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1 The Combined Cutting Stock and Scheduling Problem

Given their practical relevance and their challenging nature, cutting and packing
problems have been a major topic of research since many years. The typology
of Wischer et al. [7] is a good illustration of this fact. Apart from providing
a wide classification scheme for these problems, it also identifies a large set of
contributions for different variants of the standard problem. These variants cover
different characteristics of the items and rolls and different kinds of objective
functions, for example. In this paper, we address one possible variant of the problem
that considers a scheduling term in the objective function related to the existence of
due dates imposed on the delivery of the items. This problem has been addressed
recently by Reinertsen and Vossen in [6] and Arbib and Marinelli in [1].

The combined cutting stock and scheduling problem addressed in this paper is
defined as follows. We are given a set I of one-dimensional items (|I| = n) with
sizes denoted by w; and a corresponding demand b;, i € I. These items have to
be cut from stock rolls of standard length W whose availability is assumed to be
unlimited. For bin-packing instances, the demands b;, i € I, are typically very low
(near from 1), while cutting stock instances are characterized by high demands.
Since the approaches devised in this paper are independent of the level of demands,
we will now on refer only to the more general cutting stock case. The scheduling
part of the problem is based on the fact that due dates are imposed on the delivery of
each item size. As a consequence, for each item size i € I, there is a corresponding
due date which is denoted by d;. From a scheduling standpoint, the item sizes can
be seen as jobs whose delivery is expected at most until d; units of time. Deliveries
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after the due dates are tolerated, but with a penalty in the objective function. Cutting
one stock length is assumed to take exactly one unit of time. Hence, the time to
complete the job related to an item size i corresponds to the number of stock rolls
that have been cut up to the last one on which item i is cut. The objective function of
the problem considers two terms: one related to the total wastage and another related
to the total tardiness. Here, we will follow the approach of Arbib and Marinelli in
[1], and consider that each term has the same weight in the objective function.

A similar problem has been explored by Li in [5] for the two-dimensional case
with different stock lengths and jobs with different item sizes. The author considers
the existence of both release and due dates, and she proposes linear programming
(LP) based heuristics and non LP-based heuristics to find feasible solutions for
the problem. As pointed out in [1], the models described in [5] do not ensure
that an optimal solution is found for the global problem. The reason lies on the
time available for each time period which defines the period length. In [6], the
authors address the one-dimensional problem with due dates and no release dates.
They describe an integer programming (IP) model which is an extension of the
column generation model for cutting stock problems. The variables are associated to
patterns indexed by time period. The planning horizon is partitioned into n distinct
time periods. Then, the job related to an item size i can only be cut up to the i-
th time period. Again, in [1], the authors showed that this approach may lead to
sub-optimal solutions whenever an early due date first-based solution is not the
optimal solution for the problem. The first exact formulation for this problem has
been proposed in [1]. As in [6], the authors consider a formulation in which the
variables are related to cutting patterns indexed by time period. Additionally, they
use variables representing the inventory level of an item size at a given time period,
and they use them in combination with equilibrium equations to identify situations
of tardiness. To cope with the size of their model, the authors describe a period-
splitting procedure which allows to start with larger period lengths. It consists in
solving iteratively the model with shorter period lengths. The computational results
provided by the authors illustrate the inherent difficulty of the problem.

In this paper, we explore a compact assignment formulation for the problem
that applies to both bin-packing and cutting stock instances. We describe differ-
ent inequalities to improve the quality of its continuous lower bound (Sect.2),
and we describe in particular an approach based on knapsack-based inequalities
derived using dual-feasible functions (Sect.3). To illustrate the potential of these
approaches, we report on computational experiments performed on a set of bench-
mark instances (Sect. 4).
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2 An Assignment Formulation

2.1 The Model

Let T denote the length of the planning horizon. The combined cutting stock and
scheduling problem (with due dates) can be formulated with variables x!, for each
itemi=1,...,n,and? = 1,..., T, that represent the number of items of size i that
are cut at time period ¢. The period length is assumed to be equal to 1, and hence,
there is a one to one relation between time periods and the stock rolls that are cut.
The binary variables 7, t = 1,..., T, determine wether a stock roll is used or not at
time period . The tardiness of an item size i, i = 1, ..., n, is measured through the
binary variables yﬁ, t=di+1,...,T, which is defined only from the due date plus
one time period until the end of the planning horizon. Variables y; take the value 1
only if the item size i is cut on time period 7. Hence, if yﬁ =1forsomei=1,...,n,
andt =di+1,...,T, the item size will be late by at least r —d; units of time. These
variables may be related to the yf.‘ variables used by Arbib and Marinelli in [1]. The
assignment formulation states as follows.

T n T
min. Y 4y Y M
=1

i=1 r=d;i+1

T

st. Y d=b. i=1...n )
=1
dowad <WZ. i=1...nt=1...T. (3)
i=1
X4ytt <yt i=1,...n t=di+1,...,T, “4)
Zefo1}, t=1,...,T, 5)
xi > 0andinteger, i=1,...,n,t=1,...,T, (6)
ye{o.1},i=1,....n, t=di+1,...,T. (7

As mentioned above, the objective function (1) is composed by a term related to the
total wastage and another related to the total tardiness. Constraints (2) ensure the
satisfaction of the demand. Constraints (3) forbid any cutting pattern that exceeds
the stock length, while constraints (4) support the definition of the y variables. The
values Lf”i" fori =1,...,n, may be defined as follows:

) w
L™ = min {bi, {—J + 1} .
Wi
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2.2 Strengthening the Assignment Formulation

The LP relaxation of (1)—(7) can be strengthened by considering the following
inequalities. Since a feasible solution will never use less than the stock rolls required
to cut all the items, we may enforce the inequality

T
ZZT > Kmin, (8)
=1

where K" is a lower bound on the number of stock rolls computed for example
using dual-feasible functions [3]. Assigning an item to a roll (or time period) implies
that a stock roll is used at this time period, and hence, we have

d=y. i=1...ont=d+1,....T. )

Using a stock roll at time period  + 1, = 1,...,T — 1 implies that a roll has been
used at time period ¢, and hence

Z>7Z 1=1,...,T. (10)

Similar constraints apply to the y! variables, which translate into the following
inequalities

M r=di4 1, T (1n

i ’

3 Knapsack-Based Inequalities Derived from Dual-Feasible
Functions

3.1 Dual-Feasible Functions and Valid Inequalities

A function f : [0, 1] — [0, 1] is a dual-feasible function (DFF), if for any finite set
{x; € Ry :i € J} of nonnegative real numbers, the following holds

Zx,- < 11— Zf(x,) < 1.

i€J i€J

Dual-feasible functions have been used essentially to derive lower bounds for
standard cutting and packing problems. In [3], the authors showed that these
functions can also be used to derive valid inequalities for IP models with knapsack
constraints.
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To strengthen the formulation (1)—(7), we applied the DFF mentioned below to
the knapsack constraints (3). Let f be a DFF. The following inequalities derived
from (3) by applying f are valid inequalities for the integer polytope of (1)—(7):

Zf(%)x;fl, i=1,...nt=1,...,T. (12)
i=1

Among all the DFF, the maximal functions are those that produce non-dominated
results. In our experiments, we used the following functions that were shown to be
maximal in [3]:fFs; (described in [4]), with k € IN \ {0}, and fecpm1 (described in
[2]), withC € Rand C > 1.

X, if (k+1)*x e N,
|(k + 1)x] /k, otherwise.
lCx]/|C], ifx<1/2,
* feem1(x; C) = 1/2, ifx=1/2,
1 —feemi(1 —x), if x > 1/2.

* frsa(x k) =

3.2 A Cutting Plane Procedure

From the definitions given above, we define the following general cutting plane
procedure for (1)—(7).

Cutting plane procedure
Solve the LP relaxation of (1)—(7) (let (z*, x*, y*) be the optimal solution);
do

Let f* be a DFF with parameter y;

for (a given range of y, and a given set of knapsack constraints (3)) do
if (inequality (12) is violated for f, x* and the current constraint (3))
then (add this inequality (12) to the LP relaxation of (1)—(7))

end for.

Re-Solve the LP relaxation of (1)—(7) (let (z*, x*, y*) be the optimal solution);

while (stopping criteria are not satisfied).

To control the number of inequalities that are generated, we may limit the range
of the DFF parameters and the number of knapsack constraints (3) from which the
inequalities are derived. Furthermore, the stopping criteria may include for example
the number of inequalities added to the LP relaxation or the maximum number of
iterations without a significant improvement of the value of the objective function
(based on a pre-defined value).
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4 Computational Experiments

To evaluate the performance of the approaches devised in this paper, and in
particular, the cutting plane procedure described in Sect. 3, we performed a set of
computational experiments on benchmark instances. We used a set of instances
taken from the same set of cutting stock instances as in [1] and for which due
dates were generated, and we used values of T (the planning horizon) equal to those
reported by these authors. A set of 40 instances divided in two groups of 20 instances
were generated in that way. The tests were run on a PC with an i7 CPU with 3.5 GHz
and 32 GB of RAM. For the optimization subroutines, we resorted to CPLEX 12.5.

In Table 1, we report on the values of the continuous lower bounds provided by
the LP relaxation of (1)—(7) under the following scenarios:

e A : LP relaxation (1)—(7) without any cut;

e B : LP relaxation (1)—(7) with cut (8);

* (C: same as B plus the cuts obtained with the cutting plane procedure of Sect. 3;
e D same as C plus the cuts (9)—(11).

Columns D1 to D4 extend the previous results for different parameters of the cutting
plane procedure discussed in Sect. 3. Let 8, max.,;, and it denote respectively the
smallest value of the violation of an inequality (12) that triggers its insertion on
the model in the cutting plane procedure, the maximum number of cuts added
between two consecutive resolutions of the LP relaxation, and the maximum number
of iterations that we allow without an improvement of the solution value of the
LP relaxation greater than 0.001. For the aforementioned scenarios C and D, the
values for (8, max.,s, it) that were used are (0.1,20,20). Columns D1 to D4 in
Table 1 correspond to the previous scenario D with the following pairs of values for
(8, maxys, it):

e DI1: (8, maxeys, it) = (0.1, 20, 50);
e D2: (8§, maxeys,it) = (0.1, 50, 50);
e D3: (8§, maxeys,it) = (0.01,20, 20);
e D4: (8, max.us,it) = (0.25,20, 20).

Columns zg; and tg; in Table 1 stand respectively for the value of the optimal
solution and the computing time required in the corresponding scenario. Note that
we used the two dual-feasible functions described in Sect. 3 without any restriction
on the domain of their parameters. Instead, we used the parameters (8, maxc,s, it) to
control the number of cuts that are added to the LP relaxation.

While inequality (8) leads to a small improvement in the value of the lower bound
provided by the LP relaxation of (1)—(7), the impact of the cutting plane procedure
described in Sect.3 is much more significant. On average, the value of the lower
bound increased by almost 4.7 % for the first set of instances, and by 11.1 % for
the second set (scenario A against scenario C). Inequalities (9)—(11) have no impact
on the first set of instances, but when combined with the cutting plane procedure,
the average improvement of the lower bound raises to 15 %. That can be explained
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by the fact that the DFF based cutting planes focus on the knapsack constraints
of the model and particularly on the x! variables, while inequalities (9)-(11) focus
on the remaining variables of the model, thus complementing the cutting plane
procedure. Considering the parameters (8, max.,s, it), the best results in terms of
the quality of the continuous lower bounds are achieved with scenario D2 for both
sets of instances. The corresponding average improvement in the value of the lower
bound is respectively 8.9 % and 19.2 % for the first and second set of instances. The
maximum improvement in the first set of instances goes up to 30.9 %, and up to
38.1 % for the second set.

Additionally, we solved the first set of instances up to integrality with a time limit
of 3600 s for branch-and-bound in a way that is similar to the approach followed in
[1]. For this purpose, we used the cutting plane procedure with the definitions of
scenario D. After the time limit, the value of the best lower bound was better than
the bound at the root node by 13.3 %, while the average integrality gap was equal
to 20.4 %, a value that is in line with the overall gaps reported in [1] while obtained
using a compact formulation.
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