena.

In this study, EMD is used to decompose the signal into multiple components.
The decomposition of a real signal gives some IMF with random shocks. So the
kurtosis exhibits a higher value compared with the components from cyclic shocks.
In this study, we propose to introduce a new indicator as an index which can
distinguish between random shocks and cyclic shocks. Chen et al. [10] showed in
their studies that the Spectral Kurtosis value of interference impulses is larger than
from repetitive Impulses. If we select a frequency band according to the maximum
value of SK, we cannot thus discover the defect frequency of interest even after an
envelope demodulation. On other hand, they demonstrate that the entropy of
interference impulses is less than from repetitive impulses. So they combined the
two methods to better detection for the frequency band. In this study, we propose to
combine energy, kurtosis and entropy to develop a new indicator.

In this study, the new method for selecting the optimal frequency bandwidth is
thus presented. This new method is based on the Empirical Mode Decomposition
(EMD) combined with the Empirical Wavelet method (EW). Specifically, this new
indicator is aimed to track the frequency band that is more excited by the bearing
fault. The advantage of this method is its ability to detect the resonances even in the
presence of significant noise and also with low frequency signatures whose
amplitudes are important. The filter bank is adaptive and it depends on each sig-
nature. The application of the proposed method is validated both on simulated and
experimental data.

2 Empirical Mode Decomposition (EMD)

The EMD method can self-adaptively decompose any non-stationary signal into a
set of intrinsic mode functions (IMFs) from high frequencies to low frequencies
[11]. The decomposed signal may be written as:

x tð Þ ¼
XN
i¼1

IMFi tð Þ þ rðtÞ ð1Þ

where IMFiðtÞ indicates the ith IMF and rðtÞ represents the residual of the sign xðtÞ.
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3 Empirical Wavelet Transforms (EWT)

The Empirical Wavelet Transform (EWT) as developed by Gilles [12] presents a
new approach for building adaptive wavelets. The main idea is to extract the
different signal modes by designing an appropriate wavelet filter bank. The main
concept of the EWT method consists in building a family of wavelets adapted to the
processed signal. If we take the Fourier point of view, this construction is equiv-
alent to build a set of band pass filters. One way to reach the adaptability is to
consider that the filters’ supports (wc) depend on where the information in the
spectrum of the analyzed signal is located. The method is based on two functions:
The empirical scaling function and the EW are given by the Eqs. 2 and 3,
respectively.

;̂j wð Þ ¼
1 if wj j � 1� cð Þwcðj ¼ 1Þ
cos p

2 b
1

2cwcðj¼1Þ wj j � 1� cð Þwcðj ¼ 1Þð Þ
� �h i

if 1� cð Þwcðj ¼ 1Þ� wj j � 1þ cð Þwcðj ¼ 1Þ
0 otherwise

8>>><
>>>:

ð2Þ

ûj wð Þ ¼

1 if 1þ cð ÞwcðjÞ� wj j � 1� cð Þwcðjþ 1Þ
cos p

2 b
1

2cwnþ1
wj j � 1� cð Þwcðjþ 1Þð Þ

� �h i
if 1� cð Þwcðjþ 1Þ� wj j � 1þ cð Þwcðjþ 1Þ

sin p
2 b

1
2cwcðjÞ wj j � 1� cð Þwcð Þ
� �h i
if 1� cð ÞwcðjÞ� wj j � 1þ cð ÞwcðjÞ

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð3Þ

The function b xð Þ is an arbitrary Ck 0; 1½ �ð Þ function defined as:

b xð Þ ¼
0 if x� 0
and b xð Þ þ b 1� xð Þ ¼ 1 8x 2 ½0; 1�
1 if x� 1

8<
: ð4Þ

Many functions satisfy these properties, the most used in the literature [13] is:

b xð Þ ¼ x4ð35� 84xþ 70x2 � 20x3Þ ð5Þ

and c is chosen by the Eq. 6 as defined by [12]:

c\min
wcðjþ 1Þ � wcðjÞ
wcðjþ 1Þ þ wcðjÞ
� �

ð6Þ
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4 A New Indicator Combining Energy, Kurtosis
and ApEn

As mentioned in the introduction, the bearing defect produces an increase of the
energy around the resonance and of the Kurtosis level. The product of these
parameters can be used as an indicator to track the frequency resonance. In our
application, we used the EMD method to decompose the signal in multiple IMF. In
some cases, we get components with interference impulses, especially in the case of
acoustic emission signal. So, the kurtosis of random impulses is higher than from
repetitive shocks [10]. The approximate entropy (ApEn) [14] seems to be an
effective tool to distinguish between the random and the cyclic shocks. The ApEn
of the repetitive shocks is higher than from random shocks. To reduce the effect of
random impulses, we propose to multiply the kurtosis by the ApEn and to use the
product of the energy, kurtosis and ApEn as an indicator for our investigation:

Energy ¼
X

xðf Þ2 ð7Þ

The effectiveness of this new indicator has been tested on numerically simulated
signals, based on [15]. The bearing signature is expressed as follows:

x tð Þ ¼ e�a�mod t; 1
Fmð Þ � sin 2pf1tð Þ þ noise ð8Þ

where α is equal to 900, Fm is bearing fault characteristic frequency (equal to
100 Hz); Fs is sampling frequency (set to 12,000 Hz) and f1 is carrier frequency
(equal to 1800 Hz).

The simulated signals are shown in Fig. 1. Figure 1a shows a random signal,
Fig. 1b shows a random impulse and Fig. 1c illustrates a bearing signal given by
Eq. 3. In the three cases, the variance of noise is the same. Figure 1d shows the
result for different indicators (Energy, Kurtosis and ApEn) applied to the simulated
signals.

It is shown that ApEn can effectively distinguish between the random and cyclic
impulses. The cyclic impulses are characterized by a higher ApEn compared with
random impulses. It is revealed that the product of these three parameters gives an
effective indicator which can make a difference between a random signal, a faulty
bearing, and a random impulse. This indicator may then be used in all our inves-
tigations to track the bearing fault.

5 A Detection Method Based on EMD and EWT

As showed by Gao et al. [16], IMFs sometimes fail to reveal the signal charac-
teristics due to the effect of noises. Hence, Combined Mode Function (CMF) may
be used. With CMF, the neighboring IMFs are combined to obtain an oscillation

Empirical Mode Decomposition Combined … 155



0 500 1000 1500 2000
-0.1

-0.05

0

0.05

0.1

0 500 1000 1500 2000 2500
-1.5

-1
-0.5

0
0.5

1
1.5

0 500 1000 1500 2000 2500
-1

-0.5

0

0.5

1

(a)

(d)

(b)

(c)

Fig. 1 Simulated signals,
a random, b random impulse,
c bearing signal, d value of
indicators with signal type
and method

156 M. Kedadouche et al.



mode depicting signal features more precisely. In the present application for bearing
defects, we propose to only use the six first IMF of decomposition. Each IMF is
added to the previous as shown in Eq. 9:

CMFi ¼ Ci ¼ IMFi þ IMFiþ1 ð9Þ

After computing each CMF, by using EWT, we construct a series of filter-banks
with different center frequencies properly for each CMF. The chart of our proposed
method is shown in Fig. 2.

Each CMF is decomposed in four portions using the EWT. The supports
boundaries for the filters defined by the EWT are shown in the algorithm (Table 1).
After applying the algorithm, we get 3 cut frequencies wcðj ¼ 1 : 3Þ for each CMF.
The aim of the method consists in separating different portions of the spectrum
which are centered on a specific frequency. The segmentation of the spectrum
depends on the frequency wn which presents the highest amplitude. The aim is to
obtain a band-pass filter centered on the frequency wn. The filtered component
presents the highest energy and the other parts, a low energy.

Fig. 2 The chart of the proposed method
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6 Case Studies for Validating the Method

6.1 A Simulated Signal with One Resonant Frequency

6.1.1 Case A: r2noise ¼ 0:2

The simulated signal is the same that the one used in Eq. 8 and only one natural
frequency is used in this simulation. A normal distributed random signal with mean
0 and amplitude 0.2 is added to the simulated signal. The Combined Mode Function
of the signal is displayed in Fig. 3a. We note that the signature of the bearing (cyclic
shocks) is distributed on the CMF1 and CMF2. The filter bank obtained for each
CMFi, is exhibited in Fig. 3b.

;̂ðwÞ represents the scaling function and ûj wð Þ is the Empirical Wavelet.
ûj¼1 wð Þ is the frequency band which represents the highest energy compared to the
others, and this band is centered around the frequency wn. The diagram generated
by our method is plotted in Fig. 4a. This diagram indicates that the combined CMF1
has the deepest color value between [1000 and 2800] Hz. The fault excited fre-
quency region is covered by the selected bandwidth. So, this indicates the expected
resonance (1800 Hz). A demodulation, using the Hilbert Transform of the CMF1
around this frequency band allows for identifying the defect frequency (BPFO
(100 Hz) and its harmonics) as shown in Fig. 4b.

6.1.2 Case B: r2noise ¼ 0:5

The simulated signal is shown in Fig. 5. The diagram paved by our method is given
in Fig. 6a. As in the previous simulations, we obtain similar results. The diagram

Table 1 Algorithm of cut frequencies
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indicates that the CMF1 has the deepest color value around the band [1000–
2800] Hz. This proves the effectiveness of the proposed method even when the
noise is high. A demodulation of the CMF1 around the detected frequency band-
width allows for detecting perfectly the defect harmonics (harmonic 1, 2, 3 and 4)
(see Fig. 6b).

6.2 A Simulated Signal with Gear and Bearing Signatures

In order to simulate the vibratory signals of gearbox, a gear multiplicative model
whose the meshing is modulated in amplitude has been used. The gear model as
defined in [17] is used:

gðtÞ ¼
Xþ1

m¼�1
Sr1ðt � msr1Þ þ

Xþ1

m¼�1
Sr2ðt � msr2Þ

þ
Xþ1

n¼�1
Seðt � nseÞ: 1þ

Xþ1

m¼�1
Sr1ðt � msr1Þ

 ! ð10Þ

where se, sr1 and sr2 represent the meshing period and the rotational periods; SeðtÞ,
Sr1ðtÞ and Sr2ðtÞ represents the meshing signal and its modulation. The gear signal
is added to the simulated bearing signal (Eq. 8) with an added white noise with
amplitude 0.2 and mean 0. Table 2 shows the frequency characteristics of the gear.

Table 2 Mesh frequencies of the gear

Fundamental mesh frequency (Hz) Harmonic 1 (Hz) Harmonic 2 (Hz)

330 660 990
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The time signal is displayed in Fig. 7a and its spectrum in Fig. 7b. The aim of
this section is to investigate the influence of the gear components on the proposed
method, when the amplitude of the gear mesh is higher than the resonance excited
by the bearing. The diagram paved by our method (Fig. 8a) allows for discrimi-
nating the natural frequencies from the two gear mesh frequencies when applying
our method to this signal. The deepest color is in the expected bandwidth [1000–
2800] Hz at CMF1.

A demodulation of the CMF1 around this bandwidth allows for the detection of
the BPFO frequency and its harmonics as illustrated in Fig. 8b. This is due to the
fact that the EMD decomposes the signal from fast to slow components. The
components related to the gear are located in the CMF2 and CMF3.
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6.3 Experiments on a Bearing Test Bench

The test bench used in this study is described in Fig. 9(a). The shaft is supported by
two bearings and connected to a motor with a coupling flange rubber. The bearings
are double row ball (SKF, 1210 EKTN9). The defect is artificially caused on the
outer ring by means of tool head carbide. The default size is only about of 40 μm as
shown in Fig. 9b. The mechanical system can be imbalanced with a rotating radial
load and a fixed axial load can be applied. The system was rotating at a speed of
300 rpm, and the frequency of default is then about 36.6 Hz (BPFO).

The measurements were conducted by acoustic emission. The equipment con-
sists in an ultrasound detector (UE Systems UltraProb 10,000). The ultrasonic
sensor used in this study operates in the lower ultrasonic spectrum from 20 to
100 kHz. A heterodyne circuit converts the high frequency AE signal as detected by
the transducer around a central frequency Fc (here 30 kHz) into an audible signal

Fig. 9 a Test bench, b defect in outer, c race data acquisition system, d heterodyne principle
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(0–7 kHz) (Fig. 9d) which may then be recorded through conventional data
acquisition systems. It is connected to a collector-analyzer BETAVIB (See Fig. 9c).
The sensor is connected to an analogue digital converter (THOR Analyzer PRO:
DT9837-13310) with a sampling frequency of 48 kHz.

The time signal is shown in Fig. 10. The Combined Mode Function of the signal
is displayed in Fig. 11a. The filter bank obtained for each CMFi, is exhibited in
Fig. 11b. The diagram paved by our method is shown in Fig. 12a. The result reveals
a strong energy in the bandwidth [8000–18,000] Hz on CMF1.

An analysis of the CMF1 envelope around the bandwidth yields to the spectrum
envelope as shown in Fig. 12b. This envelope spectrum shows clearly the presence
of the fundamental peaks of the defect frequency (BPFO) and its harmonics until
800 Hz.
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7 Conclusions

This study proposes a new concept based on the EMD and EW methods for early
detection of bearing defects. The method was validated from numerical and
experimental signals. From the results obtained in the studied cases, the proposed
method can easily detect the resonances and bearing defects. Furthermore, the
method has shown its efficiency to detect the most excited frequency bandwidth
even in presence of very noisy signals. The results have shown that the identifi-
cation of resonances or bearing defects is not perturbed by the frequencies coming
from gear. Through experimental results, the proposed method has proven its ability
to detect extremely low defect sizes (40 μm), which is essential for early detection.
Finally, it should be emphasized that this new approach is not an optimal method
for establishing the resonant frequency bandwidth but it is a quick way for detecting
bearing defects, since we have two information in the same time: the useful fre-
quency band and the CMF on which the default occurs.
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Knife Diagnostics with Empirical Mode
Decomposition

Michele Cotogno, Marco Cocconcelli and Riccardo Rubini

Abstract This paper deals with the condition monitoring of knives via the
Empirical Mode Decomposition (EMD). The cutting process is basically transient,
thus Fourier Analysis and similar signal processing tools aren’t optimal because
they treat signals as they were periodic. EMD is a signal analysis technique which is
particularly suited for non-stationary and/or non-linear data, since it adaptively
decomposes the signal in a sum of Intrinsic Mode Functions (IMFs). The knives
under analysis are used inside an automated packaging machine; they are
hydraulically actuated and are mounted on a moving support, so it’s not possible to
put sensors on them because of security reasons related to sensors wiring. Instead,
the actuators control valve is hosted on a fixed machine part, so its pressure signal is
the one analysed in this paper. The sum of two IMFs is used to estimate the knife
state and to obtain a representation of the wearing process during a knife life.

Keywords Knife diagnostics � Empirical mode decomposition � Intrinsic mode
functions � Pressure signal
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1 Introduction

Condition monitoring of knives is usually a demanding task, mainly because the
cutting process is transient in its essence; because of this, Fourier Analysis and
similar signal processing tools aren’t optimal in this case because one of their basic
assumptions is that the signal is periodic. In recent years the Empirical Mode
Decomposition (EMD) has been developed [1], this being a signal decomposition
technique which doesn’t put any a priori assumption on the data and thus it’s
particularly suited for non-stationary data analysis. The knives analysed in this
paper are used in an automated packaging machine where they cut the packaging
material while it is moving, so they must be synchronized with the material flow
and they are consequently hosted on movable supports. These supports also host
other tools (such as a welding tool for the package sealing) and their movement is
very wide, so it’s not possible to put sensors on the supports because of security
reasons concerning the sensors wirings. The knives are actuated by single effect
hydraulic pistons (Fig. 1): both pistons are commanded by a common control valve
which is hosted on a fixed part of the machine, so its pressure signal can be
monitored and it is indeed used to perform the knives condition monitoring. The
pistons perform the exiting movement of the knife, while its re-entering movement
is performed by a spring tied to the knife by a spherical joint; the cutting happens
without the blade making contact with an end of stroke.

Fig. 1 Actuation scheme of the knives
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2 Empirical Mode Decomposition

The EMD adaptively decomposes the signal in a set of intrinsic mode functions
(IMFs), which often give very useful insights on the phenomena represented in the
original signal (e.g. [2, 3]); indeed, an IMF represent a single oscillatory mode of
the signal, and it’s a function defined as follows:

• the number of extrema (i.e.: maxima and minima) and the number of
zero-crossings must either equal or differ at most by one;

• at any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero.

In other words an IMF is almost symmetric with a unique local frequency, and
ideally represent one of the signal “true” components, i.e. only one of the sources
whose effects, summed up together, give the signal under analysis. The original
EMD procedure is the following algorithm (also known as sifting process):

1. firstly, find out all the local maxima and the local minima of the signal under
analysis s(t), then the upper (lower) envelope can be get as the cubic spline
interpolation of the maxima (minima);

2. compute the mean envelope m(t) as the average of the upper envelope and the
lower one. Let h = s(t) − m(t) be the new input signal at step 1 and repeat the
procedure above up to h satisfies the IMF definition, then set ci = h;

3. separate the IMF from the signal, ri+1 = s(t) – ci;
4. Let ri+1 be the new starting signal now (i.e. s(t) = ri+1) and repeat steps 1–3 until

the final residue rn(t) has at most one extreme or it is a constant or monotonic
function.

By this process, the original signal s(t) has been decomposed as the sum of
n IMFs ci(t) and the final residue rn(t):

s tð Þ ¼
Xn

i¼1

ci tð Þ þ rn tð Þ ð1Þ

The IMFs form a local orthogonal basis as stressed in [1], although orthogonality
can’t be theoretically proved. In fact, the EMD method is totally data adaptive but
still lacks of a firm mathematical background. This is the main cause of two of the
principal problems of EMD process, which concern what in the EMD jargon are
called the Convergence Criterion and the End-Effect. At step 2 of the sifting pro-
cess, the Convergence Criterion declares if the result of the last completed sifting is
an IMF or not: various stopping criteria were proposed (e.g.: [1, 4–6]), and here we
made use of a combination of the SD Convergence Criterion [1] and the Fixed
Siftings [6]. The SD criterion stops the sifting process at iteration k when the
parameter SDk is less than a predetermined value, which was set to 0.2 in this paper.
SDk is defined as follows:
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SDk ¼
PT

t¼0½hk�1 tð Þ � hk tð Þ�2
PT

t¼0½hk�1 tð Þ�2 ð2Þ

where t is the signal sample index and T is the signal’s total samples number. The
Fixed Sifting criterion simply stops the sifting after a predetermined number of
iterations (which has been set to 23 in this work): this criterion comes from the
observations that a good quality IMF is usually gathered after circa 10 iterations and
that an excessive number of iteration (called oversifting) could distort the IMF. This
distortion can come from several causes, including the Mode Mixing and the End
Effect: Mode Mixing [7] is the spread of one “true” IMF in two or more IMFs due
to intermittent or strongly non-stationary data; the End-Effect [8] is the corruption
of the IMFs due to numerical errors in estimating the envelopes at the beginning
and at the end of the signal. In this paper no action was taken against these two
effects, i.e.: the original EMD was utilized.

3 Data Analysis and Results

The pressure data were acquired on a packaging machine used in an alimentary
factory that experienced three problems concerning knives: the knives operational
life was shorter than expected, and this caused many packages to be not complying
with the requirements and therefore rejected. The pressure signals were acquired
with National Instruments hardware and software. The acquisitions (sampling fre-
quency: 10 kHz) were synchronized with the cutting; each record contains a
sequence of 20 cuts (each cut has a duration of 0.7 s) and these sequences were
acquired twice every hour. The available data encompass the complete life of three
knives, which will be referred to as knife 1, 2 and 3: the larger dataset is relative to
knife 1, while the smaller is relative to knife 3. It was chosen to apply EMD on the

Fig. 2 Time synchronous average of the pressure signal of the actuating pistons control valve
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Fig. 3 EMD decomposition of the TSA pressure signal in Fig. 2
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time synchronous average (TSA) [9] of the daily set of records in order to reject part
of the noise that is naturally embedded in the data; Fig. 2 illustrates the TSA of the
pressure signal. For the same reason, after examining the spectrum of the raw data it
was chosen to lowpass filter the data before performing TSA, and the chosen cut-off
frequency is 2300 Hz. Moreover, filtering the data this way allowed EMD to be
stable in its decomposition: indeed, since the first IMF contains the higher fre-
quency component [4] it often embodies the major part of the noise embedded in
the data. Due to the aforementioned Mode Mixing, all this results in the fact that the
same IMF may substantially differ from a decomposition to another, i.e.: the same
simple oscillatory mode may reside in different IMFs. Since this outcome is
unpredictable, it may prevent the use of this technique if repeatable (and thus
reliable) results are requested, like in condition monitoring. This problem was
resolved by the lowpass filtering of the data: by doing this, each IMF represents the
same oscillatory mode in all the decompositions. In Fig. 3 the five IMFs extracted
by the EMD process are reported. After analysing the EMD decomposition, the sum
of the first two IMF was identified as the most communicative of the knife state: the
instant of the minimum peak of this sum was noticed to occur gradually later along
the knife life (Fig. 4), so this quantity was chosen as the diagnostic parameter.

In Fig. 5 the gradual shift of the instant of the minimum peak is shown along the
entire life of knife 1: a logarithmic behaviour is recognizable, so it was chosen to fit
these points with a curve described by the following equation:

y ¼ a ln bðxþ cÞ½ � ð3Þ

Fig. 4 Sum of the first and second IMFs in case of new knife (solid line) and weared knife
(dashed line): the arrow highlight the change of the instant of the minimum peak
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where y is the instant of the minimum peak of the sum of the first two IMFs, x is the
working minutes of the knife and a, b and c are fitting parameters. For the knife life
showed in Fig. 6, the fitting gives a = 123 ms/min, b = 1195 min−1 and
c = 49.8 min; this equation fits quite well the correspondent data from knife 2
(Fig. 7) but not so well for knife 3 (Fig. 8) for which only few recordings were
made. Unfortunately, these are the only complete knife lives made available.
Nevertheless, a value of 23.5 ms of the instant of the minimum peak can still be
identified as a good indicator of excessive knife wear despite not in all the three
cases. Considering this threshold in the case of knife 3 (Fig. 8), it can be seen that it
is soon exceeded: therefore it can be deduced that either this knife was defective (or
too weared too early) or that the available acquisitions encompassed only the final
moments of the knife life; the latter case could explain the bad fitting exhibited by
Eq. 3 for this knife.

Fig. 5 Instant of minimum peak in the sum of the first 2 IMFs along the entire life of knife 1

Fig. 6 Logarithmic fitting of knife 1 life. x axis is the knife working time in minutes, y axis is the
instant (in seconds) of the minimum peak in the sum of the first two IMFs
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4 Conclusions and Future Work

Condition monitoring of knives has been achieved by performing EMD on the
pressure signal of the hydraulic control valve which feed the knife actuating pistons.
EMD was applied on the daily TSA pressure signal after lowpass filtering the raw
data, in order to reject noise and stabilize the EMD decomposition. The instant of
the minimum peak of the sum of the first and second IMF was identified as the
diagnostic parameter which shows a logarithmic behaviour, thus it was fitted by a 3
parameter logarithmic curve in case of knife 1, which is the knife with the largest
dataset available. The obtained curve fit well the knife 2 data, while knife 3 isn’t

Fig. 7 Logarithmic fitting of knife 2 life. x axis is the knife working time in minutes, y axis is the
instant (in seconds) of the minimum peak in the sum of the first two IMFs

Fig. 8 Logarithmic fitting of knife 3 life. x axis is the knife working time in minutes, y axis is the
instant (in seconds) of the minimum peak in the sum of the first two IMFs
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fitted as well as the others. The results are encouraging despite the little amount of
data available, since the fitting would probably improve its quality if more knife
lives are taken into account; nevertheless, from this analysis is possible to identify a
threshold (0.0235 s) which indicates the excessive wearing of the knife.
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Detection of Gear Faults in Variable
Rotating Speed Using EEMD
Decomposition and Instantaneous
Frequency

Hafida Mahgoun, Ahmed Felkaoui, Semchedine Fedala
and Fakher Chaari

Abstract When a local gear fault is presented, both the amplitude and phase of the
tooth meshing vibration are modulated. If the rotating speed of the shaft is
invariable, the gear-fault-induced modulation phenomenon which manifest as fre-
quency sidebands equally spaced around the meshing frequency and its harmonics
in vibration spectra. The Hilbert transform has been widely used in demodulation of
such signals and has given good results. However, under variable rotating speed of
the shaft, the meshing frequency and its harmonic and the sidebands vary with time
and hence the vibration signal becomes non-stationary. The use directly of the
Hilbert transform doesn’t allow detecting the variation of the rotating machine and
its harmonics which reflect the gear fault. In this study, we propose to use first the
ensemble empirical decomposition (EEMD) which is particularly suitable for
processing non stationary signals. By using EEMD the signal can be decomposed
into a number of IMFs which are mono component, and then we use the Hilbert
transform to calculate the instantaneous frequency and the envelope of each IMF.
To identify the fault, we apply the ensemble empirical decomposition (EEMD) in
second time to the instantaneous frequency to obtain mono component frequency
and we calculate the spectrum of each IMF to evaluate the frequency. In this works,
to validate this strategy, we analyze simulated signals for healthy and faulty gear
boxes when the speed of machine is regular and variable; these models are based on
the models of McFadden.
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1 Introduction

Gears are mechanisms widely used for power transmission in rotating machinery.
The malfunctions and defects of gears are inevitable in gear transmission system.
The faulty gear is usually the major source of noise and vibration and may result in
the abnormal operation and failure of the system. The early detection of gear faults
is very important to prevent the system from damage. Vibration analysis is the most
commonly used method for diagnosing gear faults since the vibration signals give
plentiful information related to machines [1]. When a local gear fault is presented,
both the amplitude and phase of the tooth meshing vibration are modulated. If the
rotating speed of the shaft is invariable [1, 2], the gear-fault-induced modulation
phenomenon which manifest as frequency sidebands equally spaced around the
meshing frequency and its harmonics in vibration spectra.

The Hilbert transform has been widely used in demodulation and has given good
results [1]. However, under variable rotating speed of the shaft, the meshing fre-
quency and its harmonic and the sidebands vary with time and hence the vibration
signal is non-stationary [3]. The use of the conventional fault diagnosis methods
such the Fourier analysis and the Hilbert transform do not allow to good results. To
avoid this problem, we propose to use first the ensemble empirical decomposition
(EEMD) which is particularly suitable for processing non stationary signals [4].
This method was proposed by Huang et al. [4] for nonlinear and non-stationary
signals and was recently applied in fault diagnosis of rotating machinery [2, 5–7]. It
does not use a priori determined basis functions and can iteratively decompose a
complex signal into a finite number of intrinsic mode functions (IMFs). Each
resulting elementary component IMF can represent the local characteristic of the
signal [4, 8]. Then, we can use the Hilbert transform to estimate the amplitude
envelope and instantaneous frequency of the IMFs of interest and by using the
EEMD and Hilbert transform, we can obtain a time- frequency representation [5, 8,
9]. The structure of the paper is as follows: Sect. 2 introduces the basic of EEMD.
Section 3 is dedicated to Hilbert Huang transform method. In Sect. 4, we present a
simulated signal to illustrate the non stationary phenomena due to the variation in
the speed of the shaft. In Sect. 5, a conclusion of this paper is given.
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2 EMD and EEMD Algorithms

2.1 EMD Algorithm

The EMD consists to decompose iteratively a complex signal into a finite number of
intrinsic mode functions (IMFs) which verify the two following conditions:

(a) The number of extrema and the number of zeros of an IMF must be equal or
differ at most by one,

(b) An IMF must be symmetric with respect to local zero mean.

For a given a signal x tð Þ the EMD algorithm used in this study is summarized as
follows [4, 8]:

Identify the local maxima and minima of the signal xðtÞ
1. Generate the upper xupðtÞ and lower xlowðtÞ envelopes of xðtÞ by the cubic spline

interpolation of the all local maxima and the all local minima.
2. Average the upper and lower envelopes of xðtÞ to obtain the local mean

function:

m tð Þ ¼ xup tð Þ þ xlowðtÞ
2

ð1Þ

3. Calculate the difference

d tð Þ ¼ x tð Þ � mðtÞ ð2Þ

4. If d tð Þ verifies the above two conditions, then it is an IMF and replace xðtÞ with
the residual

r tð Þ ¼ x tð Þ � dðtÞ ð3Þ

5. otherwise, replace x tð Þ with dðtÞ
Repeat steps (1)–(5) until the residual satisfies the criterion of a monotonic

function. At the end of this algorithm, the signal can be expressed as:

x tð Þ ¼
XN
n¼1

IMFn tð Þ þ rNðtÞ ð4Þ

where LMFnðtÞ are IMFs, N is the number of IMFs extracted named and rNðtÞ is the
final residue.
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2.2 EEMD Algorithm

To alleviate the mode mixing effect of EMD, the EEMD was used. The EEMD
decomposition algorithm of the original signal xðtÞ used in this work is summarized
in the following steps [4]:

1. Add a white noise nðtÞ with given amplitude bk to the original signal xðtÞ to
generate a new signal:

xk tð Þ ¼ x tð Þ þ bknðtÞ ð5Þ

2. Use the EMD to decompose the generated signals xk tð Þ into N IMFs,
IMFnk tð Þ; n ¼ 1; . . .;N; where IMFnk tð Þ is the nth IMF of the kth trial.

Repeat steps (1) and (2) K times with different white noise series each time to
obtain an ensemble of IMFs: IMFnk tð Þ; k ¼ 1; . . .;K.

Determine the ensemble mean of the K trials for each IMF as the final result:

IMFn tð Þ ¼ lim
k!1

1
K

XK
k¼1

IMFnk tð Þ; n ¼ 1; . . .;N ð6Þ

The relationship among the amplitude of the added white noise and the number
of ensemble trials is given by [4]:

dk ¼ bkffiffiffiffi
K

p ð7Þ

where K is the number of ensemble trials, bk is the amplitude of the added noise and
dk is the variance of the corresponding IMF(s).

3 Hilbert Hang Transform

The technique of Hilbert Huang transform (HHT) [5, 8, 9] is based on two methods:
the empirical mode decomposition EMD and the application of the Hilbert spectral
analysis method to the IMFs, we obtain the instantaneous frequency and the
envelope of each IMF. By application of HHT, we obtain a time- frequency dis-
tribution of signal amplitude, which permits the identification of localized features.

The Hilbert transform for any signal xðtÞ is:

y tð Þ ¼ 1
p

Zþ1

�1

x sð Þ
t � s

ds ð8Þ
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With the Hilbert transform yðtÞ of the function xðtÞ we obtain the analytic
function,

z tð Þ ¼ x tð Þ þ iy tð Þ ¼ cðtÞeihðtÞ ð9Þ

c tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
ð10Þ

h tð Þ ¼ tan�1 y
x

� �
ð11Þ

Here c is the instantaneous amplitude, and h is the instantaneous phase function.
The instantaneous frequency is:

xðtÞ ¼ dh
dt

ð12Þ

4 Simulation Studies

In this section first, we compare the model of a vibration signal generated by the
normal gears and constant speed and the model of a vibration signal generated by
the normal gears and variable speed. Secondly, we compare the model of a
vibration signal generated by the faulty gears and constant speed and the model of a
vibration signal generated by the faulty gears and variable speed. Then this section
is divided in two parts:

(a) Normal gear

First, consider a normal pair of gears, meshing under a constant speed. The
vibration signal generated by the normal gears and constant speed can be repre-
sented as [1]:

xnc tð Þ ¼
XM
m¼0

Xmcosð2pmZfrt þ umÞ ð13Þ

where M is the number of tooth-meshing harmonics, Xm and um are, respectively,
the amplitude and the phase of the mth meshing harmonic, Z is the number of gear
teeth, t is the time, fr is the shaft rotation frequency, and fm ¼ Zfr is the meshing
frequency. Equation (13) indicates that the vibration signal acquired from a normal
gearbox generally exhibits predominant frequency components at the meshing
frequency and its harmonics.

Figure 1 shows the time domain and the spectrum of a simulated vibration signal
from a normal gearbox which has the same features that the experimental test bench
(a gear with 20 teeth and a constant rotational frequency equal to 20 Hz, and the
meshing frequency is 400 Hz and the sampling frequency is 20,000 Hz). The
spectrum exhibits the meshing frequency and its first harmonic for M ¼ 3.
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The EEMD method decomposes the signal in three IMFs which correspond to
the meshing frequency and its harmonic (Fig. 2), we can see that this IMFs are not
all mono components which explain the huge fluctuation of instantaneous fre-
quency given in Fig. 3, this figure shows that the frequency doesn’t change in time.
To calculate exactly the value of each instantaneous frequency, we can use the
Fourier transform. Figure 4 shows the spectrum of each instantaneous frequency of
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constant speed and their spectrum

182 H. Mahgoun et al.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1000

2000

3000

4000
IM

F
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1000

2000

3000

4000

IM
F

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

500

1000

Time(s)

IM
F

3

Fig. 3 The instantaneous frequencies of each IMF (Fig. 2)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

X: 400.1
Y: 0.286

X: 800.1
Y: 0.03502

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

X: 800.1
Y: 0.02507

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4
x 10-4

X: 1200
Y: 8.347e-005

Frequency (Hz)

Fig. 4 The spectrum of the instantaneous frequency of each IMF

Detection of Gear Faults in Variable Rotating Speed … 183



each IMF. We can see that each instantaneous frequency isn’t a mono component
but it was composed from a multiple frequency.

Now, we suppose that the normal pair of gears, meshing under a variable speed.
The vibration signal generated by the normal gears and variable speed can be
represented as:

xnv tð Þ ¼
XM
m¼0

Xmcosð2pmZfst þ umÞ ð14Þ

where fs is the variable shaft rotation frequency which varies with time. In this
paper we suppose that:

fs ¼ frt ð15Þ

Figure 5 shows the time domain and the spectrum of a simulated vibration signal
from a normal gearbox with a variable speed, from this two representations we can
that there is a variation of the speed but we can’t get more information about it. We
can see also that the variation of the frequency is large band because the speed
increase with time.

By using the EEMD method we can decomposes the signal also in three IMFs
which correspond to the meshing frequency and its harmonics (Fig. 6). Figure 7
shows the variation of the instantaneous frequency of each IMF. We can see clearly
that the three frequencies increase in time. This assumption can be clearly shown by
the Hilbert Huang representation given in Fig. 8. The spectrum of each instanta-
neous frequency (Fig. 9) gives the bandwidth of each IMF and gives the variation
of the frequencies, the instantaneous frequency and the HHT gives more infor-
mation about this variation.
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Fig. 5 Simulated vibration signal from a normal gearbox with a variable speed, a the time
domain, b the spectrum
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(b) Faulty gear

If the gearbox which is meshing under a constant speed has a tooth fault, the
generated signal has been modulated by the unchanging rotating frequency and
contains amplitude and phase modulations that are periodic with the rotating fre-
quency of the gear. The modulation of the meshing frequency, as a result of faulty
teeth, generates sidebands, which are frequency components equally spaced around
the carrier frequency. Changes in vibration generated by a faulty gear tooth can be
represented by the following amplitude and phase-modulating functions, amðtÞ and
bmðtÞ, respectively:
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Fig. 6 IMFs obtained by EEMD of the simulated vibration signal from a normal gearbox with a
variable speed
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am tð Þ ¼ PL
l¼0

Aml cosð2pmZfrt þ amlÞ

bm tð Þ ¼ PL
l¼0

Bml cosð2pmZfrt þ cmlÞ

8>><
>>: ð16Þ

where L is the number of sidebands around tooth-meshing harmonics, Aml and Bml

are amplitudes at the lth sidebands of amplitude and phase-modulating signals,
respectively, around the mth meshing harmonic, aml and cml are phases at the lth
sideband of amplitude and phase-modulating signals, respectively, around the mth
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meshing harmonic. The signal xfcðtÞ, produced by a pair of meshing gears with a
tooth fault in constant speed, is given by:

xfc tð Þ ¼
XM
m¼0

Xmð1þ am tð ÞÞcos 2pmZfrt þ bm tð Þð Þ ð17Þ

Figure 10 shows the time domain and the spectrum of a simulated vibration
signal from a faulty gearbox for a constant speed and for M ¼ 3. The time domain
presents a modulated signal. In the same time the frequency present the mesh
frequency and its harmonics surround by side bands.

Results obtained by using EEMD are presented in Fig. 11. The spectrum of each
IMF shows that these IMFs are multi component and modulated (Fig. 12). The
instantaneous frequency of each IMF are given in Fig. 13, which shows also that the
meshing frequency and its harmonics are not a mono component they are composed
by many frequencies, they are modulated by the frequency of rotation and its
harmonics but the instantaneous frequency shows that the speed is constant, we can
obtain more information about these frequencies if we calculate the spectrum of the
instantaneous frequencies (Fig. 14), but this information is insufficient to describe
the frequency of rotation and its harmonics. To obtain more information, we pro-
pose to decompose the instantaneous frequencies by EEMD and then we calculate
the new instantaneous frequency of each new IMF, and finally we calculate the
spectrum of each new instantaneous frequency. Figure 15 shows some new IMFs of
the first instantaneous frequency described in Fig. 13. We can see from this figure
that the first IMF has a shape of periodic impacts with a period equal to
(0.05 s = 1/20 Hz), which correspond to the frequency of the shaft. The spectrum of
each new IMF is given in Fig. 16. We can see from this figure clearly the frequency
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Fig. 10 Simulated vibration signal from a faulty gearbox with a constant speed, a the time
domain, b the spectrum
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of rotation and its harmonics (20, 40, and 60 Hz) and the mesh frequency (400 Hz)
and its first harmonic (800 Hz).

Figure 17 shows the spectrum of the IMFs obtained by decomposition of the
second instantaneous frequency, and Fig. 18 shows the spectrum of the IMFs
obtained by decomposition of the third instantaneous frequency.

All these figures give the same information about the speed of the machine
(constant speed) and give the values of the frequencies of modulation.
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188 H. Mahgoun et al.



Now we suppose that the faulty pair of gears, meshing under a variable speed.
The vibration signal generated by the faulty gears and variable speed can be rep-
resented as:

xfv tð Þ ¼
XM
m¼0

Xm 1þ amv tð Þð Þcos 2pmZfst þ bmv tð Þð Þ ð18Þ
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Fig. 13 The instantaneous frequencies of the IMFs (Fig. 11), (faulty gearbox with a constant
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where amv tð Þ and bmv tð Þ bmvðtÞ are respectively amplitude and phase-modulating
functions:

amv tð Þ ¼ PL
l¼0

Amlcosð2pmZfst þ amlÞ

bm tð Þ ¼ PL
l¼0

Bmlcosð2pmZfst þ cmlÞ

8>><
>>: ð19Þ
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Figure 19 shows the time domain and the spectrum of a simulated vibration
signal from a faulty gearbox for a variable speed fs ¼ frt, the time domain presents a
modulated signal.

In the same time the spectrum present a large band of frequency. But the
spectrum for the same length (0.4 s) does not show the third harmonic of the
meshing frequency, for this reason we have increase the length of the signal to 0.8 s.
Then for a variable speed, we shall take more samples than in the constant speed.

Results obtained by using EEMD are presented in Fig. 20. The instantaneous
frequency of each IMF are given in Fig. 21, this figure shows that the meshing
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frequency and its harmonics are modulated by many frequencies (frequency of
rotation and its harmonics), and the meshing frequency decrease in time. The HHT
given in Fig. 22 shows clearly this variation of the speed, we can obtain more
information about this frequencies (frequency of rotation and its harmonics) if we
calculate the spectrum of the instantaneous frequencies (Fig. 23).

The zoom of this figure (Fig. 24) shows large bands of frequency which explain
the variation of the rotation frequency and its harmonics.
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b the spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-6

-4

-2

0

2

4

IM
F

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-5

0

5

IM
F

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-4

-2

0

2

4

Time(s)

IM
F

3

Fig. 20 IMFs obtained by EEMD of the simulated vibration signal from a faulty gearbox with a
variable speed

192 H. Mahgoun et al.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5000

Time(s)

F
re

qu
en

cy
(H

z)

Fig. 21 The instantaneous frequencies of the IMFs (Fig. 21)

Time (s)

F
re

qu
en

cy
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 22 The Hilbert Huang transformation of a simulated vibration signal from a faulty gearbox
with a variable speed

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

IM
F

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1
x 10

-3

IM
F

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1
x 10

-4

Frequency(Hz)

IM
F

3

Fig. 23 The spectrum calculated of the instantaneous frequency (variable speed)

Detection of Gear Faults in Variable Rotating Speed … 193



To detect the rotation frequency and its harmonics, we propose to use the speed
transform suggested by Capdessus et al. [10]. Figures (25, 26 and 27) show the
results given by this method; we can see clearly the frequency of 20 Hz and its
harmonics and we can see also that these figures have the same shape of the figures
represented in Fig. 24.
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5 Conclusion

In this study we have used a simulated signal to distinguish between a vibration signal
from amachinewhichwork in stable conditions and a vibration signal from another one
which work at variable conditions like (variable speed and load). We have used the
Hilbert Huang transformation based on EEMD to detect the variation of the speed. We
also used the EEMD to decompose the instantaneous frequencywhich is considered as a
non stationary signal, the IMFs given by the second decomposition was analyzed by
using the FFT, the spectrum of the new IMFs show that the speed is variable, to detect
the rotation frequency of the machine we have used the speed transform.
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Pawel K. Stefaniak, Radoslaw Zimroz, Pawel Sliwinski,
Marek Andrzejewski and Agnieszka Wyłomanska

Abstract Continuous improvement of production efficiency, safety and reliability
of machines’ operation requires implementation of modern technology in the
company, including monitoring systems, IT solutions, computer aided management
tools etc. Gathering of data describing processes, extraction of information and
knowledge discovery in automatic way seem to be key strategy in order to enhance
company’s performance in many contexts. In this paper we will refer to the current
status of the system being developed in one of the biggest Polish mining compa-
nies. A special attention will be paid to signal validation, pre-processing and
analysis in order to retrieve unknown knowledge about machine condition,
processes executed on a daily basis and machine/operator performance.
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1 Introduction

Nowadays, there is a strong tendency to optimize—in wide sense—production
efficiency, safety of operations, environmental impact etc. in mining industry. One
can notice in different media that mining industry evolves to be green, intelligent,
smart, invisible, safe and effective [1–4]. Different actions have been taken to
achieve it. Undoubtedly, transfer of technology to mining industry that covers
monitoring system, IT solutions, computer aided management systems,
automation/robotics, etc. significantly helps in modernization of mining industry
[5–13]. In this paper, we will present a brief description of one of such actions that
is developing in one of the biggest underground mining companies in Poland. The
aim of the project is to use advanced monitoring systems, modern IT solutions and
so called data mining techniques to identify weak points in production chain and
improve its efficiency. The production process is quite complex, it is understood
here as excavating copper ore from underground mine and transporting it by LHD
machines (involving drilling/bolting vehicles, loaders and trucks) to belt conveyor
system located also underground.

Modelling, analyzing and optimizing of the entire process is a very difficult task.
To achieve goals abovementioned the task has been decomposed into smaller
sub-processes associated with given machine, operations or processes. To imple-
ment such system, one needs to consider technological issues (to equip each
machine with on-board data acquisition system, to build telecommunication
infrastructure in dozens of kilometres of mining excavations corridors including
wireless technology to transfer data from mobile machines automatically, to create
data storage and processing centre for more than 1000 machines from 3 different
mines, etc.) as well as organizational and legal (mining regulations) specificity in
the underground mine. In this paper we will focus on data processing context only.
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Depending on the machine type, specified monitoring system (basic or
advanced), number of acquired parameters might reach even up to 47 variables.
They might represent instantaneous variation of different physical variables (tem-
peratures, pressures, speeds, weights, torque) or flags (0/1) describing status of
machine element/subsystem (for example: low level of oil). Furthermore, in order to
reference signal to the location of machine in geographic space of mine, the location
system has been developed. Next, these data are transferred via IT infrastructure in
underground mine and stored in an advanced database structure of Business
Intelligence System. From that point there is time for advanced data analysis.
Structure of the entire system is illustrated in Fig. 1.

It is necessary to define number of essential, unique and dedicated algorithms for
data validation/processing/analysis which lead to obtain information on the per-
formance, appropriate usage and condition of the machine and operator’s work.
These algorithms can be simple, might be based only on one-dimensional data set
or more advanced—when they are based on multidimensional data related to dif-
ferent characteristics of the machine. In this case it might be considered as the so
called data fusion.

A list of information required to supporting decision making process related to
particular management level is defined. It covers variety of issues: (i) Condition
monitoring and fault detection purposes, (ii) Identification of machine operation
regimes, (iii) Machine usage and efficiency analysis, (iv) Machine operator moni-
toring that can affect machine design (feedback to machine manufacturer), work
organization, production performance, machine operation, operator’s skills and
training program, machine lifetime, safety of operation, etc. From signal processing
point of view, there are a lot of challenging issues. The same problem (signal vali-
dation, segmentation, cycle/event identification, process understanding,
change/anomaly detection etc.) might significantly differ for various variables and
might require individual algorithms. At first stage of validated data processing we are

Fig. 1 Functional flow chart of the decision support system can be categorized following 3 layers.
a Data acquisition, b data transmission, c data processing and presentation
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focusing on signal segmentation and identification of event or work cycles [13–17].
At second stage, we want to understand how important these events are
(percentage-wise) for single shift, day, week, etc. by simple aggregation or advanced
statistical analysis. Finally, we want to model extracted segments [15, 16] in order to
analyze if there is any correlation between them (cyclic operation should be carried
out in similar way). In the paper we are going to describe in detail mentioned issues
and present selected examples from present actual examples from the industry.

2 Definition of Tasks and Expectations

In order to simplify the problem, the machine was decomposed into several key
sub-systems as presented in Fig. 2. Depending on the machine, some of these
systems might not exist (there is no weighting system in drilling machine and so
on). For each sub-system there are groups of tasks related to signal analysis. They
might be focused on condition monitoring, process monitoring (in order to increase
safety, minimize processes of degradation and optimize process efficiency and
production cost), machine’s and its operator’s performance analysis.

3 Data Validation

While measuring physical quantities such as temperature, pressure, rotational speed,
engine torque, weight etc. one should be aware that in industrial conditions, a
quality of the data might vary in time. If one consider single machine and on which
the 2 h long experiment in the laboratory will be conducted, the problem of data
validation nearly does not exist. When we extend data acquisition procedure to
many variables, many machines, industrial conditions, especially underground mine

Fig. 2 Machine decomposition into subsystems
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with severe environmental impact, problem of automatic, quick data validation
becomes more serious than further processing. The problem of signal validation
was mentioned by Ray [18]. Recently, significance of signal validation in industrial
systems has been highlighted/recalled by Jablonski and Barszcz [19]. In our work,
several stages of simple validation procedures have been applied. The project is in
progress so validation might be still updating if new problems appear. The reason of
multistage validation is that acquired variables are of different dynamics and types.
First step was to analyze energy of each channel. If there is no energy, it means no
data is acquired. However, some variables are flag-type (0 if no problem).

Another issue is null value. Many algorithms simply doesn’t work if NaN/Null
value appears. Missing single sample or single sample outlier is also frequent
problem.

For some types of variables, taking into account experience/knowledge about
machine, environmental issues, applied technology, used sensors and measurement
techniques might significantly help during validation. As a result of validation
procedures, different pieces of information might be obtained. The obtained
information include whether the data package is correct or reveals some problems
with detailed report on what kind of problem exists (e.g. no energy, missing values,
outliers etc.). Such incomplete data will require further manual analysis.

4 Data Preprocessing

Basic knowledge about machines and processes performed by machines allows to
define some preliminary tasks for signal processing. Due to used mining technology
it is expected that signals should reveal cyclic nature. For vast amount of machines
sequences of actions are repeatable for example loading, haulage and discharge of
material, drilling a hole for blasting or bolting, starting and switching off engine at
beginning/end of each mining shift, etc. Identification of these cycles and statistical
analysis of their length, each cycle component or in general cycle performance
analysis is one of the most important issues for processes and machine performance
analysis. Another crucial task is machine regime identification. It might be gen-
eralized as cycle component analysis (time needed for petrol refuelling, time
required to access the mining face, duration of idle mode/overloading mode etc.).

From signal processing perspective a key problem is related to segmentation
procedures. These procedures may vary between machines and processes; seg-
mentation might be conducted with regards to analysis of engine speed, engine
torque, hydraulic pressure etc. In Fig. 3a, b, c examples of theoretical processes are
presented altogether with their relation to engine operation regimes, drilling process
regimes and loader operations regimes.

In the next section we will illustrate that identification of mentioned cycles and
their components is possible. It will be done with utilization of different types of
real data. Statistical parameterisation and analysis of these parameters might pro-
vide a number of information.
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5 Signal Processing for Condition Monitoring Purposes

On board monitoring system is able to acquire many variables, mostly related to
temperature, pressure, rotational speed, voltage, current. Detailed list of variables
depends on type of machine. There are no vibration signals commonly used in

Fig. 3 a The graph of square wave showing sequence of basic engine operation regimes
b theoretical drilling process and c loader operations
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diagnostics of gears, bearings or combustion engines. However, simple diagnostic
evaluation using temperature or pressure (hydraulic systems) can be easily done.
A general algorithm related to temperature or pressure is basically searching for
values exceeding the threshold, as defined by the manufacturer. Due to extremely
harsh environmental conditions, detection of such situation is not necessarily going
to indicate an alarm. Note that machine might operate under conditions where
temperature is very close to the limit. Our experience is that single values are often
exceeding the allowed value, however it is related to the measurement device
problem. Moreover, temporary and insignificant overheating might be, for example,
connected with entering to warmer zones without appropriate ventilation system
near mining face. It should be indicated that all of these events will be aggregated in
order to build daily report. This report will serve as a basis for evaluation of
machine’s condition, production volume but also performance and skills of the
operator. To avoid inappropriate conclusions, advanced decision making scheme is
required (Fig. 4).

Fig. 4 Example of raw temperature signal and results of processing with detected temporary and
regular overheating
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6 Signal Processing for Processes Monitoring Purposes

Depending on type of the machine, it is possible to distinguish some key processes
that might directly influence degradation processes in the machine as well as pro-
duction volume (i.e. amount of transported material, number of drilled blasting
holes, etc.). In this section two probably the most important processes will be
discussed, namely copper ore transport from mining face to the nearest belt con-
veyor and blast hole drilling.

6.1 An Efficiency of Copper Ore Transport Using Loader

In the underground copper ore mine loaders are used to transport copper ore from
point A to point B. The distance should not exceed a few hundred meters. Such a
cycle (loading at A, haulage, dumping the material at B) should be repeated many
times during one shift. Therefore certainly, the process of copper ore transportation
should reveal cyclic nature. By signals segmentation, it is possible to investigate
what is a cycle, how many cycles have been done during one shift, average duration
of cycle and—in case of existence- deviations from average cycle. Building the
cycle model, one might use many variables (multidimensional model) taking into
account volume of material, duration of the cycle, effectiveness of loading proce-
dure etc. Apparently, it might be easily noticed that set of features describing
behaviour of signals will be redundant, i.e. will partially contain the same infor-
mation. Signal redundancy in multichannel systems have been reported in [18].
There are many techniques for dimensionality reduction [20, 21].

Unfortunately, it was confirmed experimentally that each of the cycle compo-
nents, particularly loading of copper ore, might take different amount of time. It has
clear physical explanation. In order to transport all fragmented (after blasting
procedure) ore it is expected to perform several cycles. The first cycle is usually
requires the shortest period of time, whereas the last one lasts much longer. The
operator should “clean” the mining excavation and more activities are required for
loading purposes (moving forward/backward).

Figure 5 shows record of data from a few shifts (6 h each) with identified typical
regimes of loader operation (machine is switched off, starting the engine, idle mode,
normal operation, overloading). In Fig. 6 we present several variables to show that
mentioned cycles for each loading/unloading operations exist. It is possible to
observe these cycles based on several variables (engine torque, fuel usage, rpm
speed…). Precise identification of each cycle allows to generate appropriate
information for miners (no of cycles), for mechanical engineers (overloading of
machine) and other professionals.
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6.2 Quality and Efficiency of Drilling Process

Drilling process is one of key processes in the mine. It is performed for blasting
purposes as well as for bolting (in order to protect roof from collapsing). Due to a
number of holes prepared daily, any improvement applied to this process could
result in enormous savings.

The typical drilling process usually consists of following parts: positioning of the
machine (for each mining face) and drilling tool (for each hole), initial drilling,
regular drilling, cleaning of the hole. Figure 7a presents raw data describing length
of a hole as an example of measurement. In Fig. 7b we show 4 examples—
realizations of drilling process: two of them are incorrect (B, C —holes are too
shallow, while A and D are correct). It can be easily realized that drilling process
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was not typical for a several cases. At this point, it should be considered why the
drilling process happens to last longer than it ought to. The main reasons are related
to operator’s work and geological conditions, which are common cause of tool’s
jam. Multidimensional analysis of selected variables allows to recognize this
phenomena.

7 Signal Processing for Performance Evaluation

From miners’ point of view, volume of production is the most important aspect
because it is a direct income source. Monitoring and statistical analysis of processes
such as drilling, copper ore haulage etc.is critical. However, performance moni-
toring and evaluation depends strictly on type of machine. In this section we will
show raw data and output parameters (which might be referred to Key Performance
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Indicators) for material transport and drilling process. The first one is presented in
Fig. 8. At given time (when bucket is raised to unload material) weighting process
is conducted. Raw signal from Fig. 8a is pre-processed to obtain cumulative form of
data showing current total amount of daily output and might be the basis for further
advanced analysis.

Figure 9 is a pre-processed result of Fig. 5a. It can be easily seen that most of
cycles related to drilling are very similar to each other. One might analyse in detail
statistics of each component of drilling process (duration of initial drilling, regular
drilling etc.). Several anomalies are connected with replacement of drilling tool or
changing position of the machine (to another mining excavation). This is a regular
situation in case of room-and-pillar mining system.

8 Multidimensional Signals and Information Fusion

To efficiently manage all of the machines and processes related to their operations
there is a need to combine data/information from different sources. Good example
of multidimensional signal analysis is tool’s jam detection. It is necessary to
monitor and analyze several variables (hole depth and pressures used for driving the
drilling tool). Another example illustrating the need of multidimensional data
analysis and information fusion is related to evaluation of performance and con-
dition of machine. One needs to combine information related to location of the
operating machine (position within the mine), environmental, geological etc. factors
that could influence measured data and so on. Sources of mentioned information
might be: localization system (where the machine has been operated?), SAP HR
system (who has been the theoperator of the machine?), CMMS system etc. (what
kind of repair has been done?, what type of spare parts has been used). At this

Fig. 8 Weighting of copper ore in the loader. a Raw signal, b aggregated cumulative weight of
ore
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stage, this type of data/information fusion is not automatically performed. It might
be helpful in order to understand problematic/controversial results of daily/weekly
performance/condition evaluation.

9 Conclusions

In this paper several important issues related to monitoring of machine condition
and machine performance in underground mine have been discussed. General
structure of the system is not overly complicated and might be found in other
applications in the world. Unfortunately, specificity of the underground mine, local

Fig. 9 Aggregated description of drilling process
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organizational, technical mining and other conditions make the project very chal-
lenging and require high amount of effort in order to fulfil expectations of the
company. In this paper we have focused on data processing issues. It was high-
lighted that particular attention should be paid during data validation. In most cases,
the specialized algorithm related to identification of required information does not
seem to be overly complicated. However there are several “keywords” known in the
literature as uncertainty, incompleteness, inaccuracy that make processing very
difficult. Serious inconveniency is related to lack of chance for experimental work
in the laboratory. Due to mining regulations, financial and safety reasons no
experiments are permitted in the mine during its normal operation. Therefore the
proposed algorithm should be carefully tested and finally should be furtherly
expanded. The need of multidimensional signal analysis and data fusion provides
additional issues. Obviously all components of data stream should be correct in
order to obtain proper information. When the data comes from different, indepen-
dent sources, it is not that simple to accomplish.

From diagnostic perspective, proposed algorithms are focused on simple
searching of periods with overheating, regimes or cycle extraction, their
parametrisation/modeling and aggregation/statistical analysis of extracted segments.
These algorithms are applied to real data in the context of condition monitoring,
process monitoring as well as performance monitoring.

The project is still in progress, this paper is kind of current status description of
challenging industrial project.
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Analyzing State Dynamics of Wind
Turbines Through SCADA Data Mining

Francesco Castellani, Davide Astolfi and Ludovico Terzi

Abstract Supervisory Control And Data Acquisition (SCADA) control systems
have become ubiquitous in modern wind energy technology. Exploiting their
potentialities is a keystone for performance optimization and to improve the
operational control feeding smart electric grids. Yet, tackling the complexity of
SCADA data sets is a challenging task. The philosophy underlying the present
work is discretization of the continuous motion of machine states and error signals:
doing this, one ends up with simplified databases, acting on which with statistical
methods provide powerful insight. Indicators on the quality of turbine functionality
and on the nature of error signals are formulated, and the distribution of errors as a
function of wind intensity is studied. The methods are tested on the data of a wind
farm in southern Italy, and it is shown that they are indeed capable of assessing
performances and interpreting the nature of occurred errors.

Keywords Wind energy �Wind turbines � SCADA control system � Performance
evaluation
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1 Introduction

In the latest years, the focus about wind energy has been considerably shifted from
new installations into optimization of operating farms, for several reasons: the
financial crisis, discouraging investments; the stagnation of economic growth in
Europe, decreasing energy consumption; and the growth of the percentage of
electric energy arising from renewable and stochastic sources, providing the
necessity of accurate forecast and balancing, in order to build smart grids.

Wind turbines, due to their low density on the territory and the short-term
variability of the source, are usually equipped with sophisticated control systems:
Supervisory Control And Data Acquisition (SCADA). SCADA systems spread on
10-min time basis minimum, maximum, average, and standard deviation of several
channels, providing a complete picture of machine functionality: details of the wind
flow and turbine response to it, conversion of wind kinetic energy into active
power, temperatures at meaningful parts of the machine, vibrational status, and so
on.

Exploiting control systems potentialities has a direct economic return: in [1, 2],
some estimates are provided. A sudden failure of 1.5 MW wind turbine causes,
during wintertime, around €50,000 of missed production, while a judicious main-
tenance program can avoid sudden faults, resulting in 5 times smaller cost of energy
loss. A complete optimization program of wind turbines, through SCADA data
analysis, can decrease the cost of wind energy up to 20 %.

Scientific literature on SCADA data analysis for wind turbine optimization has
become a fertile field, since it stands at the crossroad of engineering, physics,
statistics, and computer science. Actually, the task is ambitious and challenging:
digesting vast data streams, processing them smartly into knowledge and possibly
integrating it into the control system, for automation of early diagnosis or perfor-
mance evaluation.

For these reasons, methods basically demarcate in two categories, sharing
capability of tackling complexity and big data: statistical approaches and Artificial
Neural Network (ANN) techniques.

In [3], ANN is employed for investigating and preventing bearing faults, which
are quite common: four months of data from 24 turbines are processed, and it is
shown that the algorithm reliably predicts bearing faults 1.5 h before they occur.
Bearing fault prediction through ANN techniques is also addressed in [4]. In [5], on
the test case of Lillgrund wind farm, a machine learning approach is applied for
structural health monitoring, and a comparison between ANN and Gaussian
regression is made. In [6], ANN methods are employed for modeling temperature of
generator bearing and cooling air, and are subsequently validated. In [7], an evo-
lutionary strategy algorithm is applied to determine optimal control settings: it is
shown that judicious fine tuning of blade pitch and generator torque improves
sensibly the power coefficient.

Peculiar attention in the literature has been devoted to offshore wind farms,
because of the copiousness of wake effects between nearby turbines, resulting in
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decreased performance. The dynamics of wakes and polar efficiency of wind farms
have therefore been studied both numerically and ex post. In [8], power losses due
to wakes are analyzed on the test cases of offshore Horns Rev and Nysted wind
farms, in Denmark. In [9], the analysis is focused on misalignment and yawing
under downstream wake angles. In [10], the usual data set built on measurements
on 10-min time basis is processed and replaced by a weighted average of several
simulations covering a wide span of directions.

Previous work of the authors and the present work are based on a different
approach to the complexity of SCADA measurements: the philosophy is processing
the raw data sets into simplified ones, acting on which with simple statistical
methods provides very meaningful indicators. In other words, with this approach,
the difficulty lies at the very beginning, in the pre-processing phase: it must be as
smart as possible, in order to smear out information which is unnecessary or
extraneous to the kind of answer one is looking for. On the other way round, also
post-processing which reduces the quality of the data sets is possible, if it simul-
taneously dramatically increases their simplicity; yet, very fine tuning must be
applied in order not to lose precious information.

In [11], several post-processing methods are proposed for assessing wind farm
performances; in [12], post-processing of SCADA temperature channels is applied
for early fault diagnosis, and it is shown that the approach is useful for preventing
even severe machine damages. In [13], polar efficiency is systematically addressed
for onshore wind farms: it is shown intertwining of wake effects and complexity of
the terrain forces to define it in a novel way, whose consistency is demonstrated.
Further, on the test case of three wind farms on very different terrains, it is dis-
entangled and quantified how complexity of the terrain, wake effects, and atmo-
spheric stability affects polar efficiency.

The structure of the paper is as follows: in Sect. 2, the approach is sketched and
the test case wind farm is introduced. In Sect. 3, the continuous state dynamics is
analyzed by discretizing its motion on 10-min time basis, parallel to the SCADA
database. The results on several monthly test cases are shown and discussed.
Finally, in Sect. 4, the results are briefly summarized and further developments of
the present work are sketched.

2 The Approach and the Wind Farm

As briefly discussed in Sect. 1, the complexity of the SCADA data stream, to be
elaborated into knowledge, can be tackled with different approaches.

The philosophy of the present work is converting the continuous dynamics of
relevant quantities into a discretized data set. At the cost of introducing some
coarse-graining effect, which the consistency of the results should demonstrate
being negligible, discretization provides data sets, acting on which with simple
statistical methods leads to very meaningful indicators.
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The data sets at disposal have twofold nature: SCADA measurements are
averaged and stored on 10-min time basis, and state histories are in the form of
incoming or phasing out at given time stamps. By the point of view of time basis,
the former kind of data is by construction discrete (the grain is 10 min), while state
dynamics is recorded in its continuous motion.

The basic features of the proposed methods are here on summarized: the analysis
of Sect. 3 is based on the discretization of the continuous dynamics of the states of
the machines. We defer to Sect. 3 for the details of the method. Yet, the principle is
as follows: building a data set, made of binary numbers, parallel to the SCADA
measurements, and on the same 10-min time basis. The states of the machine under
examination demarcate in classes: operating states, which are mutually exclusive
and basically provide information about what each machine is doing, and status
codes, which are not mutually exclusive and can have different degrees of severity
(information, warning, and error). Status codes are the building blocks for recon-
structing why the turbine behaves as dictated by the corresponding operating states.
The principle is associating a digit to each operating state or status code for each
10-min interval: if this operation is performed judiciously, the data set built of
binary numbers can be analyzed for classifying fault onsets, their severity, and
reasons.

The approach above has been tested on the operational data of a Wind Farm
sited in southern Italy. Nine turbines are installed on site, with a rated power of
2 MW each (Fig. 1, Table 1).

Fig. 1 The layout of the test case wind farm
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3 Number Map and State Dynamics

As introduced in Sect. 2, the state dynamics of the turbines of the test Wind Farm
has been tackled by discretizing it on 10-min time basis, parallel to the SCADA
measurements. Two number maps have been constructed: the former encodes the
information contained in the operating states, i.e., what each turbine is doing, and
the latter encodes the status codes, i.e., why each turbine behaves as dictated by the
operating states.

To each operating state and status code, a digit has been associated for each
10-min time stamp, turning from 0 to 1 if the state activates during the interval. The
only exception to this intuitive rule should be the operating state associated to
power output production: actually, a 10-min interval should be considered pro-
ductive if the production time exceeds a fairly high threshold. For the present work,
this threshold has been chosen at 80 %, but it has also been checked that the results
are poorly affected by this value, as long as it is consistently high.

The inspiring idea is trying to build a connection between what each turbine does
and why, i.e., between the operating states and the status codes, crossing the
simplified and discretized data sets, rather than the complete continuous dynamics.
For this reason, status codes have been divided according to their severity and
separate number maps have been built for information, warning, and error classes of
status codes. The most urgent issue is therefore putting in relation the number map
of error status codes with the one of the operating states: this operation should help
in classifying errors according to their severity, in identifying clusters of status
codes associated to the same malfunctioning, and in associating error status codes to
each family of Brake Programs of the machine.

Yet, the discrete operating state number map is valuable on its own and provides
insight to be subsequently put in relation with the error status code map. The idea is
identifying a criterion for demarcating good and bad time steps, and quantifying the
amount of them for each turbine on a same period. The absolute and relative
classifications are both useful: the former relates to whether a turbine has been
productive or not, and the latter relates to whether a turbine has deviated from the
dominant farm behavior or not. We consider a time step good if the turbine has
produced, or has been potentially but not actually productive due to inadequate
wind strength. We consider a time step bad otherwise. Similarly, we consider a time
step anomalous if the turbine has deviated from the farm trend.

Table 1 Test case wind farm
main features

Feature Wind farm

Number of turbines 9

Rotor diameter 82 m

Hub height 80 m

Rated power 2 MW

Terrain Flat
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With this classification at hand, two Indicators can be formulated for evaluating
machine behavior. The former, Eq. 1, is the ratio of the number of not productive
time steps to the number of anomalous time steps.

IGL ¼ Nnotprod:

Nanom:

� �
ð1Þ

The latter Indicator, Eq. 2, is the ratio of the number of anomalous not pro-
ductive time steps to the number of anomalous productive time steps.

IDET ¼ Nanom: notprod:

Nanom: prod:

� �
ð2Þ

Both Indicators are precious and have pros and cons: IDET½ � does not capture as
malfunctioning a bad turbine behavior on a bad farm trend. If a farm undergoes
long-term shutdowns, IDET½ � becomes not consistent. Yet, if as expected, the
long-term dominant trend of the farm is power output production, IDET½ � brilliantly
captures the details of one turbine against the other and is a precious tool for
operational evaluation. The inconsistency of IDET½ � in the long farm shutdown limit
is circumvented by IGL½ �, because at numerator of Eq. 1, the absolute number of not
productive time steps appears. Therefore, both Indicators are useful and should be
unitarily employed for evaluating farm and machine behavior under each possible
regime. Their consistency has been checked by computing them on the historical
data of year 2013 of the test case Wind Farm: it arises that IDET½ � has an R2½ �
correlation coefficient of 0.98 against single turbine percentage of downtime, i.e.,
not productive nor potentially productive time. IGL½ � shows a slightly lower R2½ �.
This strongly supports their consistency for evaluating wind farm behavior. On
shorter time scales, yet, the Indicators provide more structured information with
respect to the amount of downtime, with which they become not simply linearly
correlated: IGL½ � and IDET½ � are therefore valuable on their own.

Further details of each turbine malfunctioning can be revealed by time analysis
of the error database: the following step in building a connection between errors and
operational behavior of the machines is therefore defining a criterion for severity
classification of errors. This has been done as follows: an interval of variable
amplitude, centered on the time step of error occurrence, has been considered, and it
has been checked if the machine is productive before, during, and after the error
signal has activated. A further distinction has been done, leading to two different
and instructive limits: if during the considered interval, at least one time step of
production appears, or rather if all the interval is productive. For the present work,
an interval of 1 h forward and backward the activation time of the error has been
considered. It has been observed that the results do not sensibly depend on the size
of this threshold, when its order of magnitude is not altered. Severity magnitude has
therefore been classified according to the following Table 2.
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The final step to relate status codes to operating states, i.e., why to what, is
crossing the timesteps during which an error has been active for a given turbine
against the map of operating state: the idea is inquiring whether an error is
occurring while the turbine is in mode with the rest of the farm, or not. This allows
to discriminate real alarms from, for example, planned maintenance programs
which should be smeared out: actually, if the turbine is in error and in mode with
the rest of the farm, it is likely that it is due to a service program, while if it is not, it
is likely that it is a sudden and unexpected error. We therefore propose a Mode
Index, Eq. 3, which is the ratio of the number of error time steps out of farm trend to
the number of total error time steps.

IMODE ¼ Nerr: out: mode

Nerr: tot:

� �
: ð3Þ

We also propose an Error Index, Eq. 4, which is the ratio of the number of error
time steps to the size of the data set.

IERROR ¼ Nerr:

Ntot:

� �
ð4Þ

In the following, we are going to provide a set of monthly test cases of the
methods above. Figure 2 displays the values of IERROR½ � for a month during which

Table 2 Classification of the severity of error status codes

Degree of severity Production before Production during Production after

0 ✓ ✓ ✓

1 ✗ ✓ ✓

2 ✓ ✗ ✓

3 ✗ ✗ ✓

4 ✓ ✓ ✗

5 ✓ ✗ ✗

6 ✗ ✓ ✗

7 ✗ ✗ ✗

Fig. 2 Monthly test case 1:
huge malfunctioning on
turbine T56
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turbine T56 has undergone a huge malfunctioning and a consequent shutdown.
Actually, the value of IERROR½ � far peaks with respect to other turbines and the time
series of error activation vastly overlaps with a period of missed power output
production. This shows that IERROR½ � provides a first tool for identifying massive
malfunctionings.

Figure 3 shows instead of the very opposite limit with respect to Fig. 2 a
maintenance program on the wind farm, acting simultaneously on all the turbines.
The methods above should help in recognizing that the errors appearing on the
machines are rather false alarms due to planned shutdown, and no traumatic events
happened. This is indeed the case: in Fig. 3, the distribution of IERROR½ � is sub-
stantially flat, and so it is the distribution of IMODE½ �, varying very little from turbine
to turbine on the possible range (0–1) and being flattened to the lower limit. These
features are clear indications that the error records of the month are not due to
problematic situations on the machines, but rather to planned maintenance.

Yet, there are situations which, by the point of view of the Indicators IERROR½ �
and IMODE½ �, are intermediate with respect to the examples above and cannot clearly
be identified: common situations can be maintenance programs shifted in time from
one turbine to the other, or acting on each turbine with slight differences. Both cases
end up with values of IERROR½ � (possibly considerably high) and IMODE½ � (possibly
even tending to 1), which are indistinguishable from the case of real traumatic
errors. A supplementary analysis is needed: this has been performed observing the
distribution of error records as a function of wind intensity. If the error records are
associated to false alarms associated to maintenance, we expect the shutdowns
being wisely planned and performed during low wind intensity periods. If a trau-
matic shutdown has appeared, we expect it to be irrespective of wind intensity.

Figure 4a, b shows that the distribution of errors as a function of wind intensity
(in this case as measured by the met mast of the wind farm) is a precious tool. In
Fig. 4a, we observe an abrupt fall of each single turbine number of error signals for
increasing wind speeds. The shape of the curves suggests that the farm has

Fig. 3 Monthly test case 2: synchronized maintenance program on the wind farm
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undergone a custom maintenance program for subclusters of turbines. Figure 4a
allows thus to identify a false alarm, which the mere values of IERROR½ � and IMODE½ �
would not distinguish from a real problem to the wind farm. Figure 4b instead
shows that the number of errors for turbine T55 does not flatten to 0 asymptotically
for high wind speeds, suggesting that it has undergone a traumatic stop. This
actually is confirmed by estimating the amount of producible energy which has
been lost.

The test case of Fig. 4b has also been studied from the point of view of severity
classification, as according to Table 2. In Fig. 5a, the severity of errors has been
classified according to production for the whole interval around each error time
step, while in Fig. 5b, the production condition is searched in at least one time step
of the interval. It arises that the two histograms of Fig. 5 sensibly differ in the
distribution of severity for turbines T55 and T56, which are the ones associated to
traumatic stops (quite severe the former, almost negligible the latter). The lesson
from the case above, and from others omitted for brevity, is that commonly trau-
matic stops of the machines are associated with oscillation of productive and not

Fig. 4 Monthly test cases 3 and 4: number of errors against wind intensity. a Cluster maintenance
program. b Traumatic stop

Fig. 5 Monthly test case 4: severity analysis, according to Table 2. a Severity: whole interval.
b Severity: at least 1 time step
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productive time steps on short time scales around error occurrence, while planned
maintenances are more regular clusters, which the two different histograms of
severity classification see as almost identical.

4 Conclusions and Further Directions

Therefore, summarizing, the present work is based on the discretization of the
continuous motion of the states of wind turbines. Data sets parallel to the SCADA
measurements, on 10-min time basis, have been built and they encode the basic
features of what each turbine has done and why. Subsequently, acting with simple
statistical methods on these simplified data sets, post-processing methods have been
developed for crossing the error signal map against the state map and indicators have
been formulated for quantifying goodness of operational behavior and, classifying
the errors, their impact on the machines, and their severity. Consistence of the
proposed methods has been tested on the data of an operating Wind Farm sited in
southern Italy. Further directions of the present work include extending its approach,
with a slight different philosophy: SCADA data sets are by itself a time discreti-
zation of (in principle) continuous quantities on 10-min time basis. The values they
assume constitute, yet, a continuous set, which might be useful to discretize: we
expect that the analysis of nacelle positions could provide very powerful insight on a
complex phenomenon as clustering of turbines in alignment to wind direction (on
large wind farms) and on its impact on power output production.
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Using SCADA Data for Fault Detection
in Wind Turbines: Local Internal Model
Versus Distance to a Wind Farm
Reference

Alexis Lebranchu, Sylvie Charbonnier, Christophe Berenguer
and Frédéric Prevost

Abstract The number of wind turbines is increasing each year, and with it, the
need for methods of condition monitoring and predictive maintenance. During the
last years, the number of techniques using 10 min SCADA data has grown and
complex and efficient models are now available. Nevertheless, the non-stationary
operating condition of wind turbines is still an issue. This paper will present a new
approach using the similarity between the turbines behavior for fault detection.
Then a more classical approach using data coming from a single turbine will be
tested on two different generator failures to compare the results.

Keywords SCADA � Wind turbine � Local approach � Fault detection �
Generator � Condition monitoring
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1 Introduction

The important growth in the wind power sector has led to the development of larger
wind turbines, which are located into remote area. The importance of reducing any
downtime coming from unexpected failures has then become critical. To do so,
Condition Monitoring techniques have been developed using at first dedicated
systems like vibration analysis of the drive train. Those condition monitoring
systems (CMS) mainly use raw vibration signals acquired via added systems which
can be expensive and working independently from the wind turbine PLC control
system. In order to reduce the cost, research now focuses also on the use of low
frequency data coming from Supervisory Control and Data Acquisition (SCADA)
systems. For instance, in 2009, new proposals were published in [1], using data
driven methods for automated fault detection. The SCADA provides an important
amount of data using hundreds of sensors already present in the nacelle. Due to the
complexity of the new turbines, manufacturers are now installing SCADA on each
nacelle, allowing new techniques & methodologies to be developed.

The SCADA system provides low frequency data from all the sensors as well as
alarms used for emergency action. Specific work on SCADA alarm processing has
been done in [2]. An approach using both alarms and quantitative data was pre-
sented in [3]. This paper will make use of the quantitative data only. Automated
techniques were developed in order to make the most of the sensors provided by the
SCADA but they still could be improved. Some major issues remain unsolved. Due
to frequent fluctuations in the wind speed, the wind turbines may operate under
changing operation conditions. As shown in [4] CMS indicator such as RMS or
peak-peak values are dependent of the turbine load. The same problem occurs for
the indicator constructed with SCADA data. To solve this problem local approach
were proposed in [5] where preprocessing are done in order to divide the data into
several operation modes.

In this paper, we propose another way to solve the non-stationarity problem by
comparing wind turbine behaviors in the same farm to detect early failure. In pre-
vious work [6] turbines were compared to monitor production performance. In this
paper, we compare the temperatures, which are fault indicators for overheating. This
new approach is tested on two failures that occurred on the generator, a faulty
bearing and a failure in the cooling system. A method using a mathematical model
describing the variations of the temperature as a function of other variables measured
on one turbine is also presented and the results given by both methods are compared.

The method was initially proposed by [7] and obtained good result for over-
heating and fault detection in the main shaft bearing.
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This paper is divided into 4 sections. In Sect. 2, both approaches are described.
Section 3 gives further details on the database used for validation. The results of the
methods on two different examples of failure are presented and discussed in Sect. 4.

2 Presentation of the Two Methods

Our goal is to develop methods able to detect on line faults that generated over-
heating on a turbine, using SCADA variables. Two different approaches are pro-
posed. They are detailed in this section.

2.1 Comparison with a Wind Farm Reference

One of the main issues with wind turbine monitoring comes from the wind vari-
ability. Because of the frequent changes in the wind speed and nature, the turbines
are almost never at steady state, thus the SCADA measured signals are
non-stationary. Under the assumption that the wind farm is small enough to be
passed through by a unique wind stream, we can consider that all the turbines in this
farm are activated by a similar wind. Moreover, the wind turbines from the same
farm are usually identical. As a result, they should react in the same way to the same
solicitations, which means that all the sensors should measure similar values at the
same time on all the turbines. This is obviously a strong assumption, and in the
reality, due to landscape and different calibration of the sensors, differences
between turbines can be measured. In this approach, we consider that those dif-
ferences are independent of the SCADA variables and remain constant through
time. The objective of this approach is to create a farm reference and use the
distance between a turbine and this reference as a fault indicator that would be
independent of the wind variability. The distance with the reference should remain
constant for a healthy turbine and depend only on the specificity of landscape and
calibration, considered as constant in this basic approach.

A fault in a bearing generally creates an increase in the bearing temperature.
A temperature reference is then created by calculating the median of the bearings
temperatures of all the wind turbines of the farm. Proceeding this way, the variation
between the reference and any turbine should remain similar. The assumption of the
method is that the temperatures should evolve in the same way. This is true pro-
vided that the turbines are in the same operating conditions. Thus, isolated events,
such as a stop of a turbine, are filtered out. From the moment a turbine is stopped
and until a short time after it has been restarted, its temperature is removed from the
calculation of the wind farm reference. The latency period is chosen equal to 3 h.
Thus, the number of turbines used to calculate the reference may change in time.

The temperature of each monitored turbine is compared to the farm temperature
median. This farm temperature reference (median) is calculated using a leave one
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turbine out method, i.e. the temperature of the turbine under consideration is not
used to calculate the reference.

Let i be the number of the monitored turbine and T�
AiðtÞ its corresponding

temperature at time t of the bearing A. The reference temperature of bearing A for
turbine i is:

T�
AREFi tð Þ ¼ medianj¼1 to N TAj tð Þ

� � ð1Þ

with N the number of turbines in operation at time t, and with turbine i excluded.
The residual used as a health indicator is then:

ei tð Þ ¼ T�
Ai tð Þ � T�

AREFi tð Þ ð2Þ

The residual is calculated for each turbine when the T�
Ai and T�

AREFi are relevant,
i.e. when turbine i is in operational mode and when N is strictly higher than 2. Then
the residual is filtered using a moving average on a window of size L equal to 1000
sampling periods, i.e. about one week. This length was chosen by a trial and error
procedure. The detection of a failure is triggered when the residual is superior to a
threshold, ki. Under the assumption that this residual distribution follows a
Gaussian law, a first threshold ki can be proposed as follows:

ki ¼ 3 stdei þmeanei ð3Þ

where stdei represents the standard deviation and meanei the mean of the residual of
the turbine i calculated on a healthy data set.

2.2 Regression Model

Some methods proposed in the literature [1, 5, 7, 8], focus on the use of internal
models. Each turbine is considered independently of the other ones. The health
indicator is created using mathematical relations between some variables measured
on the same turbine. In [7], the temperature of the bearing A is described by:

T�
Aregi tð Þ ¼ aiT

�
Ai t � 1ð Þ þ bini tð Þ þ ciPi tð Þ þ diT

�
nacellei tð Þ ð4Þ

where T�
Ai t � 1ð Þ represents the temperature of turbine i at time t−1 of the bearing A,

ni tð Þ represent the rotation speed of the generator, Pi tð Þ is the generated power, and
T�
nacellei tð Þ is the nacelle temperature. T�

Aregi tð Þ represents the theoretical temperature
of the bearing A used as a reference for this approach. The constants ai; bi; ci; di are
determined using linear regression with historical data.

Each of the chosen variables contributes in the evolution of the bearing tem-
perature in its own way. The power gives information on the energy transmitted via
the wiring resistance to the bearing. The rotation speed gives information about the
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heating coming from the friction between the mobile parts of the bearing. And
finally the nacelle and bearing temperature at t − 1 give information about thermal
inertia. The residual is then the difference between this model and the current
temperature.

ei tð Þ ¼ T�
Ai tð Þ � T�

Aregi tð Þ ð5Þ

The residual is calculated only when the turbine i is operating like in the median
approach presented before. Nevertheless to calculate T�

Aregi all the variables need to
have a valid value. For instance, the nacelle temperature sensor can be broken and
then the reference cannot be calculated. Like in the previous method, a moving
average with a window length L equal to 1000 sampling periods is used and then
the thresholds of each turbine are calculated following Eq. (3).

3 Presentation of the Data Set

A data set formed of several variables recorded every 10 min on 6 identical 2 MW
wind turbines from a French wind farm is available. Each data point comes from the
SCADA and represents the average of the 10 last minutes of the measured variable.
The selected variables are the:

• generated power (0–2 MW)
• rotation speed of the generator train (0–1800 r.p.m)
• bearing temperature (0–60 °C without failure)
• nacelle ambient temperature (0–40 °C)

The data were collected during 2 years from March 2010 to March 2012. During
those 2 years two different faults occurred successively on two different turbines.
The first failure occurred the 28/09/2010 and the second failure occurred from
8/10/2011 to 29/03/2012.

In order to train, validate and test the models, the data base is split in different
time periods. The test periods are the 2 months period before a failure occurs. The
training and validation periods are selected before the test periods. They are formed
of two consecutives data set of the same length of 10,000 points as described in
Fig. 1. The regression model and the detection thresholds are learnt on the learning
period.

As described above, both approaches need specific conditions for the calculation
of the residual. Filtering out all the irrelevant points will delete a large amount of
data point and combined with usual connection loss, only 50 % of the data can be
used for the regression method and only 30 % of the points can be used for the
median method. Nonetheless the remaining data are distributed all along the data
set, allowing us to create a relevant fault indicator.
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4 Results

Both methods presented are tested on two generator failures. The methods are
presented separately and then compared. The first failure occurred on a bearing of
the generator. The bearing was progressively damaged and finally stopped the
turbine. The second failure is a break of the cooling system. It is a sudden failure
that was not detected previously by the SCADA.

4.1 Comparison with a Wind Farm Reference

Bearing failure. Figure 2 represents the residual calculated over the two months
preceding the bearing failure, without any filtering. It is calculated for two turbines,
one healthy turbine in blue and one faulty turbine in red. The failure occurs at the
end of the time period displayed. The machine is stopped the 28/09/2010, at the
very end. One can see that, at the end of the observation period, the residual of
faulty turbine is clearly higher than on the rest of the data set. Moreover, on the
healthy turbine, this increase is not present. The value of thresholds calculated on
those non-filtered residuals (as described in Sect. 2) are given the result in Table 1.
The threshold is calculated using the mean and standard deviation [see Eq. (3)]
calculated on the data of the learning period. The use of this threshold generates

Fig. 1 Organization of data set

Fig. 2 Residual of the median approach on the first failure without filtering
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several false alarms i.e. periods of time during the learning period when the residual
is higher than the threshold value.

Because the residuals can be calculated when the turbines are in operational
mode only, a large number of time periods are excluded. However, the periods
when data are excluded are distributed all along the dataset. The large period of data
exclusion around 15/04 or 16/07/2010 comes essentially from the fact that the
turbines under consideration are not operational at those moments.

In Fig. 3, the residuals filtered using Eq. (2) are now displayed for the same
turbines. The thresholds values are shown in Table 1. The number of false alarms is
now equal to zero and only the faulty turbine has a residual that exceeds the
threshold. The detection occurs the 19/09/2010, i.e. 10 days before the bearing
failure.

Cooling system failure. Figure 4 represents the non-filtered residuals during the
second failure period. Again the residuals are calculated on two turbines, one
healthy turbine (i.e. the same as for the 1st studied case) and the faulty turbine
where the cooling system failure occurs. Comparison between Tables 1 and 2
shows that the value of the mean and standard deviation of the residuals during the
two learning periods are about the same, for the healthy turbine. Tables 1 and 2 also
show that each turbine has a different mean and standard deviation, those differ-
ences between the turbines were expected. They are due to the landscape or the
sensor calibration. Nonetheless, both residuals remain around the same mean all
along the period preceding the occurrence of the fault. When applying the moving
average filter proposed on the residuals, we obtain good results for the detection of
this failure (Fig. 5). The number of false detection is equal to zero, and the cooling
problem is detected the 24/10/2011. The cooling problem was present on this
turbine during 5 months, but our fault indicator does not re-main above the

Table 1 Threshold of the median approach on the bearing failure

Before filtering After filtering

Mean ε Std ε Threshold Mean ε Std ε Threshold

Faulty turbine −1.06 1.28 2.78 −0.399 0.659 1.58

Healthy turbine 1.41 1.57 6.11 1.368 0.763 3.66

Fig. 3 Residual of the median approach on the bearing failure after filtering
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threshold during all this period. The 29/01 and 28/03/2012 the residual decreased
and stayed below the threshold during several days. This non-detection can be
explained by the fact that the turbine stopped, which caused the temperature to
decrease quickly. As expected, once the turbine is restarted, the residual increases
quickly and the fault is once more detected.

4.2 Regression Model

Bearing failure. In Fig. 6 and Table 3, the unfiltered residual obtained with the
regression method is presented for the bearing failure. The residual of the same

Fig. 4 Residual of the median approach on the cooling failure without filtering

Table 2 Threshold of the median approach on the cooling failure

Before filtering After filtering

Mean ε Std ε Threshold Mean ε Std ε Threshold

Faulty turbine −1.591 2.603 6.219 −1.366 1.091 1.906

Healthy turbine 1.170 1.760 6.451 1.140 0.687 3.201

Fig. 5 Residual of the median approach on the cooling failure after filtering
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healthy turbine is also calculated for comparison purposes. The number of periods
when the residual exceeds the threshold is also high with this method, which
requires filtering the residuals. The increase in the residuals values at the end of the
set, where the failure occurs, comfort us that a threshold can be calculated for the
fault detection.

With the moving average filter, the bearing fault is detected firstly the
21/09/2010 then the residual decreases and increases again above the threshold the
25/09/2010 until the bearing breaks the 29/09/2010 as described in Fig. 7. Thus the
real detection is considered to be only 4 days before the total and final bearing
failure. No false detection is observed for the healthy turbine or the learning and
validation part.

Cooling system failure. For the cooling system failure, the residual in Fig. 8 for
the healthy turbine shows higher large values than the other test, especially around
the 1st of March 2012. Again the number of those large values is still too high to

Fig. 6 Residual of the regression approach on the bearing failure without filtering

Table 3 Threshold of the regression approach on the bearing failure

Before filtering After filtering

Mean ε Std ε Threshold Mean ε Std ε Threshold

Faulty turbine 0.03 0.27 0.84 −0.01 0.06 0.17

Healthy turbine 0.07 0.29 0.94 0.08 0.07 0.28

Fig. 7 Residual of the median approach on the bearing failure after filtering
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use this method without filter. We can observe in Tables 3 and 4 that the mean and
standard deviation of the residuals of the healthy turbine are about the same, though
the period of time used to learn them is different. This tends to show that the
parameters of the model do not evolve in time.

In Fig. 9 the cooling system failure is detected on 24/10/2011 by using a filter on
the regression residual. The first important information is that the healthy turbine is
also considered as faulty since its residual reaches and exceeds the threshold. The
residual of the faulty turbine does not remain above the threshold all the time until
the end of the failure period. Three times during the failure period, the residual
decreases because the wind turbine stops, which leads to a decrease of the bearing
temperature. One possible explanation is that because of the duration and frequency
of those stops, the number of points considered for the residual calculation and
filtering dropped. Then the operational range considered for the calculation can be
different.

Fig. 8 Residual of the regression approach on the cooling failure without filtering

Table 4 Threshold of the regression approach on the cooling failure

Before filtering After filtering

Mean ε Std ε Threshold Mean ε Std ε Threshold

Faulty turbine 0.016 0.318 0.969 0.001 0.098 0.296

Healthy turbine 0.004 0.345 1.038 −0.009 0.106 0.310

Fig. 9 Residual of the regression approach on the cooling failure after filtering
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4.3 Comparison and Discussion

The methods presented are capable of detecting the bearing failure without any false
alarm. For the cooling system second failure, only the first method turbine com-
parison does not raise any false alarm. Nonetheless the comparison of the residuals
of the regression model with and without filtering (see Figs. 8 and 9) shows that all
the false alarms are synchronised with a large amount of large values. This means
that if we improve the ways to select the data (i.e. be more restrictive on the
operating conditions), there is a hope that the false alarms could disappear.

If we compare the time of detection between the methods, the comparison with
the farm reference method detects the bearing defect 10 days before the turbine is
stopped by the actual bearing failure, against only 4 days for the regression method.
According to the experts, to be warned 10 days ahead of time of the occurrence of a
failure makes it possible to schedule the repair downtime so as to minimize the loss
in production while 4 days ahead of time is too short to do anything but stop the
machine for safety. In order to improve the detection time we could decrease the
threshold level. Unfortunately the threshold is already close to the residual for the
healthy turbine, which means that when decreasing it the number of false alarms
will increase.

The second failure was detected at the same time by the two approaches, which
is supposed to be the actual time the cooling failure occurred. Both methods were
able to detect the problem while the SCADA system did not create any alarm since
the temperature remained below the alarm threshold. However, both residuals did
not remain above the detection threshold all the time during the faulty period. We
can see that both approaches are still dependant on the operational conditions. The
residual is a distance between a farm reference or a model and it is proportional to
the amplitude of the temperature. When the turbine stops, the temperature
decreases, and the residual also decreases, leading to the non-detection of the
cooling failure.

Finally, the results show that both methods have detected the failures, but the
regression model requires more variables than the median reference approach. This
difference could be critical if all the variables are not available. For instance the
temperature of the nacelle is not a crucial variable, which means that if the sensor
fails, its replacement will not be a priority for the maintenance; as a result the
regression could not be used any longer. The median approach compares variables
from different turbines, and this comparison could be done on any kind of sensor,
unlike the regression model that needs all the variables of the monitored process.
This approach is very basic but proves its efficacy in two different failures. The
wind and other environmental conditions are of course not the same for all the
turbines. Future work will focus on the study of the correlation of environmental
parameters between all the turbines resulting to a correlation of the process variable
such bearing temperatures.
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5 Conclusion

The new approach proposed permitted to detect two failures in a main component
of a wind turbine, using only one variable per turbine. This new method has shown
its potential interest for fault detection and especially for non-stationary systems
like wind turbines. It has also shown that it could be deployed on any kind of
sensors and by doing so keeping the wide scope of monitoring of the SCADA.

Future work will be dedicated to study the correlations between the turbines of a
same farm in order to develop a more efficient method. With the same objective, the
possibility of fusion between the internal model approach and the comparison
between turbines approach could improve the robustness of the detection.
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On Optimal Threshold Selection
for Condition Monitoring

Ðani Juričić, Nada Kocare and Pavle Boškoski

Abstract Well designed features and properly selected detection thresholds are
important prerequisites for reliable performance of the condition monitoring sys-
tems. Ideally, thresholds should be selected in a way that the diagnostic system
keeps alert to the appearance of fault with minimal delay while under normal
conditions false alarms should be avoided. If the thresholds are set too high, missed
alarms may occur while too low values implicate false alarms. In practice
thresholds are often set heuristically by a skilled person for each component of the
machine. The task is nontrivial as usually many thresholds need to be defined.
Moreover, a feature may be related to diverse faults with different sensitivity levels.
Motivated by this issue, the intention of this paper is to lay the basis for rigorous
threshold selection that implies the need for minimal design parameters. The idea is
to first elaborate the probabilistic model of the feature. In order to check the relative
change in the probabilistic pattern, the statistical hypothesis tests are employed.
The only required priors, needed to tune the diagnostic algorithm, are data records
collected under nominal condition and the probability of false alarm (PFA) as a
sole “tuning knob”. Technically, the approach converts into the problem of sta-
tistical hypothesis testing. The performance of the algorithms is preliminarily
confirmed via simulations and a real case study with a motor drive subjected to
imbalance.
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1 Introduction

A systematic approach to the threshold selection renders important for the efficient
realization of the diagnostic system commissioning. Usually a skilled person is
needed to tune the values of the thresholds component by component.

Surprisingly, the problem of threshold selection for monitoring the rotational
machines has attracted relatively limited attention, cf. [1]. Most likely, the reason is
that during a diagnostic system design the majority of effort goes on feature
extraction. Selection of the detection threshold for a well designed feature becomes
the matter of heuristics and engineering pragmatism. In that sense the derivations
often rely on assumption that the statistics of the collected features comply with the
normal distribution. That such an approach is not quite correct, has been clearly
pointed out by Bechhoefer and his co-workers [2]. They showed that the nature of
the traditional condition indicators is non-Gaussian. Sticking to the simple Gaussian
model of the condition indicator, and then selecting the threshold in accordance
with the critical values derived from Gaussian distribution, can also result in high
probabilities of false alarms.

The design of optimal threshold for change detection in signals has been
researched in different monitoring and diagnostics contexts. In the well known book
[3], the fundamental change detection algorithms for model based diagnosis are
summarized based on hypothesis testing. However, in order to design a statistical
decision rule, formulation of the probability density function (pdf) that describes
data in nominal condition must be known. Unfortunately, in reality this is not the
case. Unlike the above mentioned approach, in [4] an optimal threshold is designed
on the basis of features and without a priori known statistics. It is assumed that
features for shaft magnitude and bearing envelope are distributed according to the
Rayleigh distribution. For a given component they are fused into one health indi-
cator (HI), which is function of the distributions. However, to construct a function
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of distributions, features must be independent and identically distributed from each
other, which cannot be performed just with de-correlation as in [4]. In a novel
approach [5] the authors suggest inference using only empirical distributions cap-
tured from data under nominal and current health condition. There is no need for
knowing the parametric pdf’s. Relative change in pdf patterns is obtained from
change in the divergence function which is a measure for the dissimilarity among
the empirical pdf’s.

In this paper we question whether it is possible to deduce the parameterized pdf
of a feature by employing the bottom-up physical modelling. The potential merit of
the approach is that statistical decision making with parametric pdf’s could be
performed on substantially less data than methods relying on non-parametric sta-
tistics. Practically, this means that we can apply shorter data records compared to
the heuristic approaches. Hence we are able to achieve shorter detection times in
applications where high sensitivity of the detection is important.

The paper is organized as follows. In the next section we outline the derivation
of the statistical model of the features. In this preliminary phase we focus on faults,
which affect particular spectral components (like imbalance and eccentricity).
Stationary operating conditions are presumed in this stage of the work. The problem
of optimal threshold selection is then formulated as the problem of statistical
hypothesis testing and is outlined in Sect. 3. Some preliminary simulation and
experimental results serving to better insight are presented in Sect. 4.

2 Statistical Model of the Features

2.1 Data Acquisition Setup

Without loss of generality we assume periodical short sampling sessions are per-
formed at high sampling rates. In most of the machines it is not needed to perform
sampling at all times, unless the criticality conditions implicate continuous sam-
pling. However in such a case the results below apply as well. Each sampling
session is assumed to consist of N samples taken at sampling rate fs.

As soon as a machine is brought to the stable operating conditions, say after the
commissioning or the maintenance intervention, it is mandatory to get recordings
that correspond to the reference condition of the machine. Hence the initial batch of
sessions numbered Pref ¼ f1; 2; . . .;Nrefg, taken on the healthy machine under
nominal condition, are said to belong to the reference window.

When the reference window is over, the comparison of the emerging recordings
with the reference ones can start. For that purpose features obtained from recent
sessions Scur ¼ fK � Ncur þ 1; . . .;Kg, where K is the last session in the current
window, are employed. The number of session in the current window is Ncur.

On Optimal Threshold Selection for Condition Monitoring 239



2.2 Modelling Assumptions

The acquired vibrational signal yðtÞ is assumed to be composed of random multiple
sine waves and additive noise nðtÞ

yðtÞ ¼
XR
r¼1

AðrÞcosð2pfrt þ /ðrÞÞ þ nðtÞ ð1Þ

nðtÞ�Nð0; r2nÞ ð2Þ

The noise term nðtÞ is zero-mean with unknown variance r2n. The amplitudes AðrÞ

are assumed constant during a (short) sampling session but can take random values

from session to session. We assume AðrÞ is Gaussian, i.e. AðrÞ ¼ AðrÞ
0 þ DAðrÞ where

DAðrÞ �N 0; r2DAðrÞ
� �

.

Remark 1 There are various disturbance sources that implicate fluctuations in
amplitude A. For instance, variable load and speed (even when thought to be
constant), variations in temperature, complex dynamics of forces in mechanical
contacts etc. A plausible model for the resulting impact of several independent
random inputs seems to be Gaussian pdf.

Also the phase /ðrÞ is random variable uniformly distributed on interval ½0; 2p�.
The model (3) seems appropriate for explaining certain shaft faults in the rotating
machineries.

In many applications feature extraction is performed by means of linear signal
processing techniques, like Discrete Fourier Transform and Wavelet Transform [6].
Here we will assume stationary operating conditions, therefore we will restrict the
analysis to the Discrete Fourier Transform. A further study, not addressed here,
indicates that results obtained below hold even if the assumptions above are relaxed
so that fluctuations in the operating conditions are allowed, for example because of
varying rotational speed. In that case fr should be treated as random variable as
well.

We additionally assume that the sampling rate is high enough so that the noise
band, remaining after anti-aliasing filtering, is significantly wide compared to the
spectral components under investigation. The assumption of “whiteness” is thus
somewhat conditional but simplifies technical manipulation.

2.3 Statistical Model of the Fourier Spectral Components

Let us assume that after a measurement session is completed, the Discrete time
Fourier Transform (DFT) is applied to the signal yðkTsÞ, where Ts is sampling time.
Assume that the signal contains a spectral component fc, which contains the
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fingerprint of a fault and is therefore appropriate for feature extraction. Let fc
correspond to the mth spectral component meaning fc ¼ mDf where Df ¼ fs

N is
frequency resolution. The mth component of the DFT reads

YðmÞ ¼ 1
N

XN�1

t¼0

yðkÞej2pmtN ð3Þ

Remark 2 Normalization with N in (3) is done in order to express the DFT com-
ponents on the scale close to that of the Fourier series.

After introducing the notation h ¼ 2p m
N and

p ¼ 1 cosht cos 2ht . . . cosðN � 1Þht½ �T

q ¼ 1 sinht sin 2ht . . . sinðN � 1Þht½ �T

n ¼ nð0Þ nð1Þ . . . nðN � 1Þ½ �T

it follows from (3) that the mth spectral component reads

YðmÞ ¼ A
2
ej/ þ 1

N
ðnTpþ jnTqÞ

Note that indexes r are omitted for the sake of simplicity as we focus on the
results obtained from a sampling session. The feature F will be the mth component
in the power spectrum

F ¼ jYðmÞj2 ¼ A
2

� �2

þ A
N

XN�1

t¼0

nðtÞcosðht � /Þ þ nTQn ð4Þ

where

Q ¼ 1
N2 ðppT þ qqTÞ:

It is easily seen that ppT and qqT are each rank one matrix so that their sum
results in a rank two matrix. Moreover, Q� 0 is positive definite matrix.

Remark 3 If fc is not a multiple of Df then the result (4) becomes somewhat more
complicated. However, due to fast sampling, fc is nearly multiple of the frequency
resolution Df and the projection (3) results in a sufficiently accurate evaluation of
the spectral content at fc.

Even in a simple setup above we can see that rigorous characterization of the pdf

of the feature F ¼ jYðmÞj2 in (4) is not trivial. The first term A
2

� �2 should be

On Optimal Threshold Selection for Condition Monitoring 241



considered as random variable. Due to assumption A�NfA0; r2DAg the first
expression is weighted noncentral v2 distribution with one degree of freedom.

In what concerns the last term, one can take into account that Q ¼ UDUT with
all singular values in D being zero with exception of the first two. Since trans-
formation of the random vector n by the unitary matrix U results in uncorrelated
random vector z ¼ UTn the quadratic form reduces to a weighted sum of centrally
distributed random variables nTQn ¼ a

r2n
z21 þ z22
� �

.

The analysis of the middle term reveals that its contribution to the first two
moments of the random variable F is negligible. Since the phase can be assumed
uniformly distributed on interval ½0; 2p� it follows that the expectation E/cosðht �
/Þ ¼ 0 and consequently

E/

XN�1

t¼0

nðtÞcosðht � /Þ ¼ 0

After dropping out the intermediate term, the expression (4) becomes a weighted
sum of noncentral and 2 centrally distributed v2 variables, each with one degree of
freedom. Such a sum can not be described by exact closed-form pdf [7].

The problem of approximation of the weighted sums of noncentral v2 variables
has been addressed by a number of authors, cf. [7] for a comprehensive treatment.
Here we adopt Pearson’s approach [8] to show that the distribution of the
expression (4) is similar to the distribution of the noncentrally distributed v2 var-
iable with 3 degrees of freedom. Although this result looks rather obvious, it takes a
rigorous procedure to show that the approximation is valid. The details will be
omitted and we will mention the main result saying that

F �X � v2ðm; kÞ ð5Þ

where Ω is suitable scalling factor, m ¼ 3 is the degree of freedom and λ is
non-centrality parameter.

2.4 Parameter Estimation

Having a realization of the features F 1;F 1; . . .;FNrf g over the reference window
one can estimate the remaining parameters Ω and λ. We start from the fact that

EF ¼ Xðmþ kÞ ¼ a

E F � að Þ2 ¼ X2ð2mþ 4kÞ ¼ b
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If we use realization F k; k ¼ 1; . . .; nreff g and put

a ¼ 1
Nref

XNref

k¼1

F k

b ¼ 1
Nref

XNref

k¼1

ðF k � aÞ2

the estimate for k̂ is positive root of the algebraic equation

k2 þ 2m� 4a2

b

� �
kþ m2 � 2m

a2

b
¼ 0

while the estimate of Ω reads

X̂ ¼ b
a

mþ k
2mþ 4k

:

3 Statistical Hypothesis Test

After the set of features is collected in a reference window under nominal machine
condition, batches collected during operation of the machine, need to be checked to
make sure whether they share the same statistical properties with those from the
reference set. That means we have to compare two batches of the evaluated features.
The first one contains Nref values Pref ¼ fF j; j ¼ 1; . . .;Nrefg taken under the
nominal health condition. The second one contains Ncur features from the current
window Scur ¼ fF i; i2fK � Ncur þ 1; . . .;K � 1;Kgg. The first set can be regar-
ded as result of sampling from the weighted noncentral v2 distribution
X0 � v2ðm0; k0Þ. In the similar way, the second set emerges from sampling
Xc � v2ðmc; kcÞ.

If there is no change in the system condition, then the statistical properties of
samples in Scur should be equal to the statistical properties of those in Sref . If the
system condition deteriorates, the statistical properties of the feature change, which
normally reflect in first two moments of the distribution. Let us now state the null
hypothesis H0 that the features in current window share the same statistical prop-
erties with those in the reference window. Take the sums Sref ¼

PNref
i¼1 F i and

Scur ¼
PK

i¼K�Ncurþ1 F i: Under the hypothesis H0 both expressions appear to be
realisations of the sums of weighted, independent noncentrally distributed
v2ðm0; k0Þ variables, resulting in the following distributions
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Sref �X0 � v2ðmref ; krefÞ
Scur �X0 � v2ðmcurkcurÞ

where mref ¼ Nrefm0; kref ¼ Nrefk0, ncur ¼ Ncurm0, kcur ¼ Ncurk0. Since Sref and Scur
are statistically independent we propose the test statistic

CIF ¼
Scur
ncur
Sref
nref

¼
Scur=X0
ncur

Sref=X0
nref

¼
v2ðncur ;kcurÞ

ncur
v2ðnref ;kref Þ

nref

ð6Þ

We get random variable CIF which is described by doubly noncentral F dis-
tribution. To explain this, let us remind that if two central v2ðm1Þ and v2ðm2Þ are

independent with m1 and m2 d.o.f. respectively, then F ¼ v2ðm1Þ=m1
v2ðm2Þ=m2 has an

F distribution. When only one of the v2 is noncentral, the ratio F has noncentral F
distribution. If both v2 are noncentral then the ratio

Fðm1; m2; k1; k2Þ ¼ f ¼ v2ðm1; k1Þ=m1
v2ðm2; k2Þ=m2 ð7Þ

turns to what is referred to as doubly noncentral F distribution [9].
We are finally ready to define the null hypothesis

H0 : CIF �Fðmcur; mref ; kcur; krefÞ ð8Þ

versus the alternative hypothesis H1 that CIF is not compliant with the distribution
(6). Hence we reject H0 if

CIF � h ¼ Faðmcur; mref ; kcur; krefÞ ð9Þ

where the term on the right side denotes the critical value of the distribution at the
level of significance α (the tolerated PFA).

The distribution of f in (7) has a peculiar pdf [10]

pðf ; m1; m2; k1; k2Þ ¼ m1
m2

e�
k
2

X1
i¼0

X1
j¼0

k1
2

� �i k2
2

� � j m1f
m2

� 	m1
2þi�1

i!j! 1þ m1f
m2

� 	m1þm2
2 þiþj

B m1
2 þ i; m22 þ j

� �
where Bðp; qÞ is beta-function. The pdf and cdf need to be evaluated numerically.
To do so, we used the saddle point approximation algorithm according to [9].

Remark 4 Note that the d.o.f. mref and mcur depend on whether in fault-free case
there is a sine component at fc or not. In the ideal case A0 ¼ 0 and r2DA ¼ 0 so that
the pdf of (4) is v2 with only 2 d.o.f. and consequently nr ¼ 2Nref and mcur ¼ 2Ncur.
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Hence we could also apply the noncentral F-test instead of (3). However, most often
in applications some component at fc is present so that mref ¼ 3Nref and mcur ¼ 3Ncur

and some non-zero centrality parameters are present as well.

4 The Evaluation Study

4.1 A Simulated Example

We will take a mono-component signal with additive white Gaussian noise

yðtÞ ¼ Ac � sinð2p � fc � t þ /Þ þ nðtÞ; fc ¼ 2Hz ð10Þ

The feature F is component of the power spectrum at f ¼ 2Hz.
By Monte Carlo simulation we obtain a realization of NMC ¼ 1000 signal

waveforms and then calculate the required component of the power spectrum.
Hence we get a realization of NMC values of feature F . First we want to show how
nicely the noncentral v2 distribution fits the empirical distributions at any combi-
nation of noise parameters and amplitude of the sine component. Every fit is
accompanied with the Kolmogorov-Smirnov (KS) test at 1 % of significance level
with focus on p-values. It should be note that the KS test (mostly known from
testing normality of distributions) is used here to “measure” the quality of fit of an
empirical distribution described by a suitable v2 distribution.

In Fig. 1 we have two cases:

(a) Ac ¼ 0; r2DA ¼ 0; r2n ¼ 1 and then
(b) Ac ¼ 1; r2DA ¼ 0:1; r2n ¼ 1.

The first case resembles the situation with perfectly balanced machine. This is a
quite special case as the distribution in (4) reduces to the central v2 distribution with
2 d.o.f. The p-value of the KS test is 0.63.

In the second case we have a signal composed of a sine wave with high additive
noise. The degree of freedom of the random variable (4) now rises to 3. The quality
of fit is confirmed by p-value 0.8 of the KS test. The next example illustrates the
behaviour of the algorithm. The amplitude of the spectral component fc ¼ 20 Hz is
defined by Ac ¼ 0:1 and r2DA ¼ 0:01 and apply to signals taken from 300 reference
session, not shown in Fig. 2. The nominal conditions apply up to the session with
number 350. From 350 on there is a slow drift in the amplitude Ac. The sliding
window used for detection includes 150 sessions. Based on the fitted parameters of
the pdf for the features in the reference window it follows that at a ¼ 0:0006 the
threshold is h = 2.4. The evolution of the test statistics is shown in Fig. 2.
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4.2 EC Motor with Imbalance

First experiments were done with imbalance on an EC motor, which serves to drive
the fan in a ventilator for HVAC systems. The rig (Fig. 3) consists of a fixed
pedestal on top of which a metal disk is positioned. The metal disk holds three
rubber dampers that suspend the tested EC motor. The experiment starts by
positioning the EC motor vertically on the rubber dampers in a way that the drive–
end bearing is at the bottom. An accelerometer is mounted on the motor housing
nearest to the bearings (lower side). Vibration signals were low–pass filtered with
cut–off frequency at 22 kHz. Afterwards, both signals were sampled at 60 kHz.
During the whole data acquisition process the nominal rotational speed of frot ¼
30Hz was maintained. Each acquisition process lasted 8 s. Imbalance was gen-
erated artificially by gluing a mass with 0.5 g on the axis (at the bottom, cf. Fig. 3).
To detect imbalance the spectral component at the rotational speed has to be
analysed.

The results in Fig. 4 are preliminary since rather short reference and current
windows are applied. It is essential to note that the pdf approximation of the data
histogram are considered acceptable by KS test. Right is the time evaluation of the
features after a sudden change in imbalance (caused due to a mounting error) (See
Fig. 4).

Fig. 3 The experimental setup centered around an EC motor. To create imbalance artificially, a
small mass is glued on the axis of the motor (the bottom part)
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5 Conclusion

The paper proposes an approach for setting the thresholds in monitoring of the
rotational machines. The only “tuning knob” needed is the probability of false alarm
(PFA). Fault detection builds on checking whether the normed sum of features
complies with the a doubly noncentral F-distribution. If not, the alarm is triggered.
Preliminary results are assessed on simulated examples and an EC motor. So far
only stationary conditions are assumed although there are good indications that the
results hold for fluctuating operating conditions as well. In the follow-up more
focus will go on further practical assessments, analysis of other faults and potential
robustness of the test with respect to disturbances.
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Diagnostic Features Modeling for Decision
Boundaries Calculation for Maintenance
of Gearboxes Used in Belt Conveyor
System

Paweł K. Stefaniak, Agnieszka Wyłomańska, Radoslaw Zimroz,
Walter Bartelmus and Monika Hardygóra

Abstract Condition-Based maintenance (CBM) becomes more and more popular
in industry. The idea is simple: measure raw data (vibrations, temperatures, etc.),
extract features and make a right decisions regarding replacement of the whole
machine or its component at appropriate time. Right decision might mean simple if-
then-else rule or complex decision making scheme using multidimensional data. In
any case mentioned rules require definition of appropriate thresholds for diagnostic
parameters (i.e. decision boundaries). This is a key problem in CBM. The article
presents the procedure for determining decision thresholds based on statistical
modeling of diagnostic data. In the presented procedure first we fit the suitable
distribution (Weibull) to data set for each gearbox. Next we calculate the fitting
quality measure and select the distribution parameters for well fitted data. Finally,
on the basis of the multidimensional analysis of those parameters we determine
threshold values for the effective identification of the machines’ condition and their
components. It might be interpreted as training process of diagnostic system. From
this phase of the procedure we can obtain thresholds for warning and alarm statuses
and they can be used for classification of rest of the data (that did not pass modeling
phase). Proposed procedure has been applied to relatively large diagnostic data set
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that covers nearly 150 measurements acquired during several years in underground
mine. The data describes gearboxes in different conditions—from nearly new or
after repair to seriously damaged/worn just before failure.

Keywords Belt conveyor � Decision making � Maintenance � Weibull
distribution � Diagnostics
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1 Introduction

In Condition-Based Maintenance (CBM) one might point out two important issues:
(i) how to detect and recognize change of machine condition; (ii) how to estimate
residual lifetime. Term of residual lifetime is related to a period when machine
should be replaced in order to avoid catastrophic failure and eventually repair of
replaced machine will be financially reasonable. The second problem is still kind of
open question. There are many factors that should be taken into account to build up
the prognostic model for belt conveyor drive unit. As it was noticed by Bartelmus
[1] design, production technology, operating conditions (variability of load/speed,
their dynamics, frequent start up/stall of the machine etc.) and different degradation
scenarios might affect gearbox vibration response and consequently provide family
of lifetime curves. At this stage, critical problem is how to find reasonable values of
simple diagnostic features, that might be used for decision making in practical
maintenance management in underground mine. Unfortunately, there are just a few
work available discussing similar problems. They are based on good/bad data sets
statistical modeling for finding single thresholds value, analysis of behavior of data
clouds to find border (hyperplane) between primary data sets or complex proce-
dures that correlate some parameters with models of behaviors for machine during
good and bad condition including influence of varying load [1–19].

How should it be done in ideal case? For stationary case, there are some works
presenting experiments carried out in the lab, where fatigue test were done with
visual inspection of actual condition of gear teeth. When any visual symptoms
appear on the tooth surface, one might define early warning state, then after some
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time of operation, just before failure, alarm threshold could be established. Using
data acquired during experiments one might build a bath curve (known from reli-
ability) and build mentioned before prognostic model [17, 20, 21].

How it works in real case? Let’s consider an underground mine with nearly 100
gearboxes. There are several types of gearboxes, they are mounted in drive units
with various technical configuration (different couplings, different drive units used
for drive conveyors, different percentage of operation per day etc., different
power…). It leads to set of design factors. Gearboxes operate in different mining
zones, where assumed volume of transported materials, time of operation per day,
temperature, humidity and level of dust might be very different for each zone and
might vary in time. It leads to set of operational and environmental factors, that
might significantly influence degradation processes. Finally, these gearboxes are
two- or three-stages gearboxes. Maintenance staff is interested in detailed knowl-
edge, which bearings/gears should be replaced. There is often a case when two or
more degradation processes occur simultaneously (for different components of
gearbox). Depending on mentioned operational and environmental factors, as well
as design (bevel or cylindrical stage…) degradation processes might be fairly
complex. What does it mean practically? There are many issues to consider during
decision boundaries calculations. For sure, it is too expensive to do lab experiments
for each case. So, one should base on passive experiments only (just observe and
use data driven approaches). An automatic, simple procedure is expected.

The paper is organized as follow: first brief description of the belt conveyor and
whole transportation system is provided including basic description of experiments,
data acquisition/diagnostic tools and method and data set using in this work. Next,
procedure of data processing for thresholds finding is presented. Finally, application
of the method to real data with some discussion is provided.

2 Belt Conveyors Network and Data Acquisition
Module—Basic Information

The belt conveyor network is a main continuous transportation system using in
underground mines. For example, in one of them is exploited over 82 belt con-
veyors with total length of routes exceeding 50 km. Problem of management of this
network deals both with its spatially distribution in extensive area and large amount
of its key components. Let’s imagine that this network is driven by over 220 drive
units. So, in this reality the failure event of any component may cause directly
stoppage of whole technological line—what is really unfavorable both from view
point of economic and safety. Thus, the keeping the maintenance focusing on
improvement of efficiency, reliability and reduction of repair costs seem to be
justified. To maintain such a complex system there was a need to build a Decision
Support System [15, 22] (called Diag Manager) using condition based maintenance
approach. Data acquisition module (dedicated to Diag Manager system) consists of
two layers: (a) sensors layer and (b) control and measurement layer. First of them is
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composed of accelerometers placed on gearbox housing and tachometer probe
directed toward gearbox input shaft in order to measure its rotational speed, Fig. 1.

Next, acquired vibration signals are processed for purpose of extraction of diag-
nostic feature. The procedure is based on Bartelmus method [2–4] and comes down
to the three-way split of the signal spectrum (0–100 Hz range relates to shaft oper-
ation, 100–3500 Hz range relates to gears operations, over 3500 Hz range deals with
bearings operations). Obtained 3 parameters are called DF1–DF3 (DF = Diagnostic
Feature). In this paper we will discuss DF2 (describing gear pair) only.

Fig. 1 a Diagram of the vibration data acquisition module with an exemplary arrangement of the
measurement points. The measurement module consists of notebook and sensors layer, b real
object in underground mine during measurement

Fig. 2 The input data set: 155 measurements (60 samples of DF2 and rotational speed per single
measurement). The diagnostic features’ diversity is closely linked to external load and technical
condition of gearboxes. It can be easily noticed, that depending on external load and technical
condition both mean value of diagnostic features and scatters of their data clouds are different
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In next step, spectral components in particular ranges are summed up (it might
be interpreted as energy in these bands) and this way diagnostic features are
extracted. Figure 2 shows population of 155 measurements of DF2 diagnostic
feature describing technical condition of gears in function of rotational speed. These
data clouds have been acquired from one type of gearboxes at irregular intervals in
period 2010–2014. What is really important here is a disposal of knowledge about
what data clouds represent gearboxes in good condition and which behaviors of
these syndromes indicate an improper gearbox operation. It was proved in [2–4]
that mining machines require to take into account the feature-external load relation
in correlation with degradation process’ progress. In Fig. 2 DF2 versus rotational
input speed is shown.

3 Procedure of Decision Boundaries Estimation Using
Weibull Distribution Modeling and Parameters
Classification

The procedure of decision boundaries estimation is based on the modeling of the
diagnostic features by using translatedWeibull distribution and analysis of the quality
of the Weibull distribution fit. The scheme of the proposed procedure is as follows:

First, for the diagnostic features we fit the translated Weibull distribution. Let us
emphasize the translated Weibull distribution (called later Weibull) [7, 23] is
defined through the probability density function as follows:

f xð Þ ¼ s
b

x� m
b

� �s�1

e�
x�m
bð Þs ; x�m: ð1Þ

The Weibull distribution (known also as Frechet distribution [8]) is therefore
characterized by three parameters: shift parameter m, which can be any real number,
scale parameter β > 0 and shape parameter τ > 0. This distribution is an extension of
the Pareto one. The Pareto distribution found interesting applications, for example it
was used for distributions’ modeling of diagnostic features in condition monitoring
of mining machines [14]. We should mention here the right tail [24] of the Weibull
distributed random variable X has the following form:

T xð Þ ¼ P X[ xð Þ ¼ e�
x�m
bð Þs ; x�m: ð2Þ

In the further analysis Eq. (2) is a starting point to estimate the parameters of
Weibull distribution, as well as to check the quality of the Weibull distribution fit.

The main properties of Weibull distribution one can find for example in [7]. We
only mention here all the moments of the Weibull distributed random variables
exist and the moment generating function as well as characteristic function have
explicit form.
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In the first step of the estimation procedure of Weibull distributed random
sample X1, X2,… Xn we estimate the parameter m which is equal to the minimum of
the observed values. Next, the τ parameter is estimated. Namely, to the empirical
right tail we fit the theoretical one given in Eq. (2). Since for large values of

argument of tail function the expression x�m
b

� �
behaves like (x − m) then to the

empirical tail we fit (by using the least squares method) the function e�ðx�mÞs taking
instead of m its estimator calculated in the first step. On the basis of the fitted
function we calculate the τ parameter. Let us remind the empirical tail is an esti-
mator of theoretical one calculated on the basis of random sample X1, X2, … Xn and
takes the following form:

bT ðxÞ ¼ 1
n

Xn
i¼1

1 Xi [ xf g; ð3Þ

where 1fAg is an indicator of the set A.
In the last step we have to estimate the β parameter. In order to do this we

calculate the empirical median on the basis of given random sample and compare it
to the theoretical median of Weibull distribution that is given by:

me Xð Þ ¼ b logð2Þ1=s: ð4Þ

Taking instead of τ its estimator calculated in the previous step and instead of
theoretical median its empirical counterpart we estimate the β parameter. In the next
step of our procedure of decision boundaries estimation we analyze the quality of fit
the Weibull distribution to the diagnostic features. More precisely, for each diag-
nostic feature we calculate the mean square error between the empirical tail cal-
culated by using Eq. (3) and theoretical one given in (2) for estimated parameters of
Weibull distribution. The mean square error is therefore calculated as:

MSE ¼ 1
k

Xk
i¼1

TðxiÞ � bT ðxiÞ� �2
; ð5Þ

where x1, x2, … xk are arguments of the empirical tail.
Next, we choose such diagnostic features for which the calculated MSEs do not

exceed the given threshold. For those features we plot the empirical tails. On the
basis of empirical tails we can conclude on the decision boundaries.

In the last step we apply the same boundaries that we calculated for diagnostic
features with small MSEs to the diagnostic features with MSEs that exceed the
given threshold.

The scheme of the procedure is presented in Fig. 3.
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4 Application to Real Data

In this section we present the application of described decision boundaries esti-
mation procedure to real data i.e. diagnostic features DF2.

As it was mentioned in the previous section, to examined diagnostic features first
we fit the Weibull distribution and estimate its parameters. In Fig. 4 we present the
estimated parameters m, β and τ for 155 examined vector of observations.

Next, we analyze the mean square error of the Weibull distribution fit calculated
on the basis of Eq. (5). In Fig. 5 we present the MSE as well as the chosen threshold
that is equal to 0.08.

In Fig. 6 we show the empirical right tails for diagnostic features for which the
MSEs are greater than the chosen threshold while in Fig. 7 we present the empirical
right tails of diagnostic features with MSEs smaller than the given threshold.
Moreover in Fig. 7 we indicate decision boundaries, i.e. 660 and 1100.

The empirical tails for the diagnostic features with good fit after application the
decision thresholds we present in Fig. 8. The three presented groups correspond to
good, warning and alarm state. In Fig. 9 we present the diagnostic feature DF2

Fig. 3 Scheme of the procedure for definition of decision boundaries using Weibull distribution
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(with good fit) in rotational speed function after applying the decision threshold
procedure.

As it was mentioned in the previous section, in the last step of our procedure we
use the same thresholds calculated on the basis of empirical tails for DF2 diagnostic
features of good fit and apply them to the DF2 with poor fit. In Fig. 10 we present
the final result of classification for all DF2 diagnostic features.
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5 Conclusions

The problem of decision boundaries finding i.e. diagnostic thresholds for gearbox
condition based maintenance is discussed. These gearboxes are used in belt con-
veyor driving units operated in underground mine. A core of the proposed method
is statistical modeling of the diagnostic data set. For each data set describing single
gearbox we have tried to fit Weibull distribution to real data. Obtained parameters
plus a measure evaluating quality of such modeling (MSE) have been basis for next
step of the procedure. We have noticed that empirical tails of diagnostic features
create three separable groups of characteristics. We identified ID of each curve and
used this information to group more intuitive data for engineers, namely diagnostic
features DF2 plotted versus rotational speeds. The final conclusion is very positive,
our result seriously converge to previous approaches. The advantage of this
approach is that it might be realized in automatic way and doesn’t require diag-
nostic intuition or experience.
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Vertical Axis Wind Turbine States
Classification by an ART-2 Neural
Network with a Stereographic Projection
as a Signal Normalization
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Mateusz Wójcik and Mirosław Włuka

Abstract A common technique used to decrease a cost of wind turbine mainte-
nance is a remote monitoring. Apart from the development of several advanced
diagnostic methods for wind turbines there is a need to prepare an early warning
tool which would work continuously in real-time and focus the attention on
potentially dangerous cases. A research using the resonance neural networks made
so far by the authors gave positive results. Systems based on the ART-2 networks
were able to perform a classification of operational states of a horizontal axis wind
turbine. In this paper the innovative idea of using the ART-2 network is applied to
data from vertical axis wind turbines. The system, which were composed by ART-2
and new signal normalization procedures based on a stereographic projection, was
implemented and tested. Simulations of a system operation showed that it is capable
to perform an efficient state classification.
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1 Introduction

A common technique used to decrease a cost of wind turbine maintenance is a
remote monitoring [1]. Large development of monitoring and diagnostic technol-
ogies for wind turbines has taken place in recent years. The growing number of
installed systems created the need for analysis of gigabytes of data created every
day by these systems. Apart from the development of several advanced diagnostic
methods for this type of machinery there is a need to prepare an early warning tool
which would work continuously in real-time and focus the attention on potentially
dangerous cases. There were several attempts to develop such tools, in most cases
based on various classification methods [2, 3]. A research using the resonance
neural networks (ART networks) made so far by the authors gave positive results
[4–6]. Systems based on the ART-2 networks were able to perform a classification
of operational states of a horizontal axis wind turbine. In his paper the idea of using
the ART-2 network is applied to data from vertical axis wind turbines. Application
of neural networks in this area of research is innovative. It is shown that operational
data from vertical-type wind turbine differ significantly from the ones obtained from
horizontal turbines [4, 5]. This makes the classification of machine operational
states difficult. It was shown that the ART-2 network is not able to work effectively
on this kind of vertical data due to the network architecture limits. Therefore, two
new signal normalization procedures were introduced. They are based on the idea
of a stereographic projection which can transform data to a form appropriate for the
ART-2 network processing. The system, which were composed by using the
aforementioned procedures, was implemented and tested. Results of simulations of
a system operation were analyzed.

The paper is organized in the following way. In the next section the architecture
and basic properties of ART neural networks are briefly recalled. The input signal
normalization procedure is discussed in Sect. 3 whereas its implementation details
in the context of the input data processing for the ART network is described in
Sect. 4. The results are shown in Sect. 5 and discussion is presented in the last
section.
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2 ART-2 Network as Unsupervised Classifier

Let us recall briefly basic properties of ART-2 neural network—see [4, 7, 8] for
details. The ART-2 is an unsupervised neural network based on adaptive resonance
theory (ART). A typical ART-2 architecture, introduced by Carpenter and
Grossberg [7, 9], is presented in Fig. 1 (only one unit of each type is shown here).
In the attentional sub-system, an input pattern s is first presented to the F1 layer,
which consists of six kinds of units—the W, X, U, V, P and Q cells. It then
undergoes a process of activation, including normalization, noise suppression and
updating. This results in an output pattern p from the F1 layer. Responding to this
output pattern, an activation is produced across F2 layer through bottom-up weights
bij. As the F2 layer is a competitive layer with a winner-takes-all mode, only one
stored pattern is a winner. It also represents the best matching pattern for the input
pattern at the F1 layer. Furthermore, the pattern of activation on the F2 layer brings
about an output pattern that is sent back to the F1 layer via top–down weights tji.
For the orienting sub-system, it contains a reset mechanism R and a vigilance
parameter q to check for the similarity between the output pattern from the F2 layer
and the original input pattern from the F1 layer. If both patterns are concordant, the
neural network enters a resonant state where the adaptation of the stored pattern is
performed. Otherwise, the neural network will assign an uncommitted (inhibitory)

Fig. 1 ART-2 architecture
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node on the F2 layer for this input pattern, and thereafter, learn and transform it into
a new stored pattern.

The ART-2 network had already been used by the authors to solve clustering
problem in data from wind turbine monitoring [4–6]. It worked satisfactorily for
available low-dimensional data from horizontal axis wind turbines, but encountered
some barriers while clustering some new high dimensional data. The source and the
specifics of mentioned barriers can be simply visualized in the case of
two-dimensional data—see Fig. 2. When the network weights are interpreted as 2-d
vector patterns, there is possibility that many input points, which can also be
interpreted as vectors, are “similar” to one of network pattern even if the Euclidean
distance between them is large. These difficulties are also observed for vertical axis
wind turbines data and even if low-dimensional data, i.e. only operational states of
turbines, were analyzed.

3 Input Signals Normalization

Let us describe the introduced normalization procedures. A normalization proce-
dure corresponds to founding a mapping

F : Rn � A 3 X ! ~x 2 Rk; where ~xk k ¼ 1

The most commonly used normalization is done according to the formula
~x ¼ x

xk k. This formula defines the projection

Fig. 2 The problem of clustering using ART-2 network. Data points D1, D2 and D3 are processed
by ART-2 network as normalized vectors E1, E2 and E3. Vectors E1, E2 have similar angle
distance then pattern P1, while E3 is close to P2. It means that the points D1 and D2 are classified
as the same group which is differ then D3. Assuming Euclidean distance, the classification is
incorrect—distance |D1D2| could be even several times greater than |D1D3| and D1 point is
always classified as the same group as D2, but mostly differ then D3
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P : Rn n 0f g ! Sn�1 � Rn;

Let us call it a simple projection, of Rn \ {0} onto (n−1)-dimensional sphere Sn−1—
see Fig. 3 for n = 2.

A simple projection, however, has crucial drawbacks. First of all data dimension
is reduced. Secondly, the projection is not defined on the whole space—the map-
ping is undefined for 0. Furthermore, the space Rn that has an infinite measure is
projected onto a sphere that has a finite measure. Additionally, the projection is not
an injective mapping—if two points, say u and w, lie on the same radial line then
Π(u) = Π(w)—see Fig. 3. This means that if two data clusters are situated along the
same radial direction then, after normalization, they cannot be separated even they
are well separated before normalization. Therefore, this method should be used only
in such cases if it is a priori known that clusters in input signal space are situated in
various radial directions. Therefore sometimes normalization which do not reduce
the input signals space dimension is applied. The stereographic projection

S : Rn ! Sn � Rnþ1;

is an example of such a mapping. Geometric interpretation of the stereographic
projection is visualized in Fig. 4 for the two-dimensional case. Stereographic pro-
jection is given explicitly by algebraic formulae for each natural n—see, for instance
[10] p. 73. Let P ¼ x1; . . .; xnð Þ. Then S Pð Þ ¼ ~P ¼ ~x1; . . .;~xnþ1ð Þ is given as

~xi ¼ 4xi
4þ s

for i ¼ 1; . . .; n

Fig. 3 Simple projection of
R2
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~xnþ1 ¼ s� 4
4þ s

; ð1Þ

where s :¼ Pn
i¼1

x2i �
As it has been aforementioned, the stereographic projection preserves the

transformed space dimension and is defined on the whole Rn. Furthermore it is an
injective mapping i.e. if S(u) = S(v), then u = v. It transforms, however, a space
which has infinite measure into space which has finite measure. This implied,
among others, that points that are far from each other in Rn can be closed each to
other on Sn. Therefore, two clusters which are well separated in Rn can be hardly
separated after normalization. However such case can only take place if the clusters
are far from the coordinate system origin—then they are transformed near to the
north pole of the sphere. Since, in practice, norms of transformed vectors are
limited, the minimal distance between clusters after signal normalization can be
estimated.

4 Adaptation of a Stereographic Projection to ART-2
Network with Data Scaling

The described stereographic projection can be used as a normalization procedure of
input data of neural networks that is able to process the full range of numbers from
the set R. However, because the ART-2 networks are not able to recognize and store
negative values, the input data should be additionally preprocessed just before the
normalization. Use of a simple data in each dimension are scaled to a designated
interval [a, b] by the following formula:

ViðkÞ :¼ ViðkÞ �min VðkÞð Þ
max VðkÞð Þ ðb� aÞ þ a ð2Þ

Optionally, before scaling, a following data transformation from VN �
RN to $V 02N � R2N is possible:

Fig. 4 Stereographic projection of R2
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if ViðkÞ� 0 then

V 0
i ð2k � 1Þ :¼ ViðkÞ

V 0
i ð2kÞ :¼ 0

Else

V 0
i ð2k � 1Þ :¼ 0

V 0
i ð2kÞ :¼ ViðkÞ

This kind of transformation increases a space’s dimension twice, but allows to
separate the negative values, what can save some additional information. Despite
the data scaling to the interval [a, b] such that the normalization defined by Eq. 1
presents the data in a positive part of a sphere, an interpretation of some of these
data is opposite to the radial distance metrics. Patterns with values close to a are
projected onto the equator so that their radial distances are large. In addition, if the
value b is large then the patterns with large values, which, prior to the normalization
are perpendicular to each other, after the normalization are not—radial distance
between them can be small. Therefore, in addition to data scaling, the modification
of classical stereographic normalization defined as Eq. 1 is needed to apply it to the
ART-2 network. Such modification may be a reversal of the poles—of the pro-
jection’s direction—Eq. 3. Vectors close to zero are then projected on a north pole.

If the sphere has a radius equal to 1 and if the scaling range is, 0; 1ffiffi
2

p
h i

; then the

largest values will be projected on the equator.

~xi ¼ 2xi
1þ s

for i ¼ 1; . . .; n

~xnþ1 ¼ sþ 1
s� 1

;

ð3Þ

where s :¼ Pn
i¼1

x2i

5 Results

The experiment was performed by using data from one of vertical axis of wind
turbine prototypes. The data covering the period from 18.04.2014 till 24.04.2014
were recorded every 1 s by the online register system. The data set contained only
the basic values that define the operational state of the turbine: wind speed, rota-
tional speed of the rotor and the power generated by the turbine. They are related,
but only to some extent and in fact they are all independent variables. The recorded
data were not averaged. The data set included 500,000 measurements. In the
experiment the results of classification, obtained by ART-2 network, were
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compared with the classification done by a human expert. Typically, the space of
operation states of a wind turbine can be divided in a few distinct clusters: the
stopped state, the idle load state, the low, the middle and the high generated power
states. Very important advantage of the chosen data set is that it has only 3 variables
and can be presented in a graphical way.

Thus, it can be easily visualized and a classification by a human expert can be
done easily. The main idea of the research was to apply recorded data to the ART-2
network and to investigate what is its behavior i.e. how many states will be created
in various time of processing. In all experiments the vigilance parameter ρ belongs

Fig. 5 Vertical axis wind turbine’s operational states classification by the system of the ART-2
neural network and the stereographic projection normalization. The upper plot shows starting
10,000 data points of a full data set (500,000 points) placed in the lower plot
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to the interval [0, 1]. The example of clustering performed by ART-2 network for
vigilance parameter ρ = 0.75 with transforming input signals using stereographic
projection including adaptation described in Sect. 4 is shown in Figs. 5 and 6
(projection on two dimensions—rotation speed and power). This example presents
how the system of the ART-2 neural network processes data in a real-time scenario.
Real-time processing was simulated by passing each data point to network only
once, in a specified time order.

Fig. 6 2-D (rotation speed,
power) projection of the
classification presented in
Fig. 5
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6 Concluding Remarks

The presented results belong to a broader research activity, aimed at automatic
monitoring of rotating machinery. We are interested in investigation of several
approaches, which can be applied in the engineering practice [11–14]. The results
described in this paper show that the ART-2 neural network is capable to classify
typical states of a vertical axis wind turbine correctly. The ART-2 combined with
the described preprocessing of input data has properly allocated classes corre-
sponding to stopped state, idle load state, low and high generated power states. It
turns out that the classification carried out by the used neural network and the one
done by a human expert are much of a muchness.

Acknowledgments The paper was supported by the National Centre for Research and
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Electric Motor Bearing Diagnosis Based
on Vibration Signal Analysis and Artificial
Neural Networks Optimized
by the Genetic Algorithm

Fenineche Hocine and Felkaoui Ahmed

Abstract The artificial neural networks (ANN) by their capacities of training,
classification, and decision, give a solution to bearing diagnosis problem by the
automatic classification of the vibratory signals corresponding to the various states
the machines. They are intended to increase the precision(accuracy) and to reduce
errors caused by subjective human judgments. However it is important to note that
the ANNs in the aids to diagnosis must be set for optimum performance. The
non-existence of predefined rules for ANNs parameters setting (number of hidden
neurons in each hidden layers etc…) obstruct the achievement of optimal perfor-
mances. The use of genetic algorithm (GA) can solve this problem by the param-
eters and structure optimization of ANN. This paper discusses the use of the ANN
multilayer Perceptron (MLP), for the diagnosis of electric motor bearings, by the
automatic classification of the various operating conditions the machine .The sig-
nals taken from the experimental test rig are processed by using various methods of
signal processing. The calculated indicators were used to build the patterns vector,
which is used for the following to train and test of the network. The GA are used to
search(optimize) the structure and the various parameters of the network, which
simplifies the neural network structure and makes the training process more efficient
and giving the best performances of the network.
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1 Introduction

Rolling element bearings are widely used elements in electric motors. Their failure
is one of the most frequent reasons for electric motor breakdown. In order to
enhance motor’s reliability and reduce maintenance cost, bearing condition moni-
toring becomes an important measure to ensure machine safety [1].

Considerable research has been carried out previously to develop various
algorithms and methods for bearing fault detection and diagnosis [2–6].

Nowadays, Artificial Neural Network (ANN) are proving their effectiveness in
several research areas especially for classification problems in many different
environments, including business, science and engineering. The ANN is an infor-
mation processing paradigm inspired by biological nervous systems [7]. The human
learning process maybe partially automated with ANN’s. It can be configured for a
specific application, such as pattern recognition or data classification, through a
learning process. As the neural network theory is still in progress, there is not a set
of ways to guide the design process. Now, the design of neural network and finding
the optimal parameters in order to maximize the performance of ANN is one of the
major challenges in the uses of ANN [8].
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2 Background

2.1 Rolling Element Bearings

The main components of rolling bearings are: the inner ring; the outer ring, the
rolling elements and the cage (Fig. 1). Typically, the inner ring of the bearing is
mounted on a rotating shaft, and the outer ring is mounted to a stationary housing.
Commonly rolling elements are balls or rollers. The roller elements transfer the load
over a very small surface (ideally, point contact) on the raceways [9].

Local or wear defects cause periodic impulses in vibration signals. Amplitude
and periodic of these impulses are related to the shaft rotational speed and fault
location. The formula for the various defect frequencies is given by:

Ball pass frequency, outer race:

BPFO ¼ nfr
2

1� d
D
cos að Þ

� �
ð1Þ

Ball pass frequency, inner race:

BPFI ¼ nfr
2

1þ d
D
cosðaÞ

� �
ð2Þ

Fundamental train frequency (cage speed):

FTF ¼ fr
2

1� d
D
cos að Þ

� �
ð3Þ

Fig. 1 Components of the bearing
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Ball (roller) spins frequency:

BSF ¼ D
2d

1� d
D
cos að Þ2

� �
ð4Þ

where fr is the shaft speed, n is the number of rolling elements, and α is the angle of
the load from the radial plane. Note that the ball spin frequency (BSF) is the
frequency with which the fault strikes the same race (inner or outer).

2.2 Bearing Fault Diagnosis Techniques

A wide variety of techniques, were developed for the detection and diagnosis of
faults in rolling element bearings. They have been introduced to inspect raw
vibration signals. These algorithms can be classified into time domain, frequency
domain, time- frequency domain, higher order spectral analysis, and model based
techniques [10, 11].

2.3 MultiLayer Perceptron (MLP)

The multilayer Perceptron (MLP) is the simplest and most known type of neural
networks. Its structure, showed by Fig. 2, is relatively simple: an input layer, an
output layer and one or more hidden layers. Each neuron is connected fully to the
neurons of its preceding and the following layers [12].

MLP is one of the most successful feed-forward neural networks for diagnosis.
A review of some works on fault diagnosis vibration based on ANN has been
presented in [13].

Fig. 2 Multi-layer perceptron
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The challenges for constructing a MLP network are: the determination of a
sufficient number of hidden layers; neurons within each layer; learning rate; the
activation function, and the connections initial weights. These parameters have a
great impact on the learning methods convergence. Although a formal methodology
to express the number of hidden neurons does not been developed yet. Many
studies on this subject were launched [14–20]. However, as a known fact more
neurons and layers in the network result a longer training period and convergence
problems.

2.4 Genetic Algorithms (GA)

The Genetic Algorithm (GA) has been introduced by J. HOLLAND to solve a large
number of complex optimization problems. Each solution represents an individual
coded in one or several chromosomes. These chromosomes represent the problem’s
variables. First, an initial population composed by a fixed number of individuals is
generated; then, an operator of reproduction is applied on a number of individuals
selected according to their fitness score. This procedure is repeated until the
maximum number of iterations is reached. GA has been applied in a large number
of optimization problems in several domains, telecommunication, routing, sched-
uling, and it proves its efficiency to obtain a good solution [21].

2.5 Artificial Neural Networks Optimized by the Genetic
Algorithm

However it is important to note that the ANNs parameters (number of hidden
neurons in each layer, number of hidden layers etc.) (Fig. 3), in the aids to diagnosis
must be set for optimum performance.

These parameters are often chosen empirically seeking desired results, which
makes the use of this method very difficult. In this work GA are proposed for the
optimization and the search of the best(optimal)structure and parameters of ANN.

3 Materials and Methods

In this research work, the procedure of diagnosis consists of two stages, namely
preprocessing using some signal processing methods for feature extraction, and the
design of the appropriate neural network.
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3.1 Data Acquisition

The experimented data base was extracted from the test rig shown in Fig. 4.
The web site provides access to ball bearing test data for normal and faulty

bearings [23]. Experiments were conducted using a 2HP Reliance Electric motor,
and acceleration data was measured at locations near to and remote from the motor
bearings. These web pages are unique in that the actual test conditions of the motor
as well as the bearing fault status have been carefully documented for each
experiment Motor bearings were seeded with faults using electro-discharge
machining (EDM). Faults ranging from 0.17 mm in diameter to 0.71 mm in

Fig. 3 Scheme of optimization of ANN by GA

Fig. 4 a The bearing test rig. b The schematic description of the test rig. [22]
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diameter were introduced separately at the inner raceway, rolling element (i.e. ball)
and outer raceway. Faulted bearings were reinstalled into the test motor vibration
data was recorded for motor loads of 0–3 horsepower (motor speeds of 1797–
1720 RPM).Vibration data was collected using accelerometers, attached to the
housing with magnetic bases. Accelerometers were placed at the 12 o’clock posi-
tion at both the drive end and fan end of the motor housing. The time domain
presentation of signal is shown in Fig. 5.

3.2 Fault Diagnosis Scheme

The flow chart of the Bearing fault diagnosis based on ANN is shown as Fig. 6.

4 Results and Discussion

4.1 Preprocessing of Vibration Signals

A signal conditioning step is required to remove useless information, and facilitate
the task of indicators extraction from each signal the some of the most commonly

Fig. 5 The time domain signal
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used indicators for bearing monitoring were extracted [24–27], namely: the RMS
value, crest factor, peak to peak value, kurtosis, and the energy from the spectrum
envelope.

After a preliminary analysis [28], we chose to calculate these indicators as
follows:

Time domain indicators Each signal was pass band filtered in four adjacent 1.5 kHz
band: [1–1500 Hz], [1500–3000 Hz], [3000–4500 HZ], [4500–6000 Hz] and [1–
6000 Hz]. From each filtered signal were extracted: RMS, Crest factor, Crest-Crest
Value and Kurtosis. Figure 7 presents the variation of time domain indicators.

Frequency domain indicators The frequencies domain indicators are calculated
from the spectrum envelope in five frequency bands: [1–1000 Hz], [1000–
2000 Hz], [2000–3000 Hz], [3000–4000 Hz], [4000–5000 Hz] and [1000–
6000 Hz]. The variation of Frequency domain indicators are shown as Fig. 8.

Fig. 6 Bearing fault diagnosis scheme
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4.2 Constitution of the Patterns Vector (Networks Input)

The patterns vector is consisted of the described above time and frequency domain
indicators. The data that have been be treated, categorized, and stored in an
observations/variables array.

4.3 Choice of the Classes (Networks Output)

The networks output vector contains the various classes corresponding to each
operating conditions from the experimental test rig. five classes fixed, each one of
them corresponds to a defect diameter. Table 1 represents the labeling of the various
studied classes.

Fig. 7 Variation of time domain indicators

Fig. 8 Variation of frequency domain indicators
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4.4 Data Normalization

To improve the performance of the MLP, normalization of patterns vector data was
done. The obtained database was divided in three parts: training set, test and val-
idation set. the used normalization formula is given below,

xij ¼ xij � mj

rj
ð5Þ

where
rj is the standard deviation (SD) of du jth parameter
mj Is the average

4.5 The Neural Network Configuration

The employed MLP was configured as follow (Table 2) [29, 30].

Table 1 Labeling of the
classes(Inputs)

Classes Fault diameter Labels

1 Without fault 10000

2 0.17 mm 01000

3 0.35 mm 00100

4 0.53 mm 00010

5 0.71 mm 00001

Table 2 Neural network
configuration

Parameters Value/type Comment

Total set 140 –

Input 26 Monitoring
indicators

Hidden layer 1 –

Output 5 Classes

Transfer function tansig Hidden layer

Transfer function Purelin Output layer

Learning
algorithm

Backpropagation –

Performance Mse Mean square error
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4.6 The Genetic Algorithms

GAhave been used in different ways in optimizingANN; of themost common seeks the
optimization the elements of the pattern vector (training data and test data) [31–33].

In our papers, GAs were applied to optimize the number of neurons in the hidden
layer MLP. In this purpose, we created a fitness function whose formula is as
follows [34].

F ¼ C � ðE � HÞ=Hmax ð6Þ

C is a constant
E is the minimum error(performance)
H is the number of neurons in the hidden layer
Hmax is the maximum value of the neurons in the hidden layer

4.7 Results

The number of hidden neurons in the hidden layer range from 1 to 20, in order to
obtain the optimal value that gives the best performance of classification.

So, for the GA we use the following parameters:

• 15 populations
• mutation rate 0.05
• crossover rate 0.9
• binary coding

Figure 9 shows that the value of the objective function is minimal for a number
of hidden neuron equal 2.

Fig. 9 Optimal hidden neurons number
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So we can conclude that the number of neuron in the hidden layer that gives us
the best performance is 2 neurons.

5 Conclusion

The present article describes the use of ANN to automate the electric motor bearing
diagnosis, based on vibration signal analysis. Initially, the vibration signals collected
from the test bench (Bearing Data Center) are preprocessed, to extract the monitoring
indicators most appropriate to the health of the experimental device. Then we built the
database used to training and testing the MLP. Various possible kinds of faults (five
diameters) have been taken into consideration into this work. However, the ANN per-
formance depending on the size of the training data set, the size of the ANN (the number
of hidden layers and number of neurons per hidden layer). In order to finding the optimal
value of the number of hidden neurons, we use the GA. That allow us to obtain the value
that give us the best performance of ANN. We have stressed, that the efficiency of the
optimization depends of the choice the GA parameters.
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Center, Case Western Reserve University, Cleveland, for his experimental data provided.
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Gear Fault Diagnosis Based on Angular
Measurements and Support Vector
Machines in Normal and Nonstationary
Conditions

Semchedine Fedala, Didier Rémond, Rabah Zegadi
and Ahmed Felkaoui

Abstract Contrary to time-sampled acceleration signals (TA), angular measure-
ments like instantaneous angular speed (IAS), transmission error (TE), and angular
sampled acceleration (AA) represent all potential sources of relevant information in
fault detection and diagnosis systems, but also to construct feature vector (FV) to
make the methods of classification robust and effective even for different running
speed or load conditions. In this work, we propose to use angular measurements and
support vector machines (SVM) to detect and diagnose gear faults in normal and
nonstationary conditions. For this purpose, features are extracted from angular and
angle frequency domains of AA, TE, and IAS. Then, the classification is performed
by SVM in order to improve the detection and identification of gear defects.

Keywords Fault diagnosis Gearbox � Angular measurements � Nonstationary
conditions � Multiclass support vector machines
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1 Introduction

Condition monitoring of rotating machines is one of the areas of engineering that is
gaining importance in industry. Its role is to ensure the continuity of operation of
mechanical systems in factories, in order to limit production losses due to unex-
pected failures [1, 2]. This monitoring can be automated by implementing classi-
fication methods [3]. The performances of these methods are closely related to the
relevance of fault indicators from response signals making up the feature vectors
(FV) of these classification methods. The FV must be able to describe the different
operation modes or system damage, and also reflect the precise definition of the
classes that represent the different operation modes [4]. Generally, the indicators are
based on analysis of signals provided by the sensors installed on the monitored
system (accelerations, speeds, torques, currents, voltage, etc.) and must be also
constructed automatically to ensure the most robust analysis (independent of speed
and load variations). Current research on the automation of vibration diagnosis is
mainly based on indicators extracted from the time-sampled acceleration signals
(TA) [3, 4]. The major drawback of these signals is their sensitivity to operating
speed conditions, particularly in nonstationary conditions. Therefore, there is a
variation in the number of samples acquired by revolution but also changes in
excitation frequencies related to the discrete geometry in rotation. In this context, it
is difficult (or impossible in nonstationary conditions) to identify a characteristic
frequency in the spectrum in an automated manner. One alternative is to have
angularly sampled signals, which ensures a constant integer number of samples per
revolution and by getting rid of speed fluctuations. Furthermore, the assessment of
the interest frequency component level may be biased by the phenomenon of
“picket fence effect” [5]. However, several possible solutions are proposed to obtain
sampled angularly signals [6, 7]:

• Direct angular sampling, where the signal from encoder mounted on a shaft of
the rotating machine is directly used to realize the angular sampling. This signal
is used as an external clock for the data acquisition card. Each rising edge
triggers the acquisition of the sample and the accelerometer signal conversion or
any other analog signal. This technique remains costly and constraining on the
experimental point of view (need of a DAQ and acquisition environment with
this feature).
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• The angular resampling, unlike the previous method, does not require to invest
in an expensive instrumentation. It involves sampling the accelerometer and the
encoder signals separately by conventional acquisition in time domain, usually
at high frequency. Then it is sufficient to determine the instants corresponding to
each angle position by interpolation, time locations where the acceleration signal
is resampled by software interpolation. This method is limited in frequency.

Both solutions can advantageously be supplemented by an intermediate tech-
nique called counting which enables us to determine the time of appearance of the
edges in signal delivered by the encoder(s) with a better precision.

Knowledge of the occurrence instants of angular events from one or more
angular sensors also opens other perspectives since it allows access to new char-
acteristic quantities of the operation of the rotating machine. The knowledge of
these moments of angular sampling is indeed very interesting because

• It offers the possibility to calculate several other signals, in particular the
transmission error (TE) [5] and instantaneous angular speed (IAS) [8–10]

• It allows to get a large number and a variety of indicators if one wants to build a
FV to automate the diagnosis from these signals.

In this paper, several angular sampling signatures (AA, TE, and IAS) are
determined to monitor different operating modes. For this purpose, features are
extracted from angular and angle frequency domains. Then, the classification is
performed by multiclass support vector machines (SVM) for the improvement of
the detection and identification of gear defects. The methodology is applied in
healthy conditions, then for five pinion faults with different running speed and load
conditions. The experimental results prove the efficiency of angular indicators by
increasing performance of the classification.

The first part of the paper provides an overview of existing angular techniques
and measuring principle. Then, the description of the experimental device as well as
the various test conditions are described. Afterwards, we present the analysis of the
characteristics of the measured variables and the different indicators introduced as a
FV. Finally, we compare the performances of the SVM classification for these
different FVs in order to show the advantages of the proposed approach.

2 Measuring Principle

The use of high-resolution optical encoders, i.e., having a large number of pulses
per revolution, offers the possibility to measure the angular displacement, and by
consequence the TE as angular phase difference between the different shafts
forming a gearbox. The principle of this measurement is based on counting the
number of pulses supplied by a very high frequency clock between two rising edges
of the signals from the two optical encoders. This count should be carried out
simultaneously on both channels and with the same time reference, that is to say the
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same clock and the same counter. These allow us to get a solid time reference for
each channel encoder and to measure the simultaneous difference between them [5].
Then it is possible to reconstruct the history of the angular positions of the encoders
according to time or angular references and with a sampling given by the number of
lines on each encoder Fig. 1a.

The reconstruction of TE signal occurs, for example, each time a new edge
appears on encoder #1. It will thus be sampled at a constant angular spacing
depending on the position of the shaft #1 and will be an estimate of the TE
angularly sampled in reference to the shaft carrying encoder #1. To determine the
value of the position of the shaft #2, it needs only to interpolate the position of the
second shaft at the instant of appearance of the forehead on channel #1 Fig. 1b.

Expression of TE will be rebuilt taking into account the gear ratio numerically, at
the instants corresponding to events of encoder 1, and may be written as follows [5]:

Dha1 ið Þ ¼ h1 ið Þ � Z2
Z1

h2 ið Þ ¼ iDh1 � Z2
Z1

h2 ið Þ ð1Þ

with
Z1 the number of teeth of the pinion,
Z2 the number of teeth of the toothed wheel,
h1 the angular position of the pinion,
h2 the angular position of the toothed wheel.

Each encoder can also determine a variable with information on the presence of
defects which is changes in IAS [8]. The clock counter counts the number of rising
edges between two pulses Fig. 1a. The reconstruction of the IAS signal is directly
calculated by the following formula [9]:

xi ¼ 2p
Nf

60 fh
Ni

ðrd/minÞ ð2Þ

Fig. 1 Principle of angular measurement. a Building of angular position laws for the pinion and
the wheel. b Angular method of reconstitution of the transmission error
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with
Ni number of pulses of the clock at the frequency fh Hzð Þ between two rising edges

in the encoder signal,
Nf resolution of the encoder.

The resampling of the angular acceleration signal is performed by interpolating
the acceleration signal at the instants corresponding to each angular position of the
encoder and will be the signal called Angular sampled Acceleration (AA) [5].

As an example of construction of indicators and of automation of their extrac-
tion, the power spectral density is a very useful tool for the diagnosis of faults in
rotating machinery. If one wants to get an accurate resolution in a spectral repre-
sentation, it requires a high number of samples and thus a long recording time [1].
However, we know that the rotation speed varies continuously. Consequently, the
peak that we hope observe will become inevitably a wide frequency band as the
occurrence events frequency representing defects is proportional to the rotational
speed in the case of a rotating discrete geometry. Therefore, the major risk is to
stock information on bands superimposed on each other. The use of the Fourier
transform on an angularly sampled rather than time-sampled signal overcomes the
rotating speed variations and allows to consider directly the characteristic fre-
quencies of the different signals. For instance, the frequencies of observation of the
gears are no more changed by the rotational speed of the machine, but are directly
observable peaks corresponding to the number of gear teeth [5]. Thus, the fre-
quency channel of interest for the gear will be directly identified from the kine-
matics of the machine and the acquisition parameters (resolution of optical encoder
and length of acquisition).

3 Test Bed and Experimental Protocol

The test bed Fig. 3 used in this study consists of two rotating shafts, on which are
mounted a pinion and a spur gear offering a gear ratio of 25/56. To compare the
effectiveness of methods of analysis, we used six pinions with different fault states.
The first one is referred as Good (G), whereas the others have several different types
of defects: a Root Crack (RC), a Chipped Tooth in Width (CTW), a Chipped Tooth
in Length (CTL), a Missing Tooth (MT), and General Surface Wear (GSW) as
shown in Fig. 2. Three pinions are simultaneously mounted on the input shaft of the
gearbox, the engagement change is done by a simple axial movement of the wheel
on its axis Fig. 3b.

The input shaft is driven by an electric DC motor controlled in rotational speed.
The engine ensures a maximum speed of 3600 rpm. The output shaft is connected
to a magnetic powder brake capable of generating different resistive torques. To
record vibration signals, two accelerometers (sensitivity: 100 mV/g) are mounted
radially, one vertically and the other horizontally on the outer surface of the bearing
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case of the output shaft of the gearbox as shown in Fig. 3c. To measure the angular
positions of the shafts, two optical encoders of 2500 pulses per revolution are
mounted at the free ends of the two shafts of the gearbox Fig. 3a. The clock
frequency of the counting acquisition system is 80 MHz, generally considered
sufficient to locate the rising edges of the encoder signals. The time sampling
frequency of the accelerometer channels is 125 kHz. The cutoff frequency of the
anti-aliasing filter is 27 kHz. The acquisition duration is 30 s. The accelerometer
signals and the angular positions have been recorded for different operating con-
ditions by varying the rotation speed and the resistant torque for each of the six
gears used (Table 1). Each test is repeated ten times for normal conditions (Fig. 5
(1)) and five times for nonstationary conditions, in order to have a sufficient number
of signals for the training and testing of SVM. In total, 1590 records have therefore
been made, 265 records for each class of operation.

For the nonstationary running conditions two strategies have been used:

• Load variation: for the five RPMs used (Table 1) the load balances suddenly
from the no-load to under load operation (Fig. 5(2)), repeated several times
during the acquisition time. Two resistive torques are used, 5 and 8 Nm.

Fig. 2 View of six used pinions. a G. b RC. c CTW. d CTL. e MT. f GSW

(a)

(c)

(b)

Fig. 3 The test bed (a), location of pinions (b) and sensors (c)
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• Speed variation: for the three couples used (0, 5, and 8 Nm), speed increases
gradually until an approximated value of 50 Hz, then decreases with the same
manner till the end of acquisition (Fig. 5(3)).

4 Experimental Part

The flowchart in Fig. 4 shows a complete overview of signals and analysis used in
this study. From records made on the test bench, several signals are implemented in
order to extract different types of indicators to build multiple FVs, which after-
wards, will be used in classification procedure.

The full FV is composed simultaneously of all indicators extracted from all
signals and ranked as follows:

Full FV ¼ FV1 1 to 15ð Þ; FV2 16 to 30ð Þ; FV3 31 to 45ð Þ; FV4 46 to 60ð Þf g

4.1 Feature Extraction

The feature extraction stage is one of the most important stages in the pattern
recognition process. The purpose of feature extraction is twofold; first, feature
extraction is an attempt to reduce the dimensionality of the data presented to the
classifier, without diminishing the content presented in the data. Second, feature
extraction is intended to turn vibration signatures into indicators information that
the classifier can use more usefully [3].

Table 1 Running conditions

Fault description Conditions RPMs (r/min) Load
(Nm)

Number of
signals

Good Normal (stationary) 900, 1200, 1500,
1800, 2400

0, 5, 8, 11 1200

Root crack

Chipped tooth in
width

Nonstationary Load 900, 1200, 1500,
1800, 2400

Load
variation

300

– 0 and 5

Chipped tooth in
length

– 0 and 8

Missing tooth Speed Speed variation 0, 5, 8 90

General surface
wear
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4.1.1 Signal Analysis (Angular Features Extraction)

Figure 5a 1, 2 and signals of the vertical accelerometer resampled in angular
positions 3 represent the accelerometer of the input shaft (AAv/1): in normal
conditions, load variation and speed variation, for the different pinions used.

The presence of defects on the pinion causes:

• A significant increase in the energy of the angular signals,
• As for localized defects, a presence of a shock repeated at every revolution

period.

The angular sampling method in reference to the encoder #1 was used because it
is the element affected by the defect, and we reconstructed the TE of the pinion
from (1). The TEs signals (TE/1) shown in Fig. 5b 1, 2, and 3 clearly show
low-frequency components corresponding to the rotation speed of the shaft, and the
passage of the teeth at higher frequencies. We also note that the energy depends on
the type of fault. The IAS1 signals are calculated from (2), using the encoder signal
mounted on the input shaft of the gearbox where pinions with defects are mounted
on. Figure 5c 1, 2, and 3 clearly shows the presence of a defect that is manifested by
an increase in IAS. The used signals are processed to extract five angular domain

Gearbox

Accelerometers Optical encoders

Angular samplingAngular resampling

AAv/1 AAh/1 TE/1 IAS1

5 angular and 10 orders frequency domain features

FV1 FV2 FV3 FV4 Full FV

Train one-against-one multi-class SVM using k-fold cross-validation

Diagnosis result (Gearbox condition)

Fig. 4 Flowchart of preprocessing, FVs extraction and multiclass SVM-based faults diagnosis
system
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features commonly used in literature, which are RMS, variance, crest factor, kur-
tosis, and skewness. The definitions of these features can be found in [2].

4.1.2 Spectral Analysis (Spectra Features Extraction)

Spectral data has been one of the most effective forms of feature extraction used in
condition monitoring. As many of the machines monitored are rotational, many of
the faults that exhibit themselves are frequency related. Where the construction of
these machines is also known, it is a comparatively simple matter to calculate the
frequencies at which certain defects would be likely to occur [1, 2]. However,
reading frequency plots, identifying harmonic peaks, and giving confident diag-
noses of problems are a skilled task and require experience. Spectral information is
still very useful for providing information for classifiers, and as a result, it was used
as one of the methods of features extraction.
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Fig. 5 Presentation of different signals in normal (1) and nonstationary conditions (2 and 3).
a AAv/1, b TE/1, c IAS1. for pinions: Good (G), Root Crack (RC), Chipped Tooth in Width
(CTW), Chipped Tooth in length (CTL), Missing Tooth (MT) and General Surface Wear (GSW)
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The spectral field of the angular signals: AAv1, TE/1, and IAS1, presented,
respectively, in Fig. 6a–c, give a considerable advantage, due to the frequency of
observation of gears being not changed by the rotational speed, but are directly
observable at the main orders:

• channel 1 and its harmonics for localized defects,
• channel 25 corresponding to the number of teeth of the pinion (Z = 25) and its

harmonics, for generalized defects.

So, the presence of the fault on the pinion causes a number of events per
revolution, the significant increase in the peak amplitude of the frequency channel
corresponding either to the number of teeth of the pinion (Z = 25) for generalized
defects, or on the frequency channel 1 for localized defects. We also remark an
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Fig. 6 Event spectra of angular signals in normal (1) and nonstationary conditions (2 and 3):
a Event spectra of ASAv1. b Event spectra of TE/1. c Event spectra of IAS1, using pinions: Good
(G), Root Crack (RC), Chipped Tooth in Width (CTW), Chipped Tooth in length (CTL), Missing
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increase in energy of the intermediate levels. It is found that the positions of these
peaks will remain fixed despite variations in speed from one test to another, whereas
the amplitudes vary in a different way from one frequency channel to another and
depending on the type of fault. Consequently, it is a source of building highly
relevant indicators. These figures are used to track with precision the frequency
components associated to the different types of defects and to the supervised
geometrics (number of teeth of the pinion), whether they are localized or gen-
eralized. These amplitudes are subsequently used as indicators in the FVs.

4.2 Feature Vectors (FVs)

We propose to use a several FVs of 15 features according to the flowchart given in
Fig. 4. They are summarized in Table 2. All used signals are processed to extract:

• five angular domain features: RMS, variance, crest factor, kurtosis and
skewness,

• ten orders frequency domain features from the angularly sampled signals.

Table 2 Description of the
features

Indicators Domain AAv/1 AAh/1 TE/1 IAS1

1 Angular RMS

2 Variance

3 Crest factor

4 Kurtosis

5 Skewness

6 Frequency The level of order 1

7 The level of order 25

8 The level of order 50

9 The level of order 75

10 The level of order 100

11 The sum of the levels of the 2nd to
24th order

12 The sum of the levels of the 26th
to 49th order

13 The sum of the levels of the 51st
to 74th order

14 The sum of the levels of the 76th
to 99th order

15 The sum of the levels of the 101st
to 124th order
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4.3 Classification Procedure

After this learning step, the classification of the tested experiment is performed
using multiclass SVM. First the detection is performed by testing if the FV belongs
to the default class or to the healthy class. In case of default detection, the FV is
compared with all the default classes for identification.

4.3.1 Support Vector Machine Theory

The SVM, proposed by Vapnik [11], is one of the most powerful algorithms in
classification [12–17]. The basic principle of SVM is to separate two classes with
optimal hyperplane which maximizes the margin between the separating hyperplane
Fig. 7.

To describe the algorithm of SVM, let us consider the set P that trains the SVM
classifier:

P ¼ xi; yið Þ; xi 2 Rm; yi2 �1; 1f gni�1 i ¼ 1; 2; . . .; n ð5Þ

where xi represents an input vector containing m indicators of a n samples training
set, while yi is the desired output (yi ¼ 1 for positive class and yi ¼ �1 for negative
class).

In the case of linearly separated data, the separating hyperplane f xð Þ ¼ 0 can be
expressed as

f xð Þ ¼ wTxþ b ¼
Xn
i¼1

wixi þ b ¼ 0 ð6Þ

where w is a weight vector and the scalar b is the bias.

Class 1

Class 2

Support vectors

-b/||w||

Fig. 7 Separation of two
classes by SVM
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The separating hyperplane must satisfy the equation,

yif xið Þ ¼ yiðwTxi þ bÞ � 1� 1 ð7Þ

The Euclidean distance of any point that lies on either of the two hyperplanes is
equal to 1= wk k. Maximizing the margin 2= wk k is equivalent to minimizing w2

�� ��.
The solution is found after solving the following quadratic optimization problem:

minimize 1
2 w2
�� ��þ C

Pn
i¼1

ni

subject to yiðwTxi þ bÞ� 1� ni;
ni � 0;

�
i ¼ 1; . . .; n

ð8Þ

where C is the regularization parameter and ξ is the slack variables.
Using the Lagrangian optimization method, the above equation can be presented

as

maximize W að Þ ¼Pn
i¼1

ai � 1
2

Pn
i;j¼1 aiajyiyjðxi; xjÞ

subject to
0� ai �CPn
i¼1

aiyi ¼ 0

8<
: i ¼ 1; . . .;N

ð9Þ

For the case of nonlinear separability in feature space, the kernel function is
introduced in the last equation in order to transform the input vectors into a
high-dimensional feature space, where the linear separation is possible. Thus, the
inner product (xi, xj) (Eq. 6) is replaced by a kernel function K(xi, xj), as shown in
the following equation:

W að Þ ¼
Xn
i¼1

ai � 1
2

Xn
i;j¼1

aiajyiyjKðxi; xjÞ ð10Þ

Finally, based on the optimal hyperplane, the optimal classification function can
be given as

f xð Þ ¼ sign
Xn
i;j¼1

aiyiKðxi; xjÞ þ b

 !
ð11Þ

The kernel functions commonly used in SVM’s formulations are: Linear,
polynomial, sigmoid and radial basis function (RBF), etc. In this study, we opted
for a cubic polynomial kernel.
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4.3.2 Multiclass SVM

The discussion above deals with binary classification where the class labels can take
only two values: 1 and −1. Generally, in the rotating machineries there are several
fault classes such as gear faults, mechanical unbalances, misalignments, bearing
faults, etc. In the gear fault also several faults appear like the wear of teeth, the MT,
the chipped tooth, the RC, etc. Consequently, an appropriate multiclass method is
needed. A number of possible methods for this purpose are as follows [18]:

• Modifying the design of the SVM to incorporate the multiclass learning directly
in the quadratic solving algorithm,

• Combining several binary classifiers with two methods:
• One-against-one, which applies pair comparisons between classes
• One-against-all, which compares a given class with all the other classes.

According to a comparison study of Weston and Watkins [19], the accuracy of
these methods is almost the same. Hsu and Lin [20] gave a detailed comparison of
different methods for the multiclass SVM and concluded that one against-one
(OAO) is a competitive approach.

5 Classification Results and Discussions

In the present work, we have several types of defects, so it is important to not only
detect these defects (detection stage) but also to classify them (identification stage).
For this, a SVM classifier is specifically used at each stage of diagnosis: the
detection stage, where the training set consists only of examples in normal and fault
conditions (2 classes) and the identification stage, where the training set consists
only of examples in fault conditions (5 classes).

Here, we have applied the OAO approach for the multiclass classification using
10-fold cross-validation (CV). The data is divided arbitrarily into 10 portions.
Every part is held out in turn and the learning scheme trained on the remaining
nine-tenths, then its cross-validation accuracy (CVA) is calculated on the hold out
set. Thus the learning procedure is executed 10 times on different training sets.
Finally, the 10 CVA estimates are averaged to get an overall CVA estimate. The
classification accuracy is the percentage of number of correctly predicted data with
respect to the total number of testing data. The 10-fold CV is used to reduce the bias
related with random sampling of the training and test sets. The CVA is the average
of the k individual accuracy measures:

CVA ¼ 1
k

Xk
j¼1

Aj ð12Þ
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where k (10 in our case) is the number of folds used,
and Aj is the accuracy measure of each fold, j = 1,…, k
where N is the number of classes, N (N − 1)/2 classifiers are constructed, and each
one trains data from classification is considered to be a voting, where votes could
be casted for two classes. In the identification stage, we use a voting strategy in
which each binary all data points, x, at the end a point is designated to be in a class
with the maximum number of votes [14, 18–20].

The CVA of SVM classification in detection and identification stages, in normal
conditions, load variation, speed variation, and combined conditions, is shown
respectively in Fig. 8a–d.

The results of Fig. 8 show the performance of the classification for detection and
identification stages. It appears clearly that

– In the normal condition (Fig. 8a), we remark that all used FVs give high per-
formances. Varying between a minimum value of 99.76 % for AA and a
maximum value of 99.85 % for IASI (identification stage). This latest per-
centage is in fact higher than those of full FV.

– In nonstationary conditions:
– Load variation (Fig. 8b), for all used FVs, the diagnosis success is larger than

96.67 % and reaches a value of 100 % for IAS (detection stage).

(a) (b)

(c) (d)

Fig. 8 Graphical representation of CVA of SVM classifiers. a Normal conditions. b Load
variation. c Speed variation. d Combined conditions
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– Speed variation (Fig. 8c), in the identification stage, the CVA achieves only
80.4 % for AA FV, and 88.8 % for full FV. The reason for this poor perfor-
mance is not clear, it may be caused by:

The randomness variation of speed during signals acquisition
Vibrations signatures behave as the same way for certain:

Gear faults (e.g., CTL and MT)
No-load conditions (0 Nm)

After the remove of all FVs of the unload mode from training and test
databases, the performance levels rise significantly (Fig. 9a), 100 % in the
detection stage and higher than 92.67 % for the identification stage.

– In the combined conditions (Fig. 8d), it is found that the designed SVM clas-
sifier can diagnose all gear faults accurately. Especially when we remove the
unload mode (Fig. 9b)

Generally, The AA and TE give good performances in certain cases, but the IAS
provides the best performances in all cases. Moreover, it ensures the same rates of
detection given by FVs composed simultaneously of all indicators.

6 Conclusion

In this article, we showed that starting from two accelerometers and two optical
encoders; it is possible to obtain several new signals representative of the behavior
of the transmission, (i.e., TE and IAS of the two shafts). The techniques of angular
sampling and resampling associated to the knowledge of the history of the angular
positions of the shafts also make it possible to diversify the exploitation and the
analysis carried out on the signals recorded in direct relationship with the discrete
geometry in rotation (gears or bearings). The angular techniques are more robust in

(a) (b)

Fig. 9 Graphical representation of CVA of SVM classifiers without consideration of the unload
mode. a Speed variation. b Combined conditions
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nonstationary conditions. They indeed make it possible to locate precisely and in
relation to the geometrical data of the mechanical components the frequential
channels carrying information.

In a general way, the results obtained in operational phases of the diagnosis by
multiclass SVM classifier using k-fold cross-validation, show that the gain in terms
of effectiveness is significant in all cases while using FVs extracted from angular
measurements. More especially, the IAS is relevant and produces better perfor-
mances. The angular resampling of the accelerometer signals AA gives good per-
formances. In consequence, using angular domain features extracted from IAS is
recommended to the diagnosis of the gear faults in normal, nonstationary or
combined conditions.
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Diversity Measures in Classifier Ensembles
Used for Rotating Machinery Fault
Diagnosis

Wojciech Jamrozik

Abstract Recent progress in computational intelligence, sensor technology and
soft computing methods permit the use of complex systems to achieve diagnostic
process goal. Among many, machine learning and pattern recognition techniques
are often applied. When dealing with complex machinery use of one classifier is
often insufficient. It is known that classifier ensembles (combined prediction from
several classifiers) have the capability to outperform single classifier, because
ensemble results are less dependent on peculiarities of a single training set.
Additionally a combination of multiple classifiers may learn a more expressive
class. In the paper a comparative study of different diversity measures for the
rotating machine common faults detection and isolation. The main premise was to
investigate if there is a link between diversity measure and classification accuracy.
Although in several cases the connection between diversity and fault detection as
well as isolation performance was revealed, the generalization of the diversity
measuring concept cannot be clearly formulated.

Keywords Classifier fusion � Information diversity � Dempster-Shafer theory �
Rotating machinery diagnosing
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1 Introduction

Monitoring and diagnosing rotating machinery, especially in non-stationary oper-
ating conditions is a vital and very important issue. Diagnosing tasks is in general
made by Fault Detection and Isolation (FDI) systems. First aim of this group of
systems is to determine whether a fault has occurred (fault detection). When
developing a diagnostic system, the interest is not only to accomplish the faults
detectability but in many cases it is rather more desirable to specify the kind of the
fault that has occurred in observing system, thus realizing the fault isolation.

Different methods to achieve demanded goal depending on the machine’s
complexity, the type of fault to be detected, etc. are proposed by various authors [1,
2]. The fault diagnosis (FDI) demands determining the relations existing between
the measured symptoms and the faults pattern recognition approaches are used, and
diagnosing is treated as a problem of classification. Unfortunately classifiers are
often trained over limited data and required estimation of the target function [3]. To
overcome limitations of individual classifiers combination (fusion) technique were
introduced and also successfully applied into technical diagnostic domain [4–6].

There are various ways to build a classifiers ensemble: use of different subsets of
features, use of different classification algorithms within the ensemble, variation of
random parameters of the classification algorithm, use of different data set for each
ensemble member. Regardless of the ensemble there is the aggregation (combi-
nation, fusion) stage required. Label outputs and continuous-valued outputs fusion
can be perform. Among continuous-valued outputs fusion methods based on the
belief function framework (Dempster-Shafer, Transferable Belief Model,
Dezert-Smarandache) are popular and widely applied [7, 8].

In the area of classifier fusion the diversity among classifiers is well intuitively
understood. There is no explicit measure of diversity involved in the process but it
is assumed that diversity is a key factor for the success of this algorithm.
Additionally when dealing with the classifier fusion that use techniques based on
the belief functions theory there is another factor concerning the relationship among
processed data namely dependence of sources of evidence.

In the paper research devoted to the problem how are the diversity measures
related to the accuracy of the team. Additionally issues connected with the influence
of the dependence of evidence sources on the team accuracy and its connection to
the diversity terms are investigated.
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1.1 Overview of Dempster-Shafer Theory

The belief functions theory, also called evidence theory or Dempster-Shafer theory
(DS) [9, 10] is based on the use of functions defined on the power set 2H (the set of
all the subsets of H), where H ¼ fh1; h2; . . .; hng is the set of elements called frame
if discernment (e.g. machinery conditions and faults). Objects of 2H can be built
upon [ operator, in other words if A;B 2 2H, then A[B 2 2H, wherefore two or
mode elements of H cannot occur simultaneously. The restriction that elements of
H are truly exclusive is one of cornerstones of so called Shafer’s model. Belief
functions or basic belief assignments, mð�Þ are defined by the mapping of the power
set 2H onto [0, 1] interval with: mð;Þ ¼ 0, which is the hypothesis of a closed world
[10], and

P
X22H mðXÞ ¼ 1.

The first combination rule proposed by Dempster and Shafer is the normalized
conjunctive combination rule given for two basic belief assignments m1 and m2 and
for all X 2 2H; X 6¼ ; by:

mDSðXÞ ¼ 1
1� k

X
A\B¼X

m1ðAÞm2ðBÞ; ð1Þ

where k ¼ P
A\B¼; m1ðAÞm2ðBÞ is the global conflict of the combination.

Despite many successful applications of DS in many areas, the key element of
theory, namely Dempster’s rule can give in several cases counter-intuitive results,
what was first pointed out by Zadeh [11] and more recently by Dezert et al. [12].

1.2 Diversity Measures

Intuitively, an ensemble of classifiers work the best when outputs of individual
classifier are mostly good but at the same time there is a significant diversity among
them. Thus the diversity is a vital factor of ensemble success, while in the case
when all classifiers outputs are the same, aggregation will not lead to a solution that
outperform the individual ensemble members. The main question is how to define
an measure of diversity, how it reflects on classification results and how different
measures are related to each other. In the area of general classification and clus-
tering problems there were comprehensive studies made and many interesting
measures of diversity elaborated, verified and validated [13–16]. The main con-
clusion that arise from already made research is that diversity is needed but there is
no general and universal measure well suitable for all classification and clustering
tasks.
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In order to investigate whether diversity influences classifier fusion results in the
field of rotating machinery FDI nine measures were chosen:

• Q-statistic (Q; #1), pairwise measure [13, 17],
• Correlation coefficient (q; #), pairwise measure [18],
• Disagreement measure (D; "), pairwise measure [19],
• Double-fault measure (DF; #), pairwise measure [20],
• Kohavi-Wolpert variance (KW ; "), non-pairwise measure [21],
• Interrater agreement (j; #), non-pairwise measure [22],
• Entropy measure (Ent; "), non-pairwise measure [23],
• Measure of difficulty (Dif ; #), non-pairwise measure [24],
• Generalized diversity (GD; "), non-pairwise measure [25].

Although continuous valued outputs of classifier are possible to obtain all
averaged diversity measures are dealing with oracle outputs. Thus some informa-
tion provides is lost and does not took part in diversity calculation procedure.

1.3 Dependency Measure

When combination of classifier is made in the DS framework, beside diversity, the
dependency of sources ia an important issue. The sources independence is one of
the key foundations of belief function combination. Combining dependent belief,
that give strong support to one element of frame of discernment that stands for one
machine fault. Fusion using standard DS rules will artificially increase the belief in
some fault hypothesis, that eventually can be a false one.

In this context it can be seen that multiple fusion of same belief function is made.
When n identical the belief functions e are combined by conjunctive rule so called
autoconflict increases [26]. According to that e tends to eðYÞ ¼ 1 when n ! 1.

To measure the degree of dependence between evidences the concept of han-
dling dependent evidence proposed by Guralnik et al. [27] was adopted and
transformed into a form of sources of evidence dependence factor. For the rotating
machinery most common is the measuring of vibrations. When measuring same
quantity, like vibration acceleration, following levels of dependency can be listed:
measurement point, direction of measurement, signal feature and classifier.
Considering case, when classifiers of the same type, with the same parameters are
used, the transformation that lead to calculation of feature value (which have
influence on the classifier output) can be formulated in the form of following
equation: ft ¼ gi hj xkð Þ� �

, where ft is the feature, gið�Þ is the transformation form
raw signal to feature value, hjð�Þ is the direction of vibrations and xk stands for point
of measurement. For the set of features ft ¼ ft1; . . .; ftNð Þ used to train individual

1The arrow specifies whether greater diversity is reflected in greater ð"Þ or lower ð#Þ diversity
measure value.
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classifiers of the ensemble, overall degree of dependence between N sources of
evidence is defined as follows:

Wnz ftð Þ ¼
PN

a¼1 wa

N
ð2Þ

where:

wa ¼
0 for fta 2 ft 9ftb 2 ft xa 6¼ xbð Þ
1=3 for fta 2 ft 9ftb 2 ft hað�Þ 6¼ hbð�Þ; xa ¼ xbð Þ
2=3 for fta 2 ft 9ftb 2 ft gað�Þ 6¼ gbð�Þ; hað�Þ ¼ hbð�Þ; xa ¼ xbð Þ
1 otherwise

8>><
>>: ð3Þ

Additionally fta ¼ ga ha xað Þð Þ and ftb ¼ gb hb xbð Þð Þ, signals ha xað Þ and hb xbð Þ were
acquired in the same time.

2 Case Study

In order to investigate the connection between the classification accuracy, in
machinery fault detection, isolation and diversity measures active experiment was
prepared and carried out.

2.1 Test Setup

The method has been verified using a set of vibration signals recorded during active
diagnostic experiments performed on laboratory stand containing a model of
rotating machinery (Fig. 1). Following machinery conditions were simulated: S1—
no fault, S2—small unbalance (6.21 g), S3—large unbalance (12.43 g), S4—mis-
alignment (0.5 mm), S5—pump with 10 % throttling. For each condition 20 real-
izations of signal were recorded. Unbalance was simulated by adding an additional
mass (screw) to the balancing disk mounted on the rotor. Misalignment was also
introduced in the Y-Z plane across the rigid coupling. In this scenario a steel shim
was installed under the bearing housing B1, to obtain angular misalignment.

Fig. 1 Experimental test rig and computer station with signal analyser
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Between all experiments there was a delay. It was required to cool down the test rig
to ambient temperature.

Vibration signals were acquired on bearing housings. On the B1 housing triaxial
piezoelectric accelerometer (PCB Piezotronics T356A32) and signals in axial and
radial directions were taken. On B2 housing two accelerometers (PCB Piezotronics
T338B30) were mounted, one in radial (Z) and second in axial (Y) direction. Signals
were acquired by LMS Scadas Mobile and processed by LMS Test.Lab v12 soft-
ware. Analysis were performed in Matlab environment. Acquired signals were
assessed with use of several point estimators, widely used in the technical diag-
nostic: mean, absolute mean, squared mean, RMS, variance, standard deviation,
absolute peak, maximum, minimum, peak to peak, form factor, crest factor,
peak-to-average ratio (PTA), peak-to-sqrt ratio (PTS), asymmetry and kurtosis.
After preliminary studies mean, RMS and kurtosis were chosen for further analysis.

For the classification simple k-Nearest Neighbour (k-NN) classifier was used. It
was found, that the free parameter has to be k = 5. Because of small feature set,
leave-one-out classification error estimation method was chosen. Classification was
performed for all features separately and opinions from individual classifiers were
obtained. 12 member classifiers were generated (marked C1–C12, Fig. 2). In order
to determine mass assignment required, in other words to transform classifier output
into the belief, the normalised class membership was extracted form k-NN [28] for
each of considered classes. The frame of discernment H ¼ S1; S2; S3; S4; S5f g
describing identified machinery conditions and an assumption was made that only
one condition can be present in certain moment of time, what is required by DS to
form 2H set. Outputs from individual classifiers were combined with classical
Dempster’s rule. Outputs from three individual classifiers were used (Ca, Cb, Cc,
Fig. 2.). According to that, for considered data set containing 12 features, 220
ensembles have been generated.

Fig. 2 Diagram of test procedure
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2.2 Results

Distribution of kurtosis for all measurement points and vibration directions was
gathered in Fig. 3. It can be noticed that for B2 bearing distinction between
conditions S1–S3 is difficult, while for B2_Y kurtosis for S3 and S4 is similar.

Overall classification accuracy was defined as follows: aall ¼ Nc=N, where Nc is
the number of correct outputs and N is the number of all considered samples in the
test set. Accuracies of FDI were gathered in Table 1. As expected in both cases
accuracy of the ensemble was better then the base individual classifier. It must be
stated that the improvement over the single best classifier was small.

The individual best accuracy in both FDI was for B2_Y_kurtosis feature. For
aggregated it was for in the case of fault detection B2_Y_kurtosis, B2_Y_RMS and
B2_Z_RMS features combination. In the diagnosis task the combination that led to
best accuracy was B2_Y_RMS, B2_Z_RMS and B1_Z_RMS. It can be seen, that
the best individual classifier trained over the B2_Y_kurtosis feature was not the
member of the best diagnosing ensemble.

In Fig. 4 scatterplots of machinery condition detection accuracy gain against
diversity are presented. In the case of ρ, D, KW, Entropy and Dif factors increase of
accuracy gain results in decrease of the diversity. Opposite situation occurs for
DF; j and GD factors. Especially for double fault (DF) measure the relationship is

Table 1 Results of
machinery condition
classification

Fault Mean Max Min Std

Detection Individual 0.82 0.92 0.74 0.005

Aggregated 0.84 0.95 0.77 0.042

Isolation Individual 0.55 0.89 0.16 0.025

Aggregated 0.55 0.91 0.12 0.173

Fig. 3 Plot of kurtosis for considered measurement points for various vibration directions
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straightforward and dispersion of results is minimal. For Q the positive relation is
noticeable but spread of results is significant.

To summarize and quantify data shown in Fig. 4 correlation between classifi-
cation accuracy gain (aDS–amax) and diversity factors was calculated (Table 2).
Obtained values have confirmed conclusions that arise from scatterplot analysis. In
both cases (detection and isolation) double fault (DF) and generalized diversity
(GD) factors seems to be the best choice in terms of best member classifiers
selection for the ensemble. Correlation pDF ¼ �0:89 informs with high certainty
that the lower the diversity factor is the higher the fault isolation accuracy will be.
Moreover strong linear trend is clearly visible for DF factor.

Fig. 4 Scatterplot of the diversity factors against improvement of the DS fusion over the single
best classifier (aDS–amax) for the fault isolation case
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In Table 3 correlation between consecutive diversity factors calculated for the
fault isolation task is presented. It can be seen that measures D, KW and Entropy
fully correlated and using all of them will not provide any additional useful
information about classifiers that should be selected for the ensemble. DF and GD
that were chosen as the best measures in term of relationship with classification
accuracy, are strongly correlated among each other, moreover correlation with other
factor is relatively low.

In Fig. 5 there are interesting results presented. Only when highest dependency
was reached, the increase of classification accuracy has no chance to be maximal. In
contrary, the minimal dependence led to largest increase of classification accuracy
regarding maximal accuracy of the single classifier. Even more interesting is the

Table 2 Correlation p between diversity measures and classification accuracy

Q q D DF KW j Entropy Dif GD

Detection −0.46 −0.58 0.14 −0.77 0.14 −0.64 0.14 −0.78 0.71

Isolation 0.48 0.54 −0.59 −0.89 −0.59 0.62 −0.59 0.49 0.70

Table 3 Correlation p between diversity measures

q D DF KW j Entropy Dif GD

Q 0.96 −0.63 −0.30 −0.63 0.73 −0.63 0.68 0.07

q −0.71 −0.32 −0.71 0.83 −0.71 0.77 0.04

D 0.17 1.00 −0.92 1.00 −0.62 0.05

DF 0.17 −0.22 0.17 −0.18 -0.93

KW −0.92 1.00 −0.62 0.05

j −0.92 0.85 −0.07

Entropy −0.62 0.05

Dif −0.11

Fig. 5 Scatterplot of the dependence factor against improvement of the DS fusion over the single
best classifier ðaDS � amaxÞ and the dependence factor against DF diversity factor for machinery
fault isolation
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connection of source of evidence dependence factor with the DF diversity factor.
Low dependency is does not guarantee that high diversity will be achieved (low DF
factor). At the same time better classification results are obtained when dependency
is low and diversity is high.

3 Conclusions

The study of nine diversity measures used in the task of rotating machinery FDI
was presented in the paper. Experimental results were gathered and analysed to
demonstrate how the accuracy of fault isolation can be improved by fusing infor-
mation from multi-sensors. The search for the link between classification accuracy
and diversity factor lead to one key conclusion, that diversity is strong connected do
applied measure, while there is a large difference between factors that useful and
unsuitable ones. Thus additional research should be performed in order to find or
elaborate new measures that can be applied in wide range of not only diagnostic
problems. As the fusion of classifier outputs was made in frame of Dempster-Shafer
belief function theory the issue of sources of evidence dependence was also
investigated. It has been found that straightforward relationship between classifi-
cation accuracy and dependence of beliefs is limited, but independence of sources is
connected with classification diversity and can has positive influence on quality of
fault isolation and overall machinery diagnosis.
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Diagnostics of Slow Rotating Bearings
Using a Novel DAI Based on Acoustic
Emission

Sylvester A. Aye, P. Stephan Heyns and Coenie J.H. Thiart

Abstract This study develops a novel integrated non-linear method for the
effective feature extraction from an acoustic emission (AE) signal and the con-
struction of a degradation assessment index (DAI) which is subsequently used for
the fault diagnostics of slow rotating bearings. A slow rotating bearing test rig was
developed to measure AE data under variable operational conditions. The aim of
the study was to detect incipient damage and develop diagnostics which would be
robust under changing operating conditions. The proposed model consists of a
combination of polynomial kernel principal component analysis (PKPCA), a
Gaussian mixture model (GMM) and an exponentially weighted moving average
(EWMA). The proposed novel DAI is shown to be effective and suitable for
monitoring the degradation of slow rotating bearings under investigation and is
robust under variable operating conditions.

Keywords Diagnostics � Degradation assessment index � Polynomial kernel
principal component analysis � Gaussian mixture model � Exponentially weighted
moving average
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1 Introduction

There are many condition monitoring (CM) techniques for bearing diagnostics.
These include vibration analysis, acoustic emission (AE), oil analysis, wear debris
analysis and temperature analysis [1, 2]. Vibration analysis is the most commonly
used technique but vibration-based methods have been shown to be effective when
the defect in the bearings has already become severe. The vibration signal is
generally not sensitive to the early stages of incipient faults. Furthermore, the
vibration signal caused by bearing defects are often contaminated and distorted by
other faults and mechanical noise [3]. Although it is possible to detect typical faults
using vibration analysis, this is effective primarily in high-speed machinery [4].

Slow rotating bearings, which are the focus of this research, pose special chal-
lenges such as: being utilized at different rotational speeds, huge load variations,
very high downtime costs, corrosion and contamination. AE seems to offer distinct
advantages for monitoring slow rotating bearings. These include high rates of
success in detecting damage in slow rotating bearings; earlier fault detection owing
to its higher sensitivity; and application to a wide range of rotational speeds with
significant advantages at slow rotational speeds [5].

In recent years, more and more researchers [6–12] have investigated the appli-
cation of AE technique to the CM of bearings. Despite the distinct advantages of
AE for monitoring the condition of slow rotating bearings, it has some shortcom-
ings when processing the signal. One problem is the high frequencies that lead to
large data files and the requirement for large memory space during the data
acquisition phase. Another problem is the lack of periodicity that makes it inap-
propriate to process the signal in the frequency domain. Hence this study employs a
time domain approach.

One of the challenges of bearing diagnostics is the effective evaluation of the
degradation process, based on the features extracted. In spite of the fact that a large
selection of extracted features can be used to depict the characteristics of AE
signals, earlier studies have demonstrated that each feature is only effective for
depicting specific defects at specific stages [13]. Moreover, it is difficult to quan-
titatively diagnose the severity of damage, especially at an early stage. The main
diagnostic methods fall into two main approaches, namely the data-driven and
model-based approaches. The data-driven approach is divided into statistical
approaches [2, 14–16] and artificial intelligence (AI) approaches [17–19]. Several
studies [20, 21] are applications of model-based approaches. Bayesian techniques
which are mainly statistical are gaining widespread application in detecting damage
to bearings, because these techniques can handle uncertainties better than the tra-
ditional statistical methods.
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Some existing studies developed one or more CM indexes [22–30]. Though
some studies implemented the dimensionality reduction of the original features, and
hence reduced the large amount of correlation in the original features, others did
not. Some of these studies considered the multimodal nature of the data but not the
non-linearities. Others considered the non-linear nature of the data but did not
consider the multimodal nature of the data. Others captured the dynamics of the
system, filtered out noise and captured non-stationarities by using EWMA, others
did not. The studies that used a Bayesian approach incorporated prior information
and captured uncertainties in the data and parameters, others did not. Moreover, all
these studies were conducted under constant operating conditions. Overall, no
single study simultaneously captured the non-linearities and multimodal distribu-
tion of the extracted features, the dynamics of the system, noise filtering,
non-stationarity and uncertainties in the data and the parameters of the model.

Against this background, this study used existing statistical data-driven Bayesian
methods to develop a novel integrated methodology for slow rotating bearing fault
diagnostics, based on AE data obtained from a run-to-failure experiment. The
proposed model is capable of accounting for data dimensionality reduction and
hence for the reduction of high feature correlation, non-linearities, noise filtering,
non-stationarities, uncertainties, time variation (dynamics) and multimodal distri-
bution in the data, under varying operating conditions. An index which accounts for
these characteristics for the assessment of machine performance is vital for effective
diagnostics. A number of studies, as listed previously, have developed CM indexes
under different names, but to the best of our knowledge, no previous study has used
the exact methodology proposed in this study for building a CM index. Hence, the
proposed approach is considered a novel contribution to literature.

2 Methodology

The scheme used for developing the proposed degradation assessment index
(DAI) for the diagnostics of slow rotating bearings is shown in Fig. 1.

The effectiveness of the proposed DAI is evaluated by comparing its perfor-
mance with that of other monitoring indexes. To this end, the proposed model is

Feature 
extraction 
of 
AE 
data 

Smoothing 
the NLL 
with the 
EWMA to 
obtain DAI

Obtaining  
NLL 
by using 
GMM

Reducing 
Data 
dimensiona-
lity by using 
PKPCA

Evaluation 
of DAI by 
using 
benchmark 
studies 

Fig. 1 Schematics for developing DAI for the diagnostics of slow rotating bearings Key AE
Acoustic emission; PKPCA Polynomial kernel principal component analysis; NLL Negative log
likelihoods; GMM Gaussian mixture models; EWMA Exponentially weighted moving average;
DAI Degradation assessment index
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reordered to form three other different submodels which essentially correspond to
some of the models that may have been used in other studies for developing CM
indexes. In other words, each submodel misses at least one component that is
utilised in the proposed model. The models consist of the DAI model, the
PKPCA-EWMA model, the PKPCA-GMM model and the GMM-EWMA model.

3 Experimental Setup

An experimental setup was used in this research to collect AE signals from a slow
rotating bearing. The test setup was designed so that it would be able to test slow
rotating bearings. The experimental test setup is shown in Fig. 2 below and was
used in this study to collect the AE signals generated by slow rotating bearings.

A controller controlled the rotational speed of the bearing. The system was
driven by an AC servo motor with the speed set at 70, 80 and 100 rpm for bearings
1, 2 and 3 respectively. An AE sensor was mounted on the housing of the test
Timken bearing.

The life of the slow rotating bearings was tested until failure, which occurred on
the outer race for all the bearings considered here. Ground metal debris was
introduced gradually into Bearing 1 at the openings between the outer race, rollers
and inner race to accelerate the initiation of damage. Bearings 2 and 3 were simply
not lubricated from the start to the end of the measurement process in order to speed
up the bearing degradation. The slow rotating bearing was loaded at various
dynamic loads by using an electrodynamic shaker. Bearing 1 was sinusoidally
loaded over a range from 1.6 to −1.0 kN. Bearing 2 was loaded between 1.8 and
−1.4 kN, whereas Bearing 3 was loaded between 2.0 and −1.7 kN. The excitation
frequency was approximately 2 Hz.

The major components of the slow rotating bearing test setup are the Zonic Xcite
1100-4-FT System hydraulic shaker (load actuator), the load cell, the Timken

Load ActuatorServomotor

Test Bearing 

AE Sensor

Load Cell

Fig. 2 Test setup
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tapered roller test bearings with bearing number HR 30307 J, the AC servo motor
with model number 80MT-M04025, the speed controller and a National Instruments
data acquisition card with a shielded BNC Connector Block.

The Soundwel AE sensor with model number SR 150 M was used for collecting
the data in an analogue form. This broadband piezoelectric AE transducer was
connected to a 40-dB gain pre-amplifier. The AE transducer was mounted on the
bearing housing.

The AE signal was recorded at a sampling frequency of 200 kHz over a sam-
pling period of 1 s, using the NI PCI 6110 data acquisition card with the model
occupying one of the ISA slots in a host computer. Data records were taken every
20 min until all three bearings failed, using the National Instruments Lab View
software. The function for capturing the time domain and the pre-selected sampling
time and interval was used. The recorded data was subsequently processed by
means of dedicated Matlab programs.

4 Results and Discussion: Evaluation of the Proposed DAI
Using Benchmark Studies

Normal slow speed bearings were run until failure in this study. Figure 3 presents
the AE signals for the healthy, slightly degraded and severely degraded states of
Bearing 1.
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Fig. 3 AE signal for bearing 1: topmost (healthy state); middle (slightly degraded state) and
bottom (severely degraded state)
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The effectiveness of the proposed DAI was evaluated by comparing its perfor-
mance with that of other CM indexes. To this end, the proposed model was reor-
dered to form three additional different submodels which basically represent some
of the models that may have been used in other studies for developing CM indexes.
In order words, each submodel misses at least one component that is captured in the
proposed model. The different models and their capabilities are shown in Table 1.

The DAI (PKPCA-GMM-EWMA) was the model proposed for this study. Since
it is a combination of the polynomial kernel principal component analysis
(PKPCA), the Gaussian mixture model (GMM) and the exponentially weighted
moving average (EWMA) models, it combines all the features of the three indi-
vidual models. When bearings are run under varying operating conditions, there is a
high likelihood that the extracted features will have non-linear and or multimodal
(multiple modes) distribution [28]. The PKPCA submodel is capable of reducing
the dimension of the extracted AE features (kurtosis, RMS, crest factor, skewness
and peak-to-peak) from a non-linear high-dimensional data space to a linear
low-dimensional data space, in this way reducing the high correlation existing in
the original features. The PKPCA model neither accounts for noise in the various
AE features nor does it permit an incorporation of external knowledge (priors)
about the model. Moreover, the PKPCA model is a static model as it does not
capture the dynamics of the system (i.e. the historical time evolution of the mon-
itoring statistics). Hence, the PKPCA model does not account for time variation in
the data.

After extracting the features from the high-dimensional data via PKPCA, the
multimodal features in the low-dimension can still be preserved. Therefore, for the
effective diagnosis of bearing faults and assessment of performance degradation, the
GMM submodel is used to describe the multimodal distribution of the data.
The GMM is accordingly capable of handling the multimodal and non-linear fea-
tures of the data by using a mixture of Gaussian components. Moreover, as the
GMM is a Bayesian technique, it allows one to combine external information with
the information in the data through a prior density function. Hence, all variables and
parameters are considered as random or stochastic and their behaviour is described
by a probability density function. This enables the GMM to handle uncertainties in
the data and parameters. Like the PKPCA, the GMM model is a static model.
However, the EWMA model developed by Wold [31] is a dynamic non-linear
model that includes a memory function by using historical data for monitoring a
bearing or any other systems [23]. This makes it capable of improving the sensi-
tivity and reliability of monitoring techniques to detect a slight degradation or shifts
in the performance of bearings [28]. It also smoothens and filters out noise in the
data and is therefore capable of capturing non-stationarity.

Following the above features of the three submodels, the DAI model can handle
the non-linear and multimodal distribution of the data, incorporates prior knowl-
edge, accounts for uncertainty in both the data and the parameters of the model and
is dynamic. The PKPCA-EWMA is a combination of the PKPCA and EWMA
models so it is capable of handling non-linearities and the dynamic characteristics in
the extracted features. However, it does not handle multimodal distribution nor
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account for uncertainties in the parameters of the model and it does not incorporate
prior information. The PKPCA-GMM model has all the features or capabilities of
the DAI model except that it is not dynamic, but static. The GMM-EWMA model
also has all the capabilities of the DAI model, except that the concept of dimen-
sionality reduction is not involved, meaning that the model uses all the extracted
features.

There are several methods for selecting the optimal number of principal com-
ponents from the PKPCA-EWMA model. These include the use of scree plots, the
cumulative percentage variance explained, cross–validation and the PCs with
eigenvalues equal to or greater than the average eigenvalue. This study employs the
cumulative percentage variance explained [32] where the number of principal
components that explain a cumulative percentage variance of between 70 and 90 %
is selected. Two principal components were selected in the present study as they
accounted for over 78 % of the cumulative variance. These two retained principal
components were subsequently used either to construct the traditional monitoring
statistics Hotelling’s T2 and squared prediction error (SPE) as inputs into the GMM
model.

The effectiveness of the proposed model was tested by comparing its degree of
accuracy in discriminating between healthy and faulty bearing conditions with that
of the submodels. The evaluation of performance can be reported by using the false
alarm rate and the detection rate criteria. The false alarm rate gives information
about the robustness of each model to healthy system changes. The detection rate
gives information about the sensitivity and efficiency of detecting faults. The rates
are obtained by counting the percentage of samples that fall outside the 99.7 %
confidence level used in setting the thresholds. Since two thresholds have been
defined, the detection rate was also classified into a slightly degraded detection rate
and a severely degraded detection rate.

The plots showing the monitoring indexes obtained from the different models are
discussed before discussing the qualitative assessment. Figure 4 shows the results
for Bearing 1 including the slight and severe degradation thresholds (DTs). The
slight and severe DTs were obtained by using the kernel density estimation methods
on the healthy and faulty bearing data respectively. Once slight DT is exceeded this
indicates the commencement of incipient damage whereas once the severe DT is
exceeded it indicates the start of final failure. A number of observations emerge
from these figures. The monitoring indexes from the DAI, PKPCA-EWMA-T2 and
PKPCA-EWMA-SPE models appear to perform better than the index from the
GMM-EWMA model, in terms of less volatility (stability or stationarity) and also
the ability to discriminate between faulty and normal operating working conditions,
with the exception of the PKPCA-GMM that appears to be as volatile as the
GMM-EWMA. This is not surprising, given that the inclusion of all the original
extracted features in the GMM-EWMA model can obscure its ability to monitor the
degradation trends effectively. The PKPCA-GMM’s non-stationarity can be
attributed to the absence of the EWMA smoothening and noise filtering in this
model. It can also be observed that the PKPCA-EWMA-SPE statistic shows a
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clearer distinction between the normal operating condition and the faulty state than
its counterpart T2 statistic.

The quantitative assessment of the effectiveness of each model in assessing the
health states of each of the slow rotating bearings requires a comparison of its fault
alarm rates, the slight degradation detection rates and the severe degradation
detection rates with those of the submodels. The results of the comparison are
presented in Table 2 for Bearings 1, 2 and 3.

First, by focusing on Bearing 1, it can be seen that the proposed index from the
DAI model has the least fault alarm rate (1.97 %), meaning that in the normal
bearing operating region, the index crosses the 99.7 % confidence level 1.97 times
out of 100, whereas the worst index (GMM-EWMA) crosses the threshold about 55
times out of 100 when the bearing is actually healthy. The proposed model could
perfectly detect a slight fault and remained within the threshold of the slight deg-
radation state 100 % of the time, followed by PKPC-GMM with a slight degra-
dation detection rate of 75 %. The proposed model’s performance was poor in terms
of its ability to detect severe degradation as it missed 50 % of the time. In this case,
the PKPCA-EWMA-T2 performed better. For Bearing 2, the proposed model had a

Fig. 4 CM indexes for bearing 1 a DAI b PKPCA-GMM c GMM-EWMA d PKPCA-EWMA-T2

and e PKPCA-EWMA-SPE
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0 % false alarm rate whereas no other model did as well. In terms of the ability to
detect a slight degradation, the proposed model performed better and had a
detection rate of 100 % whereas the second-best model, PKPC-EWMA-SPE, had a
detection rate of 94 %.

For Bearing 3, the proposed model still had the lowest fault alarm rate (7.50 %)
followed by the PKPC-EWMA-SPE model with a fault alarm rate of 7.62 %. In
terms of detecting a slight degradation, the detection rate was approximately 89 %
for the proposed model followed by the PKPCA-EWMA-SPE model; whereas it
performed as well as the PKPCA-GMM model in terms of detecting severe deg-
radation. The quantitative analysis confirms the analysis of the visual plots. Overall,
the proposed model performed better than the other models in terms of the fault
alarm rate and the fault detection rates.

The overall superiority of the monitoring performance of the DAI can be
attributed to the fact that it uses fewer kernel principal components from the original
features, thus reducing redundancies in the data. In addition, it incorporates the
dynamics of the slow rotating bearings, making it more sensitive to and reliable in
detecting slight faults via EWMA; accounts for non-linearities and multimodal
distribution in the data, thus eliminating the bias arising from wrong model spec-
ifications; handles adequate filtering of noise; allows for smooth characteristics of
the features through both GMM and EWMA subcomponents; reduces uncertainties
in the measurement of the data as well as in the estimations of the parameters of the
model; and permits the incorporation of external knowledge via the prior density
function characterisation in the GMM component.

5 Conclusions

The effectiveness of the DAI was investigated by comparing its performance with
other CM indexes and it was found to outperform them. The DAI was the only
model with all these properties: it uses fewer kernel principal components from the
original features thereby reducing redundancies in the data, incorporates the
dynamics of the slow rotating bearings thereby making it more sensitive to and
reliable in detecting slight faults via EWMA, accounts for the non-linearities and
multimodal distribution in the data thus eliminating the bias arising from wrong
model specifications, filters noise, allows for the smooth characteristics of the
features through both the GMM and EWMA subcomponents, reduces the uncer-
tainties in the measurement of the data as well as in estimations of the parameters of
the model, and permits the incorporation of external knowledge via the prior
density function characterisation in the GMM component. In this investigation, the
proposed DAI has been proven to be effective in the CM of slow rotating bearings
under varying operating conditions.
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Development of Expert System Shell
for Coal Mining Industry
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Mateusz Kalisch and Marek Sikora

Abstract The paper deals with the design of an expert system shell for the decision
support system that is developed to be used in coal mining industry. A proposed
architecture of the system allows reasoning by means of multi-domain knowledge
representations and multi-inference engines. The implementation of the system is
based on data mining software (RapidMiner) which makes possible to acquire
domain-specific knowledge and its application in the expert system shell. In this
study, the preliminary verification is presented using DAMADICS simulator that
was proposed to compare different fault diagnosis methods. The obtained results
show the merits and limitations of the proposed approach.
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1 Introduction

Nowadays, expert systems are frequently applied for solving real-world problems.
Expert systems were successfully employed in many areas such as medicine,
education, entertainment, risk management and fault diagnosis [1, 2]. In the area of
mining engineering, expert systems also play a very important role, what is
observed in the activity of scientists and engineers. The state of the art analysis in
this domain shows that the propositions of expert systems for coal mining industry
are quite different from each other and they are not developed taking into account
all aspects of management of mining companies (they are in majority
subject-oriented). In this paper, the authors proposed the idea of an expert system
shell which is very similar to a solution described in [3], where multiple knowledge
models and hierarchical reasoning were suggested to eliminate the limitations of
traditional expert systems. The novelty in our approach depends on that the expert
system is not only used for fault diagnosis but it can also be employed for other
purposes corresponding to the coal mining industry. Hence, the overall goal of the
research is to design a more generic and complete expert system shell environment
in comparison to previous expert system engines which are known from the liter-
ature. Moreover, the core of the proposed expert system shell is not designed as a
new tool but the data mining software is adopted. The proposed solution is moti-
vated by the fact that users usually prefer to work with already known tools instead
of learning how to apply completely new means.

The development of the diagnostic expert system shell with multi-domain
knowledge representations and multi-inference engines is realized within the frame
of the DISESOR project. The DISESOR is an acronym of a decision support system
designed for fault diagnosis of machinery and other equipment operating in
underground mines as well as for monitoring potential threats that can occur in such
kind of industry. This system is designed by the authors of the paper in collabo-
ration with researchers and engineers from Institute of Innovative
Technologies EMAG, Silesian University of Technology, University of Warsaw
and Sevitel company.
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2 Related Work

In 1990s, a more attention has been duly focused on development of expert systems
for mining industry, and it was the cause to initiate expanding different method-
ologies in this field. Grayson et al. [4] applied a knowledge-based expert system for
better managing underground coal mines. Their system concentrated on capturing
the complex body of knowledge needed to enhance efficient management of a mine
and therefore it encompassed information and preferred rules on work scheduling,
work practices, responses to operating problems, etc. Another knowledge based
expert system was developed by [5] for the combat of fires and also pollution due to
fires by analysing the different causes of fires in underground conditions with the
help of certainty factor techniques.

Zhang and Zhao [6] developed a system called Coal Mining Expert and
Optimization Consultation System. The system was a preliminary attempt to
combine expert systems and optimization techniques in the Chinese coal mining
industry. It was applied to determine the underground mining methods, open-pit
mining and transportation systems, etc. The proposed approach was developed
using AI language Prolog and software engineering principles and methods. In the
paper [7], the authors designed and applied a kind of expert system based on a
function detection for supervision workstations of coal mines. Their system adopted
production rules to expert’s knowledge, and the inference process was based on
forward and backward reasoning. The design and implementation of a safety expert
information management system for coal mine was proposed in Wang and Z. Wang
[8]. The authors developed the safety information processing system according to a
fault tree, which run under the way of web site technology. At present the system is
being applied in Zibo mining industry group and Xu Chang coal plants in China.
The paper [9] gives a concept of an expert system for estimation and optimization
of coal mines in terms of their eco-efficiency. The proposed solution was not a
classical expert system, but rather a set of computer tools for management of a
mining company. The more complementary discussion on the survey on the
application of expert systems in the mining industry can be found for example in
Chekushina et al. [10].

As it is mentioned in the previous section the expert systems for coal mining
industry are limited due to the facts that they are developed without taking into
account all aspects of management of mining companies as well as their engines
and user interfaces are completely different from each other. Therefore, there is a
need to elaborate a much more advanced expert system shell based on the well
known tools which will be easy to apply by end users.
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3 Description of the DISESOR System

The DISESOR system can be used for different purposes, e.g. to assess seismic
hazard probabilities in the area of a coal mine, to forecast a dangerous increase in
the methane concentration in mine shafts, to detect and localize endogenous fires,
and also to conduct the fault diagnostics of machines working in such environment.
A diagram of data flow in the DISESOR system is presented in Fig. 1. This scheme
shows an idea of an expert system in the context of other modules. The description
explains functionalities of all components of the designed system.

The data repository is proposed to integrate the data coming from varied dis-
patches and supervisory systems of coal mines, for instance THOR [11], SMoK
[12] systems, etc. The data repository together with interfaces such as Extract,
Transform, Load (ETL) module and data cleansing are necessary for validation and
processing the input data and information provided by other components of the
system. The structure of the repository is designed in such a way that it is possible
to feed a wide spectrum of data obtained from measurements. Moreover, different

Fig. 1 A data flow diagram of the DISESOR system
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layers of metadata describe the structure of a monitoring object in order to have the
exact locations of actuator devices and sensors. Due to the heterogeneity of the
dispatches and supervisory systems it is required to possess an independent
description of the individual measuring systems of coal mines. The main func-
tionality of the repository is to provide data to other components of the system, in
particular, to analytical module, prognostic module, expert system shell and data
visualization module.

The prognostic module is used for a task of incremental on-line learning of
models on measured values of specified signals with a given horizon and frequency.
This is also proposed for tracking trends in incoming data. In case of the prognostic
models the adaptive tuning based on the input data stream in combination with a
comparative analysis of previously learnt patterns of the historical data was applied.
The module provides interfaces which let us choose dependent variables (subject to
forecasting) as well as independent variables (supporting forecasting) and deter-
mine the preferred forecast horizon and its threshold which is needed to define the
minimum quality of the prognosis. The choice of a method for data analysis
together with the selection of primary and derived variables (e.g. delay) is per-
formed automatically. In cases when the quality of prediction is in the range of
threshold values specified by an user, results of the forecast can be treated as virtual
data (virtual measurements) and can be used as a source of information for other
modules. An important factor in the approval of the forecasts is that the elaborated
model should be as transparent as possible for the end user. The analytical module
is applied for executing tasks of analysis of the historical data (off-line) and
reporting the identified significant relationships and trends in registered signals. The
results generated by this module are used by the end user to supply the data
repository. Therefore this is conformed to support the user in deciding on what kind
of variables should be also monitored and forecast. It helps also to provide addi-
tional information that can be employed to enrich the knowledge base of the expert
system or to carry out more advanced comparative analyses.

The main purposes of the analytical module can be characterised as follows. This
module is required to obtain information about measured values (original or
aggregated). It is important to know whether the information is associated with a
particular aspect of the monitored process aimed at a desired or undesired direction.
These values are related to other ones, and from the point of view of data it is
necessary to identify the cause of the recorded changes. In the module a number of
basic tasks was defined (e.g. “Follow trend”, “Compare because of”, “What if”).
They can initiate analytical tasks by a choice and parametrization of predefined
operations (including the choice of variables to be compared, the method of
aggregation of available measurement data, the thresholds of attractiveness of
discovered relations, the selection of a frequency of the comparisons, etc.). The
presented functionality is not only used for aiding identification of changes in the
monitored processes and devices, but also for comparing work of machine opera-
tors and dispatchers. The fundamental representation of discovered relations are
rules, facts, and readable statistical indicators that let us illustrate a type and
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strength of identified dependencies. The results of the analysis task made by the
module are presented similarly to the natural language.

The expert system shell module is used for on-line and off-line diagnosing of
technical objects and for monitoring processes. Another task of the module is to
support domain experts in taking decision either on terms of the technical condition
of the objects or on risk managing e.g. in situations when the process is going to an
undesirable direction. The main assumption in case of operation of this module is to
allow the user acquire intuitively the knowledge and store the knowledge with use
of different types of representations. The expert system shell is designed in such a
way that the reasoning can be based on elementary methods such as boolean and
fuzzy logic, Bayesian networks, etc.

The last module was elaborated for data visualizing and reporting. The task of
this part of the system is to show the measured data and information computed by
other modules of the system. The visualization is realized by means of predefined
charts and maps plotted with the proper graduations. The module is also equipped
with tools for creating report.

4 Model of the Proposed Expert System Shell

The case diagram of the proposed expert system shell is given in Fig. 2. The system
consists of two layers. The first layer is called a management layer and it is used to
supervise the whole system. There are included several functionalities such as a
mode selection that can be used to switch the system into one of three different
modes. The on-line mode serves in situations when the scheduler of the reasoning
process is created. In this mode an user (a knowledge engineer) is able also observe
the parallel execution of the scheduler logic. The off-line mode is often applied for
ad hoc reasoning on historical data. The last mode is necessary for editing the
knowledge base.

The engine of the system is implemented in the second layer (the execution
layer). The user is able to clearly edit the knowledge base using three different
knowledge representations which are Boolean logic, fuzzy logic and Bayesian
networks. The user can also define the vocabulary of statements in order to prepare
the description of a monitored object. The execution layer applies multi-domain
knowledge representations for reasoning by means of the multi-interference engine.
The inference procedures are executed using selected reasoning mechanisms in
order to prepare a conclusion. It is also assumed that a context may be taken into
account in the condition part of the rules or input nodes of the Bayesian network (it
is an extended use case). In the next step the elementary conclusions are results of a
fusion process. The output of the system (statements) is obtained for measured and
user data. The last use case of the system is the possibility to record the results of
the reasoning in order to realize the explanation interface.
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5 Expert System Implementation

The authors of the DISESOR project decided to apply RapidMiner software as an
engine of their decision support system. There are many free and commercial
applications created by developers to solve data mining and classification problems,
e.g.: Weka [13], R language [14], Orange [15], Statistica [16], Angoss Knowledge
Studio [17]. Most of them have an user interface which is helpful in building data
mining processes. In contrast to these applications, the main environment of R
language is a text editor. R language is a very popular open source tool which is
developed by a large community of researchers. RapidMiner is a partially free
software developed to solve data mining problems [18]. It has a clear interface
based on drag and drop mechanism. The application allows users to make a
modification in a source code and add plug-ins created by other people to extend a
functionality of the program. The authors decided to use this software since

Fig. 2 A use case diagram of the proposed expert system shell
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implemented methods of ensemble learning can be used for knowledge acquisition.
An additional factor is that the architecture presented in Fig. 2 can be obtained in a
direct way by creating new plug-ins for this software.

Due to the early stage of the system design, in this paper the authors decided to
show how the applied software can be used to create different types of classification
schemes which will be subsequently used in the knowledge base of the developed
system. The application allows the users to implement basic methods of ensemble
learning like stacking, voting, bagging, AdaBoost and others. The main purpose of
this approach is to obtain a better general result than results of each of base clas-
sifiers. In a stacking operator the user is able to apply any number of base classifiers
and one meta-classifier. The user decides what kind of data meta-classifier can use
as its input. The voting is another method used to combine many classifiers and
extract from them a single output. The voting can be divided into a few classes like
unanimous voting, majority voting and weighted majority voting [19]. The unan-
imous voting requires the same output class from all considered classifiers. It should
be only used when a number of classes is small because in case of a large number of
classes it could be difficult to reach the same answers from all classifiers. In a
majority voting final answer is based on the class with the highest number of votes.
In case of draw, a result is randomly chosen among wining classes. Other methods
like e.g. bagging and boosting create a group of classifiers based on the same
method of classification [19, 20]. The main purpose of a method called bagging is
to create a random data set as long as a base dataset. The probability of selecting a
single value from data is the same for all values. It means that each of the row from
the base dataset can be added to the output dataset many times. The new random
dataset is prepared for each classifier in the group. This approach was the basis for
new methods like e.g. AdaBoost. In AdaBoost algorithm each value in the base
dataset has weight which determines relevance of this value. At the beginning all
values have the same weight equal to 1 and the first classifier is trained on random
dataset where each of the value has the same probability of drawn. Then the first
classifier is tested on the same dataset. The weights of correct estimated values are
decreased and the probability of drawn of incorrect values for the next classifier is
higher. Each next classifier is learnt on data which contains values more difficult to
classify. The final result is chosen during weighted majority voting. Another reason
to use the ensemble learning is when a classifier is weak and a small change in the a
learning dataset can significantly affect its efficiency [19].

The RapidMiner is equipped with many basic classifiers e.g. k-nearest neigh-
bour, naive bayes, neural network, decision tree, linear regression, SVM, etc. [19].
All mentioned classifiers are available in the application as operators which can be
connected to other operators of process and full process looks like a data flow
diagram. The main result of most classifiers is a label. Another value returned by a
classifier is the degree of belief for class occurrence and it is a numerical value from
0 to 1. For some classifiers the level of belief is calculated during the learning
process (e.g. decision tree, rules induction) and for other classifiers during testing
process and when the classifier is used (e.g. k-nearest neighbour, naive bayes).
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6 A Case Study

In this section the authors give an example of usage of base classifiers and various
ensembles of classifiers to solve a fault detection and isolation problem. The case
study is investigated using DAMADICS project which was elaborated for scientists
and engineers to simplify the process of evaluating and comparing different
methods of fault detection and isolation for industrial systems [21]. In the literature
there were available several papers where case study results dealing with this
problem were presented, see e.g. [22–24]. The numerical model is used to simulate
an electropneumatic valve (Fig. 3) which was a part of the production line in Lublin
Sugar Factory in Poland.

The model was created in MatLAB/Simulink software and was on a careful
study of the physical phenomena that gave the origin of faults in the actuator
system. This simulator generated the following signals of the process variables: CV
—process control external signal, P1—inlet pressures on valve, P2—outlet pres-
sures on valve, X—valve plug displacement, F—main pipeline flow rate, T—liquid
temperature, f—standard diagnostic signal. All of these signals are normalized to
the range between 0 and 1.

The DAMADICS simulator allows to choose only one from nineteen available
faults. A part of them is considered only as incipient faults or as abrupt faults (there
are three sizes of abrupt faults: small, medium and big) and some of them as both.
A list of all available faults is as follows: f1—valve clogging, f2—valve or valve
seat sedimentation, f3—valve or valve seat erosion, f4—increase of valve friction,
f6—internal leakage, f7—medium evaporation or critical flow, f8—twisted

Fig. 3 Structure of benchmark actuator system [21]
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servo-motor stem, f9—servomotor housing or terminal tightness, f10—servomotor
diaphragm perforation, f11—servomotor spring fault, f12—electro-pneumatic
transducer fault, f13—stem displacement sensor fault, f14—pressure sensor fault,
f15—positioner spring fault, f16—positioner supply pressure drop, f17—unex-
pected pressure change across valve, f18—fully or partly opened bypass valves, f19
—flow rate sensor fault. In this case the valve was controlled by a harmonic signal
in which the frequency was equal to 0.01 Hz. During a simulation the device was
working correctly until about 800 s than a chosen fault occurred and lasted until the
end of the simulation.

A form of obtained raw signals is difficult to use directly in prepared classifiers.
The control signal is harmonic and its period is equal to 100 s so the authors
decided to calculate a few features of available signals in a moving window and its
width was equal to a period of the control signal. During this specific fault, the
minimum value of plug displacement is very useful, but for other faults only one
feature can be not enough. The authors chose four basic features such as the
minimum value, maximum value, average value and median, each of them was
calculated in the window (the width was equal to 100 s).

6.1 Diagnostic Tests for Fault Detection and Isolation

The RapidMiner software allows us to create data mining processes with the use of
a visual programming language. This tool gives the opportunity for developing
different classification schemes using so-called drag and drop methodology. In this
way the classification processes can be viewed as data-flow graphs. One process
may contain many classifiers which allows users to create custom ensembles of
classifiers. This software contains also predefined operators supporting the
ensemble learning and in this paper the authors compared them with others. It is
possible to use various methods to estimate efficiency of the classification such as
the splitting method where dataset is divided into learning and testing datasets.
Thanks to this a classifier is learnt on the first data set and tested with another
dataset. This approach is used in order to avoid an over fitting problem. The over
fitting problem occurs when classifier is learnt and tested on the same dataset, then
an estimated efficiency can be very high, but a real efficiency for a classifier
working with a new dataset can be much lower. It can be difficult to use a splitting
method when the size of data is small and various. Therefore, the user can apply
other methods like X-validation and leave-k-out. In these methods data is divided
into learning and testing datasets a few times. At each time a new classifier is learnt
and tested on a new prepared data. The general result is calculated as the average
efficiency of all classifiers with the standard deviation. In this paper X-validation
method was used.
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6.2 Example of Verification Studies

The software used to build the system has an operator which allows the users to
apply a meta-classifier. To use this method the user is obligated to select a few base
classifiers and meta classifier. The user may decide if the meta-classifier should use
only outputs of the base classifiers or it should use also original signals. At the
beginning of a verification process the authors used single classifiers to check how
well they can isolate faults. Results are shown in Table 1 (rows 1, 2, 3, 4). A single
classifier based on the decision tree is characterised by the highest result equal to
85.56 %. The meta-learning tool implemented in RapidMiner software enabled to
obtain the result that was 4 % higher than the best result for a single classifier.

In the experiment the naive bayes was a meta-classifier and the random tree,
decision tree and naive bayes (kernel) were base classifiers. The second example of
the ensemble learning was based on voting. In RapidMiner the user can apply an
operator called Vote where the final decision is reached by majority voting. It is
possible to use many different classifiers or the same classifiers but learnt on various
data. The authors tested this method using mentioned above four classifiers and all
of them were treated the same. In this case the result was a little bit worse than the
result of the decision tree. Another method of the ensemble learning implemented in
RapidMiner is bagging and AdaBoost. In this paper the authors chose a decision
tree classifier. They used it in AdaBoost operator and compare its result with results
of other methods. Thanks to the decision tree it was possible to compare a level of
complexity (the number of nodes) of classifiers created by AdaBoost algorithm. The
general result is a little bit worse than the result of the meta-classifier but it is also
better then the result of a single decision tree. Table 2 shows a level of complexity
for each of the classifier created by AdaBoost method. The classifiers created in the

Table 1 Results of various
methods of classification

Classifier Efficiency (%)

1. Random tree 50.07

2. Naive bayes 84.19

3. Decision tree 85.56

4. Naive bayes (kernel) 84.20

5. Meta-classifier 89.55

6. Majority voting 85.00

7. AdaBoost (decision tree) 87.39

8. Custom meta-classifier 90.00

Table 2 Level of complexity
of classifiers created by
AdaBoost algorithm

Iteration Level of complexity

1 22

2 22

3 36

4 44
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following iterations have a higher level of complexity which means that data drawn
by the algorithm in each next iterations contained elements which were more
difficult to classify. The last example of the ensemble learning is based on the
meta-classification without using methods implemented in RapidMiner which have
some limitations.

The default output value of the classifier is a label which informs the user about
an estimated class of a specific element of data. Another information returned by the
classifier is a vector which contains levels of belief that belong to each of the class.
But this information basically can be shown in the screen as e.g. a plot and cannot
be used by other operators. RapidMiner has an operator which can freely modify
data by usage of java language. In this case the operator was used to change a role
of degrees of beliefs of base classifiers then this information can be used as the
input data of a meta-classifier. This custom meta-classifier was based on a concept
of the first meta-classifier described above. There were three different base classi-
fiers and one meta-classifier. But this time base classifiers returned the vector of
levels of beliefs instead of labels. This method obtained the highest result among all
tested algorithms. Results of all tested methods are quite similar, especially the best
results which were based on the meta-learning method. Only the random tree as a
single classifier reaches clearly the worst result.

The authors decided to verify the influence of classifier order in the
meta-learning operator and a type of input signals into the final efficiency of the
classification. It was decided to use an operator implemented in RapidMiner called
Stacking. At this time a meta-classifier had the same type of base classifiers so it
was important to differentiate input signals for each base classifier. The authors
grouped signals by a signal type and feature type. In both cases there were four base
classifiers but in the first case each of them had four different features calculated for
the same signal, e.g. the first classifier used features of signal X, the second clas-
sifier used features of signal F and so on. In the second case each of the base
classifier used the same features calculated from all signals, e.g. the first classifier
used average values of all types of input signals for the second classifier input
signals contains the maximum value of all types of process variables and so on.
Table 3 shows the results of eight different configurations of meta-learning.

At this part of the case study, the authors changed three parameters: a type of
signal grouping, type of base classifiers, as well as type of meta-classifier. The text

Table 3 Results of various
methods of
meta-classification

Meta-classifier Efficiency (%)

1. Features NB → NB 88.81

2. Signals NB → NB 80.67

3. Features DT → DT 89.69

4. Signals DT → DT 68.02

5. Features NB → DT 89.84

6. Signals NB → DT 86.81

7. Features DT → NB 86.18

8. Signals DT → NB 81.33
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in the second column of Table 3 describes a type of the configuration, e.g. Features
DT → NB means that an input signals were grouped by features, base classifiers
were the decision trees and meta-classifier was naive bayes. The best result for
configuration Features NB → AT is almost as good as the custom meta-classifier
described above.

7 Conclusions

In this paper the authors proposed the model of an expert system shell as a part of
the DISESOR system that is designed to be used in the coal mining industry. The
implementation of the engine of the system is based on a data mining software
called RapidMiner. Thanks to this, it was possible to elaborate a much more
advanced engine of the expert system shell based on a well known tool which can
be easily applied by the end users. Moreover, in this paper the authors mainly
showed the methodology of diagnostic tests creation based on a machine learning
approach in the context of using it in the developed system. The authors compared
different machine learning methods and proved that usage of the ensemble learning
could improve the efficiency of classification (classifiers created in this way could
be directly used as a knowledge representation in the knowledge base of the sys-
tem). It was also showed how changes in data grouping and in order of classifiers
could influence the final efficiency.

Taking into account the promising results of the research it is planed to use more
complex classification approaches e.g. based on rough set [25] and fuzzy-rough set
[26] methods, mainly due to the possibility of using some existing packages that
can be potentially integrated or partially rewritten. The authors also view the pro-
posed environment as a tool that can be employed for a wider spectrum of appli-
cations, and therefore it is considered to apply this software for solving analogues
problems/tasks, e.g. in supporting a fire commander [27] or for leakage detection
and localization [28].
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Part III
Condition Monitoring Techniques



Analysis of a Planetary Gearbox Under
Non-stationary Operating Conditions:
Numerical and Experimental Results

Cristián Molina Vicuña and Fakher Chaari

Abstract Planetary gearboxes are used in a large variety of mechanical systems.
Several of these systems undergo variable operating conditions, producing
non-stationary features of measured variables typically used for condition moni-
toring purposes, such as vibrations. Benefits can be obtained from these signals
only if the consideration of the non-stationary features is properly made. For this
purpose it is necessary to conduct numerical investigation and experimental study
on the dynamic behaviour of planetary gearboxes under variable operating condi-
tions. In this paper we address the problem of a one-stage planetary gearbox driven
by an asynchronous motor in open-loop control configuration and subjected to
periodically variable load. The dynamic response is obtained by integrating the
equation of motion using implicit Newmark algorithm. For validation, test bench
measurements are performed on a planetary gearbox subjected to the same condi-
tions simulated. The results show good agreement between the model and actual
system.

Keywords Planetary gearbox � Variable operating conditions � Vibration
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1 Introduction

Planetary gears can be found in several mechanical systems with application in
aerospace, automotive, and heavy industries. The main objective is to allow the
transmission of large torques. However, noise and vibration remain key concern in
all planetary gear industrial applications. Operating conditions such as load and
speed can alter the dynamic behavior of planetary gears. If these conditions are time
varying and non-stationary, vibration signals will be complex to process and ana-
lyze and the monitoring will be more difficult than for transmissions running under
stationary conditions.

Diagnostic of transmissions running under non-stationary conditions is becom-
ing one of hot topics for researchers. In fact, simultaneous load and speed variation
changes vibration signal structure leading to both amplitude and frequency mod-
ulation [1] so that pure spectral analysis is no longer efficient.

Our case study is a planetary gear transmission which is frequently subjected to
time varying loading conditions such as in mining machines or wind turbines.
Randall [2] showed that load fluctuation modulate the vibration signals issued from
meshing process. Bartelmus [3] and Bartelmus and Zimroz [4] related load level in
gear transmission to vibration amplitude by linear function. They [5] showed that
the presence of defects will lead to an increase of the slope of this function con-
cluding about the necessity to use proper signal processing techniques in order to
monitor and diagnose correctly planetary gearboxes.

Zimroz et al. [6] used automatic segmentation algorithm of vibration signals
issued from gearbox in time frequency to estimate instantaneous rotational speed.

Khabou et al. [7] was interested in the start-up of a gearbox which is an
extremely non-stationary running regime. He described the speed-load variation
using the motor mechanical characteristic. Chaari et al. [1] used this procedure for a
single stage spur gear transmission running under varying loading conditions and
highlighted amplitude and frequency modulations in time signals using time fre-
quency analysis.

Bouchaala et al. [8] showed that during start-up of defective gearbox trans-
mission, high vibration levels are observed.

Chaari et al. [9] presented a model of a planetary gear transmission subjected to
time varying loading and speed conditions. They simulated the dynamic behavior
and highlighted the frequency modulation observed in vibration signals.

This paper is dedicated to both experimental and model based approaches to
describe the dynamic behavior of planetary gear transmission subjected to time

352 C.M. Vicuña and F. Chaari



varying loading conditions. The experimental setup is first described. Results issued
from test rig for variable load and at two nominal rotational speeds of the driving
motor are discussed. A model of the studied test rig is then presented. The objective
is to explain the behavior of the system under non-stationary conditions.

2 Experimental Setup

2.1 Test Rig Description

Experimental measurements are taken from a planetary gearbox test rig, Fig. 1. The
asynchronous motor (3 phases, 3 kW IP55, 400 V/50 Hz, class F, 4 poles) runs in
open-loop configuration and is controlled by a frequency converter. The rotational
speed of the motor shaft is measured by means of an optical encoder coupled to the
motor shaft on the fan side. Since the motor is operated in open-loop, the relation
between load and speed is determined by the motor curve, which was available
from the manufacturer.

The test object is a single-stage spur gear planetary gearbox with transmission
ratio of 1:5. The gearbox is used in reduction mode, which means the motor shaft is
coupled to the sun gear shaft and the carrier shaft is coupled to the load unit. The
gearbox has three planetary gears, each mounted on bolts and supported by needle
bearings. Available details of the gearbox are listed in Table 1.

Fig. 1 Planetary gearbox test rig. (1) magnetic particle brake, (2) low-speed coupling, (3)
planetary gearbox, (4) high-speed coupling, (5) asynchronous motor

Table 1 Planetary gearbox parameters

Parameter Sun gear Planet gear Ring gear Carrier plate Planet bolt

Tooth number 18 26 72 – –

Module 1.5 1.5 1.5 – –

Mass (kg) 0.178 0.129 1.711 0.810 0.070

Pitch diameter (mm) 27 39 180 – –

Number of planets 3, equally distributed
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The load unit is a magnetic particle brake. The maximum braking torque is
limited by heat dissipation capabilities, which depend on rotational speed. For
example, maximum torque at motor speed of 600 RPM is 55 Nm; at 1000 RPM is
35 Nm; etc. However, these limits can be exceeded for short periods. The braking
torque is produced by creating a magnetic field between the rotor and stator. The
field produces the magnetic particles to arrange and the magnetic forces between
them and the rotor and stator result in the braking torque. Based on this functioning
principle, it is possible to adjust the braking torque by controlling the intensity of
the magnetic field, which is done by regulating the current on the stator. In this case,
we use a current power supply with remote control capability by means of a 0–10 V
signal. The relation between current and braking torque is obtained from the
manufacturer’s brake curve. The voltage/current relation is calibrated previous to
the measurements. The voltage signal is generated using a D/A converter. All this
arrangement allows the generation of time variable braking torque with magnitude
and shape controlled by software.

2.2 Instrumentation and Data Acquisition

The vibration sensor is a 100 mV/g accelerometer, installed on the top outer part of
the ring gear. A flat surface was milled on the outer ring to provide appropriate
mounting surface for the sensor. The sensor is attached to the ring gear by using a
stud.

Measurements were done using data acquisition hardware from National
Instruments and routines programmed in LabVIEW. Separate devices with syn-
chronized clocks were used for digitizing the signals from the accelerometer and
motor optical encoder (2048 pulses/rev). The measurement system is used for
simultaneous measurement of acceleration vibration and motor instantaneous
angular speed.

2.3 Test Description and Experimental Results

The planetary gearbox was driven at different nominal rotational speeds. At each
speed, varying braking torque in shape of a sinusoidal was applied. Figure 2 shows
the result of a measurement taken at 1500 RPM and load variation between 10 and
50 Nm with a frequency of 5 Hz. As it can be seen, the varying load influences the
rotational speed of the complete system, producing a periodic variation of the motor
rotational speed between 1435 and 1480 RPM. As expected, the frequency of the
speed variation matches the frequency of the load variation, and does have much of
a sinus-like shape. On the other hand, the acceleration signal presents amplitude
modulations due to the load variation. These are more clearly evidenced in Fig. 3,
which shows the measured signals for a nominal motor speed of 1200 RPM and
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Fig. 2 Measurement of acceleration vibration of the ring gear (top), and motor instantaneous
speed (bottom). Nominal motor speed is 1500 RPM and load is a 5 Hz sinusoidal varying between
10 and 50 Nm
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Fig. 3 Measurement of acceleration vibration of the ring gear (top), and motor instantaneous
speed (bottom). Nominal motor speed is 1200 RPM and load is a 1 Hz sinusoidal varying between
10 and 50 Nm
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sinusoidal load variation between 10 and 50 Nm with frequency of 1 Hz. Note that
the vibration amplitude is higher when the speed is lower. Since the motor is
controlled in open-loop, the speed reduces when the load increases and vice versa,
so the larger vibration amplitudes are obtained when load is higher. Under these
conditions, the resulting acceleration vibration is amplitude and frequency modu-
lated with corresponding modulating functions sharing essentially the same fre-
quency content.

Let us further analyze the case where nominal motor rotational speed is
1500 RPM and sinusoidal load variation between 10 and 50 Nm with 5 Hz fre-
quency. Figure 4 presents the spectrum of the motor instantaneous angular speed,
showing that the speed variation is dominated by the lower harmonics of the load
variation frequency.

The planetary gearbox has three equally spaced planets and all gear mesh pro-
gressions occur simultaneously inside the transmission and are in-phase. Planetary
gearboxes with these characteristics are classified as planetary gearboxes of
Group A according to [10]. For planetary gearboxes of this group, and for constant
speed, the spectral structure of the vibrations measured by a sensor on the ring gear
theoretically corresponds to spectral lines at the gear mesh frequency (GMF) with
symmetrical sidebands spaced at NfC, where N is the number of planet gears and fC
is the rotational frequency of the carrier plate. The same structure is expected for
higher harmonics of the GMF.

In addition to the specific features of planetary gearbox vibrations explained
above, the effects of amplitude and frequency modulation must be considered.
Independently, both modulation effects result in the appearance of a symmetrical
family of sidebands around each carrier frequency, spaced at the frequency of the
modulating function. When amplitude and frequency modulation simultaneously
take place, asymmetry in the sidebands generally follows. Figure 5 shows a zoom
of the magnitude spectrum of the acceleration vibration around the GMF showing
sideband asymmetry. The central line corresponds to the mean gear mesh frequency
(GMF, which acts as the carrier frequency of the modulation). Detailed analysis
shows that there are actually two families of sidebands with close frequencies. One
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Fig. 4 Magnitude spectrum of the motor instantaneous angular speed. Dashed lines indicate
multiples of 5 Hz
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has the frequency of the load variation (5 Hz). The second has a frequency of
4.87 Hz and corresponds to the average frequency of the carrier plate during the
measurement, fC. Note that for a planetary gearbox of Group A sidebands at fC are
not predicted by phenomenological models; however, they are typically observed in
practice. Note also in Fig. 5 (bottom), that the sideband at NfC is present, as
theoretical models predict (N = 3) [10, 11].

3 Model of the Gearbox

In order to understand the dynamic behavior of the planetary gear subjected to time
varying loading conditions as tested in the last section, a dynamic lumped
parameter model is developed (Fig. 6). Ring gear (r), sun gear (s), planet gears
(p) and a carrier (c) are considered as rigid bodies that can translate in two direc-
tions and rotate around their rotational axis. Mesh phenomena are modeled by
suitable mesh stiffness functions. In total there are (3N + 9) degrees of freedom,
where N is the number of planets [12]. Damping is introduced in parallel to each
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Fig. 5 Magnitude spectrum of the acceleration vibration. Top Zoom around the gear mesh
frequency (central line). Bottom Second zoom portion to distinguish the different sidebands. Red
dashed lines label sidebands spaced at 3fC; black dot-dash lines label sidebands spaced at 5 Hz
(load and speed variation frequency)
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stiffness. Neglecting gyroscopic effects (low rotational speeds) the equation of
motion can be written as:

M½ � €qf g þ Cb½ � þ Cm½ �ð Þ _qf g þ Kb½ � þ Km tð Þ½ �ð Þ qf g ¼ T tð Þf g ð1Þ

where q is the degree of freedom vector, [M] is the mass matrix, [Cb] is the bearing
dampingmatrix, [Cm] is themesh dampingmatrix, [Kb] is the bearing stiffness matrix,
[Km(t)] is the time varying mesh stiffness matrix and {T(t)} is the external torque
vector applied on the system. Expressions of these matrices can be found in [1].

The asynchronous motor driving the system has a mechanical characteristic,
which relates the driving torque to the rotational speed, expressed by [13]:

Tm ¼ Tb

1þ ðsb � sÞ2
� �

a
s � bs2
� � ð2Þ

where Tb is the torque at break point, a and b are constant properties of the motor, sb
is the slope at break point, and s is the slope of the motor expressed by:

Fig. 6 Model of the planetary gear
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s ¼ ðNs � N1Þ
Ns

ð3Þ

where Ns is the synchronous speed of the motor and N1 is the rotational speed of the
motor, which is also the rotational speed of the sun gear.

The mechanical characteristic used for simulations is provided by the motor
manufacturer. When there is no speed controller, the motor speed is sensitive to
loading conditions. In fact, an increase of load will lead to a decrease of speed and
vice versa. As a consequence, if load increases, the motor has to overcome it by
supplying the adequate torque but the speed in this case will decrease and vice versa.
This situation leads to time varying mesh frequency which can be expressed by:

fmðtÞ ¼ ZsZr
Zs þ Zr

fsðtÞ ð4Þ

where fs(t) is the varying sun shaft rotational frequency (motor rotational fre-
quency), Zs is the tooth number of the sun and Zr is tooth number of the ring.
Figure 7 shows the evolution of mesh stiffness function as load is increasing.

4 Simulation Results

The modeled gearbox is subjected to the same operating conditions of the exper-
iments. We present here the results for 1500 RPM motor nominal speed and 10–
50 Nm, 5 Hz sinusoidal load variation. Figure 8 shows on top a portion of the
acceleration time history showing clear evidence of the amplitude modulation effect
of the load variation. Figure 8 (center) displays the speed variation of the sun gear,
showing sinusoidal speed variation between 1437 and 1475 RPM and frequency of
5 Hz. This evolution was obtained after intersecting the mechanical characteristic of
the driving asynchronous motor with the loading values. Similar values and
behaviour were observed in the measurements (Fig. 2). Figure 8 (bottom) shows the
portion of magnitude spectrum of the acceleration vibration around the mean GMF.
The central dot-dashed line marks the GMF and the rest of the markers are spaced at
the frequency of the load variation (5 Hz). As explained, the presence of asym-
metrical sidebands spaced at the load variation frequency is a result of the frequency
and amplitude modulation.

Mesh stiffness

Time

Increase of load

Fig. 7 Model of the time varying mesh stiffness
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Note that the resolution of the spectrum (0.29 Hz) of Fig. 8 does not allow
investigating the presence of sidebands spaced at multiples of fC (as in Fig. 5).
However, they should not be present in the simulation results, because the reference
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frame used for the degrees-of-freedom of the model is a rotating frame fixed to the
carrier plate. Thus, there is no varying transmission path effect [14] and, therefore,
no additional sidebands. Taking this consideration into account, the simulation
results are in full agreement with the experimental results.

5 Conclusions

In this paper a planetary gear transmission running under non-stationary operating
conditions was investigated using two approaches: experimental and model-based.
The non-stationary operating condition studied was modeled by time varying loads
imposed on the carrier (output of the system). The experimental setup was
described and results issued from varying loading cases were analyzed. Dynamic
model of the test rig was then developed including the main excitation sources.
Numerical and experimental results can be summarized as follows:

• Rotational speed is sensitive to load variation. Motor speed variability follows
intimately the mechanical characteristic.

• It is clear that variation of load leads to amplitude and frequency modulations in
vibration signals. This was observed in the simulation and experimental results.

• Asymmetric sidebands are observed in vibration spectra around GMF and its
harmonics, due to the simultaneous frequency and amplitude modulation.

• Simulation results show similar results excepting the absence of sidebands at
Nfc. This was explained by the fact that simulated time signals are obtained
according to a rotating frame fixed to the carrier.

This last point leads us to think that it is necessary to adapt the developed model
in order to express the vibration signals according to fixed frame. This task is under
development by the authors.

Acknowledgments Cristián Molina Vicuña thanks CONICYT-FONDECYT for the support of
Project 11110017.
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Model-Based Estimation of Elevator Rail
Friction Forces

Ekaitz Esteban, Oscar Salgado, Aitzol Iturrospe and Inge Isasa

Abstract This paper presents a model-based monitoring approach for the esti-
mation of the elevator rail friction forces. This model-based monitoring approach is
based on a Linear Parameter Varying (LPV) model of a 1:1 elevator installation,
comprising both the mechanical and the electrical subsystems. The Extended
Kalman algorithm (EKF) is then employed as an observer for the joint estimation of
the elevator LPV states and parameters. Finally, the estimated rail friction forces are
evaluated and energy efficiency indicators describing elevator performance during
the ride are obtained.

Keywords Linear parameter varying model � Extended kalman filter �
Performance indicator
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1 Introduction

Maintenance and modernization services account for more than a 46 % of the total
revenue in some elevator manufacturing companies [1]. It is highly important to
accurately estimate and analyze the energy efficiency of the elevators [2]. Elevator
maintenance services usually involve periodical in situ inspections, which are
generally conducted employing commercial equipment designed specifically to
evaluate the performance using energy efficiency indicators [2, 3]. An energy
efficient elevator can make a long lasting and effective contribution to a safer
environment in the future through its lower environmental impact [3].

Currently, the energy efficiency indicators applied in the elevator industry are
based on the evaluation of the energy consumption following the industry standard
as the one described in the VDI 4707 guideline [3]. Using the VDI 4707 guideline,
the total energy consumption of an elevator can be known through the direct
measurement of the voltage and current signals from the machine. However, the
losses of the consumed energy can not be identified. The mechanical energy losses
are mainly due to the rail friction forces which are difficult to measure with already
installed sensors in the elevator. However, the rail friction forces can be indirectly
estimated based on existing signals as proposed in the literature [4].

The aim of this paper is to estimate the mechanical energy losses due to the rail
friction forces during the ride. We apply a model-based identification procedure [5],
as shown schematically in Fig. 1. The EKF algorithm [6] estimates step by step the
model states and the rail friction forces based on an electromechanical model of a
1:1 elevator installation [4] and the existing signals: the regulator signature, the
voltage and current signals from the machine, the machine encoder and the
draw-wire encoder of the elevator car. Then, three elevator energy efficiency
indicators are calculated.

Fig. 1 Model-based approach for the estimation of rail friction forces
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The rest the paper is organized as follows. In Sect. 2, both the dynamics of a 1:1
elevator installation and its model are described. In Sect. 3, the model-based
algorithm is applied for estimating elevator rail friction forces. Then, the energy
efficiency indicators are described in Sect. 4. In Sect. 5, the model-based estimation
procedure is tested by simulations based on a 1:1 elevator installation model and
several conclusions are discussed in the last section.

2 Elevator Model

An elevator installation comprehends both a mechanical subsystem and an electrical
subsystem, as it is shown in Fig. 2. The mass of the elevator car is balanced by a
counterweight in order to reduce the torque demanded to the machine. An electrical
machine drives through a pulley onto the suspension ropes which interconnect the
elevator car and the counterweight. Both the car and the counterweight move
vertically, constrained by a pair of rails each.

The installation modeled in this paper is driven by a Permanent Magnet
Synchronous Machine (PMSM) with a three-phase wye-wound stator which is
controlled using a Field Oriented Control (FOC), where the velocity signature
profile is generated for each ride, depending on the starting car position and its final
destination.

The imbalance between the elevator car and the counterweight exerts a
mechanical torque that is actively balanced with the electromagnetic torque applied
by the machine. The mechanical and the electrical subsystems are coupled by the
following torque balance equation

Fig. 2 Simplified schematic description of the 1:1 elevator installation modeled in Sect. 2
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d
dt

_hm ¼ se � sm
Ip

ð1Þ

where Ip is the inertia of the driving pulley, the angular velocity of the rotor shaft is
denoted with _hm, the electromagnetic torque exerted by the machine is denoted with
τe and the resulting mechanical torque is τm.

2.1 Car-Rail Force Model and the Mechanical Subsystem
Dynamics

In this subsection the car-rail guide force model and the mechanical subsystem
dynamics are explained, as shown in Fig. 3. The free body diagram of the elevator
car is shown in Fig. 3a. In z axis, the inertial force is applied at the car center of
gravity whereas the rope elastic force fc, is applied at the top of the car. Due to the
imbalance caused by these forces, the self-balanced rail guide reaction forces fx and
fy appear as a reaction to this imbalance in each contacting elements. Considering
the coulomb friction model [7] for each car sliding elements, the self-balanced rail
guide reaction forces produces a proportional rail friction forces frc in z axis.
Assuming that the angular rotation and the lateral translation of the car is con-
strained by a pair of rails, the force balance model can be simplified as,

P
f i ¼ mc aP
ri � f i ¼ 0

ð2Þ

Fig. 3 Car-rail force model and the mechanical subsystem dynamics a Free body diagram of the
elevator car. b Lumped parameter model of a 1:1 elevator vertical dynamics
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where the vectors fi, a and ri are the forces, accelerations and the distance with
respect to a fixed reference point of the car in three axis, respectively. Given these
simplifying assumptions, we can note that the friction forces are proportional to the
elastic force, which is in turn proportional to the inertial force. Therefore, it can be
assumed that the rail friction force is proportional to the inertial force as follows

frc � cc mc ðgþ €zcÞ frw � cw mw ðgþ €zwÞ ð3Þ

where, the proportionality between the load of the car and the rail friction force is
denoted by the parameter γc. Note that the same assumptions are made for the
calculation of the counterweight rail friction forces frw.

The equations describing the car-rail force model Eq. (3) are coupled into a 1:1
vertical dynamic model of the elevator [4, 8], as shown in Fig. 3b. Based on the
force balance in each inertial element, the linear second order differential equations
that govern the mechanical subsystem dynamics including the car-rail lateral force
model Eq. (3) are expressed as,

d
dt

_zm
_zp
_zrc
_zrw
_zc
_zw

2
6666664

3
7777775
¼

�cm _zm � km zm � kp zp � zm
� �þ kmqm � kpqp
mm

�kp zp � zm
� �þ kc zrc � zp

� �þ kw zrw � zp
� �þ kpqp þ 2 EA

mp
� _mrc _zrc�kc 2 zrc�zc�zpð Þ

mrc

� _mrw _zrw�kw 2 zrw�zp�zwð Þ
mrw

�kc zc�zrcð Þ�EA
mcð1þccÞ

�kw zw�zrwð Þ�EA
mwð1�cwÞ

2
666666666666664

3
777777777777775

�

g
g
g
g
g
g

2
6666664

3
7777775

ð4Þ

where the lumped masses, stiffness and damping elements of each j-inertial ele-
ments are denoted by mj, kj and cj, respectively. The position, velocity and accel-
eration of each j-inertial elements are denoted by zj, _zj and €zj, respectively and rp is
the pulley radius. The mechanical torque obtained as a result of the response of the
mechanical subsystem is,

sm ¼ rpkw zrw � zp
� �� rp kc zrc � zp

� �
: ð5Þ

2.2 Model of the PMSM

The linear first order differential equations that govern the electric dynamics of a
PMSM can be expressed in the dq0 reference frame assuming the magnetic sym-
metry of the machine and the same inductances ðLd�LqÞ among other simplifica-
tions as in [9],
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d
dt

id
iq

� �
ffi Vd=Ld

Vq=Lq

� �
� R=Ld 0

0 R=Lq

� �
id
iq

� �
� 0

pk=Lq

� �
_hm ð6Þ

where V, i and L denote the voltages, currents and inductances respectively. The
subscripts d and q denote the direct and quadrature axis respectively. The resistance
of the stator is denoted by R, λ is the magnetic flux linkage and p is the number of
machine pole pairs. The electromagnetic torque τe is assumed to be proportional to
the quadrature axis current as,

se ffi 3
2
pk iq ¼ Kt iq ð7Þ

where the machine torque constant is denoted by Kt.

2.3 Model of the Field Oriented Control

The aim of a FOC strategy is to control the direct and quadrature axis current
independently, maximizing the active power and minimizing the reactive power.
This is achieved by minimizing id and maximizing iq by means of two different PI
current controllers, as shown in Fig. 4. In the outer loop, the rotor angular velocity
_hm is controlled by means of another PI control. For an ideal FOC control, idref is set
to zero in order to minimize the consumed reactive power by the machine and iqref is
the output of the velocity control.

This FOC strategy can be represented as a linear first order differential equations
analogously to [10] as follows

d
dt

iqref
Vd

Vq

2
4

3
5 ¼

Kps 0 0
0 Kpd 0
0 0 Kpq

2
4

3
5 _xref � €hm

_idref � _id
_iqref � _iq

2
4

3
5þ

Kis 0 0
0 Kid 0
0 0 Kiq

2
4

3
5 xref � _hm

idref � id
iqref � iq

2
4

3
5
ð8Þ

Fig. 4 Field oriented control scheme
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where the proportional gain and integral gain of a PI control are denoted with Kp

and Ki respectively. The subscript s, d and q represent the velocity, direct current
and quadrature current controller respectively.

Finally, substituting the Eqs. (5 and 7) in Eq. (1), and rewriting the linear
differential equations from Eqs. (1, 4, 6 and 8) in state-space domain as described in
[11] we get,

_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð9Þ

where the state matrix is denoted by A(t) and the input matrix is B(t). The state
vector x(t) and input vector u(t) are detailed as follows

x ¼ zm zp zrc zrw zc zwhm _zm _zp _zrc _zrw _zc _zw _hm id iq iqref Vd Vq

� �T
u ¼ _wref wref _idef idef g 1

� �T
:

ð10Þ

As the rope stiffness parameters of the state matrix kc and kw depends on its
instantaneous length, the elevator model above can be considered a LPV system.

3 Estimation of Elevator Rail Friction Forces by EKF

The estimation of the rail friction forces requires to estimate the €zc and €zw states in
order to identify the γc and γw parameters in Eq. (3). This joint estimation can be
accomplished by using the EKF, and adding the identified parameters to the state
vector in Eq. (9) as described in [6],

xaug ¼ x
p

� �
p ¼ cc

cw

� �
: ð11Þ

Therefore, the new model that identifies friction parameters is,

_xaug ¼ A O
O O

� �
xaug þ B

O

� �
uþ wðtÞ wðtÞ�Nð0;QÞ ð12Þ

y ¼ C O½ 	xaug þ vðtÞ vðtÞ�Nð0;RÞ ð13Þ

where the process noise vector denoted by w(t) is assumed to be a zero mean
Gaussian noise with covariance matrix Q; the measurement noise vector denoted by
v(t) is assumed to be a zero mean Gaussian noise with covariance matrix R and the
output matrix C outputs the estimated state variables for the draw-wire encoder
position and velocity, the machine encoder position and velocity and the machine
quadrature current and the quadrature voltage as,
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C ¼

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
6666664

3
7777775
: ð14Þ

4 Energy Efficiency Indicators

The estimated states from Eq. (12), €̂zc; €̂zw; ĉc and ĉw are then employed to estimate
the rail friction forces f̂rc and f̂rw from Eq. (3). These estimated rail friction forces
are then applied to obtain three energy efficiency indicators during the ride. The first
energy efficiency indicator, ηm is the ratio between the friction energy losses and the
consumed active energy by the motor, [2]:

gm ¼ 1� friction energy losses
motor active energy

¼ 1� rp
Rxm

0 ðf̂rc þ f̂rwÞdxm

3=2
R t
0ðVqiq þ VdidÞdt

ð15Þ

where, the numerator of the Eq. (15) represents the energy work obtained for the
rail friction forces and the denominator is the time-integral of the electrical active
power.

The second energy efficiency indicator, ηe is the ratio between the consumed
active energy and the total energy consumption by the motor:

ge ¼
motor active energy
consumed energy

¼ 3=2
R t
0ðVqiq þ VdidÞdtR t

0ðVaia þ Vbib þ VcicÞdt
ð16Þ

where the subscripts a, b and c denote the measured three-phases of a wye-wound
stator PMSM, respectively.

Finally, the third energy efficiency indicator, ηt is defined as an indicator of the
whole installation efficiency:

gt ¼ ge gm: ð17Þ

5 Simulation Results

The proposed procedure in Sect. 4 has been tested by three simulations. The dif-
ferent values of the rail friction parameters are γc = γw = 0.073, γc = γw = 0.082 and
γc = γw = 0 for each simulation respectively. These selected values correspond to
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equivalent friction scenarios obtained experimentally in [12]. The other elevator
model parameter values are summarized in Table 1.

We define the same reference signature for the three simulations where the
elevator car moves upwards, as shown in Fig. 5. The reference signature is cal-
culated with the following values: ride distance d = 5.2 m, maximum velocity
v = 0.58 m/s, maximum acceleration a = 0.38 m/s2 and jerk j = 1 m/s3 respectively.
More details about the continuous time equations for the reference signature can be
found in [13].

The EKF algorithm for joint estimation, as described in Sect. 3, is tuned by
setting the process error covariance matrix P = I21, the process noise covariance
matrix Q ¼ 0:01I21 and the measurement noise covariance R ¼ 0:64I6 for the
three simulations. The initial values for the state estimates are statically obtained (at
t = 0) by considering the input vector as u ¼ ½ 0 0 0 0 g 1 	T and consid-
ering that the elevator car is still, that is _x ¼ 0. The estimation was carried out using
Matlab and ReBEL1 The estimation of the rail friction force for the first simulation
in the car and counterweight side during the ride are shown in Fig. 6. The solid line

Table 1 Elevator model
parameter values

Parameter Value

ρm 9 m

mm 225 kg

mw 145 kg

km 1.3 × 106 N/m

Kps 0.83 A/rad/s

Kid and Kiq 404 Ω/s

Lq 18.175 mH

ρp 0.125 m

mp 10 kg

Ip 0.34 kg m2

kp 2 × 105 N/m

Kis 59.5 A/rad

R 1 Ω

Kt 15.936 Wb

rp 5.75 cm

mc 220 kg

EA 106 N

cm 0 Ns/m

Kpd and Kpq 6.1 Ω

Ld 18.175 mH

g 9.81 m/s2

1ReBEL is a Matlab toolkit for Sequential Bayesian inference.
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is the simulated rail friction force employing Eq. (9), and the dashed line is the
estimation of the rail friction force by the EKF algorithm.

Finally, we compare the energy efficiency indicators in Sect. 4 with the energy
efficiency evaluation following the VDI 4707 guideline. Table 2 contains the values
of the energy efficiency indicators obtained from the simulated three different rail
friction scenarios. The VDI 4707 guideline defines different ranks (from lower G to
higher A) that classify the elevator installations in different ranges of energy effi-
ciency. Despite of the friction forces are different for the three simulations, the VDI
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Fig. 6 Estimation of the friction forces during the ride for the first simulation a Ride friction force
in the counterweight. b Ride friction force in the car

Table 2 Comparison of the
energy efficiency indicators
with the VDI indicators

Indicator name Sim. (1) Sim. (2) Sim. (3)

ηe (%) 93.7 92.5 95.6

ηm (%) 72.9 67.8 100

ηt (%) 68.3 62.8 95.6

VDI energy (mWh/kg m) 1.246 1.357 1.046

VDI rank A A A
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4707 indicator has assigned to them a range of maximum efficiency A. We can
conclude that, contrary to the proposed energy efficiency indicators, the VDI rank is
unable to distinguish the three different friction energy losses.

6 Conclusions

A LPV model for a elevator, including the dynamics of a PMSM controlled by a
FOC strategy has been proposed. According to the results presented in simulation,
the model is valid for estimating the rail friction forces based on the Extended
Kalman Filter in real-time. Moreover, these rail friction forces are estimated
employing already existing signals in the elevator installation.

The proposed three energy efficiency indicators allows to evaluate the friction
energy losses, as well as the whole installation efficiency during the ride. Moreover,
the proposed energy efficiency indicators are able to distinguish different rail fric-
tion scenarios whereas the VDI 4707 is unable.
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Modelling and Simulation of Gear Systems
Dynamics for Supporting Condition
Monitoring Using Mathematica

Walter Bartelmus and Juliusz Grabski

Abstract Modelling and simulation of gear system dynamics to support the con-
dition monitoring is one of the most important issues which should be properly
developed. There are many papers on the subject of gearbox dynamic modelling
however they are not coherent. Only in few papers a “complete system”, which
consist of a drive, gearbox and a driven machine is considered. The system which is
going to be considered in this paper is complete and its parameters are based on a
real system. To present different gear system dynamics problems a nonlinear
time-varying model is analysed using Mathematica software. In the model the
torsional vibration of the rotating system is considered. The model includes
time-varying gear mesh stiffness, gear errors of each meshing tooth pair and non-
linearities due to tooth separations. Numerical solution of the system is obtained by
Mathematica. Highly optimized superfunctions used inMathematica analyse model
equations and automatically select the right algorithms to get accurate results
quickly. Other computation systems (e.g. MATLAB) require manual selection of
solution algorithm to apply, whereas in Mathematica we use NDSolve and the risk
of wrong results is minimal. The aim of the study is to show that mathematical
modelling and computer simulation using Mathematica enable detailed investiga-
tion of the dynamic properties of a gearing system.
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1 Introduction

The paper includes short discussion on mathematical modelling and computer
simulation of one stage gear system as shown in Fig. 1. The bases for the modelling
are described in papers [1–4]. In paper [2] model of one stage gearbox complete
system Fig. 1 is described which consist of an electric motor, represented by its
rotor inertia Js, two gears represented by its inertia Jp1 and Jp2 and driven machine
represented by its inertia Jr. More model parameters are given below. The
incomplete model of a gearbox is understood as one which consists of only two
gears and driving and driven elements of the system are not taken into consider-
ation. Thorough investigations on the modelling of a complete system (as shown in
Fig. 1) is given in papers [1] and [2], where gear imperfections, inter-teeth friction
and backlash and only torsional vibration are considered. More sophisticated
models including lateral vibrations are presented in paper [3], where double stage
gearboxes are considered with torsional and lateral vibrations. The paper is cited 70
times according to Scopus including papers [5] and [6]. If one wants to consider
varying load transmitted by a system the load susceptibility characteristic should be
considered as in paper [4] and [6]. In paper [6] results obtained by measurements on
a real industrial object are presented. There the susceptibility characteristic for a
planetary gear gearbox is evaluated, which is incorporated into a complicated
gearbox system. The load susceptibility characteristic is thought as an universal
characteristic for a gearbox system. The investigations undertaken in this paper are
directed to obtain the load susceptibility characteristics of investigated system
shown in Fig. 1.

Model parameters used in numerical simulations:

• average gearing’s stiffness kz = 2.4 × 109 N/m,
• minimum gearing’s stiffness kzd = 2.3 × 109 N/m,
• maximum gearing’s stiffness kzg = 2.5 × 109 N/m,
• stiffness of shafts ks1 = 3 × 106 N/m, ks2 = 3.3 × 107 N/m,
• gear radii r1 = 0.122 m, r2 = 0.493 m,
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• teeth numbers z11 = 23, z12 = 93,
• moments of inertia Js = 12.2 kgm2, Jp1 = 1 kgm2,

Jp2 = 200 kgm2, Jr = 1140 kgm2,
• damping coefficients Cz = 10,000 Ns/m, Cs = 10,000 Ns/m,
• inter-tooth backlash l = 0.0003 m,
• maximum of gear pitch error e1 = 0.00002 m.

Inter-tooth forces according to [2] are described by Eq. (1a) when gear imper-
fections Er(t) = 0 and by (1b) when imperfections Er(t) > 0.

F½t� ¼
kzmðr1u2½t� � r2u3½t� þ lu for r1u2½t� � r2u3½t� � lu [ 0
kzmðr1u2½t� � r2u3½t� � lu for r1u2½t� � r2u3½t� þ lu\0
0 for �lu � r1u2½t� � r2u3½t� � lu

8
<

: ð1aÞ

or

F½t� ¼
kzmðr1u2½t� � r2u3½t� þ lu þ Er½t� for r1u2½t� � r2u3½t� � lu þ Er½t�[ 0
kzmðr1u2½t� � r2u3½t� � lu þ Er½t� for r1u2½t� � r2u3½t� þ lu þ Er½t�\0
0 for �lu � r1u2½t� � r2u3½t� þ Er½t� � lu

8
<

:

ð1bÞ
Equations of motion are described by Eqs. (2)–(5).

Js€u1½t]þ ks1 ðu1½t� � u2½t�Þ þ Cs ð _u1½t�� _u2½t�Þ ¼ Ms ð2Þ

Jp1€u2½t� � ks1ðu1½t� � u2½t�Þ�Cs ð _u1½t�� _u2½t�Þ þ Czr1ðr1 _u2½t� � r2 _u3½t�Þ ¼ �F½t�r1
ð3Þ

Jp2€u3½t� þ ks2ðu3½t� � u4½t�Þ � Cs ð _u1½t�� _u2½t�Þ þ Czr2ðr1 _u2½t��r2 _u3½t�Þ ¼ F½t�r2
ð4Þ

Jm€u4½t� � ks2ðu3½t��u4½t�Þ ¼ Mr ð5Þ

Fig. 1 Model of one-stage
gearbox (details below)
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2 Model Description in Mathematica

The basics for the model description is presented in papers [2] and [3], basic
principle is described by Eqs. (1a, b) to (5).

Few code fragments in Mathematica syntax [7] are presented below.
Data preparation—model characteristics (external moments, gear pitch error

function, gearing’s stiffness function, inter-tooth force):

Dynamics equations and numerical solution function:
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3 Simulation Results

In Fig. 2 electric motor characteristic, input moment Ms [Nm] as a function of a
rotation speed in [rad/s] and an output moment Mr [Nm] as function of time [s] are
plotted. The gear system transmits the rated power 1000 [kW]. Most simulations
presented in papers [8–18] are made for gearboxes of very low transmitted power.
Some of them refer to the back to back rigs. It is always uncertain if the results
obtained for low power gearboxes can be expected to be the same for high power
gearboxes. This paper is devoted to modeling and simulations of high power
gearboxes.

Figure 3 gives a gear stiffness characteristic kzm [N/m] as a function of time [s]
and an imperfection/error function characteristic as a function of time.

3.1 Simulation Results for Gear Pitch Error
e1max = 0.00002 m

Figure 4 shows variations of inter-tooth force F(t) and variations of angular rotation
speed [rad/s] of the first gear with mass inertia Jp1. The variations are caused by
variations of stiffness and variations of imperfections shown in Fig. 3.

Fig. 2 Electric motor characteristic and output moment characteristic

Fig. 3 Gearing’s stiffness kzm = kz (t) and error mode function Er = e1(t)
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In Fig. 5 acceleration differences r1ε2(t)—r2ε3(t) are presented, where ε2(t),
ε3(t) are rotational accelerations of the first and second gear (pin and wheel). The
maximum value of the acceleration differences are proportional to the inter-tooth
dynamic force acting in the direction of line of a gear action. The external moment
Mr is constant. The variations of accelerations are caused by variations of
inter-tooth stiffness and gear imperfections.

Figure 6 shows acceleration comparison for maximum imperfection value
0.000022, 0.00002 m and 0—with variable and constant inter-tooth stiffness. It is
well seen that acceleration variations are mainly caused by gear imperfections.

Figures 7 and 8 show respectively the course of random error mode of imper-
fections and the course of acceleration comparison.

It ought to be mentioned that an external/output moment is constant Mr as a
function of time [s] as one can see in Fig. 5. Figure 5 also shows variation of
acceleration in [m/s2]. The acceleration can be treated as a measure of design
parameters which are expressed in Fig. 3. The inter-tooth force not only cause
inter-tooth variation of acceleration but is also transmitted through the bearing on
the gearbox case. As it is stated in [2] and [3] the change of the gearing condition
can cause increase of imperfections that can cause an increase of the amplitude in
the error mode function (Fig. 3). In paper [4] it is stated that inter-tooth acceleration
is also a function of external/output load of a gearbox. To illustrate this influence of
imperfections, change of a gear condition and influence of an external/output load,
the load susceptibility characteristics are given in Fig. 9 showing a change of the

Fig. 4 Inter-tooth force F(t) and angular velocity ω2(t)

Fig. 5 Moment Mr(t) and acceleration differences r1ε2(t)–r2ε3(t)
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inter-tooth acceleration. On the Fig. 9 three lines are plotted and approximated by
linear regression functions. The regression lines of acceleration are functions of the
external/output load expressed by moment Mr [Nm]. The blue line is obtained for

Fig. 6 Accelerations comparison r1ε2(t)–r2ε3(t) for some values of e1max (e1max = 0.00002 m—
magenta line, e1max = 0.000022 m—blue line, e1max = 0—green line, e1max = 0 and kzm = const—
black line)

Fig. 7 Random error mode function Er = e1(t) (e1max = 0.00002 m)

Fig. 8 Accelerations comparison r1ε2(t)–r2ε3(t) for constant (solid line) and random (dashed line)
error mode function (e1max = 0.00002 m)
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an of error e1max = 0.000020 [m]. In this case an acceleration is caused by variation
of the gear pitch error and variations of the gear stiffness. The brown line is
obtained for the error e1max = 0.000022 [m]. This change of the error is a result of
gear condition change. This small increase of the error can cause an increase of
acceleration of about 10 [m/s2]. The black line shows the results when the error is
e1max = 0.0, in this case there is only the influence of inter-tooth stiffness, and this
causes a drop of the acceleration by 94 [m/s2]. It is seen that the main cause of the
change of inter-tooth acceleration are imperfections. Furthermore, it may be
inferred that it is also the main cause of the inter-tooth dynamic force variation.

3.2 Results Comparison for Different Values of Gear Pitch
Error (e1max = 0.00002 m, e1max = 0.000022 m,
e1max = 0)

See Fig. 9.

3.3 Acceleration Amplitudes Estimation
for e1max = 0.00002 m,
e1max = 0.000022 m and e1max = 0

Linear estimation of the acceleration amplitudes are as follows:

• for e1max = 0.00002 m

Da ¼ r1e2 tð Þ�r2e3 tð Þ ¼ 94:553þ 0:000297Mr; ð6Þ

Fig. 9 Load susceptibility characteristics to acceleration differences r1ε2(t)–r2ε3(t) for few values
of e1max (e1max = 0.00002 m—blue line, e1max = 0.000022 m—brown line, e1max = 0—black line)
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• for e1max = 0.000022 m

Da ¼ r1e2 tð Þ�r2e3 tð Þ ¼ 104:395þ 0:000284Mr; ð7Þ

• for e1max = 0

Da ¼ r1e2 tð Þ�r2e3 tð Þ ¼ 0:553þ 0:000344Mr: ð8Þ

As it is seen from the Eqs. (6) to (8) the load susceptibility characteristic Δa is a
linear function of external moment Mr. It is coherent with results obtained in papers
[4] and [6] both for simulation and experimental results.

4 Conclusions

The paper presents the possibility to use Mathematica for modelling and computer
simulations of gearbox systems dynamics. Gearbox system which consists of one
stage gear, driving and driven elements—such system is defined as complete sys-
tem. For the final verification of the system load the susceptibility characteristics
have been evaluated. The characteristics have been presented as a linear function of
external load represented by external/output moment Mr [Nm]. The results of
computer simulations presented are in accordance with results described in papers
[4] and [6] showing linearity of the load susceptibility characteristics. Presentation
of the final results in the form of the load susceptibility function is very important
when the system works in non-stationary operation condition which occurs in most
industrial cases. It ought to be stressed that the paper presents introductory results
and it is planned to make further developments leading to model multistage gear
systems including planetary gear systems.
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Wind Turbine Generator Bearing Fault
Diagnosis Using Amplitude and Phase
Demodulation Techniques for Small Speed
Variations

Ehsan Mollasalehi, Qiao Sun and David Wood

Abstract Vibration analysis of the generator bearing of a large wind turbine using
demodulation techniques is discussed in this paper. The purpose of this paper is to
show how capable these techniques are for small shaft speed variations. Highest
energy band was calculated by wavelet packet transform for amplitude and phase
demodulation. Results from the vibration analysis were consistent with a localized
outer-race bearing fault. They were then validated by cutting the bearing with water
jet machine. A significant localized fault was found on the outer race.

Keywords Condition monitoring � Amplitude demodulation � Envelope analysis �
Phase demodulation � Generator bearing � Wind turbine � Outer race fault � Short
record
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1 Introduction

Rolling element bearings have received great attention in the field of condition
monitoring. A robust machinery condition monitoring system is very beneficial to
capture a defect so as to prevent machinery performance malfunctions, or even
catastrophic failures by subsequent root cause analysis. Fault detection can be
performed based on information including acoustic emission, stress waveform, oil
analysis, temperature variation, vibration, etc. The most common technique for fault
detection is vibration signature analysis. Vibration monitoring in rotating machines
offers very important information about defects formed inside the structure of the
machine. The information gained by vibration analysis enables the planning of
maintenance. Vibration signature based diagnostics are mainly concerned with the
extraction of those features from a diagnostic signal, which can be related to a good
or a defective state of the component.

A survey of over 1000 failed wind turbine generators showed that bearing failure
is the dominant cause of wind turbine generator failure as shown in the Fig. 1. This
stresses the need of a special monitoring system to maintain the system proactively
and avoid any huge damage. The online vibration analysis and proactive

Fig. 1 Failure in wind turbine generator [1]

386 E. Mollasalehi et al.



maintenance cost a fraction of the total cost of replacement and required man-hours
and most importantly the indirect cost of the turbine shut down. This paper reflects
analysis conducted on the operational data received from the generator bearing of a
1.5 MW wind turbine. The bearing malfunction was identified by ear from the
bottom of the tower at the time of operation.

2 Vibration Analysis Methods

Vibration analysis is by far the most prevalent method for machine condition
monitoring as it has a number of advantages compared with other methods. One
main advantage is that vibration responds without any intervening time to changes
in machine condition. Therefore it can be used for both permanent and intermittent
monitoring. Vibration analysis has superior characteristics for industrial use and is
thus chosen to be the type of analysis in this paper. Due to rotating elements such as
shafts and bearings, vibration signals tend to be periodic. Modulating frequencies
are produced by specific faults of rotating elements including gears, bearing, and
shaft. As a result, the key task to diagnose bearing faults is to detect these mod-
ulating signals. Demodulation is an important step in bearing fault detection and
thus in the most of machine condition monitoring. The theory behind this method is
well described in the literature such as [2] and [3], and is not the purpose of this
paper.

Sidebands occur when a signal is under the effect of modulation, a phenomena
that occurs when a so-called carrier signal, has its amplitude or frequency to vary
with time. The first case, when the amplitude varies with time, is known as
Amplitude Modulation (AM) and the latter case, when the frequency varies with
time, is called Frequency Modulation (FM) or Phase Modulation (PM), where the
FM simply is the time derivative of the PM. As the name implies, the carrier
frequency carries the intelligence which is called the modulator. For example in
gear vibration signals, the gear mesh frequency and its harmonics are the carriers
and the shaft rotating speeds of the meshing gears are the modulators.

2.1 Amplitude Demodulation

Vibration signals with bearing faults can be modeled as an AM of a carrier signal at
the resonance frequency by periodic pulses. In so-called Envelope Analysis the
signal envelope is extracted by amplitude modulation and frequency analyzed to
reveal the repetition frequencies even when these have a small random fluctuation.
In the next section, one of the common approaches that can be used for demodu-
lation is briefly presented.
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2.1.1 Narrow-Band Amplitude Demodulation

Narrowband demodulation techniques select an interesting frequency band for
further analysis as an alternative to analyzing the entire frequency-domain signal.
This is performed by plotting the spectrum, and then select the frequency band in
frequency-domain (which usually has the highest energy). Therefore, bandwidth
filter is applied on the FFT of the signal instead of the signal in time-domain. The
algorithm for narrowband amplitude demodulation is now briefly described:

• Apply the FFT on the input signal.
• A frequency band of interest is selected.
• New zero spectrum is generated.
• The new spectrum is filled with the selected frequency band by shifting it to the

left hand end of the new spectrum, i.e. the lower limit of the selected band starts
at the zero frequency.

• Apply inverse FFT on the spectrum.
• The narrowband amplitude demodulated signal in time-domain is then calcu-

lated by taking the absolute value of the complex analytic signal.
• The spectrum of the narrowband amplitude demodulated signal is calculated via

absolute value of FFT.

Note that the narrowband selection does not change the length of the signal in
the time domain.

2.2 Phase Demodulation

Phase-modulated signal refers to a signal where there is a phase variation with
respect to time. For instance, a sine wave whose phase is modulated by another sine
wave. The simplest form is described as:

xðtÞ ¼ Acos½x1t þ bsinðx2tÞ� ð1Þ

where A is the amplitude of the signal. x1 is the carrier frequency, and x2 is the
phase modulating frequency. b is amplitude of the modulating component.

The signal needs to be reconstructed such that modulated signal’s phase is
characterized with respect to time. Equation 1 can be written as:

xðtÞ ¼ Aejðx1tþbsinðx2tÞÞ ð2Þ

Phase at any time instant can be calculated by the angle between the real and
imaginary part of the complex signal. Therefore, the idea is to convert the real
signal into a complex signal, where the real part is the original signal. This can be
achieved by the Hilbert transform.
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By taking the signal into the frequency domain by Fourier transform, setting
negative frequency to zero and doubling all positive frequencies, the real signal
with the complex multiplied Hilbert transform of the same signal is constructed,
which is called analytic signal. To summarize, the procedure for phase demodu-
lation can be described as:

• Fourier Transform the signal
• Fix negative frequencies to zero
• Double positive frequencies, except zero frequency
• Reconstruct the complex signal by transform back to the time domain. Analytic

signal is then created
• Calculate the instantaneous angle of the analytic signal
• Unwrap instantaneous phase of the original signal to obtain x1t þ bsinðx2tÞ
• x1t can be estimated by linear fit of the unwrapped phase. Subtract the linear

phase to obtain bsinðx2tÞ.
To verify the procedure, let’s assign values to Eq. 1 as:

A ¼ 1;x1 ¼ 32 Hz;x2 ¼ 2 Hz; and b ¼ 5

Figure 2 shows how the procedure described earlier can detect the instantaneous
phase of the modulated signal. The peak shown 2 Hz which is equal to x2.

3 Results and Discussions

The main purpose of this paper is to show the simple but useful condition moni-
toring system for generator bearings which could reduce the cost of repair or
maintenance by early indication of the problem and scheduling the maintenance on
a proper time. For instance, in many cases, the owner of the wind turbine, replaced
a bearing in spring/summer which leads to a higher revenue loss than winter. This
late replacement due to the fault associated with an early indication in vibration
signature could have been completed in winter when the price of electricity is
usually lower than summer.
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3.1 Vibration Data

This section reflects the vibration data analyzed. The data was recorded from the
on-line vibration monitoring systems on the 80 m 1.5 MW wind turbine:

1. Sensor locations:

• Drive End Axial (DE-Axi)
• Drive End Vertical (DE-Ver)
• Drive End Vertical (DE-Ver)

2. Sampling Frequency:

• DE-Axi: 5.12 kHz in 3.2 s, and 25.6 kHz in 0.64 s
• DE-Ver: 0.512 kHz in 16 s, and 5.12 kHz, 3.2 s
• NDE-Ver: 5.12 kHz in 3.2 s, and 25.6 kHz, 0.64 s

3. Averaged rotational speed of the shaft during the data collection period.
4. The operational data were collected in the period of two months.

This paper does not reflect any results from highest and lowest sampling fre-
quency rates. Vibration results from non-drive end sensor are not reflected here as
well. The only set of data shown is associated with 5.12 kHz. It should be noted that
the drive-end bearing was connected to the high speed bearing attached to the
gearbox by a semi-flexible coupling. Both generator bearings were observed to be
making noise and scheduled for replacement.

3.2 Bearing Characteristic Frequencies

Faults on the inner race, outer race, and rolling elements (balls) of a bearing show
peaks, called characteristic frequencies. They can be calculated and compared with
the peaks in the power spectrum of the demodulated signal to identify the source of
the bearing faults. In order to perform the calculations, the following parameters are
required [3]:

• Diameter of balls: d = 4.5 cm
• Pitch diameter: D = 23.5 cm
• Contact angle between the ball and the race: a ¼ 0
• Shaft rotational frequency: f
• Number of balls: n = 9

Having these values, the following equations are used:

• Ballpass frequency, outer race:
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BPFO ¼ n� f
2

ð1� d
D
cosaÞ ð3Þ

• Ballpass frequency, inner race:

BPFO ¼ n� f
2

ð1þ d
D
cosaÞ ð4Þ

• Fundamental train frequency (Cage speed):

FTF ¼ f
2
ð1� d

D
cosaÞ ð5Þ

• Ball spin frequency:

BSF ¼ D� f
2� d

ð1� ðd
D
cosaÞ2Þ ð6Þ

3.3 Vibration Analysis—Amplitude Demodulation

To select the bandwidth of interest to perform envelope analysis, wavelet transform
was used to select the highest energy band. Its complete theory and further
explanations are discussed in many texts on signal processing such as [4]. Briefly,
wavelet transform breaks down the signal to separate frequency bands, called detail
and approximation. Each approximation and detail then is split into another
approximation and detail, and so on. As the signal energy is proportional to the
squared magnitude, then, Root Mean Square (RMS) values for different bands will
be calculated. Considering the sampling frequency of 5120 Hz, the frequency bands
are:

0�640 Hz; 640�1280 Hz; 1280�1920 Hz; 1920�2560 Hz

Figure 3 shows the result of DE-Axi signal at the rotational speed of 868.5 rpm.
The wavelet decomposition and RMS showed the highest energy band of 1280–
1920 Hz. The primary frequency refers to 52 Hz which is the ball passing frequency
outer race (BPFO) harmonic associated with the other harmonics.

Figure 4 shows the result of DE-Axi signal at the rotational speed of 1046 rpm.
The wavelet decomposition and RMS calculations showed the highest energy band
of 640–1280 Hz. The primary frequency refers to 63.4 Hz which is BPFO harmonic
associated with the other harmonics.

Figure 5 shows the result of DE-Axi signal at the rotational speed of 1181 rpm.
The wavelet decomposition and RMS calculations showed the highest energy band
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of 1920–2560 Hz. The primary frequency refers to 71 Hz which is BPFO harmonic
associated with the other harmonics.

Figure 6 shows the envelope analysis of DE-Ver signal at the rotational speed of
1125 rpm. The wavelet decomposition and RMS calculations showed the highest
energy band of 1920–2560 Hz. However none of the peaks are associated with any
of bearing characteristics frequencies. The magnitude is also much lower than the
ones calculated from DE-Axi signals. The other signals of DE-Ver also showed the
same pattern. As it was mentioned earlier, drive end bearing (DE) is close enough to
the gearbox to receive noise (gear mesh signals). Without gearbox configuration
information including tooth number of each gear, supporting bearing models and
speed (constant or variable speed), vibration signal from the bearing cannot be
de-noised. This needs further investigation and analysis.
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3.4 Vibration Analysis—Phase Demodulation

Phase demodulation technique is widely used for the application of gearbox fault
detection rather that bearing diagnosis. However, in this section it is shown that the
phase demodulation can be performed on bearing signals where the shaft speed is
nearly constant. The main purpose of performing phase demodulation on a bearing
signal could be estimating the shaft speed, where it is not available due to the
constrains on the speed measurement. For instance, in terms of the wind turbine
generator, industry usually does not install any tachometer on the shaft. Therefore,
the shaft speed needs to be calculated either by power generation log or phase
calculation for a specific shaft harmonic. Another benefit of bearing phase
demodulation is to isolate the unwanted gearbox noise, specially for the bearing
close to the gearbox, i.e. drive-end bearing. In any event, narrow-band phase
demodulation is recommended, which is not the purpose of this paper, and would
be the outcome of the authors upcoming works. That being said, authors try to show
the general application of fault detection for bearings in parallel with Amplitude
demodulation, as described in Sect. 2.1.

The time signal used for this section has the following features:

• Sampling frequency: 5120 Hz
• Drive-end bearing
• Data collection time period: 3.2 s
• Average shaft speed: 1181 RPM = 19.7 Hz

Figure 7 shows the the spectrum of the phase angle after applying the procedure
described in 2.2.

The dashed lines correspond to the bearing outer race characteristic frequency
and its harmonics, starting from 71 Hz. In Fig. 7, there are many other peaks whose
source are unknown. They could be generated and induced to the system from the
gearbox.

To be able to reduce and minimize the unwanted information, narrow-band
phase demodulation is performed. The theory behind the narrow-band phase
demodulation is similar to the one described in 2.2, however, only applies to the
frequency band of interest. Appropriate frequency band can be selected considering
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the shaft rotational speed. In other words, one of the shaft speed harmonics can be
chosen as the center/carrier frequency. Due to the relative low rotational speed in
this application and that it is masked in the spectrum, this method could lead to
erroneous results. Instead, as described in 3.3, wavelet transform can be used to
calculate the highest energy band which potentially has the maximum required fault
information.

Figure 8 shows the spectrum of the phase angle after narrow-band phase
demodulation, clearly identifying the outer-race frequency with minimum unwan-
ted peaks. The magnitude scale is dropped due to the band filtration.

3.5 Visual Inspection

In the last section, it was shown that there is a high potential of a fault/defect
presenting on the outer race. Analysis was blind, and were not aware of any actual
fault at the time of analysis. To validate this conclusion, the bearings disassembled
by water jet cutter at the machine shop. As shown in Fig. 9, only the outer race was
cut. The bearing was a basic type ceramic insulated bearing, up to 3 kV voltage
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resistance. The races and balls were made of steel. The cage and the housing were
made of brass and cast iron, respectively.

Water jet cutting machine do not generate any heat, therefore the bearing was not
affected and no new defects/faults were introduced. Figure 8 shows the outer race
which has a defect on it. The defect is a localized-type. Faults in this category
maybe produced by excessive load, normal fatigue failure, or misalignment. On the
other hand, the defect in Fig. 10 is a burned-out type. Generally, this type of fault is
generated either by electrical discharge, lack of proper lubrication, or shaft/bearing
misalignment. Misalignment which could cause an excessive load on the
races/balls, introduced by the shaft or housing, seems to be more possible. The
misalignment produced a very high local load on the area and consequently high
heat. Therefore the lubrication was burned out. The location of the melted area is
shown by a red oval in the left picture in Fig. 8 and zoomed in the right picture.
There is some evidence of off-track raceways as well.

This assumption was derived based on the available information and visual
inspection. That being said, the root cause analysis at this stage with the provided
vibration data would not yield any firm conclusions. Root cause analysis requires

Fig. 9 Bearing while water jet cutting
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much complicated analysis with more information. This is the next step which is
vital for any maintenance and scheduling the inspection.

4 Conclusion

This paper briefly demonstrated the application of demodulation analysis on the
operational vibration signals. Only drive-end data from the generator bearing of a
wind turbine were chosen to be reflected in the paper. The results from both
amplitude and phase demodulation analyses indicated the presence of fault(s) on the
outer race before any inspection to be done by the authors.

To validate the results, the bearing was cut by a water jet cutting machine. Water
jet cut was chosen since no heat is introduced to the rolling elements. It was shown
that there was a local fault on the outer race. Although there was not enough
information to perform the root cause analysis, this type of fault most likely comes
from misalignment which can cause very high loads. The misalignment and load
could be due to either the shaft or housing, however it is not certain. Further
investigations and inspections are required.

An online condition monitoring system with a reliable analysis could reduce the
maintenance cost (cost of new parts, man-hour at site, loss of production, etc.) and
generally the revenue loss by an early indication of the fault, primarily with a
scheduled and proactive maintenance at a proper time. In addition, when a localized
outer race fault has been diagnosed by the monitoring system, for example, the
faulty bearing does not need to be replaced but only to be rotated 180°; the bearing
can operate as new to save cost. The cost of the analysis is small. It is suggested that
collecting additional data such as torque/load will provide supplementary

Fig. 10 Fault on the outer race
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information regarding the status of the bearing, and will lead to firm results. This
information could be either collected by torque sensors or calculated by having
power and rotational speed.

Still, more sophisticated analysis is required to be able to develop a compre-
hensive analysis tool. For instance, gearbox data/information will be essential in
order to isolate the gear vibration signatures (as shown in Fig. 6), so that the
monitoring system can handle all typical mechanical faults.
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Diagnostics of a Defective Bearing
Within a Planetary Gearbox
with Vibration and Acoustic Emission

Faris Elasha, Matthew Greaves and David Mba

Abstract Whilst vibration analysis of planetary gearbox faults is relatively well
established, the application of Acoustic Emissions (AE) to this field is still in its
infancy. For planetary-type gearboxes it is more challenging to diagnose bearing
faults due to the dynamically changing transmission paths which contribute to
masking the vibration signature of interest. The present study is aimed at developing
a series of signal processing procedures to reduce the effect of background noise
whilst extracting the fault feature from AE and vibration signatures. Three signal
processing techniques including an adaptive filter, spectral kurtosis and envelope
analysis, were applied to AE and vibration data acquired from a simplified planetary
gearbox test rig with a seeded bearing defect. The results show that AE identified the
defect earlier than vibration analysis irrespective of the tortuous transmission path.

Keywords Planetary gearboxes � Acoustic emission � Vibration analysis � Signal
processing
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1 Introduction

Planetary gearboxes are important components of rotating machines due to their
high transmission ratio, higher torque to weight ratio and high efficiency [1]. As
such this type of gearbox is widely used in many industries such as aerospace, wind
turbines, mining and heavy trucks [2–6]. Different planetary gearbox configurations
and designs allow for a range of gear ratios, torque transmission and shaft rotational
characteristics. The planetary gearbox generally operates under severe conditions,
thus the gearbox components are subject to different kinds of fault conditions such
as gear pitting, cracks, etc. [7–10]. Recent investigations on wind turbine appli-
cations of planetary gearboxes have shown that failures initiate at a number of
specific bearing locations, which then progress into the gear teeth. In addition
bearing debris and the resultant excess clearances cause gear surface wear and
misalignment [10]. The accident to G-REDL [11], resulting in the loss of 16 lives,
was caused by degradation of a planet gear bearing, resulting in the failure of the
planet gear and, as a result, the loss of the aircraft.

Several authors have proposed numerous diagnostic approaches for planetary
gearboxes, with vibration analysis the most commonly employed monitoring
technology [1, 7, 9, 12–14]. However, fault detection of bearings within the
planetary gearbox is one of the most challenging diagnostic scenarios, as the
resulting vibration signatures are influenced by the variable transmission paths from
the bearing to the receiving externally mounted sensor. This leads to strong
background noise which can mask the vibration signature of interest. This task is
compounded by the fact that the gear mesh frequencies typically dominate the
resultant vibration signal [7, 13, 15].

More recently, signal separation techniques have been applied in the diagnosis of
bearing faults within gearboxes. The separation is based on decomposing the signal
into deterministic and random components. The deterministic part represents the
gear component and the random part represents the bearing component of the
measured signal. The bearing contribution to the signal is expected to be random
due to slip effects [8, 16–18]. A number of methods for signal separation are
available, each having relative advantages and disadvantages [16, 19–21].
Techniques such as Linear Prediction (LP) have been employed for separation,
allowing the separation of the deterministic (or predictable) part of a signal from the
random background noise using the information provided by past observations [22,
23]. The results of such techniques depend on the number of past observations
considered. Smaller values of past observation produce a poor prediction, giving a
result of negligible improvement in the signal-to-noise ratio, while very high values
compromise computation time, over-constrain the prediction and tend to reduce
even the main components of the signal (both deterministic and non-deterministic
parts) [24, 25]. Interestingly LP is applied only to stationary vibration signatures.

In addition to the vibration analysis, the Acoustics Emissions (AE) technology
has emerged as a promising diagnostic approach. AE was originally developed for
non-destructive testing of static structures, however, in recent times its application
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has been extended to health monitoring of rotating machines and bearings [26–29].
AE signal processing is challenged by the attenuation of the signal and as such the
AE sensor has to be close to its source. However, it is often only practical to place
the AE sensor on the non-rotating member of the machine, such as the bearing
housing or gearbox casing. Therefore, the AE signal originating from the defective
component will suffer severe attenuation and reflections, before reaching the sensor.
Challenges and opportunities of applying AE to machine monitoring have been
discussed by Sikorska et al and Mba et al. [30, 31]. To date, most applications of
machine health monitoring with AE have targeted single components such as a pair
of meshing gears [32], a particular bearing or valve [33–35]. This targeted approach
to application of AE has on the whole demonstrated success. However the ability to
monitor components that are secondary to the main component of interest such as a
bearing supporting a gear, as is the case with planetary gears in an epicyclical gear
box, has not been well-explored. This is the first known publication to explore the
ability to identify a fault condition where the AE signature of interest is severely
masked by the presence of gear meshing AE noise. This paper discusses the
analysis of vibration and AE data collected from a simplified planetary gear test rig,
and compares their effectiveness in diagnosing a bearing defect in the simplified
planetary gearbox. The data was collected for various bearing fault conditions and
processed using an adaptive filter algorithm to separate the non-deterministic part of
the signal and enhance the signal-to-noise ratio for both AE and vibration. The
resultant signatures were then further processed using envelope analysis to extract
the fault signature.

2 Signal Processing and Data Analysis

2.1 Adaptive Filter

An adaptive filter is used to model the relationship between two signals in an
iterative manner; the adaption refers to the method used to iterate the filter coeffi-
cient. The adaptive filter solution is not unique; however the best solution is that
which is closest to the desirable response signal [36]. FIR filters are more com-
monly used as adaptive filters in comparison to IRR filters [37]. The adaptive filter
principle is based on Wold theorem which proposes that the vibration signal can be
decomposed into two parts, deterministic P nð Þ and random rðnÞ. This decompo-
sition process can be represented by the following formula [38]:

x nð Þ ¼ P nð Þ þ rðnÞ ð1Þ

The process of separation begins by applying adaptive noise cancellation (ANC).
The fundamentals of this method have been detailed in [38, 39]. In application of
the self-adaptive Least Mean Square (LMS) algorithm, the reference signal in the
application of ANC algorithm is replaced by a delayed version of the input signal.
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In this algorithm, the signal is filtered using a Wiener filter, the coefficients of which
should be updated for each step. As a consequence, feedback from the filter output
is required to estimate the filter coefficients. This process is repeated for each filter
step until the prediction error reaches the minimum value. The adaptive filter is a
special case of FIR filter expressed by the following relation:

Yi ¼
Xn�1

i¼0

hi * x t � ið Þ ð2Þ

where, hi is the filter coefficient, x t � ið Þ is corresponding sample of time series
signal, and n denotes the number of samples in the input signal. Equation (2) is
similar to linear prediction, however the difference is the filter coefficient in this
case is estimated recursively based on Least Mean square Error (LMS). In order to
optimize filter parameters and minimize prediction error, the prediction error et
should be estimated by [39]:

et ¼ dt � hi * x t � ið Þ ð3Þ

where, dt denotes the desirable signal. The filter coefficient should be adjusted to
minimize this error function. The error might be random in distribution and as such
the expectation of the square error signal is used. This leads to the cost function
presented in Eq. (4), which should be minimised in order to find the optimum filter
coefficients. This function is defined by:

EðMSEÞ ¼ Eð1
2

X
ðdt � hi * x t � ið ÞÞ2Þ ð4Þ

To optimize the mean square error, the cost function should be minimized.

@MSE
@h

¼ 0 ð5Þ

The solution of this optimization problem leads to the estimation of the optimum
coefficients, this solution known as the Wiener–Hopf filter equation [40]:

hopt ¼ ½Rxx��1Rdx ð6Þ

where, Rxx is the autocorrelation function of the input signal, and Rdx is
cross-correlation between input signal and desirable output. However, in the case of
the gearbox signal there is no reference signal; instead a delayed version of the
input signal is used, therefore the Weiner-Hopf equation is written as:

hopt ¼ ½Rxxðt � DÞ��1Rxx ð7Þ

where, Rxxðt � DÞ is the autocorrelation of the delayed signal.
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In practice, the filter size is very large and the Weiner-Hopf equation is difficult
to solve. As a result, an approximated adaptive LMS algorithm is proposed [36],
such that the coefficients are updated by:

htþ1 ¼ ht þ 2l x tð Þe ð8Þ

In which ht þ 1 denotes the updated filter coefficient, and l denotes the step size of
the filter.

2.2 Envelope Analysis

Envelope analysis is applied extensively in vibration analysis for the diagnosis of
bearings and gearboxes [9, 15, 41]. As impacts due to the defects excite resonance
at higher frequencies, it is possible to identify the frequency of the impacts with the
use of envelope analysis. In application, the vibration signal is filtered at high
frequencies (structural resonance frequencies) and then the signal is passed through
an envelope detector and a low pass filter. The enveloped signal is either presented
in the time domain or transformed into the frequency domain in order to identify
fault frequency components [42]. In order to detect fault signatures it is important to
select filter parameters carefully [43]. In addition, Spectral Kurtosis (SK) has been
applied to select such filter parameters [44, 45]. The basic principle of the SK
method is to determine the Kurtosis at different frequency bands in order to identify
the energy distribution of the signal and to determine where the high impact
(transient) energy is located in the frequency domain. Obviously the results
obtained strongly depend on the width of the frequency bands Δf [46]. The
Kurtogram [22] is a representation of the calculated values of the SK as a function
of f and Δf. However, exploration of the entire plane (f, Δf) is a complicated
computational task, though Antoni [46] suggested a methodology for the fast
computation of the SK.

3 Experimental Setup

A simplified model of a planetary gearbox was employed with gears arranged to
represent a typical epicyclic configuration of a planet gear and bearing (see Fig. 1).
The input gear of the test rig represents the sun gear in the epicyclic configuration
with the idler gear representing a single planet gear and the output gear acts as the
ring gear in the epicyclic configuration. The gearbox was driven by electric motor
(15 kW) at a rotation speed of 1500 rpm. A load of 10 kW was applied by a
dynamometer. Synthetic AeroShell Turbine Oil 555 was employed for the gearbox
lubrication, see Table 1.

Diagnostics of a Defective Bearing Within a Planetary Gearbox … 403



The gears were supported by a single row deep groove ball bearings (SKF SYJ
507) whilst the idler gear bore was machined to accommodate two single row
tapered roller bearing (SKF 32005 X/Q). As such the outer race of the bearing was
in direct contact with the gear inner bore and the outer race rotated with the gear
whilst the inner race was stationary, similar to planetary gears employed in epi-
cyclic gearboxes.

Bearing faults were seeded on the idler gear bearing to simulate a planet gear
bearing fault. Outer race bearing defects of different sizes were seeded. In total three
fault conditions were considered, which included fault free condition, a small defect
of 2 mm diameter and 0.5 mm depth and a large defect simulated as a slot across the
bearing outer race (2 mm wide and 1 mm deep); see Fig. 2. To aid diagnosis, all
characteristic vibration frequencies were determined, see Table 2. These included
the shafts speed with its harmonics and the bearing defects frequencies. The bearing
defect frequencies were calculated and referenced to the rotating speed. Vibration
data was acquired with a triaxial accelerometer (type PCB Piezotronics 356A03) at
a sampling frequency of the 51.2 kHz. The accelerometer had an operating fre-
quency range of 2–8 kHz. The acquisition system employed was a National
Instruments (NI) cDAQ-9172 chassis fitted with a 9234 module. A 60s sample was

DynamometerGearbox
Motor

Fig. 1 Test rig layout

Table 1 Gears specification Gear Input
gear

Idler
gear

Output
gear

Number of teeth 17 18 19

Module (mm) 4

Pitch diameter
(mm)

77.94 81.94 85.28

Helix angle (°) 25

Facewidth (mm) 90

Material EN36c steel, ground case harden to
give a case depth core tensile strength
of 1080 Nmm2

Oil Ester synthetic, kinematic viscosity@
40 oC 11,000 mm2/s
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recorded for each fault case. The accelerometer was installed on the idler shaft,
which runs through the idler gear, as this was not rotating, see Fig. 3. The Y-axis of
the tri-axial accelerometer arrangement was oriented parallel to idler shaft direction;
the X-axis refers to the vertical axis perpendicular to the idler shaft axis, and the
Z-axis is the horizontal axis perpendicular to the idler shaft axis, see Fig. 3. In
addition, a Physical Acoustics Corporation (PAC) PICO commercial sensor was
placed adjacent to the vibration sensor, see Fig. 6. AE data was acquired at a
sampling rate of 5 MHz using a PAC PCI-2 card and a 2/4/6 pre-amplifier, with
gain set at 40 dB.

Fig. 2 Seeded fault cases a small defect b large defect

Table 2 Spectrum frequency
components

Component Frequency (Hz)

Motor shaft 25

Intermediate shaft 23.6

Dynamometer shaft 22.4

Gear mesh frequency GMF 425

Outer race defect frequency 192

Y

Z

X

Fig. 3 Vibration (left) and
AE (right) sensor location
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4 Observations of Vibration Analysis

The measured vibration data was processed to estimate the power spectrum of the
vibration signal for both damaged and fault-free conditions,. This analysis was
performed to assess the ability of FFT spectrum to determine the fault signature.
The results show clearly that no distinctive differences can be identified between
faulty and fault-free bearing conditions, simply because the defect frequencies were
not evident in the spectrum. Therefore the data was further processed using signal
separation and Spectral Kurtosis to identify the fault signature as described earlier.
The Spectral Kurtosis analysis was undertaken on data sets collected from the
gearbox for the different fault cases and this yielded the frequency bands and center
frequencies which were then used to undertake the envelope analysis. An example
kurtogram used to estimate filter characteristics for different defect conditions is
shown in Fig. 4. Spectral plots of enveloped vibration signals following filtration,
whose characteristics were determined with the aid of the kurtogram, are shown in
Fig. 5.

Observation from the spectra of the enveloped signal in the X-direction, see
Fig. 5, showed the presence in the spectrum of the large defect. Typical outer race
defect frequency (192 Hz), the 2nd harmonic (384 Hz), the 3rd harmonic (576 Hz)

Fig. 4 SK of of non-deterministic signal for a Fault-free b small defect c large defect
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and 4th harmonics (768 Hz) were detected for large defect. However the small fault
condition was not identified by this analysis. It is apparent that the signal separation
still had not completely removed the gear mesh and shaft frequencies, which were
detected by envelope analysis.

5 Acoustic Emission Observations

Figure 6a shows the AE signature prior to, and after signal separation of the
deterministic components. Figure 6b clearly exhibited periodic shocks events that
were masked by background noise in the original time trace, Fig. 6a.

The Spectral Kurtosis was employed to extract the filter characteristics which
were utilised for envelope analysis on the non-deterministic component of the AE
signature. Associated typical kurtograms of SK analysis are shown in Fig. 7. The
overall maximum kurtosis for defective bearing conditions was significantly higher
compared to fault-free condition which was 3, the maximum kurtosis increased by
600 % for the small outer race defect (18.5) and 3000 % for severe defect condition
(91.7) in comparison to the fault-free condition (3).

The envelope analysis was undertaken using the central frequency Fc and
bandwidth (Bw) estimated by SK analysis. Observations of Fig. 8b showed the
presence of the bearing outer race defect frequency (192 Hz) for the small defect
condition. In addition, the outer race defect frequency, and its harmonics, were
observed for large defect condition (192 and 384 Hz).

1X 
GMF and Harmonic 

1X 

ORD and its harmonics

(a) (b)

(c)

Fig. 5 Enveloped Spectra of non-deterministic signal for a Fault-free b small size defect c large
size defect conditions
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(a)

(b)

Fig. 6 Time waveform of AE signal a before and b after separation
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Fig. 7 SK kurtograms a Fault-free b small c large bearing defects
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6 Discussion and Conclusion

The techniques used in this paper are typically used for applications where strong
background noise masks the defect signature of interest within the measured
vibration signature. The AE signal is more susceptible to background noise and in
this case, the arduous transmission path from the outer race through the rollers to
the inner race and then the shaft makes the ability to identify outer race defects even
more challenging. Therefore, the use of signal separation to offer further insight into
diagnostic information is deemed necessary for application of AE in the diagnosis
of planetary gearboxes.

A comparison of the vibration and AE analysis showed both measurements were
able to identify the presence of the large bearing defect based on observations in the
enveloped spectra. For the small defect condition however, the enveloped spectrum
was dominated by the gear mesh frequencies and their harmonics, and as such the
bearing defect frequencies were not evident. However AE analysis was able to
identify both the small and large defect conditions. Detection of the small bearing
defect gives the AE an indisputable diagnosis advantage over the vibration analysis.
The ability of applied signal processing techniques to identify the presence of
bearing fault is based on removing the masked signal and the identification of
particular frequency regions with high impact energy; these impacts are due to
presence of bearing defect which affect bearing sliding motion.

In summary an investigation employing vibration and AE to identify the pres-
ence of a bearing defect in a planetary type arrangement has been undertaken.
A series of signal processing techniques were applied to extract the bearing fault
signature, which included adaptive filter, Spectral Kurtosis, and envelope analysis.
The combination of these techniques demonstrated the ability to identify the

Fig. 8 Enveloped spectra of AE signal a Fault-free b small c large bearing defects
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presence of the various defect sizes of bearing in comparison to a typical frequency
spectrum. From the results presented it was clearly evident that the AE offered
much earlier indication of damage than vibration analysis. In addition, the signal
processing techniques demonstrated the capability to successfully separate the
bearing signal within an AE signal, enhancing the application of AE to gearbox
fault diagnosis.

Acknowledgements This work was conducted as part of EASA study 2012.OP.13 into improved
detection techniques for helicopter main gearbox defects.
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Methodology for the Estimation
of the Fatigue Life of Rolling Element
Bearings in Non-stationary Conditions

Urko Leturiondo, Oscar Salgado, Diego Galar and Madhav Mishra

Abstract The estimation of the life of rolling element bearings (REBs) is crucial to
determine when maintenance is required. This paper presents a methodology to
calculate the fatigue life of REBs considering non-stationary conditions. Instead of
taking a constant value, the paper considers cyclic loading and unloading processes,
as well as increasing and decreasing values of the speed of rotation. It employs a
model-based approach to calculate contact loads between the different elements of
the bearing, with a finite element model (FEM) used to calculate the contact
stresses. Using this information, it then performs a fatigue analysis to study over-
loading in faulty bearings.

Keywords Rolling element bearing � Life estimation � Non-stationary conditions �
Fatigue
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1 Introduction

The estimation of the life of rolling element bearings (REBs) is very important as
these are key components in many rotary systems. A conservative estimation
suggests part of the REB life is not used, leading to excessive and unnecessary
maintenance; this, in turn, results in the overstocking of spare parts and excessive
labour costs. In contrast, a more optimistic estimation suggests there is a risk of
system failure, making earlier maintenance essential. In the end, both safety and
economic issues have to be taken into account when estimating the life of a REB.

The typology of failure modes that can appear in the various elements of a REB
is extensive. For instance, Harris and Kotzalas [1] proposed the following classi-
fication of failure and damage modes: failure due to faulty lubrication, fracture of
rings due to fretting, failure due to excessive thrust loading, cage fracture, incipient
failure due to pitting or indentation of the rolling contact surfaces, failure due to
wear, micropitting and failure due to surface- and subsurface-initiated fatigue. To
this, Tallian [2] contributed a complete study of numerous damage types.
According to the origin of damage, Tallian identified two groups: defects and
failure. The first group refers to damage whose origin is in either manufacturing or
assembling, whereas the second refers to operation damage. Tallian’s list of failures
includes the following: mild wear, galling and skidmarking, fretting wear, spalling,
surface distress, denting, heat imbalance failure, corrosion and electric erosion, bulk
cracking, fracture, permanent deformation, and lubricant failure.

As there are different criteria for classifying the different failure modes, the
International Organization for Standardization presented the standard ISO 15243
[3] with the aim of unifying the classification. The ISO list includes six failure
modes: fatigue, wear, corrosion, electrical erosion, plastic deformation, and fracture
and cracking.

Ferreira et al. [4] analysed 47,030 failed roller bearings used in railway ore
transportation and found fatigue is the most common failure mode: almost the 80 %
of the REBs in their study failed for this reason. The repeated stress occasioned by
the contacts between the elements of a REB implies changes in their surfaces, such
as spalling.

The standard ISO 281 [5] is the main document employed for REB selection
based on operating life, in which life is defined as the number of revolutions until
the first evidence of fatigue develops in any of the elements of a REB. This standard
presents a methodology to calculate the rating life, i.e., a prediction of the life of a
REB based on a constant stationary load, obtained by means of two variables: basic
dynamic radial (or axial) load rating Cr (or Ca) and dynamic equivalent radial
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(or axial) load Pr (or Pa). The first represents the constant radial load which a REB
can support for a rating life of one million revolutions with 90 % reliability. The
second is the constant stationary radial load under the influence of which a REB
would have the same life as under the applied load conditions.

Given this, the basic rating life, L10, that is the rating life associated with 90 %
reliability, can be calculated as:

L10 ¼
Cr
Pr

� �3
for radial REBs

Ca
Pa

� �3
for thrust REBs

8><
>: ð1Þ

For railway application, SKF [6] modifies Eq. 1 to obtain the basic rating life
expressed in operating mileage as:

L10s ¼ p � D
1000

� Cr

Pr

� �3

ð2Þ

where D is the diameter of the wheel.
However, a prediction for the rating life can be done for a different level of

reliability than 90 %, thus obtaining what is called the modified rating life, Lnm [5].
It can be obtained as:

Lnm ¼ a1 � aISO � L10 ð3Þ

where a1 is the life modification factor for reliability and aISO is the life modifi-
cation factor based on a systems approach to life calculation. Expressions for other
kinds of REBs can be obtained in [5].

The standard ISO 281 only considers REBs in stationary conditions. In fact,
many REBs experience variable operating conditions, with changes in loads
(magnitude and direction), speed, lubricant conditions, temperature and level of
contamination. There are various methodologies to calculate the life of a REB in
non-stationary conditions, based on the simplification of the operating conditions.
For example, Ferreira et al. [4] proposed the use of a mean equivalent dynamic load
for a wagon experiencing different loading conditions along the track. This mean
equivalent dynamic load Fm is expressed as:

Fm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1 F3
i � uið ÞPk

i¼1 ui

3

s
ð4Þ

where k is the number of loading conditions, Fi is the ith loading condition and ui is
its respective period of operation. Then, the value of L10 is obtained by substituting
Pr for the value of Fm.
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SKF [7] proposed the reduction of the operating conditions to a limited number
of constant load blocks, as shown in Fig. 1. Thus, the life for the variable operating
conditions L10m is calculated as

L10m ¼ 1Pk
i¼1

ui
L10mi

ð5Þ

where L10mi is the basic rating life of a REB given the ith operating conditions.
However, these methodologies are all based on simplifications to constant var-

iable conditions, whether in load or speed, with the aim of applying the theory
proposed by the ISO 281. Consequently, the approaches are approximations of the
non-stationarity but lose some information, which implies the estimations are
conservative. This paper presents a methodology to calculate the fatigue life of a
REB in both stationary and non-stationary conditions using a physical modelling
approach to take advantage of the whole fatigue life of the REB. It also studies the
effect of a fault in the fatigue life.

This paper is structured as follows. Section 2 shows how the fatigue life esti-
mation can be carried out in detail for non-stationary conditions; then, Sect. 3
discusses the effect of faults when estimating the fatigue life; finally, conclusions
are presented in Sect. 4.

Fig. 1 Variable operating
conditions [7] (load at the top
and speed at the bottom)
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2 Fatigue Life Estimation Procedure

In order to estimate the fatigue life of a REB in non-stationary conditions, the stress
evolution is calculated. For that purpose, we have used two physical models. First,
we carry out a dynamic simulation of a REB using the model proposed by
Leturiondo et al. [8]. Next, we develop a finite element model (FEM) with the aim
of studying the stress in a specific zone of a ring when a unitary load is applied in
different positions of that ring. Rather than analysing just the contact stress in one
ellipse of contact due to that contact as in Romanowicz and Szybiński [9], we
calculate the maximum stress in an ellipse, considering the effect of the contact
between all the rolling elements and rings and assuming they are independent of
each other.

In this section, we begin by presenting the dimensions of the REB as along with
the operating conditions. We then give the results for our fatigue life estimation.

2.1 Bearing Properties and Operating Conditions

A single-row deep-groove ball bearing is selected for this analysis. It has eight
balls, and its dimensions shown in Table 1. The REB is made of steel with the
following properties: modulus of elasticity E of 207 GPa, Poisson number ν of 0.3,
density ρ of 7830 kg/m3, tensile ultimate strength ru of 460 MPa and tensile yield
strength ry of 250 MPa. Table 2 shows the properties of the lubricant. The inner
ring is the rotating one; the outer ring is located in rigid housing. A constant value
of 30 °C is chosen as the operating temperature T.

Table 1 Dimensions of the
simulated REB

Dimension Value (mm)

Ball diameter, Dw 22.46

Outer raceway diameter, do 147.73

Inner raceway diameter, di 102.79

Pitch diameter, Dpw 125.26

Outer groove radius, ro 11.6792

Inner groove radius, ri 11.6792

Table 2 Properties of the
lubricant

Property Value

Dynamic viscosity, g0 0.04 Pa s

Viscosity-pressure coefficient, cgP 1.2 × 10–8 Pa–1

Viscosity-temperature coefficient, cgT 0.05 °C–1

Thermal conductivity, Kc 0.125 J/(kg K)
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Non-stationary conditions are applied to both the loading and the speed. Figure 2
shows the time evolution of the radial load fr and the shaft speed xi used in this
paper. The defined load and speed profiles try to represent the operating conditions
of the loading process of a press.

2.2 Results

In order to obtain the time evolution of the stress in a ring, we calculate two
variables. First, we obtain the time evolution of the contact loads between each
rolling element and the ring, Qj t; hð Þ, using the dynamic model in the aforemen-
tioned operating and REB conditions. Second, using the FEM, we estimate the Von
Mises stress �rj hð Þ produced in the most loaded zone when a unitary load is applied
in different angular positions θ of the ring. Thus, the time evolution of the cumu-
lative Von Mises stress rVM tð Þ is calculated as

rVM tð Þ ¼
XZ
j¼1

Qj t; hð Þ � �rj hð Þ� � ð6Þ

where Z is the number of rolling elements.
Figure 3 shows the values of rVM tð Þ. Using this information, we now apply

high-cycle fatigue theory [10] to obtain a life estimation for the REB. First, different
loading conditions are defined from that stress signal using the rainflow technique
and are summarised in Table 3; ni is the number of cycles for each loading con-
dition, and rmax;i and rmin;i are the maximum and the minimum stress for each
loading condition, respectively.

Then, we calculate mean and alternate stress (rm and ra, respectively) for each
loading condition as

6 10

20

t [s]

f r
[k
N
]

1 6 10

1.5

t [s]

ω
i
[r
ad

/s
]

(a) (b)

Fig. 2 Non-stationary conditions. (a) Radial force (b) Shaft speed
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rm ¼ rmax þ rminð Þ
2

ð7Þ

ra ¼ rmax � rminð Þ
2

ð8Þ

Once mean and alternate stress are calculated for each loading condition, we use
the Goodman fatigue criterion to calculate the equivalent stress req using the fol-
lowing expression:

rm
ru

þ ra
req

¼ 1 ð9Þ

where ru is the tensile strength of the material.
We now calculate the fatigue life prediction Ni for each loading condition. For

that purpose the fatigue curve of the material shown in Fig. 4 is used. Taking the
value of the equivalent stress for each loading condition req;i as an input in the
Y axis, a horizontal line is drawn until the material curve is reached. The value in
the X axis for that intersection is the value of Ni. The values of the fatigue life for
each loading condition, as well as the values of the equivalent stress, are given in
Table 4.
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Fig. 3 Time evolution of the
Von Mises stress

Table 3 Loading conditions
defined by the stress evolution

Case i ni (cycles) rmax;i (Pa) rmin;i (Pa)

1 0.5 1.062 × 108 632

2 0.5 1773 632

3 4 2.988 × 105 632

4 1 1.332 × 106 2.714 × 104

5 0.5 1.062 × 108 1.74 × 106
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Finally, Miner’s rule [10] is applied to calculate the number of blocks N:

Xp
i¼1

ni
Ni

¼ 1
N

ð10Þ

where p is the number of loading conditions, in this case equal to 5. This results in a
life estimation of 7.576 × 105 cycles under the explained procedure.

3 The Effect of a Damage in the Fatigue Life Estimation

As a bearing operates, the alternating loads caused by the non-stationary conditions
and by the pass of the rolling elements leads to fatigue damage. These faults appear
progressively, from microcracks producing first flacking, then spalling, and finally,
peeling.

The appearance of this kind of fault amplifies the contact stress. In this work, we
model the outer ring of a REB with a damaged area at the most loaded zone using a
FEM. We then use the model to calculate the stress concentration factor kf due to
the fault in the outer ring, as in Kršćanski and Turkalj [11] for fillet welded
CHS-plate T-joints. Figure 5 shows the evolution of kf , defined as a function of the
angular distance to the fault, θ.
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Fig. 4 Stress—life curve of
the material

Table 4 Fatigue life
prediction for each loading
condition

Case i ni (cycles) req;i (Pa) Ni (cycles)

1 0.5 6.003 × 107 7.386 × 105

2 0.5 570 ∞

3 4 1.491 × 105 ∞

4 1 6.534 × 105 ∞

5 0.5 5.917 × 107 7.777 × 105
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As the figure shows, the maximum values occur at near 90; this occurs because
bending is produced in the fault when a load is applied in these angular positions.
Moreover, the effect of traction/compression in the stress is almost negligible as the
value of kf for a distance of 180° is equal to 1.

Besides the effect on the faulty zone itself, a damaged area has a great impact on
other contact areas. Leturiondo et al. [8] showed that when a rolling element
reaches a fault, the contact between this rolling element and the ring is lost.
Consequently, the rear and front rolling elements suffer from overloading to
maintain the applied load.

We now consider the effect on the fatigue life of the overloading produced due to
the loss of contact between a rolling element and a ring when the former reaches the
damage. As the selected bearing has eight balls, the overloaded zones are located at
an angular distance of 45°. As we are studying a symmetric case, the result is the
same for both positions. The damage is defined by means of two cubic curves, as
shown in Fig. 6; its dimensions are the following: 1 mm depth (h) and π/45 rad of
angular length (ψ).

The stress evolution is shown in Fig. 7 and the information on the different
loading conditions obtained from this signal appears in Table 5.
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This faulty condition leads to a fatigue life of 9.69 × 103 cycles. Therefore, the
loss of contact between a ring and a rolling element when the latter reaches the fault
directly affects to the REB life of the outer ring corresponding to the front and rear
rolling elements position. In this case, the overloading produced in this area implies
the fatigue life is reduced by approximately 78 times.

4 Conclusions

The literature provides a number of approaches to estimating the fatigue life of a
REB. Besides the standardised methodology given by ISO 281 for constant oper-
ating conditions, some methods offer to calculate the fatigue life for non-stationary
conditions. But these are based on obtaining one or a series of constant equivalent
conditions in order to apply the standardized technique to each equivalent
condition.

This paper proposes the use of the knowledge of the dynamics of a REB in
non-stationary conditions with appropriate knowledge of the stress evolution in the
different components. This yields to a stress evolution that can be evaluated using
classic fatigue theory. Thus, an estimation of the fatigue life of a REB can be done
in non-stationary conditions.
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Fig. 7 Time evolution of the Von Mises stress for the faulty REB

Table 5 Loading conditions defined by the stress evolution for the faulty REB

Case i ni (cycles) rmax;i (Pa) rmin;i (Pa) req;i (Pa) Ni (cycles)

1 0.5 2.481 × 108 606 1.699 × 108 9.67 × 103

2 0.5 1745 606 569 ∞

3 4 3.52 × 106 606 1.767 × 106 ∞

4 1 1.286 × 107 2.929 × 104 6.507 × 106 ∞

5 0.5 2.481 × 108 2 × 106 1.69 × 108 9.721 × 103
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Our results show the effect of a fault in the life of a REB. Specifically, we
analyse the fatigue due to the overloading caused by the loss of contact between a
ring and a rolling element when the latter reaches the fault. We find this overloading
is important enough to reduce the life of the REB considerably.
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Adaptive Vibration Diagnostic Technique
for Bearings Condition Monitoring
of Complicated Machines

Alexey Mironov, Pavel Doronkin and Alexander Priklonsky

Abstract A new approach to monitoring of rolling bearings called adaptive
vibration diagnostic technique is discussed in the paper. Diagnostic methods cur-
rently used for bearings monitoring have problems with damage identification
caused by its insufficient effectiveness that is illustrated by industrial research study.
It is briefly described the basic model of rolling bearing operation and new
approach to its condition evaluation using operational transfer function. There is
consideration of results of research study on laboratory test bench and trial appli-
cations for bearings of jet engine helicopter and swash plate. Results of the tech-
nique application on industrial aggregates are discussed. Main benefits of the
adaptive technique are analyzed and its input to condition-based maintenance
(CBM) is considered.

Keywords Condition monitoring � Vibration diagnostic � Adaptive methods �
Bearing � Machines
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1 Introduction

Rolling bearing are obligatory units of practically all rotary mechanisms taking up
all static and dynamic loads from a rotor. However, its operational condition could
be complicated by abnormal loading, lubricating, or elevated temperatures. So
the technical condition of bearings often limits workability of the whole machine.

To increase lifetime and reliability of rotary mechanisms as well as to reduce
maintenance costs it is necessary to monitor bearings’ technical condition during all
its life cycle. Vibration methods of bearings monitoring and diagnostics became the
most popular in the last decades. The reason is that vibration signal reflects most of
mechanism operation aspects including technical condition of the bearings. The
theory and practices of vibration signal analysis are developed well up to moment
providing adequate information about technical condition of bearings [1, 2]. Actual
diagnostic techniques apply mean-square values, peak/noise ratio, spectral density
peaks, and spectrum of an envelope. However, for complicated machines (espe-
cially in transport and energy sectors) efficiency of above methods is still low and
main problems of these methods are:

• vibration path from a bearing to a sensor is complex, also extrinsic vibration
sources may mask bearing signals, so useful signal is lost in the noise;

• application of practically all actual methods to each bearing of specific machine
requires its preliminary tests and high-skill expertise to achieve reliable
diagnosis.

2 Efficiency Estimation of a Conventional Technique

As a typical tool for bearing monitoring the SKF-manufactured device CMAS
100-5L was selected for assessment of widely used diagnostic technique. SKF is a
leading global supplier of products and services associated with roller bearings. For
bearing monitoring this device applies gE parameter obtained through the envelope
detection method. The device generates two kinds of diagnostic messages within
measurement process: “Alert”—recommendation to halt the aggregate and inves-
tigate its state, and “Danger”—the message signalizing a fault of the bearing.
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To estimate effectiveness of the device and its technique we applied it to the
reference set of bearings of 12 operating industrial aggregates having different
technical states. The efficiency of the technique realized was evaluated using
comparison of measured parameters with actual bearings’ technical state based on
its investigation applying the microscope. Research study included 3 stages: initial
measurement of gE parameter of each industrial aggregate equipped by bearing
with working life of 2–20 years, repeated measurement after replacement of used
bearing for a new one, and laboratory investigation of replaced bearings. The last
one allows to separate 12 replaced bearings in two groups: bearings without visible
traces of wear (6 pieces) and another 6 bearings having visible faults, as it is
illustrated on Fig. 1a.

Comparing the bearings’ technical state and signal messages of SKF device, one
may come to the conclusion that the device has made errors of first kind (false
alarm) and second kind (non-detection or missing target). For example, in 12 tests
where vibration of brand-new bearings was investigated, the device had reported a
fault (Danger) three times and once more prevention signal (Alert).

For group of 6 replaced bearings with no visible traces (practically healthy state)
the device issued Danger twice and Alert—once. Therefore, the device incorrectly
identified technical state in 39 % of cases. For another group formed by 6 replaced
bearings with substantial faults the device has taken the correct decision in three
cases: two times by issuing “Alert” and once—“Danger.” In regards to the
remaining three bearings with substantial defects, the device has even failed to issue
the signal “Alert,” so it was interpreted as target missing. Therefore, with respect to
that group of bearings, the probability of correct identification of their technical
state by SKF device constituted 50 % only.

Fig. 1 a Visible fault of inner race; b bearings component interaction chart
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These results suggest that applied traditional technique cannot provide reliable
monitoring of machines, since a high percentage of errors of the first and the second
kind leads to unsubstantiated prevention maintenance jobs and uncontrolled fail-
ures, which ultimately increases the operating costs for the plant maintenance. The
problem of the applied technique is that their parameters depend on structural and
operational factors that differ for variety of industrial bearings. As a result, two
same new bearings in two different industrial plants may show different measures.

3 Adaptive Technique and Model of Operating Bearing
Vibration Signal

The new technique, called adaptive, settles most of above problems using new
approach for extraction of useful components from common vibration signal. This
technique considers phase ratios between rotating elements of a bearing (rollers,
inner ring, and cage) that allows its extraction. Adaptive technique [3] uses physical
model that based on well-known assumption for pulse-mode interaction between
rollers/balls and bearing rings. Subjects and order of bearing interaction are illus-
trated by Fig. 1b. Rotor through inner ring affects balls by inertial dynamic forces
Fr(t) caused by both rotating unbalance and housing response. Rotating balls
transfer these quasi-periodical forces to outer ring and then to a casing. All rollers
(or balls) (Rol1, Rol2, …, RolK) rotate together with cage (separator) around the
rotor axis. By the way, each of them is spinning at its own rate ðx1;x2; . . .xKÞ.
Surfaces of ball races are not ideal as its shape has waviness and roughness.

Uneven balls roll along races with its own unevenness and generate pulsed
forces acting to a rotor and a stator both. Such pulsed interaction has random mode
and looked as a continuous sequence of micro-impacts. However, quasi-periodical
motion of rotating components modulates this random process by that creating
opportunity for extraction of useful information. The specialty of interaction is
though all balls interact with outer ring concurrently, only two of them participate in
transmittance of rotor loads to an outer ring (in single-row bearing).

Any fault appearing in a bearing’s component increases unevenness of races so
the main disgnostic task is to evaluate such unevenness. Unevenness distribution in
relation to phase of body revolution C uð Þ ¼ 1þ DC uð Þ is called irregularity
profile and is used for measurement of race unevenness of bearing component.
Phase of component (ball, inner, or outer race) revolution in its rotation is an
argument of this function. Irregularity is measured in relative scale and fluctuates by
ΔC around 1, which means ideally even race. Sensor on a casing measures
momentary vibration that may be described by the expression (1a) that is mathe-
matical model of vibration signal
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aðtÞ ¼
XK
k¼1

HðukÞ � Prðxrt þ ur
0Þ � fk Kxc;Dr½ �

�CinðuÞ � CoutðuÞ � Crol
k ðuÞ

þHðukÞ � Fk
rolðmk;xcÞ � CoutðuÞ � Crol

k ðuÞ

8<
:

9=
; ð1aÞ

where
H ukð Þ stator transfer function between contact

point of ball k and outer ring, from one
side, and sensor on a casing, from other
side;

PrðtÞ rotor inertial force transmitted through
inner ring to balls;

xr rotation speed of a rotor;
fk½Kxc;Dr� lumbering function that is subject of balls

quantity K, cage turning rate xc and radial
clearance Dr;

CinðuÞ ¼ 1þ DCinðxint þ uc
0Þ

� �
inner ring (race) irregularity;

CoutðuÞ ¼ 1þ DCoutðxoutt þ uc
0Þ

� �
outer ring (race) irregularity;

Crol
k ðuÞ ¼ 1þ DCrol

k ðxk
rolt þ ukrol

0 Þ� �2 race irregularity of ball No k;

Fk
rol inertial force of ball No k to outer ring;

mk mass of ball No k;
xk

rol turn rate of ball No k;

ur;c;krol
0

initial phase of any bearing component

Two augends of (1a) describe two types of inertial forces generated when
bearing operates:

• rotor forces transferred by inner ring to outer ring, and
• inertial forces of balls rotating with a cage.

For most of bearings the rotor forces multiply exceed the forces created by balls,
so the first augend plays dominant role, but the second one is close to negligible.
That is why further consideration will be related for this part of equation only.

a0ðtÞ ¼
XK
k¼1

HðukÞ � Prðxrt þ ur
0Þ � fk Kxc;Dr½ ��

�CinðuÞ � CoutðuÞ � Crol
k ðuÞ

� �
ð1bÞ

Applying above model for consideration of actual bearing vibration it is nec-
essary to keep in mind that at any moment of time only pair of (“loaded”) balls
transfers rotor forces to a stator. Weak centrifugal forces acting to other balls and
radial clearance do not facilitate sufficient contact, so these (unloaded) balls slide.
Such sliding reduces turn rate of unloaded balls that breaks a cage and its rotation
speed slightly decreases. Occasional sliding of unloaded balls creates uncertainty of
its phases that means any recontacting between specified points of the ball and the
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ring will happen with arbitrary phase. Such uncertainty is the main source of
occasional component of vibration.

Transfer function H ukð Þ is determined by mass-elastic properties of the stator
and independent to bearing state and operation mode (1a). Rotor generated forces
Pr xrt þ ur

0

� �
are considered as quasi-periodical. Lumbering function fk½Kxc;Dr�

depends of cage turn rate (related by kinematic with rotor speed), phase angle
between balls (determined by balls quantity K) and radial clearance in the bearing.
This nonlinear function transposes dynamic rotor forces to higher frequency zone
(K × fr). By this, the product of first three multipliers in first raw (1b) is
quasi-deterministic and it is not related to race unevenness.

Occasional component of vibration is generated by interaction of balls and races
irregularities under rotor forces impact. Three multipliers in second raw (1b)
describe this component. The unevenness profile DC uð Þ is an arbitrary; however,
relative rotation periodically repeats occasional micro-impulses and modulates them.

Nonlinear interaction between balls and rings may be presented as multifactor
transfer function by those a bearing transfers dynamic forces to a stator

MFðtÞ ¼ fk Kxc;Dr½ � � CinðuÞ � CoutðuÞ � Crol
k ðuÞ: ð2Þ

This function (called MF) transforms dynamic forces induced by a rotor to the
sequence of occasional micro-impulses modulated by quasi-periodical motion of an
inner ring, a cage, and balls. MF function depends on bearing’s kinematics, radial
clearance, and technical condition of its components, including balls, a cage, and
ring races. This function is not related to rotor’s motion and forces as well as to
stator transfer function.

Replacing multinomial (product of ball races unevenness profiles) in (1b) by MF
(t) from (2) we have equation

�a0ðtÞ ¼
XK
k¼1

HðukÞ � �Prðxrt þ ur
0Þ

� 	 �MFðtÞ ð3aÞ

from which we could find estimation of the bearing transfer function

MFðtÞ ¼ �a0ðtÞPK
k¼1 HðukÞ � �Prðxrt þ ur

0Þ
� 	 ð3bÞ

Equation (3b) shows that MF function could be calculated from vibration vector
divided by the product of this casing transfer function and rotor force time vector.

To determine bearing unevenness following data is to be provided:

• measured vibration vectors A(N) and rotation speed signal vector T(N) in digital
form (N samples length),

• bearing relative frequencies or construction data for its calculation (type, ball
quantity and diameter, ball races diameters).
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Using above noted data it is possible to calculate ratio of bearing components’
turn rates and order K of modulating function fk½Kxc;Dr�. Then time vector of rotor
forces and casing (stator) transfer function should be found. For this purpose
iteration approach may be applied to reduce uncertainty. At first, momentary
acceleration values to be measured in three orthogonal directions in order to form
time vector of magnitudes. Then synchronized averaging is applied to the vector of
magnitudes. Averaged vector acts as the divisor for MF function vector calculation,
which length N will be the same as raw data vector A(N).

MF transfer function allows estimating technical condition of a bearing at whole.
Any reason that causes growth of micro-impulses intensity will increase MF
function values. In case if bearing vibration dominates, MF function may be used
for bearing state monitoring.MF function could be easily obtained and widely used;
however, its application is limited. MF function cannot detect the source of bearing
operation abnormality, for instance, radial clearance increased or inner ring race is
damaged. Another limitation is influence of extrinsic sources of dynamic excitation.

To eliminate above limitations further MF function processing is needed that
provides separate evaluation of each bearing component condition. Spatial Time
Domain Distribution (STDD) developed in our laboratory provides such separate
assessment based on MF function vector and using calculation routines originating
from Eq. (2). Parameters needed for STDD are based from one side on the specific
bearing kinematics, and from other side on the knowledge about motion specialties
of bearing components dependent on operation mode, lubricating, damaging, etc.
To obtain such knowledge the extensive experimental program was carried out.
Specially constructed test rig and high-speed camera have been used to study
kinematics of operating bearings in different operation modes and technical states.

Above considered approach, including estimation of bearing’s transfer function
and STDD, has provided some important advantages in contrast with typical
diagnostic methods of bearings.

Using MF function instead of vibration signal adaptive technique becomes
universal for technical condition evaluation of any bearing independently to a type,
size, rotation speed and operation mode. This capability appears because condition
parameters of adaptive technique are based on assessment of rotor loads transferring
quality but not on vibration amplitudes. As irregularity parameters of adaptive
technique have relative scale, they are compatible for bearings of different types.
This means that parameters’ statistics is common for most of bearings types, and
being collected for one type may be applied to other types with similar faults.

Adaptive technique has low sensitivity to noise generated by other vibration
sources, including frequency components that are multiple for rotation speeds of
bearing components. External vibration sources cannot mask diagnostic signs of
bearing faults, thanks for considering ball’s and cage’s motion specialties and
utilizing wide frequency range vibration. Using this feature adaptive technique does
not require preliminary tests in contrast to conventional methods of bearing diag-
nostics, which need preliminary research and tests of the object in wide range of its
operational modes in order to choose optimal frequency zone for specific bear-
ing mounted in specific aggregate.
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Above-mentioned benefits of adaptive technique provide reliable diagnostics of
complicated aggregates and machines, where no opportunities to locate a sensor
close to a bearing, but there are plenty of external sources of vibration. Such
benefits are important especially for gearboxes, turbomachines, piston engines,
pumps, and other machines that are widely applied in transport and energy. By
adaptive technique it is possible to monitor condition of multiple bearings of the
machine using only one vibration sensor that is mounted on machine’s exterior part.

Effectiveness of adaptive technique was tested in different research studies and
trial applications. Bearings of aviation engines, the drive train, the main rotor of
a helicopter or a wind generator and a swash plate have been tested in healthy and
faulty conditions. Also the adaptive technique was applied to a wide variety of
industrial bearings. Some results are briefly considered below.

4 Tests and Trial Applications of Adaptive Technique

4.1 Laboratory Test Rig

Laboratory test rig was used for the technique approval and for research of bearing
components motion (Fig. 2).

This facility includes electric drive, mechanical part, and high-speed camera.
Electric drive provides operation of the rotor on two supports in wide range of
rotation speed. Mechanical part of facility provides variable conditions of tested
bearing operation. High-speed camera (up to 150,000 frames/s) allows measuring
parameters of cage and balls motion, which have marking on the end faces of
rollers, cage, and inner ring (Fig.2b). Research study had the task to approve
effectiveness of adaptive technique to detect healthy or faulty states of the operating
bearing as well as states of its components separately. Here below brief results of
this study are considered. Three single-row roller bearings had been consequently
tested. Each bearing was tested in healthy and faulty states alternately. Test faults
have been made by local damages of inner or outer ring races as well as one of
rollers. There were 7 technical states of one type of bearings:

• healthy state of each of three same type bearings (init1, init2, init3);
• local damage as a notch crossing inner ring race: depth 0.5 mm, width 1 mm,

length 3 mm (inner);
• local damage as a notch crossing outer ring race: depth 0.5 mm, width 1 mm,

length 3 mm (outer);
• damage of one roller as milling with depth 0.8 mm (roller);
• combined fault: inner and outer races as well as one roller are damaged

(combB4).
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4.1.1 Diagnostic Abilities of MF Parameters

Diagnostic parameters were calculated using adaptive technique and are presented
on Fig. 3.

Figure 3a illustrates in dB scale evaluation of maxMF parameter to bearing state
modification. This most simple parameter calculates maximum value of transfer
function in each state. Bearings in healthy conditions had its maxMF in range 15, 8,
…16.9 dB. Faulted inner race of the 1st bearing caused 6 dB growth of the
parameter. Outer race fault had affected stronger (13 dB growth), but ball’s fault
influenced a bit less—9 dB. So, maxMF parameter certainly separates faulted
conditions of a bearing from healthy ones.

The set of parameters innerMF, outerMF, and rollerMF have been calculated
using STDD and are able to diagnose each component of bearings separately.
Diagram on Fig. 2b characterizes race’s condition of inner, outer rings, and rollers.
As each of these parameters measures only part of total bearing unevenness
described by maxMF, their values are less. Therefore, for healthy components its
values vary between 5 dB and 8 dB. Each type of fault caused growth of

(a) (b)Bearing Hi-speed cam

Roller 
marks

Cage
marks

Inner ring 
marks

Fig. 2 Experimental test rig for bearing research: a common view; b typical frame of high-speed
camera with marked rollers, cage, and inner ring

Fig. 3 MF parameters diagram of bearing condition: a maxMF parameter for bearing states; b MF
parameters of bearing’s components
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corresponding parameter. Damaged inner ring of the 1st bearing had uplifted
innerMF value up to 16.8 dB that means 10 dB (3 times) increase as against healthy
state. Same scale fault of the 2nd bearing outer race caused outerMF growth up to
19.5 dB, that is, 12 dB higher than initial value. Smaller growth of rollerMF—up to
12.1 dB was observed when a single roller of the 3rd bearing was damaged. Smaller
response to roller’s fault is stipulated by rollers motion specialties considered earlier
in this paper. It is important that specific MF component parameters responding to
“its” fault almost do not react to faults of other components. Combined fault caused
much greater growth of the parameters with outerMF dominating. This fact illus-
trates transfer function nonlinear dependency of factors combination. In this case
decisive influence has radial clearance variation created by interaction of all three
faults in one bearing. Such interaction amplifies rollers interaction with outer ring
but attenuates it with inner one.

Thus, the set of MF parameters provides reliable detection of bearing faults at its
early stages, even if a fault appears on one of the components only. The most
important benefit of adaptive technique is that it may assess the bearing condition in
relative scale without any background. Compatibility of MF parameters for most of
bearing types means any bearing could be diagnosed by single measurement. Based
on the results of the laboratory study the threshold of healthy state (6–8 dB) was
preliminary accepted for all MF parameters.

4.1.2 MF Parameters for Monitoring

MF parameters may provide accurate monitoring of individual bearing’s condition
using comparing of current appraisals with initial ones. MF monitoring allows
prognosis of lifetime, maintenance, and repair planning. Figure 4 illustrates MF
monitoring parameters calculated as difference between faulted and healthy bear-
ings states. The diagram shows definite detection of any fault using MF parameters
as the tools for monitoring purpose. Indirect assessment of method error may be

Fig. 4 a Diagram:
application of MF parameters
as monitoring tool
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estimated by scatter of MF parameters for unharmed component of bearings that
varies from −1.8 dB to +0.4 dB.

So, experimental check of adaptive technique by laboratory tests has proved its
ability to diagnose faults of bearing components separately. This technique could be
applied to both monitoring of bearing condition as well as diagnosis of bearings
with no “vibration” history of its parameters in initial state.

4.2 Trial Applications

4.2.1 Compressor’s Bearing of Aviation Jet Engine (Test Bench)

Trial application on aviation jet engine was aimed to check effectiveness of adaptive
technique for diagnosis of the bearing that operates in complicated machine with
multiple extrinsic sources. Tested aviation turboprop engine is a part of test bench,
where terms of bearings’ operation could be approximated to actual ones. The
engine operates in “cold” mode being driven by powerful electric motor (Fig. 5a).

To measure vibration signal of front support bearing the 3-axial accelerometer
was mounted on intermediate casing of the engine. Preliminary spectral analysis of
vibration signal has determined dominating sources of vibration that were: epi-
cyclical 2-stage gearbox, gears of lubricating pump, hydraulic, pneumatic, and
electric systems as well as aerodynamic vibration generated by compressor’s blade
wakes. Such combination of sources is typical not only for jet engine but also for
helicopter or wind generator main rotor and other machines.

After testing in healthy state the engine has been dismantled. The roller bearing
of front support was taken out, and its outer ring has been slightly damaged. Initial
scale of damage was minimized to small cross scratch (0.08 mm depth and 1 mm
width) aiming to find lower threshold of the technique sensitivity. Then, after
testing in the 1st faulty condition the engine has been dismantled again and the
scratch has been deepened up to 0.2 × 2 mm. So, the 2nd faulty testing was with

Fig. 5 a Aviation turboprop engine test bench; b MF parameters response to condition
modifications of the turboprop engine’s bearing
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more damaged outer ring. For the 3rd faulty test the bearing was more damaged by
adding the same scale damage (0.2 × 2 mm) onto the inner ring. Diagram on Fig. 5b
presents testing study results as calculated MF parameters for above considered
bearing states. Diagram demonstrates that healthy components of this bearing also
do not exceed the range 4…6 dB, as it was in the laboratory study. Visible response
of outerMF parameter (red) to smallest scratch was few (7.5 dB) but doubling of
scratch increased growth of the parameter up to 14.6 dB. Such change of the
parameter (10 dB in comparison to healthy state) to the typical damage scale at
early stage could be considered as satisfactory. It should be noted that other
parameters of healthy bearing components did not change practically.

Further development of damage was simulated by same size fault on the inner
ring. OuterMF almost does not react. InnerMF has risen fairly but smaller because
of nonlinear influence of both damaged rings.

4.2.2 Swash Plate Bearing of Helicopter Rotor

A bearing of helicopter swash plate operates in specific conditions caused by both:
bladed rotor dynamic forces and extrinsic vibration sources like meshing fre-
quencies of a gearbox. To trial the adaptive technique in such conditions the
helicopter main gearbox test bench was used (Fig. 6a). Adaptive technique was
applied to data collected from the bearing in healthy (initial) operation state, and
then in damaged state. In contrast to many others the swash plate bearing has its
outer ring as rotating but inner ring as stationary. Another specialty is very low
rotation speed that did not exceed 240 rpm in the testing session. Cross scratch of
0.15 mm depth and 1.5 mm width on the inner ring played role of test damage. The
bearing responded to the damage by growth of innerMF with practically unchanged
outerMF and ballMF parameters (Fig. 6b). Results of experiments on the engine
and main helicopter rotor demonstrated technique’s high sensitivity to faults on
early stage and insensibility to extrinsic influence.

Fig. 6 a Helicopter main gearbox and rotor test bench; bMF parameters of swash plate bearing in
faulty state
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4.3 Industrial Research

One of the most important benefits of adaptive technique is its universality allowing
condition monitoring of any bearings within common scale. Aiming to check this
feature on natural scale machines and technique’s sustainability in “field” condi-
tions the extensive research program was carried out with some industrial partners.
Twelve medium and small size industrial aggregates mentioned in p. 2 have been
used as objects for researches.

Figure 1 showed typical fault on replaced bearing but Fig. 7 demonstrates cor-
responding MF parameter diagrams for removed and new bearing of this aggregate.
Two local damages on the inner race (Fig. 1) and smaller ones on the outer ring
provided 13.4 dB innerMF and 11.8 dB outerMF (Fig. 7a)—both higher than earlier
fixed threshold of healthy state (6–8 dB). Bearing’s balls survived with a good state
and its parameter remained as for new ones. Replacement with a new bearing returned
MF parameter values of this aggregate to “healthy” zone—less than 6 dB (Fig. 7b).

In a similar way, technical state of bearings of all industrial aggregates has been
investigated. As optimal for estimation of whole bearing technical condition was
used comb adaptive parameter, that is, derivative of MF parameters for all three
components. Diagram on Fig. 8 demonstrates such parameters effectiveness for
condition monitoring of whole bearing. It is clear that removed worn-out bearings
(red color) of all aggregates have parameter values higher than new ones.

Six parameters related to aggregates with light worn (no visible traces) are
located from left side of diagram (Sper 50 fan—RU st2 pump). Red comb adaptive
values of above aggregates slightly exceed parameter values of new bearing. Right
located six parameter values (RU deg pump—Daina motor) relate to bearings with
visible traces of wear. These parameter values of “retired” bearing essentially
exceed (8 …22 dB) related new bearing values of the same aggregates.

In contrast to conventional method the adaptive technique in the same set of
investigated bearings demonstrated high efficiency. As Fig. 8 demonstrates, the
comb adaptive parameter of used bearing all the time is higher than of new one in
each pair of new and used bearings in the same industrial plant.

Fig. 7 Sample of deteriorated bearing of water pump: a MF parameters of deteriorated bearing;
b MF parameters of new bearing
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5 Conclusion

Tests and applications demonstrate weighty proofs of adaptive technique’s abilities
for bearing diagnostics, especially for complicated machines and aggregates.
Universality of the technique regardless of the type, size, rotation speed and
operation mode is based on transfer function but not on vibration levels. Relative
scale of condition measures makes the technique compatible for different types of
bearings that were demonstrated by trial applications. Another benefit is that the
technique does not require preliminary research and testing of observed objects.
High robustness of adaptive technique to extrinsic vibration sources is maintained
by phased synchronization. This approach accounts specialties of rollers/cage
motion and use wide frequency range of vibration that assure technique’s appli-
cation to complicated machines and aggregates. Adaptive technique is available for
condition monitoring of bearing during its life cycle as well as for diagnosis in
one-time survey.
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Study on Rotating Machine Vibration
Behavior Using Measured Vibro-Acoustic
Signals

Akilu Yunusa-Kaltungo, Jyoti K. Sinha and Adrian D. Nembhard

Abstract Literatures have shown that there is a significant rise in the use of mea-
sured vibro-acoustic signals for faults diagnosis in rotating machines. This is par-
ticularly based on the premise that affluent information about a rotating machine’s
operating conditions is usually conveyed by the sounds of the machine. Several
earlier studies have already shown the usefulness and capabilities of amplitude
spectra for faults diagnosis. However, very limited analyses of rotating machine’s
vibro-acoustic signals are available in literatures. Hence, the current study compares
the fused amplitude spectra of measured vibration signals from a flexibly supported
rotating machine with different faults, using accelerometers and microphones. The
experiments, spectra computations and observations are presented here.

Keywords Vibro-acoustic signals � Poly coherent composite spectrum � Data
fusion � Faults diagnosis � Condition monitoring � Rotating machines � Flexible
foundation
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1 Introduction

Although the general concept of data fusion is not particularly new, however, the
recent advances in signal processing hardware and techniques have significantly
enhanced the practicability of the concept [1]. In general, multi-sensor data fusion
involves the merging of measured data from several condition monitoring
(CM) sensors (e.g. vibration, sound, temperature, pressure, etc.) installed on an
equipment, so as to obtain precise and comprehensive faults diagnosis features that
could eventually simplify the overall CM process [2–6]. The current research effort
similarly involves the frequency domain fusion of measured CM data (vibration and
vibro-acoustic) from several measurement locations of a typical rotating machine
with flexible foundations, through the construction of a single representative poly
coherent composite spectrum (pCCS) [7] for the entire machine, with the sole aim
of reducing the complexities often associated with performing separate analysis at
individual measurement locations. The recently developed pCCS method is an
enhancement of the earlier introduced composite spectrum (CS) [8] method that
offered only amplitude information at individual frequencies. Earlier studies [7]
have adequately demonstrated that the retention of both amplitude and phase
information by pCCS significantly enhances faults diagnosis as well as eliminates
the rigor associated with the application of numerous harmonic components during
faults diagnosis.

All previous researches involving the application of CS [8] and pCCS [7] fre-
quency domain data fusion techniques have been restricted to measured vibration
signals from rotating machines, probably owing to the maturity and popularity of
the techniques for analyzing vibration signals [9–13]. In comparison to vibration
analysis, the shift towards the application of vibro-acoustic signals alone and in
combination with other popular CM techniques for monitoring the operational
condition of rotating machines can be considered to be relatively recent [14–20],
however, the study of the different sound patterns emitted by rotating machines
under different operating conditions has significantly grown with time. This is
perhaps based on the awareness that extensive information about the operating state
of a rotating machine can be extracted from its measured sound characteristics [21,
22]. Also, when compared to vibration monitoring which requires contact sensors
(e.g. accelerometers), a very significant advantage of faults diagnosis with
vibro-acoustic signals is the possibility for non-intrusive measurements, using
non-contact sensors such as microphones [23]. In the current study however, a
comparison between the pCCS features of vibration signals measured using PCB
accelerometers and vibro-acoustic signals measured with microphones installed in
close proximity to the bearing pedestals of a flexibly supported rotating machine
with different faults and at different speeds, so as to further expose the usefulness of
CM using vibro-acoustic signals.
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2 Machine Setup and Faults Initiation

The rig shown in Fig. 1 consists of two rigidly coupled 0.02 m diameter mild steel
shafts (1 and 0.5 m lengths respectively), and the 1 m shaft is flexibly coupled to the
electric motor. Three similarly dimensioned balance discs (outside diameter of
0.125 and 0.015 m thickness) are also distributed along the lengths of the two
rigidly coupled rotors. Two of the balance discs are installed on the 1 m shaft at
distances of 0.3 and 0.19 m from the flexible coupling and bearing 2 respectively,
while the third balance disc is installed midway (i.e. 0.21 m) between bearings 3
and 4 on the 0.5 m shaft. The entire rotor assembly is then supported by four
anti-friction ball bearings. Each anti-friction ball bearing is mounted through the aid
of four 0.01 m mild steel threaded bars, so as to simulate a flexible foundation.

On the flexibly supported rig in Fig. 1, four commonly encountered machine
operating conditions, namely; healthy with residual misalignment, bent shaft, loose
bearing and shaft rub were experimentally simulated at two separate machine
speeds (1800 RPM and 2400 RPM). Table 1 shows the descriptions, abbreviations,
severities and locations of all the four cases studied in the current study.

3 Data Analysis and Observations

Owing to the extensive description of the computational approach for pCCS already
provided in an earlier study [7], details of such computations have been omitted
from the current study. Hence, a MATLAB code was applied in accordance with

Fig. 1 Machine setup
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the previously described pCCS [7] computational approach for the measured
vibration and vibro-acoustic data at both machine speeds (1800 RPM and 2400
RPM), using the signal processing parameters shown in Table 2.

The computed pCCS amplitude spectra and phase plots for separately measured
vibration and vibro-acoustic data, on the flexibly supported experimental rig
(Fig. 1) at two speeds (1800 RPM and 2400 RPM) are respectively displayed in
Figs. 2 and 3. From these figures (Figs. 2 and 3), both vibration (Figs. 2a, c, e, g and
3a, c, e, g) and vibro-acoustic (Figs. 2b, d, f, h and 3b, d, f, g) pCCS amplitude and
pCCS phase plots exhibit variations in features for each of the experimentally
simulated cases at both machine speeds, which provides an indication of the
potential of the proposed technique for faults diagnosis with either of the measured
data (vibration and vibro-acoustic). For instance, the HRM cases for both signals
(vibration and vibro-acoustic) at both speeds [1800 RPM (Fig. 2a, b) and 2400
RPM (Fig. 3a, b)] only possessed prominent peaks at the first (1x) and second (1x)
harmonics of the machine speed, which is due to the residual misalignment asso-
ciated with this case. However, all other higher harmonic peaks (3x, 4x, 5x, 6x, etc.)
associated with this case (HRM) for both signals at all speeds were of negligible
amplitudes when compared to other cases. On the contrary, the faulty cases (BS, LB
and SR) for both measured vibration and vibro-acoustic signals at both machine
speeds possessed very prominent higher harmonic component peaks (e.g. 4x, 5x,
6x, etc.) which were more dominant than 1x and 2x peaks for the SR case (Figs. 2g,
h and 3g, h). Although the BS case also possessed 4x, 5x and 6x peaks, however,

Table 1 Experimentally simulated cases

Case Description Abbreviation Severity and location

1 Healthy with
residual
misalignment

HRM Some residual misalignment, possibly at
couplings

2 Bent shaft BS 0.0034 mm run-out was created at the
centre of the 1 m shaft

3 Loose bearing LB Loosening some of the bearing 3 threaded
bar nuts

4 Shaft rub SR Rub using a brass sleeve of 0.021 m on the
1 m shaft near balance disc 2

Table 2 Signal processing
parameters

Parameter(s) Type of signal

Vibration Vibro-acoustic

Sampling frequency (fs) (Hz) 10,000 10,000

Number of data points (N) 16,384 16,384

Frequency resolution
(df) (Hz)

0.6104 0.6104

Number of averages 148 148

Segment overlap (%) 95 95
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the magnitude of 3x peaks were relatively low, which was the reverse of the
features observed for the LB case (Figs. 2e, f and 3e, f) where 3x peaks were
dominant. In addition to the pCCS amplitude spectra, the pCCS phase plots for each
of the cases at both machine speeds for measured vibration and vibro-acoustic
signals also provide distinctive features, which may further enhance faults
diagnosis.

Fig. 2 Typical pCCS and phase plots at 1800 RPM; a vibration-HRM, b vibro-acoustic-HRM,
c vibration-BS, d vibro-acoustic-BS, e vibration-LB, f vibro-acoustic-LB, g vibration-SR,
h vibro-acoustic-SR
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From Figs. 2 and 3, it can be seen that the computed pCCS for both vibration
(measured on bearing pedestals) and vibro-acoustic signals (measured near bearing
pedestals with microphones) provide distinctive features for each of the experi-
mentally simulated cases. However, due to the appearance of several peaks for the
different cases at both machine speeds, direct comparison of the features from the
two classes of signals could become difficult. Therefore, in order to further enhance

Fig. 3 Typical pCCS and phase plots at 2400 RPM; a vibration-HRM, b vibro-acoustic-HRM,
c vibration-BS, d vibro-acoustic-BS, e vibration-LB, f vibro-acoustic-LB, g vibration-SR,
h vibro-acoustic-SR
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the visualization of the similarities between the pCCS diagnosis features for both
measured vibration and vibro-acoustic signals, the amplitudes of a typical case
(BS) have been normalised by the amplitude of the first harmonic component at both
machine speeds (1800 RPM and 2400 RPM), as shown by Fig. 4. It can be seen that
the pCCS features for both signals at both machine speeds appear similar. Although
the amplitudes vary slightly for some harmonic components, however, the spectral
features and patterns are very similar. This however provides an indication of the
potentials of applying pCCS of vibro-acoustic signals measured with just two
microphones installed near bearing locations for rotating machines faults diagnosis.

4 Concluding Remarks

The pCCS spectrum was found useful for faults diagnosis, particularly with mea-
sured vibration data in earlier studies. In the current study, a similar concept is
applied to vibro-acoustic data measured from a flexibly supported rotating machine,
using just two microphones. The observations appear to be identical for both classes
of signals. The investigation of the possibilities of applying fused vibro-acoustic
signals for rotating machines’ faults diagnosis was particularly driven by the ability
to conduct non-intrusive measurements using non-contact sensors such as micro-
phones, which is of significant advantage over the use of contact type accelerom-
eters, especially when dealing with extremely hazardous machines.
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A Probabilistic Approach to the Crack
Identification in a Beam-like Structure
Using Monitored Mode Shapes and Their
Curvature Data with Uncertainty

Sergey Shevtsov, Igor Zhilyaev, Paul Oganesyan
and Vladimir Akopyan

Abstract This work, which has been carried out for defects in aircraft structures
diagnosis, is considering of measurement errors, different accelerometers posi-
tioning and numerical differentiation of the natural vibrations mode shapes as the
sources of uncertainty, which affects on the crack identification results. A physical
theory to solve the forward identification problem assumed the Timoshenko beam
model with opened crack. With 1D cracked beam finite element (FE) model at the
different position and depth of the crack we reconstruct the first 5 mode shapes,
using vibration amplitudes measured on the fixed uniformly distributed points on
the beam surface. All measured amplitudes are noisy by randomly distributed
errors. Once these modes reconstructed, we determine their curvatures using central
schemes for the first and second spatial finite differences. To obtain the probabilistic
means for decision about the damage existence, the multiple numerical simulations
of the FE models have been carried out for both intact and defected beams with
different damage severity. Using results of these simulations we reconstruct the
probability density functions for maximum difference between vibration amplitudes
of intact beam and beam with known damage that allow us to separate the damaged
and undamaged cases. Next, we calculate the empirical probability distributions,
which allow to estimate a probability of the crack location and to distinguish the
cases of presence and absence of defect. Then, we compare the sensitivity and
robustness of crack parameters predictions by the mode shapes and modal curva-
tures analysis at the different instrumental precision using known and identified
cracks’ characteristics. We established that damage identification using mode shape
curvatures data is less reliable because increased noise caused by twofold numerical
differentiation of amplitudes measured on the discrete set of points, whereas the
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mode shapes are more suitable for distinguish perfect intact and damaged state of a
structure. Our results confirm that each vibration mode is most sensitive to the
damage within the own specific intervals along the beam, and besides, such the
sensitivity increases along with mode’s number.

Keywords Structural health monitoring �Timoshenko beam �Crack identification �
Damage sensitivity � Probabilistic analysis
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1 Introduction

Structural damage prediction and identification attracts a relentless attention of
engineers and scientists because the unpredicted structural failure may cause cat-
astrophic loss, especially at the cases of flying aircrafts. The state of this problem
has been considered in very detailed surveys [1–5], etc. These surveys categorized
all vibration-based damage identification methods as global nondestructive evalu-
ation technique because these methods do not require a priori information about the
possible damage location. Different kinds of the vibration-based method are widely
used in aerospace and civil engineering. Regular diagnostics to on-line possible
damage detection of aircraft [6–8], rotorcraft [9–12], UAVs [13], aerospace engines
[14] has been studied and reported. Despite the fact that a damage diagnosis
problem is topical for the different civilian structures, including bridges, buildings,
towers, pipes, plate-like and shell-like structures, the beam-like structures are
particularly studied. Most often such the objects are described by the
Euler-Bernoulli theory [5, 10], and relatively seldom by the Timoshenko beam
equations [15–19], which allow to take into account the effects of shear deformation
and rotational inertia. The beam’s defects are modeled by the spring with rotational
stiffness [3, 15, 20], by the local bending stiffness due to decrease of the Young
module or moment inertia of the beam cross-section [16–19, 21–26], by attached
auxiliary mass [6, 12, 13, 27], or by notch in FE model of the beam [23, 27]. In this
work, we use the advantageous that provide the Timoshenko beam equations. In
contrast to other studies, which modeled the damage as relatively wide region with
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the reduced flexural stiffness or by the zero length spring whose rotational stiffness
is assigned quiet arbitrarily, we accurately describe an opened crack as a very
narrow local change of the beam cross-section according the approach firstly
developed in [16].

Most authors [1–4] classified all damage identification methods as ‘model-based
methods’ or ‘response based methods’. The model-based method assumes that
some mathematical model of the structure is available for damage identification,
while the response-based method depends only on experimental response data from
structures. A wide range of problems that state as ‘model-based’ can be considered
as inverse problems. In inverse problems, data from indirect measurements used to
estimate unknown parameters of physical systems, in the considered cases to
estimate geometric location and/or severity of the damage [1]. Among the main
approaches to solve such the problems are use some assurance criteria that assume a
comparison between the processed experimental data and model response [1–4, 12]
etc., the model-updating methods [21] that utilizing some analytical optimization
algorithm (gradient-based, most often) [21, 28], wavelet analysis [9, 29], soft
methods, including artificial neural network [6, 30], fuzzy logic [25] and genetic
algorithm [7, 22, 27, 31], and also approach that consider the studied vibrated
structure as a closed-loop controlled system whose faults can cause the destabili-
zation and variation of control performance [23, 32,37]. A common feature of such
problems and cause a variety of methods for solving them is that they are ill-posed.

There are many reasons that make the inverse problem underdetermined (non-
unique). In the considered example of damaged structure, two different models of
this structure may predict the same measurements data and the finite bandwidth of
these data never allow to resolve the very small features of the models, and there are
always experimental uncertainties that allow different models to be ‘acceptable’
[33]. Many investigations that have been devoted to the influence of uncertainty on
the solution of inverse damage identification problem, confirmed a very high
sensitivity of such the solution to experimental noise or numerical errors [7, 15, 19,
25, 26, 31, 32, 34–36].

In this article, we use the probabilistic approach [30], which is widely used for
uncertainty analysis of mathematical models [6, 14, 19, 22, 35, 38, 39]. This
approach, which assumes a large number of samples or experiments with the
studied object, and the probability of an event (damaged or undamaged state,
damage severity etc.), is defined as the ratio of the number the event occurs to the
total number of samples or experiments. So, using a probabilistic approach to the
damage detection, we no longer consider of each variable as a single value or
number. Instead, we consider each variable in terms of its probability distribution.

The survey papers [1, 4] classify the vibration-based methods by the monitored
value into four major categories: natural frequency-based methods [24, 27, 35, 40],
mode shape-based methods [10, 26, 31, 34, 41, 42], curvature mode shape-based
methods [17, 25, 43], and methods using both mode shapes and frequencies [16].
The modal strain energy-based method [12, 30, 38] is very similar to these methods.
Some authors proposed also to monitor the time domain response of vibrated
structure to extract damage sensitive characteristics [32, 44]. Based on the
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successful results of identification using vibration mode shapes and their curvatures
presented in our previous papers [16, 19], we use here these dynamic characteristics
of the potentially damaged mechanical structures. Because this investigation is
oriented to the aircraft structural health monitoring the utilizing of the accelerom-
eters array instead of set of the surface bonded strain gages is preferred due to
specific prohibitions for the flying vehicles. However, such the monitoring, which
allow to measure the accelerations in the points of the accelerometers installation,
requires to twice integrating the electric signals in the time domain to obtain the
vibration amplitudes from electric signal, which is proportional to acceleration, and
next, requires to twice differentiating in the space domain to obtain the local cur-
vature. In the papers [1, 25, 43] it is pointed out that for the higher modes, the
difference in modal curvature calculated using the data acquired from the intact and
damaged structures shows several peaks not only at the damage location but also at
the other positions, which may lead to a false indication of damage. This is due to
experimental and numerical reasons. Indeed, if we use the mode shape curvature as
an indicator of the damage, the inherent uncertainty caused by the measurements
errors and environmental action is increased after double numerical differentiation.
Hence, the resulting uncertainty (i.e. noise) will be associated with both the number
and spatial positions of sensors. The damage localization accuracy depending on
the set of sensors has been studied in [8, 23, 36, 44], where it is proved that the
number of sensors and the choice of sensors coordinates may have a crucial effect
on the accuracy of the damage detection procedure. In our previous work [19],
where we modeled three cases with 20, 40, and 80 sensors uniformly distributed
along the beam span it has been established that 40 sensors is the optimum number.
This number is agreeing with the experimental results presented in [12], and it used
here.

2 The Timoshenko Beam with the One Opened Crack

The most attractive feature of the Timoshenko beam equations at the modeling of
defected structures with crack is its ability to describe correctly the narrow variation
of the mechanical properties and cross-section along the beam. Moreover, these
equations satisfy the main requirements to the model used to simulate the forward
problem [16]. Among these requirements are the small number of parameters,
which fully characterize a crack, the model of the damaged structure is continuously
modified to the model of perfect structure at decreasing of the damage severity, and
also the minimum computation cost that is very important at the multiple simula-
tions. The Timoshenko beam equations, which take into account the effects of shear
and the section rotation even at quite high frequencies of flexural vibrations, has the
form
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EJwxð Þx þ kGF wx � wð Þ ¼ qJwtt

kGF wx � wð Þ½ �x þ q ¼ qFwtt;
ð1Þ

where E;G; q; J;F; L are the Young module, shear module, material density, sec-
tion moment inertia, section area, and beam length respectively; w;w are beam axis
deflection and angle of the section rotation; q is distributed load; and k is
form-factor equal to 6/5 for rectangular cross section. The subscripts x and t des-
ignate the space and time differentiation. It is important that the assumption about
uniform cross-section of the beam with the exception of the crack location, which
adopted here, do not lead to the loss of generality for the following consideration.

The boundary conditions for the cantilever beam with the free load tip are

wjx¼0 ¼ wjx¼0 ¼ 0; @w=@xjx¼L ¼ @w=@x� wð Þjx¼L ¼ 0 : ð2Þ

Expressing the spatial distribution of the section moment inertia and section area

J xð Þ ¼ J0 � f xð Þ; F xð Þ ¼ F0 � g xð Þ; ð3Þ

where J0 and F0 are the section moment inertia and section area along the defectless
parts of the beam, and introducing the dimensionless variables

n ¼ x=L ) @=@x ¼ 1=L � @=@n; s ¼ t=T ) @=@t ¼ 1=T � @=@s; u ¼ w=L ;

ð4Þ

where dimensionless coordinate n, time s and displacement u and pseudo period T,
system (1) is transformed to the dimensionless representation

guss � B gunð Þn þB gwð Þn ¼ U

fwss � fwn

� �
n
�Agun þ Agw ¼ 0

ð5Þ

In Eq. (5) a pseudo-period T is defined as T ¼ L
ffiffiffiffiffiffiffiffiffi
q=E

p
, and the dimensionless

coefficients A;B;U are

A ¼ 6kL2
�
h2 1þ mð Þ� �

; B ¼ k= 1þ mð Þ U ¼ qL= bhEð Þ; ð6Þ

and the spatial distributions of the dimensionless beam thick g and section moment
inertia f

g nð Þ ¼ 1� d nð Þ; f nð Þ � 1� 3d nð Þ � 1� d nð Þð Þ2¼ 1� 3d nð Þ � g2 nð Þ ; ð7Þ

that depend on the delta-like opened crack, which has depth d 2 0; 1½ Þ, half width e
and is placed at the dimensionless distance l from the clamped end
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d nð Þ ¼ d � cos p n� lð Þ=2e½ �; n 2 l� e; lþ e½ �
0; n 62 l� e; lþ e½ �;

�
ð8Þ

At performing of frequency response and modal analysis both u and w (see
Eq. 5) assumed as harmonic oscillations with amplitudes U nð Þ;W nð Þ, and the
boundary value problem for the damaged cantilevered beam is formulated in the
form

�g~x2U � B gUnð Þn þB gWð Þn ¼ U

�f~x2W� fWnð Þn �AgUn þ AgW ¼ 0

Ujn¼0 ¼ Wjn¼0 ¼ Wnjn¼1 ¼ Un �Wð Þjn¼1 ¼ 0;

ð9Þ

where the dimensionless angular eigenfrequency ~xi and eigenfrequency mi that
expressed in the natural frequency units are linked by the relationships

~xis ¼ 2pmit ) mi ¼ ~xi

ffiffiffiffiffiffiffiffiffi
E=q

p
=2pL: ð10Þ

The numerical implementation of the boundary value problem (9) was carried
out in the Partial Differential Equation (PDE) mode of FE soft tool Comsol
Multiphysics.

3 The Finite Element Implementation of the Forward
Problem

One-dimensional FE mesh of the beam model consisted of 1000 knots, and near
5000 degree of freedom. For the model testing and validation we used the exper-
imentally studied steel beam with dimensions 4 cm × 5 cm × 1 m and artificially
introduced “cracks”—notches with depth: 0.25, 0.4, 0.55, and 0.7 of thick and
randomly distributed along the beam. First 5 vibration modes have been calculated
and next normalized by dividing the points displacement amplitude on the maxi-
mum displacement at the free end. To obtain the curvatures of the modes shape the
3 and 5-points symmetric finite differences schemes for the first and second
derivatives were used. For these calculations we used 40 points on the beam sur-
face, separated by the identical distance h. Comparison of this FE model simulation
results with the experimental data and with the results of 3D FE simulation con-
firmed the ability to successfully reconstructing the dynamic properties of damaged
beams [16]. Some examples of the mode shapes and their curvatures without noise
are shown in a Fig. 1. A visual analysis of these plots demonstrates that at absence
of the experimental noise the sensitivities of the mode shapes and their curvatures
are comparable.
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Last statement is because the maximum discrepancies between mode shapes and
their curvatures are in a vicinity of the known crack location l ¼ 0:18. Nevertheless,
deviations of lesser magnitude are also observed far from the location of the defect.
Obviously, these deviations are due to the numerical differentiation on a discrete set
of points. Since all second derivatives are calculated for the normalized modes, the
amplitude of the curvatures increases with the number of mode, and mode (cur-
vature) sensitivity to the presence of the defect is better in the areas of the larger
curvature.

The artificial noise was introduced by adding to the displacement of each point
the “measurements error” as a random value, according to normal distribution. We
studied two cases when measuring error is enclosed within the ranges �0:01 and

Fig. 1 The normalized mode shapes (a, b), curvatures’ modules calculated from these mode
shapes (d, e) for intact beam (a, d) and beam with the crack at l = 0.18; d = 0.25 (b, e), and
differences between these dependencies for the damaged and undamaged beam (c, f). Calculation
was performed using 40 uniformly distributed points along the beam assuming no any measured
noise
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�0:005. Figure 2 demonstrates the corresponding examples of the mode shapes and
their curvatures with noise �0:005 that corresponds to the workable precision of
vibration measurement equipment. The resolution of both modes and curvature
significantly deteriorated. Furthermore, some erroneous peaks (see peaks at l ¼
0:25 for the 3rd mode and at l ¼ 0:45 for the 2nd mode in Fig. 2f) can appear.

Plots on Figs. 1 and 2 confirm the local sensitivity for each mode shape.
Therefore, it must be assumed that different vibration modes (or their curvatures)
should be less or more sensitive to the damages, which are localized in the different
segments of the beam length. Introducing even small measuring error worsens the
sensitivity and resolution of the modes shape and their curvatures. At the existence of
the measuring error, the erroneous peaks can arise on the different positions making
difficult to localize damage and making less obvious fact of its existence or absence.

Fig. 2 The normalized mode shapes (a, b), curvatures’ modules calculated from these mode
shapes (d, e) for intact beam (a, d) and beam with the crack at l = 0.18; d = 0.25 (b, e), and
differences between these dependencies for the damaged and undamaged beam (c, f). Calculation
was performed using 40 uniformly distributed points along the beam assuming measured noise
within the interval ±0.005
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In order to obtain the probabilistic estimations for the defected as well as for the
perfect beams we simulated a pairs of beams (both beams with the artificial noise),
and then compared the maximum discrepancies between these beam axis deflec-
tions (and their curvatures) along the beams for the five natural vibration modes. In
the cases of intact beam analysis, both simulated beams are intact, and each
defected beam with known damage severity was compared with the intact beam.
All modeled 500 defects realization was stored in a text file for the further statistical
analysis.

4 Probabilistic Analysis of Resolution and Sensitivity
of the Vibration Modes and Their Curvatures
to Damage Existence, Severity and Location

Two different types of analysis were performed. First type was a reconstruction of
empiric distribution of maximum discrepancies along the beam in the form of
histograms for all five modes shape and their curvature for intact beam and for the
beams with different damage severity, then calculation of parameters for matching
probability density distribution. In order to approximate the obtained empiric dis-
tributions by the probability density functions used in practice we chose the normal
distribution and modified beta distribution, which was defined on interval a; b½ � as
follow

B̂ a; b; x;m; nð Þ � B x�a
b�a ;m; n
� �

if x 2 a; b½ �
0; otherwise;

�
ð11Þ

where probability density for beta distribution is

B x;m; nð Þ � C mþ nð Þ
C mð Þ � C nð Þ � x

m � 1� xð Þn�1: ð12Þ

Figure 3 demonstrates two examples of such probability distributions. These
results allow us to estimate ability of the vibration modes and their curvatures to
determine severity of possible damage and make decision about absence of damage.
For example, a maximum discrepancy of the 1st mode curvature for a perfect beam
cannot exceed value 80.

Second type of analysis was performed to determine the sensitivity of studied
vibration modes and their curvatures to the presence of damages with different
levels, when this damage locates randomly along the beam. As a result, the spatial
distributions of correct crack localization by each mode and its curvature have been
obtained for the different part of the beam. The length of studied damaged beams
has been divided on ten identical intervals. Then a number of correct predictions
percentage and distribution of deviations from the true crack positions have been
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calculated. These deviations are illustrated in Fig. 4 by the confidence intervals for
their expected values. Two examples of these results, which are presented in Fig. 4,
show the distributions of the localization errors and percentage of correct crack
localization for the cracked beam (d = 0.25) according to the analysis of second
vibration mode and curvature of the first vibration mode.

Both Figs. 3 and 4 correspond to the amplitude’s measuring error �1%. Two
graphs in Fig. 3 demonstrate the tendency to transform the probability distribution
from the symmetric normal to the modified beta distribution together with
increasing a damage severity.

Figure 4 demonstrates the best reliability of the crack localization of the mode
shapes comparing to the curvature, which is dependent with very big uncertainty.
Our numerical experiments convincingly demonstrate higher reliability of the
predictions based on the vibration natural mode shapes in comparison with the
results given by their curvatures. This conclusion cast doubt on the assertion of
works, such as [26, 32, 34] in which the good capabilities of the modal curvatures
method were communicated. It is obvious; such dissimilarity can be explained by
the assumption about the smoothness of the curvatures, accepted in the mentioned
papers. Therefore, the information in Figs. 5 and 6 corresponds to the natural mode
shapes only.

The probability distributions for the sensitivity the natural modes to the damages
with the different severity at the measuring errors �1 and �0:5%, which are
presented in Fig. 5, show the magnification of sensitivity and ability to separate the
intact and damaged cases with an increase of the mode number. Such increase of

Fig. 3 Two examples of the empiric distribution of the maximum discrepancies along a beam

Fig. 4 Two examples of the spatial distributions of correct crack localization by the first mode
shape curvature (left) and by the second natural vibration mode (right)
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the sensitivity of the 3rd, 4th, and 5th modes is particularly noticeable at the small
damages, while the first natural mode is almost not possible to separate intact state
from damage with d ¼ 0:25. The crack detection sensitivity also increases at the
improving of the measuring precision.

Figure 6, which depicts the spatial distribution of the correct forecasting for the
crack localization, shows the different sensitivity of analyzed mode shapes in the
different area of a beam. The exactitude of the crack’s location forecasting increases
along with the number of the flexural vibration modes, but this exactitude is
localized in the areas, specific for each mode. Dependence of the crack’s locali-
zation exactitude on the measuring precision is relatively week. Comparison of
diagrams in Fig. 6 shows that the zones of better crack’s localization correspond to
the beam areas with greatest curvature, especially for the 3rd, 4th, and 5th modes.

Fig. 5 Two kinds of the empiric probability distribution for the crack detection, which depend on
the damage severity and measuring errors
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For all considered vibration modes even at the better measuring precision, the
sensitivity near beam-ends is minimal. The small crack can be identified by using a
comparative study of the several mode shapes with the different spatial sensitivity.
This fact confirms the weak efficiency of t early-developed simple damage indices
to identify the damage state in the beam-like structures correctly. Our results show
unsatisfactory resolution and sensitivity to the damage of the mode shape curva-
tures determined as the second finite differences of the noisy mode shape that is due
to high additional numerical errors.

Fig. 6 Two kinds of the empiric probabilities for the correct crack localization, which depend on
the damage severity and measuring errors
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5 Conclusions

The studied cracked Timoshenko beam model confirms its efficiency to many times
numerical simulation of the forward problem at the solving the inverse problem of
the damage identification of potentially defected beam-like structures using mode
shape-based monitoring with the set of accelerometers uniformly distributed along
the beam. In our study, we used the cantilever beams, intact and with the randomly
distributed narrow delta-like notch, which simulates an opened crack. The primary
feature of our consideration is accounting of vibration amplitudes’ measurements
error, which is random value, determined by the precision of the vibration moni-
toring equipment, and such error corrupt the measurements vibration amplitudes on
the beam surface. Each simulation of such a model results the 5 first modes shape as
the discrete set of amplitudes values. This discrete-valued function then is used to
numerically calculate the spatial distribution of the mode shape curvature.

Our results show big scatter of the curvatures value due to discrete definition of
the modes shape and due to calculation of curvature using twofold numerical
differentiation. Such numerical reconstruction of the curvatures is caused by
restricted use of the strain gauges bonded on the surface of aircraft structures for the
direct measurement of bending strains.

To obtain the probabilistic estimations of the possible damage in the studied
structure we performed multiple numerical simulations, whose output is the set of
discrete modes shapes for intact beams and for beams with randomly distributed
defects. Then, for each pair of beams (with known crack depth and a priori intact,
both with the artificial noise), we compared the maximum discrepancies between
these beam axis deflections (and their curvatures) along the beams for the five
natural vibration modes. For these maximum discrepancies, we built the probability
density functions that allow estimating the probability of the damage existence and
damage severity is used as the damage index, whose value and location along the
beam give a probable estimate for the damage existence, the ranges of its location
and severity. Our estimations of the probability of true damage location using data
for the different vibration modes shows that best results can be obtained using 2nd
and next modes, and besides, each vibration mode is most sensitive within the own
specific intervals along the beam. These results confirm that for the correct defect
identification, we need to take account of measurement errors, the probability
distributions of maximum dispersion amplitudes on each vibration mode of beam
with different damage severity, and spatial variation of sensitivity to defect for each
vibration mode.
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Condition Monitoring of Aircraft Engine
Rotor System with Stiffness Anisotropy
of Rotor Supports. Comparative Analysis
of Accelerometers Mounting Schemes

S.V. Semenov, M.Sh. Nikhamkin, N.A. Sazhenkov and I.V. Semenova

Abstract Elimination of dangerous vibration modes is one of the major issues in
Modern aircraft engines designing. The main source of vibrations in gas-turbine
engines is rotors (Khronin in Vibrations in aircraft engines. Mashinostroenie,
Moscow, 1980). Aircraft engines weight reducing and applying of new engineering
solutions (Inozemtsev et al. in Fundamentals of aircraft and power plants gas tur-
bine engines construction, 2008) lead to appearing of shaft and case units stiffness
decreasing tendency. This may cause a problem with supports stiffness anisotropy
which leads to complexity of vibration modes. It is known that standard (in vertical
plane of engine) accelerometer mounting scheme is not effective for detecting
anisotropy of supports stiffness. Therefore it might be more useful to place sensor at
the angle of 45 degrees to the weak and strong stiffness axes. Comparison of both
mounting schemes was made on the base of experiments performed on the rotor test
rig. During experimental investigation, supports accelerations, shaft displacements
and shaft rotational speeds were obtained and analyzed. Comparative qualitative
analysis for both mounting schemes was provided.
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1 Introduction

Ensuring of the gas turbine engines dynamic strength is one of the most important
issues in modern aircraft engines design process. Due to the tendency of the engine
weight reduction, application of modern materials and sophisticated designs, engine
vibration characteristics tend to be difficult to analyze [1, 2]. One of possible
reasons of this is rotor supports stiffness anisotropy [3]. The anisotropy appears
when support stiffness is not even in radial directions. Generally it leads to addi-
tional critical modes and rotor backward precession appearance. Moreover it may
complicate rotor balancing procedures and rotor vibration behavior analyzing [4, 5].

It is known that standard (in vertical plane of engine, Fig. 1a) accelerometer
mounting scheme is not effective for detecting anisotropy of supports stiffness
[6, 7]. The main reason of that is an “ellipticity” of orbits (which can vary their
shape from nearly circular to linear depending on rotation speed). Since orbits are
non-circular, measured vibration amplitude depends on the sensor mounting ori-
entation. The solution is likely to place sensors at the angle of 45° to the weak and
strong stiffness axes (see Fig. 1b) [6]. The main goal of the work is to check the
ability of new sensor mounting scheme to detect critical regimes (1X splitting
resonance) caused by supports stiffness anisotropy.

Fig. 1 Gas turbine engine
accelerometer mounting
scheme (a—basic, b—
alternative)
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The problem of accelerometers mounting scheme sensitivity validation using
real gas turbine engine tests lies in a complexity of its vibration spectrum [8].
Therefore, it seems to be rational to use special test rig to simulate needed gas
turbine engine rotor characteristics and to analyze influencing factors separately. At
the first stage of investigation a comparative analysis of two mentioned acceler-
ometers mounting schemes was made using rig test. After the comparative analysis
the alternative mounting scheme was validated on a real gas turbine engine during
its development testing.

2 Mounting Schemes Comparison Using Experimental
Rotor Test Rig

2.1 Test Rig Description

Experimental test rig consists of a rotor with one load disk, two supports and
flexible coupling with AC motor which is controlled via AC drive (see Fig. 2).

The test rig allows changing its parameters (weight and position of the loading
disk, arrangement of supports, unbalance value). In experiment with accelerometers
position at the angle of 45° to the weak and strong stiffness axes, one of the
supports was equipped with specially prepared bush (see Fig. 3) to simulate
two-axis support stiffness anisotropy.

Fig. 2 Experimental test rig
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During experimental investigation supports acceleration, dynamic displacement
of the shaft (via inductive proximity sensors) and rotational speed during speed up
from 0 to 6000 rpm were measured. All this data were analyzed via Fast Fourier
Transform (FFT). Critical speeds and shaft rotating orbits were determined.
Measurements and control system was based on National Instruments (LabView)
and LMS SCADAS Mobile (Test.Xpress) equipment [9, 10].

Fig. 3 Deformations of bush with two-axis stiffness anisotropy (a—deformation towards weak
direction, b—deformation towards strong direction)
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2.2 Mounting Schemes Comparative Analysis

Analysis of rotor dynamics with two-axis stiffness anisotropy of rotor supports was
provided. Resonance frequency splitting and reverse orbiting were obtained. Two
following mounting schemes were tested: the basic and the alternative.

According to the basic scheme of mounting accelerometers were positioned
along the weak and the strong stiffness axes (see Fig. 4).

For this scheme the values of critical speeds were 4368 rpm (72.8 Hz) and
4620 rpm (77 Hz). It is shown that the scheme allows detecting both critical peaks
using two accelerometers. Reversal orbiting between the peaks of split resonance
was also obtained (see Fig. 5).

At the second scheme (alternative) accelerometers were placed at the angle of
45° to the weak and the strong stiffness axis (see Fig. 6a). This was made by
rotation of the bush 45° counterclockwise (see Fig. 6b).

In this case the values of critical speeds were 4266 rpm (71.1 Hz) and 4590 rpm
(76.5 Hz). It is shown that the scheme allows detecting split resonance using only
one accelerometer (see Fig. 7). Besides, it should be noticed that critical speeds
values are slightly less than in previous scheme, because of support stiffness
decreasing.

Comparative analysis of the both schemes was performed. It was ascertained that
standard scheme allows detecting only one resonance peak corresponding to
bending mode in plane of each accelerometer. In real aircraft engine accelerometer
mounting scheme, where the only one accelerometer is used, it is not possible to
identify effects caused by supports anisotropy.

Alternative mounting scheme allows detecting both resonance peaks even by the
one accelerometer placed at the angle of 45° to the weak stiffness axis against
direction of rotor rotation (see Fig. 7b), but to identify all anisotropy effects it is
recommended to use a set of two sensors [7].

Fig. 4 The basic sensors mounting scheme
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3 Real Gas Turbine Engine Testing

The efficiency of alternative mounting scheme was checked during full-scale gas
turbine engine testing. The engine was equipped by additional vibration sensors
placed on the fan supports and on the case near front and rear suspensions. Due to

Fig. 5 The basic sensors mounting scheme investigation results (accelerometers signal FFT, red
—horizontal vibration component, blue—vertical vibration component)

Fig. 6 The alternative sensors mounting scheme with bush
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construction restrictions additional sensors were mounted at the angle of 20°
(instead of 45° angle which was used in investigation via test rig) to the vertical
plane of engine.

The experimental investigation of full-scale gas turbine engine rotor dynamics
consisted of frequency response and trajectory of fan supports vibration displace-
ment analysis. Analysis of data gathered by additional vibration transducers shows
that there are following signs of supports stiffness anisotropy in engine: the pres-
ence of splitting resonance (see Fig. 8), ellipsoidal orbits, degeneracy of fan sup-
ports vibration displacement trajectory (locus) to line (see Fig. 9).

Fig. 7 The alternative sensors mounting scheme investigation results (accelerometers signal FFT,
red—horizontal vibration component, blue—vertical vibration component)

Fig. 8 Example of amplitude-frequency diagram. Green—sensor placed in vertical plane of
engine, blue—sensor placed at 20° to vertical plane of engine
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4 Conclusion

The investigation shows that there is possibility to improve sensitivity of traditional
accelerometers mounting scheme. Also received data can be used for specific
vibration transducers mounting schemes justification and for mathematical models
verification.
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Operational Safety of Steel-Cord
Conveyor Belts Under Non-stationary
Loadings

Ryszard Blazej, Leszek Jurdziak and Witold Kawalec

Abstract To ensure the safe work of a conveyor high values of a conveyor belt
safety factor (BSF) are applied for obtaining peak tensions and belt strength.
The BSF of steel-cord conveyor belts is derived from the splice dynamics fatigue
strength (as identified by the laboratory tests that were made almost half a cen-
tury ago), as well as degradation from age, factory and field installation error factors
and non-steady momentary factors. The users’ experience suggests that the
steel-cord belt tensile strength is overestimated, especially for the long, high
capacity conveyors. The authors propose the use of the recently implemented
complex methods of steel-cord belts in situ condition monitoring methods for
identification of the actual belt tensile strength and the accurate methods of cal-
culation of a conveyor’s resistances to motion and belt tension in order to identify
and monitor the operational belt safety factor (OBSF) for steel-cord belts.

Keywords Belt conveyors � Steel-cord belts � Belt safety factor � Condition
monitoring � Non-stationary operations � Belt tension identification
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1 Introduction

The established standards for calculating belt conveyors (ISO5048, DIN22101 [1])
employ the simplified concept of rolling resistance of the belt on idlers.
Determining the coefficient of the main resistance f upon guidelines provided by
these standards is still more a matter of experience than of an exact calculation
supported by theoretical and experimental scientific research. All forces induced by
resistances to motion, lifting the transported bulk material and starting (accelerat-
ing) or stopping of the loaded belt are compensated by the belt tension. To ensure
the safe work of a conveyor the conservative Belt Safety Factor (BSF) of near 7:1
(following the standards) is applied for obtaining peak tensions and belt strength
requirements of steel-cord belts (Fig. 1) which are usually designated for the high
capacity belt conveyors. The BSF, used for calculation of a required conveyor belt
tensile strength, has not been modified for many years. The BSF is derived from the
splice dynamics fatigue strength (36 % of the nominal belt strength—the value
identified from laboratory tests that were made almost half a century ago) and the
estimated overloading caused by factory and field installation errors, belt ageing
and non-steady momentary peak tensions (adding 140 % to the maximum tensions
during steady operations). The obtained figure 2.4/0.36 = 6.67 has been set as the
base BSF for steel-cord belts. With regard to the additional factors representing
operational conditions adopted in the subsequent releases of technical standards [1],
the base BSF could be either raised to 8 or even 9.5 (in the case of uphill, high
output conveyors with frequent stops and starts) or decreased to mere 5 (in the case
of long-distance, overland conveyors that are usually well maintained and operated
without unexpected stoppages [2, 3]).

The values of BSF are so high due to difficulties of credible assessment of peak
tensions in a belt. There are several reasons for these difficulties. Belt conveyors

Fig. 1 Conveyor belt with
steel-cord core
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work in changing operating conditions which have a great impact on their resis-
tances to motion. The uneven distribution and misalignment of transported bulk
material, belt mistracking, varied idlers rolling resistance and caused by stoppages
and starts instantaneous accumulation of belt tension at drive pulleys result in
significant variations of top belt tension on a given belt conveyor [4–6]. All these
phenomena together cause that the operation of a belt conveyor is a non-stationary
process—hence the high values of the BSF adopted many years ago. However,
there are now evidences for a serious reconsideration of the BSF:

• The actual values of resistances to motion of a belt conveyor with regard to
changing operational conditions can be more precisely calculated on the basis of
the detailed analysis of the energy dissipation processes in a conveyor belt and
in the transported material, as well as the analysis of the interaction between the
belt and idlers [7, 8];

• The residual tensile strength of steel-cord belt splices, due to technology
improvement, is now higher than 50 years ago, even after applying the most
rigorous six sigma quality criterion [9];

• Conveyor belts can now be monitored on-line to provide with the diagnose of
their actual condition [10–12].

Utilising the results of belt diagnostics basing upon its condition monitoring
allows to calculate the actual Operational Belt Safety Factor (OBSF) which rep-
resents the real value of the safety factor of a given belt conveyor working under its
specific operating conditions. Though such idea has been already proposed [13, 14],
only recently the necessary conditions have been achieved.

2 Definition of the Operational Belt Safety Factor

2.1 The OBSF Formula

The operational safety of a steel-cord conveyor belt working on a given belt con-
veyor is identified by its OBSF. The OBSF is defined as a ratio:

OBSF ¼ KT=TZ ð1Þ

where:
KT actual breaking strength of the installed conveyor belt,
TZ maximum operating belt tension on the conveyor.

The ratio has to be greater than 1 in order to maintain the safe work of a
conveyor. Both values on the right side of the equation have to be identified and
controlled throughout the operation. On a contrary to the conservative high values
of constants in established standards, the proposed method bases on results of
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condition monitoring of conveyor belts as well as computations based on the actual
mathematical model of the conveyor operation.

2.2 Identification of the Actual Belt Strength

The steel-cord belts’ tensile strength depends on the actual condition of steel ropes
inside the belt core (Fig. 1). With the help of magnetic NDT methods after scanning
the whole belt loop on a conveyor and then processing the obtained signals, the
condition of the belt core can be diagnosed [10–14]. As the belt loop is built of the
individual belt segments connected together with vulcanized splices, the actual
breaking strength of the installed conveyor belt can be expressed as follows:

KT ¼ min
k

i¼1
minfKis1;Ki;Kis2gf g ð2Þ

where:
k number of belt segments in the whole belt loop,
Kis1, Kis2 actual breaking strength of both splices between the “i” belt segment

and its preceding, succeeding belt segment,
Ki actual breaking strength of the “i” belt segment

Belt segments and their splices have to be treated separately as different pro-
cedures of control the actual condition are available. The strength of a belt splice
can be expressed as the minimum of the following:

Kis ¼ min t Kisð Þ; d Kisð Þ; r Kisð Þf g ð3Þ

where:
t(Kis) actual breaking strength of the belt splice tested in the laboratory,
d(Kis) diagnosed actual breaking strength of the belt splice upon the results of

condition monitoring,
r(Kis) residual breaking strength of the belt splice upon the results of the splice

dynamics fatigue strength (49 % of the nominal belt strength—see Fig. 2 [9])

The diagnosis of the actual breaking strength of the belt splice upon the results of
condition monitoring (d(Kis)) has been assumed by the authors as not reliable yet
despite some publication on this topic. The investigations in this area are now
pending and then the calculated value of d(Kis) should be available.

The actual breaking strength of a belt segment can be now successfully identified
with the use of diagnostics results obtained from the in situ belt condition moni-
toring. Assuming that scans of a belt loop are done (see Fig. 3) and analysed on a
regular basis with regard to the known speed of fatigue processes, for the each belt
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Fig. 2 Quality control chart of the analysed loss of belt tensile strength within belt splices; 6σ area
marked (Statistica), based on the results of unpublished laboratory tests reports [9]

Fig. 3 Recorded sample scan of 3 belt segments and belt splices of an investigated belt loop—raw
data for belt diagnostics; irregular spots represent discontinuities (in the area of splices) or damages
(in the area of segments) of steel cords—different density of spots in segments A, B and C indicates
the different level of the wear of these belt segments [11]
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segment areas of a damage (corrosion or discontinuity of a belt cord) can be
identified and marked (see Fig. 4). Not only the number of damaged cords but also
their position is important for the need of identification of a tension concentration
factor (TCF) as described and analysed with regard to layout of damaged areas by
Harrison [14].

The strength of a belt segment can be therefore expressed as the minimum value
of the following:

Ki ¼ min d Kisð Þ; r Kisð Þf g ð4Þ

where:
d(Kis) diagnosed actual breaking strength of the belt segment,
r(Kis) residual breaking strength of the belt segment

The diagnosed actual breaking strength of a belt segment is expressed as the
ratio:

dðKiÞ ¼ KN

TCF
ð5Þ

where:
KN nominal (rated) belt breaking strength.

The TCF is calculated upon the spatial distribution of damaged areas and their
scale. The neighbouring areas of damage are treated separately only if the distance
between their borders is greater than the recognized impact radius otherwise they
are put together into a resultant, combined area [14]. The supplied data are pro-
cessed automatically to provide with the aggregated actual breaking strength of the
belt segment.

Fig. 4 Visualisation of the condition of a scanned belt segment; the level of damage is presented
on the square grid where colours of a square indicate the averaged level of damage, dots—
registered maximum values of damage within rectangles; heavily dotted area on the left side of the
top chart represents a belt splice that is to be processed separately [10, 11]
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The residual breaking strength a belt segment is computed with the use of
the algorithm of fatigue analysis and described in the chapter “Condition monitoring
of conveyor belts as a tool for proper selection of their replacement time”.

2.3 Identification of the Top Belt Tension

The maximum operating belt tension on a conveyor can be identified with the use of
the specialized software which bases upon the well proven algorithms of individual
calculating the main resistance force components. In the Wroclaw University of
Technology theoretical and experimental (done both in the laboratory and in situ)
investigations in the field of belt conveyors main resistances to motion have been
carried out for many years. The algorithms depend on the analysis of the energy
dissipation processes in a conveyor belt and in the material load stream and the
analysis of the interaction between the belt and idlers with regard to a large set of
technical, physical and operational parameters [4, 5, 7]. The algorithms have been
eventually implemented into the comprehensive, specialised program for detailed
belt conveyor modelling and calculation—QNK-TT [3]. The accuracy of the
computational results obtained for various configurations of the conveyor and
verified by in situ measurements, has confirmed the reputation of the QNK-TT
software as a reliable tool [15]. For the calculations the following parameters (apart
from the standard design data of a conveyor) are taken into account:

• the actual configuration of a conveyor: the profile of its route, arrangement of
the conveyor main elements (drive units, take-up equipment, pulleys layout,
loading and discharge points, idlers spacing and layout;

• parameters of the main conveyor elements: belts (type and thickness of carcass,
covers thickness and elasticity modulus, damping factors and flexural rigidity),
idlers (rotational resistance to motion);

• parameters of a transported bulk material: density, angle of repose, internal
friction coefficient, material-to-belt friction angle, distribution of the transported
material along the conveyor;

• operational conditions: ambient temperature, belt and transported material
mistracking; belt conveyor route misalignment;

• control parameters of starting and stopping operations.

The actual maximum operating belt tension TZ for the given belt conveyor can
then be computed against its worst operational parameters by a specialist (a
Competent Engineer) much more accurately than with the use of established
standards. As the resulting figure depends on a wide set of input parameters, in an
instant need of decreasing TZ, it can be achieved by adjusting the available factors
(e.g.: lowering the start peak tension by setting the main drive soft-start control or
temporary limiting the loadings by reduction—if it is possible—the volumes of
conveyed material which is discharged onto the conveyor) (Fig. 5).
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3 Guidelines to The Control of the OBSF

Following the definition of the OBSF, its identification requires the procedure that
allows to control the investigated belt conveyor: the actual values of the actual
breaking strength of the installed conveyor belt and the maximum operating belt
tension.

The implementation of the OBSF for a given belt conveyor assumes that the
following activities have been done:

• The whole loop of the conveyor belt is scanned on a regular basis with the use of
dedicated NDT equipment to recognize the failures. Each signal of a failure is
automatically processed and desurveyed to build the map of belt damage from
which the diagnosed actual breaking strength of belt segment and the whole belt
loop is derived.

• Belt conveyors layout and loadings in any large transportation system are
changing. Therefore the data of the analyzed belt conveyor should be regularly
updated and then processed with the use of the specialized software to calculate
the maximum operating belt tension. As the calculation depends on a wide set of
parameters (including the assessment of the most difficult actual operational
conditions), it should only be performed by a certified personnel (the Competent
Engineer).

• The OBSF for each belt segment should be recalculated after updating any of
the above.

The obtained results of the OBSF can be used for the alternative maintenance
decisions (replacement of damaged segments, decreasing of the belt tension) that
would allow to continue the safe operation of a conveyor.

As the whole procedure of the described above condition based conveyor belt
maintenance requires a substantial knowledge of designing and use of conveyors, it

Fig. 5 An example of a belt tension chart along a conveyor route for the steady and non-steady
conveyor operations—during start and stopping (QNK-TT) [16]
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is recommended that an individual procedure for the given belt conveyor should be
developed and checked by a Competent Person—a specialist in the field of
steel-cord conveyor belt maintenance.
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Condition Monitoring of Conveyor Belts
as a Tool for Proper Selection of Their
Replacement Time

Ryszard Błażej, Leszek Jurdziak and Witold Kawalec

Abstract Condition monitoring of steel cord belts using magnetic scanners is
known since late 70s however it has not been widely used in Polish mines due to
difficult interpretation of signals and cost of services and diagnostic devices. Recent
integrated diagnostic tool developed in Machinery Systems Division at Wroclaw
University of Technology showing 2D/3D state of belts core and calculating
aggregated measures (e.g. wear density of belt segments) allows on better inter-
pretations and prediction of remaining belt life and optimal selection of their time
for replacement. Proposed approach utilise experience and models of belt wear
developed and verified statistically on belts durability data. Now addition of new
dimension (current belt condition) allows on observation of increasing belt degra-
dation process (belt wear density trajectory) which extrapolation allows on pre-
diction of remaining life and replacement time.

Keywords Visual inspection � Belt diagnostics � Magnetic scanner
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1 Introduction—The Value of Belts in Poland

Belt conveyors are common devices used for material transportation in Polish coal
mines (both surface lignite mines and underground hard coal mines). They are also
used in underground copper ore mines. The total length of belt conveyors installed
there is greater than 1000 km and the length of belts is twice as much due to belts
work as close, continuous loops rewound oneself around conveyors. Belts
(esp. steel cord) are the most expensive replacement part in conveyors which one
meter can costs up to 200 euros [1, 2]. So the value of installed conveyor belts can
be estimated at about 200 million euros. Such expensive parts undergo very rough
treatment in mines due to heavy materials is discharged on belts in loading points
causing belt punctures. Belts transporting coal/ore for long distances are wearing
out in particular points (drives, returning drums, cleaning devices) and along the
conveyor rout (idlers, self-trainings idlers, constructions, and movement of mate-
rials against belt surface).

2 Lack of Belt Condition Monitoring Creates Costs
and Losses

Such valuable parts are observed only visually during discrete evaluations. Human
inspection of belt conditions, extensively used in Polish mines, takes a lot of time
and gives only subjective information about their state [3, 4]. In order to manage
huge amount of information about each belt segment special databases were created
with computer aided belt management programs [5–8]. Even with the help of
computers only selected data are kept and processed—mostly event data connected
with belts: purchase, tests, assembly, repairs and cuts, disassembly, recondition or
scrap and operational data like working time (calendar or effective), number of
cycles around conveyor or carried mass/volume (last two are almost not used [7]).
Data about belt condition and their changes with time are restricted to necessary
action alarms and belt cover thickness measurements. Introduced in one of mines
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the uniform classification of conveyor belt failures and their intensity [3, 4, 9] was
used only for description of condition of dismantled belts. In order to take economic
reliable decisions about belt segments or their parts such as do nothing, repair or
disassembly for economic valuable refurbishment decision taker aided by computer
needs more precise data about current condition of all belt segments, their covers,
edges and cord as well as splices. Unfortunately belt management computer sys-
tems are not popular. Only in two lignite surface mines such systems are used. In
underground mines recently one system were applied [8] aimed more on condition
monitoring of mechanical conveyor parts such as engines, couplings, gear boxes
etc. then focusing specifically on conveyor belts and their condition.

Only in two mines a special steel cord condition monitoring devices are being
used instead of human inspections [10–12] even such methods are known since
dozens of years [13] and on neither conveyor real time continuous monitoring is
applied even if with belt failures not only losses of belts value are connected but
also costs of emergency stops (costs of removing spilled out materials, repair costs
of damaged construction, costs of putting on belt loop and its splicing, etc.) [1, 14].
Frequently the most important are losses of production due to emergency stops take
much longer time than planned repairs. In case of copper and silver ore mining or
even lignite excavation each hour of standstill can costs the mine dozens thousand
dollars (e.g. in Consol Energy they estimated that one hour of underground hard
coal mines standstill costs the company 60,000 USD [15]).

3 Non Stationary Load of Belt Conveyors

The stochastic process of conveyors load is definitely not stationary due to bucket
wheel excavators (BWEs), mining shearers or continuous miners are working with
different output depending on working conditions, place of the head according to
mining face and the cycle of its work. Several analysis [16–18] shows that utili-
zation of conveyor output in average is very low but sometimes for a while can
access as high level as 135 % of theoretical output [19].

For example analysing operation of BWEs it can be seen that they work with
different efficiencies, what could be a consequence of cut design, applied targets
(e.g. in connection with coal blending) or working conditions. Expected value E
{Un} = U is constant only locally and even then actual output is oscillating
according to different BWE cycles of work and is different for different cycle phases
(Fig. 1). The shortest cycle is the discharge of material from buckets within time 60/
n (n = the number of buckets discharged within 1 min). A bit longer is the exca-
vation of one slice in a terrace (about 3 min), then excavation of one terrace in a
block (about 1 h), and then excavation of full block (few hours), full short wall
(several weeks) and full level. For the dimensioning of belt conveyors important are
cycles shorter than their loading periods due to cyclical reduction (sometimes even
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to zero) of actual volume capacities (Fig. 1) what is connected with cyclical
movements of BWE or its parts [20]. Joint output stream from 2 BWEs on col-
lective conveyor also is not stationary [16].

4 Belt Degradation Processes

Variable conditions of belts operations creates threats for sudden accidents causing
catastrophic belt failures such as transverse belt rapture, longitudinal rips, tearing
out edges, punctures with wires pulling out. Process of belt degradation, when there
is no sudden accidents, may have cumulative character of gradual wearing out
connected with abrasion of the covers, wiping out of edges, fatigue weakening of
core strength and increasing number of core punctures (both textile plies as well as
steel cords).

In the last thirty years several analysis determining belt reliability [21] were
undertaken in order to establish economically optimal belt replacement strategies
[22–24] basing on statistical data about belts operating time till belt replacement for
refurbishments or sending it to waste [24]. The only detail information about belt
condition was registered at the end of belt’s life after its dismantling from conveyor.
These data was sufficient to establish the influence of the conveyor length and its
load on belt’s operating time. All economic calculations and forecasts [23] were
built based on statistical data about belt operational time and were not corrected
according to changes in belt quality. For better belts the estimated belt’s life was too
short and for worse belts too long. The trials to reduce subjectivity in belts wear
assessment based on linguistic variables and fuzzy sets required too much time and
could not be automated [3] without special software [4]. Therefore special diag-
nostic devices used in western countries were evaluated and the work on own
solutions has started.
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Fig. 1 Different cycles of work of BWE SRs2000—terraces excavation (1 h, 14-min moving
average) and slices excavation (3 min, actual efficiency measured every 5 s) [20]
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4.1 Influence of Conveyor Length on Belt Degradation
and Its Durability

Factors contributing to belt wear were divided by Zur [25] on two groups: these
which act in a “point” manner (i.e. at particular locations on the conveyor such as:
the feed, the cleaning devices, the drive, etc.) and those which act “linearly” (along
the conveyor’s route, e.g. rubbing against the rollers and the side stops, etc.).
Assuming that the sum of “point” failures is proportional to the number of runs of
the belt loop round the conveyor and the sum of “linear” failures is proportional to
the distance covered by a specified cross-section of the belt, he proposed the
following formula for belt durability measured in belt operating time tt:

tt ¼ AtLt
v
P

p Ap þ vLtAj
½s� ð1Þ

where: Lt—the total length of the conveyor belt, m, At—amount of work resulting
in the belt wear, J/m, ΣAp—the total of “point” damage work, J/m, Aj—“linear”
damage work, J/m2, v—the velocity of the belt, m/s.

Formula (1) was transformed to a no dimensional form and verified statistically
by Jurdziak [26]:

nc ¼ 1P
Ap

At
þ Lt

Aj

At

ð2Þ

Thus belt durability, measured by number of cycles nc, was expressed as a
function of belt loop length and coefficients specifying the shares of “point” damage
work and “linear” damage work in the wear of the belt loop for its one run round the
conveyor. The relationships were verified and the two coefficients were calculated
on the basis of operating data.

Recent results from the same mine as was tested in 1988 year (Fig. 2) has proven
that even big increases of belt durability (roughly for about 60 %) have not changed
the character of their influence on belt wear [2].

4.2 Influence of Conveyor Belt Load on Belt Durability

Based on earlier discussed assumptions and statistical data from one of under-
ground copper mines it was established the effect of conveyor belt load upon belt
durability measured in belt loop cycles and belt operating time [17] (Fig. 3).
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5 The Increasing Need to Create an Own Diagnostic
Device for Condition Monitoring of Conveyor Belts

The value of belts and costs of emergency stops together with scale of potential
losses creates the need to build own device for conditional monitoring of conveyor
belts [10]. First steps were undertaken in the beginning of twenty first century when
the “Turów” lignite mine has purchased the first in Poland device called EyeQ. It
was possible due to computer aided belt management in this mine was started in
1985 when the first system was built for this mine [5, 6]. Then the data base of belt
failures with description was carried out in Excel taking into account the coded
evaluation of belt condition [3]. Together with magnetic device that Turów mine

Fig. 2 Changes of belt durability for conveyors with different length (left) and variation of
percentage contribution of “local” and “linear” damaging agents in conveyor belt wear process as a
function of conveyor length (right) [2]

Fig. 3 Dependence of number of belt cycles (left) and months of belt operating time (right) on
relative conveyor load (in % of theoretical load) and conveyor’s length (in meters) for the
reciprocal model [17]

488 R. Błażej et al.



has implemented [12] belt management system called: Computer Assisted Belt
Card, which moved databases from Excel to professional databases, was built. The
EyeQ system however was an old solution requiring visual interpretation of
changes in magnetic field registered about belt surface [13, 27]. The implementa-
tion of modernized equipment based on old EyeQ system’s magnetic measurement
head with completely new software and signal processing procedures [28] and
interpretations [12, 29, 30] was a success.

6 An Intelligent System for the Automatic Examination
and Continuous Diagnosis of the Condition of Conveyor
Belts

A group of members of the Machinery Systems Division (MSD) in the Institute of
Mining Engineering at Wroclaw University of Technology specializes in belt
conveying systems analysing, calculating and design [31]. Within the division
operates the certified Laboratory of Belt Transportation (LTT). Since few years, a
group of several people have begun work on developing a comprehensive system
for the automatic evaluation of condition of conveyor belts working in the mines.
Group uses both magnetic devices developed by specialized companies servicing
belts [31] and its own machine vision system developed for assessment of belts
covers and edges during belt movement (up to 7 m/s) on the specially designed for
this purpose the test conveyor [10]. There were also trials to apply other diagnostic
methods [28].

Two years ago they got the research grant funded by the National Centre for
Research and Development (NCBiR) for development of the system for automatic
diagnosing of conveyor belts condition and aiding of rational belt management. On
the basis of previously created diagnostic tool called ABCDE (Automatic Belt
Condition Diagnostic Equipment) the five modules: vision—A, magnetic—B,
preventive—C, forecasting—D, and determining safety factor—E are developed.
They automatically interpret data about conveyor belts’ condition to indicate the
extent and timing of repairs, to prevent failures and to select the optimum moments
for their replacements. The system uses results of ongoing research & development
and planned research concerning modelling of belt wear using different algorithms.
The reached stage of research allows starting providing scanning services to
potential users (e.g. one of lignite mines in Poland which till now does not applied
any belt diagnostics). The research is already pursued in real scale and new modules
(C-E) being created are under intensive testing together with the whole system in
working condition to calibrate it and optimize the economic effects.
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7 Forecasts of Remaining Life of St Belts Based
on Individual Trajectory of Belt’s Core Condition

Application of two magnetic scanners: HRDS (modified EyeQ system developed in
MSD at WTU) and the LRM scanner (developed by servicing firm Laboratory of
Roman Martyna) were used to establish steel cord condition of belt loops in
working environment. In the first case the belts in one of lignite mines were
examined, and in the second case the belt loop in one of hard coal mines.

Number of failures per one meter of belts (belt’s core wear density) was
investigated. The regression curves for the rate of cord failures over time were
selected. Given the demonstrated impact of the length of the conveyor onto the
accumulated energy within one belt loop cycle around conveyor (Zur’s belt wear
model) the effect of these factors on the rate of belt failures increase a special 2
variables non-linear regression function was chosen (Fig. 4).

These are the first quantitative results of such research in Poland. The belief that
over time the rate of appearance of defects increases was documented. This allows
on forecasts of belt replacements time based on individual trajectory of belt’s
segment core wear development over time (Fig. 4).

All information about influence of conveyor length and load on belt durability
can be utilized in preparation of multivariate model of changes of steel cord wear
density based on statistical data and registered individual trajectory of wear density
changes of particular belt segments (Fig. 5).

Number of data (measurements of belt core wear on conveyors having different
lengths) is still too small to build reliable models but it is only a matter of time and
next measurements using modernized EyeQ system or newly developed system
based on Australian magnetic rod with better resolution [10, 29, 31] should allow
on that. It is also possible that the new magnetic scanner will be developed for
surface mines based on solution offered by LRM firm to hard coal mines.

8 Conclusions

Presented solution and approach is focused on gradual deterioration process con-
nected with puncturing and wearing out of belts and their cores operating in hard
conditions in different mines.

At the moment there is not enough data to build precise and reliable models but
hitherto research and obtained results are very promising especially due to a deep
experience of statistical analysis dealing with belt durability can be successfully
used and implemented [3, 6, 9, 17, 21–23].

Obtained from condition monitoring results describing belt and its core state can
be used not only to predict remaining belt life and determine optimal time for belt
segment or its part replacement but also to show and determine areas of belt repairs
helping in day by day management of belts.
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Further research will concentrate also on automation of belt splices condition
monitoring and evaluation of their quality and current condition. At the moment
belt splices are automatically identified and stored for visual inspection by operator
who decides if it requires special action. Soon the automatic warning system will be

Fig. 4 2D visualization of steel cord failures (left) and individual belt segment failure density
trace on the background of other statistical data for optimal belt replacement time selection

Fig. 5 Proposed method of the optimal belt replacement time forecast based on 2D model of the
increase of belt cord’s wear density (Bfailures = f(Lbl, Tmonths)) and the selected threshold degree of
its wear

Fig. 6 2D and 3D visualisation of conveyor belt splice condition [30]
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implemented to check if belt splice length changes and there is a threat of its
dehiscence (Fig. 6).

Other more catastrophic failures (e.g. longitudinal rips) having sudden and
random character are an object of separate research. Special devices preventing
their occurrence and reducing their extent and costs are being developed and soon
will be implemented and integrated with diagnostic device being developed.

Condition monitoring of steel cord belts using new described here device can
additionally be used to prevent transverse belt rapture in weakened by cables cuts
cross-sections of conveyor belts. This approach is described in separate paper [32].

Integrated approach used in belt monitoring approach and working out diag-
nostic device developed by Wroclaw team can be successfully implemented in non
stationary operations of belt conveyors in Polish mines.

All information about current stage of project development can be found on the
special web page devoted to the NCBiR programme [33].
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