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R. Slowiński, W.H.M. Zijm



More information about this series at
http://www.springer.com/series/300

http://www.springer.com/series/300


Raquel J. Fonseca • Gerhard-Wilhelm Weber •
João Telhada
Editors

Computational Management
Science
State of the Art 2014

123



Editors
Raquel J. Fonseca
Faculty of Sciences/Operations Research

Center
University of Lisbon
Lisbon, Portugal

Gerhard-Wilhelm Weber
Institute of Applied Mathematics
Middle East Technical University
Ankara, Turkey

João Telhada
Faculty of Sciences/Operations Research

Center
University of Lisbon
Lisbon, Portugal

ISSN 0075-8442 ISSN 2196-9957 (electronic)
Lecture Notes in Economics and Mathematical Systems
ISBN 978-3-319-20429-1 ISBN 978-3-319-20430-7 (eBook)
DOI 10.1007/978-3-319-20430-7

Library of Congress Control Number: 2015957188

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.springer.com


Preface

Computational Management Science has become an important research field, in
particular in recent years due to the rapid growth of computational power and data
access, storage, and management. These facts are shaping modern management,
highlighting analytical issues that raise added value to business, and in general to
the economy.

With the background of increasing importance of the management science field,
namely with concern to the computational aspects, a series of annual conferences
started to be held in 2004.

The 2014 edition took place in the beautiful and inspiring city of Lisbon,
Portugal. The conference chairs (Raquel J. Fonseca, Daniel Kuhn, and João Telhada)
chose Energy and Finance as the two major topics to be discussed, due to the global
revelancy of any of those two areas. The response by the research community was
worth noting, as 125 valid submissions were received. Out of those 125 submissions,
99 were accepted for presentation in the conference. Those submissions were
divided among nine streams, according to the most adequate topic.

Participants in the conference came from a total of 22 countries, spanning
different regions as far Asia or South America. Countries with the largest number
of participants were Portugal (31) and the United Kingdom (14).

The organizing committee was composed by the following members:

• Ana Luísa Respício, Operations Research Center, University of Lisbon
• Inês Marques, Operations Research Center, University of Lisbon
• João Patrício, Telecommunications Institute, Polytechnique Institute of Tomar
• João Telhada (co-chair), Operations Research Center, University of Lisbon
• Lisete Sousa, Center of Statistics and Applications, University of Lisbon
• Luís Gouveia, Operations Research Center, University of Lisbon
• Miguel Constantino, Operations Research Center, University of Lisbon
• Raquel João Fonseca (co-chair), Operations Research Center, University of

Lisbon
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vi Preface

A group of specialized researchers composed the Program Committee to ensure
a high scientific standard among submissions. That committee had the following
members:

• A. Ismael F. Vaz, Universidade do
Minho, Portugal

• Aharon Ben-Tal, Technion – Israel
Institute of Technology, Israel

• Alain Haurie, Université de Genève,
Switzerland

• Alex Weissensteiner, DTU – Techni-
cal University of Denmark, Denmark

• Ana Luísa Custódio, Universidade
Nova de Lisboa, Portugal

• Ana Paula Barbosa Póvoa, Univer-
sidade de Lisboa, Portugal

• Berç Rustem, Imperial College Lon-
don, United Kingdom

• Bernardo Almada Lobo, Universi-
dade do Porto, Portugal

• Carlos Henggeler Antunes, Univer-
sidade de Coimbra, Portugal

• Celso Ribeiro, Universidade Federal
Fluminense, Brazil

• Christodoulos Floudas, Princeton
University, United States

• Cristian Gatu, Université de
Neuchâtel, Switzerland

• Dan Iancu, Stanford University,
United States

• Daniel Kuhn (chair), École Poly-
technique Fédérale de Lausanne,
Switzerland

• David Wozabal, Technische Univer-
sität München, Germany

• Diogo Pinheiro, Brooklyn College
of the City University of New York,
United States

• Erricos Kontoghiorghes, Queen
Mary University of London, United
Kingdom

• Filipe Alvelos, Universidade do
Minho, Portugal

• Georg Pflug, University of Vienna,
Austria

• Georges Zaccour, HEC Montréal,
Canada

• Gerhard-Wilhelm Weber, Middle
East Technical University, Turkey

• Giorgio Consigli, Università di
Bergamo, Italy

• Huifu Xu, City University London,
United Kingdom

• Jacques Savoy, Université de
Neuchâtel, Switzerland

• João Carlos Lourenço, Universi-
dade de Lisboa, Portugal

• Joaquim Júdice, Universidade de
Coimbra, Portugal

• José Fernando Oliveira, INESC
TEC, Portugal

• Laureano Escudero, Universidad
Rey Juan Carlos, Spain

• Luis Seco, University of Toronto,
Canada

• Marco Campi, University of Bres-
cia, Italy

• Marcus Poggi, Pontifícia Universi-
dade Católica do Rio de Janeiro,
Brazil

• Maria Antónia Carravilla, Univer-
sidade do Porto, Portugal

• Miguel Gomes, Universidade do
Porto, Portugal

• Miguel Lejeune, The George Wash-
ington University, United States

• Mustafa Pinar, Bilkent University,
Turkey

• Nalan Gulpinar, University of War-
wick, United Kingdom

• Panos Pardalos, University of
Florida, United States

• Panos Parpas, Imperial College
London, United Kingdom

• Patrícia Xufre, Universidade Nova
de Lisboa, Portugal
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• Paula Bouzas, Universidad de
Granada, Spain

• Pedro Martins, Polytechnic Insti-
tute of Coimbra, Coimbra Business
School, Portugal

• Peter Winker, Universität Giessen,
Germany

• Ronald Hochreiter, WU Vienna
University of Economics and Busi-
ness, Austria

• Spiros Martzoukos, University of
Cyprus, Cyprus

• Stein-Erik Fleten, Norwegian Uni-
versity of Science and Technology,
Norway

• Teemu Pennanen, King’s College
London, United Kingdom

• Tomasz Radzik, King’s College
London, United Kingdom

• Werner Römisch, Humboldt-
Universität zu Berlin, Germany

• Wolfram Wiesemann, Imperial Col-
lege London, United Kingdom

The conference scientific programme included four distinguished keynotes by
notorious researchers in the field of Management Science. The speakers and titles
were the following:

• Victor DeMiguel, London Business School—Data Driven Investment Manage-
ment

• William Pulleyblank, United States Military Academy, West Point—Analytics,
Sports and Force-on-Force Situations

• Daniel Ralph, University of Cambridge, Judge Business School—Capacity
decisions in electricity production under risk aversion and risk trading

• Rüdiger Schultz, Zentrum für Logistik & Verkehr, Universität Duisburg-
Essen—From One to Infinity - Dimensions of Stochastic Programming

This set of outstanding talks gave an excellent motivation for the remainder of
the conference, not only due to the excellency of communication, but also because
it gave a thorough outlook into the main topics of the conference, thus setting the
tone for all scientific interaction.

Following the success of the conference, a set of short papers were submitted
for publication. A total of 49 contributions were presented for appreciation by the
reviewers. After each paper was evaluated by no less than 2 reviewers, 32 of those
papers were selected to contribute and to compose this volume.

Contributions were arranged in terms of major application areas of computational
management science. Some, however, focus more on optimization methods and,
therefore, fit in a separate section.

The first part includes contributions on Energy. Quintino et al. apply a holistic
approach to the problem of hedging in energy market against oil and gas prices
volatility by confronting the performance of a portfolio for the entire company with
that of the sum of each business unit. A portfolio optimization model is also applied
to the decision of choosing both demand and its flexibility by Gärttner et al., but
in the context of a renewable energy firm that needs to meet its demand with a
volatile supply. Mudry and Paraschiv focus on the stress testing of a portfolio of
commodity futures, and the impact of different scenarios in terms of correlations
and the probability of joint extremes.
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In a more applied approach, Cleland et al. study a strategy to be followed by a
large electricity consumer to try to reduce prices by optimizing his/her consumption
and reserve offers. Their results are based on the New Zealand electricity market.
Luckny Zéphyr won the best student paper award at the conference with his work
on a simplicial partitioning of the state space and its direct application to multi-
reservoir systems. Concluding the research on Energy are Benedetto et al. with a
new computational method to evaluate the predictability of energy markets based
on the entropy levels of the time series.

The second part of the book is composed by contributions on Logistics in a
wide sense. Those contributions range from conceptual problems to applications
in logistics. A first set of contributions presents solving approaches to generic
problems in distribution networks. Queiroz et al. and Macedo et al. both cover
problems with location as well as routing decisions. In the former, that problem
is considered in a scenario of uncertain demand, whereas the latter deals with the
multi-trip variant of the problem. To conclude this set of works on generic problems,
Huart et al. propose a heuristic for the time-dependent vehicle routing problem with
time windows.

A second set of contributions studies logistics networks. Mazalov et al. study
a non-cooperative game based approach to a passenger’s transportation network.
On the other hand, DeVos and Raa study the alternatives of collaboration in a
decentralized distribution network.

Finally, there is a third set of contributions that includes more practical problems
related to logistics. Heshmati et al. study a problem of scheduling cranes in a freight
railway terminal, and Oliveira et al. investigate the problem of vehicle reservation,
and the associated scheduling issue, and propose a GRASP algorithm.

The third part focuses on Production with topics ranging from scheduling and
planning to supply chain disruption and impact of human factor. Lean manufactur-
ing systems have put a significant amount of emphasis on cell production in terms
of product grouping, clustering, tool selection and process flows. Dong and Hao,
on the other hand, direct their attention towards the impact of the human factor
in cell production and aim at capturing the operator’s aptitude using a series of
questionnaires. Martins suggests a mixed integer linear programming formulation
to simultaneously model the firm’s most important functional aspects: production,
workforce and financial planning. Cardoso et al. study the impact on the supply
chain from several disruptions together with demand uncertainty. Their findings are
applied to a real case in Europe, with a production plant in Bilbao, and suppliers
spread not only throughout Spain, but also in other european countries.

Also concerned with supply chains, but with the fair transfer of profit between
all participants in the supply chain, Liu et al. propose a mixed integer linear
programming model for the production and planning of global supply chains. The
aim is therefore to determine the optimal transfer prices of products between plants
and markets. From a different perspective, Mota et al. formulate a model concerned
not only with supply chain planning, but especially with the incorporation of
corporate social responsibility in these decisions, as people, firms and government
are becoming more aware of all the issues with regional development.
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Production planning and scheduling is also a hot topic. Braga et al. present a
combined approach of the cutting and packing problem with scheduling, with an
exact and compact assignment formulation. Virgílio et al., on the other hand, focus
on the mould industry, developing an integer linear programming model based on
discrete make-to-order job shop production. Also with a very practical case, Ospina
et al. present the application of a mixed integer model for production planning in a
Portuguese roasted coffee company. The production plan starts at warehousing and
continues through to blending, roasting, grinding, packaging and warehousing again
of the final product.

Finally, Rocha et al. analyse, in the context of a nesting problem, the trade-
off between aggregating constraints and the subsequent reduction in computational
costs, and the quality of the final solution. Nesting problems are very common in
large industries where the need to allocate space and/or place sets of piece arises.

The fourth, and last, part of the book is devoted to optimization methods.
In this part, one can find different approaches to distinct problems. A group of
contributions proposes column generation approaches. Albornoz and Ñanco use a
column generation procedure to produce optimum values for a zone delineation
problem. Barbosa et al. suggest column generation based metaheuristics for the bus
driver rostering problem. Alvelos et al. propose a matheuristic based on column
generation to deal with a machine scheduling problem.

Some other combinatorial optimization problems are studied in two contribu-
tions. Vilà and Pereira present a genetic algorithm approach to a bin-packing
problem. Leasege and Poss suggest a dynamic programming based procedure for
the partial choice recoverable knapsack problem.

There are also two contributions dealing with stochastic problems. Kulikov and
Gusyatnikov study a stochastic optimization problem associated with the decision
on the stopping times for fractional Brownian motion. Hochreiter provides a
simplification scheme for multi-stage optimization under uncertainty.

Finally, on a different level, Nicola et al. present a new scheme for assessing and
quantifying value for the customer by using a fuzzy AHP method, and Bauso and
Norman study population games and provide a new perspective on approachability.

Lisbon, Portugal Raquel J. Fonseca
May 2014 João Telhada

Gerhard-Wilhelm Weber
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Evaluating Price Risk Mitigation Strategies
for an Oil and Gas Company

António Quintino, João Carlos Lourenço, and Margarida Catalão-Lopes

1 Introduction

Oil and gas (O&G) companies’ earnings are substantially affected by the price
fluctuations of crude oil, natural gas and refined products, which lead these
companies to find ways to minimize their exposure to price risk. The work on
investments and selection of efficient portfolios [9], along with the deregulation
of energy markets in the United States in the 1980s, exponentiated the derivatives
use in energy trade, to reduce companies’ price risk exposures [1]. This research
intends to evaluate the differences between hedging at business units (BU) level and
hedging at company level, assuming that the risk tolerance at company level inherits
the logic of the BU risk attitudes, through the “theory of syndicates” [15]. In this
paper we use as case study a European O&G company, which manages its price
risk separately at each BU. The axioms for utility as a decision criterion defined by
von Neumann and Morgenstern [14] assured solid ground for the relation between
financial measures, utility functions and corporate risk tolerance [6].

The remainder of this paper is organized as follows. Section 2 describes relevant
measures and methods, Sect. 3 presents the results, Sect. 4 discusses them and
presents the conclusions.
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4 A. Quintino et al.

2 Relevant Measures and Methods

2.1 Earnings Formulation

The company is organized in three business units: the Exploration unit, the Refining
unit and the Natural Gas unit. Since this research is focused on price risk, we take
as reference the gross margin, calculated as the difference between the value of the
goods bought and sold (crude oil, refined products and natural gas). The Exploration
gross margin me is given by:

me D ep � p C e ; (1)

where ep is the Entitled Production quantity in barrels of crude oil (bbl) for
“Production Sharing Contracts” regimes, p is the crude price ($/bbl) and e are the
earnings ($) in “Concession” regimes. The Refining gross margin mr is given by:

mr D
 

nX
iD1

yi � xi � p

!
� qr ; (2)

where yi is the yield (the oil industry name for the percentage of each i refined
product taken from a unit of crude), xi is the unitary price of each refined product i,
p is the unitary price of crude and qr is the yearly crude quantity refined (in tonnes).
The Natural Gas gross margin mg is given by:

mg D
0
@ nX

iD1
zi � si �

kX
jD1

wj � bj

1
A � qg ; (3)

where si and bj are respectively the selling and buying price indexes, zi and wj are
respectively the selling and buying yields, and qg is the yearly total quantity of
natural gas, measured in m3 or kWh. As the goal underneath this research is to
assume at least 1 year term hedging, we will choose the most traded derivatives
in the OTC (over the counter) energy market: swap contracts. For each BU i,
considering the yearly gross margin mi, the yearly earnings ei are given by:

ei D mi C
12X

tD1
.fi � sit / � qi ; (4)

where fi is the initial agreed fixed price for the swap, usually the average forward
prices for the contract duration, sit is the respective spot price at each future
settlement month t and qi is the swap notional quantity, having the same unit (bbl,
weight, kWh) as the physical underlying item for each BU i.
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2.2 Stochastic Prices Models and Risk Measures

Crude and refined products prices are modelled by their past monthly price returns
[11].The historic price return rt (in %) for crude or each refined product is:

rt D ln

�
pt

pt�1

�
; (5)

where pt is the average price in month t and pt�1 is the average price in month
t � 1. Each future stochastic price ftC1 under a GARCH.1; 1/ process [4], with no-
arbitrage and no-dividends assumptions, depends on the previous st price:

ftC1 D st � exp .rt/ ; (6)

where rt is the stochastic price return, modelled by a combination of a GARCH.1; 1/
process [4] and a t-copula function [13], the Copula-GARCH model [7]:

rt D
�
! C ˛ � r2t�1 C ˇ � �2t�1

�1=2 � Td�
�
t�1d .ut/

�
(7)

where ! is the constant term for variance, the conditional variance �2t�1 assumes
an autoregressive moving average process (ARMA), with ˛ weighing the moving
average part and ˇ affecting the auto-regressive part, T is the t-copula with d degrees
of freedom and correlation matrix � , t�1 is the inverse Student’s t distribution
with d degrees of freedom and un are the variables’ marginal distributions (the
price returns residuals). The SIC-Schwarz and the AIC-Akaike information criteria
were used as goodness of fit measures for GARCH and Copula [5], confirming the
kurtosis excesses and fat tails characteristics in the referred prices’ returns. Unlike
the Gaussian copula, t-copulas preserve the tail dependence in extreme events.
The Copula-GARCH method was implemented trough a multi-period Monte Carlo
simulation [10] varying t from 1 to 12 months.

Conditional Value-at-Risk (CVaR) is a coherent risk measure [12], appraising
how large is the average earnings (or losses) into the left and right distribution tails.

CVaR.˛/ D
R b

a e � f .e/de

1 � ˛ (8)

where f .e/ is the earning density function with F�1 being the inverse of the
f .e/ cumulative distribution. For the left tail, ˛ D 1% (the level of significance
assumed), a D �1, b D F�1.1%/. For the right tail, ˛ D 99%, a D F�1.99%/,
b D C1.

In fact, for all investors, swap contracts hedging is all about giving up potential
upper gains (right tail) in exchange for having lower losses (left tail), so both
extreme CVaR matter.
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2.3 Risk Tolerance and Optimization

The selection of the optimal derivatives portfolio is influenced by the decision-
maker’s attitudes towards financial risk. The expected value of an utility function
is the utility of the certainty equivalent (CE) [3] considering the exponential utility
function as the most appropriate [8], we have:

CE � E .x/ �
�
�2.x/

2�

�
; (9)

where x is the stochastic earnings variable, E.x/ is the earnings expected value,
�2.x/ is the earnings variance and � is the risk tolerance, evaluated trough one
questionnaire assessment for each BU. The selection of the optimal derivatives
portfolio is achieved by stochastic optimization [10], having the swap notional
quantity qi in (4) as the decision variable “inside” each BU earning ei.

Max CEi � Max

�
E .ei/� �

2.ei/

2�i

�
(10)

After obtaining the optimal derivatives portfolio for each BU i, we enter each i
solution in an additive corporate hedging simulation, which we named Program 1.

In a second approach, named Program 2, we consider the company’s earnings
ec given by ec D ee C er C eg, where ee, er, eg are respectively the exploration,
refining and natural gas earnings. According to the Theory of Syndicates [15] the
risk tolerance of the company (�c) can be assumed to be the sum of each BU risk
tolerance �i. Therefore, replacing ei by ec and �i by �c in expression (10) will allow
us to maximize, assuming exponential utility functions for each BU. The Certainty
Equivalent for the whole company.

3 Results

The results from Monte Carlo simulation before hedging are presented in Table 1.
Tables 2 and 3 present the results of Program 1 and Program 2, respectively. The “%
of Hedge” solution for each BU is the ratio between the notional amounts of swap
contracts qi and the respective BU yearly physical production.

Table 1 Results before hedging (in $ million)

Measures Refining Natural gas Exploration Company

E.ei/ 273 124 424 821

�.ei/ 102 3 12 98

CVaR99% .ei/ 665 113 469 1220

CVaR1% .ei/ �87 116 393 488
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Table 2 Program 1, results after BU hedging (in $ million)

Measures Refining Natural gas Exploration Company

E.ei/ 268 125 423 815

�.ei/ 33 0 2 33

CVaR99% .ei/ 436 125 431 985

CVaR1% .ei/ 161 125 418 713

� 173 3 22 198

CE 264 125 423 813

% of Hedge solution 79 100 35 81

Table 3 Program 2, results after Company hedging (in $ million)

Measures Refining Natural gas Exploration Company

E.ei/ 269 125 424 817

�.ei/ 37 0 11 35

CVaR99% .ei/ 447 125 461 1003

CVaR1% .ei/ 153 125 395 722

� 173 3 22 198

CE 265 125 421 814

% of Hedge solution 69 100 0 72

4 Discussion and Conclusions

The results in Table 2 present a significant decrease in the company’s earnings
uncertainty from the initial unhedged situation in Table 1. The earnings standard
deviation reduces sharply from $ 98 million to $ 33 million and the minimum gains,
measured by CVaR1%, increase from $ 488 million to $ 713 million at the cost of
the maximum gains, measured by CVaR99%, shrinking from $ 1220 million to $ 985
million.

Comparing the results of Table 2 with Table 3, we observe that the certainty
equivalent and the standard deviation have negligible changes. However, in Table 3
the extreme tails shows both higher gains and the optimal solution (i.e. the % of
Hedge) reduces from 81 to 72 %, implying less payout exposure. Under Program 2,
the Exploration crude price risk is absorbed (0 % of Hedge) by Refining, eliminating
the risk overlapping and reducing the Refining hedge from 79 to 69 %.

We conclude that hedging at company level (Program 2) clearly outperforms
the BU individual hedging (Program 1). Since the certainty equivalents of both
programs are quite similar, we propose further research to include other criteria
to evaluate the final hedging results. Multi-Attribute Value Theory [2] should
be applied to assess decision-makers’ preferences upon extreme tails and payout
exposure changes.
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Load Shifting, Interrupting or Both? Customer
Portfolio Composition in Demand Side
Management

Johannes Gärttner, Christoph M. Flath, and Christof Weinhardt

1 Introduction

In recent years, power grids across the globe have seen a dramatic increase in
variable generation assets [5]. At the same time, integration of these resources has
not been actively addressed. Subramanian et al. [8] note that current approaches
work with “today’s modest penetration levels, but will not scale [effectively]
tomorrow”. A more cost-efficient integration of variable energy sources calls for a
more flexible demand side. This will allow to limit the required expensive balancing
and storage capacities [5]. Smart Grid systems and novel incentive schemes will play
a key role to achieve this goal. Smart Grids enhance the existing grid infrastructure
through the provision of bi-directional information and communication technology.
In this context, the activation of the historically passive demand through demand
side management (DSM) is a central theme. In general, it is expected that the
power system will have to change from a system of flexible generation serving
random loads to a system of flexible loads adjusting to fluctuating generation.
Consequently, system operators will in the future be less concerned about handling
demand uncertainty, but rather need to focus on supply uncertainty.

Prior research has established the balancing potentials offered by scheduling
flexible load portfolios [8]. Apart from that, little is known with respect to forming
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these portfolios in the first place. Thus, it is necessary to develop methods that
guide the design of demand response portfolios. We present an optimization model
to guide the formation and subsequent scheduling of demand response portfolios
for energy retailers. We illustrate our model using an example scenario based on
empirical load and solar generation data.

2 Related Work

DSM, i.e. the active coordination of load, can offer sizeable control potentials
at much lower costs than the expansion of storage capacities [7]. To maximize
the benefits obtained from contracted flexible loads, operators need to optimally
despatch these loads. Parvania and Fotuhi-Firuzabad [6] schedule load shifting and
curtailment as well as decentral generation assets to minimize wholesale electricity
costs. Using different scheduling routines, Subramanian et al. [9] show that efficient
DSM can already be achieved with modest load flexibility endowments.

Besides this scheduling-oriented literature, demand response assets have also
been evaluated with respect to portfolio design concerns. Abstracting from indi-
vidual load dispatching, this stream of literature analyzes generic demand entities
to identify efficient portfolio composition rules. Baldick et al. [1] determine the
value and optimal execution of demand-interruption programs using option-pricing
techniques. Deng and Xu [3] also consider interruptible load contracts and propose
a mean-risk analysis to guide the portfolio design decision. Valero et al. [10] use
data mining techniques to test customer demand and response options in different
price scenarios.

Our work tries to connect these branches of literature by accounting for the
utilization of customer-level load characteristics while at the same time accounting
for prior portfolio-design activities.

3 Scenario and Optimization Model

Load scheduling decisions determine which electrical loads are served at what
time. The attainable scheduling quality (with respect to a given objective) critically
hinges on the composition of the underlying customer portfolio. The customer
portfolio design decision needs to determine which loads to contract as well as the
corresponding contracting terms. We reflect the interdependency between portfolio
design and load scheduling as a two-stage problem. In the first stage, an electricity
retailer determines the composition of the customer portfolio. The second stage
handles the optimal load scheduling of the chosen portfolio. The main challenge
is the integration of fluctuating and hence uncertain renewable generation.

In this paper, we look at the offline integrated optimization problem that simul-
taneously determines customer selection and load scheduling as a deterministic
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benchmark. We consider a set C of customers over a horizon of T time slots.
Customers are indexed c D 1; : : : ; jCj, time slots t D 1; : : : ; jTj. Customer demand
is assumed to consist of three components:

• base load .DB
c;t 2 RC/ must not be influenced and has to be satisfied at any time

• shiftable load .DS
c;t 2 RC/ can be shifted over time, although a customer’s total

shiftable demand
P

t2T DS
c;t has to be fully covered over the optimization horizon

• interruptible load .DI
c;t 2 RC/ can be served at any level from the interval

ŒIPDI
c;t;D

I
c;t� at any point in time (IP 2 Œ0; 1�: interrupting potential).

Fluctuating renewable energy supply is given by Rt 2 RC. If demand deviates from
supply, the deviation has to be balanced by conventional power. The variable costs
of balancing power are given by cG 2 RC. We assume the resulting balancing power
costs CG 2 R

C
0 to be a quadratic function to reflect increasing marginal costs cG.

Consumer portfolio design needs to decide which customers are contracted.
Therefore, a subset CC of the set of customers C is selected to be part of the
portfolio and split in to three subsets: inflexible customers CB, shiftable customers
CS, interruptible customers CI . Note that the latter sets are not disjoint as a customer
can be contracted to offer both his shiftable and interruptible load component. The
scheduling variables determine for each customer how much load is shifted from
one time slot to another .XS

c;t;s 2 R
C
0 / and how much interruptible load is served

.XI
c;t 2 ŒIPDI

c;t;D
I
c;t�/. Obviously, only customer loads contracted with shifting or

interruption provisions can be controlled in this fashion with non-contracted loads
being merged into the base load component.

When choosing a contract that allows load shifting or interrupting, a customer
cedes control to the operator and needs to be compensated with more favorable
electricity rates. Let p be the retail price of base load consumption. The price of
shiftable demand is then obtained by applying a discount ıS 2 Œ0; 1� on the price of
base load, that is ıSp. Whenever load shifting is triggered by the operator, a second
cost component arises. These additional dispatch-related shifting costs depend on
the load shifting distance which is a deviation-measure between a customer’s
original and the realized load schedule. The cost structure of interruptible load
is fairly similar. A discount factor ıI 2 Œ0; 1� defines the price for interruptible
load in relation to base load. Obviously, whenever load is interrupted, an electricity
retailer forgoes any revenues from this load type. The concrete optimization model
is presented in the Appendix.

In the following section we present preliminary results that show the influence of
shifting—and interrupting discounts on the customer portfolio composition.
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4 Evaluation

To evaluate our optimization model we use two different data sources. Demand data
was retrieved from the Irish Social Science Data Archive.1 This data set provides
smart meter readings from over 5000 Irish homes and businesses and reports each
customer’s energy consumption in 30 min intervals. As this is aggregate load,
there is no detailed information on the underlying load flexibility. To extract more
information from aggregate load data collections, Carpaneto and Chicco [2] suggest
interpreting residential load curve collections as probability distributions. Building
upon this assessment, Flath [4] suggests approximating the underlying flexibility
level using the likelihood of a certain demand level. Following this approach, we
derive the demand components of a given customer by splitting up the collection of
smart meter readings by the 30, 60 and 85 % quantile. We cut the full demand to
smoothen outliers.

To model the variations of renewable generation, we use empirical solar genera-
tion data. We normalize the solar feed-in data to an appropriate scale of the demand
level to ensure meaningful results.

To illustrate the dependencies of the portfolio composition and the optimal
value from shifting—and interrupting discounts we chose the following scenario.
Customers can be precluded from the portfolio. Customers that are part of the
portfolio can be assigned to the following flexibility types: Base load, Shiftable,
Interruptible and Flexible (a flexible customer offers both, shiftable and interruptible
load). In order to minimize the influence of extreme demand and supply scenarios,
we solved the integrated optimization problem ten times for each combination of ıS

and ıI . Figure 1 shows the average share customers assigned to one of the flexibility
types for given ıS and ıI .
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Fig. 1 Sensitivities of Customer Portfolio Composition by flexibility discounts

1http://www.ucd.ie/issda/data/commissionforenergyregulationcer/.

http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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Fig. 2 Sensitivities of the optimal value by flexibility discounts

Surprisingly, there are no customers precluded from the portfolio in this scenario
instance. This is caused by the normalization of supply and aggregate demand.
Obviously, it becomes less attractive for an electricity retailer to pursue interruptible
or shiftable contracts when the corresponding discount levels increase. This is
because, ceteris paribus, the usage of balancing power will become more attractive
than contracting flexibility at a high revenue loss. Both, the impact of changing
discounts on base load—and flexible customers and the influence of shifting
discounts seems rather minor. The effect of increasing interrupting discounts, on the
other hand, is stronger. The share of interruptible contracts shrinks and is substituted
by shiftable contracts.

Not surprisingly, the electricity retailer’s overall profit (the optimal value,
respectively) decreases with growing discounts (Fig. 2). Similar to the portfolio
composition, the shifting discount influences the optimal value less than the
interrupting discount. This results from the tariff design, that ensures that all
shiftable load has to be served while interruptible load can be shedded. Therefore,
when contracting interruptible load, not only a discount on served load has to be
granted but there are no revenues from interrupted load at all.

5 Conclusion and Outlook

Designing optimal customer portfolios includes deciding on which customers
should be part of the portfolio as well as how much and which type of flexibility
each customer offers. In this paper we introduce a two-stage characterization
of a stochastic optimization problem to select an optimal customer portfolio
referring to subsequent load scheduling. As a benchmark we introduce an integrated
optimization model to illustrate the influence of price discounts on the portfolio
composition using empirical input data. Finally, we present exemplary results that
clarify the impact on both, the customer portfolio composition and profits attainable.
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For further research we plan to investigate if the shiftable and interruptible
contracts behave like complements or substitutes. We will evaluate the model for
both, stochastic demand and supply and to compare the results with the benchmark
solution. Finally, our future research aims to better understand the effect of customer
heterogeneity with respect to flexibility assets as well as contracting specifications.

Appendix

With the parameters and decision variables described in Sect. 3 the portfolio design
problem is formulated as follows. First, we describe the model constraints. We then
define the objective function and its components. Constraint (1) ensures that each
customer’s overall shiftable demand is covered over the optimization horizon.

X
t2T

DS
c;t D

X
t2T

X
s2T

XS
c;t;s 8c 2 C (1)

Load shifted from t to s cannot exceed the gross shiftable load in t.

DS
c;t �

X
s2T

XS
c;t;s 8c 2 C;8t 2 T (2)

Similarly, dispatched interruptible load in t XI
c;t is bounded by the minimum dispatch

amount and the gross interruptible load in t.

IPDI
c;t � XI

c;t � DI
c;t 8c 2 C;8t 2 T (3)

Total load must equal the sum of available renewable supply and dispatched
conventional generation:

Gt D
X
c2C

 
DB

c;t C XI
c;t C

X
s2T

XS
c;t;s

!
� Rt 8t 2 T (4)

The supplier’s objective is to maximize profits which is given by revenues minus
costs. We split the costs into two components, contracting costs and dispatching
costs:

max
CB;CS ;CI ;XS;XI

X
t2T

X
c2C

p
�
DB

c;t CDS
c;t C DI

c;t

�
„ ƒ‚ …

revenues

� FS C FI„ ƒ‚ …
contracting costs

� CG C CS„ ƒ‚ …
dispatching costs

(5)
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Contracting costs occur during the portfolio design phase and are driven by the
discounts on the two flexibility types:

FS D
X
t2T

X
c2CS

pıSDS
c;t FI D

X
t2T

0
@X

c2CI

p.DI
c;t � .1 � ıI/XI

c;t/

1
A (6)

Dispatching costs reflect the usage of costly conventional generation and shifting
distance penalties from shifting execution:

CG D cG
X
t2T

.Gt/
2 CS D cS

X
c2C

X
t2T

� t�1X
sD0
.t � s/2XS

c;t;s„ ƒ‚ …
loads shifted forward

C
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sDtC1
.s� t/2XS

c;t;s

„ ƒ‚ …
loads shifted backward

	

(7)
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Stress-Testing for Portfolios of Commodity
Futures with Extreme Value Theory and Copula
Functions

Pierre-Antoine Mudry and Florentina Paraschiv

1 Overview

The severity of the global financial crisis sparked a deep review of risk-management
practices by regulators (see [1]). Basel III market risk framework requires banks to
subject their portfolios to a series of simulated stress scenarios and to report the
results to the supervisory authorities [1]. In particular, the post-crisis regulations
criticize the overreliance on historical prices and correlations, and recommend
instead a more rigorous analysis of extreme events.

One of the recent trends in the financial markets has been the increasing
financialization of commodities, especially since the introduction of commodity
indices [8]. The benefits for investors are manifold: it frees them from the risk
of unwanted delivery, from the costs of storage, and from losses linked to the
perishable nature of agricultural commodities, while allowing them to hedge against
inflation, diversify their portfolios, and ride the boom triggered by the appetite of
emerging nations for commodities. Given the exponential growth of investments
in commodity indices by institutional investors, the question of adequately stress-
testing those indices in the context of a broader portfolio of financial securities is
of great interest. We apply a combined approach of extreme value theory (EVT)
for modeling extreme movements in the risk factors and we look at the dependency
structures in a dynamic way, with copula functions. To our knowledge, EVT and
copulas have been extensively applied to equities and currencies portfolios (see
[4, 5, 7]), but rarely to portfolios of commodity futures.
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2 Data and Methods

We analyze a portfolio of ten most important components in the DJ-UBS commodity
index: WTI Light Sweet Crude Oil, Brent Crude Oil, Natural Gas, Corn, Wheat,
Soybeans, Live Cattle, Gold, Aluminium, Copper. In total, these ten commodities
represent 69 % of the total weights, making the chosen portfolio a good proxy for
the index. In order to determine the weight of each commodity in the test portfolio,
we simply divided each weight in the index by the combined weight of 69 %.

We used daily logarithmic returns, from 01 January 1998 to 31 December
2011. In the case of the reference index, the provider usually rolls the futures
contracts over four times a year, depending on the most liquid contracts trading on a
particular commodity. The provider therefore buys relatively short termed contract.
For simplicity, it would have been very cumbersome to roll the contracts over in the
same way as the index provider. We therefore limited ourselves to a bi-annual roll.
Moreover, to soften the jumps linked to rolling over contracts, we used contracts
with approximately 1 year maturity, that are rolled over 6 months before expiration.

To perform adequate stress-tests, a realistic model for the risk factors is required.
A preliminary descriptive analysis of logarithmic returns shows patterns like: pos-
itive skewness, stationarity, autocorrelation and volatility clustering. We therefore
model the returns with a AR-GARCH(1,1) asymmetric model. The lags were found
by performing the Akaike (AIC) and Bayesian (BIC) information criteria.

yt D �C �1yt�1 C "t (1)

h2t D a0 C a1"
2
t�1 C a2h

2
t�1 C b ."t�1/"2t�1 (2)

where h2t is the conditional variance of "t, zt D "t=ht, with zt N.0; 1/ or Student’s
t-distributed (scaled to have variance 1) IID innovations with mean D 0, variance
D 1, and degree of freedom parameter, �. Additionally, an indicator function is
introduced: ."t�1/ D 1 if "t�1 (or zt�1/ is negative, or 0 if "t�1 (or zt�1/ is positive.
As there is no restriction on the sign of b, the model can be applied to describe both
negatively or positively skewed data.

Two versions are tested: asymmetric AR-GARCH with normal and with
t-innovations. A likelihood ratio test shows the superiority of the latter model
version. This is not surprising, given the fat tails of commodity returns. We further
produced a probability plot and compared the returns to the standard normal
distribution and the fitted AR-GARCH(1,1) model with t-innovations. We observed
that the model strongly underestimates extreme events. However, for a rigorous
stress testing, exactly the extremely large returns are of importance. Embrechts
et al. [3] and McNeil et al. [6] prove evidence for a good performance of a combined
approach GARCH with parametric tails based on extreme value theory (EVT). For
the center of the distribution, where most of the data are concentrated, kernel
smooth interior is used for the estimation. However, for the tails, where usually data
is scarce, a parametric approach based on extreme value theory is selected, whereas
the generalized Pareto distribution is able to asymptotically describe the behavior of
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the tails. We will therefore apply this approach to model the standardized residuals
zt, in Eq. (2). The notation for a generalized Pareto (GP) distribution is introduced
for any 	 2 R; ˇ 2 RC [6]:

GP	;ˇ.z/ D 1 �
�
1C 	 z

ˇ

�� 1
	

C
; z 2 R

where item 1=	 is known as the tail index and ˇ a scaling parameter. The threshold
u was fixed for 10 % uppermost and lowermost returns, for each commodity.

So far, we showed how we modeled the risk factors individually. However, for
a realistic portfolio stress testing, the evolution of dependency structures among
the considered commodities is of great importance. Given the contagion effect, it
is expected and empirically observed that in times of market stress, joint extreme
returns occur in commodity markets. We therefore model joint positive or negative
returns with a t-copula. In the case of t-distributions the d-dimensional t-copula with
� degrees of freedom is given by:

Ct
�;˙.u/ D t�;˙.t

�1
� .u1/; : : : ; t

�1
� .ud// (3)

where˙ is a correlation matrix, t� is the cumulative distribution function of the one
dimensional t� distribution and t�;˙ is the cumulative distribution function of the
multivariate t�;˙ distribution.

3 Estimation Results

Scenarios for multivariate stress tests can be constructed as historical, hybrid, or
hypothetical scenarios [1]. While historical scenarios assume a repetition of past
crises, in hybrid scenarios the historical market movements are only used to calibrate
the process of risk factors evolution. Hypothetical scenarios are not restricted to a
repetition of the past, but allow a more flexible formulation of potential events. In
this study, we show the limitations of historical scenarios and the importance of a
forward looking analysis in the context of hybrid scenarios.

The first stress test we consider is based on the derivation of historical scenarios.
Creating scenarios with historical data is probably the most intuitive approach,
since the events did happen in reality and are thus plausible to reappear. We
construct the P&L of our portfolio for the next 22 days horizon starting at 1st
January 2012, based on the returns of the risk factors empirically observed during
the financial crisis from 28 March 2008 to 31 March 2010. In this case, we
want to assess the portfolio losses in case of a repetition of a financial stress
situation. The P&L of the portfolio under the simulated historical scenario is
simply given by the empirical distribution of past gains and losses on this portfolio,
during the financial crisis. The implementation of this non-parametric method is
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simple, since it does neither require a statistical estimation of the multivariate
distribution of risk factor changes, nor an assumption of their dependence struc-
ture.

The second stress test to be considered is based on hybrid scenarios. The
parameters and residuals of the AR-GARCH with EVT processes of the different
commodity returns and the t-copula are calibrated on the financial crisis data ranging
from 28 March 2008 to 31 March 2010. Based on these parameters, the risk
factors are simulated for the next 22 days, 10,000 scenarios, and the P&L is finally
constructed.

Figure 1 shows comparatively the P&L for the historical and the hybrid scenarios.
The P&L for the historical scenario obviously displays the characteristic stepwise
pattern. The more extreme the returns, the more the two distributions drift apart.
However, the hybrid scenario overestimates positive returns significantly. One
explanation for this lies in the symmetry of the t-copula, which struggles to
account for skewed portfolio returns, despite its many merits [2]. The lower
tail of the historical scenario distribution is truncated at �32:93%, while the
maximum simulated loss with the hybrid scenario is �64:08%. Thus, for extreme
tail quantiles, we observe that the historical scenario signals a much lower sim-
ulated loss with the hybrid scenario. This underlines the main drawbacks of the
overreliance on the historical simulation method, as discussed in [1]: this method
is unconditional, and it neglects the time-varying nature of financial time series,
it neglects the dependence structure. Furthermore, based on a limited time span,
extreme quantiles are difficult to estimate. This example shows additionally that the
hybrid scenario is able to extrapolate beyond the historical data, which, from the
view point of financial regulations [1], is a major feature of a realistic stress testing
technique.

To show the importance of stress scenarios, we compare the P&L values derived
from historical and hybrid scenarios with the P&L derived from the baseline

Fig. 1 Hybrid vs historical
stress scenarios
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Table 1 Metrics for hybrid
and historical stress scenarios

Metric Baseline Hybrid Historical

Degrees of freedom 12.79 15.25 N/A

Max. simulated loss �37.86 % �64.08 % �32.93 %

Max. simulated gain 30.57 % 58.45 % 14.49 %

Simulated 90 % VaR �4.67 % �13.31 % �12.19 %

Simulated 95 % VaR �6.35 % �17.96 % �16.56 %

Simulated 99 % VaR �9.64 % �29.83 % �28.31 %

Simulated 90 % ES �6.92 % �19.73 % �18.06 %

Simulated 95 % ES �8.40 % �24.10 % �21.86 %

Simulated 99 % ES �11.58 % �34.10 % �31.17 %

Simulated 99.9 % ES �16.93 % �49.26 % N/A

Simulated 99.99 % ES �29.38 % �63.78 % N/A

scenarios. The latter aims at estimating the portfolio performance at the end of the
22 day period, without the impact of stress. We therefore calibrate the AR-GARCH
model with EVT for the risk factors and the t-copula for interdependencies to the
entire data sample: 01 January 1998 to 31 December 2011. With the simulations
over 22 days for each risk factor, we recompute the P&L. Comparative statistics over
risk measures are offered in Table 1. We observe that with the baseline scenarios,
the risk of the portfolio, expressed by the VaR and Expected Shortfall (ES) for
tail quantiles above 90%, is significantly underestimated. Well identified stress
scenarios are of great important for portfolio risk managers, as they quantify the
magnitude of losses that might be expected in case of market stress.

In Table 1 we observe that the estimated degrees of freedom of the copula
function for the hybrid scenario are higher than in the case of baseline scenario. This
is surprising, since it indicates lower tendency of joint extremes in commodities
during the financial crisis than in the overall investigated period. To better under-
stand the cause for these results, we recalibrated our AR-GARCH with EVT and
t-copula on a rolling time window, collected the degrees of freedom and additionally
computed average correlations. We focused on 3-year rolling windows. The results
are plotted in Fig. 2. Overall we observe that correlations among commodity returns
increased, while the degrees of freedom show some oscillating patterns. Until 2006,
we conclude that commodity returns became more correlated with each other,
and joint extremes are more likely. However, during the boom and bust cycle
of 2007–2009, and further during the 2008–2010 window, although correlations
increased among commodities, we observe an increase in the degree of freedom as
well. This confirms our previous results, that the tail dependence structures among
commodities weakened during the financial crisis. A possible explanation for this
are the different dynamics among commodity prices during the financial crisis: some
underwent a relatively moderate growth and fall (agricultural commodities), while
others, (oil, gas, copper) went through a massive boom and bust cycle.

Our results show that the reliance on standard assumptions like the increase
in the probability of joint extremes among financial assets in times of market
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Fig. 2 Rank correlations vs
degrees of freedom
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stress is not always realistic. By contrary, we show that there have been structural
breaks in commodity markets that temporarily led to a breakdown of expected
statistical patterns, like tail dependence structures. This fact should be explored
by risk managers in hypothetical scenarios, by shocking arbitrary combinations
of market factors, volatilities, and dependence structures. The pure reliance on
historical assumptions has serious limitations for stress testing.
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Integrating Consumption and Reserve Strategies
for Large Consumers in Electricity Markets

Nigel Cleland, Golbon Zakeri, Geoff Pritchard, and Brent Young

1 Introduction

Electricity Markets have become prevalent in a multitude of countries and jurisdic-
tions. In most countries the structure is for privately held companies to compete with
one another in order to serve an inelastic load. This approach has led to some notable
failures, California in Summer 2000, but also increased efficiency of investment and
operations. It is accepted that electricity markets cannot operate effective without
demand side participation (DSP) [6]. Many researchers are focusing upon smart
grids and retail technology which will eventually yield benefits, but more immediate
progress is at hand by ensuring large consumers participate effectively. Pre-existing
time of use pricing and a willingness to spend capital place them as the ideal
consumers for implementing DSP. A brief experiment, using four large consumers
showed that potential savings of $30 million NZD/year could result from them
shaving 10 % of load during the twenty highest priced days each year.

Nodal pricing has been thoroughly studied previously in [2, 10, 15–17, 19]
although the interaction of energy and reserve prices has received less attention with
[2–5, 9, 10, 18] providing a good overview. The papers demonstrate the mechanisms
by which the energy and reserve prices are intertwined in the Optimal Power Flow
(OPF). We note that units can be dispatched non-intuitively, including out of (naive)
merit order due to security considerations. We will describe the specific security
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requirements for NZ [1] and demonstrate how this coupling can occur in various
ways. Any participant seeking to understand their impact upon the market needs to
account for these interactions.

2 Interaction of Energy and Reserve Offers

In this paper we present a fully detailed optimal power flow dispatch software
used in New Zealand to provide price distributions for a large consumer of
electricity, under various operating conditions. We will utilize a representation
of the New Zealand grid dispatch model called vectorised Scheduling Pricing
and Dispatch (vSPD)[13] developed by the Electricity Authority. This formulation
includes all energy and reserve constraints along with the full transmission network
and is used to simulate final pricing. vSPD can be computationally expensive,
other, more simplified models fail to capture nodal prices accurately. We outline
the specifics of reserve procurement, show how they can interact with price and
establish the effect on a large consumer. We then describe our optimisation model
for large consumers noting that we have not considered the use of aggregators.

Reserve Procurement in New Zealand is through a 250 node co-optimised
electricity network with primary (6s, FIR) and secondary (60s, SIR) reserve co-
optimised with energy across two HVDC interconnected AC subnetworks. N-1 is
maintained by securing sufficient reserve to cover the largest (island) risk setter,
either a CCGT (400 MW) or the HVDC connection (up to 700 MW), transmission
and losses are ignored in the reserve dispatch. Offers to the market follow hockey
stick [11] curves and thus prices are heavily sensitive to any fluctuation in aggregate
demand.

Interruptible Load (IL), Partially Loaded Spinning Reserve (PLSR) and Tail
Water Depressed Spinning Reserve (TWDSR) all provide reserve in the NZEM.
IL from grid connected industrial companies, PLSR and TWDSR from generation
units with Hydro units being of particular importance. Dispatch from these units
must satisfy the three inverse bathtub constraints [7, 8] A minimum energy reserve
ratio, maximum reserve capacity and nameplate capacity constraint all limit the
dispatch. In New Zealand this leads to two considerations, the first the dispatch
of each unit must be feasible and aggregate reserve cleared must be larger than the
risk setter.

Interactions of Energy and Reserve in OPF are the focus of [4, 5] and we remind
the reader of them here. We lay out a simplified version of the OPF problem,
ignoring losses (although present in vSPD) as these are understood [17] and make
no essential difference to our points. Consider the (Primal) POPF and accompanying
(Dual) DOPF where firms bid step function energy and reserve stacks.
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Here g and r and d are vectors of dispatched generation, reserve and demand
while, f is the vector of flows with the objective being to minimise costs. pg and pr

are the vectors of energy and reserve prices. M is a matrix mapping generation offers
to nodes, A the node-arc incidence matrix. G is a vector of the total unit capacities,
K a vector specifying the ratio between generation and reserve whilst R is the vector
of reserve offer limits. E is a mapping that takes the vector of reserves and maps it
into reserve zones. In the dual the 
 and � are noteworthy in that they refer to the
nodal energy and reserve prices accordingly. The second, third and sixth constraints
of the primal specify the reverse bathtub constraints. The fourth and fifth constraints
specify that reserves are procured to cover the largest risk of failure setting the
reserve price. The remaining constraints are standard ensuring transmission capacity
and Kirchoff’s law are complied with. In the dual it is self evident that energy (
)
and reserve (�) prices are linked with �, � and ! the shadow prices of the three
reverse bathtub constraints.

We Consider Case Studies as it is evident from the dual that there is interaction
between energy (
) and reserve prices (�1 and �2). We illustrate this below as
outlined in Fig. 1 and Table 1 using examples inspired by situations frequently
encountered in the NZEM.

In Case A we consider a single node market without transmission with two
generators who must meet demand. Reserve is provided by a third, reserve only,
plant and thus the reserve price is, ��1 D pr;1. A security constraint is binding upon
the marginal generator, the marginal cost for energy becoming the sum of generation
and security costs, 
1 D pg;1 � �1, co-optimisation influencing the price.

In Case B we use a two node model to illustrate security constrained transmission
lines. Each node has one generator and one (independent) reserve provider. In this
situation demand at node two is met by importing energy from node one across
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Fig. 1 Depiction of the networks used in the three theoretical cases considered. From left to right
cases A, B and C. Note the separation of Generation and Reserves offers in the first scenarios,
whilst they are from the same units in the third

Table 1 Case study results and information

A B C A B C
Demand parameters Optimal prices
d1 350 50 50 
1 30.01 0.01 0.01

d2 – 300 310 
2 � 45.01 670.0033

�1 30 0 0

�2 � 45 669.9933

�2 � � 659.9933

Offer parameters (Price, Quantity) Optimal dispatch
g1 0.01, 400 0.01, 400 0.01, 300 g1 350 350 153.3333

g2 100, 400 100, 400 1000, 50 g2 0 0 6.6667

g3 – – 10, 300 g3 � � 200

r1 30, 400 30, 400 1, 300 r1 350 0 0

r2 – 45, 400 10, 50 r2 � 300 3.3333

r3 – – 0.01, 300 r3 � � 100

the security constrained transmission line. We remove the requirement for sufficient
reserve to clear generation for clarity. The reserve price at node two is given by the
marginal unit, ��22 D pr;2, with the energy price the cost of exporting an additional
MW from the other node 
2 D 
1 ��2. This case is interesting as it explicitly links
the energy prices between the two reserve zones by the reserve constraint.

In Case C we consider constrained energy and reserve dispatch at a single unit.
Considering the proportionality constraint, r � kg � 0 with a k value of 0.5 we
implement a constrained situation. In this case neither the energy nor reserve offers
at the constrained node may be found upon the energy stack. Instead, the dual price,
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Fig. 2 Link between energy and reserve prices in the New Zealand Market, reserve constraint
binding upon HVDC transfers Northward, Island Price differential refers to the difference in prices
between the islands

� is introduced into the marginal pricing equation with the final pricing at node two
given by (1) with the ratio at generator two significantly affecting price.


2 D 1

1C kg;2
pg;2 C kg;2

1C kg;2
.
1 C pr;2/ (1)

Considering the Case of a Price Sensitive Consumer who also participates in the
reserve market. This consumer receives revenue from it’s IL offers, and given the
price coupling behaviour as shown in Fig. 2 can often be paying a reduced effective
price. This disparity between the nominal and the effective energy price forms the
basis of our desire to use the simulation model. A naive optimiser, concerned with
price only would reduce load in many of these situations. However the optimal
decision is to continue operating as revenue from the reserve market compensates
the high price.

3 Boomer Consumer

Demand side participation is identified as a key feature leading to an efficiently
functioning electricity market [6, 12]. The signal for DSP is the wholesale spot price
which is sensitive to demand due to the hockey stick offer stack. This can result in
savings for both reduced and consumed load as price decreases. To understand DSP
it is thus imperative to understand the impact of consumption upon the wholesale
price.

We have demonstrated that energy and reserve price coupling can and does
occur. We have developed software that utilizes vSPD [13]. For given base supply
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Fig. 3 Price Distributions over different modes of operation as determined using Boomer
Consumer

scenarios the principle uncertainty lies in overall demand for electricity and (to a
lesser extent) the distribution amongst the nodes. We use two multiplicative scale
factors (NI and SI) and sample from a joint lognormal distribution of historical
(fitted) data. Using vSPD a number of feasible plant consumption levels are
simulated against the uncertain demand and supply scenarios to create a distribution
of prices as shown in Fig. 3.

Integrating IL with DSP in reserve markets is a difficult challenge. For a
consumer with a given level of energy consumption, it may be possible to offer some
or all of this load as reserve. This benefits the consumer in two ways, directly earning
revenue and potentially depressing energy prices by freeing up plant capacity.

The problem of offering IL in quantities great enough to (potentially) move
market prices is quite similar to the one facing generators offering spot energy
into the pool market. In each case, one wishes to construct a multi-tranche offer
which maximizes the expected benefit of the market outcome, taking into account
any natural or financial hedges one may possess. The energy-offering version of
this problem was considered in [14], and we follow a similar methodology here.
In essence, the (quantity, price) plane is subdivided into a finite grid of rectangular
cells, and the class of admissible offer curves (supply functions) is restricted to
those which follow the edges of cells in this grid. The expected value of such a
curve decomposes into the sum of terms corresponding to dispatch on edges of cells
(horizontal or vertical line segments); this allows the offer-optimization problem to
be efficiently solved via a dynamic-programming method.
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4 Conclusions

In this paper we present the development of a simulation model which assesses
the impact of load consumption and reserve offers on nodal energy prices. This
simulation is based upon an improved theoretical understanding of the NZEM
and how reserve couples with energy prices. The model simulates a number of
scenarios against uncertain demand to create an expected distribution of prices at
different plant consumption levels. The site can integrate this into their decisions,
along with pertinent internal factors such as the state of production, to determine
their consumption level. The model explicitly integrates reserves, an improvement
upon naive price based situations which would cause inappropriate curtailment. We
conclude that such models are an effective tool for determining the optimal level of
consumption under uncertainty in a complex market.
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Controlled Approximation of the Stochastic
Dynamic Programming Value Function
for Multi-Reservoir Systems

Luckny Zéphyr, Pascal Lang, Bernard F. Lamond, and Pascal Côté

1 Introduction

The mid-term reservoir problem usually involves release and spillage decisions in
an uncertain environment. Uncertainty is mainly due to natural inflows and possibly
electricity demand that may significantly vary over time. Under the framework of
Stochastic Dynamic Programming (SDP), a general model can be formulated as
follows:

Vt�1.st�1/ D Max
ut

n
ft.st�1; ut/C E QQt

ŒVt.st/�
o

(1)

S.t. st D Ast�1 � But C QQt (2)

.st�1; ut; st/ 2 Ct (3)

where Vt is the value function; st is a state vector that represents the reservoir levels
at the end of period t, ut is a vector of release and spillage decisions, and QQt is a
vector of random variables, typically natural inflows, that are assumed to be serially
independent. The convex set Ct may entail bounds on reservoir levels, release and
spillage as well as joint state-decision constraints. Function ft measures a revenue
or electricity production. See [4, 5], and [11] for more contextual formulations.

To circumvent the so-called curse of dimensionality, several schemes have been
proposed over the years for approximating the value function, e.g. Stochastic Dual
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Dynamic Programming [8, 10], Reinforcement Learning [1, 6], Neuro-Dynamic
Programming [2, 3], Approximate Dynamic Programming [9].

In classical Dynamic Programming works, the value function is computed over
a regular grid. Our approach is based on a simplicial partitioning of the state space,
inducing a finite grid of points. The actual value function is computed over such grid
points and, under convexity assumptions, extended as lower and upper bounds over
the state space’s continuum. These bounds will suggest locations where the partition
can be refined.

2 Initial Partition of the State Space

We assume the state space to be a hyperrectangle A D fy 2 Rn j a � y � bg,
where a < b are bounded vectors, and n is the number of reservoirs. By the change
of variable xi D yi�ai

bi�ai
, this hyperrectangle is mapped to the unit hypercube P D

Œ0; 1�n D fx 2 Rn j 0 � x � eg, where e D .1; : : : ; 1/T .
We wish to divide this hypercube into n-dimensional initial simplices. The

minimal number of such simplices is nŠ A simple algorithm known as Kuhn
triangulation achieves this minimum [7]. Except for the choice of an opposite pair
of vertices, this algorithm does not allow for any degree of freedom.

We present a more flexible approach based on the choice of an overall “center”
c 2 Int P. The complexity of this method far exceeds that of the Kuhn triangulation.
However, this approach may be useful as many electric utilities operate few
reservoirs of practical importance.

A k-dimensional face of P (hereafter k-face), with 0 � k � n, is the hypercube
that results when n � k variables xi are fixed to either bound 0 or 1. It can be shown

that P contains

�
n
k

�
2n�k k-faces, and overall, 3n faces. Let F be a k-face of P. A

.k�1/-face F0 of P is called a descendant of F if F0 � F (i.e. one additional variable
is fixed). Let D.F/ denote the set of descendants of face F. Clearly, j D.F/ jD 2k.

We shall quasi-partition1 each k-face F of P into a collection Sk.F/ of Nk

simplices recursively as follows. Let cF denote the projection of center c onto face F
(then cF 2 Ri F). Assume that each descendant F0 � F is already quasi-partitioned
into Nk�1 .k � 1/-dimensional simplices S0 2 S 0

k�1.F0/. We lift each such simplex
S0 into k-space by constructing the set ˙.S0/ D Conv.fcFg [ S0/2. Clearly, ˙.S0/
is a k-dimensional simplex. Furthermore, Ri ˙.S0/ \ Ri ˙.S00/ D ; whenever
Ri S0 \ Ri S00 D ;. Finally, the union of all such lifted simplices is a cover for
F. Thus, the collection f˙.S0/ j S0 2 S 0

k�1.F0/;F0 2 D.F/g is a quasi-partition
of F.

1A quasi-partition of a set X is a finite collection of convex sets fC1; : : : ;Cmg such that Ri Ci \
Ri Cj D ; 8 i ¤ j, (Ri denoting relative interior) and [ Ci D X.
2Conv denoting convex hull.
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Fig. 1 Examples of lifting

c•

•

•

•

•

c•
•

N2 = 8 N3 = 48

From this inductive construction, it follows that Nk D 2kNk�1. Since P’s vertices
are its zero-dimensional faces while also zero-dimensional simplices, we can take
them as starting family, and conclude that N0 D 1. Therefore, we have Nk D 2kkŠ.
Figure 1 provides two and three dimensional illustrations.

A typical algorithm for the decomposition of the hypercube P can be outlined as
follows:

k 0

Initialization : P’s vertices
While k < n do

k kC 1
For each k-face F

For each descendant F0 2 D.F/
For each simplex S0 2 S 0

k�1.F0/
Construct the set ˙.S0/

End_For
End_For

End_For

End_While

This process is repeated until the hypercube P is decomposed into Nn D 2nnŠ
n-dimensional simplices.

3 Iterative Division of Simplices

The vertices of the initial simplices constitute an irregular grid on which function
Vt�1 (hereafter V for short) is evaluated. Refinement of this grid may be done
by iteratively dividing the existing simplices. A particular simplex S with vertices
x1; x2; � � � ; xnC1 is the convex hull of its extreme points:

S D
(

x

ˇ̌̌
ˇ̌ � x
1

�
D
�

X
eT

�
�; � � 0

)
, where X D �

x1; x2; � � � ; xnC1� is a n � .n C

1/ matrix. Since these vertices are affinely independent,



X
eT

�
is a full-rank square

matrix.
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Over this simplex, we have evaluations of V at its vertices: zi D V.xi/; i D
1; � � � ; nC 1, and a subgradient of V at each vertex: gi 2 @V.xi/; i D 1; � � � ; nC 1.
To evaluate the approximation gap of this function, we construct a lower and an
upper bound, respectively V and V . At any point x 2 S, the difference V.x/ � V.x/
provides a measure of the approximation error. If we evaluate function V at a point
y 2 S where the estimation error is maximal, the maximal imprecision� D V.y/�
V.y/ may be considered an approximation gap over simplex S. Using y as division
point involves subdivision of S into at least 2 subsimplices, y then contributes one
additional grid point.

Under concavity assumptions, a lower bound V on V is obtained by linear

interpolation from the simplex vertices: V.x/ D zT� D zT

�
X
eT

��1�
x
1

�
; x 2 S, where

zT D .z1; : : : ; znC1/. The approximation gap � and the division point y� may be
computed by way of the following linear program:

� D max�;y;� �� zT� (4)

S.t. � � zi C gi.y � xi/; i D 1; � � � ; nC 1 (5)

y D X� (6)

eT� D 1 (7)

� � 0 (8)

Simplex S is then divided into k C 1 subsimplices, with y� a common vertex,
k being the dimension of the face on which y� is located. To prevent discontinuity
in the approximation of V , any other simplex sharing this face will be similarly
devised. Figure 2 provides some two-dimensional illustrations.

The following outlines an algorithm for the division of simplices.

Repeat until � < �

(i) Choose a not divided simplex with maximal approximation gap
(ii) Compute V.y�/ and g.y�/

(iii) For each subsimplex, compute its �, y�, V.y�/ and g.y�/

� is a prescribed threshold.

Fig. 2 Examples of
subsimplices

• • •
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4 Numerical Experiments

A few problem instances were generated by Monte Carlo simulations. The number
of reservoirs varied from 2 to 4 (see Fig. 3).

Bounds on reservoir levels and turbine capacity as well as inflows were randomly
generated from uniform distributions with supports of the form Œa; b�. The numerical
values of these parameters are summarized in Table 1.

For each run, one DP recursion was performed. We tested our method on several
reservoir configurations. For each configuration, Table 2 reports the characteristics
of the problems solved for each DP recursion.

Furthermore, at each iteration of the algorithm for division of simplices, the
computation of the division point y� and the imprecision gap � involves solution
of a linear program with 2n C 2 variables and 3n C 3 constraints. For each run,
moreover the hypercube algorithm, we performed 1000 iterations of the algorithm
for division of simplices; overall, the CPU time varied approximately between 2 and
30 min.

Figure 4 reports the resulting two dimensional grid for one of the random
instances, after executing the division algorithm over 65 iterations. This example
gives an inkling of the imprecision that would result if a regular 8� 8 grid was used
instead.

Figure 5 depicts the evolution of the imprecision over one thousand iterations for
4 of those instances. In all four cases, the rate of improvement in the relative “error”,
while initially significant, seems to taper off over iterations. We may therefore
conjecture that the algorithm’s convergence rate is sublinear.

Fig. 3 Reservoir
configurations

n= 2 n= 3 n= 4

Table 1 Numerical bounds
on the parameters

Parameter a b

si 500 2000

Nsi 5000 11;000

ui 0 0

Nui 2000 15;000

qi 0 2000

Table 2 Problem
characteristics

n # of variables # of constraints

2 78 90

3 81 98

4 84 106
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5 Conclusions

We have presented an approach to approximate the value function of Stochastic
Dynamic Programming. Our method is based on partitioning the state space into
simplices followed by iterative division of existing simplices. Refinement of the
approximation is guided by lower and upper bounds on the true value function. This
method can be particularly applied in the context of reservoir systems management.
However, the complexity of hypercube decomposition limits its scope to less than
10 reservoirs.
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A Computational Method for Predicting
the Entropy of Energy Market Time Series

Francesco Benedetto, Gaetano Giunta, and Loretta Mastroeni

1 Introduction

The understanding of the dynamic behaviour of energy market time series (EMTS)
is of great and crucial interest for the analysis of energy commodities. In particular,
the observation of historical data as well as the analysis of their volatility (and price
fluctuations) can be useful indicators of the dynamic characteristics of the series,
in order to effectively perform forecasting procedures. We can address, as usual, to
standard deviation (SD) as a measure of deviation from the mean, while we will use
entropy as the metric for evaluating the irregularities and, hence, the predictability
of a series.

There are plenty of works exploiting the concept of entropy applied to analysis
of financial and energy markets time series. For example, the validity of the entropy
approach for analyzing financial time series is demonstrated in [2]. Then, in [7],
an empirical method for evaluating the entropy of a series is proposed, namely the
approximate entropy. Recently, studies focusing on the energy market have been
carried out under the entropy-based approach. An entropy analysis of crude oil price
dynamics is revealed in [4], while evidences from informational entropy analysis in
evaluating the efficiency of crude oil markets were discussed in [6].

In this paper, we move further by proposing an algorithm to predict the entropy
regarding the future behaviour of EMTS, based on the observation of historical
data. Our algorithm exploits the concept of entropy under an information theory
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viewpoint, recalling the maximum entropy theory to evaluate the entropy estimation.
In addition, our prediction is performed according to optimum prediction methods,
i.e. following the least squares minimization scheme (as happens in conventional
computational and engineering prediction approaches).

The remainder of this work is organised as follows. Section 2 discusses the
basic frameworks about energy market-based entropy analysis. The first half of
the section is dedicated to the maximum entropy theory while in the second half
the approximate entropy method is briefly illustrated. Then, our proposed entropy
estimator is shown in details in Sect. 2.2, with all the mathematical derivations.
Section 3 contains some preliminary results and discussions about the application
of our method to EMTS. Finally, our conclusions are depicted in Sect. 4.

2 Energy Market Entropy Analysis

2.1 Maximum Entropy Theory

Previous characterizations of the maximum entropy spectral density assume that the
process is stationary and Gaussian. Let us now define with Cov(k) the autocovari-
ance function of the input random series x(n) of N data, and defined as:

Cov .k/D 1

N

NX
iD1

x.i/ � x�.i � k/�j�j2 (1)

where k = -N,. . . +N, x*(n) stands for complex conjugate, i = 0,˙1,˙2, . . . , and the
mean � is expressed by

�D 1

N

NX
nD1

x.n/ (2)

The autocovariance function can be analyzed in the transformed (frequency)
domain, obtaining the power spectral density (PSD) S(!) given by [5]:

S.!/ D
1X

kD�1
Cov.k/ � e�j!k (3)

Now, according to [1], the entropy rate h is given by:

h D1

2
ln .2
e/ C 1

4

�
Z 


�

ln.S.!//d! (4)
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where ln(�) is the natural logarithm. It is now interesting to underline that the entropy
of a finite segment of a stochastic process is upper-bounded by the entropy of a
segment of a Gaussian random process, according to (4). This means that a white
(i.e. uncorrelated) time series is characterized by the maximum entropy, i.e. it is
obviously unpredictable [1]. Lower entropy values result in more predictable time
series.

2.2 Proposed Maximum Entropy Estimator

Given a time series x(n) of length N samples, i.e. n = 1, 2,. . . N, the proposed
maximum entropy estimator (MEE) works accordingly to the following steps. First,
the N samples of x(n) are divided in K blocks, each of length M = N / K samples.
Then, the mean is estimated for each i-th block, according to the following:

MeaniD 1

M

MX
jD1

xi.j/ (5)

where xi (j) stands for the j-th sample of the i-th block, with i = 1, . . . , K and j = 1,
. . . , M. Then, the mean of the i-th block is subtracted from the same i-th block, so
that the blocks are zero-mean series:

yi .j/Dxi .j/�Meani (6)

This step is required because the object of the maximum entropy analysis needs
to be a zero-mean series. Now, the autocorrelation function, Cy;i .�/, of each block
(i.e. of each sequence yi(�), with i = 1, 2, . . . , K) is evaluated according to the
following:

Cy;i .k/D 1

M

MX
jD1

yi.j/ � y�
i .j � k/ (7)

The autocorrelation function is symmetric and has a maximum in zero, by
definition (see [5]), hence it is not more a zero mean series. But, the input of the
maximum entropy analysis must be a zero-mean series. Hence, we have now to
evaluate the mean of each i-th autocorrelation block, mi, and subtract these means
blockwise. These means are evaluated using Eq. (5), with Cy;i(�) instead of xi(�). In
practice, we are evaluating the autocovariance function of each sequence, instead of
the autocorrelation, according to the following:
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Covy;i .k/D 1

M

MX
jD1

yi.j/ � y�
i .j � k/�j�ij2 (8)

where y*() means complex conjugate. Now, the K autocovariance functions become
the input of the optimum linear predictor of parametric order p. The outputs of the
optimum linear prediction step are p prediction coefficients that are now used to
estimate the autocovariance of the next block that is the block of which we want to
evaluate the entropy. Let us now define with bCovy;KC1 .k/ the predicted autocovari-
ance sequence of the (K+1)-th block. This sequence is evaluated according to the
following:

bCovy;KC1 .k/D
p�1X
bD0

ab � Covy;K�b .k/ (9)

where Covy;K�b .k/ are the linearly combined (K - b) previous observed blocks
and ab are the AR coefficients, evaluated according to the optimum least squares
minimization algorithm, [5]. In particular, we use the Levinson-Durbin recursion to
solve the least-squares formulation, often referred to as the autocorrelation method
[5]. Now, the predicted autocovariance sequence is first transformed in the frequency
domain, see Eq. (3), obtaining the PSD of the analyzed block. Then, the entropy of
the (K+1)-th block is estimated according to the maximum entropy approach, see
Eq. (4).

3 Application to Energy Market Time Series

We analyze daily prices (or observations) of two different commodities (Brent
Crude Oil and WTI oil prices) in the period between May 20, 1991 and August
14, 2012. In particular, the time series were obtained from http://www.quandl.com.
Figure 1 shows the annual entropy variations obtained with both the conventional
approximate entropy (ApEn) technique (with m = 1, and a value of r=20 % of the
SD of the series) and the new computational method for the Brent Crude Oil prices
(with K = 26 and p = 10). The ApEn method estimates the entropy ex-post (i.e. we
need all the samples of that current year to estimate the entropy of that year), while
we evaluate the entropy ex-ante (i.e. we only need the past samples to predict the
entropy of the next time interval). In full accordance with [4], it is clearly visible
from Fig. 1 that some peaks of the entropy pattern coincide with the outbreak of
some major events.

For example, we have clear entropy peaks in correspondence to critical events,
such as the 1991 Gulf War, 2001-9-11 terrorist attacks and the Lehman Brothers
bankruptcy. This suggests that major financial and socio-political events strongly
affect the diversity of the Brent crude oil market. Then, Fig. 2 depicts the annual
entropy variations obtained with both the two methods for the WTI Oil prices. In

http://www.quandl.com
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Fig. 1 Annual normalized (to 1) entropy variations of the Brent Crude oil prices

Fig. 2 Annual normalized (to 1) entropy variations of the WTI oil prices

this case, the correspondences between the entropy peaks and some socio-political
events are less evident for both the methods. This is because, as also stated in [3],
the WTI oil series is characterized by a more unpredictable behavior than the Brent
crude oil series.
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4 Conclusions

This work presents a new computational method for predicting the entropy of a
time series. We have applied our prediction technique to energy market time series,
matching the conventional approximate entropy estimation method. Preliminary
results encourage the application of our method to energy-market analysis. Further
researches will be devoted to fully characterize the performance of this new
prediction method, and also its application to financial market time series.
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Demand Uncertainty for the Location-Routing
Problem with Two-dimensional Loading
Constraints

Thiago Alves de Queiroz, José Fernando Oliveira, Maria Antónia Carravilla,
and Flávio Keidi Miyazawa

1 Introduction

King and Mast [7] pointed out that the final cost of the goods can increase between
10 and 15 % depending on the supply chain infrastructure. In order to reduce such
cost, integrated decisions from strategic, tactical and operational levels must be
considered when planning and designing logistic systems. A problem that attains
these three levels is the Location-Routing Problem (LRP), in which decisions from
the strategic (where to locate depots), tactical (which customers to serve from each
depot) and operational levels (decide the routing plan) are taken simultaneously.

Belenguer et al. [2] presented a branch-and-cut algorithm to solve the LRP, which
is strengthened by valid inequalities and separation algorithms. A branch-and-cut-
and-price approach was developed in [1] allowing to solve instances with up 199
customers.

In this paper, we deal with the LRP with two-dimensional loading constraints
(2L-LRP) and demand uncertainty, an integrated problem without any reference in
the literature, through an integer programming model. In this case, the customers’
demand are pallets that must be arranged inside the vehicles. Demand uncertainty is
described by a scenario approach and appears due to the volatility in the markets [3].

In Sect. 2, we formally describe the problem and present the integer model. In
Sect. 3, a computational experiment over one instance adapted from a real case study
is detailed. Finally, conclusions and directions for future work are given in Sect. 4.
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2 Problem Definition and Integer Formulation

In the 2L-LRP we have: a set of possible depot locations I, in which each i 2 I
has weight storage capacity bi and opening cost Oi; a set of customers J, where
each j 2 J has a set Rj of rectangular items, in which the total area of items in Rj

is aRj and the total weight is dRj. And, each item r 2 Rj has length ljr, width wjr ,
area ajr and weight djr; a set of identical vehicles, each one with weight capacity Q,
rectangular surface area with dimensions .L;W/ and fixed cost F when used; and,
an undirected graph G D .V;E/, with V D I[ J representing the set of vertices and
E the set of edges, each edge e with a traveling cost ce. The graph is complete for
the connections between customer-customer and depot-customer, however there is
no edge for the relation depot-depot.

A solution of the 2L-LRP consists in opening a subset of depots, from which
routes are established respecting the vehicle capacity and serving the customers.
The number of routes, for each depot, is limited by the respective depot capacity,
and each customer is visited exactly once. Each route starts and finishes at the same
depot, and is formed by a sequence of visited customers, such that their items can
be arranged without overlapping inside the vehicle’s rectangular surface.

The demand uncertainty is tackled by a scenario approach in which each scenario
s of a set of scenarios P represents different demands for the customers and
has probability ps of occurrence, such that

P
s2P ps D 100%. In this way,

we can construct solutions that are robust in face of the market’s volatility, and
simultaneously effective when planning the supply chain.

The integer model for the 2L-LRP is described in the integer formulation below.
The notation used is the following: ı.S/ represents the edges with one end-node in

S and the other in V � S; Ds.S/ D d
P

j2Ss

P
r2Rj

djr

Q e is a lower bound on the number
of vehicles necessary to supply the weight in S 	 J, in accordance with scenario

s 2 P; As.S/ D d
P

j2Ss

P
r2Rj

ajr

A e, in which A denotes the vehicles’ rectangular
surface area.

The decision variables are: yi D 1, indicating that a depot is open at location
i 2 I; xijs D 1 when a depot at i 2 I serves customer j 2 J in scenario s 2 P;
and, wjks D 1 imposing that edge f j; kg 2 E, in scenario s 2P , is traversed exactly
once. Routes that serve only one client, called return trips in [2], are modeled by
considering the duplicated set I0 D I, so V D V [ I0, and new edges fi0; jg for i0 2 I0
and j 2 J are added in E. Note that the decision to open a depot must be performed
observing all scenarios in P , since it represents a long term decision (strategic one)
whose cost is significantly greater than the other ones.

The objective function of the integer formulation aims to minimize the overall
cost given by the fixed cost of opening depots plus the cost associated with the
probability of occurrence of each scenario. And, for each scenario, there is the
fixed cost of vehicle usage, related with the number of routes, and the total cost
of the routes. Constraints (1) ensure that each customer, in each scenario, is served
by exactly one depot, while constraints (2) impose that the capacity of each depot
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must be respected. Constraints (3) consider that customers can only be served from
open depots, and (4) are the degree constraints for the customers, for each scenario.
Constraints (5) impose that there is a minimum number of routes starting from each
depot, in each scenario, in order to serve the customers’ weight demand.

The global minimum number of routes that must be established to serve all the
customers’ demand is guaranteed in constraints (6). And, if a depot is opened, it
has to serve at least one customer as defined in (7). It is worth to mention that
As.S/ is just a continuous lower bound of the two-dimensional bin packing problem.
Nevertheless, we need to solve this problem in order to get the precise number of
bins/vehicles really necessary to arrange all items in S. Similarly for Ds.S/ in the
one-dimensional case.

The capacity constraints for the vehicles are in (8), and constraints (9) ensure that
there is a path connecting each depot to its customers. Moreover, if there is an edge
connecting a given customer with another one, this customer can not be in a return
trip as pointed in (10), while constraints (11) consider the opposite. Constraints (12)
impose that a customer k must be served by the same depot i which serves customer j
if k is connected with j. Constraints (13) and (14) make the correspondence between
variables xijs and wijs relating the customer-depot. To handle the two-dimensional
packing problem, constraints (15) eliminate routes in which the respective packing
is not feasible. Finally, constraints (16)–(18) impose that all the variables are binary.

The number of constraints (8), (9) and (15) may be very large, so they are added
as cutting planes and detected with specific separation algorithms. The algorithms
for (8) and (9), applied both on integer and fractional solutions, are based on the
computation of the Gomory-Hu tree, similar to that in [6]. So for each min s � t
cut, for s 2 I and t 2 J, we check the violation of such constraints assuming S with
all nodes of the t-component. Although constraints (9) can be efficiently separated
with this procedure, we also used for (8) the separation strategy proposed in [8] for
the rounded capacity inequalities when dealing with the capacitated vehicle routing
problem.

On the other hand, constraints (15) are checked only when an integer feasible
solution is found, since testing the feasibility of a packing is more time consuming,
and in fact it is an NP-hard problem [5]. For this task, we use the constraint pro-
gramming based approach proposed in [4], and modify it to take into consideration
the sequence in which customers are visited in the route. This means that items
from a given customer are accessible when the unloading operation occurs, namely
multi-drop requirements [9].

min
X
i2I

Oiyi C
X
s2P

ps

0
@F

2

X
i2I[I0

X
j2J

wijs C
X

fi;jg2E

cijwijs

1
A

subject to WX
i2I

xijs D 1; 8 j 2 J; 8 s 2P .1/
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X
j2J

djxijs � biyi; 8 i 2 I; 8 s 2P .2/

X
s2P

xij � yijSj; 8 i 2 I; 8 j 2 J .3/

X
e2ı.j/

wes D 2; 8 j 2 J; 8 s 2P .4/

X
j2J

.wijs C wi0 js/ � 2
P

j2J djsxijs

Q
; 8 i 2 I; 8 s 2P .5/

X
i2I[I0

X
j2J

wijs � 2maxfDs.J/IAs.J/g; 8 s 2P .6/

X
s2P

X
j2J

xijs � yi; 8 i 2 I .7/

X
e2ı.S/

wes � 2maxfDs.S/; As.S/g; 8 S 	 J; 8 s 2P .8/

X
e2ı.S/

wes � 2.xijs C yi � 1/; 8 S 	 J; 8 j 2 S; 8 i 2 I; 8 s 2P .9/

X
i02I0

wi0 js � 2 � .
X
k2J

wjks C
X
i2I

wijs/; 8 j 2 J; 8 s 2P .10/

X
k2J

wjks � 2 � .wijs C wi0 js/; 8 j 2 J; 8 i 2 I W i0 D i 2 I0; 8 s 2P .11/

wjks C xijs � 1C xiks; 8 j; k 2 J; 8 i 2 I; 8 s 2P .12/

wi0 js � wijs; 8 j 2 J; 8 i 2 I W i0 D i 2 I0; 8 s 2P .13/

wi0 js C wijs � 2xijs; 8 j 2 J; 8 i 2 I W i0 D i 2 I0; 8 s 2P .14/

X
e2R

wes � jRj � 1; 8 R 2 Rs; 8 s 2P .15/

yi 2 f0; 1g; 8 i 2 I .16/

xijs 2 f0; 1g; 8 i 2 I; 8 j 2 J; 8 s 2P .17/

wes 2 f0; 1g; 8 e 2 E; 8 s 2P .18/
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3 Computational Study

In order to verify the quality of the model, we used it to solve one instance adapted
from [3], a real case based on an European supply chain. The plants and warehouses
are possible depot locations, so I D 8, while there are J D 30 customers (retailers
and markets). For each depot i, its capacity bi is given by the number of technologies
(according to [3] each plant has 12, and each warehouse has 6) multiplied by
the factor ˛2. If the depot is a plant its cost is the sum of the fixed cost of each
technology. Otherwise, the cost is the fixed cost of the warehouse, plus its variable
cost multiplied by its capacity, added to the sum of the fixed cost of each technology.

Each vehicle transports one forty-foot container, with rectangular surface equal
to A D L�W D 2358�12032mm2 and max payload of Q D 26:600 kg. Moreover,
the values of L and W are divided by the factor ˛. The fixed cost F of using a vehicle
is the inventory cost (0:3e) multiplied by the rectangular surface area. The cost c of
each edge corresponds to the fixed cost of transportation (300e) plus the variable
cost of 0:1e multiplied by the distance between the vertices, given in km.

In order to create the demand of each customer we consider the dimensions of
standard pallets divided by the factor ˛. The weight/payload d of each pallet is
equal to its area multiplied by the correctness factor ˇ. As [3] did not consider two-
dimensional items, we randomly determined the number of items Rj and assigned
them to the pallets of each customer j. The size of Rj varies between 5 and 10. We
assumed ˛ D 100 and ˇ D 10, and considered only the integer part of the resulting
values.

Following [3], three scenarios are considered: (i) realistic, with p1 D 50%, so
there is no change in the customers’ demand; (ii) optimistic, with p2 D 25%, in
which the demand, that is, the total number of items increases around 15%; and
(iii) pessimistic, with p3 D 25%, which considers a decrease by almost 15% in
customers’ demand. Figure 1 illustrates the result returned after the solver reached
the time limit of 24 h considering a computer with 1.90 GHz Intel Xeon E5-2420
CPU, 32 GB of RAM memory, Gurobi Optimizer 5.6.2 (for the integer formulation)
and IBM ILOG CP Optimizer 12.5 (for the constraint programming algorithm). The
time limit of 2 s was used in each call to the constraint programming algorithm, but
such algorithm always returned a solution before reaching this time limit.

This solution, with a gap of 13:2%, has value of the objective function equal
to 38;555:75. The number of user cuts inserted over the branch-and-bound tree is
of 115;865. The edges marked as added and deleted in scenarios #2 and #3 show
the change in the routes when the customers’ demand increases and decreases,
respectively, in comparison to scenario #1, the realistic one.

Comparing the solution for each scenario in Fig. 1, the realistic one, scenario
#1, requires 9 routes, while in #2 it is increased to 11, and decreased to 9 in
scenario #3. Note that the solution is in accordance with the characteristics of each
scenario. Although the CPU time can be considered high at a first sight, the problem
under consideration has strategic and tactical decisions. Moreover, to the best of our
knowledge, there is no exact algorithm neither integer formulations available for the
2L-LRP in the literature, including the version with demand uncertainty.
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Fig. 1 Final solution in which p stands for plant, w for warehouse, m for market and r for retailer.
The depots/customers’ position in the figure does not correspond and are not related with those
given in the instance

4 Concluding Remarks

We proposed an integer formulation for a new variant of the location-routing
problem. The computational study over one instance adapted from a real-world
problem shows that the integer formulation is suitable for small instances, since
while operational decisions, as the determination of vehicle routes, have to be taken
quickly, the location of depots or the link between customers and depots are tactical
and even strategical decisions and therefore have a larger timespan to be taken.

After all, we observe that there is room for improvements by considering new
separation algorithms and valid inequalities, as well as by introducing good lower
bounds instead of checking the packing feasibility every time.
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Location Game and Applications
in Transportation Networks

Vladimir Mazalov, Anna Shchiptsova, and Yulia Tokareva

1 Introduction

This paper studies a non-cooperative game in a transportation graph. Consider a
market where the consumers are distributed in the vertexes of the transportation
graph G.V;E/. The edges of the graph are transportation links (railways, highways,
airlines, etc.). The vertexes are the hubs (bus stops, airports, railway stations, etc.).
The demand is determined by the flow of passengers.

There are n companies (players) who make a service in this market. A service is
possible only if there is a link ej 2 E between two vertexes in graph G.V;E/. The
demand is determined by the number of consumers in vertexes v1; v2 2 V connected
by the link ej

d.ej/ D d.v1; v2/; ej D .v1; v2/:

Assume, that player i has mi units of a resource. He distributes the resource
among the links in graph G.V;E/. Suppose, that each player i distributes mi units of
the resource and forms the transportation network Ei which is a subset of the links
in graph G.V;E/.

The demand on the link ej is distributed between players. Each player presents
the service for the part Mij of the consumers on this link. Players announce the
prices for the service on the link ej. The part of customers which prefer the service
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of player i depends of the price pij and the prices of other players on this link

Mij D Mij.pij; fprjgr2Njnfig/; jMijj � 1;

where Nj—number of the rival players on the link ej.
The number of consumers who prefer the service i on the link ej is

Sij.fprjgr2Nj/ D Mij.pij; fprjgr2Njnfig/d.ej/:

Let xij be the resource distribution of player i on the link ej, i.e.

xij D
(
1; ej 2 Ei;

0; otherwise.

Player i with mi units of the resource on graph G.V;E/ can attract consumers
whose number equals

Si D
jEjX
jD1

Mij.pij; fprjgr2Njnfig/d.ej/xij:

The gain of player i on the link ej is equal to the price for the service multiplied
by the share of the consumer’s demand

hij.fprjgr2Nj/ D pijMij.pij; fprjgr2Njnfig/d.ej/:

Denote by cij the costs of player i on the link ej. The costs are proportional to the
number of consumers who use the resource. Thus, the general payoff of player i on
the graph G.V;E/ is

Hi.fprgr2N ; fxrgr2N/ D
jEjX
jD1

�
hij.pij; fprjgr2Njnfig/�

� cijSij.pij; fprjgr2Njnfig/
�
xij; (1)

where p is the profile of prices of all players and x defines the allocation of the
resources on the network E1 � : : : � En.

The game consists of two steps. First, players form their transportation networks
(location problem) and then they announce the prices for their service (pricing
problem). The consumers are distributed among the services and the players receive
the payoffs H1; : : : ;Hn. The objective of a player is to maximize the payoff. The
location problem, firstly, installed by Hotelling [4] as a problem of Nash equilibrium
of competitive facilities on a linear market, afterwards was considered in linear
variant in the articles of d’Aspremont et al. [3], Kats [5], Bester [1], and in plane
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market for two firms in the article Mazalov and Sakaguchi [6]. Pricing competition
among more than two firms was considered in McFadden [7] where sufficient
conditions on the existence of Nash equilibrium in pricing game for any numbers of
firms are obtained.

In this paper we derive the equilibrium in this location-pricing game for any
number of players on the transportation network.

2 Location Game-Theoretic Model on Graph

Let the market is presented by some transportation network G.V;E/. On the market
there are n companies. Each company allocates mi transport units on the links of the
network. Thus, the firms form the network of routes E1 � : : :�En. The allocation is
determined by the vectors xi; i D 1; : : : ; n.

xij 2 f0; 1g;
jEjX

rD1
xir D mi:

Then, the players simultaneously announce the prices fpigi2N in their networks
Ei; i 2 N,

pij 2 Œ0;1/; ej 2 Ei:

In every link of the network G.V;E/ it is determined a flow of consumers d.ej/

(ej 2 G.V;E/). We suppose that the flow depends of the population size P1;P2 in
the vertexes of the departure and destination:

d.ej/ D
q

P.v1j /P.v
2
j /

2
; ej D .v1j ; v2j /:

The share of the firm i in the flow on the link ej depends of the price pij and the
prices of the competitors on this link. We suppose that the distribution of consumers
follows the multinomial logit-model [7]. So, the share of the firm i in the flow on
the link ej is

Mij.pij; fprjgr2Njnfig/ D ea1pijC.a;kij/

jNjjP
sD1

ea1psjC.a;ksj/ C e�
; ej 2 Ei;

where a1 < 0, a—constant vector, kij corresponds to route ej, Nj—number of
competitors on the link ej. The term e� corresponds to the part of consumers who
are not in the service.
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The gain of the firm on the link ej is equal to

hij.fprjgr2Nj/ D .pij � cij/Mijd.ej/; i 2 Nj:

and the general gain is

Hi.fprgr2N ; fxrgr2N/ D
jEjX
jD1

hij.fprjgr2Nj/xij:

We determined n-person non-cooperative game on the set of the strategies .xi; pi/,
i 2 N.

3 Equilibrium in Location-Pricing Game

Suppose that the players fixed the allocation of the resources x and announce the
prices p. In the pricing game the gain of i-th player on the link ej depends of the
profile of prices pij on this link. So, we can consider the pricing game in each link of
the network G.V;E/. The existence and uniqueness of the equilibrium was proven
in the article [2].

The equilibrium fp�
ijgi2Nj can be constructed as a limit of the sequence of best

response strategies. The best response strategy of the player i is satisfied to the
equation

�
1 �Mij.pij; fprjgr2Njnfig/

�
.cij � pij/ D 1

a1
:

We prove that if we introduce a new firm in the pricing game then the payoffs of the
players on the link ej are decreasing.

In the location game for two players we apply the following procedure. Let one
of the firms allocates the resources in the network G.V;E/. We allocate the resource
units of other firm sequentially, one by one, every time finding the equilibrium in
prices. The equilibrium we find using the best response strategies. Using the fact that
increasing in the number of firms on the link involves the decreasing of the payoffs
it is not difficult to show that this sequence of best response strategies converges.

4 Modelling

The model proposed earlier was applied to the model of competition on the Russian
and Chinese airline markets. Transportation networks of these markets are presented
in Figs. 1 and 2.
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Fig. 1 Russian airline market

Fig. 2 Chinese airline market

In Table 1 you can see the main indicators of these markets. We see that the
number of vertexes and links in the transportation graph of Russian market is larger
than in Chinese market. However, the number of flights in Chinese market is larger
than in Russian market. So, the level of competition in Chinese market is higher.
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Table 1 Market indicators Indicator Russia China

Number of airports 27 14

Number of routes 95 61

Number of direct routes 239 351

Number of non-direct routes 74 14

Number of aircompanies 11 5

Maximal number of aircompanies on the link 5 3

Frequency of flights per week 2.8 6.4

Table 2 Equilibrium on the route Irkutsk-Novosinirsk

Frequence

Aircompany Time (h) (per week) Distance (km) Eq. price (and real price) Share of market

Siberia (S7) 2.4 4 1462.6 3029.95 (9930) 0.23

IrAero 3.55 5 1520.918 2986.04 (10,930) 0.1

Angara 2.1 3 1462.6 3347.28 (6630) 0.2

Rusline 2.4 3 1462.6 3115.01 (9825) 0.21

NordStar 5.2 3 1520.918 2854.08 (7495) 0.07

Table 3 Equilibrium on the route Nankin-Harbin

Frequence Eq. price

Aircompany Time (h) (per week) Distance (km) (and real price) Share of market

Shenzhen airlines 2.4 7 1665 709.95 (1650) 0.28

Sichuan airlines 2.5 7 1665 702.96 (1650) 0.28

Xiamen airlines 2.4 6 1665 576.84 (1620) 0.12

In Table 2 the results of calculations for the route Irkutsk-Novosibirsk in the
Russian market are presented. In this route five aircompanies make the service. You
can compare the equilibrium prices with real prices on the market. There is some
disproportion in data. Some companies are supported by the local government. In
Table 3 the same values are computed for the Chinese market on the route Nankin-
Harbin. There is good correspondence between equilibrium and real prices in the
market.

5 Conclusion

This paper has introduced the model of competition of n firms on the transportation
network. We present the algorithm to find the equilibrium in this game. For some
segments of Russian and Chinese airline market the equilibrium in pricing and
location models is derived. Future work could investigate the properties of equilibria
under the inclusion to the model some additional factors such as the size of hubs,
seat capacity (see [8]), possibility of coalition forming, etc.
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A GRASP Algorithm for the Vehicle-Reservation
Assignment Problem

Beatriz Brito Oliveira, Maria Antónia Carravilla, and José Fernando Oliveira

1 Introduction

The car rental business is becoming heavily dependent on operational efficiency. As
holding costs of assets have been growing faster than the price level, it is important
to assure optimal utilization of resources as well as a high service level [3]. The
work described in this paper proceeds from a project funded by a Portuguese car
rental company whose main objective was to redesign and enhance the company’s
procedures to assign special types of vehicles to reservations. Due to their unique
characteristics, these vehicles are not highly required. Consequently, the number of
cars available of each of these special groups is small, thus forcing the company
to transfer them empty between rental stations in order to meet the reservations
requirements. The company felt the need to improve the assignment process so
as to minimize these empty transfers. This paper presents a metaheuristic for
this problem. The main objective is to maximize the total profit of the company
and assure customer satisfaction by fulfilling as many reservations as possible,
whilst reducing the cost of the empty transfers. In fact, the reduction of the empty
repositions takes a significant role both in increasing operation efficiency and thus
profitability of the business model and in improving the environmental sustainability
of the company.

The empty repositions or “deadheading” trips are a studied issue within the
transportation industry framework. Dejax and Crainic [1] recognize the impact
empty flows have on logistic systems, namely on their operational and economic
performance, as they generate costs and no revenue.

B.B. Oliveira • M.A. Carravilla (�) • J.F. Oliveira
INESC TEC, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
e-mail: beatrizbritooliveira@gmail.com; mac@fe.up.pt; jfo@fe.up.pt

© Springer International Publishing Switzerland 2016
R.J. Fonseca et al. (eds.), Computational Management Science, Lecture Notes
in Economics and Mathematical Systems 682,
DOI 10.1007/978-3-319-20430-7_9

63

mailto:beatrizbritooliveira@gmail.com
mailto:mac@fe.up.pt
mailto:jfo@fe.up.pt


64 B.B. Oliveira et al.

The car rental logistics short-term problem has not been frequently addressed on
the transportation logistics literature. Nevertheless, some important contributions
can be found. Pachon et al. [4] structure the fleet planning process of a car rental
company in three sequential phases: pool segmentation, strategic fleet planning, and
tactical fleet planning. The first phase consists on clustering the rental locations of
the car rental company in geographically and demand-correlated pools; the different
rental stations within a pool share the same fleet, whose number of vehicles is
determined in the second phase. The third phase consists on determining the number
of vehicles that should be available at each station, in each period of time. The
problem of empty transfers is herein considered. Pachon et al. [5] model these three
phases and propose solution methodologies considering the hierarchical structure of
the decision-making process. None of these works addresses the specific assignment
of reservations to the available vehicles. Nevertheless, this could be considered a
lower-level (more operational) sub-problem of the tactical fleet planning. To the
best of our knowledge, within the car rental logistics optimization framework, the
lower-level vehicle-reservations assignment problem has not yet been approached.

The remainder of this paper is organized as follows: the next section briefly
describes the problem tackled. The following section presents the solution methods
and, finally, the main results, based on real instances, are presented and conclusions
are drawn.

2 Problem Description

The problem described in this paper aims to allocate a certain set of reservations to
the available special vehicles.

Each reservation has the following characteristics: the date and station in which
the customer wants to pick up the vehicle, the date and stations in which the
customer wants to deliver it, and the revenue of the reservation. The vehicles are
characterized by their current occupation; as they are currently fulfilling a certain
reservation, each vehicle will be available when and where that reservation in
progress ends. Other parameters of this problem are the costs and the time of the
empty transfers from one station to another (Fig. 1). The objective is to maximize
the revenue of the assigned reservations deprived of the costs of the empty transfers.
The main restrictions of the problem are related to the availability of the vehicles on
the moment and location considered.

Since the customers have specific requirements, the company should provide
them with exactly what was requested. Yet when that is not possible, it is a common
practice in this sector to offer the customer a vehicle from a better group for the
same value (upgrade). When that option is not available, the company offers the
customer the possibility to rent a vehicle from a worst group with a price discount
(downgrade). The possibility to upgrade or downgrade the reservations is beneficial
for the company as far as service level is concerned, although it may lead to the
fulfilment of reservations for a minor profit.
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Fig. 1 A vehicle global schedule consists on the scheduling of the reservations fulfilled by each
vehicle, which may lead to empty transfer movements

The inclusion of this issue in the solving method increases the dimension of the
analysis (as more vehicles are available for the same number of reservations), intro-
ducing additional restrictions as for which groups can be upgraded or downgraded
to which groups. Hence, reservations need to be characterized by the group (type of
vehicle) required by the customer and vehicles should be associated with a specific
group. As for the cost of these decisions, in fact, the company does not incur on
any additional cost by allocating a better or worse vehicle than requested. Since
the vehicles are available, it is better to seize the possible profit of the reservation
than not fulfilling it and thus dissatisfying a customer. Nevertheless, it is commonly
a company’s policy to avoid upgrading a reservation when not necessary and to
execute downgrades only if no other option is possible. Both adjustments require the
specific authorization of the customer; nevertheless, the upgrade is virtually always
accepted.

It is also important to know the status of the reservation, as far as confirmation
to the customer is concerned. As to control customer satisfaction, the company is
interested in preferring the allocation of confirmed reservations over non-confirmed
ones.

3 Problem Solution

The main output expected from this tool is a detailed vehicle global schedule with
the reservation assignment plans for each car, as it is shown in Fig. 1 for three
example vehicles.
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The company felt it was important to obtain good allocation plans. Nevertheless,
it was known that these plans, good for the time being, would probably cease to be
so due to the dynamic characteristics of the problem. Heuristics were hence drawn
to solve the problem due to the need of quickly obtaining a good solution.

The solution to this problem was also based on the need to recognize and model
the two functioning modes of the decision support system. On the one hand, the
company needs to be able to rapidly establish whether a certain reservation may
or not be allocated, considering the current vehicle schedule, in order to promptly
answer the client on the phone, confirming or not such reservation—the online
mode. On the other hand, a more robust method is needed to improve the vehicle
schedule built during the day—the batch mode. The latter must consider that every
confirmed reservation should be necessarily allocated to some vehicle.

A GRASP algorithm (Sect. 3.2) was drawn to fulfil the batch mode. Due to the
inherent dynamic nature of this problem, it is difficult for the company to register the
actual global vehicle schedule for each instance. Consequently, in order to enable
the quantification of the improvement brought by the developed support system, a
heuristic that mimicked the online decision process of the employees in charge of
this process (Sect. 3.1) was also developed.

3.1 Mimicry Heuristic

Considering the functioning modes, it is possible to classify the existing procedure
in the company as an online-only mode. In fact, the employees attempt to allocate
each reservation individually, not being able to enhance the global vehicle schedule
as a batch. Thus, it is possible to determine that the main inputs for this decision are
the single reservation to be allocated and the global vehicle schedule.

The decision process currently followed also depends on the perception that,
when there are numerous possible vehicles in which to allocate a certain reservation,
the employee may not be able to visually apprehend the occupation of all of them,
being limited by the size of the computer screen. Therefore, another important input
is the number of vehicles the employee can visualize at the same time and the natural
human restrictions when dealing with complex combinatorial problems.

During the decision process, the vehicles are presented in alphabetic order of
their license plate. The employee visualizes each vehicle occupation, knowing the
starting and returning stations and dates of each reservation allocated to it. The first
attempt is to allocate the reservation as the last assignment of one of the visible
vehicles, in the best possible position. As there is no information regarding the
reservation profit, there is an attempt to reduce the costs by avoiding empty transfers
and using as first criterion the coincidence between the returning station of the
last reservation and the starting station of the reservation to allocate. The second
criterion used is the idle time of the vehicle caused by the hypothetical allocation.
The third criterion is to allocate the reservation in the first possible fit between
already allocated reservations.
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When this procedure is not able to find a feasible solution, a simple switch move
within the allocated reservations is tried. For each vehicle, it is verified whether the
reservation to be allocated overlaps only one other reservation. If this is the case,
it may be possible to allocate the overlapped reservation to another vehicle and
insert the unassigned reservation in its previous place. If the feasibility conditions
are fulfilled, the simple switch is completed in the first possible fit.

All the previously discussed procedures relate to the visible vehicles on screen.
The last alternative procedure is the allocation as the last assignment of a vehicle
outside the visible screen; as employees scroll down, if a possible fit is found the
reservation is allocated.

3.2 GRASP

The methodology selected to solve this problem, as the batch mode is concerned,
was GRASP (Greedy Randomized Adaptive Search Procedures), first introduced by
Feo and Resende [2]. GRASP is an iterative technique with two sequential phases:
the construction of a solution based on a randomized greedy heuristic, and the local
search, which applies small adjustments to the solution provided by the first phase
with the goal of achieving improvement. Each GRASP iteration comprises these two
phases and originates a feasible solution; throughout the iterations, the best solution
found is preserved. This methodology was chosen due to its intuitive structure and
relatively simple implementation.

The constructive heuristic, which aims to assign reservations to vehicles, is based
on the ranking of both reservations and vehicles. The reservation rank is based
primarily on its confirmation status followed by the proximity of the starting date of
the reservation and finally, by decreasing profit. Subsequently, for each reservation,
starting with the one ranking higher, the vehicles which could be available on the
required date and location are ranked from the lowest to the highest transfer cost
between the returning station of their current reservation and the starting station of
the reservation considered. If there is a tie, the vehicles are ranked in ascending
order of idle time—the time span between being available in the required location
and the start of the reservation.

Two different approaches were designed and tested for the local search routine.
The move that defines the neighbourhood structure is based on the swap of pairs
of allocated reservations. The selection of the new incumbent solution is different:
in the first case the new incumbent solution is the best found in the whole
neighbourhood, a best-improvement approach, whilst the second may be described
as a first-improvement approach.

The best-improvement approach generates an all-encompassing neighbourhood
structure based on a LPS—List of Possible Swaps that stores all the possible swaps
within the incumbent solution. Each neighbour embodies the incumbent solution
modified by one specific swap of the LPS. In order to choose the best possible
improvement, all neighbours are evaluated. If some improvement in the objective
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function is possible, the best neighbour becomes the incumbent solution and a new
LPS is constructed based on it. A new iteration is run and the algorithm stops when
no neighbour is able to improve the objective function.

In the first-improvement approach, the local search is also initialized with the
selection and listing of the possible swapping pairs within the initial solution (the
LPS). Each listed pair originates a neighbour—the incumbent solution modified
by the swap. The neighbours are only explored until one is found that improves
the objective function. In fact, the listed pairs are swapped within each best
neighbour that is found and when this happens a new neighbourhood structure
is generated. Nevertheless, unlike the previous approach, the algorithm continues
to try to swap the pairs listed on the first LPS but now within this solution that
is now the neighbourhood center. Note that since the listed swaps were selected
within a different solution a new feasibility check must be run. Once again, the
first neighbour that is able to improve the objective function is selected as the base
solution for the neighbourhood generation. The procedure described is repeated
until all swaps in LPS have been attempted. When an LPS has been completely
explored, and while it is possible to achieve an improvement, a new LPS is
generated from the incumbent solution and the process is repeated. It is important to
understand that this approach was developed with the objective of obtaining a good,
swift routine, which explored the neighbourhood structures in depth rather than in
width.

4 Computational Tests and Results

The data used to test this approach was retrieved from the company’s database in
July, before the beginning of the highest season in the car rental business in Portugal.
Therefore, the instances reflect the busiest and most demanding time period faced
by the company as far as tactical planning is concerned.

Three instances were selected, each concerning a different vehicle group within
the special vehicles fleet and could be classified comparatively as easy (A), average
(B), and difficult (C), for both upgrade/downgrade-allowing and -not-allowing
situations. These instances were solved using the three routines: the mimicry
heuristic was used as a means to simulate the results currently obtained by the
company; then, the GRASP algorithm was run using the first-improvement local
search as well as the best-improvement one.

Considering the two variations of each of the three instances (allowing for
upgrade/downgrade vehicles or not) and the two approaches to the swap local
search, twelve different GRASP variants were tested. The algorithms described
were developed in a VBA platform, using Microsoft Office Excel as the input/output
interface. Each GRASP variant was run for 15 iterations using a standard personal
computer with an INTEL i7 2.70 GHz CPU and 8 GB installed memory.

The general results may be found in Table 1, as far as the improvement between
the results of the mimicry heuristic and the GRASP algorithm is concerned.
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Table 1 Results for the different GRASP variants—percentage of profit improvement and increase
in the number of reservations fulfilled when compared to the company’s procedures, and global run
time

As for GRASP iterations Global

Time New

Average (%) Std dev (%) Worst (%) Best (%) (min) reserv

A No Up BI 0:1 0:2 �0:2 0:5 6 0

A No Up FI 0:0 0:2 �0:3 0:5 1 0

A Up BI �0:1 0:2 �0:4 0:3 59 0

A Up FI �0:1 0:2 �0:5 0:3 7 0

B No Up BI 10:5 0:4 10:0 10:7 2 23

B No Up FI 10:5 0:4 10:0 10:7 1 23

B Up BI 5:4 0:1 5:3 5:5 91 23

B Up FI 5:4 0:1 5:3 5:5 19 23

C No Up BI 8:4 0:1 8:3 8:5 2 0

C No Up FI 8:4 0:1 8:3 8:5 1 0

C Up BI 12:0 0:1 11:8 12:1 149 12

C Up FI 11:9 0:1 11:8 12:1 47 12

Note: Up allowing upgrades/downgrades, No Up not allowing upgrades/downgrades, BI best-
improvement, FI first-improvement

It was possible to verify that the metaheuristic approach lead to better results
when the difficulty of the instance increased. In fact, for the easy instance (A),
the increase on the profit of the company when compared to the values obtained
by the mimicry heuristic was virtually non-existent, both considering and not
considering upgrades. As for the average instance (B), when considering that no
upgrades or downgrades to other groups were possible, both local search routines
were able to increase the company’s profit in 10.7 %. When considering upgrading
and downgrading vehicles, there was a 5.5 % increase. The difficult instance (C),
solved by both local search routines, whilst not considering upgrades, lead to an
increase of over 8.5 % of the profit. When considering these auxiliary vehicles,
both routines were able to increase the results of the company by 12.1 %. These
increasing values of improvement were expected, as the current procedure used by
the company, although extremely refined by the experience and knowledge of the
operators, meets the limits of the human ability to apprehend large amounts of data
and thus tackle big combinatorial problems.

For every instance and upgrading situation, the swift first-improvement (FI)
local search solved the problem faster; in fact, the time was perceived to be
proportional to the amount of vehicles to assign, increasing when considering
upgrades and when solving instances with more vehicles available. For every
case, nevertheless, the algorithms were run in an acceptable time, considering
that this batch approach to the problem is designed to be run during the night.
For most cases, the swift local search was able to match the results of the best-
improvement routine. Nevertheless, for instance C, considering upgrades, a worst
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result was obtained using the first-improvement heuristic than the exhaustive best-
improvement approach; nonetheless, this difference represented only 0.02 % of
the profit. For the cases considered, the contribution of the local search to the
overall improvement was between 0.5 and 2 %, decreasing with the difficulty of
the instance.

It should also be noticed that for the average instance (B) and for the upgrade-
allowing difficult instance (C), this approach was also able to allocate new reserva-
tions that the mimicry heuristic was not able to insert in the global vehicle schedule.

5 Conclusions

This paper reported the problem faced by a car rental company in managing the
tactical planning of its special vehicles fleet, as far as allocation of reservations
to available vehicles is concerned. The main objective was to maximize the total
profit of the company, by means of reducing empty vehicle repositioning transfers
between rental stations. The ultimate goal was thus to provide the company with a
functioning tool that was able to improve the global vehicle schedule considering
the required rental groups that belonged to the special vehicle fleet.

In the system developed, the user is able to select the rental groups to
improve, allow upgrades and/or downgrades, and select the local search approach,
considering the time available to run it. The outputs of each run consist on a
detailed schedule for the vehicles of each group and a chronogram with the vehicle
occupation.

For the most difficult instances and groups, the company is able to increase its
profit up to 12 %. It is significant to remark that this value, referent to a volume
of reservations that historically comprehends most of the volume of the high
season demand, represents a significant financial impact for the company. Moreover,
the company may also be able to fulfil more reservations, increasing customer
satisfaction and market share. Another major advantage is the re-allocation of two
qualified and experienced employees to other value-adding tasks, namely within the
strategic rather than tactical planning level. In fact, this software may also provide
the company with insights related to the strategic fleet sizing problem, as it can be
used as a simulation tool for the sale and purchase of vehicles.

Nevertheless, it is still possible to improve the approach to this problem. One of
the main characteristics of this problem is the extreme inflexibility of the starting
and finishing times of the reservations. If there are many reservations concentrated
in a specific time period, the problem becomes even more rigid and the solutions
more difficult to improve by this method, since small adjustments made to a specific
solution lead often to infeasible results. In fact, for such cases, it is the randomness
applied to the solving method that leads to the major improvement. Therefore, a
new approach could be attempted, namely solving this combinatorial problem by an
optimization method.
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As future work, it would be also interesting to tackle the issue raised by Sbihi
and Eglese [6], related to the measuring of the environmental impacts; the authors
state that travel time is a better estimate to degree of pollution caused, as this can
be reduced by travelling for shorter times (and at better speeds). Therefore, it could
be interesting to reformulate the problem as to minimize the empty transfer times,
rather than the costs.
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A Heuristic for the Time-Dependent Vehicle
Routing Problem with Time Windows

Vincent Huart, Sylvain Perron, Gilles Caporossi, and Christophe Duhamel

1 Introduction

Routing problems are often the core component of transportation systems in
logistics. The Vehicle Routing Problem (VRP) is the most prominent and it consists
in building a minimal cost set of routes to visit a set of clients with known demands.
The VRP has been extensively studied both with exact and heuristic methods (see the
surveys [4, 10]). We consider the Time-Dependent Vehicle Routing Problem with
Time Windows (TDVRPTW), which extends the VRP with time windows and time-
dependent travel duration. Thus, given a digraph with a speed profile on each arc
(a staircase function depending on the time) and a time window for each node, the
TDVRPTW consists in building a minimal set of routes visiting each client once,
satisfying the time window constraints and the vehicle capacity constraint. This
problem is NP-hard as it generalizes the VRPTW.

In the TDVRP, the travel time between two clients can vary over the time. Its
main interest is to better handle the dynamic nature of the traffic, especially in urban
contexts where there are often strong variations. By doing so, one can expect finding
routes that avoid congested areas when traffic jam occurs.

Malandraki and Daskin [9] propose a model and a heuristic for the TDVRP. Hill
and Benton [6] focus on the way to represent and store data, which is of practical
importance since the shortest path between two nodes may change over the time.
Ichoua et al. [7] present a tabu search for the TDVRPTW and they introduce the First
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In First Out (FIFO) property: a vehicle v2 entering an arc .i; j/ after a vehicle v1
cannot arrive at j before v1. Thus, no overtake is allowed in the traffic and delaying a
departure cannot improve the routing. This assumption is kept in our model. Several
other metaheuristics have been proposed since (genetic algorithm [5], ant colony
algorithm [3], simulated annealing [8]).

The proposed column generation heuristic for solving the TDVRPTW is presented
in Sect. 2. Computational experiments follow in Sect. 3, before concluding remarks.

2 Heuristic

Given a speed profile for each arc, the first step consists in computing and storing
the travel duration between any pair of nodes and for any moment of the time period.
A modified Dijkstra algorithm is used and the resulting shortest paths are stored in
a map, along with the associated time interval.

Our heuristic relies on the Column Generation (CG) technique. Desrochers et
al. [2] present a set partitioning formulation of the VRPTW and develop an exact
CG algorithm where the subproblem (SP) is formulated as a shortest path with time
windows. It is solved by dynamic programming. The same master problem (MP)
formulation may be used for the TDVRPTW but the subproblem is more difficult to
solve since it involves time-dependency. More specifically, the MP is formulated as
follows:

minimize
P

i2P cixi (1)

subject toP
i2P vi;jxi D 1;8j 2 V (2)

xi;2 f0; 1g;8i 2 P (3)

where V is the set of clients and P denotes the pool of columns (route patterns)
already added to the MP; binary variable xi indicates if pattern i is selected or not;
constant vi;j states if client j 2 V belongs to the route i 2 P; ci is the cost of column
i. It can be set to the duration of the route if the objective is to minimize the total
duration or to 1 if the objective is to minimize the total number of vehicles.

Partitioning constraints (2) may be relaxed:

P
i2P vi;jxi � 1;8j 2 V (4)

In order to get pricing (dual) information for the SP, integer constraints have to be
relaxed and therefore constraints (3) are replaced by:

0 � xi;8i 2 P (5)
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The role of the subproblem is to generate new columns (routes patterns) to be
added to the MP. A column i … P is added if its reduced cost ci is negative. Using
the notation introduced earlier, the reduced cost of column i of the relaxed MP may
be computed by:

ci D ci �
X
j2V

vi;j
j (6)

where 
j is the dual variable associated to the covering constraint (4) of client j.
Replacing each parameter vi;j by a binary decision variable yj equal to 1 if client j is
part of the route and 0 otherwise, we obtain the following optimization problem:

min
y2Y

f .y/�
X
j2V


jyj (7)

where Y is the set of routes satisfying constraints on the vehicle capacity, the time-
windows for the clients, and the duration computed according to time-dependency
and f .y/ is the cost function of the MP for the column associated to y.

We propose to solve it heuristically in the following way: columns (routes) are
stored in a pool shared by all the components of the method. Once the relaxed master
problem has been solved by Cplex, the duals variables are first extracted. Local
searches then select randomly routes from the pool and iteratively apply moves in
order to improve the reduced cost. If the reduced cost of the resulting routes is
negative, they are inserted into the pool. They are dropped otherwise.

Each local search relies on a single neighborhood structure. A set of seven
neighborhood structures is used: (1) internal 2-opt, two clients in the same route are
swapped; (2) internal exchange, generalizing the previous one up to four clients; (3)
external exchange, two clients in two different routes are swapped; (4) cross, two
routes are split and the first part of each one is connected to the second part of the
other one; (5) reorganization, optimizing the clients sequence in a route rebuild
from scratch; (6) internal relocate, a special case of the previous neighborhood
structure limited to two clients; (7) external relocate, up to two clients from a route
are transferred into an another route. Thus 12 local searches are defined.

Another column generator is proposed: MIP + VND. It consists in solving the
integer master problem using all the columns in the pool. The optimal solution is
then improved by a Variable Neighborhood Descend (VND). Therefore, the MIP +
VND has two roles: (1) find an integer solution to the global problem by solving a
MIP and (2) improve this solution by generating new routes using a VND heuristic.
The VND method has been introduced by Brimberg [1] and it consists in sequentially
using neighborhood structures to improve the solution. Those structures are usually
sorted according to their complexity. If an improving solution is found, the current
solution is updated and the search resumes to the first structure. Otherwise, the
current solution is kept unchanged and the search considers the next structure.
The search stops when the last structure fails to generate an improving solution
and the current solution is then optimal with respect to all the structures. In our
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Fig. 1 Global design of the parallel column generation heuristic

implementation, all the neighborhood structures previously mentioned are used. The
columns corresponding to the solution are then inserted into the pool.

Moreover, the method considers simultaneously two objectives: the minimum
number of vehicles and the minimum travel cost. This leads to 2 MIP+VND
generators as well as two restricted master problems. The two sets of dual variables
are simultaneously handled in each local search and the general schema of our
heuristic is shown in Fig. 1.

The pool is initially filled by three heuristics: (a) a greedy insertion heuristic
(b) routes containing a single client and (c) a heuristic which randomly fills the
routes. The column generation process iterates until both MIP+VND generators fail
at finding improving solutions.

3 Preliminary Results

The computational experiments are done on an Intel Xeon E5-2665 2.40 GHz
processor. One thread is dedicated to the MP, two threads for the VND and the
remaining 12 threads provide diversity with different neighborhoods. Results are
reported for an instance based on the C101 Solomon’s instance with 25 clients.
Some edges have been removed and a speed profile has been assigned to each
arc. The following five different scenarios are defined (see Table 1), time being
in minutes from 0:00 am: (0) constant speed profile, original instance, (1) edge
differentiation, slow/moderate/fast speed, (2) slowdowns at rush hours on profiles
2 and 3, (3) same as (2) with jams on profile 2 and (4) slowdowns on profile 2 and
jams on profile 3.

Table 2 reports the results for the instance with those speed profiles. Both opti-
mization criteria are considered. As can be expected, the travel duration decreases
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Table 1 Scenarios for the speed profiles

Speed inside time intervals in min

Scenario Profile [0–420] [421–540] [541–720] [721–840] [841–1020] [1021–1140] [1141–1440]

0 1 1

2

3

1 1 1

2 1.8

3 2.5

2 1 1 1 1 1 1 1 1

2 1:8 1 1:5 1:3 1:5 1 1:8

3 2:5 1:5 2 2:2 2 1:5 2:5

3 1 1 1 1 1 1 1 1

2 1:8 0:5 1:5 0:5 1:5 0:5 1:8

3 2:5 1:5 2 2:2 2 1:5 2:5

4 1 1 1 1 1 1 1 1

2 1:8 1 1:5 1:3 1:5 1 1:8

3 2:5 0:5 2 1 2 0:5 2:5

Table 2 Results on C101 with 25 clients

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

Minimizing the nb. vehicles

Duration 2793:9 2410:2 2502:3 2559:8 2904:2

Distance 294:6 318:6 295:5 383:2 404:2

Waiting time 249:3 0:0 82:9 90:7 310:2

Nb. vehicles 3 3 3 3 3

Minimizing the routes duration

Duration 2496:2 2383:0 2396:2 2447:4 2904:2

Distance 246:2 250:4 248:3 294:5 404:2

Waiting time 0:0 0:0 0:0 0:8 310:2

Nb. vehicles 4 4 4 5 3

when the speed increases. When optimizing the route duration, the waiting time is
also reduced. This may explain the intuitive result that some vehicles can be used
twice a day, staying at the depot in the middle of the day. Those vehicles will not
be jammed in the traffic when high congestion occurs. Thus, for scenario 2 the
waiting time would be 90.0 if such break is not allowed. Splitting the day in two
(morning and afternoon) allows better results. In scenario 4, such a split cannot be
done because all arcs leaving the depot belong to profile 3.
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4 Conclusion

We have considered an extension of the VRPTW in which the travel time changes
over the day. Using time-dependency to model the real network is important as
it corresponds to real-life urban situation. The method we propose combines a
metaheuristic (with VND) with column generation in a multi-threaded framework.
The preliminary results on a instance with 25 clients show our approach is
promising. It will now be tested on larger instances and several variations will be
considered.
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Integer Programming Based Approaches
for Multi-Trip Location Routing

Rita Macedo, Bruna Ramos, Cláudio Alves, José Valério de Carvalho,
Saïd Hanafi, and Nenad Mladenović

1 The Multi-Trip Location Routing Problem

The multi-trip location routing problem is a management science problem that
occurs typically in the logistics and transportation field. It consists in selecting the
depots that should be opened and the corresponding routes to serve a set of clients
at minimum cost. The particularity of the multi-trip variant is that a vehicle can
now make more than a single route during the planning horizon. The consequence
is an increase in complexity since an assignment of routes to vehicles has to be
determined.

The problem is characterized by a set N D f1; : : : ; ng of clients to visit, whose
demand is denoted by bi, with i 2 N. The depots have a limited capacity represented
by Ld, with d 2 D, and a fleet of vehicles assigned to them. The fleets of vehicles are
assumed to be homogeneous with capacity Q. A vehicle can perform several routes
during the planning period. Each route must start and end at the same depot, but a
vehicle may perform more than a route per planning period as long as it does not
travel more than W units of time (the length of the planning period). We will denote
by workday the set of routes assigned to a vehicle. The cost of a solution depends on
the fixed costs Cd

f , d 2 D, of opening a depot d, on the fixed cost Cv incurred each
time a vehicle is used, and on the variable costs related to the travelled distances.
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The multi-trip location routing problem has been addressed previously in [1, 3–
6]. In [3], Lin et al. explored the problem using heuristics and branch-and-bound. In
[4], Lin and Kwok addressed a multi-objective case combining cost minimization
with the minimization of the imbalance among vehicles. In [1], the authors propose
a compact three-index commodity flow formulation for the problem, and a branch-
and-price algorithm based for a column generation reformulation of the problem.

In this paper, we explore a network flow model for the multi-trip location routing
problem with no additional constraints imposed to the vehicle routes as opposed to
the cases considered in [5, 6]. We describe a stronger formulation, and we present
also different valid inequalities to improve the quality of its continuous lower bound.
Additionally, we describe an iterative rounding heuristic that relies on this model,
and which proved to be effective in finding good incumbents for the problem.
To illustrate the efficiency of our approaches, we report on several computational
experiments on benchmark instances that we compare with the results obtained
using a three-index commodity flow model proposed by Akca et al. in [1].

In Sect. 2, we briefly recall the three-index commodity flow formulation proposed
by Akca et al. [1]. The network flow formulation and the corresponding valid
inequalities that we derived for it are presented in Sect. 3. The iterative rounding
heuristic is described in Sect. 4. In Sect. 5, we present our comparative computa-
tional experiments among the different approaches discussed in this paper.

2 A Three-Index Commodity Flow Model

Let G be a graph with a set of nodes associated to the depots and to the clients,
and a set of arcs between each pair depot-client and client-client, such that
G D .N [D;A/, with A D .D � N/ [ .N � N/ [ .N � D/. The complete set of
vehicles is denoted by H, with Hd being the subset of the vehicles assigned to a
depot d. The travel time between nodes i and j, with .i; j/ 2 A is denoted by tij,
while the cost associated to an unit of time is denoted by Co.

The three-index commodity flow model of Akca et al. [1] has variables related
to the opening of the depots and to the vehicles usage and operation. The binary
variables �d, d 2 D, state if a depot is selected to be open or not. The usage of
a vehicle h is represented by the binary variables vh, h 2 H. If a vehicle h goes
through an arc .i; k/ 2 A, then the corresponding variable xikh will take the value
1, and 0 otherwise. The amount of load that the vehicle h carries through .i; k/ is
denoted by yikh.

min
X
d2D

Cd
f �d C Cv

X
h2H

vh C Co
X
h2H

X
.i;k/2A

tikxikh (1)

s:t:
X
h2H

X
k2.N[D/

xikh D 1; 8i 2 N; (2)
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X
k2.N[D/

xikh �
X

k2.N[D/

xkih D 0; 8i 2 N [D; 8h 2 H; (3)

X
h2Hd

X
k2N

ydkh � Ld�d; 8d 2 D; (4)

yikh � Qxikh; 8.i; k/ 2 A; 8h 2 H; (5)X
k2N

yikh �
X
k2N

ykih C bi

X
k2.N[D/

xikh D 0; 8i 2 N;8h 2 H; (6)

X
.i;k/2A

tikxikh � Wvh; 8h 2 H; (7)

xdkh D 0; 8d 2 D;8k 2 .N [D/;8h 2 Ht;8t 2 Dnfdg; (8)

xikh 2 f0; 1g; 8.i; k/ 2 A;8h 2 H; (9)

yikh � 0; 8.i; k/ 2 A;8h 2 H; (10)

�d 2 f0; 1g; 8d 2 D; (11)

vh 2 f0; 1g; 8h 2 H: (12)

The mandatory visit to every client is represented by the constraints (2)–(3). The
capacity constraints of the depot and vehicles is expressed through constraints (4)
and (5)–(6), respectively. Constraints (7) forbid a vehicle to travel more than W
units of time, while (8) force a vehicle to travel only through the arcs associated to
its depot. The function (1) denotes the total cost minimization objective.

3 Network Flow Formulation

3.1 The Model

Our network model is defined on acyclic directed graphs (one per depot) that we will
denote by˘d D .�;�d/, d 2 D. A path on these graphs correspond to the workday
of a given vehicle from its corresponding depot. The vertices in� represent discrete
time instants starting from 0 up to the time limit W. The arcs are associated to
vehicle routes, and additionally to waiting periods at the depot. An arc .u; v/r 2 �d

is related to a route r that starts at time instant u and ends at time instant v. The set
�d is defined as follows: �d D f.u; v/r W 0 � u < v � W; r 2 Rdg [ f.u; v/o W 0 �
u < v � W; v D uC 1g; with Rd being the set of all the routes from depot d. The
load, duration and cost of a route r will be denoted by lr, tr and Cr, respectively. The
set of clients visited by a route r will be represented by Nr, with Nr 	 N. Clearly, a
route is feasible only if lr � Q and tr � W.
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The model is composed by two sets of variables. The binary variables �d, d 2 D,
state whether a depot is selected to be open or not, while the binary variables xd

uvr
state whether the route r associated to depot d, which starts and finishes at time
instants u and v respectively, is to be used or not. The network flow formulation is
defined as follows.

min
X
d2D

X
.u;v/r2�d

Crx
d
uvr C Cv

X
d2D

X
.0;v/r2�d

xd
0vr C

X
d2D

Cd
f �d (13)

s:t:
X
d2D

X
.u;v/r2�dji2Nr

xd
uvr D 1; 8i 2 N; (14)

X
.0;v/r2�d

xd
0vr � Kmax

d �d; 8d 2 D; (15)

�
X

.u;v/r2�d

xd
uvr C

X
.v;y/t2�d

xd
vyt

D
(
0; if v D 1; : : : ;W � 1;
�P.0;v/r2�d

xd
0vr; if v D W;

8d 2 D; (16)

X
.u;v/r2�d

lrx
d
uvr � Ld�d; 8d 2 D; (17)

xd
uvr � 0; and integer;8.u; v/r 2 �d; 8d 2 D; (18)

�d 2 f0; 1g; 8d 2 D: (19)

Constraints (14) force the visit to every client. Constraints (15) limit the number
of workdays per depot to a maximum of Kmax

d . Note that xd
0vr is directly related to

an independent workday starting at time instant 0 from depot d and finishing at
time instant v. If the corresponding depot is not selected to be open, the maximum
number of workdays becomes naturally 0. Every upper bound on the number
of workdays can be used for Kmax

d . In our experiments, we used the following
value (assuming that the clients are ordered in decreasing order of their demands):

Kmax
d D max

n
j WPj

iD1 bi � Ld

o
, for a given depot d 2 D. Flow conservation is

enforced through constraints (16). Constraints (17) ensure that the capacities of
the depots are not exceeded. The objective function is represented through the
expression (13).

3.2 Valid Inequalities

To improve the quality of the continuous lower bounds obtained with the network
flow model (13)–(19), the following valid inequalities can be used. The first consists
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in forcing a minimum number Dmin of depots to be open through the following
constraint:

P
d2D �d � Dmin. The problem of determining Dmin is a one-dimensional

bin-packing problem. To compute its value, we resorted to dual-feasible functions
[2] which provide a mean to obtain high quality lower bounds frequently near from
those achieved with column generation models.

The second inequality is similar to the previous one, but applies now to the
vehicles. The principle is to enforce a minimum number Hmin of vehicles to use
through the following constraint:

P
d2D

P
.u;v/r2�d

xd
uvr � Hmin. Again, Hmin is a

lower bound for the bin-packing problem defined by using the clients demands
and the vehicles capacities, and it can be computed using the aforementioned dual-
feasible functions.

The last set of inequalities consists in relating the selection of workdays to the
opening of depots. These inequalities state that if a depot is opened, there should
be at least one workday to be performed from this depot:

P
.0;v/r2�d

xd
0vr � �d;

8d 2 D.

4 An Iterative Rounding Heuristic

As our computational experiments will show in Sect. 5, the network flow model
proved to be very effective for deriving good incumbents for the problem. A fast
procedure for obtaining good quality solutions consists in the following rounding
heuristic that relies on the iterative solution of the linear relaxation of (13)–(19).

The heuristic starts with the solution of the linear relaxation of (13)–(19). It
follows with an attempt to fix the variables of this model starting by the �d variables,
and then the xd

0vr and the xd
uvr with u > 0 in that order and repeatedly. The principle

is to force sequentially the opening of the depots whose corresponding�d is above a
given parameter ˛ (starting by the depot with the largest �d and so on), and then
to build workdays for the selected depot d first by rounding up a xd

0vr variable
whose value is above a given parameter ˇ (again, the xd

0vr variables are selected
in decreasing order of their value) and then by selecting further routes .u; v0/r0 2 �d

(with u >D v, and in increasing order of u) to pair with the previous one such
that xd

uv0r0 > ˇ and until there remain routes given the time limit W. Once there are
no more variables to fix, the linear relaxation of (13)–(19) is solved again for the
remaining instance, and the process repeats until it cannot fix anymore variables.
At this stage, if a solution for the original problem is not already available, the
model (13)–(19) is solved up to integrality for the remaining instance. In that case,
a limit on the computing time can be enforced, and the best incumbent found until
this time limit can be used as a solution.
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5 Computational Results

In this section, we report on the computational experiments performed on bench-
mark instances to evaluate the performance of the models discussed in this paper
both in terms of the quality of their lower bounds, and on their ability to drive
efficiently the search for good quality integer solutions. The tests were run on a PC
with an i7 CPU with 3.5 GHz and 32 GB of RAM. The optimization subroutines
rely on CPLEX 12.5. For our experiments, we used a set of 40 benchmark instances
from the literature whose relevant parameters are given in Tables 1 and 2.

The tests are divided in three parts. First, we compare the quality of the
continuous lower bounds of the models (1)–(12) and (13)–(19) without enforcing
any other valid inequality. The results of these tests are listed in the first part
of Table 1. The columns zRL and tRL denote respectively the value of the lower
bound and the computing time (in seconds) required for the solution of the
linear programming relaxation of the corresponding model by CPLEX. Column
lb represents respectively the best lower bound obtained when the corresponding
model is solved by CPLEX up to integrality and after a maximum of 900 s of
computation. The columns ub and tUB denote respectively the value of the best
incumbent found within this time limit, and the total execution time in seconds
(which is smaller than 900 s only if a proven optimal solution has been found
within the time limit). The columns gap provide the value in percentage of the
optimality gap reached at the end of the solution procedure. A “�” entry denotes
the fact that no feasible integer solution was found. Finally, column tg gives the total
computing time required to generate the routes for model (13)–(19). The second set
of experiments is reported in the second part of Table 1. The same tests as above
were repeated enforcing now the valid inequalities described in Sect. 3.2. For a fair
evaluation, and since the first and second cut described in this section can also be
enforced in model (1)–(12), we solved again this model using these two cuts. The
last set of experiments was performed to evaluate the iterative rounding heuristic
described in Sect. 4 considering the model (13)–(19) both with and without cuts.
The results are given in Table 2. Column best ub gives the value of the best known
upper bound for the corresponding instance, columns ubh represent the value of the
solution found by the heuristic, and tubh the total computing time in seconds. In
these experiments, we limited the total time spent in solving the remaining instance
up to integrality to 30 s. The parameters ˛ and ˇ were both set initially to 0.9. If the
process fails in fixing variables, then it is repeated with smaller values of ˛ (0.75
and 0.5) and ˇ (0.5 and 0.25). If it still fails after using these values, we resort to the
exact solution procedure for the remaining instances as described in Sect. 4.

From the results obtained, it is clear that the continuous lower bound of (13)–
(19) is better than the bound of (1)–(12) both with and without enforcing additional
inequalities. Furthermore, the network flow formulation (13)–(19) proved to be
much more effective than (1)–(12) in finding good quality integer solutions. In
some cases, the model of Akca et al. fails even in finding a feasible solution,
when (13)–(19) provides an optimal integer solution. For 18 instances, model (13)–
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Table 2 Computational results (Part II)

Model (13)–(19) Model (13)–(19)

without cuts with cuts

Inst: n W Q best ub ubh tubh ubh tubh

1 20 140 50 4431 4679 8:85 4435 5:62

2 20 160 50 4430 4750 10:90 4436 11:13

3 20 140 70 4384 4437 60:85 4599 52:90

4 20 160 70 4374 4430 72:75 4492 61:59

5 20 140 50 4681 4753 4:08 4745 7:19

6 20 160 50 4472 4785 10:32 4722 4:11

7 20 140 70 4424 4732 162:40 4437 159:39

8 20 160 70 4424 4766 195:47 4652 201:34

9 20 140 60 4431 4694 8:59 4692 0:63

10 20 160 60 4426 4692 30:60 4439 13:86

11 20 140 80 4385 4431 6:58 4644 19:74

12 20 160 80 4387 4407 37:57 4445 14:38

13 20 140 60 4537 4726 2:98 4714 31:49

14 20 160 60 4471 4741 4:93 4483 6:84

15 20 140 80 4409 4457 10:16 4719 5:46

16 20 160 80 4402 4412 35:88 4419 6:86

17 20 140 60 4674 4684 72:67 4684 70:88

18 20 160 60 4475 4475 111:28 4787 83:98

19 20 140 50 4420 4434 51:58 4421 22:34

20 20 160 50 4414 4448 55:13 4663 25:95

21 20 140 50 4835 4835 17:94 5020 8:04

22 20 160 50 4795 4823 38:42 4807 8:58

23 20 140 50 4744 5048 27:87 5044 26:69

24 20 160 50 4656 4809 34:21 4744 31:63

25 25 140 50 4751 4807 12:73 5022 12:65

26 25 160 50 4646 4796 20:77 4791 14:68

27 25 140 50 4764 5023 47:17 4797 17:32

28 25 160 50 4759 4815 50:53 4783 21:39

29 25 140 60 4817 5131 6:09 5131 7:11

30 25 160 60 4800 5115 32:25 5091 32:20

31 25 140 60 4767 5063 31:88 5069 31:47

32 25 160 60 4767 4922 11:37 5032 31:82

33 25 140 60 4779 5382 388:27 5028 418:68

34 25 160 60 4774 4966 474:46 4842 452:50

35 25 140 50 4755 4792 381:08 4796 351:51

36 25 160 50 4606 4796 437:96 4782 438:14

37 25 140 50 5083 5409 81:02 5329 80:45

38 25 160 50 4864 5067 114:17 4952 106:13

39 25 140 50 4889 5157 279:87 5085 248:76

40 25 160 50 4880 5172 318:70 4904 292:49
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(19) provides the optimal solution within the time limit, and for the other cases,
it gives solutions with very small optimality gaps. The results given in Table 2
further illustrate the fact that model (13)–(19) can be used to generate efficiently
good incumbents for the problem.
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An Agent-Based Approach to Schedule Crane
Operations in Rail-Rail Transshipment
Terminals

Sam Heshmati, Zafeiris Kokkinogenis, Rosaldo J.F. Rossetti,
Maria Antónia Carravilla, and José Fernando Oliveira

1 Introduction

A rail-rail transshipment terminal (RRTT) consists of a number of rail tracks, where
trains are positioned in bundles to be served, and gantry cranes move containers
between different trains, without exchanging the wagons. This is a complex system
which requires proper schedule and collaboration of resources.

It is important to deal with uncertainty (e.g. unscheduled shipping request) in
operational planning and control of RRTTs. The use of simulation can support
a proper design of the system while dealing with uncertainty. Nevertheless, the
complexity of this type of terminals makes it hard to model the problem using
standard simulation approaches. An alternative that in recent years has received
a lot of attention is the agent-based modeling and simulation (ABMS) approach.
Although ABMS has been applied in logistic problems, literature does not report
significant work with RRTT problems.

This study aims at analyzing transshipment processes in RRTT, from an oper-
ational point of view. This involves decisions on the position of containers on
outbound trains; on the assignment of container moves to cranes, as predefined
overlapping areas for the cranes are considered; and on sequence of the transship-
ments. The goal is to minimize the total transshipment time. We consider the ABMS
approach to model the container transshipment problem in RRTTs. The use of the

S. Heshmati (�) • M.A. Carravilla • J.F. Oliveira
INESC TEC, Faculty of Engineering, University of Porto, Porto, Portugal
e-mail: s.heshmati@fe.up.pt; mac@fe.up.pt; jfo@fe.up.pt

Z. Kokkinogenis • R.J.F. Rossetti
Artificial Intelligence and Computer Science Laboratory, Faculty of Engineering,
University of Porto, Porto, Portugal
e-mail: pro08017@fe.up.pt; rossetti@fe.up.pt

© Springer International Publishing Switzerland 2016
R.J. Fonseca et al. (eds.), Computational Management Science, Lecture Notes
in Economics and Mathematical Systems 682,
DOI 10.1007/978-3-319-20430-7_12

91

mailto:s.heshmati@fe.up.pt
mailto:mac@fe.up.pt
mailto:jfo@fe.up.pt
mailto:pro08017@fe.up.pt
mailto:rossetti@fe.up.pt


92 S. Heshmati et al.

agent metaphor allows us to come up with solutions in highly dynamic scenarios,
while fixed dispatching rules do not have the same capability. The objective is to
assign positions for all containers on outbound trains or on the yard, and determine
the sequence of container movements for each crane.

The RRTT is described as an essential part of a hub-and-spoke architecture and
an emerging technology in railway systems [9]. Several studies in the literature
claim that the global rail-rail transshipment problem is too complicated to be
monolithically solved [6, 10]. We can decompose the problems of RRTT into seven
sub-problems: (1) Schedule the service slots of trains. (2) Assign a destination to
each train. (3) Assign each train to a parking position. (4) Determine container
positions on outbound trains (load plan). (5) Assign container moves to cranes.
(6) Schedule the shuttle cars in the sorter. (7) Determine the sequence of container
moves per crane.

The first decision problem of the RRTT was studied by Boysen et al. [5, 7],
with the objective of minimizing the split moves, the number of revisits by trains,
and the number of delayed containers. Problem (5) is studied by Boysen and
Fliedner [4] with the objective of minimizing the makespan using a dynamic
programming procedure. Alicke [1] tackled sub-problems (5), (6), and (7), as a
constraint satisfaction problem. In [10], Souffriau et al. jointly assign the destination
to trains (2), determines the load plan (4) and the sequence of the transshipments (7).

In the literature, there are some works using the agent-based metaphor to address
issues in the seaport terminal operations and in inter-modal terminals, at a strategic
planning level and policies evaluation [2, 3, 8].

However questions regarding the integration of the above problems into a holistic
procedure still remained unaddressed. To the best of our knowledge, ABMS has not
been applied to tackle any of the aforementioned problems in RRTTs. In this study
we are aiming at the integrated resolution of three sub-problems: (4) Determine
container positions on outbound trains, (5) Assign container moves to cranes, and
(7) Determine the sequence of container moves per crane.

The remainder of this paper is structured as follows: in the next section the
overview of the problem and the simulation model are presented. Section 3 discusses
preliminary results of the model. Finally, the conclusion and opportunities for future
work are explained in Sect. 4.

2 Problem Description and Simulation Model

This section describes a typical transshipment yard and the three constitutive sub-
problems of Scheduling Crane Operations (SCO) problem. A transshipment yard
consists of a number of parallel tracks, gantry cranes, and a quay with ground
vehicles to move the containers on the quay. The trains (one per track) arrive in
bundles to the yard, to be served simultaneously, and the destination of each train
has already been assigned. A train is composed of a number of wagons, which carry
containers. The gantry cranes process the container moves in parallel.
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The SCO problem has to be solved for every bundle of trains arriving at the yard
and the objective is to minimise the makespan. It includes three sub-problems of a
typical RRTT. First, the SCO problem assigns each container to a position on the
outbound train with the proper destination in such a way that the overall containers’
movement distance is minimized. Next, it assigns container moves to cranes. Finally,
the schedule of container moves per crane is determined.

Position Containers on Outbound Trains The objective of this sub-problem is
to determine the load pattern in such a way that the total container movement is
minimized. A train is composed by a number of wagons of different types and
capacity. Associated to the wagon type is length and configuration. The wagon
configuration is a set of position slots with a specific length. Containers are defined
in terms of destination, type, and length. A container can be placed on a position
slot if the position slot is free and its length is equal to the container’s length.

A transshipment starts from the position slot where the container is currently
located on the inbound train and ends at the position slot of the outbound train to
which the container will have to be moved. Containers’ destination/outbound train
are predefined. This sub-problem finds the final position slot on the outbound train.

Assign Container Moves to Cranes The objective is to split the overall workload
evenly among the cranes. Direct transshipment is a type of transshipment when the
initial and the final position slots of a transshipment are within the working area
of one crane. Otherwise, the first crane has to deliver the container to the ground
vehicle on the quay. The ground vehicle carries the container along the yard to
the working area of the second crane where the transshipment can be concluded.
This type of operation is called indirect transshipment. It is better to have direct
transshipments than indirect ones because of the cost of extra pick-ups and drops.

The cranes can operate with disjoint or overlapping areas. For the present
work we have considered the latter. The transshipment assignment should be done
dynamically depending on the utilization of the cranes.Using overlapping working
areas, the number of indirect transshipments will be reduced, but also it has to be
ensured that the cranes do not collide. This is done by blocking the overlapping area
when a crane enters it. Large overlapping areas may lead to high idle times of the
crane which is not operating in the overlapping area.

Sequence Container Moves per Crane Finally, it is necessary to determine the
sequence of container moves per crane. The objective of this sub-problem is to
minimize the total transshipment time and, at the same time, to avoid collisions
between two neighbouring cranes. Due to the empty travelling between two
transshipments, crane moves are asymmetric in distance. A transshipment job can
be carried out only when the destination position is free. In this study we are trying
to avoid potential deadlocks (which happens when the crane needs to swap the place
of two containers) by determining the final position of a transshipment only when
the move is going to be executed.

The model implements a service slot of a real RRTT. The yard has eight tracks,
two cranes with an overlapping influence area, a ground vehicle, and a quay. Each
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position slot can hold one container with the same length of the slot. The working
area of each crane agent is 60% of the length of the longest train, results in a 20%
overlap of crane areas. The traveling time is replaced by the Chebyshev distance
since it is assumed that the lateral and longitudinal speeds of the cranes are equal.

To setup the simulated environment, the model generates the terminal, quay,
trains, position slots, containers, and cranes based on input file. The input file
includes the following data for each entity: Trains: track number, length, and
number of wagons in each train. Position slots: train number, X coordinate,
and type. Containers: coordinates, type, and destination. The cranes and ground
vehicles are implemented as agents. The cranes can move over the trains on the
yard both in the X and Y directions, and the ground vehicles can move on the quay
along the X axis. To prevent the collision between cranes, an overlapping area is
defined that takes the state blocked whenever a crane enters it.

The model implements two rules for agent cranes to decide which transshipments
to choose to process. Each time an agent crane starts a transshipment job, randomly
applies one of these rules. The First rule is to pick up the nearest unprocessed
container, and the Second rule is to pick up the nearest unprocessed container on the
train with the highest number of unprocessed containers. Whenever a crane cannot
find a free position slot on the destination train, inside its own influence area, it will
drop the container on the ground vehicle on the quay. The ground vehicle moves
the container to the area of the other crane, which will process the container. If still
there is no free position slot, the container will remain on the yard, waiting for the
next train with the same destination. The simulation terminates when all the existing
trains in the yard are served and ready to leave the yard.

The present model is implemented in Netlogo [11], an agent-based simulation
platform and programming language. It is discrete in time and space as the agents
are situated in a discretized world (i.e. grid) and perform actions in discrete time
steps (i.e. ticks). A tick (the simulation time step) is assumed to correspond to
1 s of real-world time while the space is divided in squares of 1 m side length.
Differently from discrete event simulation (DES) approach which is typically used
in the logistic domain, in the agent-based model the monitoring and control are
distributed among the agents and they build their local decision making processes.
Another key difference is that DES is built around networks of priority queues of
(time, event) pairs, while in the present model there is no concept of queues.

3 Simulation Results

The simulation model has been validated on a set of problem instances taken from
the literature [10]. For this terminal, instances have 8 tracks, 5 destinations and 5
trains, with 20 wagons each train. Two wagon types are considered: 60 and 85 ft.
Possible container lengths are 20, 30 and 40 ft. The load factor is defined as the total
length of the containers divided by the total length of the trains. The following range
of load factors is used: f0:1; 0:2; : : : ; 0:9g (step of 0.1). There are five instances for
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each load factor. The results presented below are averaged over these five instances
per load factor. The computational experiments were run on a computer with an
Intel i7-2620M, with a clock speed of 2.70 GHz and 8 GB of RAM.

Following Souffriau et al. [10], and in order to be possible to compare the two
approaches, the results of the simulation model are presented as the improvement
of the objective function (minimizing the total transshipment time) over a random
solution. We implemented the approach of [10] to solve the sub-problem (2) and
used the results as input to sub-problem (4). Table 1 presents the load factor, the
number of containers (# Containers), the number of containers left on the quay (#
Containers on yard), the execution time, service time of each train, and the average
percentual improvement. As expected these results show that the problem becomes
harder to solve when the load factor increases. Moreover, there is a considerable
improvement (greater than 70 %) for instances with a load factor equal or smaller
than 0:6, which then drops markedly until a value of 12 % for a load factor of 0:9.
The average improvement of the agent-based simulation model is 63%, which is
similar to the result obtained by Souffriau et al. [10]: 62% of improvement.

However the computational time of our approach is significantly lower, when
compared to theirs. In Souffriau et al. [10] the Variable Neighbourhood Descent
(VND) algorithm was run with a number of perturbations (of the solutions in local
optima) ranging from 0 to 10, with increasing computing times. Even if we take the
results with 0 perturbations, which only deliver an average improvement of 53.9 %,
the execution times range from 0.4 s, for a load factor of 0.1–3278 s, for a load factor
of 0.9 (Intel Xeon with a clock speed of 2.5 GHz and 4 GB RAM). Even taking into
account the different hardware platforms, it is significant that for a load factor of 0.9
our approach is 40 times faster than the VND algorithm in its fastest configuration.
If the more time-consuming configuration is taken, this factor rises up to a value of
approximately 160.

An important performance indicator is also the number of containers left on the
quay. In instances with a load factor greater than 0:6 there are indeed containers left
behind on the quay, with a maximum value of 14.2 (in average) for instances with
a load factor equal to 0:9. This behaviour is common to the approach of Souffrriau

Table 1 Simulation results averaged over five instances per load factor

Load factor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# Containers 29 55.6 83.4 110.6 138.2 168.2 198 237 251.4

# Containers on yard 0 0 0 0 0 0 0.8 6.4 14.20

Execution times (s) 0.60 0.90 1.34 1.89 2.39 3.13 9.54 32.96 77.70

1st train service time 1073 1788 2862 4334 5739 7439 13,352 26,150 36,633

2nd train service time 1155 1987 2992 4530 5938 7764 13,792 27,044 37,853

3rd train service time 1298 2255 3111 4791 6206 8053 14,373 27,796 39,138

4th train service time 1480 2371 3206 4923 6547 8616 15,127 28,105 41,466

Average cost 1708 2697 3367 5265 6982 9374 16,178 28,568 44,476

Average improvement (%) 72.47 77.51 76.99 78.14 75.52 72.91 58.7 39.82 12.00
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et al. [10], although with lower values: 0:2, 2:8, and 4:0 containers left on the quay,
for load factors 0:7, 0:8 and 0:9 respectively.

4 Conclusions

This paper deals with the scheduling crane operations (SCO) problem in rail-
rail transshipment terminals (RRTT). In this combinatorial optimization problem
the containers have to be transshipped among trains by multiple cranes. The
SCO problem involves three decisions: (1) to define the position of containers
on outbound trains, (2) to assign transshipments to cranes, and (3) to sequence
transshipments for each crane. The problem is tackled by an agent-based simulation
model, in which agent cranes deal with the three decisions and transship the
containers. A set of problem instances taken from literature is used to validate the
model and the results are compared against [10]. The model achieved up to 75%
improvement, a value similar to [10] results, but in a fraction of the time used by the
authors.

Future work includes applying dynamic yard assignment, where no specific
area is defined for cranes and agent cranes cooperate and coordinate through
negotiation processes to avoid collision. The results are expected to minimize the
main drawback of the current model that is the number of containers left on the
quay.
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Vertical and Horizontal Collaboration
in Inventory and Transportation

Benedikt De Vos and Birger Raa

1 Introduction

Rising competition and fuel prices give shippers a hard time staying profitable and
force them to look for more efficient ways to organize logistic activities [1]. Since a
company’s performance depends on both its own decisions and those of other supply
chain players, a more coordinated approach to manage the supply chain is in order.

Vertical collaboration occurs between companies on subsequent supply chain
levels [6]. Different forms exist, like Collaborative Planning, Forecasting and
Replenishment (CPFR) or Vendor Managed Inventory (VMI). Most existing
research focuses on this type of collaboration. Horizontal collaboration takes place
between companies on the same supply chain level [6]. Distribution constitutes
a large part of logistic costs and cooperation among shippers may entail major
savings. However, research on this kind of cooperation or on joint horizontal and
vertical cooperation, is limited and focuses on empirical evidence of its importance
[1]. Cruijssen [1] has shown that the impediments for successful cooperation among
shippers are persistent. They cannot find partners because of their reluctance to share
information and because they do not know how to divide the gains fairly among the
partners [1].

A fair gain sharing mechanism is crucial to assure sustainability. All partners
should be better off within the coalition, than individually, or they will leave
the coalition [5]. Cooperative Game Theory (CGT) is often used to model the
negotiation process between the parties. Three solution concepts are encountered
regularly in the existing literature, the core, the Shapley Value and the nucleolus
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(e.g. [3, 4]). Research on CGT within horizontal distribution collaboration is limited
though [1].

2 Problem Description

Although distribution is a key supply chain driver, cooperation has rarely been
applied in this area [2]. This paper adds to the existing literature by introducing
both horizontal and vertical collaboration in logistics in a specific problem setting.
The goal is to raise cost-efficiency through cooperation in inventory management
and distribution and to divide the gains using GCT to guarantee long-term viability.

The considered supply chain has three levels: retailers, shippers and Logistics
Service Providers (LSPs). Each shipper has its own set of retailers. They can
replenish them using their own vehicles, or shippers can cooperate through an
LSP. The LSP then distributes the goods of multiple shippers to create savings
through order volumes and geographical proximity. Volume savings are created by
coordinating multiple shippers’ orders at one stocking point, such that the fixed
cost, which is incurred each time an order is made, can be shared by the shippers.
Transport savings originate from serving retailers in the same area. We assume that
LSPs proactively look for shippers with a high synergy potential, which is referred
to as insinking [2].

2.1 Calculations Cost Savings Shippers

To determine the savings, the cost of each shipper working individually is calculated
first. The total annual cost comprises the annual inventory cost (holding and order
cost) and the annual transport cost. Each shipper has an individual order cost F and
holding cost H to determine his Economic Order Quantity (EOQ) and his annual
number of orders n (cfr. (1)). The transport cost is found through the minimal-
cost routes to his retailers. Transport costs comprise a distance cost per travelled
kilometer, a service cost per retailer and a loading cost per vehicle.

EOQ D
r
2 � D � F

H
; n D D

EOQ
(1)

TCSi D n � F C EOQ

2
� H C Transportation cost (2)

We include an example to clarify our methodology. It holds two LSPs, each
serving three shippers, which in their turn have three retailers, each one with its
own daily demand D. We assume that all shippers sell similar products.
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Shippers can enter a coalition S and cooperate through an LSP, such that no
information has to be shared with competitors. When cooperating, shippers no
longer incur a holding cost and their order cost changes. The LSP charges them
a fixed fee per order FF and a variable fee per transported unit VF. An LSP can
serve a coalition with one individual shipper. The shipper’s holding cost becomes
the sum of his customer-specific order cost CSF, which is incurred when outsourcing
to an LSP, and the fixed fee FF (cfr. (3)). This results in a new number of orders
and a new EOQ. His total cost equals the sum of the new inventory cost and the
variable fee (cfr. (4)). When the coalition contains only one shipper, the savings v(S)
represent the savings obtained by outsourcing distribution to an LSP (cfr. (5) and
Table 1).

Fco D FFLSPi C CSFSi (3)

TCSCo D n � Fco C Variable Fee (4)

v.S/ D MAXfTCSCo � TCSiI 0g (5)

When an LSP serves multiple shippers, the savings v(S) originate from both
outsourcing and horizontal cooperation among the shippers. The coalition of
shippers incurs a new order cost Fco (cfr. (6)), including the customer-specific order
cost of all shippers in the coalitions and the fixed fee. This results in a new number of
orders, new EOQ, new total cost (cfr. (7)) and new savings (cfr. (8)). Table 2 shows
the results of two possible coalitions for both LSPs in our example.

Fco D FFLSPi C
X
i2S

CSFSi (6)

TCco D n � Fco C Variable Fee (7)

v.S/ D MAXfTCco �
X
i2S

TCSiI 0g (8)

Table 1 Cost shippers: individual costs and costs in coalition with one shipper

Ship D Find EOQ Ship cost Co Fco EOQ LSP cost Total fee Ship savings

1 10 233.25 1409 34,622.63 {1} 216 1350 32,701.60 34,114.50 508:13

2 10 206.37 1328 35,703.25 {2} 217 1350 32,696.38 34,115.75 1587:50

3 10 224.04 1281 33,487.04 {3} 215.5 1200 25,107.20 34,381.50 0:00

4 10 206.65 1265 37,666.13 {4} 215 1200 28,307.70 34,407.00 3259:13

5 10 251.54 1328 33,127.30 {5} 214 1200 29,398.50 34,530.00 0:00

6 10 247.00 1281 31,346.96 {6} 211.8 1350 27,384.40 33,869.65 0:00
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Table 2 Coalition cost shippers: coalitions with multiple shipper

Supply chain Ship
Co Fco EOQ1 EOQ2 EOQ3 LSP cost Total fee savings LSP profit savings

{2,3} 247.5 0 982 982 54,612.24 63,390.36 14,578.04 8778:12 2421:75

{1,2,3} 278.5 831 831 381 84,959.83 94,446.56 18,853.09 9486:73 4818:55

{5,6} 243.8 0 982 982 51,074.62 65,626.72 13,399.66 12;391:70 1007:94

{4,5,6} 276.8 831 831 831 71,895.74 96,838.41 30,244.64 21;701:77 8542:88

Table 3 Coalition multiple LSPs: best coalitions LSP1 and LSP2

Coalition Total cost Total fee LSP profit Supply chain savings Ship savings

{1,2,3,4,5,6} 139,474.62 179,192.00 39,717.38 66,478.68 18,304.62

2.2 Logistic Service Provider Calculations

Similar to shippers, LSPs have an individual order cost F and holding cost H. Their
total cost also includes inventory and transport costs, which are calculated for each
possible coalition. LSPs has to store the shippers’ EOQs, which do not necessarily
equal the LSPs’ EOQ. The transport cost is determined by their minimal-cost routes.
We assume that LSPs distribute the goods from their own depots. If a shipper both
produces and distributes the goods, the finished products need to be transported to
the LSP warehouse first. Hence, the LSP incurs an additional transport cost. The
LSP profit is calculated by subtracting his costs from the shippers’ fees (cfr. (10)).
The LSPs’ cost and profit for four coalitions can be found in Table 2.

TCLSP D n � FLSPi C
X
i2S

EOQi

2
� H C Transportation cost (9)

PLSP D
X
i2S

Variable FeeSi C Fixed FeeSi � TCLSP (10)

It is possible for LSPs to collaborate too, but only if the shippers allow them
to collaborate, which requires significant savings for the shippers. If allowed, the
weighted transport fees of all LSPs (fixed and variable) are used to calculate the
new EOQ and number of orders. The transport cost is found by the minimal-cost
routes from multiple LSP depots. Results from our example are shown in Table 3.

The number of coalitions out of S shippers is (2S � 1). Since every coalition’s
cost has to be calculated, each additional shipper creates an exponential number of
calculations. We use a heuristic method to get a good solution for the coalition,
without performing all calculations. We identify the best coalitions per LSP
and consider the shippers in these coalitions to form coalitions where all LSPs
collaborate.
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2.3 Coalition Selection

We aim to select the best coalition, which is the one minimizing the supply chain
cost (cfr. Table 2: coalition {1,2,3} and {4,5,6}). The LSP tries to form the coalition
with the highest profit, which requires appropriate fees, such that both the LSP and
shippers benefit from the coalitions. In our example, the coalitions with the lowest
supply chain cost also create the highest profit for the LSPs (cfr. Table 2).

It is important that the chosen coalitions do not increase the costs of the coalition
members. If a shipper’s cost increases, the next best coalition should be examined.
In Coalition{1,2,3} for example, all three shippers should obtain a fair amount of
the savings and their cost cannot be higher than when they work individually.

2.4 Savings and Profit Allocation

Once the savings are known, they are allocated among the shippers. We use the
Shapley value, which is the marginal expected contribution of an additional player
i in a coalition (cfr. (11)). It is important to take the marginal contribution of each
shipper to the total gain into account, such that the allocation is perceived as fair.
Other advantages are its computational simplicity and its unique savings allocation,
which makes it practical in real-life situations. Table 4 shows the savings allocation
according to the Shapley value for our example.

SVi.N; v/ D
X

S�NIi…S

.jSjŠjNj � jSj � 1/Š
jNjŠ Œv.S [ fig � v.S/� (11)

If several LSPs collaborate, profit has to be fairly divided between them too.
However, the Shapley value cannot be used to do so. We want to know the additional
value created by an LSP, while the additional coalition players are shippers. Hence,
a ratio based on the Shapley values of the shippers is proposed to divide the LSPs’
profit. Each LSP’s profit is calculated by multiplying the total profit with his ratio.

ratioLSPj D
P

i2S;LSPj
.SVi/P

i2S.SVi/
(12)

Table 4 Shapley values shippers coalitions {1,2,3} and {4,5,6}

Savings {1,2,3} Shipper Shapley value Savings {4,5,6} Shipper Shapley value

4818.55 1 1553:79 8542.88 4 6044:56

2 2630:74 5 1557:07

3 634:02 6 941:25
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This way, the LSPs’ profit depends on the shippers’ savings, which incites the
LSPs to pursue high overall supply chain savings. If the savings and profit would
not be linked, the LSPs would be less inclined to pursue a high overall supply chain
performance. Now, the LSP that brings in the largest savings for the supply chain
earns the largest profit share.

3 Conclusion

We studied the gains of joint horizontal and vertical cooperation among shippers and
LSPs in inventory and distribution. Synergies were created through order volumes
and joint routing. To coordinate the supply chain, we applied game theory and used
the Shapley value as a distribution key for the shippers’ savings. This value resulted
in a more justified solution than rules of thumb do. The profit allocation among LSPs
cannot be done by the Shapley value. Instead, we used a ratio that takes into account
the contribution of the LSP’s shippers to the total savings. This ratio incites the LSP
to pursue better global supply chain performance, rather than high individual profits.

Preliminary results on larger datasets indicate that similar results can be expected
for more realistic settings. However, they also indicate that several parameters are
potentially crucial for the coalition formation and savings creation and allocation.
Especially the location of the retailers and LSPs and the LSP fees have a pronounced
impact on the savings and coalition formation and on the savings allocation. The
shippers’ costs and retailers’ demand have no clear impact on the coalitions, but
they do influence the profit distribution, since higher individual shipper costs creates
higher opportunities to create savings and high demand rates creates higher profits.
More in-depth research into larger datasets is necessary. Furthermore, other problem
variants like the pick-up and delivery problem should be investigated to look for
additional cost savings. More research possibilities lie in sensitivity and robustness
of the coalitions and savings.
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Experimental Study and Statistical Analysis
of Human Factors’ Impact in Cell Production
System

Yanwen Dong and Xiying Hao

1 Introduction

The Cell Production (CP) or Cellular Manufacturing (CM) has become an integral
part of lean manufacturing systems; many organizations have applied CP concepts
in manufacturing and service processes. Implementation of CP has been shown to
achieve significant improvements in product quality, scheduling, space utilization,
control of operations and employee morale [8].

The numerous techniques and methods have focused on technical aspects of
CP, such as the best groupings for products, parts or machine clusters, selecting
tools, determining process flow. Although technical problems of CP have been
thoroughly researched and many mathematical and computer based approaches have
been reported, there is a singular absence of articles that deal with the human factors
in CP because human related issues are typically difficult to quantify [1, 2].

It has been found that for successful implementation of CP, people who will
eventually operate, manage, support and maintain the manufacturing cells should
actively participate in their design and development [9]. Wemmerlov et al. [10]
surveyed 46 user plants with 126 cells and concluded that substantial benefits could
be achieved from CP but that implementation is not simply a rearrangement of
the factory layout; it is a complex reorganization that involves organizational and
human aspects. They emphasized that most of the problems faced by companies
implementing cells were related to people, not technical issues.

This study aims to investigate the impact of human factors in CP and contribute
to the literature on CP from the following two viewpoints:
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1. As most of previous researches applied questionnaire survey or case study
methods, it is only possible to evaluate human factors’ impact comparatively
and empirically. Different from previous researches, this paper will apply the
experimental study method to evaluate the impact of human factors more
precisely. We conduct a CP experiment, measure operation time, and then assess
statistically the effect of human factors based on the time measurement results.

2. With the exception of our previous researches [3, 5, 7], no studies have been
published in which the impact of workers’ aptitude was quantitatively examined.
In this paper, we design a questionnaire to measure the operators’ aptitude, and
then conduct the regression analysis to clarify the relationship between operators’
aptitude and productivity of manufacturing cells.

This paper is organized as follows. At first, we introduce the experiment and
questionnaire design. Then we conduct a factor analysis to specify personal aptitude
based on the answers of the questionnaire. Next, we investigate the impact of
personal aptitude on the productivity of CP. At last, we show some concluding
remarks.

2 Experiment and Questionnaire Design

2.1 Cell Production Experiment

We designed a laboratory experiment to examine the impact of human factors on
the performance of CP. We use a toy robot that built up of LEGO Mindstorms as the
virtual good. It consists of 106 pieces of parts and the assembling process is divided
into 17 tasks. The experiment is carried out along with the following steps:

Step 1. Instruction: Giving the operators some assembly manuals, the instructor
demonstrates the assembling tasks of the toy robot through assembling it
practically in front of the operators. Following the instructor’s demonstra-
tion, the operators learn the sequence and techniques to assemble the toy
robot, and assemble one toy robot by oneself.

Step 2. Assembling and measurement: After the instruction, the operators assem-
ble the toy robot in the mode of one-person cell. When doing the
assembling tasks, the operation time was measured.

Step 3. Repeat: The assembly time to assemble a toy robot is calculated as the
sum of operation times of all tasks. In order to investigate the learning
effect, the assembling operation and time measurement are repeated five
times.
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Table 1 Questionnaire

Execution No Question item

Before the assembling operation Q1 I’m interested in this experiment

Q2 I feel this experiment that’s fun

Q3 This experiment seems difficult

Q4 I think this experiment is significant for me

Q5 This experiment is quite troublesome

Q6 I like experimental subjects including this experiment

Q7 I like making something

Q8 I am going to actively participate in this experiment

Q9 I like the classroom lectures better than an experiment

Q10 Fine work is my favorite

Q11 I think my hand is deft

After the assembling operation Q12 I worked actively during this experiment

Q13 I was not good at fine work

Q14 This experiment was interesting

Q15 This experiment was meaningful

Q16 The assembly tasks were repeated too many times

Q17 This experiment was more enjoyable than others

Q18 This experiment was difficult

Q19 The instructor’s instruction could be understood well

Q20 In order to raise efficiency, I had devised for myself

Q21 The experiment manual was very comprehensible

Q22 This experiment was monotonous and boring

Q23 I felt my hand is deft

2.2 Questionnaire Design

According to Hackman and Oldham’s Job Characteristics Model (JCM) [4] and our
observations from the experiment [6], we designed a questionnaire to investigate
personnel-related aspects, such as deftness, participation, attitude, etc. of the
operators. As showed in Table 1, the questionnaire sheet consists of 23 questions
and the operators are required to answer it before and after the assembling operation.
When answering questionnaire, a five-point Likert scale was employed.

3 Factor Analysis and Personal Aptitude

There are 68 operators attended the experiment, who are the students taking
the experimental lesson entitled as Industrial System Laboratory in Fukushima
University. Sixty-one of them returned both valid answers to the questionnaire and
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valid time measurement. To investigate the impact of operators’ personal aptitude
on production performance, we conducted an exploratory factor analysis as follows.

We have n (n D 61) operators and m (m D 23) questions in the questionnaire. Let
qij be the answer of question Qj ( j D 1; 2; : : : ;m) from operator i (i D 1; 2; : : : ; n).
Suppose that the latent structure underlying the answers of the questionnaire
includes p factors and fik denotes the factor score of operator i for the factor
k (k D 1; 2; : : : ; p), the corresponding unique factors are uij (i D 1; 2; : : : ; n;
j D 1; 2; : : : ;m), the observed variables qij can be expressed as linear functions
of these p factors:

qij D
pX

kD1
fikakj C uij (1)

Where akj is the factor loading of the question Qj on the factor k. Using the principal
axis factoring method and varimax rotation with Kaiser Normalization, we could
extract five factors and obtain the factor loadings, as shown in Eq. (2).

A D .ajk/ D

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Q1 �0:132 0:690 0:202 0:041 �0:145
Q2 0:105 0:737 0:255 0:143 �0:201
Q3 �0:632 �0:007 0:169 �0:258 0:088

Q4 �0:118 0:531 0:258 0:046 �0:050
Q5 �0:118 �0:231 0:030 0:089 0:758
Q6 0:118 0:186 0:106 0:851 �0:078
Q7 0:351 0:366 0:263 0:329 �0:220
Q8 0:075 0:687 0:304 0:289 �0:158
Q9 �0:195 �0:157 0:126 �0:639 �0:019
Q10 0:882 0:015 0:299 0:053 �0:020
Q11 0:899 �0:015 0:195 0:066 �0:007
Q12 0:207 0:804 0:129 0:095 �0:015
Q13 �0:855 �0:028 �0:090 �0:119 �0:008
Q14 0:256 0:248 0:765 0:130 �0:183
Q15 0:061 0:310 0:747 0:049 �0:052
Q16 0:071 0:054 �0:224 �0:306 0:590
Q17 0:202 0:355 0:662 �0:076 �0:091
Q18 �0:404 �0:304 0:192 �0:203 0:276

Q19 0:009 0:493 0:522 0:118 �0:129
Q20 0:335 0:543 0:217 0:075 0:096

Q21 0:096 0:407 0:591 �0:239 �0:029
Q22 0:010 �0:143 �0:388 0:039 0:483
Q23 0:837 0:133 0:110 �0:043 0:031

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(2)
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According to Eq. (2) and Table 1, the following five factors (p D 5) can be
extracted.

• Deftness (factor 1): it represents the operator’s deftness to finish a fine and
difficult work.

• Positiveness (factor 2): it describes if the operators are interested and can
participate actively in this experiment.

• Meaningfulness (factor 3): it represents the task significance or how meaningful
the operators felt the tasks.

• Preferrer (factor 4): it describes if the operators prefer manual works.
• Passiveness (factor 5): it represents if the operators were passive to do a fine and

monotonous work.

After the factor extraction, the factor score fik of operator i (i D 1; 2; : : : ; n) for the
factor k (k D 1; 2; : : : ; p) can also be calculated. These factor scores will be used in
the next section as the evaluation values of the operators for the five factors.

4 Productivity and Personal Aptitude

To investigate how the five factors extracted above affect the performance of CP,
we represent the assembly time of the operator i (i D 1; 2; : : : ; n) at the r-th (r D
1; 2; : : : ; 5) experience as tri, and then conduct five kind of regression analysis, as
shown in Eq. (3). Here, the dependent variable is tri, and the independent variables
are the factor scores fik (k D 1; 2; : : : ; p).

tri D
pX

kD1
brk fik C eri (3)

Where brk is the regression coefficient, and eri is the error term (i D 1; 2; : : : ; n;
r D 1; 2; : : : ; 5; k D 1; 2; : : : ; p).

Suppose fik and tri have been standardized, then we can derive the standardized
regression coefficients according to the least squares method. As the result, the
following five standardized regression equations could be obtained.

t1i D �0:323fi1 C 0:007fi2 C 0:008fi3�0:356fi4 C 0:039fi5 (4)

t2i D �0:288fi1 � 0:037fi2 � 0:051fi3�0:263fi4 C 0:087fi5 (5)

t3i D �0:203fi1 � 0:127fi2 � 0:085fi3�0:288fi4 C 0:068fi5 (6)

t4i D �0:395fi1 C 0:016fi2 � 0:063fi3�0:419fi4 C 0:093fi5 (7)

t5i D �0:344fi1 � 0:094fi2 C 0:080fi3�0:284fi4 C 0:031fi5 (8)
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Table 2 The significance of the standardized regression coefficients

Dependent variable
Independent variable t1i t2i t3i t4i t5i

fi1 0.008 0.023 0.106 0.001 0.005

fi2 0.951 0.763 0.311 0.886 0.432

fi3 0.943 0.683 0.494 0.563 0.503

fi4 0.004 0.037 0.023 0.000 0.020

fi5 0.745 0.482 0.584 0.393 0.797

We show also the significance level (P value) each regression coefficient in Table 2.
According to the results of Table 2, it is clear that the scores of factor 1 and factor
4 correlated significantly to the assembly times. That is, the preferrer to manual
works (factor 4) and the deftness for a fine and difficult work (factor 1) have a
significant impact on the productivity of CP. Meanwhile, as the scores of factor
2, factor 3 and factor 5 didn’t correlated significantly to the assembly times, we
could not verify statistically the impact of the task significance (meaningfulness)
and operators’ attitude (positiveness and passiveness) on performance of CP.

5 Concluding Remarks

This paper has designed a laboratory experiment of CP to measure the productivity
of manufacturing cells. Meanwhile, a questionnaire was executed to measure the
operators’ aptitude. Based on the answers of the questionnaire, a factor analysis was
conducted and five human factors: deftness, positiveness, meaningfulness, preferrer
and passiveness, were extracted. However, among the five factors, only two of them
have been verified statistically that they have significant impact on the productivity
of CP. From this result, it was clarified that the productivity of cell production
depends significantly on two aptitudes of the operators: the preferrer to manual
works and the deftness for a fine and difficult work. On the other hand, the task
significance (meaningfulness) and operators’ attitude (positiveness and passiveness)
have not significant relation to the productivity of CP.

Because only two-fifths of the factors have been verified statistically that they
have significant relation to the productivity of CP, the questionnaire should be
improved so that it can extract as many significant factors as possible. Furthermore,
we are going to apply other methods such as structural equation modeling to find
more effective latent structure underlying the questionnaire.
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Planning Production and Workforce
in a Discrete-Time Financial Model: Optimizing
Cash-Flows Released

Pedro Martins

1 Introduction

Production planning is a central theme of discussion within Management Science.
It also concentrates the attention of the Operations Research community, namely
on lot-sizing problems, to which an extensive number of scientific works and a
large amount of real-world successful applications are available in the literature (see,
e.g., [1, 4, 7, 8]). The integration of cash-flows and workforce along the production
process has also been discussed, namely in [2, 3, 5, 6].

In the present paper, we propose a mixed integer linear programming formulation
that also attempts to handle these three planning processes in a single framework,
acting together in a discrete-time stream. In our approach, the production process
is not as comprising as the versions discussed in the former papers, as it lies
on a single-item and single-level basis. However, our model combines the three
mentioned processes with strategies for cash-flows released, namely dividends,
while satisfying a given sustainability condition or a final outcome condition. The
objective is to maximize the entire amount of cash-flows released outwards. In
addition, we do not force the sales to entirely meet the demand, but using the demand
level as an upper limit for the sales strategy. The mentioned simplification on the
production process is only to simplify the discussion, in order to emphasize the
trade-off relationship among the three processes. The entire system can be enlarged
with the various features usually considered in lot-sizing planning problems.

P. Martins (�)
Polytechnic Institute of Coimbra, ISCAC, Quinta Agrícola - Bencanta, 3040-316 Coimbra,
Portugal

Operations Research Center (CIO), University of Lisbon, Lisbon, Portugal
e-mail: pmartins@iscac.pt

© Springer International Publishing Switzerland 2016
R.J. Fonseca et al. (eds.), Computational Management Science, Lecture Notes
in Economics and Mathematical Systems 682,
DOI 10.1007/978-3-319-20430-7_15

115

mailto:pmartins@iscac.pt


116 P. Martins

In the next section, we describe the integrated financial/workforce/production
problem under discussion, to which a formulation is proposed in Sect. 3. A case
oriented study is discussed in Sect. 4. The paper ends with a section on conclusions.

2 Financial/Workforce/Production Planning Problem

Given a stream of discrete time periods, ranging from period 1 to n, we want to
describe production, workforce and cash-flows in each of these periods, along the
entire time horizon. The production process is single-item and single-level, that is,
it involves a single product on a single processing unit. However, the entire system
can be seen on a two-level scheme. The first level involves a financial sequence,
while the second one runs on a production stream. Capital to borrow and workforce
are additional resources for sustaining the two processes.

Considering the production stream, we know the demand in each period, which
is not required to be fully attained, acting just as an upper limit for the sales, while
assuming that the unsatisfied demand is lost. We also know, for each period, the
unitary net profit of the sales, the unitary cost of keeping the product in stock, the
fixed cost of production and the capacity of production.

Workforce is required for covering the production. Thus, we have a sequence of
time intervals defining overlapping shifts, where each shift lasts m periods. The first
work-shift starts in period 1 and ends in period m, then the second shift starts in
period 2 and ends in period mC1, and so on. The last shift starts in period n�mC1
so that no worker is on duty after period n. Workers contracts have a work-shift
duration, that is, m periods. We want to determine the number of workers to hire
for each shift such that the production is covered. In this case, we know the cost of
each worker in each period and the production rate of a worker, that is, the number
of units that a worker can produce in each period.

The cash-flows are expected to interact with the previously described processes.
They should pay production and workforce costs, while being fed by the sales’
profits. We can assume an initial cash income supplied by the shareholders. In
addition, the company can borrow a loan in every period of the planning stream,
each one with an h period’s maturity. Amortizations are paid in equal amounts along
the h period’s interval. We assume that both contracts and amortizations are made
at the beginning of the period, and that all loans are entirely paid at the end of the
planning horizon. Thus, the last period for borrowing is period n�h. There is a given
interest rate for the loan starting in each period. We also consider an upper limit for
the entire debt in each period. Cash-flows released outwards are also determined
along the planning stream. The problem also comprises a sustainability condition
or a final outcome condition, forcing the cash-balance at the end of the planning
horizon (period n) to meet a given lower limit cash amount. We set this lower limit
to be, at least, the initial capital supplied by the shareholders at the beginning plus
profits.
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The objective is to maximize the sum of the cash-flows released outwards, during
the entire planning horizon.

3 Mathematical Formulation

In order to model the problem we start defining the parameters, the variables
and then introduce the mixed-integer linear programming formulation. We use
two letters for representing the parameters (apart from index ranges) and a single
letter for the variables. As mentioned above, n denotes the planning horizon, m
represents the shifts duration and h denotes the loan’s maturities. We assume that
n > maxfm; hg.

Parameters:

dmt 
 demand in period t, t D 1; : : : ; n
pst 
 unitary net profit of the sales (deducting fixed costs and salaries) in period
t, t D 1; : : : ; n
cst 
 unitary cost of the stock in period t, t D 1; : : : ; n
fct 
 production fixed costs in period t, t D 1; : : : ; n
cpt 
 capacity of production in period t, t D 1; : : : ; n
cwt 
 cost of a worker (per period) arrived in the shift started in period t, t D
1; : : : ; n � mC 1
pr 
 labor rate (number of units that a worker can produce (in any period))
ic0 
 initial capital supplied by the shareholders before starting the process
irt 
 interest rate of the loan started in period t, t D 1; : : : ; n � h
dl 
 upper limit for the entire debt in each period
sp 
 profits expected in the sustainability/outcome condition, as a proportion of
parameter ic0

Variables:

pt 
 production in period t, t D 1; : : : ; n
st 
 stock at the end of period t, t D 1; : : : ; n (s0 D 0, by assumption)

yt D
�

1, if pt > 0

0, otherwise
; t D 1; : : : ; n

wt 
 number of workers in the shift starting in period t, t D 1; : : : ; n �mC 1
vt 
 cash balance at the end of period t, t D 1; : : : ; n
bt 
 capital borrowed in period t, t D 1; : : : ; n � h
rt 
 cash-flows released outwards (e.g., dividends) in period t, t D 1; : : : ; n
Formulation:

maximize
Pn

tD1 rt (1)

subject to 0 � st�1 C pt � st � dmt ; t D 1; : : : ; n (2)

pt � cpt � yt ; t D 1; : : : ; n (3)
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pt �Pminfn�mC1;tg
jDmaxf1;t�mC1g pr � wj ; t D 1; : : : ; n (4)Pt

jDmaxf1;t�hC1g
j�tCh

h � bj � dl ; t D 1; : : : ; n � h (5)

ic0 C ps1 � .p1 � s1/C b1 D cs1 � s1 C fc1 � y1 C cw1 � w1 C r1 C v1(6)

vt�1 C pst � .st�1 C pt � st/C bt D
D cst � st C fct � yt CPminfn�mC1;tg

jDmaxf1;t�mC1g
�
cwj � wj

�C
CPminft�1;n�hg

jDmaxf1;t�hg
�
1Cirj�.j�tChC1/

h � bj

	
C rt C vt ; t D 2; : : : ; n (7)

vn � .1C sp/ � ic0 (8)

pt; st; vt; rt � 0 ; t D 1; : : : ; n I bt � 0 ; t D 1; : : : ; n � h (9)

yt 2 f0; 1g ; t D 1; : : : ; n I wt 2 N0 ; t D 1; : : : ; n � mC 1
(10)

The variable vt should be ignored in the equalities (7) for t D n � hC 1; : : : ; n.
We have left them in the model in order to simplify the exposition. The set of
constraints (2) model the production stream, where the amount sold in period t
(st�1 C pt � st) is bounded by the demand (dmt). Inequalities (3) impose a limit
on the production in each period, whenever production is on, which will activate
the associated fixed cost. Also, constraints (4) relate production to workforce
availability in each period. These constraints are also bounding the production
in each period. Then, inequalities (5) impose an upper limit (dl) on the sum
of the debt in each period. Further, constraints (6) and (7) describe cash-flow
conservation, where (6) involves period t D 1 and (7) characterize the remaining
periods. In these equalities, we set all the cash income in the left-hand-side and
the outgoing cash in the right-hand-side. The first summation in the right-hand-side
of equalities (7) represents the total amount of salaries to pay in period t, while
the second summation represents the amortizations and the interests also to be paid
in period t. The last constraint state the sustainability/outcome condition, setting a
lower limit on the cash balance at the end of the planning horizon, guaranteeing that
at the end, the process will return all the capital invested plus profits.

4 Discussing an Application

In this section we propose a fictitious example, in order to simulate some aspects of
the three processes (production/workforce/cash-flows) interaction. Each time period
represents a month and the planning horizon includes 50 periods, thus, n D 50. We
also consider that each shift has a 5 months duration (m D 5) and that the loans last
10 months (maturities h D 10). In addition, we assume that there is no significant
inflationary effect during the entire time horizon.
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Following the usual life time stream of a product, we consider the four stages for
the demand: introduction, growth, maturity and decline. In the present example, we
assume that the first period demand is equal to 1000 units (dm1 D 1000). Then, the
demand grows at a 3 % rate during the first 5 months (introduction term), it passes to
a 7 % rate during the next 15 months (growth term), and slows down during the next
20 months with a growing rate of 1 % (maturity term). Then, it declines to a �5 %
rate (decline term). In addition, we assume that the product will be off-line at the
end of the planning horizon, which suggests that the last condition (constraint (8))
should be seen as a lower limit for a final cash outcome.

The unitary net profits (in euros) of the sales (pst) are randomly generated,
following a Normal distribution with � D 10 and � D 2. The same way, the
interest rates (in percentage) of the loans (irt) are also randomly generated following
a Normal distribution with � D 0:5 and � D 0:002. All the remaining parameters
were assumed to be constant along the planning horizon, taking the following
values.

cst D 1 euro; t D 1; : : : ; n pr D 100 units

fct D 1000 euros; t D 1; : : : ; n ic0 D 20;000 euros

cpt D 5000 units; t D 1; : : : ; n dl D 50;000 euros

cwt D 850 euros; t D 1; : : : ; n � mC 1 sp D 80%

Considering these data, and using ILOG/CPLEX 11.2 for solving the model, the
optimum solution value is equal to 140;576:86 euros. This is the maximum capital
that can be released outwards (for dividends, for instance) during the entire planning
horizon, such that the required conditions are met, namely, the final outcome goal
that forces the last period cash balance to bring the initial capital supplied by the
shareholders (ic0) plus 80% of profits over the mentioned capital. Thus, besides the
capital released outwards, the company will take to the future (variable vn) a cash
balance equal to 36;000 euros. In addition, the workforce strategy suggests hiring in

Fig. 1 Cash balance and cash-flows released outwards along the entire planning stream
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Fig. 2 Demand, sales and stocks along the entire planning stream

the shifts starting in periods 4, 5, 8, 9, 15–21, 24, 25, 27–29, 31–34, 36–39, 41–43,
45 and 46. In these shifts, we should hire 11, 1, 2, 14, 22, 2, 1, 2, 3, 22, 2, 6, 6, 13, 5,
6, 6, 13, 5, 2, 10, 13, 5, 2, 10, 1, 2, 4 and 21 workers, respectively. Also, the solution
recommends borrowing no capital during the entire planning horizon.

Figure 1 represents the cash balance and the cash-flows released outwards along
the entire planning stream. Figure 2 compares the demand, the effective sales and
the stocks along the same stream.

5 Conclusions

The main motivation of the present paper is to bring an additional mathematical
programming based tool for planning production, workforce and some relevant
aspects involving cash-flows, exploring their interaction in a single framework.
Using a small fictitious example, we have made a few steps pursuing the discussion
of the entire system. Naturally, the model can be extended to larger dimensional
and more complex problems, including additional features in the various streams
involved.

Acknowledgements We thank the reviewers for the valuable comments and suggestions. This
work was partially supported by FCT (project PEst-OE/MAT/UI0152).
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Evaluating Supply Chain Resilience Under
Different Types of Disruption

Sónia R. Cardoso, Ana Paula Barbosa-Póvoa, Susana Relvas,
and Augusto Q. Novais

1 Introduction

Currently SCs are more exposed to disruptions, due to their increasing complexity
of operating worldwide. Such disruptions can be of two kinds, either “known-
unknown” or “unknown-unknown”. The former are associated with known occur-
rences, well documented by both academics and industry, and have a reasonably
predictable probability of occurrence. Their impact is very low when compared to
the second type of occurrences [10]. In order to deal with disruptions the need of
incorporating resilience in supply chains and quantifying the effect of these events
in their operations has been recognized by several companies and by academics
[5]. A number of papers have been published in this area. However there is still a
lack of quantitative models to address such occurrences [11]. SC resilience can be
defined as the ability of a SC to return to its original state or move to a new more
desirable state, after being disturbed [6]. Some authors have proposed strategies in
order to build resilient supply chains. Fiksel [7] identifies four major characteristics:
diversity, efficiency, adaptability and cohesion that should be pursued within SCs.
Rice and Caniato [9] studied the necessity of investing in flexibility and redundancy.
The majority of the literature published in the area is based on qualitative insights
[2], and few authors have been trying to quantify resilience. Kima et al. [8] presented
metrics derived from social network analysis and studied how these metrics affect
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the reliability of supply chains. Adenso-Diaz et al. [1] applied thirteen metrics to
SCs and concluded that the most relevant are node complexity, density and node
criticality that affect negatively the supply chain reliability, and flow complexity that
affects it positively. Carvalho et al. [4] used the lead time ratio and the total cost to
compare the behaviour towards a disruption of a SC using two different strategies:
one based on flexibility and another on redundancy. From the literature it can be
concluded that, of quantitative work published in the area of the SC resilience, the
majority addresses only one single type of disruption affecting one specific echelon
of the network. Also, when resilience strategies were implemented no performance
measures were applied. Thus, there are still a vast number of questions to investigate
in this area.

2 Problem Definition

This work proposes a multi-product, multi-period MILP model for the design
and planning of supply chains with uncertainty in products’ demand, which will
overcome some of the limitations found in the literature. It is based on a previous
work of the authors [3] and is applied to two SCs, one a traditional forward network
(case A) and the other a CLSC (case B), see Fig. 1. For further details on the model
used as the readers are referred to the work of Cardoso et al. [3].

The suppliers send the raw materials to the plants where they are processed using
a set of production processes. Then, the resulting intermediate products are sent
to warehouses where the final orders are assembled and delivered to customers.
Transshipment within plants and within warehouses is allowed. Case B is more
complex than case A since it integrates reverse flows and has the possibility of
sending products directly from plants to markets without passing through the
warehouses. The reverse flow is originated in the markets and comprises three
types of products: (1) “non-conforming” that are sent to warehouses to be repacked
before being reintroduced in the SC, (2) “end-of-life” that are collected in period t,
having been sold in an earlier period. These products are sent to the disassembling
centers (located in the plants) to be disassembled or remanufactured and (3)

Fig. 1 Supply chain structures of cases A and B
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“non-recoverable” that are sent directly to disposal. New entity installation or
capacity expansions are allowed. Four different disruptions are studied: (D1) the two
most important suppliers do not have raw material available during time period 2;
(D2) 100 % decrease in the production capacity of the most important plant in time
period 2; (D3) the 3PL (third party logistics) hired to operate those transportation
links, with the highest quantity of products, between plants and warehouses goes
out of business in time period 2; and (D4) the most important warehouse closes
down in time period 2. Also and simultaneously with the disruption occurrence,
demand uncertainty is considered using a scenario tree approach [12]. On the
disruptions occurrence two options are studied: either they occur with certainty or
with uncertainty. For the latter two more scenarios are considered corresponding
to whether or not the disruption will effectively occur. To compare the resilience
of both SCs, seven indicators are implemented, three are operational: expected net
present value (ENPV), customer service level (CSL) and investment, and four are
related to the network design: node and flow complexity, density and node criticality,
which are determined by Eqs. (1)–(4).

Nodest D
X
v

Xvt;8t (1)

FCt D
X
v

X
w

.Yvwt C YNCvwt C YELvwt/;8t (2)

Densityt D FCt

pt
;8t (3)

NCvt D
X

wW.w;v/2F

Yvwt C
X

wW.v;w/2R

.YNCvwt C YELvwt/;8v; t (4)

Equation (1) determines the node complexity (Nodest) through the sum of all
binary variables (Xvt) that assume either the value 1 if entity v at time t belongs to
the network or 0 otherwise. In Eq. (2) the flow complexity (FCt) is calculated as the
sum of the total forward (Yvwt) and reverse flows (YNCvwt for the non-conforming
and YELvwt for end of life products). The density is determined in Eq. (3) as the ratio
between the total number of flows that are established in a given time period (FCt)
and the total number of potential flows that could be established (pt). Node criticality
(NCvt) is the total number of critical nodes of a network. A node is considered
critical when the sum of its inbound and outbound flows is higher than 10, which is
calculated in Eq. (4).
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3 Case Study

The developed model was applied to a SC operating in Europe. It involves an
existing plant in Bilbao, one warehouse in Salamanca and four raw material
suppliers located respectively in Badajoz, Barcelona, Frankfurt and Prague. Ten
markets spread around different European countries are supplied. At the Bilbao
plant, 12 manufacturing and 6 disassembling processes exist with an initial capacity
of 600 ton. The warehouse has six assembling lines that assemble the final orders
and exhibits a storage capacity of 500 ton. A reconfiguration of this structure is
under study and the objective is to maximize the ENPV of the investment. The
company considers the hypothesis of expanding the existing processes besides
installing a new plant in Hamburg and two new warehouses in Lyon and Munich. On
the demand forecasts, it was used the approach proposed by Tsiakis et al. [12] where
it is assumed that demand is known for the first time period, while for the second
period uncertainty exists modeled trough three possible branches: an optimistic that
implies an increase of 10 % over the first time period forecast, with a probability
of 0.25, a most likely with an increase of 3 % and a probability of 0.50, and a
pessimistic that involves a reduction of 2 % in the demand with a probability of
0.25. For the third and last time period, and for each branch of the previous period,
another three possibilities are considered: an optimistic which implies an increase
of 5 % in the demand over the value assumed for the previous period, a most
likely with an increase of 2 %, and a pessimistic with a decrease of 2 %. When the
disruptions’ occurrence is considered uncertain, D1 is assumed to have a probability
of occurrence of 40 %, D2 of 10 %, D3 of 60 % and D4 of 25 %. Since each period
represents 5 years, the modelling of three time periods results in a time horizon of
15 years, which seems to be more than enough for a supply chain to recover from
a disruptive event. The results for the operational indicators are shown in Fig. 2 and
Table 1. When a probability is associated to the occurrence of the disruption it is
represented by the letter ST.

Fig. 2 ENPV and CSL for
each case
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Table 1 Relative deviations of ENPV and CSL under all disruptions (%)

Case D1 D1-ST D2 D2-ST D3 D3-ST D4 D4-ST

ENPV A �2:80 �2:41 �16:37 �1:10 �12:02 �8:53 �14:72 �0:93
B �2:60 �2:25 �16:82 �1:12 �7:68 �5:23 �10:74 �0:83

CSL A �5:12 �2:66 �20:96 �2:21 �15:99 �6:50 �20:47 �0:20
B �2:67 �1:99 �13:75 �1:12 �0:03 �0:30 �2:03 �0:24

Table 2 Processes and storage capacities

Processes Processes Processes Storage

Production capacity Disassembling capacity Assembling capacity capacity

number (un) number (un) number (un) (un)

Case A 22 1431.1 0 0 18 1462.4 509.4

Case B 24 1566.1 12 502.8 18 1800.9 578.4

When comparing both SCs without disruption (Fig. 2), it is found that case
B achieves a higher ENPV, which is explained due to the fact that this network
integrates the reverse flows, making use of the returned products and also presenting
a higher flexibility in terms of transportation connections. Also a higher customer
service level satisfying almost all demand is observed. When disruptions occur,
case B presents always better results when compared to case A, presenting lower
relative deviations between the under disruption and the no disruption scenarios
(see Table 1). Disruptions 2 and 4 are the ones that have the higher impact in both
networks, because these events are responsible by the destruction of one plant and
one warehouse, respectively. When a probability is associated to the occurrence of
the disruptions, the results are less affected. In terms of investment, case B always
achieves higher investment values, as this network has to invest in extra capacity
in order to meet almost 100 % of the demand. Both networks install the new plant
and the two possible warehouses in time period 1, which are maintained during the
entire planning horizon. The capacities and the number of the processes installed
are higher in case B then in case A, as presented in Table 2.

Regarding the investment under disruptions, D2 implies the highest investment
for both cases. This is because it is known beforehand that one plant closes down
in time period 2. Hence, this must be compensated by assigning more capacity to
the other plant in time period 1. Additionally, in time period 3, after the disruption
occurs, an additional investment is made in a new plant. On the network design
indicators Table 3 presents the values obtained for all tested scenarios.

The results for the network design indicators corroborate what was stated in the
literature by Adenso-Diaz et al. [1]. Cases as case B that presents higher node, flow
complexity and node criticality, and lower density in all scenarios, always exhibits
the highest ENPV and CSL. Case B also shows lower relative deviations between
cases with and without disruption, proving to be a more resilient supply chain by
comparison with case A. Case B, since is more complex, has higher flexibility
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Table 3 Network design indicators

Case Without D1 D1-ST D2 D2-ST D3 D3-ST D4 D4-ST

Node A 19 18 18 18 19 19 19 19 19

complexity B 21 21 21 21 21 21 22 21 22

Flow A 23 23 23 21 23 23 24 21 25

complexity B 65 67 64 66 63 68 71 65 65

Density A 0.147 0.145 0.145 0.132 0.145 0.147 0.156 0.135 0.162

B 0.129 0.133 0.127 0.131 0.124 0.133 0.140 0.128 0.129

Node A 0 0 0 0 0 0 0 0 0

criticality B 4 4 4 3 4 4 4 4 4

in terms of transportation links and, as such, has more choices of overcoming a
disruption, if it occurs.

4 Conclusions

The main objective of this work was to develop a design and planning model that
integrates demand uncertainty that may be applied to different network structure
supply chains subject to disruptions that may affect different SC echelons. Through
the usage of a set of indicators that comprise four network design indicators and
three operational indicators, the studied networks were analysed in terms of their
resilience. The results obtained for most complex SC suggest that the metrics used
can be good indicators of resilience. For future work the authors aim to further
support the presented conclusions by applying the developed model to other real-life
supply chains. Furthermore the authors also aim to investigate the implementation
of other types of disruption, with a view to develop a more in-depth analysis of
the metrics studied. It is also intended to incorporate uncertainty at the level of the
returns.
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Exact Solution of Combined Cutting Stock
and Scheduling Problems

Nuno Braga, Cláudio Alves, and José Valério de Carvalho

1 The Combined Cutting Stock and Scheduling Problem

Given their practical relevance and their challenging nature, cutting and packing
problems have been a major topic of research since many years. The typology
of Wäscher et al. [7] is a good illustration of this fact. Apart from providing
a wide classification scheme for these problems, it also identifies a large set of
contributions for different variants of the standard problem. These variants cover
different characteristics of the items and rolls and different kinds of objective
functions, for example. In this paper, we address one possible variant of the problem
that considers a scheduling term in the objective function related to the existence of
due dates imposed on the delivery of the items. This problem has been addressed
recently by Reinertsen and Vossen in [6] and Arbib and Marinelli in [1].

The combined cutting stock and scheduling problem addressed in this paper is
defined as follows. We are given a set I of one-dimensional items (jIj D n) with
sizes denoted by wi and a corresponding demand bi, i 2 I. These items have to
be cut from stock rolls of standard length W whose availability is assumed to be
unlimited. For bin-packing instances, the demands bi, i 2 I, are typically very low
(near from 1), while cutting stock instances are characterized by high demands.
Since the approaches devised in this paper are independent of the level of demands,
we will now on refer only to the more general cutting stock case. The scheduling
part of the problem is based on the fact that due dates are imposed on the delivery of
each item size. As a consequence, for each item size i 2 I, there is a corresponding
due date which is denoted by di. From a scheduling standpoint, the item sizes can
be seen as jobs whose delivery is expected at most until di units of time. Deliveries
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after the due dates are tolerated, but with a penalty in the objective function. Cutting
one stock length is assumed to take exactly one unit of time. Hence, the time to
complete the job related to an item size i corresponds to the number of stock rolls
that have been cut up to the last one on which item i is cut. The objective function of
the problem considers two terms: one related to the total wastage and another related
to the total tardiness. Here, we will follow the approach of Arbib and Marinelli in
[1], and consider that each term has the same weight in the objective function.

A similar problem has been explored by Li in [5] for the two-dimensional case
with different stock lengths and jobs with different item sizes. The author considers
the existence of both release and due dates, and she proposes linear programming
(LP) based heuristics and non LP-based heuristics to find feasible solutions for
the problem. As pointed out in [1], the models described in [5] do not ensure
that an optimal solution is found for the global problem. The reason lies on the
time available for each time period which defines the period length. In [6], the
authors address the one-dimensional problem with due dates and no release dates.
They describe an integer programming (IP) model which is an extension of the
column generation model for cutting stock problems. The variables are associated to
patterns indexed by time period. The planning horizon is partitioned into n distinct
time periods. Then, the job related to an item size i can only be cut up to the i-
th time period. Again, in [1], the authors showed that this approach may lead to
sub-optimal solutions whenever an early due date first-based solution is not the
optimal solution for the problem. The first exact formulation for this problem has
been proposed in [1]. As in [6], the authors consider a formulation in which the
variables are related to cutting patterns indexed by time period. Additionally, they
use variables representing the inventory level of an item size at a given time period,
and they use them in combination with equilibrium equations to identify situations
of tardiness. To cope with the size of their model, the authors describe a period-
splitting procedure which allows to start with larger period lengths. It consists in
solving iteratively the model with shorter period lengths. The computational results
provided by the authors illustrate the inherent difficulty of the problem.

In this paper, we explore a compact assignment formulation for the problem
that applies to both bin-packing and cutting stock instances. We describe differ-
ent inequalities to improve the quality of its continuous lower bound (Sect. 2),
and we describe in particular an approach based on knapsack-based inequalities
derived using dual-feasible functions (Sect. 3). To illustrate the potential of these
approaches, we report on computational experiments performed on a set of bench-
mark instances (Sect. 4).
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2 An Assignment Formulation

2.1 The Model

Let T denote the length of the planning horizon. The combined cutting stock and
scheduling problem (with due dates) can be formulated with variables xt

i, for each
item i D 1; : : : ; n, and t D 1; : : : ;T, that represent the number of items of size i that
are cut at time period t. The period length is assumed to be equal to 1, and hence,
there is a one to one relation between time periods and the stock rolls that are cut.
The binary variables zt, t D 1; : : : ;T, determine wether a stock roll is used or not at
time period t. The tardiness of an item size i, i D 1; : : : ; n, is measured through the
binary variables yt

i, t D diC 1; : : : ;T, which is defined only from the due date plus
one time period until the end of the planning horizon. Variables yt

i take the value 1
only if the item size i is cut on time period t. Hence, if yt

i D 1 for some i D 1; : : : ; n,
and t D diC1; : : : ;T, the item size will be late by at least t�di units of time. These
variables may be related to the yk

i variables used by Arbib and Marinelli in [1]. The
assignment formulation states as follows.

min:
TX

tD1
zt C

nX
iD1

TX
tDdiC1

yt
i (1)

s:t:
TX

tD1
xt

i D bi; i D 1; : : : ; n; (2)

nX
iD1

wix
t
i � Wzt; i D 1; : : : ; n; t D 1; : : : ;T; (3)

xt
i C ytC1

i � Lmin
i yt

i; i D 1; : : : ; n; t D di C 1; : : : ;T; (4)

zt 2 f0; 1g; t D 1; : : : ;T; (5)

xt
i � 0 and integer; i D 1; : : : ; n; t D 1; : : : ;T; (6)

yt
i 2 f0; 1g; i D 1; : : : ; n; t D di C 1; : : : ;T: (7)

As mentioned above, the objective function (1) is composed by a term related to the
total wastage and another related to the total tardiness. Constraints (2) ensure the
satisfaction of the demand. Constraints (3) forbid any cutting pattern that exceeds
the stock length, while constraints (4) support the definition of the yt

i variables. The
values Lmin

i for i D 1; : : : ; n, may be defined as follows:

Lmin
i D min

�
bi;


W

wi

�
C 1

�
:
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2.2 Strengthening the Assignment Formulation

The LP relaxation of (1)–(7) can be strengthened by considering the following
inequalities. Since a feasible solution will never use less than the stock rolls required
to cut all the items, we may enforce the inequality

TX
tD1

zt � Kmin; (8)

where Kmin is a lower bound on the number of stock rolls computed for example
using dual-feasible functions [3]. Assigning an item to a roll (or time period) implies
that a stock roll is used at this time period, and hence, we have

zt � yt
i; i D 1; : : : ; n; t D di C 1; : : : ;T: (9)

Using a stock roll at time period tC 1, t D 1; : : : ;T � 1 implies that a roll has been
used at time period t, and hence

zt � ztC1; t D 1; : : : ;T: (10)

Similar constraints apply to the yt
i variables, which translate into the following

inequalities

yt
i � ytC1

i ; t D di C 1; : : : ;T: (11)

3 Knapsack-Based Inequalities Derived from Dual-Feasible
Functions

3.1 Dual-Feasible Functions and Valid Inequalities

A function f W Œ0; 1� ! Œ0; 1� is a dual-feasible function (DFF), if for any finite set
fxi 2 RC W i 2 Jg of nonnegative real numbers, the following holds

X
i2J

xi � 1 H)
X
i2J

f .xi/ � 1:

Dual-feasible functions have been used essentially to derive lower bounds for
standard cutting and packing problems. In [3], the authors showed that these
functions can also be used to derive valid inequalities for IP models with knapsack
constraints.
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To strengthen the formulation (1)–(7), we applied the DFF mentioned below to
the knapsack constraints (3). Let f be a DFF. The following inequalities derived
from (3) by applying f are valid inequalities for the integer polytope of (1)–(7):

nX
iD1

f
�wi

W

	
xt

i � 1; i D 1; : : : ; n; t D 1; : : : ;T: (12)

Among all the DFF, the maximal functions are those that produce non-dominated
results. In our experiments, we used the following functions that were shown to be
maximal in [3]:fFS;1 (described in [4]), with k 2 N n f0g, and fCCM;1 (described in
[2]), with C 2 R and C � 1.

• fFS;1.xI k/ D
�

x; if .kC 1/ � x 2 N;

b.kC 1/xc =k; otherwise.

• fCCM;1.xIC/ D
8<
:

bCxc = bCc ; if x < 1=2;
1=2; if x D 1=2;

1 � fCCM;1.1 � x/; if x > 1=2:

3.2 A Cutting Plane Procedure

From the definitions given above, we define the following general cutting plane
procedure for (1)–(7).

Cutting plane procedure
Solve the LP relaxation of (1)–(7) (let .z�; x�; y�/ be the optimal solution);
do

Let f k be a DFF with parameter � ;
for (a given range of � , and a given set of knapsack constraints (3)) do

if (inequality (12) is violated for f � , x� and the current constraint (3) )
then (add this inequality (12) to the LP relaxation of (1)–(7) )

end for.
Re-Solve the LP relaxation of (1)–(7) (let .z�; x�; y�/ be the optimal solution);

while (stopping criteria are not satisfied).

To control the number of inequalities that are generated, we may limit the range
of the DFF parameters and the number of knapsack constraints (3) from which the
inequalities are derived. Furthermore, the stopping criteria may include for example
the number of inequalities added to the LP relaxation or the maximum number of
iterations without a significant improvement of the value of the objective function
(based on a pre-defined value).
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4 Computational Experiments

To evaluate the performance of the approaches devised in this paper, and in
particular, the cutting plane procedure described in Sect. 3, we performed a set of
computational experiments on benchmark instances. We used a set of instances
taken from the same set of cutting stock instances as in [1] and for which due
dates were generated, and we used values of T (the planning horizon) equal to those
reported by these authors. A set of 40 instances divided in two groups of 20 instances
were generated in that way. The tests were run on a PC with an i7 CPU with 3.5 GHz
and 32 GB of RAM. For the optimization subroutines, we resorted to CPLEX 12.5.

In Table 1, we report on the values of the continuous lower bounds provided by
the LP relaxation of (1)–(7) under the following scenarios:

• A W LP relaxation (1)–(7) without any cut;
• B W LP relaxation (1)–(7) with cut (8);
• C W same as B plus the cuts obtained with the cutting plane procedure of Sect. 3;
• D W same as C plus the cuts (9)–(11).

Columns D1 to D4 extend the previous results for different parameters of the cutting
plane procedure discussed in Sect. 3. Let ı, maxcuts, and it denote respectively the
smallest value of the violation of an inequality (12) that triggers its insertion on
the model in the cutting plane procedure, the maximum number of cuts added
between two consecutive resolutions of the LP relaxation, and the maximum number
of iterations that we allow without an improvement of the solution value of the
LP relaxation greater than 0.001. For the aforementioned scenarios C and D, the
values for .ı;maxcuts; it/ that were used are .0:1; 20; 20/. Columns D1 to D4 in
Table 1 correspond to the previous scenario D with the following pairs of values for
.ı;maxcuts; it/:

• D1 W .ı;maxcuts; it/ D .0:1; 20; 50/;
• D2 W .ı;maxcuts; it/ D .0:1; 50; 50/;
• D3 W .ı;maxcuts; it/ D .0:01; 20; 20/;
• D4 W .ı;maxcuts; it/ D .0:25; 20; 20/.
Columns zRL and tRL in Table 1 stand respectively for the value of the optimal
solution and the computing time required in the corresponding scenario. Note that
we used the two dual-feasible functions described in Sect. 3 without any restriction
on the domain of their parameters. Instead, we used the parameters .ı;maxcuts; it/ to
control the number of cuts that are added to the LP relaxation.

While inequality (8) leads to a small improvement in the value of the lower bound
provided by the LP relaxation of (1)–(7), the impact of the cutting plane procedure
described in Sect. 3 is much more significant. On average, the value of the lower
bound increased by almost 4.7 % for the first set of instances, and by 11.1 % for
the second set (scenario A against scenario C). Inequalities (9)–(11) have no impact
on the first set of instances, but when combined with the cutting plane procedure,
the average improvement of the lower bound raises to 15 %. That can be explained
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by the fact that the DFF based cutting planes focus on the knapsack constraints
of the model and particularly on the xt

i variables, while inequalities (9)–(11) focus
on the remaining variables of the model, thus complementing the cutting plane
procedure. Considering the parameters .ı;maxcuts; it/, the best results in terms of
the quality of the continuous lower bounds are achieved with scenario D2 for both
sets of instances. The corresponding average improvement in the value of the lower
bound is respectively 8.9 % and 19.2 % for the first and second set of instances. The
maximum improvement in the first set of instances goes up to 30.9 %, and up to
38.1 % for the second set.

Additionally, we solved the first set of instances up to integrality with a time limit
of 3600 s for branch-and-bound in a way that is similar to the approach followed in
[1]. For this purpose, we used the cutting plane procedure with the definitions of
scenario D. After the time limit, the value of the best lower bound was better than
the bound at the root node by 13.3 %, while the average integrality gap was equal
to 20.4 %, a value that is in line with the overall gaps reported in [1] while obtained
using a compact formulation.
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Fair Transfer Prices of Global Supply Chains
in the Process Industry

Songsong Liu, Roberto Fucarino, and Lazaros G. Papageorgiou

1 Introduction

A supply chain involves all activities transforming raw materials to final products
and delivering them to the customers. During the past decade with rapid glob-
alisation, many companies’ production plants and delivery centres are located in
multiple countries, maybe also in different continents. In a supply chain, usually its
total profit aims to be maximised to enhance its performance. However, there is no
automatic mechanism to allow profits to be fairly distributed among participants.
Solutions with maximum total profit usually distribute profit quite unevenly, and
are therefore impractical [9]. Transfer prices, consisting of procurement, man-
ufacturing, and selling prices within a supply chain, can be used as a method
to solve this problem. However, only a few papers have investigated the use of
transfer price to distribute the profit fairly in the supply chains. Gjerdrum et al.
proposed a mixed integer nonlinear programming (MINLP) model using Nash
approach for the fair profit distribution in multi-enterprise supply chains [4], and
later another MINLP model for fair transfer price and inventory holding policies in
two-enterprise supply chains [5]. Chen et al. proposed a two-phase fuzzy decision-
making method for a production and distribution planning model for a multi-echelon
supply chain network to achieve multiple objectives such as maximising profit of
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each participant enterprise, maximising customer service level, and ensuring fair
profit distribution [3]. Then, the above work was extended to consider the demand
and price uncertainties [2]. Rosenthal developed a cooperative game that provides
transfer prices to allocate the net profit in a fair manner in both perfect information
and asymmetric information cases [10]. Leng and Parlar constructed a cooperative
game to fairly allocate firm-wide profit using transfer pricing for a two-echelon
supply chain involving a single upstream division and multiple downstream [6].

This work addresses the production and distribution planning of the global supply
chain with a fair profit distribution among the members using transfer prices. We aim
to develop a mixed integer linear programming (MILP) optimisation framework,
using the literature Nash and lexicographic maximin principles, to find the fair profit
distribution to the supply chain’s members. To the best of our knowledge, this work
is the first one that applies the lexicographic maximin method to the supply chain
profit distribution problem.

2 Problem Statement

The considered global supply chain network of an agrochemical company consists
of several formulation plants and a number of market regions worldwide (Fig. 1).
The products are categorised into different groups and each formulation plant can
produce some specific product groups. The planning horizon is discretised into
multiple time periods, and the demand of products varies among time periods. Final

Fig. 1 Structure of a supply chain example
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products are shipped from formulation plants to market regions, which occur the
transportation cost and the duties cost. Capacities of formulation plants are constant
during the planning horizon, as well as the selling prices of final products at the
markets. The transfer prices are charged between formulation plants and markets.

In this problem, the given data include products, groups, formulation plants,
market regions, weekly demands, capacities and capabilities of formulation plants,
raw material costs, unit and fixed formulation costs, unit and fixed transportation
costs, transportation times and duties from plants to markets, initial inventory
and inventory limits, and selling prices. The decision variables include produc-
tion of each formulation plant, transportation flows and transfer prices between
formulation plants and markets, sales and lost sales at markets. The objective
of the problem is to achieve a fair profit distribution among supply chain mem-
bers.

3 Mathematical Formulation

The considered optimisation problem is formulated as an MILP model, extended
from a literature model [7], which optimised the total cost of the whole supply chain
as an objective, and did not consider the transfer prices between the supply chain
members. In the proposed model, we aim to model the profit of each member using
transfer prices as decision variables. In this section, we introduce the key constraints
in the proposed model.

3.1 Production and Flow Constraints

If product i is produced at formulation plant j during time period t, i.e. binary
variable Wijt D 1, the production Pijt is limited by minimum (Pmin

ij ) and maximum
(Pmax

ij ) limits:

Pmin
ij �Wijt � Pijt � Pmax

ij �Wijt; 8j; g 2 Gj; i 2 NIg; t (1)

where Gj indicates the set of product groups g that plant j can formulate, while NIg is
the set of products that product group g involves.

If product i is shipped from formulation plant j to market k during time period
t (binary variable Yijkt D 1), the shipped amount (Fijkt) is limited by the minimum
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(Fmin
ijk ) and the maximum (Fmax

ijk ) limits:

Fmin
ijk � Yijkt � Fijkt � Fmax

ijk � Yijkt; 8j; k; g 2 Gj; i 2 NIg \ Ik; t (2)

where Ik refers to the set of products that are sold at market k.

3.2 Inventory Constraints

The inventory of product i at formulation plant j at the end of time period t (IVF
ijt) is

equal to the inventory of the product at the previous time period (IVF
ij;t�1), plus the

production in the time period (Pijt), minus the total outgoing flows (Fijkt):

IVF
ijt D IVF

ij;t�1 C Pijt �
X
k2Ki

Fijkt; 8j; g 2 Gj; i 2 NIg; t (3)

where Ki is the set of markets selling product i.
Similarly, the inventory of product i at market k at the end of time period t (IVM

ijt )
is equal to the total inventory of the product at the previous time period (IVM

ij;t�1),
plus any incoming flows (Fijkt), minus sales (Sikt):

IVM
ikt D IVM

ik;t�1 C
X
j2Jg

X
g2 NGi

Fijk;t�jk � Sikt; 8k; i 2 Ik; t (4)

where jk is the transportation time from formulation plant j to market k; NGi is the
set of product groups that product i belongs to; Jg is the set of formulation plants
that can produce product group g.

3.3 Transfer Prices Constraints

Here, different from the literature work [7], transfer prices (TPijk) are considered as
decision variables. Following [4], optimal transfer prices are selected from a set of
candidate price levels (TPijkm), and binary variable Oijkm is introduced to indicate
whether price level m is chosen:

TPijk D
X

m

TPijkm � Oijkm; 8j; k; g 2 Gj; i 2 NIg \ Ik (5)
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Only one transfer price level can be chosen for each product between a
formulation plant and a market:

X
m

Oijkm D 1; 8j; k; g 2 Gj; i 2 NIg \ Ik (6)

3.4 Lost Sales Constraints

The sales (Sikt) of product i at market k during time period t should not exceed its
corresponding demand (Dikt), while the unsatisfied amount is lost (LSikt):

Dikt � Sikt D LSikt; 8k; i 2 Ik; t (7)

3.5 Profit Constraints

At a formulation plant, its revenue (ReF
j ) is equal to the summation of the transfer

price of a product multiplied by the corresponding flow between formulation plant
and market:

ReF
j D

X
t

X
g2Gj

X
k

X
i2NIg\Ik

TPijk � Fijkt; 8j (8)

which is a nonlinear equation, and can be linearised using auxiliary variables and
constraints, based on Eq. (5). The costs incurred for formulation plants include the
raw material cost, formulation cost, inventory cost, and transportation cost. The
profit of a formulation plant (PrF

j ) is equal to its revenue minus its total cost (CF
j ).

PrF
j D ReF

j � CF
j ; 8j (9)

The revenue of each market (ReM
k ) is constituted by the selling prices of each

product i at the market k (Vik) multiplied by the sales of the product at each market:

ReM
k D

X
t

X
i2Ik

Vik � Sikt; 8k (10)

While its costs include the purchase cost from formulation plants, inventory cost,
duties, and lost sales cost. The profit of a market (PrM

k ) is equal to its revenue minus
its total cost (CM

k ):

PrM
k D ReM

k � CM
k ; 8k (11)
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4 Solution Approaches

In this section, we apply two literature solution approaches for fair solutions,
Nash approach and lexicographic maximin approach, to the considered optimisation
problem.

4.1 Nash Approach

In the Nash approach, each member of the supply chain has a minimum acceptable
profit, and the objective function of the model is given by the product of the
difference between each member profit value and the corresponding lower bound:

� D
Y

n

.Prn � Prmin
n / (12)

where Prn is the profit of member n in the supply chain, including formulation plants
and markets, and Prmin

n is the minimum acceptable value of each member’s profit.
The literature separable programming approach [4] is implemented to linearise to
the nonlinear equation (12). Thus, the resulting model is of MILP format.

4.2 Lexicographic Maximin Approach

For a multiobjective maximisation problem, when each objective function is equally
important as the concept of fairness requires, the lexicographic maximin approach
can be applied here:

Lexmaxx2˝�.Prn.x// (13)

where Prn.x/ is the normalised profit of member n in the supply chain. Prn can be
calculated as follows:

Prn D Prn � Prmin
n

Prmax
n � Prmin

n

; 8n (14)

In Eq. (14),� W <N ! <N is a mapping function that nondecreasingly orders the
components of vector. Given a vector e D .e1; : : : ; eN/, �.e/ D .�1.e/; : : : ; �N.e//,
where �n.e/ 2 fe1; : : : ; eNg is the nth component of the �.e/ and �1.e/ � : : : �
�N.e/. Prmax

n is the maximum value of each member’s profit. In the lexicographic
maximin problem, we maximise first the worst objective value first, then maximise
the second worst objective value, the third worst value, and so on. The lexicographic
maximin problem of Eq. (13) is transformed as a lexicographic maximisation
problem [8], involving a set of MILP models to be solved iteratively.
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5 Illustrative Example

In the illustrative example, the supply chain consists of three formulation plants
(F1–F3) and four market regions (R1–R4) as shown in Fig. 1. There are eight
products (P1–P8) in two product groups (G1–G2). Weekly demands in planning
horizon of 8 weeks are known. Here, we investigate three scenarios, A, B and C:

• Scenario A: maximisation of the total profit of all members in the supply chain;
• Scenario B: fair profit distribution problem using Nash approach;
• Scenario C: fair profit distribution problem using lexicographic maximin

approach.

In Scenarios B and C, the maximum profit of each member, Prmax
n , is obtained by

maximising the profit of the single member. Then, 10 % of the achieved maximum
profit is considered as the minimum acceptable profit, Prmin

n .
The developed models and approaches are implemented in GAMS [1] using

CPLEX as MILP solver. The optimality gap was set to 0.1 %. The model statistics
and computational performance of each scenario are presented in Table 1. It shows
that the total supply chain profit is not significantly affected by considering the fair
profit distribution, only about 2 % lower than the optimal value.

The profit of each member in the supply chain under the three scenarios is shown
in Fig. 2. Table 2 compares the objective function terms in the Nash approach
and lexicographic maximin approach for each member. Considering Pr�

n � Prmin
n ,

Table 1 Model statistics and computational performance of all scenarios

Scenario No of equations No of con variables No of bin variables CPU (s) Total profit (rmu)

A 5666 4346 904 0.8 206,996

B 5750 4416 904 4.9 202,827

C 5735 4416 904 110.6 202,497

Fig. 2 Optimal profit distributions under all scenarios
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Table 2 Comparison of profit distribution fairness

Prmax
n Prmin

n

Pr�

n � Prmin
n Pr

�

n

Scenario A Scenario B Scenario A Scenario C

F1 124,603 12,460 10,129 24,930 0.090 0.262

F2 128,401 12,840 16,195 25,282 0.140 0.261

F3 87,962 8796 16,969 26,390 0.214 0.262

R1 54,059 5406 4677 12,267 0.096 0.263

R2 74,830 7483 �678 14,967 �0.010 0.262

R3 74,830 7483 62,049 22,450 0.921 0.262

R4 55,180 5518 37,629 16,555 0.758 0.289

its value of each member under Scenario B ranges between 12,000 and 27,000,
while under Scenario A, the values fluctuate much more significantly. Thus, under
Scenario B, all members have a more similar difference from their minimum
profit requirement. Comparing Pr

�
n , under Scenario C, all members have similar

values between 0.261 and 0.263, except R4, while under Scenario A, R3’s value is
close to 1, but R2’s value is negative. Thus, Scenario C finds a profit distribution
that all members have similar relative profits based on the bounds. Although the
distributions of total profit are different under Scenarios B and C, due to their
different definitions of fairness, both approaches are able to find alternative fair
solutions.

6 Concluding Remarks

In this work, an MILP model has been developed concerning the optimal production
and distribution planning of a global supply chain in the process industry. Transfer
prices have been used as a mechanism to fairly distribute the whole supply
chain’s profit. Two solution approaches, Nash approach and lexicographic maximin
approach, have been used to find the fair profit distribution among the supply chain.
The results of an illustrative example show that both methods can find fair solutions,
and can be used as alternatives.
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The Influence of Corporate Social Responsibility
on Economic Performance Within Supply Chain
Planning

Bruna Mota, Maria Isabel Gomes, Ana Carvalho, and Ana Paula
Barbosa-Póvoa

1 Introduction

There is a growing concern from customers about sustainability issues and gov-
ernments are pressuring companies to become more sustainable and achieve a
sustainable development, contributing towards the society goal of meeting the needs
of the present without compromising the ability of future generations to meet
their own needs, as defined by the Brundtland Commission [1]. If previously the
concept of sustainability was more environmentally focused, currently the concept
of the Triple Bottom Line is well established and sustainability is considered to
be supported by three main pillars: economic, environmental and social sustain-
ability [2]. However, while significant literature exists regarding the economic and
environmental pillars, the social aspect of sustainability remains unaccounted for
[4]. New legislation and standards are being introduced in an attempt to fill this
gap in industry. ISO 26000:2010 for example, provides guidance to all types of
organizations, and is intended to encourage them to go beyond legal compliance in
the field of social responsibility. The European Commission itself has demonstrated
concerns on this matter and has recently released the agenda for the 2014–2020
funding period, where the main objective is to fund projects contributing to regional
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development and job creation [3]. All of these aspects are leading companies to
look for ways to move towards a more sustainable state. Hence, there is a clear
need for research in this field and tools to evaluate the impacts such strategies
would have on the company’s performance. This work takes a step forward in
this direction and aims to provide a methodology for companies to study how
they could in fact go beyond legal compliance, namely towards the contribution
to regional development, and what would be the economic impact of such actions.
A mathematical programming model is developed for the design and planning of
supply chains, along with a social benefit indicator that promotes the economic
growth of the less developed regions. The model is applied to a case study where
the supply chain of a Portuguese battery producer is optimized under different
objectives: an economic and a social one.

2 Problem Definition

The problem addressed here aims at determining the supply chain structure and the
planning decisions that minimize costs and the ones that maximize social benefit.
The problem is modeled through a Mixed Integer Linear Programming (MILP) that
uses a graph approach for the design and planning of closed loop supply chains. The
decisions at the design level are taken for a given time horizon (e.g. 5 years). This
time horizon is divided in time periods (e.g. months) in which demand and return
values must be satisfied. Detailed planning on attaining this satisfaction is given by
the model. The economic performance of the supply chain is measured through the
costs involved, as described in Eq. (1),

Cost D
X
i2I

cfiYi C
X

mijW.m;i;j/2Fs

X
t2T

csmitXmiit C
X

ijW.i;j/2Aown

X
t2T

ctijdijZijtC

X
mijW.m;i;j/2Fout

X
t2T

ctijdijXmijt C
X

miW.m;i/2Vc

cpmi.
X
j2I

X
t2T

Xmijt/C
X
i2I

chriYi:
(1)

The first term gives the fixed costs of each entity (cfi) controlled by the binary
variable Yi which equals 1 when entity i is opened. The second term corresponds
to the costs of raw materials where csmit represents the unit cost of product m
acquired in entity i for period t, and Xmijt is a continuous variable for the amount
of product m served by entity i to entity j at time t. The third term concerns the
costs of transportation which is performed by the company’s fleet, and depends on
parameters such as vehicle consumption, fuel price and vehicle maintenance. The
fourth term is related to outsourced transportation, which varies with contracted
costs (per kg km), the amount of units transported and the kilometres travelled. The
fifth term represents the costs of product recovery (cpmi). The final term concerns the
costs with human resources (chri) that result from opening a given entity. Regarding
the social component, a social benefit indicator was developed that when maximized
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favours entities to be located in less developed regions, as described in Eq. (2),

SB D
X
i2I

uiwiYi; (2)

where ui represents a regional factor attributing a higher score to less developed
regions (measured through regional statistics of population density), and wi is the
number of jobs created at region i. Additionally to the objective functions a set of
constraints is defined which describes the structural and tactical decisions that need
to be accounted for to satisfy certain market levels. Shortly, given: (a) a possible
superstructure for the location of the supply chain entities, the associated investment
costs as well as involved processes; (b) inventory, return and transportation policies
and associated costs; (c) human resources costs and the social benefit associated to
each facility; and (d) costumers demands; the goal is to determine (1) the network
structure, (2) the production and storage levels, and (3) the flow amounts; so as to
minimize the total supply chain cost and maximize the social benefit.

3 Case Study

The model was applied to a case study of a Portuguese lead battery manufacturer and
distributor. This supply chain is composed by a factory in Oeiras (which is not to be
relocated) and 12 rented warehouses in continental Portugal, serving around 2300
customers. The factory also has a storage function. Given the strategic nature of
this work, customers were clustered in 237 groups, according to their municipality.
Two hundred and thirty seven possible warehouse locations are then considered. A
maximum number of 13 warehouses was imposed, according to the company’s strat-
egy. The company has a recycling strategy implemented for end-of-life batteries and
thus there are both forward and reverse flows. Regarding distribution, the inbound
transportation is outsourced, while the outbound transportation is performed by
the company’s fleet. All demand is to be fully satisfied. Three different scenarios
were studied. Figure 1 shows the network obtained for each of the considered
scenarios: the base case (A), the minimum cost solution (B) and the maximum social
benefit solution (C). Scenario A shows the 13 warehouses that form the current
supply chain of the company. Scenario B shows that only seven warehouses are
necessary to achieve the minimum cost solution. In scenario C, 13 warehouses are
opened and located in the less populated regions (darker regions indicate higher
population density). These results are supported by the cost distribution of each
scenario, represented in Fig. 2 (on the left), where we see that when minimizing
cost (scenario B) the model returns a solution with a cost reduction of 21.5 %. This
is obtained by reducing the number of warehouses, compensated by the increase in
transportation. With scenario C the cost increases by 44 % (compared to scenario
B), where an increase in both the number of warehouses and in transportation can
be observed. The transportation costs for each scenario, represented in Fig. 2 (on
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Fig. 1 Location of warehouses for each scenario: (A) base case, (B) minimizing cost, and (C)
maximizing social benefit. Darker regions indicate higher population density

Fig. 2 Total cost (on the left) and transportation costs (on the right) distribution for each scenario

the right), are proportional to the increase in the secondary distribution. When
looking with detail into the supply planning obtained for each of the scenarios
it can be seen that, in scenario A (results not shown), Lisboa supplies 19 % of
the products, followed by Setúbal (16 %) and Porto (12 %). In fact the clients
with higher demand are located around these exact regions. In the minimum cost
scenario (Fig. 3) it can be seen that the warehouse in Lisboa is responsible for the
major share of supply (more than 40 %), since it is closer to the higher demand
customers in Setúbal. It is interesting to see that the model preferably uses this
warehouse, even though having the warehouse in Oeiras available with no costs of
primary transport. Viseu and Maia supply the North, and Castro Verde supplies the
southern municipalities. Oeiras, Constância and Vila Real play a more secondary
role, complementing the mentioned warehouses. Finally, and having in mind the
objective of maximizing the social benefit as a goal to pursue within a corporate
social responsibility perspective, the optimal warehouse locations determined for
maximum social benefit (scenario C) are imposed on the model. This network is then
studied so as to determine the minimum cost supply planning. Figure 4 shows the
results obtained. Lisboa and Porto are very densely populated regions. Therefore,
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Fig. 3 Supply planning, from the factory to each warehouse, per month, for scenario B

Fig. 4 Supply planning, from the factory to each warehouse, per month, for scenario C

when looking at the results of scenario C we see that these warehouses are replaced
and the corresponding demand is reallocated. In this case the importance of Oeiras,
the warehouse within the factory, is increased when compared to the minimum
cost solution. Since the warehouses are so distant from the main clients, the model
mostly uses the warehouse in Oeiras (38 % of the supply) to minimize the costs of
primary distribution. Alcácer do Sal supports Oeiras supplying the region of Lisboa
and Setúbal. Terras de Bouro, Torre de Moncorvo and Montalegre replace Maia
and Vila Real in the supply of the northern clients. Pampilhosa da Serra covers the
central regions. Having the satisfaction of the demand as a defined strategic goal—
forward flow, it is important to look at how the obtained networks perform on the
reverse flows (results not shown). Whereas in scenario A, Lisboa collects 19 % of the
total end-of-life products, followed by Setúbal (16 %) and Porto (12 %), in scenario
B Lisboa collects 41 % of the total end-of-life products and the warehouse co-
located with the factory (Oeiras) collects around 12 %. In scenario C this warehouse
gains importance once again and is responsible for about 52 % of battery recovery.
One aspect that stands out in scenario C is that in several months, some warehouses
are idle. This happens because the structure obtained in this case does not support a
profitable planning as the demand is located far away from these warehouses. This
result opens way to further research on how to improve this result, achieving a less
expensive solution while still increasing the social benefit. Also worth mentioning
is that very few units are supplied in some months from certain warehouses. This
happens due to the constraint of having all demand satisfied, even if only one unit
is to be supplied. In conclusion, although the pursue of a social benefit under a
corporate social responsibility perspective should be targeted, it is important to have
in mind if this can be applied in real terms in the organization. In the present case
the analysis shows that further studies are required and it calls for a multiobjective
approach to find a compromise solution amongst the three pillars of sustainability.
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4 Conclusions and Future Work

This work proposes a mathematical optimization model for the design and planning
of closed loop supply chains that serves as a tool to study the economic impact
of incorporating corporate social responsibility issues in the company strategy. The
model is applied to a case study where the promotion of regional development is
intended. The results show that this strategy alteration translates in a quite different
supply plan, accompanied by a compromise of the economic performance. However,
room for improvement is identified. As future work, the social benefit indicator
should be further refined to incorporate other regional development measures such
as unemployment rate or GDP. The model should also be further generalized to
minimize results with idle warehouses in the planning horizon, by adding new
constraints. Also, as mentioned above, a multiobjective approach should be explored
to find a compromise solution between the two objectives within a sustainable
development perspective.
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A MIP Model for Production Planning
in the Roasting Coffee Industry

Diana Yomali Ospina, Maria Antónia Carravilla, and José Fernando Oliveira

1 Introduction

Coffee is one of the most valuable primary products in the world and has a big
impact in the economy and even in the politics of the developing countries. Brazil,
Vietnam and Colombia are the main producers and for which coffee cultivation is
an important source of income [5, 7]. To link the producers with the customers there
is a need for a supply chain. A supply chain starts with unprocessed raw materials
and ends with the final customer that uses the finished goods through a sequence of
different activities, operations and resources depending on the final product. These
processes must operate appropriately and provide accurate information to obtain the
best performance [1, 3, 12].

Typically, the coffee supply chain includes four main stages: harvesting, green
coffee commercialization, production, and distribution [11]. The harvesting phase
includes growing and coffee beans treatment and the result is green coffee. The
green coffee can be commercialized for the roasted coffee market. The production
phase includes storage, roasting, grinding, blending and packaging which are carried
out in order to meet different requirements in terms of freshness, aroma, flavour
and color of coffee drinks. Finally the coffee can be distributed and is ready for
consumption [4, 6, 13].
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This paper presents a case study of a leading Portuguese roasting coffee company.
A MIP model of the production phase has been built to be embedded in a Decision
Support System (DSS) for the production planning of the coffee company. This
model enables the daily planner to test the acceptance of new orders and at the
beginning of each day determines the silo loads and the production quantities in
order to produce as near as possible to the due date to preserve the product freshness.

The paper is organized as follows. The process of roasting and grinding coffee
in general and the specific process in the company are described in Sect. 2. The
production planning model for the case study is presented in Sect. 3. Section 4,
details some insights on the results obtained with the model and Sect. 5 summarizes
the study main findings and points out some future work.

2 The Coffee Production Process

An important phase in the coffee supply chain is the production. Some authors have
presented works with applications in the roasted coffee process [2, 4, 8, 9]. Already
in 1881 [10] it had been presented a thorough description of the whole supply
chain and specifically on the production process from green coffee to roasting and
grinding coffee.

As stated by Hicks [4] coffee from various origins are blended in different
proportions to obtain predefined characteristics in terms of aroma, flavour and
acidity. Roasting, usually the second phase, is considered the most important phase
for flavours development. There are two most common methods to roast coffee:
drum roasting and hot air roasting. The roasting phase is done in batches, small
batches in case of speciality coffee. During the roasting process the beans increase in
size (50–80 %) and lose weight (approx. 16 %) at the same time. The roasted beans
may be cooled in three different ways, with water, and with normal or forced air. The
coffee beans may be directly packed or the coffee may be ground and then packed.

Every morning our case study company follows the production process by
feeding each silo with green coffee from a different origin in a predefined quantity
that will be used during the day to build the blends that will be produced. Blends
usually contain between three to five different types of beans. In this company the
blending is followed by drum roasting. After being roasted, the beans are cooled
with forced air and are transported either directly to the packaging machines or
to the grinding machines to be subsequently packed as ground coffee. The ground
coffee may be packed in sachets or in bags.

3 MIP Model for Production Planning

The main interest of the company is to have a production planning model embedded
in a DSS that allows them to test at the beginning of each day, the implications of
the acceptance of orders for a given due date. The system should therefore provide
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answers very quickly in order for them to make several tests at the beginning of the
morning to define the production quantities for each day and the silo loading.

3.1 Indices

e 2 E ; E D f1; : : : ;Eg— order;

t 2 T ; T D f1; : : : ;Tg— period;

s 2 S ; S D f1; : : : ; Sg— silo;

p 2P; P D f1; : : : ;Pg— product;

c 2 C ; C D f1; : : : ;Cg— type of coffee.

3.2 Data

Capacities:

CSs Capacity of silo s by period (kg);
CT Roasting capacity by period (kg);
CEG Bean coffee packing capacity by period (kg);
CM Grinding capacity by period (kg);
CEM1 Ground coffee packing type 1 capacity by period (kg);
CEM2 Ground coffee packing type 2 capacity by period (kg).

Yields:

RT Roasting yield (� 1);
RM Grinding yield (� 1);
REG Bean coffee packing yield (� 1);

Products .p/:

Tp Processing time for product p in roasting per (kg);
Bpc Quantity of coffee type c that 1 kg of product p contains.

Orders .e/:

Pe 2P The product of order e;
Qe Quantity of order e (kg);
De 2 T Delivery date of order e;
Ae Finishing of order e (bean, ground).
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Where:

Ae = 11, Final product in bean, 1, and packaging in bags, 1;
Ae = 12, Final product in bean, 1, and packaging in sachets, 2;
Ae = 21, Final product ground, 2, and packaging in bags, 1;
Ae = 22, Final product ground, 2, and packaging in sachets, 2.

3.3 Decision Variables

xet Quantity of order e to produce in period t (kg);

ısct D
(
1 if the silo s is loaded with coffee type c in period t

0 otherwise

CAct Sum of capacities of the silos with coffee type c in period t (kg);

3.4 Objective Function

min
X

e; t<De

xet.De � t/C
X

e; tDDeC1
2xet C

X
e; t>DeC1

xet.t �De/
2 C

X
s;c;t

ısct

The objective function has two components. The first one aims to ensure that each
order e is produced as close as possible to its delivery date (De). The production in
the period t < De implies a storage cost, proportional to the number of periods and
to the quantity stored. If the product is delivered on De, the storage cost is zero. If
the delivery is in period t D De C 1, a delay cost of two times the quantity ordered
will be assigned. For t > De C 1 the cost will be the delayed quantity multiplied
by the square of the delay, .t � De/

2. The second component aims to minimize the
number of silos that are filled with coffee at the beginning of each period.

3.5 Constraints

X
e2E WPeDp

Bpcxet � CAct 8t; c (1)

X
s2S

CSsısct D CAct 8t; c (2)
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X
c2C

ısct � 1 8t; s (3)

X
e2E WPeDp

Tpxet � CT 8t (4)

X
e2E WAeDf21I22g

RT � xet � CM 8t (5)

X
e2E WAeDf11I12g

RT � xet � CEG 8t (6)

X
e2E WAeDf21g

RT � RM � xet � CEM1 8t (7)

X
e2E WAeDf22g

RT � RM � xet � CEM2 8t (8)

X
t2T

RT � RM � xet � Qe 8e 2 E W Ae 2 f21I 22g (9)

X
t2T

RT � xet � Qe 8e 2 E W Ae 2 f11I 12g (10)

Constraints (1) ensure that, for each period t and coffee type c, the quantity of
coffee type c required to produce the orders is less than or equal to the amount of
coffee type c that exist in all silos (CAct). Constraints (2) determine, for each period
t and coffee type c, the sum of the silo capacities which have been assigned to
coffee type c (CAct). Constraints (3) ensure that, for each period t, one silo can only
contain at most one type of coffee c. Constraints (4) ensure that, for each period t,
the roasting capacity is not exceeded. Constraints (5) ensure that, for each period
t, there exits grinding capacity to produce orders of ground coffee. Constraints (6)
ensure that, for each period t, the quantity of coffee beans to be packed does not
exceed the packaging capacity of coffee beans. Constraints (7) ensure that, for each
period t, the quantity of ground coffee to be packed in bags does not exceed the
packaging capacity of ground coffee in bags. Constraints (8) ensure that, for each
period t, the quantity of ground coffee to be packed in sachets does not exceed the
packaging capacity of ground coffee in sachets. Constraints (9) and (10) ensure that,
for the planning horizon and for each order e, the quantity to be produced is equal
to or greater than the quantity ordered.
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Table 1 Computational results

Instance 1 2 3 4 5

Quantity of order 2000 2000 2000 2500 3000

Objective function 82,028 10,030 12,040 18,040 426,038

GAP (%) 0 0 0 0 0

Iterations 12,729 12,186 74,723 127,240 630

Nodes 814 2649 13,115 21,270 0

Time (s) 0.615 0.861 2.799 2.719 0.394

4 Results

The tests were run on an Intel Core i7-2600—3.40GHz computer using CPLEX
solver Version 12.5. The model was implemented in the Optimization Programming
Language (IBM ILOG OPL).

To build the instances we considered the number of orders E D 10, the time
horizon T D 10 days, the number of silos S D 5. The capacity of each silo
CSs D 3000 kg. The capacities CT, CEG, CM, CEM1 and CEM2 were all fixed to
3000 and the yields and Tp were fixed to 1 for all products. To build the blends,
matrix Bpc, we used the blends that the company produces, with P D 24 products
made out of C D 22 types of coffee.

For the ten orders we have chosen ten different products and random finishings,
the same for all the instances. The delivery dates changed for each instance and are
distributed along the time horizon. All the instances have 100 real variables xet, 220
real variables CAct, 1100 binary variables ısct and at most 560 constraints.

The quantities considered for the orders of each instance, quantity of order and
the results obtained are presented in Table 1. For all these small, aggregate, examples
the optimal solution was found in less than 3 s. This is an encouraging result as the
company wants to embed this model in a DSS to accept new orders.

5 Conclusions and Future Work

The results obtained using the production planning model presented in this paper
are quite interesting and aligned with the needs of the company. For the problem
dimension that have to be solved daily in the company the running time is very
low, which enables the daily use of the model embedded in a DSS to analyse the
implications in the production plan of accepting additional orders (or proactively
triggering them) whilst determining the silo loads and the production quantities.

As future work we intend to introduce in the model additional constraints on
the batch production in the roaster. They were not taken into account in the model
presented in this paper because the company did not consider the batches in the
roaster a bottleneck of their production process.
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Optimization of Production Scheduling
in the Mould Making Industry

Bárbara Esperança Virgílio, Marta Castilho Gomes,
and Ana Paula Barbosa-Póvoa

1 Introduction

The mould making industry plays a ubiquitous role in modern life, as the manu-
facture of many products of everyday use depends on moulds. Making these tools
is a high-tech process with a well-established base in Portugal, one of the largest
exporters of moulds in the world. In this industry the product (mould) is individually
designed and produced in accordance with the customer’s specifications (make-
to-order, one-of-a-kind production). The time span for designing and producing
a mould has shortened considerably as the lifecycles of products produced by
moulding have also decreased. In order to improve competitiveness, many mould
producers are now looking to develop solutions for improving the efficiency of their
processes and optimizing time and costs (Ni et al. [8]). These solutions include the
development of computational tools to support production planning and scheduling.

In contrast to other discrete production industries, such as electronic chip or semi-
conductor production, for which the scientific literature dealing with the respective
production planning and scheduling is abundant, research specific to the mould
making industry is very limited. As Choy et al. [1] point out, production scheduling
in this industry is still normally carried out using traditional methods.
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The main objectives of this research were to develop an integer linear program-
ming model to support production scheduling in the mould industry and solve it
using real data supplied by a company (GECO). The decisions taken into account
in the model regard assignment of operations to the shop floor machines and
scheduling the production of each mould part, whilst meeting the due dates agreed
up with the customers.

2 Context of Motivating Case Study

GECO is a firm specialized in injection moulds for the plastics industry that began
operating in 1969. It is currently part of an international industrial group with
headquarters in the district of Leiria, Portugal. The company employs over 300
people and currently exports almost all of its output, which goes mostly to the
automobile (80 % of total production), electronics, packaging, pharmaceutical and
home appliances industries. The turnover was EUR 14 million in 2013.

At GECO, production planning and scheduling is the responsibility of the
production manager, the appointed Group Leader (GL). This work is carried out
manually, using Excel worksheets and the Microsoft Project software for the storage
and visualization of data. The scheduling decisions are taken with no help of a
computer implemented algorithm. Based on this, the challenge was to develop
a model that could address in an efficient way the production scheduling at the
company.

3 OPTMESC Model Characterization

The mould making production scheduling problem pertains to the job shop category,
a production environment where the range of products is diverse, production
numbers are small and orders may follow different production routes. Jain and
Meeran [7] and, more recently, Potts and Strusevich [10] present reviews of solution
methods for the job shop scheduling problem proposed in the literature. The
classical job shop scheduling problem, in which there is only one machine per
operation, has been the object of intensive study. However, as Tay and Ho [11]
point out, on the shop floor there are in practice multiple copies of the most critical
machines, so as to minimize bottleneck situations resulting from time-consuming
operations or busy machines. This generalization is named the flexible job shop
scheduling problem.

An analysis of that literature shows that, whilst the majority of authors propose
mathematical programming formulations for job shop scheduling, they apply heuris-
tic or meta-heuristic techniques in solving the problem. The interest in solution
methods based on mathematical programming is quite recent. Özgüven et al. [9],
Gomes et al. [6] and Demir and Işleyen [2] are recent examples in the literature of
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mathematical programming models application to the flexible job shop scheduling
problem.

OPTMESC model is based on the discrete time model for flexible job shop
proposed in Gomes et al. [4] and Gomes [3] , which has been adapted to take the
characteristics of the case study into account. The production scheduling problem
and how it is modelled by OPTMESC can be described as follows (note that the
Appendix further extends the problem description):

• A mould consists of various parts, which differ from mould to mould. Each part
follows a production route, and different parts may follow the same production
route.

• There may be some exactly identical parts, i.e. two or more copies of the same
part in a mould. In such a case, the model considers them to be two or more units
of the same part (they are modelled together in terms of decision variables).

• A production route is made up of several operations in sequence. Although there
is a generic operations flow, not all operations may be involved in the production
route for a specific part. Figure 2 in the Appendix depicts the production routes
for an illustrative example of a mould.

• Each operation is performed by a machine and there are different machines
available for performing a given operation (machines in parallel). In addition,
a machine may perform different operations.

• Each operation is preceded by a buffer or waiting queue in which the parts await
processing. The buffer is common to all machines that can perform the operation
in question.

• The machines are characterized by the operation or operations they carry out,
the processing times and capacity (total number of part units they can process
simultaneously). Processing times depend on the part, operation and machine,
and take integer values.

• Each mould has a due date. Production of the mould parts should be scheduled
to meet the due date for the mould.

All decision variables are integer. The scheduling horizon is divided into identical
time slots leading to a discrete time model. The objective function, to be minimized,
is a sum of penalties: penalties for incomplete parts at the end of the scheduling
horizon; penalties for finishing production of parts before or after the mould due
date and penalties for waiting times (of unfinished parts) in intermediate buffers.
The set of constraints comprises1:

• Starting constraints which define conditions of machines and buffers at the start
of the scheduling horizon.

• Flow balance equations that establish the relationship between part units in
buffers in adjacent time intervals. They have different forms for the first and final

1The model formulation is presented in [12] and [13].
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buffer in a processing route while the constraints for all the intermediate buffers
in a route have the same form (see the Appendix).

• Machine capacity constraints ensure, for all time slots of the scheduling horizon,
that the total number of part units loaded into a machine does not exceed its
capacity.

• Buffer capacity constraints, also written for every slot of the scheduling horizon,
limit the total number of part units lodging in the buffer of an operation to the
available buffer capacity.

4 Application to a Production Plan

Based on the motivating case study, OPTMESC model was applied to data from a
GL production plan and the model solution compared with it. To this end, data on
the characteristics of the GECO machinery fleet were collected (i.e., a list of the
operations that can be performed on each machine and the maximum dimensions
of the parts it can take); and the operations and respective production times were
gathered for all parts involved in the GL production plan. The plan consists of
42 parts belonging to six moulds and involves assignment of operations to nine
machines (all with capacity for a single part unit). Operations considered are
grinding/rough milling, DNC machining of mould structures, DNC machining of
moulding parts, drilling for water run-off and drilling for mould assembly and/or
extraction. For implementation in the OPTMESC model, a correspondence between
machines and operations was established that took into account the size of parts
that can be loaded into the machines. Twelve production routes were defined for the
parts, involving a total of 52 operations. The complete set of production routes and
the respective times are described in [12]. In deciding the production plan, the GL
relies on his own experience for defining the operations (which vary according to
the type of part) and for estimating the respective production times.2 Buffer capacity
was defined at 100 units (a high figure because the scheduling at GECO does not
take into account space constraints).

The parts and due dates are shown in Table 1, where each line corresponds
to a mould. One unit of each part is to be produced and the penalties in the
objective function are based on [3] : 20 for completion after the due date; 1 for
completion before the due date; 0.1 for waiting time in intermediate buffers and 107

for unfinished parts at the end of the scheduling horizon. The latter coefficient is
very high in order to avoid the unfinished part scenario. The GL was asked as to
the recommended values for these penalties but there was no counterproposal from
him.

2The GL practical knowledge of the various stages in the process is needed for this “pre-
processing” of the operations for determining the production plan.
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Table 1 Data of parts for six moulds (plan A1 + additional parts in plan B1)

Parts Due date

p1, p2, p3, p4, p5, p6, p7, p8 26

p9, p10, p11, p12, p13, p14, p15 80

p16, p17, p18, p19, p20, p21 + (p43, p44, p45, p47—plan B1) 76

p22, p23, p24, p25, p26, p27, p28, p29 86

p30, p31, p32, p33, p34, p35, p36 + (p49—plan B1) 102

p37, p38, p39, p40, p41, p42 + (p46, p48—plan B1) 102

Table 2 Numerical characteristics of the models and results for production plans A1 and B1

Plan
No. of
parts

No. of
vari-
ables

No. of
con-
straints

No. of
itera-
tions

No. of
nodes

Objective
function

CPU
time
(s)

Time
in
buffers

Time
before
date

Time
after
date

A1 42 30,401 18,164 4992 786 384.60 4.62 186 366 0

B1 49 34,302 20,490 16,983 6 485.40 3.29 234 462 0

The GL production plan corresponds to a time frame of 51 days, i.e., 2 months
and 9 days of manufacturing (not counting weekends), where the production times
are expressed as multiples of 6 h (one half of a work day, which has 12 h).
Accordingly, in the time grid used in the OPTMESC model, the time slot equals
one half-day, and so the due dates in Table 1 are expressed in half-days.

In the GL plan, all machines except for 2 were unavailable at the start of
the scheduling horizon. Two distinct situations were studied in determining the
production plan, named plans A1 and B1. The former takes into account only those
parts in the GL plan produced internally at GECO. For the latter, parts in the GL plan
that were outsourced were also included. Indeed, the GL production plan contained
56 parts, of which 42 were produced in-house and 14 were outsourced because the
capacity of the machines was thought insufficient for meeting the due dates.

The scheduling horizon is 105 half-days (slightly longer than the latest due date
in Table 1). In plan B1 it was feasible to produce 7 of the 14 outsourced parts (49
parts in total). This required the addition of new production routes for five parts; the
other 2 used production routes already defined. OPTMESC model was implemented
in GAMS modelling system and solved with CPLEX 12.3 release, on a 2.20 GHz
Intel Core with 6 GB of RAM running Windows 7. Table 2 presents the numerical
characteristics of the models and the results (for optimal solutions), which include
the objective function components before multiplication by the penalties.

OPTMESC was solved to optimality in less than 5 s in both cases with neither
incomplete parts at the end of the scheduling horizon nor parts finished after the due
date. The objective function value is higher for B1 plan because of the increase in
the total waiting time for parts in the buffers and parts produced before the due date.
The GL takes about 1 h to plan production of a similar set of parts and hence the use
of OPTMESC model could lead to significant time savings in defining production
plans at GECO.
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Fig. 1 Machine loads in GL, A1 and B1 plans

Figure 1 shows a comparison between the GL plan and plans A1 and B1
regarding machine load. The average machine load in the GL and A1 plans is
71 %, however the standard deviation is 24 % in the former and 19 % in the latter.
Therefore, OPTMESC produced a more uniform solution regarding the assignment
of operations to the machines. Due to the insertion of additional parts, B1 plan
presents a higher average machine load (79 %) but the standard deviation (20 %) is
still very close to that observed for plan A1.

5 Post-optimization Analysis

A post-optimization analysis of the objective function coefficients, the due dates of
orders (moulds) and the length of the scheduling horizon was carried out in Virgílio
et al. [13], since these are the OPTMESC model parameters with the most relevant
effect on the objective function value and computation time.

Results for the order due date study are summarized in Table 3. Based on the B1
solution (B1 plan), the impact on the optimal solution of compressing the due dates
was assessed. The due date for the first mould (26 half-days, first line in Table 1)
was not changed but the other due dates were shortened simultaneously by 10, 20,
30 and 40 half-days. The scheduling horizon of 105 half-days and the objective
function penalties of solution B1 were kept when solving the model.

Table 3 shows that when the due dates are compressed the objective function
worsens (increases) and the CPU time needed to solve the model to optimality
increases. The exception is the transition between solutions B1 and B2, where the
CPU time for the latter is slightly shorter. The last three columns show an increase in
the total time of production after the due date (and hence of the objective function),
although the total time in buffers and total time before the due date were actually
reduced. Solutions B1 to B4 present CPU times that do not exceed 40 s, whereas
for solution B5 this is 656 s (about 11 min), and the number of nodes analysed in
the search tree reached 19,123, a significantly higher figure than the ones of the
previous solutions.
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By progressively reducing the scheduling horizon length, starting from solution
B5:

• For scheduling horizons between 104 and 94 half-days the optimal solutions
present the same objective function value and objective function components
(total time in buffers and time before and after the due date) as solution B5.

• For 93 half-days, the objective function value increased to 7745.40 and the
optimal solution was computed in a considerably shorter CPU time (137 s versus
656 s).

• For 92 half-days, there was one unfinished part at the end of the scheduling
horizon and so there was a steep increase in the optimum objective function value
(to 10,006,262.30), due to the penalty of unfinished parts being 107. The model
was significantly more difficult to solve: the CPU time rose to 1272 s (around
21 min), with the number of nodes analysed being almost two times the one of
solution B5.

• However, if we allow for sub-optimality in this case, good solutions can be
obtained in significantly lower CPU time. Indeed, for optimality gaps of 5 or
10 % the solver finds a solution in 304 s (about 5 min), both solutions having the
same objective function value and objective function components.

6 Conclusion and Future Work

This study proposes an integer linear programming model, OPTMESC, for solving
the problem of production scheduling in the mould making industry. This discrete
time model was applied to real data provided by a mould making company to
determine a production plan, which involved the production of various parts of
different moulds. Using GAMS modelling system and the solver CPLEX, optimal
solutions were computed for two instances of the problem in a matter of seconds. A
comparison with the production manager’s plan showed that, based on the available
machine capacities, it is possible to schedule production of a significant number of
additional parts that were outsourced in that plan. This is an important result, as
reducing the level of outsourcing of parts reduces the level of uncertainty as to their
quality and the compliance with the due dates.

The post-optimization analysis carried out illustrates, on the one hand, the
increase in computational complexity (and so, in the CPU time needed to solve the
model) when the due dates and the scheduling horizon are compressed. On the other
hand, it also shows the tests a decision-maker can easily do with OPTMESC, such
as the impact of changing the mould due dates (for instance to adapt to the available
machine capacity) and of considering different time horizons in the production
schedule. The decision-maker can then choose one of the several solutions generated
by OPTMESC.

The model thus proved adequate to be included in a decision support system
(DSS) for scheduling in the mould-making industry, where the problem is still
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commonly solved by manual methods. Implementation of such DSS tool requires
the creation of a user-friendly, interactive and flexible interface that enables direct
visualization of the machine loading diagram (Gantt chart) based on the model
results. Conceiving such an interface is one direction of work in the future.

Another direction is generalizing the OPTMESC model. Firstly, the generaliza-
tion that models the decision as to what parts to outsource in the event of lack of
in-house capacity should be explored (a simple heuristic was used here for selecting
the parts in plan B1). A second aspect is the extension to the re-scheduling problem
(re-scheduling to take changes into account), which was studied in [3] and [5] for a
discrete time model. This includes the need for mould corrections (very common in
this industry) and the insertion of new orders (moulds) into an existing plan, making
use of the available machine capacity.

Appendix: Extension of the Problem Description in Section 3

• The main parts of a mould are the cavity (concave part) and the punch or core
(convex part). The material to be moulded is placed in a pre-heated state in the
space between them and hardens, getting the desired shape.

• A production route is made up of several operations in sequence. Although there
is a generic operations flow, not all operations may be involved in the production
route for a specific part.

• Figure 2 presents the production routes for an illustrative example of a mould.
Operations considered are grinding or rough milling (Grind), DNC3 machining
of the mould structure (DNC_S), DNC machining of moulding parts (DNC_M),
rectification grinding (Rectif), electro-erosion (Erosion), drilling with the pur-
pose of water run-off (Drill (wat)) and drilling with the purpose of mould
assembly and/or extraction (Drill (ext)).

• Each operation is performed by a machine. There are different machines available
for performing a given operation. In addition to this, a machine may perform
different operations. For example, a machine that does the rough milling may
also do the DNC machining of the mould structure.

• OPTMESC model uses the notions of initial buffer (the one for the first
operation), intermediate buffers (for the remaining operations) and final buffer
(for finished parts) in each production route. Figure 2 depicts the alternating
sequences of buffers and operations in the two production routes of the example.

3Direct numerical control.
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Fig. 2 Production routes for an illustrative, realistic example of a mould comprising three parts
(p1, p2 and p3)
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Constraint Aggregation in Non-linear
Programming Models for Nesting Problems

Pedro Rocha, A. Miguel Gomes, Rui Rodrigues, Franklina M.B. Toledo,
and Marina Andretta

1 Introduction

The Nesting problem is a complex problem that arises in industries where sets of
pieces or space must be efficiently placed or allocated in order to minimize wasted
space or wasted raw materials, without overlaps between pieces and fully contained
inside a container. It is a 2D Cutting and Packing problem where pieces have non-
regular geometries, also known as the Irregular Strip Packing problem.

The Nesting problem has a geometrical and combinatorial component, where
the first impacts the approaches required to tackle the second. The selection of an
adequate geometrical representation is an important issue to reduce the complexity
of the geometric component. The geometric representation should be able to deal
with continuous rotations and allow easy overlap computations.

Several geometrical representations are discussed in [3], each one tailored to
a specific application: grid representation for discrete position placement and
orthogonal orientations; polygonal representation (including No-Fit-Polygons) use
polygons for continuous position placement and arbitrary discrete orientations; and
˚-Functions [9] for continuous position and orientation placement of the pieces,
using sets of primary pieces composed by straight lines and arc segments. An
alternative representation is to approximate irregular pieces by a Circle Covering
representation. In [4] a grid is used to place the circles, a three-step algorithm to
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approximates pieces by circles is proposed in [11], a greedy heuristic to place the
circles is used in [6], and a circle covering algorithm based on Medial Axis is used
in [7] to minimize the number of circles needed to represent a piece.

Several works use Non-Linear Programming models (NLP) together with circle
covering representations of pieces. In [5] an Iterated Local Search algorithm is
proposed where a NLP model is used to remove overlap between pieces. In [10] the
authors propose a NLP mathematical model for strip packing supporting circles and
non-convex polygons (used in conjunction with ˚-Functions). Global optimization
methods based on quadratic mathematical models and able to optimally solve small
instances (4–6 pieces) are proposed in [6]. In [8] the usage of a NLP model and
several circle covering representations to solve medium size Nesting problems with
continuous rotations (up to 50 pieces) is explored.

The use of NLP models in conjunction with a Circle Covering representation
allows tackling the Nesting problem with continuous rotations. The main difficulty
lies when dealing with large size instances, due to the large number of pieces
which cause an exponential growth in the non-overlapping constraints derived from
the comparisons between pairs of pieces. In this work we propose a method that
aggregates non-overlapping constraints to reduce the computational cost without
significant impact on the quality of the layout solutions, which allows NLP models
to tackle larger instances. The proposed approach uses a complete circle covering
representation presented in [7] and introduces a pieces based NLP model, derived
from the model presented in [8].

2 Non-linear Programming Model

A mathematical model based on a circle covering representation for the Nesting
problem with continuous rotations requires NLP models due to the non-linearity
of the distance computation and the trigonometric operations. In the proposed
model, each piece is represented by a set of circles with fixed relative positions
between each other. Three variables are needed for each piece, two for the placement
position on the layout and one for the orientation. The model has a non-overlapping
constraint for each pair of circles from different pieces and four Containment
constraints for each circle, one for each side of the container. The mathematical
formulation of the model is the following:

minimize l (1)

subject to: .Rki C Rhj/
2 � .xk C cos.Ak0;i C �k/ � Dk0;i�

� xh � cos.Ah0;j C �h/ � Dh0;j/
2�

� .yk C sin.Ak0;i C �k/ � Dk0;i�
� yh � sin.Ah0;j C �h/ � Dh0;j/

2 � 0;
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8i 2 Ck; 8j 2 Ch;8k; h 2 N; k ¤ h (2)

xk C cos.Ak0;i C �k/ � Dk0;i C Rk � l � 0; 8i 2 Ck; 8k 2 N (3)

Rk � xk � cos.Ak0;i C �k/ � Dk0;i � 0; 8i 2 Ck; 8k 2 N (4)

yk C sin.Ak0;i C �k/ � Dk0;i C Rk �W � 0; 8i 2 Ck; 8k 2 N (5)

Rk � yk � sin.Ak0;i C �k/ � Dk0;i � 0; 8i 2 Ck; 8k 2 N (6)

xk; yk; �k; l 2 R (7)

The Objective Function (1) aims to minimize the length of the strip and is
represented by the auxiliary variable l. Each piece k is composed by a set of Ck

circles and is represented by three variables: xk and yk defines the position of piece
k on the layout and �k defines its orientation. The number of variables grow linearly
with the number of pieces. The non-overlapping constraint (2) compare the distance
between each pair of circles i; j from pieces k; h and the sum of radius of both circles
Rki and Rhj . The containment constraints (3)–(6) ensure that each circle does not
exceed the admissible placement region. The number of non-overlapping constraints
has a factorial growth, while the number of containment constraints grows linearly.
Finally, the variable domains are defined in (7).

3 Aggregating Non-overlapping Constraints

The NLP model presented in the previous section has difficulties in solving large
instances due to high computational cost caused by the large number of non-
overlapping constraints, which is caused by the increase in the number of pieces and
in the number of circles necessary to represent them. To overcome this difficulty
we propose to aggregate all non-overlapping constraints in a single summation
constraint, where each summation term derives from constraint (2).

The aggregation of non-overlapping constraints allows discarding a large number
of summation terms between distant pairs of pieces, by considering their terms
zero (8). This is possible because the original non-overlapping constraint (2)
will return a negative value. This also has the additional benefit of reducing the
internal computational cost of the solver, when compared to the original model
with independent non-overlapping constraints. Each summation term represents the
difference between the squared sum of the radius of both circles Rki and Rhj (9) and
the squared distance between each pair of circles i; j from pieces k; h (10)–(11).
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CkX
iD0

ChX
jD0

NX
kD0

NX
hD0

˚
max

�
0;NOVLPRi;j;k;h � .NOVLPXi;j;k;hCNOVLPYi;j;k;h/

��2 � 0;
(8)

8i 2 Ck; 8j 2 Ch; 8k; h 2 N; k ¤ h; xki ; yki ; �k; l 2 R

NOVLPRi;j;k;h D .Rki C Rhj/
2 (9)

NOVLPXi;j;k;h D .xki C cos.Ak0;i C �k/ � Dk0;i � xhj � cos.Ah0;j C �h/ � Dh0;j/
2 (10)

NOVLPYi;j;k;h D .yki C sin.Ak0;i C �k/ � Dk0;i � yhj � sin.Ah0;j C �h/ � Dh0;j/
2 (11)

Summation terms are discarded by using spatial partition and hierarchical over-
lapping detection. Spatial partition divides the space into regions, and only compares
pieces from the same or adjacent regions. The hierarchical overlap detection uses a
three level representation, where the first level uses an orthogonal bounding box, the
second level uses a minimum enclosing circle (MEC), and the last uses the circle
covering. Comparisons start by using the basic piece representations and when it
cannot discard overlap, it checks overlap with higher quality representations.

4 Results and Discussion

To evaluate the aggregation of non-overlapping constraints a set of five nesting
instances were selected from the ESICUP website (http://www.fe.up.pt/esicup),
especially suited for continuous rotations. Instance poly1a is the least complex one
with only 15 pieces. Instances poly2a and poly3a are multiples of poly1a with
respectively 30 and 45 pieces (i.e., 2 and 3 times the pieces of poly1a). Instances
poly2b and poly3b have respectively 30 and 45 pieces, but only 15 are the pieces of
poly1a and the remaining ones are new pieces. The circle coverings were obtained
by the algorithm proposed in [7].

The computational experiments were performed on a computer with two Intel
Xeon E5-5690 processors at 3.46 GHz, with 48 Gb Ram at 1333 MHz, running
Ubuntu 12.04 LTS x86-64, and using a single-thread. The selected Non-linear solver
is Algencan v2.37 [1, 2] (http://www.ime.usp.br/~egbirgin/tango/), which is a non-
linear solver based on the Augmented Lagrangian multipliers method.

The selected solver converges to a local minimum, requiring multiple starting
points to explore different regions of the solution space. A total of 30 initial solutions
were generated by randomly placing the pieces on a grid, in a non-overlapping
configuration with random rotations.

http://www.fe.up.pt/esicup
http://www.ime.usp.br/~egbirgin/tango/
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Table 1 Model variants results

Number of Model Obj. Function (l) Avg.
Instance pieces variant Min. Avg. Max. time (s)

poly1a 15 independent 16.39 17.33 18.57 24.47

aggregated 16.04 17.63 19.09 9.00

poly2a 30 independent 30.30 32.25 35.26 635.70

aggregated 30.94 32.84 34.58 111.10

poly2b 30 independent 33.83 35.64 38.05 709.17

aggregated 33.64 35.78 38.51 121.40

poly3a 45 independent 45.70 47.33 48.99 3104.67

aggregated 46.67 47.96 49.65 249.57

poly3b 45 independent 45.00 47.02 50.01 2736.03

aggregated 46.37 48.03 55.86 266.47

Two model variants were tested, one with the model (1)–(7) where the non-
overlapping constraints are considered independent, and the other where the
non-overlapping constraints are aggregated in a single constraint (8), respectively
denoted as independent and aggregated. Table 1 summarizes the results obtained,
where the first column identifies the instance, the second one shows the number of
pieces for each instance, and the third column identifies the model variant. The next
two columns presents the minimum and average objective function (layout length)
achieved by each model variant for the 30 initial solutions. The last column shows
the average running time, in seconds, of each variant.

The results show that both variants have distinct behaviours in what concerns
solution quality and computational time. Aggregating non-overlapping constraints
clearly allows the computational times to be much lower, allowing this variant to
scale well for instances with more pieces. The average computational time of the
aggregated variant is less than 10 % of the variant with the original model for the
larger instances. This is achieved at expenses of solution quality which in average
decreases for the aggregated variant in all instances (the biggest decrease is 2.1 %
for poly3b). The minimum layout length shows a different behaviour, with the
aggregated variant achieving better results for poly1a and poly2b, and worst results
for the remaining instances (the biggest decrease is 3.0 % for poly3b).

5 Conclusions

The main conclusion of this work is that aggregating non-overlapping constrains
proved to be an effective and efficient technique to handle the computational
complexity of larger instances. The downside of this approach is a small reduction in
the layout quality. If the objective is to obtain the best layout length, the best option
to use is the variant with independent non-overlapping constraints. However, if the
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aim is to solve instances with a large number of pieces in a reasonable computational
time, the best choice is to use the model variant with aggregated non-overlapping
constraints at expenses of a slight decrease in the solution quality.
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A Hybrid Genetic Algorithm
for the One-Dimensional Minimax Bin-Packing
Problem with Assignment Constraints

Mariona Vilà and Jordi Pereira

1 Introduction and Problem Definition

Bin-packing problems generally consist in the assignment of items to bins in a way
that optimises a measure of efficiency. The one-dimensional minimax bin-packing
problem with assignment constraints can be defined as follows: suppose T sets (1 �
t � T) each one of them containing B (1 � r � B) items with an associated weight,
wrt. The objective of the problem is to split all of the items of the different sets into
B groups or bins (1 � b � B) so that every group contains exactly one item of each
set, while minimising the maximum sum of the weights of the items in any group.

Although classical bin-packing problems have been extensively studied in the
past, see [4] or [5] for some classical works, the one-dimensional minimax bin-
packing problem with assignment constraints has only recently been introduced, see
[1]. Despite its recent history, the problem has significant applications in the area of
psychology, especifically in the context of test design [7]. An example is the test-
splitting problem. In this problem, the objective is to assign test questions (items),
which are initially grouped into different sets, into several questionnaires (bins).
In any solution, every questionnaire contains one question from each one of the
original sets. Questions have an associated weight usually related to their difficulty,
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and the optimal solution is the one which minimizes the maximum weight of any
questionnaire.

This problem can be described by using the formulation recently proposed in [1]
(see Eqs. (1)–(5)), which uses binary decision variables xrtb that take value 1 when
item r in set t is assigned to group b and 0 otherwise.

minimize Z (1)

subject to:

Z �
BX

rD1

TX
tD1

wrt � xrtb; for 1 � b � BI (2)

BX
rD1

xrtb D 1; for 1 � b � B; 1 � t � T (3)

BX
bD1

xrtb D 1; for 1 � r � B; 1 � t � T (4)

xrtb 2 f0; 1g; for 1 � r � B; 1 � b � B; 1 � t � T (5)

Note that the numbering of the questionnaires in a solution is of no consequence.
As such, the items of the first set can be prefixed (for example by setting xi1i to 1
for all 1 � i � B). This prefixing removes symmetries and reduces the number of
variables of the formulation, as only the variables of the sets Œ2;T� are needed.

This problem is NP-Hard, as the Odd-Even Partition problem and the 3-Partition
problem can be reduced to this problem. Therefore, metaheuristic procedures seem
a suitable choice for its resolution, as they are able to provide with good solutions
in short computation times. The only metaheuristic proposed for the problem
is a Simulated Annealing (SA) procedure, see [1]. In this paper, we propose a
hybrid Genetic Algorithm (GA), which combines the principles of GA with the
mathematical formulation proposed above, and we compare its performance with
the previous approach.

The rest of this paper is structured as follows: Section 2 puts forward the
characteristics of the GA proposed for the problem; and Sect. 3 presents the
computational experiments performed on the implementation of the GA.

2 Description of the Genetic Algorithm

GAs [3] are metaheuristics inspired by natural selection, commonly used for solving
optimisation problems. GAs usually explore the solution-space of a problem by
using a set of solutions (individuals) known as the population. These individuals
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are used to create new individuals, which substitute the previous ones. To decide
which individuals should be used to generate a new individual, and which of them
should be substituted, the algorithm uses a fitness value related to the quality of the
solution represented by that individual.

The following subsections give details about each characteristic of the steady-
state, see [2], GA presented in this work.

2.1 Encoding and Fitness Function

The GA devised in this work uses a direct encoding in which each individual is
represented by a two dimensional matrix with T columns and B rows. Each entry
of the matrix indicates the questionnaire into which an item of a set is assigned.
Two sample individuals for a problem with five sets and three questions per set are
depicted in Fig. 1. In addition to the encoding, each entry also shows the weight of
the item in parenthesis. Questionnaires are identified using a capital letter. In the
figure, questionnaire A of the individual depicted on the left is composed of the first
item of set 1, the second item of sets 2 and 3 and the third item of sets 4 and 5, for a
total weight of 29.

The fitness of each individual corresponds to the inverse of the objective function.
In the first example given in Fig. 1, the accumulated weights are 29 for questionnaire
A, 32 for questionnaire B, and 19 for questionnaire C. The accumulated weights of
the second parent are 23, 32 and 25 for questionnaires A, B and C, respectively.
Therefore, the fitness value of both individuals is 1=32.

2.2 Initialisation

In order to accelerate the search, the initial population is constructed using a recently
proposed heuristic for the problem, [8]. The heuristic is based in maintaining the
differences among accumulated weights within certain limits. The constructive
heuristic is depicted in Algorithm 1, in which the function OrderBins orders the bins
in a non-increasing order of accumulated weights, and the function OrderQuestions
orders the questions in a non-decreasing order of the weights.

Fig. 1 Two examples of encoding. Each letter corresponds to a different questionnaire and the
number in parenthesis represents the weight of the question
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Algorithm 1: New constructive heuristic
for b WD 1 ! B do

Wb D 0

end for
for t WD 1 ! T do

OrderBins(Wb)
OrderQuestions(�rt )
for r WD 1 ! B do

Assign item r to bin r
Wr WD Wr C �rt

end for
end for

Note that the heuristic provides different solutions depending on the initial
orderings of the sets. Accordingly, the initial population is created by using this
constructive heuristic with different random orderings. A local search is also applied
to each initial individual. The neighbourhood is defined by the removal from the
solution of all of the items of a set, and their reintroduction using the assignment
rule from Algorithm 1. This initialisation method generates near-optimal solutions,
which the GA tries to combine into better solutions using an optimisation-based
crossover operator.

2.3 Genetic Operators

Both the selection and replacement operators make use of standard tournament
processes in which two individuals are randomly chosen and the best (worst) among
them is used for crossover (replacement). The crossover operator is a combination
of the classical n-point crossover method with an optimisation subproblem. The
main idea is to aggregate the sets in accordance to the information present in the
parents, and to solve (perhaps approximately) a reduced problem using the mixed
zero-one integer linear formulation presented in Sect. 1. Similar approaches have
been proposed by different authors for several problems, see [6].

The mechanism of this crossover operator is the following: first, the operator
generates n different cutting points, c1; : : : ; cn, which are drawn from a uniform
distribution Œ1;T�. Based on these cutting points, the chromosomes of the parents
will be divided in n (if cn D T) or nC1 segments. If the cutting points are ordered in
increasing order c1 < c2 < � � � < cn, we can identify segment 1 with chromosomes
Œ1; c1�, segment 2 with chromosomes Œc1 C 1; c2�, and so on until the last segment,
which corresponds to Œcn�1 C 1;T� or Œcn C 1;T�.

These segments are then used to define the aggregated sets. An aggregated set is
obtained by joining, for each questionnaire, all of the questions assigned to it (e.g.
all questions assigned to questionnaire A will define question 1 in the aggregated
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Fig. 2 Aggregated instance, solution for the aggregated problem and individual after disaggrega-
tion

set). In order to incorporate information from both parents, the chromosomes from
parent 1 (parent 2) are used to aggregate odd-numbered (even-numbered) segments.

Figure 2 depicts an example using the individuals from Fig. 1 (parent 1 and parent
2, respectively). Suppose that a single cutting point, c1 D 3, is used. The resulting
aggregated questions for segment 1 are extracted from parent 1 as follows: question
1 corresponds to questionnaire A with a total weight of 15; question 2 corresponds
to questionnaire B with weight 21 and question 3 to questionnaire C with weight 8.
Similarly, the aggregated questions for segment 2 correspond to the questionnaires
A, B and C from parent 2. The optimal solution to this problem is to assign together
question 1 from the first aggregated set with question 1 of the second aggregated
set, question 2 of the first set with question 3 of the second one, and question 3 of
the first set with question 2 of the second one.

After disaggregation, the individual created by the operator is also depicted in
Fig. 2. Its objective function value is 31, which improves the objective function of
both parents.

Please note that we do not make use of a mutation operator, as this GA is designed
as a method to intensify the search rather than as a diversification mechanism to
explore large areas of the solution space.

3 Computational Experiments

To assess the quality of the proposed GA, the GA and the SA procedure proposed
in [1] were programmed in C++. The IBM CPLEX solver was used to solve the
formulation as well as the hybrid crossover subproblems. These procedures were
tested on a randomly generated set of instances following the proposal from [1]. A
total of 340 instances with a number of questions ranging from 300 to 6000, and a
number of questionnaires ranging from 2 to 300 were constructed.
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All of the algorithms were run for a maximum of 600 s. The default parameter
configuration of CPLEX was used, with the exception of the relative and absolute
gaps which were set to 0 in order to avoid the behaviour detected in previous
experiments, see [1]. The parameters of the SA were identical to those proposed in
[1]. Furthermore, if the SA terminates before the running time limit, the algorithm
is restarted with a different random initial solution.

The parameters of the GA were chosen after tuning by hand. The population size
was set to 50 individuals, one replacement is performed per iteration and a 3-point
hybrid crossover is used. Additionally, in order to avoid CPLEX spending large
amounts of time verifying optimality instead of improving the best known solution,
a maximum running time for each execution of the hybrid crossover is imposed.
This time limit is set to 3 s per crossover.

The results of the computational experiment show that CPLEX is to be the pre-
ferred method for instances with a small number of questions or questionnaires, as
it is capable of finding the optimal solution. On the other hand, the GA outperforms
the other methods for instances with many questions and questionnaires. Note that
the SA outperforms the GA for small size instances, leading us to conjecture that
some additional improvements, like the introduction of some form of mutation, may
lead to an improvement in the proposed method.
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The Partial Choice Recoverable Knapsack
Problem

Clément Lesaege and Michael Poss

1 Introduction

We study in this paper a variant of the knapsack problem. We are given a capacity
c and a set N D f1; : : : ; ng of available items. The weight and profit of item i are
denoted by !i and pi, respectively. Our objective is to select a subset of items X 	 N
of maximum profit knowing that k items will be removed from X (removed items
count in the objective but not in the capacity limit). Namely, after X is fixed, an
opponent chooses to remove from X a subset of � items, denoted by X. Then, a
subset of l D k � � items of our choice, denoted by Z, is further removed from
X. Hence, a solution is feasible if and only if for each set of items removed at the
first stage, it is possible to remove l items at the second stage such as the knapsack
capacity is not exceeded. This can be modeled as follows:

max
X�N

X
j2X

pj

s.t. max
X�X

jXj��
min
Z�X
X�Z
jZj�k

X
j2XnZ

!j � c: (1)
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We call the above problem the Partial Choice Recoverable Knapsack Problem
(PCKP), since a total of k items are removed including at most � items removed
without possibility of choice. We show in the next section that the problem is
a special case of the recoverable robust knapsack problem (RRKP) considered
previously in the literature [1, 2]. While the complexity of the RRKP is still
unknown, we show in Sect. 3 that PCKP is NP-hard in the weak sense and provide
a dynamic programming algorithm for the problem, inspired by the dynamic
programming algorithm for the robust knapsack problem [3]. We provide below
a simple application example of the problem.

A shipping company has been requested to ship different kinds of cumbersome
items that need whole dedicated vehicles to ship them. For each of these shipping
requests, our company has an estimated delivery date. We define N D f1; : : : ; ng
as the set of these item requests. Each of these items requests has a weight !j

determined by the quantity of labour needed to ship the item. The profit for
accepting a request is pj. The total quantity of labour available to ship the items
before the estimated delivery date is c. We assume that up to � selected items will
not be available for shipping on time (for example because the producers will be late
in their production or companies will have mismanaged their stocks). Obviously,
the items not available for shipping do not consume any labour available before
the estimated delivery date. If our shipping company delivers too many items after
the estimated delivery date, it will loose its reputation, but if only few of them are
delivered late, the damage will be insignificant. Therefore, up to k items may be
delivered after the estimated delivery date (whether the delay is due to the shipping
company or the producer does not matter). Our goal is to determine which of the
shipping requests should be accepted in order maximise the profit of our shipping
company. The constraints impose that, no matter which items are not available for
shipping, no more than k items will miss the delivery date.

2 Link with the Recoverable Robust Knapsack Problem

Büsing et al. [1] define the Recoverable Robust Knapsack Problem as follows.

Definition 1 Let N be a set of n items with profits pi, nominal (or default) weight
!i, and maximum deviation O!i; i 2 N. For a given � 2 N, the set S� consists of
all scenarios S which define a weight function !S W N 7! N s.t. !S

i 2 Œ!i; !i C O!i�

for all i 2 N and jfi 2 N W !S
i > !igj � � . For k 2 N and a subset X 	 N

the recovery set X k
X consists of all subsets of X with at least jXj � k elements, i.e.,

X k
X D fX0 	 X W jXnX0j � kg. Given a knapsack capacity c 2 N, the RRKP is to

find a set X 	 N with a maximum profit p.X/ WD P
j2X pj s.t. for every scenario

S 2 S� there exists a set X0 2X k
X with !S.X0/ � c.

We show next that the Partial Choice Recoverable Knapsack Problem is a
particular case of the Robust Recoverable Knapsack Problem.
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Theorem 1 Let .c; p; !; O!; �; k/ describe an instance of the RRKP and let
.c; p; !; �; k/ be an associated instance for the PCKP. If the instance satisfies
conditions (i) � � k, and (ii) 8i; j 2 N W !i � !jC O!j, then both problems have the
same optimal solution X 	 N.

Proof Let X 	 N be a potential solution for the RRKP and let us denote by Y and
X the sets of items that are removed from X and deviate, respectively. We see that X
is feasible for the RRKP if it satisfies the following constraint:

X
i2X

!i C max
X�X

jXj��

0
@X

i2X

O!i � max
Y�X
jYj�k

0
@X

i2Y

!i C
X

i2X\Y

O!i

1
A
1
A � c: (2)

Because of assumption (ii), any solution of the inner maximization in the left-
hand side of (2) satisfies Y 	 X. Said differently, we must always remove the items
that deviate. Denoting Y� D Y \ .X n X/ we must withdraw from the left-hand
side of (2) the � items that deviate as well as the other items removed, denoted
by Y�. Replacing the inner maximization with the minimization of its opposite,
constraint (2) becomes:

max
X�X

jXj��
min

Y��XnX
jY� j�k��

X
i2Xn.X[Y�/

!i � c: (3)

By setting Z D X [ Y�, we obtain to the formulation of the Partial Choice
Recoverable Knapsack Problem (1).

This equivalences implies that we can solve the PCKP as a RRKP by setting
appropriate values for O!i and using the integer linear programming formulation from
[1]. Nevertheless, we show in this paper how to develop a more efficient way to solve
the problem.

3 Dynamic Programming Algorithm

When k D � , the next result shows that the PCKP yields a robust knapsack problem.
The proof is omitted due to the length limitation.

Theorem 2 When k D � , the PCKP can be solved by using the dynamic
programming algorithm of the Robust Knapsack Problem by setting the deviations
to O!i D �!i.

We show in the rest of the section how to extend the dynamic programming
algorithm from [3] to the general case of PCKP. In view of Theorem 2, we can
assume that k > � . This means we can plan to remove l D k � � items from the
knapsack without any particular condition and � items will be removed without
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possibility of choice. A new way to write constraint is:

max
X�X

jXj��
min
Y�X
jYj�l

X
j2Xn.Y[X/

!j � c:

We use an equivalent formulation of the constraint:

8X 	 X; jXj � � W 9Y 	 X; jYj � l such as
X

j2Xn.Y[X/

!j � c: (4)

We order items by decreasing weight (i > j ) !i � !j). From now, we will
consider that items are sorted this way. In the worst case scenario, X contains the
items with the lowest weight. This is formalized in the next lemma.

Lemma 1 Let X 	 X and Y 	 X such that
P

j2Xn.Y[X/ !j � c. For any pair of

indices such that i > j and j 2 X, let us define X0 D XC fig � f jg. We can construct
a set Y 0 	 X such as

P
j2Xn.Y0[X0/ !j � c.

Proof If i 62 Y, we set Y 0 D Y. Since i > j implies that !i � !j,
P

j2Xn.Y0[X0/ !j �P
j2Xn.Y[X/ !j � c and the constraint is still satisfied. If i 2 Y, we set Y 0 D Y �

fig C f jg, so
�
Y 0 [ X0� D �Y [ X

�
and the constraint is still satisfied.

Theorem 3 Partial Choice Recoverable Knapsack Problem is NP-hard in the weak
sense and can be solved in O .n .� cC .k � � /C ln.n///.

Proof From Lemma 1, we see that Y can be assumed to contain the items with the
highest weights; if some of these were removed by the opponent (put in X), we could
remove any other items instead the constraint would still be satisfied. Thus, we can
reformulate (4) as follows:

Y D fl first items of Xg
8X 	 XnY; jXj � � W

X
j2Xn.Y[X/

!j � c: (5)

We will build our algorithm in two phases. The first one will be to determine the
profit we can get from items in Y (we will call it first stage profit) and a second one
to determine the profit we can get from items not in Y (we will call it second stage
profit). The two phases are linked: the items which may appear in X depend on items
in Y. Since Y D fl first items of Xg we can partition N into two subsets f0; : : : ; tg
and ft C 1; : : : ng where the first one is the set of items that can be put in Y and the
second one is the set of items that cannot. To explore all relevant possibilities, we
explore all possible partitions of N into two sets of consecutive integers. There are
nC 1 possible partitions.
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For the first stage profit, we assume that the set of items in Y is restricted to
f0; : : : ; tg. Let y .t; s/ denote the maximum first stage profit considering t items and
l D s. We compute y .t; s/ as in a regular knapsack problem considering that the
capacity is l D k � � and the weights of each items is 1. We compute the second
stage profit R .t/ by applying the Robust Knapsack dynamic programming algorithm
on the subset ft C 1; : : : ; ng since k D � for that subset. The maximum profit is
maxt2N .y .t; l/C R .t//. Putting less than l items in the knapsack at the first stage
cannot increase the profit, therefore, we have explored all possibilities.

We sort items by decreasing weights (i > j) !i � !j) and we compute the first
stage profits by the following dynamic programming recursions:

y . j; s/ D max.y . j� 1; s� 1/C pj; y . j� 1; s// (6)

The initialization values are y .j; 0/ D 0 for j D 0; : : : ; t and y .0; s/ D 0 for s D
0; : : : ; l D k � � .

To compute the second stage profit, the naive solution would be to simply apply
the Robust Knapsack dynamic programming algorithm to the subset fiC 1; : : : ; ng
for each value of i. However, considering that we use a dynamic programming
algorithm there is a more efficient solution. We create a Robust Knapsack problem
by the setting the deviation to O!i D �!i. We need to sort the items by increasing
deviations (remember that we are working with negative deviations). To do so, we
just have to reverse the indexes (j0 D n� jC 1). We compute all second stage profit
by the following dynamic programming recursion given by Monaci et al. [3]:

z
�
d; s; j0

� D max.z
�
d; s; j0 � 1�C pj0 ; z

�
d � �!j0 C O!j0

�
; s� 1; j0 � 1�/

for d D 0; : : : ; c; s D 1; : : : ; �; j0 D 1; : : : ; n;
z
�
d; j0

� D max.z
�
d; j0 � 1� ; z �d � !j0 ; j

0 � 1�C pj0/

for d D 0; : : : ; c; j0 D � C 1; : : : ; n;

(7)

We initialise z .d; s; 0/ D �1 for d D 0; : : : ; c; s D 1; : : : ; � . We set z .0; 0; 0/ D 0
and we link the two arrays by z .d; � / D z .d; �; � / for d D 0; : : : ; c.

We notice that !j0 C O!j0 D 0 and we remove this term from the recursion of z.
The optimal value of the second stage profit considering only the first q items is:

z� .q/ D max

(
maxdD1;:::;c z .d; q/
max dD1;:::;c;

sD1;:::;��1
z .d; s; q/

Since we have reversed the indexes for the second stage, z� .n � tC 1/ is the
maximum profit for the Robust Knapsack problem of subset ftC 1; : : : ng. It results
that R .t/ D z� .n � tC 1/. We have computed the maximum profit of all second
stage subsets using only one call of the Robust Knapsack dynamic programming
algorithm.
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The first sorting algorithm is in O .n ln.n//, reversing indexes is in O .n/. The
computation of the first stage solution is in O .l n/ D O ..k � � / n/. The use of
the Robust Knapsack dynamic programming algorithm on already sorted data is
in O .� c n/. The resulting complexity is O .n .� cC .k � � /C ln.n///. We have
found a pseudo-polynomial algorithm, so the problem is at worst weakly NP-hard.
By setting k D � D 0, we can solve a regular knapsack problem which is a weakly
NP-hard problem, so our problem is at least weakly NP-hard. In conclusion the
Partial Choice Recoverable Knapsack Problem is NP-hard in the weak sense.

4 Numerical Experiments

Table 1 Highest value of n
such as the problem is solved
in less than 30 s with k D 2�

and c D 200

� in % of n Dynamic programming ILP

1 12,400 235

2 9200 233

5 5800 77

10 4200 57

To test the practical efficiency of our algorithm, we generate random instances
where !j is randomly chosen in Œ0; c� and pj in Œ1; 100�. The algorithm is coded
in C++ and run on a PC Intel CPU@2.53 GHz with 2 GB of available RAM. We
compare our dynamic programming algorithm with the MILP provided by Büsing
et al. in [1] for the RRKP. In view of Theorem 1, one can also use their formulation to
solve the PCKP. The MILP is solved by Xpress Optimization Suite. We determine
the largest instance that can be solved in less than 30 s. The results from Table 1
show that the dynamic programming is more efficient by order of magnitude. Larger
instances could not be solved due to our space limitations.
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Stopping Times for Fractional Brownian Motion

Alexander V. Kulikov and Pavel P. Gusyatnikov

1 Introduction

Modern financial mathematics is based on the theory of semimartingales and
Markov processes. Nevertheless there is a process of fractional Brownian motion
introduced by Mandelbrot and van Ness in [4] which is often used in practice. There
is no equivalent martingale measure for models which use fractional Brownian
motion (see [1]). Cheridito in [1] showed that even if fractional Brownian motion
market assumes arbitrage strategies these strategies cannot be realized in practice
since there is always a time delay between transactions in practice. Guasoni in [3]
considered that if transaction costs exist then an opportunity of arbitrage vanishes
as well.

A problem of optimal stopping time is of our interest. In financial sense this
problem can be interpreted as follows: if an investor has a set of assets he has
to make a decision: at which time he should sell these assets. In paper [5] a
problem of optimal stopping time has been considered as a problem of maximization
expectation value of a utility function. A process considered was a process of
Brownian motion with a drift. The solution of a problem derived in that paper can
be represented as “Buy and Hold” rule.

In this paper we will show that for fractional Brownian motion “Buy and Hold”
rule cannot be applied. We will discuss a class of stopping times which can be
claimed to be optimal and easy to model.

A.V. Kulikov PhD
Moscow Institute of Physics and Technology, Moscow, Russia
e-mail: avkulikov15@gmail.com

P.P. Gusyatnikov (�)
Moscow Institute of Physics and Technology, Moscow, Russia
e-mail: gusyatnikov.pavel@gmail.com

© Springer International Publishing Switzerland 2016
R.J. Fonseca et al. (eds.), Computational Management Science, Lecture Notes
in Economics and Mathematical Systems 682,
DOI 10.1007/978-3-319-20430-7_25

195

mailto:avkulikov15@gmail.com
mailto:gusyatnikov.pavel@gmail.com


196 A.V. Kulikov and P.P. Gusyatnikov

The paper is organized as follows: in Sect. 2 we will discuss properties of
fractional Brownian motion, a problem of optimal stopping time will be introduced
and some stopping time classes will be shown. In Sect. 3 we will show an example of
non optimality of these stopping times and results of numerical modeling showing
non triviality of these stopping times.

2 Optimal Stopping Problem

First of all we should introduce an optimal stopping problem. Consider an asset
which price changes corresponding to a stochastic process X. An owner of this
asset should sell this asset till time T in the best way. This problem is called optimal
stopping time problem. Mathematically this problem is formulated as follows: we
should find a time �:

� D argmax.EU.X //; 0 �  � T

where U(x) is an utility function,  is a stopping time.
In [5] authors have shown that for classical Brownian motion a solution of this
problem can be represented as “Buy and hold” rule. An owner of an asset should
sell it either at time t = 0 or at time t = T. In this paper we will show that for fractional
Brownian motion a solution of this problem is more complex.

Definition 1 (see [4]) Fractional Brownian motion is a gaussian stochastic process
BH.t/ with the following properties:

• BH.0/ D 0 and EŒBH.t/� D 0;
• cov.BH.t/;BH.s// D 1

2
.t2H C s2H � jt � sj2H/:

Parameter H is called Hurst parameter.

Remark 1 If H D 1
2

then this process is a classical Brownian motion.

Remark 2 Having H < 1
2

this process has negative autocorrelation. Having H > 1
2

this process has a positive autocorrelation.

Remark 3 Fractional Brownian motion has a self-similarity property with Hurst
parameter equal to H. This means that if a process BH.t/ is a process of fractional
Brownian motion, then the following processes have the same distributions

fBH.at/ W 0 � t <1g dD ˚aHBH.t/ W 0 � t <1� :
Using Remark 3 and a property of continuity of fractional Brownian motion we

can study properties of this process for discrete times and then rescale it for any time
interval.
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There are several different ways of fractional Brownian motion modeling. In this
paper we will use a model proposed by Dieker in [2]. Fractional Brownian motion
has the following covariation function:

�.s/ D cov.XH.t/;XH.tC s// D 1

2
.js� 1j2H C jsC 1j2H � 2jsj2H/:

Let � .n/ D f�.i � j/.i;jD1;n/g be a covariation matrix, and c.n/ is a vector of
size .n C 1/, where c.n/k D �.k C 1/. Then XnC1 D Bh.n C 1/ � Bh.n/ is a
random value with normal distribution with expectation �n and variance �2n , where

�n D d.n/T

0
BBB@

Xn

Xn�1
:::

X0

1
CCCA, �2n D 1 � c.n/T� .n/�1c.n/. Dieker shows that there is an

iterative algorithm for modeling �n and �2n with no need of matrix inversion as
well.

An optimal stopping time problem is a following problem:

f .h/ D sup
�1

EBH./; .h/ D arg max
�1 EBH./:

Using self similar property this problem is equivalent to the following problem:

fN.h/ D 1

Nh
sup
�N

E
X

iD0
XH.i/; N.h/ D 1

Nh
arg max

�N
E

NX
iD1

XH.i/:

In this problem a following class of stopping times  is considered: c D
1

Nh min.t W �t < c.N � t/ � tH/; where �t D E.Xh.tC 1/jXh.1/; : : : ;Xh.t//:

Example 1 Consider the case of c D 0. From financial point of view this means that
we don’t sell assets till the moment when the next increment has a negative average.

Here we have following limit cases:

• H D 0:5: In this case �t D 0 8t, i.e. EB D 0:
• H D 1 In this case X.t/ D X.1/8t. This means

sup
2Œ0;1�

EB D
Z 1

0

x
1p
2


e� x2
2 dx D 1p

2

;

but the optimal moment cannot be reached.
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It can be shown that

E.�nC1jFn/ D E.dnC1
0 XnC1jFn/C

nC1X
iD1

dnC1
n�iC1Xi D dnC1

0 �n C
nC1X
iD1

dnC1
n�iC1Xi;

E.�nC2jFn/ D E.dnC2
0 XnC2jFn/C E.dnC2

1 XnC1jFn/C
nC2X
iD2

dnC2
i Xn�iC2 D

D dnC2
0 E.�nC1jFn/C dnC2

1 �n C
nC2X
iD2

dnC2
i Xn�iC2:

And for any k we have E.�nCkjFn/ D Pk�2
jD0 E.dnCk

j XnCk�jjFn/ C dnCk
k�1�n CPnCk

iDk dnCk
i Xn�iCk; i.e. an average for any future values of fractional Brownian

motion according to the information available for current moment is linear com-
bination of values of discretization of fractional Brownian motion.

Example 2 We consider the following stopping times class as  :

k D 1

Nh
min.n W �n < 0;

jX
iD0

E.�nCijFn/ < 0;8j � k/:

From financial point of view this means that we do not sell assets if there is a
tendency to growth for at least any interval from 0 to k.

3 Modeling Results

In this section we will consider modeling results for different stopping times.
On (Fig. 1) modelling results of c for different c are presented. As we see, for

quite small negative c we have quite good results for H > 0:5. As we see when H
tends to 1 we have a result that was shown before: 1p

2

. For H < 0:5 we do not

consider small H because we have problems with continuity of a process. But we
see that for H < 0:5 we have non trivial results as well. As we see when H > 0:5

stopping time corresponding to c D 0 is not optimal.

Example 3 It can be shown that E.�nCkjFn/ can be positive even if E.�njFn/ < 0,
where Fn is a filtration of X0;X1; : : : ;Xn. We shall assume H D 0:7,

X0 D 1;X1 D 1;X2 D 2;X3 D �1
d4 D .0:278596; 0:0728796; 0:0540914; 0:0507365/
d5 D .0:276542; 0:07069; 0:0511412; 0:0394588; 0:0404806/
�3 D �0; 0280089 < 0
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Fig. 1 Modeling results for c for different c. T=1000. On X-Axis—H, on Y-axis—corresponding
values of EXc for different c. Since it’s difficult to model fractional Brownian motion when H is
small we discuss only H > 0:2

But in this case,

E.�4jX0;X1;X2;X3/ D 0; 0526450 > 0

Moreover,

E.�4jX0;X1;X2;X3/ > ��3
This means that there exists stopping time which is even better than  D 1

Nh min.t W
�t < 0/.

We see that proposed stopping times give us non trivial results as well. The results
of modeling of k can be shown on the previous figure (Fig. 2). As we see on it for
H > 0:5 we have bigger values of EBk for bigger k. When H tends to 1 we have the
same value that we have got for c. We see that for H > 0:5 k gives better results
than c and it can claim to be optimal.
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Fig. 2 Modeling results for k for different k (N D 1000). On X-Axis—H, on Y-axis—
corresponding values of EXk for different k. Since it’s difficult to model fractional Brownian
motion when H is small we discuss only H > 0:2
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An Empirical Design of a Column Generation
Algorithm Applied to a Management Zone
Delineation Problem

Víctor M. Albornoz and Linco J. Ñanco

1 Introduction

The problem of delineating site-specific management zones in agricultural fields
arises in the context of precision agriculture, where the control of variability in soil
properties is essential to increase productivity and crop quality. Dividing a field
into high internal homogeneity zones with respect to any soil property (pH, organic
material, phosphorus, etc.) allows the farmer to face this variability. Furthermore,
establishing a rectangular management zone partition provides practical advantages
with respect to the use of agricultural machinery.

This paper presents different strategies based on the column generation technique
to solve the problem proposed in [2], focused on the delineation of rectangular
management zones, considering a fixed internal homogeneity level to solve the
problem, measured by the relative variance of partition criterion used to assess the
efficiency of the field division (see [6]).

Hereinafter, the problem discussed is considered as: given a set of sample points
in a field, S D f1; : : : ;Ng, and a set of potential quarters Z D f1; : : : ;Kg, where
each potential quarter covers a subset of these sample points, find the subset of Z
with the minimum number of elements, which is a partition of field, with a given
maximum relative variance. The following parameters are defined to introduce the
solved model: parameter czs, s�S, z�Z indicates whether quarter z covers sample
point s or not; nz, z�Z indicates the number of sample points considered in quarter
z; �2z , z�Z is the variance of quarter z with respect to the soil property analyzed; �2T
is the total variance of field with respect to soil property analyzed; and LS is the
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maximum number of quarters to set in a partition. While, the decision variable of
the problem is qz, a binary variable indicating whether potential quarter z�Z is part
of the partition or not. Accordingly, the model will be:

min
X
z�Z

qz (1)

s:t: X
z�Z

czsqz D 1 ; 8s�S (2)

X
z�Z

qz � LS (3)

X
z�Z

�
.nz � 1/ �2z C .1 � ˛/ �2T

�
qz � �2TN .1 � ˛/ (4)

qz� f0; 1g ; 8z�Z (5)

The objective function (1) minimizes the amount of potential quarters which are
part of a partition. Constraint (2) is typical in partition models and ensures each
soil sampling point to be covered by one single potential quarter. Constraint (3)
establishes an upper bound to the number of quarters or zones where the field is
divided, which is also needed to compute a lower bound on the optimal solution of
the linear relaxation of the problem, as will be explained in Sect. 2. Constraint (4)
is a linear equivalent rearrangement of a nonlinear constraint that establishes
an upper bound .1 � ˛/ on the relative variance of field delineation, with a
given value of ˛� Œ0; 1� (see [6]). Finally, constraint (5) states that each decision
variable qz is binary. Herein this paper is organized as follows: Sect. 2 presents the
algorithmic strategies developed, Sect. 3 presents the results obtained from several
computational experiences, while Sect. 4 presents the conclusions of this research.

2 Algorithmic Strategies

The column generation method is a technique used in linear programming for
solving problems with a large number of variables and a relatively small number of
restrictions, which also have been successfully used in many integer programming
problem solving. Several uses of this technique are referred to by Desaulniers et al.
[3]. For more details about this method refer e.g. to [5]. Regarding the extension of
this technique to integer programming problems, see [1] and [8], and particularly,
for in set partitioning problems, see [7]. To the best of our knowledge, this is the
first time that a column generation algorithm has been used to solve a management
zone delineation problem.
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Model (1)–(5) has set a partitioning problem structure with a formulation making
it suitable to the application of the column generation method. So, linear relaxation
of this model is considered as the Master Problem (MP) in the column generation
scheme. Notice that each of the N sample points could be represented by the
ordered pair .i; j/ where i D 1; ::; n and j D 1; ::;m. Therefore, the MP has a
total of n.n C 1/m.m C 1/=4 variables and nm C 2 constraints, for a rectangular
field represented by N D nm sample points, so the number of potential quarters
grows polynomially with the number of sample points. Therefore, the complete
enumeration of all the potential quarters is feasible but computationally expensive
and it unnecessarily increases the problem size. It is interesting, then, to explore a
more efficient strategy for solving the Master Problem (1)–(5).

2.1 The Pricing Problem

As usual in column generation, the pricing problem aims to verify the optimality
of the Reduced Master Problem (RMP) by solving the minimization of the reduced
cost function represented in terms of the set of potential quarter decision variables,
whose optimal solution will be added to the RMP in case of a negative optimal value
function. The potential quarter obtained should be rectangular shaped and must meet
a set of sample points adjacent to each other. With this in mind, the pricing problem
(SP) variable is xs, a binary variable whose value is 1 if sample point s is covered by
the new potential quarter, and 0 if not. The problem parameters correspond only to
dual variable values ps, ! and 
 of constraints (2)–(4) from RMP, respectively. SP
can be represented as follows:

min 1�
X
s�S

psxs � ! � 

�
.nz � 1/ �2z .x/C .1 � ˛/ �2T

�
(6)

s:t:

xs�X (7)

xs� f0; 1g ; 8s�S (8)

In the formulation above, target function (6) also includes function �2z .x/,
corresponding to the variance calculation of selected sample points, where the value
of each sample point is ds:

�2z .x/ D
P

s�S xsd2sP
s�S xs

�
�P

s�S xsdsP
s�S xs

�2
(9)
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2.2 Column Generation Strategies

Starting a column generation algorithm requires an initial RMP, that is, an initial set
of columns and the corresponding variables. In this case, an initial set of potential
quarters (qz) each covering a single sample point, which means �2z D 0, provides an
initial feasible solution. We also set LS D N, which is its trivial value.

Considering this initial RMP, for each iteration of the column generation
algorithm, four different strategies to explore the pricing problem feasible solutions
and identify new columns to be added to the RMP are proposed. Strategies I and II
avoid solving the pricing problem (6)–(8) to optimality by iteratively fixing a size
for the potential quarters to be considered (determined by an adjacent number of
rows and columns), and then enumerating them and evaluating their reduced costs
according to the objective value function (6). If a potential quarter with negative
reduced cost is identified, its constraint coefficients are saved in order to be included
into RMP up to a predefined number of negative potential quarters per iteration.
The difference between these two strategies is that in Strategy I potential quarters
are generated in ascending size order, while in Strategy II they are generated in
descending size order. The algorithm stops after covering all possible quarter sizes
and then solving the RMP as an integer program, where parameter LS is set with a
slightly higher value than the best objective value reached by the application of the
column generation algorithm.

On the other hand, Strategies III and IV are designed to improve the solution
obtained by applying first Strategy I and II, respectively, and then by solving
to optimality the RMP in the next iterations according to the column generation
method. The difference between Strategies III and IV is that in the former only the
column with the lowest reduced cost is added to the RMP at each iteration, while
in Strategy IV a set of columns (including the optimal one) is added to the RMP,
controlling the number of columns added at each iteration. Strategies III and IV
use an optimality gap as a termination criteria to avoid the well known tailing-off
effect, which appears as a slow convergence towards the MP optimal solution almost
reached. Therefore, the duality based lower bound presented in [4] is used, specially
designed for Set Partitioning formulations. To derive this duality based lower bound
we need to add a redundant constraint that sets an upper bound on the sum of the
variables (qz), that justifies the use of constraint (3) in model (1)–(5). If we consider
a parameter ı � SP�, where SP� is the optimal value of SP, the lower bound can be
calculated according to the following expression:

LB D
X
s�S

ps C �2T N .1 � ˛/ 
 C LSı (10)

During the algorithm execution, if the gap between the best upper and lower
bounds is lower than a preset limit, the algorithm ends and an integrality condition
is imposed on variables of the resulting RMP, which is solved to optimality by using
solver CPLEX 12.4. This procedure does not guarantee the optimal solution for
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the MP. However, its quality level can be known by rounding up the lower bounds
obtained from this algorithm. Section 3 presents results using the different strategies.

3 Computational Results

To compare the algorithmic strategies described in Sect. 2, computational exper-
iments were carried out with randomly generated data sets, which represented
10 different instances with a minimum of 42 and a maximum of 900 sample
points. Algorithms were coded in AMPL, both linear relaxations and integer linear
problems were solved by using solver CPLEX 12.4 and were carried out on Intel
Core i5-2450M 2.50 GHz with 8 GB of RAM.

Table 1 shows the set of different instances that we considered when studying the
performance of the different strategies. It also shows the optimal value of model (1)–
(5) for the first six instances of the problem. For the larger instances it was not
possible to get an optimal solution after 50,000 s of running, considering that this
time also included the complete generation of all possible potential quarters for
solving (1)–(5) to optimality.

Tables 2 and 3 show the results for Strategies I and II. The UB column presents
the best solution reached for the linear relaxation of the problem, while IS shows
the objective value obtained by using CPLEX 12.4 after imposing the integrality
condition. The #col column indicates the number of variables generated at the end
of the algorithm. The gap column presents the difference between the upper bound
reached by the application of Strategies I or II and the best known lower bound
for each instance of the problem. Regarding the time, the results favor Strategy
I where the potential quarters are considered in descending size order, however,
looking at the upper bound that each one obtained, it is consistently worse than
the one obtained in ascending size order. It means a significant negative impact in
computational times (not shown in these results) when we implement Strategies III

Table 1 Instances and
optimal value of
problem (1)–(5)

Instance N K Time (s) Optimal value

1 42 588 0.48 10

2 100 3025 11.52 22

3 150 6600 106.14 24

4 225 14,400 1468.62 34

5 300 25,200 8761.71 47

6 400 44,100 47,654.8 58

7 500 68,250 – –

8 600 97,650 – –

9 750 151,125 – –

10 900 216,225 – –
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Table 2 Results obtained for
Strategy I

Instance #col UB Gap IS Time (s)

1 148 9.07 0.02 10 0.64

2 401 23.59 0.13 24 2.12

3 609 34.61 0.46 35 5.41

4 1109 36.88 0.11 37 25.63

5 1470 56.3 0.23 57 58.67

6 2101 68.48 0.20 69 152.44

7 2443 98.37 0.29 99 248.14

8 3048 109.93 0.30 110 463.67

9 3829 138.2 0.31 139 891.75

10 4651 144.99 0.17 146 1540.15

Table 3 Results obtained for
Strategy II

Instance #col UB Gap IS Time (s)

1 161 8.93 0.00 10 0.89

2 433 22.38 0.07 23 2.96

3 726 25.12 0.06 26 10

4 1178 34.99 0.05 36 33

5 1730 47.09 0.03 48 99.96

6 2330 59.19 0.03 60 228.17

7 3115 80.75 0.06 82 482.42

8 3738 89.94 0.06 91 720.72

9 4916 112 0.06 113 1681.48

10 5198 134.3 0.08 135 2296.13

and IV using Strategy I, resulting in a higher algorithm end time. Therefore, only
Strategy II was used with Strategies III and IV.

Table 4 shows the results obtained by using Strategy III, while Table 5
corresponds to Strategy IV. In these tables, the columns from left to right represent:
the solved instance, #col is the number of total variables generated at the end of the
algorithm, UB and LB are upper and lower bounds on the optimal value of the linear
relaxation of the problem; gap % is the percentage gap between UB and LB , with
tolerance at 2 % to complete algorithms, IS is the objective function value getting
the last iteration of the algorithm when we solved the Reduced Master Problem as
an integer program; ISLB is the lower bound for the Master Problem obtained from
LB rounded upwards, so when ISLB is equal to IS, the optimal solution is observed
and finally, Time is the completion time of the algorithm in seconds.

Results indicate that Strategy IV had better performance in time and determined
the best upper and lower bounds on the optimal value of the linear relaxation of
model (1)–(5). Moreover, we can observe that in nine of the ten instances Strategy
IV reached the optimal solution of the problem.
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Table 4 Results obtained for Strategy III

Instance #col UB LB % gap IS ISLB Time (s)

1 172 8.89 8.89 4.50E�14 10 9 1.21

2 479 21.08 20.68 1.9 22 21 8.28

3 810 23.77 23.32 1.9 24 24 33.79

4 1317 33.24 32.62 1.84 34 33 130.95

5 1838 46.62 45.82 1.73 47 46 255.14

6 2579 57.52 56.41 1.94 58 57 934.17

7 3277 76.51 75.2 1.72 77 76 1295.44

8 4172 84.56 82.97 1.87 85 83 4254.71

9 5550 106.59 104.58 1.89 107 105 10,766.00

10 6095 124.33 122.04 1.84 125 123 19,268.80

Table 5 Results obtained for Strategy IV

Instance #col UB LB % gap IS ISLB Time (s)

1 188 8.89 8.89 4.50E�14 10 9 1.01

2 636 21.08 20.86 1.05 22 21 5.31

3 981 23.77 23.77 9.71E�14 24 24 17.17

4 1700 33.23 33.23 1.87E�13 34 34 66.23

5 2111 46.5 45.71 1.69 47 46 146.47

6 3229 57.52 57.21 0.53 58 58 429.56

7 3852 76.51 76.51 1.83E�13 77 77 743.093

8 5160 84.56 84.56 2.93E�13 85 85 1484.66

9 7061 106.59 105.21 1.3 107 106 3395.15

10 8794 124.33 124.33 6.00E�13 125 125 6061.11

4 Conclusions

This paper presents different strategies to implement a column generation method
for problem solving in delineating rectangular management zones in agricultural
fields. More precisely, four strategies were proposed for selecting an efficient
implementation of a column generation algorithm for solving a linear relaxation
of the considered problem. These strategies combine some heuristics for solving the
pricing problem and different stopping criteria through dual based lower bound for
early finishing of the algorithm.

Numerical examples with sets of sample points of different sizes were carried
out, which show that the strategy of adding more than one column to the new
reduced Master Problem in each iteration leads to better results both in the quality
of generated bounds for the optimal value as well as in computational time. No
differences were observed in the quality of solutions obtained for integer variables,
so that the results also show the quality of the adopted methodology.
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Modeling Multi-Stage Decision Optimization
Problems

Ronald Hochreiter

1 Introduction

We consider a multi-stage stochastic decision optimization framework based on a
discrete-time decision process, i.e. there is a sequence of decisions at decision stages
t D 0; : : : ;T where at each stage t a decision taker observes the realization of a
random variable 	t, and takes a decision xt based on all observed values 	0; : : : ; 	t.
At the terminal stage T a sequence of decisions x D .x0; : : : ; xT/ with respective
realizations 	 D .	0; : : : ; 	T/ leads to some cost f .x; 	/. The goal is to find a
sequence of decisions x.	/, which minimizes a functional of the cost f .x.	/; 	/.
Multi-stage means that there is at least one intermediary stage between root stage
and terminal stage.

The design goal of the approach presented in this paper is to design a modeling
language independent of (a) the optimization modeling approach, e.g. expectation-
based convex multi-stage stochastic programming or worst-case optimization, as
well as (b) the underlying solution technique, e.g. either solving a scenario tree-
based deterministic equivalent formulation or computing upper and lower bounds
using primal and dual decision rules. Finally the modeling language should (c)
be completely independent from a concrete programming language (C/C++, R,
MatLab, Python, . . . ). The idea is to compose a meta model and instance concrete
implementations semi-automatically.

Consider the two most common ways to solve multi-stage decision optimization
problems, which is on one hand the scenario-based three-layered approach as shown
in Fig. 1. See [9] for an overview of the area of stochastic programming, and
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(1) Modeler View (Stage)

(2) Stochastic View (Tree)

Root Stage Recourse Stage Terminal Stage

(3) Data View (Node)

Fig. 1 Scenario tree-based three-layered approach

(1) Modeler View (Stage)

(2) Stochastic View (Upper/Lower Approximation)

Root Stage Recourse Stage Terminal Stage

Fig. 2 Scenario tree-free approximation

[13] for stochastic programming languages, environments, and applications. More
information on the modeling aspect can be found in [4].

The same decision problem may also be solved using scenario tree-free approxi-
mations [6] as shown in Fig. 2. The modeling language should be flexible enough to
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allow for applying any solution method, i.e. not being based on scenario trees, which
is what most modeling language extensions for multi-stage models are proposing,
see e.g. [1, 7, 11, 12], and [10].

2 Multi-Stage Convex Stochastic Programming

Consider a multi-variate, multi-stage stochastic process 	 and a constraint-set X
defining a set of feasible combinations .x; 	/. The set N of functions 	 7! x are
such that xt is based on realizations up to stage t, i.e. only .	0; : : : ; 	t/. These are
the non-anticipativity constraints. This leads to the general formulation shown in
Eq. (1).

minimize x W F�f .x.	/; 	/�
subject to .x.	/; 	/ 2X

x 2 N

(1)

The most common way to solve such a problem is to create a scenario tree
approximation of the underlying stochastic process and to build a deterministic
equivalent formulation. The problem is that most modeling environments and
languages are solely focussing on this type and mostly provide linear-only models
due to solvability concerns. Furthermore, most allow for text-book applications
only. There is almost no flexibility provided to extend models to use real-world
objective functions and constraints.

The proposed solution is based on a complete decoupling of any scenario tree
type of modeling from the decision problem modeling process, as shown in Fig. 1.
On the decision problem (modeling) layer one should only be concerned with
actions and decisions at stages. Other layers differ depending on the chosen solution
method. In case of scenario trees and deterministic equivalent formulations there
is an explicit decoupling of modeling and (scenario) tree handling, i.e. a scenario
tree layer, whose focus is to create a scenario tree which optimally represents
the subjective beliefs of the decision taker at each node. Furthermore there is an
additional data layer, which handles the way how to (memory-)optimally store large
scenario trees, access ancestor tree nodes quickly, and other computational (tree)
operations.
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3 Multi-Stage Modeling Example

Consider the stylized simple multi-stage stochastic programming example from [3],
which is shown in Eq. (2).

minimize E
�PT

tD1 Vtxt
�

subject to st � st�1 D xt 8t D 2; : : : ;T
s1 D 0; sT D a;
xt � 0; st � 0:

(2)

The decision to be computed with this model is the optimal purchase over time
under cost uncertainty, where the uncertain prices are given by Vt, and the decisions
xt are amounts to be purchased at each time period t. The objective function aims at
minimizing expected costs such that a prescribed amount a is achieved at T; st is a
state variable containing the amount held at time t.

In Table 1 a concise meta formulation of this problem can be seen. The general
syntax is borrowed from algebraic modeling languages like AMPL [2] and ZIMPL
[5].

The most striking feature is that any relation to stages is removed from the
definition of the optimization model—parameters, variables, objective function, and
constraints. To accommodate for the definition of stages, the proposed stochastic
modeling language contains two additional keywords for any of these objects, i.e.

• deterministic objects: stage-set;
• stochastic objects: stage-set;

Speaking in scenario tree notation the stochastic objects are defined on the
underlying node structure and deterministic objects are defined on the stage

Table 1 Modeling formulation of Eq. (2)

deterministic a: T;

stochastic x, s, objective_function: 0..T;

stochastic non_anticitpativity: 1..T;

stochastic root_stage: 0;

stochastic terminal_stage: T;

param a;

var x >= 0, s >= 0;

minimize objective_function: E(V * x);

subject to non_anticitpativity: s - s(-1) = x;

subject to root_stage: s = 0;

subject to terminal_stage: s = a;
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Table 2 Implementation of model 1 using the language R

m <- model()

parameter(m, a)

variable(m, x, lb=0)

variable(m, s, lb=0)

minimize(m, "objective", "E(V * x)")

subject_to(m, "non_anticitpativity", "s - s(-1) = x")

subject_to(m, "root_stage", "s = 0")

subject_to(m, "terminal_stage", "s = a")

deterministic(m, "T", a)

stochastic(m, "0..T", x, s, "objective")

stochastic(m, "1..T", "non_anticipativity")

stochastic(m, "0", "root_stage")

stochastic(m, "T", "terminal_stage")

optimize(m)

structure, i.e. the latter contain the same value for all nodes in the respective
stage. To define stochastic objective functions and stage recourse the follow-
ing functions are defined, e.g. the most commonly used expectation functional
for objective functions is simply expressed by the function E(). Furthermore,
there is a special way to define stage-wise recourse for stochastic variables,
i.e. variable-name(recourse-depth). Note that while most modeling
languages allow for a single stage recourse only, this definition allows for any
number of recourse stages.

Table 2 shows the modeling example in some concrete implementation for the
statistical computing language R [8]. This definition can be easily converted to a
deterministic equivalent formulation or any other reformulation—all information is
available in a concise format.

4 Conclusion

In this paper, a modeling language framework for a successful simplified meta
modeling of multi-stage decision problems under uncertainty is shown, which
allows for automatic reformulation and solution of multi-stage problems. This can
be seen as a basis to build a model-based multi-stage problem library, especially
because of its inherent decoupling from the underlying optimization technique
as well as the fact that it is not bound to a specific programming language.
Furthermore it is easy to integrate robust and stochastic optimization techniques
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to allow for comparing solutions to determine, which approach is optimally suited
for which class of decision models. There are many ways to extend the proposed
meta language—possible straight-forward extensions are e.g. quantiles for objective
functions. In addition, application-related risk measures (shortcuts) can be defined,
e.g. CVaR(objects), as well as probabilistic constraints.
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A New and Innovative Approach to Assess
and Quantify the Value for the Customer

Susana Nicola, Eduarda Pinto Ferreira, and J.J. Pinto Ferreira

1 Introduction

Value for the Customer [21] is one of the most important factors in the success of
an organization, maybe it is the master key to overcome the boundless challenges
of this global competitive market. Moreover it is “the right goal for firms that
seek to maximize long-term profits” [10]. “Satisfying customers is the source of
a sustainable value creation” [5]. But the value derived by one individual is likely
to be different from the value derived by another. So we can say, not only does
each of us value the same things differently, we, individually, value different things
at different times in different ways [21]. Value is a slippery concept which is very
dependent on perception. To overcome this challenge we have to understand how
customers assess and perceived the actual product/service.

Over many years some work have been made and discussed in the literature on
the concept on Value for the Customer. Zeithmal has suggested customer perceived
value as “what they get benefits relative to what they have to give up” (cost
or sacrifices) [22]. Lai has suggested a framework for customer value focuses
on the buyer’s evaluation of product purchase at the time of buying, integrating
cultural value, personal values, consumption values and product benefits [16]. Huber
believed that benefits and costs are defined in terms of consumer’s perceptions in the
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activities of acquisition, consumption and maintenance [14]. Flint creates a model to
describe how customers’ perceptions of value change over time in industrial supply
relationship. This model centres in three forms of value: values, desired value and
value judgement [12]. Woodruff defines customer value as “a customer’s perceived
preference for and evaluation of those product attributes, attribute performances and
consequences arising from use that facilitate achieving the customer’s goals and
purposes in use situations” [12]. The authors Kothandaraman and Wilson[15] had
developed a model based on three concepts of value creation: superior customer
value, core capabilities and relationship. Ulaga developed a model for buyer-
seller relationship and integrate the relationship value into the network relationship
marketing [19].

This research proposes a modelling framework, the so-called “Conceptual Model
Decomposing Value for the Customer” (CMDVC) and a quantitative model that
aims at enabling the supplier enterprise to better understand how customer’s
perceive value and what are the key points to innovate or renovate the enterprise
business to offer the customer an enhanced value proposition. Many studies had
been explored in the “Value for the Customer” [21] and “Perceived Value” [18], but
the decomposition of value is not dissected and broken down into its components,
namely the firm assets used and build in the construction of the exchanged value,
whether internal or external to the company or organization.

1.1 Value Temporal Positions

To understand how customers determine/perceive value in a sequential activity of
a value proposition, Woodall [21] divides Value for the Customer into four value
temporal positions: (a) pre-purchase—a phase of trying to predict how people
perceive their services [14]; (b) at the point of trade—which implies a sense
of VC experienced at the point of trade.; e.g. Acquisition Value plus Exchange
Value; (c) post-purchase—a phase that delivers results of experiments based on
customers’/suppliers’ choices; e.g: use value; Received Value [14]; (d) after/use
experience—a phase that reflects the point of disposal/sale.

1.2 Forms of Value

Furthermore, but linked to the above, Woodall classified Value for the Customer into
different forms of value: (a) Net VC—“balance of benefits and sacrifices” to provide
the best or the worst VC; (b) Marketing VC—“perceived the products attributes”; (c)
Sale VC—primarily concerned with the price; (d) Rational VC—“difference from
the objective price”; (e) Derived VC—users’ experiences.
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1.3 Collaborative Networks-ARCON

The Reference Model for Collaborative Network Organizations (ARCON) [7]
provides a generic and abstract representation that enables the understanding of
all involved entities and the relationships between all of them. We focus on the
enterprise endogenous and exogenous assets under the following four dimensions:
Structural (ST), Componential (CP), Functional (FUNC) and Behavioural (BEH).
On the other hand, the outside perspective is captured by the exogenous elements
that reveal the interaction with the surrounding environment and are divided into
four dimensions: Market (MARK), Support (SUP), Societal (SOC), and Con-
stituency (CONS).

This paper discusses the application of the Conceptual Model Decomposing
Value for the Customer framework and a quantitative model used to access the
adequacy of both enterprise offering to the customer needs and of its supporting
assets.

2 Methodology

This research project followed the “Design Science” approach proposed by Hevner,
March et al. “through the building and evaluation of artifacts designed to meet the
identified business need” [13]. This approach provided the adequate setting for what
we had in mind. In fact, we wanted to develop a new model (artifact), a “Conceptual
Model Decomposing Value for the Customer” as well as an underlying quantitative
model. In this sense, we extended and improved the “existing foundations in the
design-science knowledge base” [13] in new and innovative way. The point we
want to make is to determine how well our model work, using “information from
the knowledge base (e.g. relevant research) to build a convincing argument for the
artifact’s utility” [13]. The research validation combined the Case Study Approach
as described by Dube and Pare [11] and “informed arguments” from the literature
review that helped build the case of the results validation [13]. Building on an
Exploratory Case Study, and following the “design criterion in exploratory case
research” [11], we first validated the proposed Conceptual Model for Decomposing
Value for the Customer. It was in this context of looking at both the literature review
and the business environment that the following research questions were tuned and
designed:

1. How can the Value for the Customer be modelled?

a. How is this value built on top of assets endogenous and exogenous to the
organization?

b. How do endogenous and exogenous assets influence the Value for the Cus-
tomer?

2. Can we derive a formal mathematical model that provides for the quantitative
handling of the proposed model?
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3 Conceptual Model Decomposing Value for the Customer
(CMDVC)

The proposed Conceptual Model for Decomposing Value for the Customer builds
on a combination of the following concepts: (a) forms of value and Value temporal
positions [21]; (b) Value Network exchanged tangible and intangible deliverables,
building on the enterprise tangible and intangible assets [1–4]; and (c) enterprise
Endogenous and Exogenous assets, concept extracted from ARCON, A Reference
Model for Collaborative Network Organizations [6, 7].

This model comprises the understanding that time has direct impact in customer
perceived value, because perceptions change from the pre-purchase phase to the
post-purchase phase. We wanted to understand how value for the customer could
be broken down into simpler constituents, integrating the value perceived by the
enterprise members for a particular time position. The construction of the enterprise
Value Network (through an interview with enterprise members), provides the
identification of each deliverable (DL) exchanged with the customer, as well as
the assets (endogenous and exogenous) built and/or used in the provision of that
deliverable. This analysis further relates each deliverable (DL) with the forms of
value. We apply the concepts proposed by the Reference Model for Collaborative
Organizations, to classify the assets built and/or used as endogenous or exogenous
to the enterprise. Figure 1 picture the three step approach to decomposing and
assessing the value for the customer, enabling the systematic application of the
process for future projects. In the 1st step of this process, on the right side
of Fig. 1, we have the enterprise member’s perspective. This shows: (1) how
does the people inside the enterprise perceive the relative relevance of the assets
involved in the process; and (2) how these assets relate to the Perceived Benefits
(PBi)/Sacrifices (PSi). These two components are modelled as comparison matrices
of the triangular fuzzy numbers resulting from: (1) each enterprise member assesses
each asset relative relevance; and (2) assesses the relevance of each asset to each
Perceived Benefit (PBi)/Sacrifice (PSi). The combination of these comparison
matrices provide the input to a process that leads to the construction of the final
matrix where we will be able to extract the most relevant assets and PBi/PSi. In
the 2nd step of this process, the left side of Fig. 1, we have an extension of the
Conceptual Model to enable an easier interaction with the customer (by reducing
the burden of task demanded from the customer). In this context we try to obtain
the further information from the enterprise client/customer for a particular Time
Position and regarding his perception of benefits and sacrifices. The last step of
the assessment of the enterprise Value Proposition and of its supporting assets was
analysed combining the two described streams, the Enterprise perspective on the
left and the Customer perspective on right. A computational implementation of the
quantitative model was developed in PHP using MySQL database.
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Fig. 1 Customer perceived value assessed by the enterprise members and enterprise customer for
a particular time position

3.1 The Method for Assessing and Integrating of both
the Enterprise and the Customer Perspectives
of the Perceived Value

The Enterprise Perspective (1st Step) and the Customer Perspective (2nd
Step)

For the enterprise and customer we have a several and conflicting criteria (Assets
and Deliverables) and alternatives (Perceived Benefits/Sacrifices) where an assess-
ment is not easily determined. The customer and the enterprise members will have
to make their pair-wise comparison using the Saaty’s scale for the deliverables and
for the perceived benefits and sacrifices. The input information of both subjective
judgements relating criteria and alternatives, is uncertain and imprecise. In this
context, the fuzzy theory is usually applied to handle uncertain and subjective
problems in the decision-making process. Therefore we apply the fuzzy Analytical
Hierarchical Process (AHP) to solve this multi-criteria decision-making (MCDM)
problem. The process unfolds as follows. Each enterprise member as well as the
customer, performs an individual pair-wise comparison using the Saaty’s scale.
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Then a comprehensive pair-wise comparison matrix (Eq. (3)) is built by integrating
the enterprise member’s grades (bjep) through Eqs. (1)–(2), [9], where enterprise
members pair-wise comparison value is transformed into triangular fuzzy numbers.

lje D min
�
bjep

�
;mje D

Pt
pD1

�
bjep

�
p

; uje D max
�
bjep

�
; (1)

p D 1; 2; � � � ; tI j D 1; 2; � � � ;mI e D 1; 2; � � � ;m:
Qbje D

�
ljeI mjeI uje

�
; j D 1; 2; � � � ;mI e D 1; 2; � � � ;m: (2)

Then we apply the approach of Chang [8] for handling fuzzy AHP, by using the
“extent analysis method” for the synthetic extent values, which derives crisp weights
for fuzzy comparison matrix. Consider a triangular fuzzy comparison matrix Eq. (3)
obtained by the steps of Chen [9]:

QDp D
�Qbij
�

n�n
D

2
6664
Qb11 Qb12 � � � Qb1m
Qb21 Qb22 � � � Qb2m
:::

:::
: : :
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3
7775

D

2
6664

.1; 1; 1/ .l12;m12; u12/ � � � .l1n;m1n; u1n/
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:::
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where Qbij D
�
lij;mij; uij

� D Qb�1
ij D

�
1

uij
; 1

mij
; 1lij

	
for i; j D 1; � � � ; n and i 6D j:

To calculate a priority vector of the above triangular fuzzy comparison matrix
QDp, the steps of Chang’s extent analysis can be given as in the following:

(1) First, sum up each row of the fuzzy comparison matrix QDp, by applying the
fuzzy arithmetic operations:

nX
jD1
Qbij D

0
@ nX

jD1
lij;

nX
jD1

mij;

nX
jD1

uij

1
A ; i; j D 1; 2; � � � ; n: (4)

Then the inverse of the vector (Eq. (5)) above is:

2
4 nX

jD1
Qbij

3
5

�1

D
0
@1= nX

jD1
uij; 1=

nX
jD1

mij; 1=

nX
jD1

lij

1
A : (5)
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(2) Second we normalize the rows sums (Eq. (6)) by:

QSi D
nX

jD1
Qbij �

2
4 nX

jD1
Qbij

3
5

�1

: (6)

(3) Third, compute the degree of possibility for QSi � QSj of two TFNs QSi D .li;mi; ui/

and QSj D
�
lj;mj; uj

�
by the following Eq. (7):

V
�
Si � Sj

� D
8̂<
:̂

1; if mi � mj

0; if lj � ui
lj�ui

.mi�ui/�.mj�lj/
; otherwise

(7)

(a) In general, the priority weights are calculated by using Eq. (8):

d0 .Ai/ D min V .Si � Sk/ k D 1; 2; � � � ; nI k 6D i: (8)

are the pair wise comparison of the QS TFNs.
(b) Then the weight vector is given by Eq. (9):

W
0 D

�
d

0

.A1/ I d0

.A2/ I � � � I d0 .An/
	T
: (9)

(c) Finally we normalized the weight vector (Eq. (10))

W D .d .A1/ I d .A2/ I � � � I d .An//
T : (10)

where Wis a non-fuzzy number.
By applying the fuzzy AHP method we obtain a matrix of overall results of

the enterprise member perception of the relevant assets and the relevant PBi/PSi.

Integrating the Two Perspectives (3rd Step)

With these two matrixes we have the degree of priority one criterion or alternative
against all others in a fuzzy comparison matrix, [20]. On the left we have the degree
of priority (relevance) as seen by the enterprise of an Asset and its relation to a
PBi/PSi, whereas on the right we have the degree of priority (relevance) as seen by
the customer of deliverable and its relation to a PBi/PSi. The relationship between
the assets and the deliverables is known, which means that one now should be able to
understand how the enterprise assets (endogenous or exogenous) relate to PBi/PSi,
thus enabling the tuning of the enterprise offer Value Proposition.
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4 Conclusion

The Conceptual Model for Decomposing Value for the Customer (CMDVC) is a
novel framework for modelling value and a useful tool for enterprises to better
understand how value is perceived by their customers’ in the context of the value
proposition. The developed tool builds on a mathematical formulation for the
CMDVC as well as on a computational implementation. We envisage the possibility
of using this tool to assess perceived value of a particular offer and of redesigning
the actual product/service offer to better meet the customers’ needs through the
preparation of a new proposal.

The proposed quantitative model revealed its usefulness by providing the
discovery of previously disregarded connections between assets used and/or built
in the foreseen exchange of deliverables and perceived benefits. In general, people
of the enterprise would likely realize that some of their expectations regarding the
customer perceived value may not be what they think and that adjustments are
needed. This was evident in the three case studies and from the comments we had
of enterprise members and customer interviews

(. . . ) this novel approach can be quite useful for CPMT to better manage its service offering
and marketing approach (1st case study) [17]
(. . . ) looking at these results, it is very interesting to note what customers value and their
perceptions of certain deliverables (2nd case study)
(. . . ) the model and the quantitative method becomes useful for the company, we had never
realize how the technical competence was linked with the Dl5 and DL4 (3rd case study).

As main benefits of this research, we would highlight that this tool may be useful
to help these companies in the generation of an internal discussion of how their offer
is perceived by their clients. In all case studies it was interesting to realize that some
unexpected variables emerged as being more relevant that initially thought. From
the management perspective this brought up the awareness on those issues that may
now be looked upon in a new way.

We thus hope that our research on Value for the Customer as well as concerning
the development of the CMDVC will contribute not only to extend and improve
the existence knowledge foundations. We further hope produce significant value to
the enterprises, building the bridge between the Value for the Customer, customer
perception of value, and the enterprise endogenous and exogenous assets, whether it
is applied to negotiation setting or in the context of the value proposition. As a future
research, we would like to extend our research developing a set of case studies to
perform this study for different value temporal positions, namely at the point of the
trade, in a post-purchase phase and after use experience.
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Bus Driver Rostering by Column Generation
Metaheuristics

Vítor Barbosa, Filipe Alvelos, and Ana Respício

1 Introduction

Personnel scheduling or rostering [7] consists in defining the schedule of work for
each of the workers in a company for a given period, the rostering period. A roster
defines the schedules for all workers during the rostering period. A schedule for a
single worker defines, for each day, which tasks have to be performed. The days
when no tasks are assigned, represent days off. Companies usually have diverse
tasks to assign on each day, sometimes needing particular skills, which gives rise
to the rostering problem. The rostering problem consists in assuring the assignment
of all company duties, using the available workers and respecting the labour and
company rules. Rostering problems arise in distinct types of business as surveyed in
[7] and [10]. Rostering problems have been addressed by several methods, as also
shown in [7] and [10].

In this paper, we address the monthly (28 days) bus driver rostering (BDR)
problem proposed in [9]. The tasks to be performed by the drivers are sequences of
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trips and rest periods, and are previously defined as tasks. There is a fixed number
of available drivers, but each is only considered as used if at least one task is
assigned to him, incurring in a fixed cost to the company. Each task from each
day of the rostering period must be assigned to a driver, to assure the company’
service, however the schedule of each driver must comply with the labour rules to
assure minimum rest-time between tasks, minimum number of days-off by week
and on Sundays, maximum allowed work time by week and by month. These rules
prevent the assignment of an early task if the driver had work in a late task in the
previous day. In the beginning of the rostering period, information from the previous
roster is considered to know the drivers who worked in the late tasks of the last day,
preventing the assignment of early tasks to them, and the number of work days since
the last day-off, to know when to assign the next day-off, according to the maximum
number of consecutive days without a day-off. The objective is to build the roster
minimizing the global cost, composed by the fixed cost paid by using a driver and
the overtime cost, paid in the tasks with duration above the contractual workday
duration.

We address the BDR problem by a SearchCol (short for “Metaheuristic search
by column generation”) algorithm. SearchCol [1, 2] is a recently proposed approach
hybridizing column generation (CG) with metaheuristics (MHs). CG is a decompo-
sition approach where linear programming problems and subproblems are iteratively
solved in order to deal with linear/integer problems with a huge number of variables
(the interested reader is referred to [6] for a detailed description and applications of
CG). CG allows solving the linear relaxation of a integer programming model.

Unlike in branch-and-price (combination of CG and branch-and-bound) algo-
rithms, in a SearchCol algorithm, the solution space is searched by MHs based on
representing a (global) solution as made of one solution from each subproblem.
SearchCol is a general framework which can address distinct problems provided
that a decomposition model solvable by CG and a MH based on the aforementioned
solution representation exist.

The decomposition model used in the proposed approach was first introduced in
[4] and can be seen as a Dantzig-Wolfe decomposition [5] of the compact model
proposed by Moz et al. in [9]. The proposed SearchCol algorithm has components
similar to the ones introduced in [3, 4], where the CG stage of the algorithm is
run only once, and then the search proceeds over the produced columns. In this
version, two major differences arise: a short time limit is imposed for CG and the
perturbations are introduced, allowing multiple iterations of the SearchCol cycle
which includes the CG, with additional constraints, followed by the search.

This paper is organized as follows. Next section introduces a decomposition
model for the BDR problem and presents how its linear relaxation is solved using
CG. In Sect. 3, the main components of the proposed algorithm are presented,
with a generic overview of a SearchCol algorithm, followed by a description of
the evolutionary algorithm (EA) and also a description of the perturbations used.
Section 4 describes the computational tests and present the obtained results. The
paper ends with some conclusions.
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2 Column Generation for Bus Driver Rostering

The decomposition model proposed in [4] is based on the definition of the decision
variables �vj D 1 if schedule j is the selected schedule for driver v and �vj D 0

otherwise. The set of all valid schedules for driver v is represented by Jv. The cost
of the schedule j of driver v is represented by pvj . Parameter ajv

ih is equal to 1 if task
i of day h belongs to schedule j of driver v. V is the set of available drivers and Tw

h
defines the sets of tasks to assign on day h. The decomposition model is:

Min
X
v2V

X
j2Jv

pvj �
v
j (1)

Subject to: X
v2V

X
j2Jv

ajv
ih�

v
j � 1 ; i 2 Tw

h ; hD 1; : : : ; 28; (2)

X
j

�vj D 1 ; j 2 Jv; v 2 V; (3)

�vj 2 f0; 1g ; j 2 Jv; v 2 V: (4)

The objective function (1) minimizes the sum of the costs of the schedules included
in the solution. The set of linking constraints (2) assure the assignment of all task
and the convexity constraints (3) assure the assignment of a schedule to each driver.

Since the enumeration of all possible schedules is intractable, CG is used to solve
the linear relaxation of the decomposition model. In CG, a restricted version of the
decomposition model is defined by considering a subset of the decision variables
(the so called restricted master problem—RMP). The RMP is enlarged by solving
subproblems (each one associated with a driver) which return feasible schedules
with negative reduced costs.

The solutions of the subproblems are integer, however, the final solution obtained
from CG may be fractional since a linear relaxation is being solved. The rationale
behind the application of SearchCol to the BDR problem is that even if a valid roster
is not obtained from CG, the schedules generated when solving the subproblems
can be combined to build quality rosters. In the next section, after an overview of
SearchCol, we explain how that search space can be explored by an EA to find valid
rosters.

3 SearchCol

The two main concepts of the SearchCol framework are (1) the usage of metaheuris-
tics based on solutions obtained by the subproblems of CG and (2) the usage of
perturbed CG (i.e. CG with additional constraints defined in terms of the subproblem
variables). Figure 1 presents an overview of the global SearchCol algorithm.
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Fig. 1 SearchCol algorithm 1: Column generation
2: Metaheuristic search
3: repeat
4: Define column generation perturbation
5: Optimize perturbed column generation
6: Metaheuristic search
7: until Stopping criterion fulfilled

In the first step, CG is used to obtain a solution to the linear relaxation of the
decomposition model presented in Sect. 1. In step 2, the set of subproblem solutions
generated by the CG algorithm, are used as components for global solutions which
define the search space of a metaheuristic. The cycle of steps 3 to 7 repeat those
two steps but with additional subproblem solutions which are generated when CG
is applied with additional constraints on subproblem variables.

In the search steps (steps 2 and 6 of the algorithm) of a SearchCol algorithm a
metaheuristic is used. In this paper, as discussed in the next two subsections, we
further explore the EA proposed in [3, 4] and the use of perturbations.

3.1 The Evolutionary Algorithm Metaheuristic

Evolutionary Algorithms are based on the evolution of the biological species, as
proposed in [8], and work over populations of individuals, each one represented by
a chromosome which describes all the characteristics of the individual.

Following the SearchCol framework and the BDR problem decomposition used,
an individual/chromosome represents a roster, each gene position identifies a driver,
and the gene content identifies the schedule assigned to that driver.

A population is obtained by using solution generators, which are defined in the
SearchCol framework, until the desired population size. Details about the available
generators are presented in [2]. Each generator creates an individual selecting a
schedule for each driver. The use of distinct generators promotes diversity in the
population.

The evaluation of an individual considers two dimensions: the first one, called
feasibility, measures the cost of the roster; the second, called infeasibility, measures
the number of unassigned tasks. A roster is only considered valid if the number of
unassigned tasks is zero, assuring the company service.

The selection operator is the binary tournament and the variation operators are
the classical one point and two points crossovers and a mutation operator, which
change the schedule for the selected subproblems/gene locus, by randomly selecting
a new one from the pool of schedules generated in the CG for that driver. An elitism
mechanism is included to assure the preservation of the best individuals through
generations.

A local search heuristic is used to explore solutions near the best solution found
in each iteration. Local search is based in the definition of a neighbour as a solution
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in which one and only one driver has a schedule different from the one in the
current solution. The EA stops when a number of consecutive iterations without
improvement in the best solution is achieved.

3.2 Perturbations

In the SearchCol framework, a perturbation consists in fixing subproblem variables
to 0 or to 1 by adding constraints in the RMP. In the case of the BDR, the basic
idea is to force the assignments of chosen tasks to chosen drivers. When adding
a perturbation to the RMP forcing the assignment of a task i to a driver v, all
schedules generated by the subproblem of driver v will include task j. In the BDR,
the use of perturbation intends to help in the achievement of valid rosters when the
first search does not find one. Given the solution found, the perturbation fixes the
assigned tasks to the drivers and then a new CG and metaheuristic cycle iteration is
run to generate new schedules with the missing tasks (not assigned) and to search
again for a better roster. Even in the valid rosters, the use of perturbations can be
useful since it is possible that, in an obtained roster, some tasks are over-assigned
(to more than a driver) and the perturbations will fix the task to only one driver,
forcing the generation of new schedules to the other driver(s) without that task. A
detailed explanation of how the perturbations are used in the SearchCol and the
defined perturbations are presented in [2]. We used the perturbations based in the
incumbent, setting to 1 a proportion of 30 % of the subproblem variables with value
1 in the incumbent solution (chosen randomly).

4 Computational Tests

The algorithm was implemented in the computational framework SearchCol++
(http://searchcol.dps.uminho.pt), which allows a fast implementation of SearchCol
algorithms.

The BDR problem test instances are the ones designated as P80 from [9] and
[3, 4].

In the SearchCol framework configuration, the time limit of the initial CG was set
to 30 s. In the beginning, the subproblems are solved using a heuristic. When no new
attractive column are found, the heuristic is replaced by CPLEX to obtain optimal
solutions. All subproblems are solved in each iteration and the corresponding
attractive columns added. The number of main cycles (CG and search) of the
SearchCol metaheuristic was set to 20, with 3 as the maximum number of iterations
without improvement. The other CG runs (after the first) are limited to 10 s.

The population size of the EA contains 240 individuals (1/3 of individuals built
picking totally at random subproblem solutions, 2/3 of individuals built picking
random subproblem solutions with the probability of been selected biased by the

http://searchcol.dps.uminho.pt
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Table 1 SearchCol with EA results

Time (s) Feasibility � Feasibility from [3]

Instance Average Std dev. Mean Std dev. Best Average (%) Best (%)

P80_1 130.16 9:03 3946.87 141:52 3819 �24:2 �17:4
P80_2 112.37 19:34 2924.80 93:87 2873 �27:4 �12:1
P80_3 158.51 61:56 5693.30 260:86 5297 �24:1 �17:2
P80_4 132.17 25:87 5183.43 434:30 4479 �12:9 �3:7
P80_5 128.01 24:80 3942.30 142:26 3813 �21:2 �13:7
P80_6 131.70 38:69 4620.27 327:64 4135 �12:8 �8:0
P80_7 136.55 33:55 5241.80 334:86 4547 �18:1 �15:7
P80_8 139.67 29:74 5984.67 209:95 5697 �17:0 �12:3
P80_9 135.02 35:27 5070.77 367:66 4308 0:4 �1:2
P80_10 141.46 21:10 5177.27 143:71 4953 �16:7 0:8

linear solution of CG, half biased by the first CG solution and half biased by the last
CG solution). An elite population of 40 individuals and the local search configured
in the first improvement found were used. Crossover and mutation probabilities are
80 and 20 %. The stopping criterion is 500 iterations without improvement.

For each instance, the metaheuristic was executed 30 times. Aggregated results
are presented, for the 30 runs. In Table 1, columns under “Time (s)” display the
mean and the standard deviation for the computational times in seconds; columns
under “Feasibility” the solution values, namely, the mean, the standard deviation
and the best value found for each instance in the 30 runs. The � columns show
the difference on the average and best solution values compared with the results
from [3]. Negative values identifies improvement. All the runs obtained a solution
with all tasks assigned (infeasibility=0), which was not achieved in [3]. The results
presented in Table 1 show a general improvement on the best results and also on the
average values of all runs. Only the average value for instance P80_9 and the best
value for instance P80_10 worsened.

5 Conclusions

In this paper we addressed a bus driver rostering problem where the tasks that
composes the company service are assigned to drivers, respecting the labour rules
and minimizing the cost of the drivers used and overtime paid. We proposed
a SearchCol algorithm, combining CG, an EA, and perturbations based in the
incumbent.

The obtained results were compared with the algorithm in [3] which didn’t
include perturbations, and considered a time limit for the CG far longer than the total
running time used by the current algorithm. The algorithm here proposed clearly
outperforms the previous one. The quality of the solutions is, in average, 10.1 %
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better in terms of the best value of each instance and 17.4 % better on the average
value of all runs.
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A Matheuristic Based on Column Generation
for Parallel Machine Scheduling with Sequence
Dependent Setup Times

Filipe Alvelos, Manuel Lopes, and Henrique Lopes

1 Introduction

The importance of parallel machine scheduling problems study comes from both
the theoretical and the practical perspectives. From the theoretical perspective, it is
a generalization of the single machine problem and a particular case of problems
arising in flexible manufacturing systems. From the practical perspective, it is
important because we can find many examples of the use of parallel machines in the
real world. For a literature review on parallel machines scheduling problems see, for
example, [9]. The interest in scheduling problems involving setup times/costs exists
for more 40 years. For a literature review on scheduling problems with setup times
(as the one addressed in this paper) or costs see, for example [2]. The increasing
research trend in the more recent decades is justified by the significant savings
obtained when setup times/costs are explicitly considered for scheduling decisions
in real world industrial/service problems [1].

Using the ˛jˇj� Graham classification [4], the problem addressed in this paper
is classified as Rjak; rj; sijjPwjTj. This problem is strongly NP-hard, because
its special case PjjPwjTj is known to be strongly NP-hard, even for a single

F. Alvelos (�)
Centro Algoritmi and Departamento de Produção e Sistemas, Universidade do Minho, Campus de
Gualtar, 4710-057 Braga, Portugal
e-mail: falvelos@dps.uminho.pt

M. Lopes
CIDEM-ISEP, School of Engineering, Polytechnic of Porto, 4200-072 Porto, Portugal
e-mail: mpl@isep.ipp.pt

H. Lopes
Centro Algoritmi, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

© Springer International Publishing Switzerland 2016
R.J. Fonseca et al. (eds.), Computational Management Science, Lecture Notes
in Economics and Mathematical Systems 682,
DOI 10.1007/978-3-319-20430-7_30

233

mailto:falvelos@dps.uminho.pt
mailto:mpl@isep.ipp.pt


234 F. Alvelos et al.

machine [6]. We use the acronym MS to denote the machine scheduling problem
addressed in this paper.

Several approaches have been proposed for this and related problems. For a
detailed literature review the interested reader is pointed to [7]. In that same
reference a branch-and-price (B&P) algorithm was first presented providing optimal
solutions for instances with up to 50 machines and 150 jobs.

The matheuristic (a mathematical programming based heuristic) proposed in
this paper uses the same decomposition model (DM) and column generation (CG)
algorithm of the B&P of [7]. As in B&P, the first step of the matheuristic (MH) is to
solve the linear relaxation of the DM by CG. However, in the next step, instead of
starting a search based on a (branch-and-bound) tree where the nodes are solved by
CG, as B&P does, the MH uses the general purpose integer programming (GPIP)
solver to obtain an integer solution to the last solved restricted master problem.
Additional constraints are then introduced in CG to fix some of the original variables
with the purpose of providing the GPIP solver with better columns. The procedure
is repeated until a stopping criteria is met (e.g. a maximum number of iterations
without improvement of the incumbent is reached).

The proposed MH is closely related with SearchCol, a framework for combining
CG and metaheuristics [3]. The main difference is that in SearchCol, a metaheuristic
is used instead of a GPIP solver in the search phase.

In the next section, the MS problem is formally defined and the DM is described.
In Sect. 3 the MH is detailed. The performance of the MH is evaluated through
comparative computational results in Sect. 4. The main conclusions are stated in
Sect. 5.

2 Problem Definition and a Decomposition Model

In the MS problem there are n jobs to be scheduled in m machines. Each job j, j D
1; : : : ; n, must be processed in exactly one machine. The machines are unrelated,
i.e. the processing time of each job depends on the machine. The processing time
of job j in machine k, k D 1; : : : ;m, is represented by pjk. Preemption of jobs is
not allowed. A machine can only process one job at a time. There are setup times,
dependent of the sequence. The setup time corresponding to a change from a job
i to a job j is represented by sij. There is a release date, a due date, and weight
associated with each job j represented by rj, dj, and wj, respectively. Each machine
k has an availability date, ak, and at moment 0 is prepared (no setup required) for
a job represented by lk. The objective is to minimize the weighted tardiness which,
representing the completion time of job j by Cj, can be represented by

nX
jD1

wjMax.Cj � dj; 0/
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A decomposition model (DM) can be obtained by enumerating the set of all feasible
schedules for all machines. We denote the set of all feasible schedules, indexed by
p, of machine k by Pk. The number of times a job j is processed in schedule p
of machine k is vk

jp. Note that, for easiness of the solution of a subproblem to be
described below, we allow a job to be processed more than one time. The cost of the
schedule p of machine k is given by ck

p D
P

j2Jpk wjMax.Cj � dj; 0/ where Jpk is the
set of jobs in the schedule p of machine k (i.e. jobs with vk

jp � 1).
We define decision variables as

yk
p D

�
1; if schedule p of machine k is selected for that machine
0 otherwise.

The DM is:

Min
mX

kD1

X
p2Pk

ck
pyk

p (1)

subject to WX
p2Pk

yk
p D 1I k D 1; : : : ;m (2)

mX
kD1

X
p2Pk

vk
jpyk

p � 1I j D 1; : : : ; n (3)

yk
p 2 f0; 1g I k D 1; : : : ;mI p 2 Pk

The objective function (1) minimizes the total weighted tardiness. Constraints (2)
state that one schedule is chosen for each machine (possibly the empty schedule).
Constraints (3) state that all jobs must be processed.

The DM is of practical use only if it can be addressed without explicitly
considering all the decision variables—which are too many to be enumerated.
CG allows solving the linear relaxation of the decomposition by considering a
reduced set of decision variables which is enlarged iteratively by including variables
associated with solutions of subproblems, each one associated with one machine.

The subproblem of machine k consists in identifying a variable with negative
reduced cost, i.e. a schedule p� for which Nck

p� < 0 where

Nck
p� D

X
j2Jp�k

wjMax.Cj � dj; 0/� 
j

where 
 are the dual variables associated with constraints (3).
The subproblem of machine k can be modelled as a network where each

elementary path between an initial node and a final node corresponds to a schedule.
A node j is associated with job j and, if visited, offers a profit of 
j and consumes
a time of pj. An arc ij is associated with processing job j immediately after job i and
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consumes a time of sij. Cj corresponds to the sum of the times in the nodes and in
the arcs visited before node j.

In [7], dynamic programming algorithms to solve the subproblems are described
and used in the B&P algorithm (combination of CG with branch-and-bound). The
states are defined by .j; t/ where j is the last job processed and t is its completion
time. Given that the states do not keep information on jobs processed before the
last, this algorithm can produce cycles in the above mentioned network which
correspond to process more than one time the same job(s) (that is why vk

jp is a
general integer and not binary). Significant improvements on this approach can be
found in [8].

3 The Matheuristic

CG based approaches, in particular B&P, have been used to solve with success large
instances of the problem addressed. We propose a heuristic based on CG and using
the same concepts of SearchCol, metaheuristic search by column generation [3].

SearchCol has three main steps which are executed in cycle: (i) solve (perturbed)
CG, (ii) search, (iii) update perturbations.

In step (i) perturbed CG refers to CG with additional constraints (perturbations)
which will be discussed below. In the first iteration CG is solved with no perturba-
tions, obtaining an optimal solution to the linear relaxation of the DM. In step (ii)
the set of schedules obtained with column generation is used to perform a search
for a global schedule (a set of schedules, one for each machine). In SearchCol that
search is made through a metaheuristic (as VNS or tabu search), in the proposed MH
the search corresponds to solve a restricted version of the DM (only the schedules
generated by CG are included in the model) with a GPIP. Note that in step (i) a
relaxation is solved but in step (ii) the integer (restricted) model is considered. A
time limit is imposed in the GPIP (in the proposed MH was 0:1� .nCm/ seconds).

CG provides the optimal solution of the linear relaxation of the DM. However,
the optimal solution of the (not relaxed) DM may include schedules that were
not generated by CG. With the purpose of conducting CG in generating desirable
schedules, additional constraints (perturbations) are included in each CG step after
the first iteration. Perturbations have many types and, as almost all components
of SearchCol and therefore of the MH, can be described and implemented in a
problem independent way. However, for briefness and clarity of the exposition, we
only describe the ones used in the proposed MH (details can be found in [3]).

Perturbations are used to force subsets of jobs to be processed in certain
machines. The first step when defining the perturbations to include in the CG of
the next iteration is to sort by decreasing CG recency (i.e, the number of times
a schedule was obtained as the solution of the CG subproblem) the schedules
belonging to the incumbent. The first 10 % schedules are then used to define
the perturbations of the current iteration. For each of those schedules, each one
associated with a machine Nk, the set of processed jobs is identified and, for each job,
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Nj, one constraint of the following form is included in the (restricted) master problem
of CG: X

p2PNk

v
Nk
NjpyNk

p � 1:

In CG, the duals of the perturbation constraints are taken into account in the
objective function of the subproblem.

In the following iteration, only machines that were not selected previously are
considered in step (iii). When there are perturbations associated with all machines,
all perturbations are removed and a restart happens. After one restart with no
improvement of the incumbent or when a time limit is reached, the algorithm stops.

4 Computational Results

The MH was implemented and tested using SearchCol++ [10], an implementation
of the SearchCol framework in C++. When using SearchCol++, only information on
the decomposition and problem specific components must be coded. Steps (ii) and
(iii) (search and perturbations) are hidden from the user and are controlled through
input parameters.

SearchCol++ uses Cplex 12.4 [5] as the general purpose solver for the restricted
master problems and also as the GPIP. The computational tests were performed on
a notebook pc with a 2.4 GHz i3-3110M Intel processor and 4 Gb of RAM.

We compare our results with the branch-and-price algorithm of [7], both with a
time limit of 1 h. We tested 10 sets with 10 randomly generated instances each. The
instances in a set have the same .m � n � q/, where q is the congestion level which
can take values 3 or 4 (the most difficult ones as shown in [7]). B&P obtained an
optimal solution in 41 out of the 100 instances.

The average results for each set of 10 instances are presented in Table 1.
Table 1 can be read in two directions: reading left to right shows the impact of

the increase of congestion, reading top to bottom shows the impact of the increase
of the size of the instance.

Table 1 Differences (MH-B&P) between the times and values of the MH and B&P

Instances Time Value (%) Better Instances Time Value (%) Better

50-200-3 677 3 0 (1) 50-200-4 �960 �9 2

50-220-3 1022 �8 2 (1) 50-220-4 �358 �22 6

60-240-3 411 3 3 60-240-4 �1016 �36 9

80-320-3 693 57 6 80-320-4 �534 �8 10

100-400-3 �505 �11 9 100-400-4 �228 �6 9

Negative values mean the result of the MH is better than the one of B&P. Column Better
corresponds to the number of instances (out of 10) the MH was better than B&P (between
parenthesis the number of solutions with the same value, if any). Time limits were set to 1 h.
The first four columns are for instances with less congestion (level 3)
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The proposed MH outperforms B&P for the instances with more congestion
obtaining, in average, better solutions in less time. For the instances with less
congestion, the proposed MH has better results than B&P for the set with larger
instances.

The result of the MH for the set 80-320-3 is explained by the poor solutions
obtained by the MH in three instances of that set. The MH provided better solutions
by more than 10 % in 36 instances. The opposite happened in 7 instances.

5 Conclusions

In this paper, a matheuristic (MH) based on column generation (CG) and a general
purpose integer programming (GPIP) solver was proposed to solve a parallel
machine scheduling problem with sequence dependent setup times. The MH follows
the SearchCol framework and has three steps which are run in a cycle: solve CG
(after the first iteration with additional constraints—entitled perturbations), search
the solution space provided by CG with the GPIP, update the perturbations.

The MH obtained better solutions in shorter times for very large instances when
compared with a state-of-the-art branch-and-price algorithm.
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Population Games with Vector Payoff
and Approachability

Dario Bauso and Thomas W.L. Norman

1 Introduction

We consider a game played by a large population of individuals in continuous
time. At every time, each individual faces a random opponent extracted from the
population and the resulting payoff is a vector, which represents a collection of
noninterchangeable goods.

As main result we provide a new model that combines approachability and pop-
ulation games. Given that the opponent is randomly extracted from the population,
the approach by Blackwell—which looks at the worst-case payoff—may appear
conservative. Thus, we relax Blackwell’s conditions, assuming that the opponent
is not malevolent but instead is simply extracted from a population with given
distribution; we call this 1st-moment approachability.

We review next some related literature. The theory of “approachability” dates
back to Blackwell [4] and culminates in the well-known Blackwell’s Theorem.
Approachability arises in several areas of game theory, such as allocation processes
in coalitional games [17], regret minimization [9, 19], adaptive learning [5–8].
The original Blackwell’s formulation of approachability has been extended to
continuous-time repeated games, thus showing common elements with Lyapunov
theory [9]. A definition of approachability in infinite-dimensional space has been
provided by Lehrer [18]. A recent work of the first author [2] studies approachability
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in an n-player repeated game. Approachability can be reframed within differential
game theory [20, 21].

A second stream of literature we follow in the present study is the one on
mean-field games. This theory originated in the work of Huang et al. [10–12], and
independently in that of Lasry and Lions [14–16], where the now standard termi-
nology of mean-field games was introduced. Mean-field games have connections to
evolutionary games (see for instance [13]) and large games [1].

In the rest of this section we introduce notation. We view vectors as columns. For
a vector x, we use xi to denote its ith coordinate component. For two vectors x and
y, we use x < y (x � y) to denote xi < yi (xi � yi) for all coordinate indices i. We let
xT denote the transpose of a vector x, and kxk its Euclidean norm. We write PX.x/ to
denote the projection of a vector x on a set X, and dist.x;X/ for the distance from x
to X, i.e. PX.x/ D arg miny2X kx�yk and dist.x;X/ D kx�PX.x/k, respectively. We
also denote by conv the convex hull of a given set of points. The symbol @x indicates
the first partial derivative with respect to x. Also, the symbol E denotes expectation
and given a set of pure strategies A, we write�.A/ to mean the corresponding set of
mixed strategies.

2 The Model

The game at hand is a two-player repeated game with vector payoffs in continuous
time. We assume that the players use nonanticipative behavior strategies with delay.
This means that the behavior of a player may depend only on past play.

Let A D f1; 2g be a discrete set, ai W Œ0;T� ! A a measurable function of time
and aj W Œ0;T� ! A a random disturbance. Let u W A � A ! M where M is a 2 � 2
bimatrix (each entry is a two-dimensional vector). Let X WD convfMlkj l; k 2 Ag,
where conv denotes the convex hull, and consider the differential equation in X�

dx.t/ D 1
t .Eu.ai.t/; aj.t// � x.t//dt; 8t 2 Œ0;T�;

x.0/ D x0 2 X;
(1)

where Eu.ai.t/; aj.t// is the expected payoff, and x0 is generated according to a
distribution law m0.x/. More specifically, consider a probability density function
m W X � Œ0;C1Œ! R, .x; t/ 7! m.x; t/, representing the density of the players
whose state is x at time t, which satisfies

R
R

m.x; t/dx D 1 for every t. Let us also
define the mean state over players at time t as m.t/ WD R

X xm.x; t/dx. We also have
m.x; 0/ D m0.x/.

The objective of a player is to approach a given target y W Œ0;T� ! X. Then, for
each group, consider a running cost g W X � X ! Œ0;C1Œ, .x; y/ 7! g.x; y/ of the
form:

g.x; y/ D 1

2

�
.y � x/T Q .y � x/

�
; (2)

where Q > 0 and symmetric.
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The above cost describes (i) the (weighted) square deviation of an individual’s
state from the target.

Also consider a terminal cost � W X � X ! Œ0;C1Œ, .x; y/ 7! �.x; y/ of the
form

�.x; y/ D 1

2
.y � x/TS.y� x/; (3)

where S > 0. The problem in its generic form is then the following:

Problem 1 Let the initial state x0 be given and with density m0: Given a finite
horizon T > 0, a suitable running cost: g W X � X ! Œ0;C1Œ, .x; y/ 7! g.x; y/, as
in (2); a terminal cost � W X � X ! Œ0;C1Œ, .y; x/ 7! �.y; x/, as in (3), and given
a suitable dynamics for x as in (1), solve

inf
ai.�/2C

�
J.x0; ai.�/; aj.�// D

Z T

0

g.x.t/; y/dtC �.x.T/; y/
�
; (4)

where C is the set of all measurable functions ai.�/ from Œ0;C1Œ to Ai, and Eu.�/
in (1) must be consistent with the evolution of the distribution m.�/ if every player
behaves optimally.

3 Main Results

This section outlines the main result of this paper. After introducing the expected
value of the projected game, Theorem 1 establishes conditions for approachability
in 1st-moment.

3.1 Expected Value of the Projected Game

We wish to analyze convergence properties in the space of distributions of the
cumulative or average payoff xi.t/, in the spirit of approachability. We will make
use of the notion of projected game which we recall next. Let � 2 R

m and denote
by h�;Gi the one-shot zero sum game whose set of players and their actions are as
in game G, and the payoff that player j pays to player i is �Tu.ai.t/; aj.t// for every
.ai.t/; aj.t// 2 Ai � Aj. Observe that, as a zero-sum one-shot game, the game h�;Gi
has a value, val.�/, obtained as

val.�/ WD min
ai.t/

max
aj.t/

�Tu.ai.t/; aj.t//:
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Given the stochastic nature of aj.t/ the above min-max operation is not useful to
our purposes. Then, we rather consider the expected value of the game (where
the inner maximization is replaced by an expectation) and discuss approachability
in expectation. In the light of this, and using the bilinear structure of the utility
function, and assuming Markovian strategies

� W X � Œ0;T�! A such that ai.t/ WD �.x; t/;

we can rewrite the expected value as

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

Eval.�/ WD minai.t/ E�
Tu.ai.t/; aj.t//

D minai.t/ �
Tu.ai.t/; q.t//;

q 2 �.A/ s:t: qk D
R

Rk
m.x; t/dx;

Rk WD fx 2 R
mj �.x; t/ D kg; 8k 2 A;

(5)

where�.A/ is the set of mixed strategies on A. Note that rewritingE�Tu.ai.t/; aj.t//
as �Tu.ai.t/; q.t// follows from the bilinear structure of the utility function. In the
case of state-dependent payoff, which occurs when we consider the game whose
payoff is

f .u.ai.t/; aj.t//; x.t// D 1

t
.Eu.ai.t/; aj.t// � x.t// D 1

t
.u.ai.t/; q.t// � x.t//;

the above expression can be modified as:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Evalx.�/ WD minai.t/ E�
T f
�

u.ai.t/; aj.t//; xi/
	

D minai.t/ �
T f
�

u.ai.t/; q.t//; xi

	

q 2 �.A/ s:t: qk D
R

Rk
m.x; t/dx;

Rk WD fx 2 R
mj �.x; t/ D kg; 8k 2 A:

(6)

Note that here we use the notation u.ai.t/; q.t// to mean Eu.ai.t/; aj.t//.

3.2 Approachability in 1st-Moment

Approachability theory was developed by Blackwell in 1956 [4] and is captured in
the well-known Blackwell’s Theorem. We recall next the geometric (approachabil-
ity) principle that lies behind Blackwell’s Theorem.

To introduce the approachability principle, let ˚ be a closed and convex set in
R

m and let P˚.x/ be the projection of any point x 2 R
m (closest point to x in ˚).
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Definition 1 (Approachable Set) A closed and convex set ˚ in R
m is approach-

able by player 1 if there exists a strategy for player 1 such that (7) holds true for
every strategy of player 2:

lim
t!1 dist.x.t/; ˚/ D 0: (7)

The next result is the Blackwell’s Approachability Principle.

Proposition 1 (Blackwell’s Approachability Principle [4, 20]) A closed and
convex set ˚ in R

m is approachable by player 1 if for every x.t/ there exists a
strategy for player 1 such that (8) holds true for every strategy of player 2:

Œx.t/ � P˚.x.t//�
T Œx.t/ � P˚.x.t//C f .ui.�.x; t/; aj.t//; xi.t//� � 0; 8 t: (8)

Note that in the above statement, condition (8) is equivalent to saying that (i) for
every x taking � D x�P˚ .x/

kx�P˚ .x/k 2 R
m the value of the projected game satisfies

Œx.t/ � P˚.x.t//�
T Œx.t/ � P˚.x.t//�C kx � P˚.x/kvalx.�/ � 0; 8 t: (9)

Now, if we assume that the opponent is committed to play a mixed strategy q 2
�.A/, condition (8) turns into

Œx.t/ � P˚.x.t//�
T Œx.t/ � P˚.x.t//C f .u.�.x; t/; q.t//; x.t//� � 0; 8 t; (10)

and the corresponding condition (9) can be rewritten as

�
Œx.t/ � P˚.x.t//�T Œx.t/ � P˚.x.t//�C kx � P˚.x/kEvalx.�/ � 0; 8 t;
Evalx.�/ WD minai.t/ �

T f .ui.ai.t/; q.t//; xi/:
(11)

Theorem 1 (Approachability in 1st-Moment) Let q 2 �.A/ be given. The set of
approachable targets is

T .q/ D fy j y D
X
l;k2A

plqkMlk;8p 2 �.A/g:

Furthermore, approachable strategies are Markovian and bang-bang:

�.x/ D
�

ai D 1 if x 2 R1 WD f	j .	 � y/T.u.1; q/� y/ � 0g
ai D 2 otherwise.

(12)

In the problem at hand, one additional challenge is that q must be self-confirmed.
This means that the mixed strategy q entering the computation of the expected value
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of the projected games Evalx.�/ must reflect the current state distribution. This
corresponds to solving:

8̂̂̂
<
ˆ̂̂:
Œx.t/ � y�T Œx.t/ � y�C kx � ykEvalx.�/ � 0; 8 t:

Evalx.�/ WD minai.t/ �
T f
�

u.ai.t/; q.t//; x
	

q 2 �.A/ s:t: qk D
R

Rk
m.x; t/dx;

Rk WD f	j .	 � y/T.u.k; q/� y/ � 0g 8k 2 A:

(13)

In an extended journal version of this paper we look for self-confirmed solutions,
which we call equilibria.

4 Conclusions and Future Developments

We have extended approachability to population games. In a future work we will
adapt the concept of mean-field equilibrium to our evolutionary set-up; we call
this self-confirmed equilibrium. We will also explore the regret interpretation of
our model; whereas 1st-moment approachability of nonpositive regrets no longer
implies Nash equilibrium (as in [9]), we will show that nonpositive maximal
regret does imply Bayesian equilibrium under incomplete information. Considering
the cumulative payoff rather than the average payoff leads to the new notion of
attainability as in [3]. We will extend our stochastic analysis to attainability in a
population setting.
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