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1 Introduction

King and Mast [7] pointed out that the final cost of the goods can increase between
10 and 15 % depending on the supply chain infrastructure. In order to reduce such
cost, integrated decisions from strategic, tactical and operational levels must be
considered when planning and designing logistic systems. A problem that attains
these three levels is the Location-Routing Problem (LRP), in which decisions from
the strategic (where to locate depots), tactical (which customers to serve from each
depot) and operational levels (decide the routing plan) are taken simultaneously.

Belenguer et al. [2] presented a branch-and-cut algorithm to solve the LRP, which
is strengthened by valid inequalities and separation algorithms. A branch-and-cut-
and-price approach was developed in [1] allowing to solve instances with up 199
customers.

In this paper, we deal with the LRP with two-dimensional loading constraints
(2L-LRP) and demand uncertainty, an integrated problem without any reference in
the literature, through an integer programming model. In this case, the customers’
demand are pallets that must be arranged inside the vehicles. Demand uncertainty is
described by a scenario approach and appears due to the volatility in the markets [3].

In Sect. 2, we formally describe the problem and present the integer model. In
Sect. 3, a computational experiment over one instance adapted from a real case study
is detailed. Finally, conclusions and directions for future work are given in Sect. 4.
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2 Problem Definition and Integer Formulation

In the 2L-LRP we have: a set of possible depot locations I, in which each i 2 I
has weight storage capacity bi and opening cost Oi; a set of customers J, where
each j 2 J has a set Rj of rectangular items, in which the total area of items in Rj

is aRj and the total weight is dRj. And, each item r 2 Rj has length ljr, width wjr ,
area ajr and weight djr; a set of identical vehicles, each one with weight capacity Q,
rectangular surface area with dimensions .L;W/ and fixed cost F when used; and,
an undirected graph G D .V;E/, with V D I [ J representing the set of vertices and
E the set of edges, each edge e with a traveling cost ce. The graph is complete for
the connections between customer-customer and depot-customer, however there is
no edge for the relation depot-depot.

A solution of the 2L-LRP consists in opening a subset of depots, from which
routes are established respecting the vehicle capacity and serving the customers.
The number of routes, for each depot, is limited by the respective depot capacity,
and each customer is visited exactly once. Each route starts and finishes at the same
depot, and is formed by a sequence of visited customers, such that their items can
be arranged without overlapping inside the vehicle’s rectangular surface.

The demand uncertainty is tackled by a scenario approach in which each scenario
s of a set of scenarios P represents different demands for the customers and
has probability ps of occurrence, such that

P
s2P ps D 100%. In this way,

we can construct solutions that are robust in face of the market’s volatility, and
simultaneously effective when planning the supply chain.

The integer model for the 2L-LRP is described in the integer formulation below.
The notation used is the following: ı.S/ represents the edges with one end-node in

S and the other in V � S; Ds.S/ D d
P

j2Ss

P
r2Rj

djr

Q e is a lower bound on the number
of vehicles necessary to supply the weight in S � J, in accordance with scenario

s 2 P; As.S/ D d
P

j2Ss

P
r2Rj

ajr

A e, in which A denotes the vehicles’ rectangular
surface area.

The decision variables are: yi D 1, indicating that a depot is open at location
i 2 I; xijs D 1 when a depot at i 2 I serves customer j 2 J in scenario s 2 P;
and, wjks D 1 imposing that edge f j; kg 2 E, in scenario s 2 P , is traversed exactly
once. Routes that serve only one client, called return trips in [2], are modeled by
considering the duplicated set I0 D I, so V D V [ I0, and new edges fi0; jg for i0 2 I0
and j 2 J are added in E. Note that the decision to open a depot must be performed
observing all scenarios in P , since it represents a long term decision (strategic one)
whose cost is significantly greater than the other ones.

The objective function of the integer formulation aims to minimize the overall
cost given by the fixed cost of opening depots plus the cost associated with the
probability of occurrence of each scenario. And, for each scenario, there is the
fixed cost of vehicle usage, related with the number of routes, and the total cost
of the routes. Constraints (1) ensure that each customer, in each scenario, is served
by exactly one depot, while constraints (2) impose that the capacity of each depot
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must be respected. Constraints (3) consider that customers can only be served from
open depots, and (4) are the degree constraints for the customers, for each scenario.
Constraints (5) impose that there is a minimum number of routes starting from each
depot, in each scenario, in order to serve the customers’ weight demand.

The global minimum number of routes that must be established to serve all the
customers’ demand is guaranteed in constraints (6). And, if a depot is opened, it
has to serve at least one customer as defined in (7). It is worth to mention that
As.S/ is just a continuous lower bound of the two-dimensional bin packing problem.
Nevertheless, we need to solve this problem in order to get the precise number of
bins/vehicles really necessary to arrange all items in S. Similarly for Ds.S/ in the
one-dimensional case.

The capacity constraints for the vehicles are in (8), and constraints (9) ensure that
there is a path connecting each depot to its customers. Moreover, if there is an edge
connecting a given customer with another one, this customer can not be in a return
trip as pointed in (10), while constraints (11) consider the opposite. Constraints (12)
impose that a customer k must be served by the same depot i which serves customer j
if k is connected with j. Constraints (13) and (14) make the correspondence between
variables xijs and wijs relating the customer-depot. To handle the two-dimensional
packing problem, constraints (15) eliminate routes in which the respective packing
is not feasible. Finally, constraints (16)–(18) impose that all the variables are binary.

The number of constraints (8), (9) and (15) may be very large, so they are added
as cutting planes and detected with specific separation algorithms. The algorithms
for (8) and (9), applied both on integer and fractional solutions, are based on the
computation of the Gomory-Hu tree, similar to that in [6]. So for each min s � t
cut, for s 2 I and t 2 J, we check the violation of such constraints assuming S with
all nodes of the t-component. Although constraints (9) can be efficiently separated
with this procedure, we also used for (8) the separation strategy proposed in [8] for
the rounded capacity inequalities when dealing with the capacitated vehicle routing
problem.

On the other hand, constraints (15) are checked only when an integer feasible
solution is found, since testing the feasibility of a packing is more time consuming,
and in fact it is an NP-hard problem [5]. For this task, we use the constraint pro-
gramming based approach proposed in [4], and modify it to take into consideration
the sequence in which customers are visited in the route. This means that items
from a given customer are accessible when the unloading operation occurs, namely
multi-drop requirements [9].

min
X

i2I

Oiyi C
X

s2P
ps

0

@F

2

X

i2I[I0

X

j2J

wijs C
X

fi;jg2E

cijwijs

1

A

subject to WX

i2I

xijs D 1; 8 j 2 J; 8 s 2 P .1/
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X

j2J

djxijs � biyi; 8 i 2 I; 8 s 2 P .2/

X

s2P
xij � yijSj; 8 i 2 I; 8 j 2 J .3/

X

e2ı.j/
wes D 2; 8 j 2 J; 8 s 2 P .4/

X

j2J

.wijs C wi0 js/ � 2

P
j2J djsxijs

Q
; 8 i 2 I; 8 s 2 P .5/

X

i2I[I0

X

j2J

wijs � 2maxfDs.J/I As.J/g; 8 s 2 P .6/

X

s2P

X

j2J

xijs � yi; 8 i 2 I .7/

X

e2ı.S/
wes � 2maxfDs.S/; As.S/g; 8 S � J; 8 s 2 P .8/

X

e2ı.S/
wes � 2.xijs C yi � 1/; 8 S � J; 8 j 2 S; 8 i 2 I; 8 s 2 P .9/

X

i02I0

wi0 js � 2 � .
X

k2J

wjks C
X

i2I

wijs/; 8 j 2 J; 8 s 2 P .10/

X

k2J

wjks � 2 � .wijs C wi0 js/; 8 j 2 J; 8 i 2 I W i0 D i 2 I0; 8 s 2 P .11/

wjks C xijs � 1 C xiks; 8 j; k 2 J; 8 i 2 I; 8 s 2 P .12/

wi0 js � wijs; 8 j 2 J; 8 i 2 I W i0 D i 2 I0; 8 s 2 P .13/

wi0 js C wijs � 2xijs; 8 j 2 J; 8 i 2 I W i0 D i 2 I0; 8 s 2 P .14/

X

e2R

wes � jRj � 1; 8 R 2 Rs; 8 s 2 P .15/

yi 2 f0; 1g; 8 i 2 I .16/

xijs 2 f0; 1g; 8 i 2 I; 8 j 2 J; 8 s 2 P .17/

wes 2 f0; 1g; 8 e 2 E; 8 s 2 P .18/
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3 Computational Study

In order to verify the quality of the model, we used it to solve one instance adapted
from [3], a real case based on an European supply chain. The plants and warehouses
are possible depot locations, so I D 8, while there are J D 30 customers (retailers
and markets). For each depot i, its capacity bi is given by the number of technologies
(according to [3] each plant has 12, and each warehouse has 6) multiplied by
the factor ˛2. If the depot is a plant its cost is the sum of the fixed cost of each
technology. Otherwise, the cost is the fixed cost of the warehouse, plus its variable
cost multiplied by its capacity, added to the sum of the fixed cost of each technology.

Each vehicle transports one forty-foot container, with rectangular surface equal
to A D L�W D 2358�12032mm2 and max payload of Q D 26:600 kg. Moreover,
the values of L and W are divided by the factor ˛. The fixed cost F of using a vehicle
is the inventory cost (0:3e) multiplied by the rectangular surface area. The cost c of
each edge corresponds to the fixed cost of transportation (300e) plus the variable
cost of 0:1e multiplied by the distance between the vertices, given in km.

In order to create the demand of each customer we consider the dimensions of
standard pallets divided by the factor ˛. The weight/payload d of each pallet is
equal to its area multiplied by the correctness factor ˇ. As [3] did not consider two-
dimensional items, we randomly determined the number of items Rj and assigned
them to the pallets of each customer j. The size of Rj varies between 5 and 10. We
assumed ˛ D 100 and ˇ D 10, and considered only the integer part of the resulting
values.

Following [3], three scenarios are considered: (i) realistic, with p1 D 50%, so
there is no change in the customers’ demand; (ii) optimistic, with p2 D 25%, in
which the demand, that is, the total number of items increases around 15%; and
(iii) pessimistic, with p3 D 25%, which considers a decrease by almost 15% in
customers’ demand. Figure 1 illustrates the result returned after the solver reached
the time limit of 24 h considering a computer with 1.90 GHz Intel Xeon E5-2420
CPU, 32 GB of RAM memory, Gurobi Optimizer 5.6.2 (for the integer formulation)
and IBM ILOG CP Optimizer 12.5 (for the constraint programming algorithm). The
time limit of 2 s was used in each call to the constraint programming algorithm, but
such algorithm always returned a solution before reaching this time limit.

This solution, with a gap of 13:2%, has value of the objective function equal
to 38;555:75. The number of user cuts inserted over the branch-and-bound tree is
of 115;865. The edges marked as added and deleted in scenarios #2 and #3 show
the change in the routes when the customers’ demand increases and decreases,
respectively, in comparison to scenario #1, the realistic one.

Comparing the solution for each scenario in Fig. 1, the realistic one, scenario
#1, requires 9 routes, while in #2 it is increased to 11, and decreased to 9 in
scenario #3. Note that the solution is in accordance with the characteristics of each
scenario. Although the CPU time can be considered high at a first sight, the problem
under consideration has strategic and tactical decisions. Moreover, to the best of our
knowledge, there is no exact algorithm neither integer formulations available for the
2L-LRP in the literature, including the version with demand uncertainty.
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Fig. 1 Final solution in which p stands for plant, w for warehouse, m for market and r for retailer.
The depots/customers’ position in the figure does not correspond and are not related with those
given in the instance

4 Concluding Remarks

We proposed an integer formulation for a new variant of the location-routing
problem. The computational study over one instance adapted from a real-world
problem shows that the integer formulation is suitable for small instances, since
while operational decisions, as the determination of vehicle routes, have to be taken
quickly, the location of depots or the link between customers and depots are tactical
and even strategical decisions and therefore have a larger timespan to be taken.

After all, we observe that there is room for improvements by considering new
separation algorithms and valid inequalities, as well as by introducing good lower
bounds instead of checking the packing feasibility every time.
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