
NotaQL Is Not a Query Language! It’s for Data
Transformation on Wide-Column Stores

Johannes Schildgen(B) and Stefan Deßloch

University of Kaiserslautern, Kaiserslautern, Germany
{schildgen,dessloch}@cs.uni-kl.de

Abstract. It is simple to query a relational database because all
columns of the tables are known and the language SQL is easily applica-
ble. In NoSQL, there usually is no fixed schema and no query language. In
this article, we present NotaQL, a data-transformation language for wide-
column stores. NotaQL is easy to use and powerful. Many MapReduce
algorithms like filtering, grouping, aggregation and even breadth-first-
search, PageRank and other graph and text algorithms can be expressed
in two or three short lines of code.

Keywords: NoSQL · Transformation · Language · Wide-column stores

1 Motivation

Fig. 1. Person table with a children graph
and amounts of pocket money

When we take a look at NoSQL
databases1, they differ from clas-
sical relational databases in terms
of scalability, their data model and
query method. The simplest form of
such a database is a key-value store:
One can simply write and read val-
ues using a key-based access. In
this paper, we concentrate on wide-
column stores. Such a store con-
sists of tables that have one row-
id column and one or more column
families. Basically, each column family can be seen as a separate key-value
store where column names function as keys. The three most popular wide-
column stores are Google’s Big Table [2], its open-source implementation Apache
HBase2, and Cassandra3. Figure 1 shows an example table with two column
families.

At first sight, the table looks similar to a relational table. This is because
both consist of columns and these columns hold atomic values. In relational
1 http://nosql-database.org.
2 http://hbase.apache.org.
3 http://cassandra.apache.org.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 139–151, 2015.
DOI: 10.1007/978-3-319-20424-6 14

http://nosql-database.org
http://hbase.apache.org
http://cassandra.apache.org

140 J. Schildgen and S. Deßloch

databases, however, the database schema is static, i.e., all columns of a table
are known, before values are inserted or modified. In contrast, in a wide-column
store, at each insertion, one is able to set and create arbitrary columns. In other
words, the database schema does not exist, or is dynamically evolving. The first
column family information contains attributes of people. Note that different
rows can have different columns which are not predefined at table-creation time.
The second column family children models a graph structure. The names in the
columns are references to row-ids of children and the values are the amounts of
pocket money the children get from their parents. We will later use this table as
an example for all of our NotaQL transformations. Web graphs are very akin to
this example: The first column family comprises information about a web site,
while the second contains links to other web sites.

If the table in Fig. 1 was stored in HBase, one could use a Get operation
in the HBase Shell or the Java API to fetch a row with all its columns by
its row-id. In HBase, there always is an index on the row-id. Other secondary
indexes are not supported. To execute more complex queries, programmers can
utilize a framework that allows access via an SQL-like query language. The most
prominent system for that is Hive [21]; others are presented in the next section.

As an alternative, one may consider generating redundant data which then
can be accessed via simple Get operations. This approach shows similarities with
materialized views in traditional relational DBMS [7]. In [13], ideas are presented
to do selections, joins, groupings and sorts by defining transformations over the
data. The authors advocate that one does not need a query language like SQL
when the data is stored in the way it is needed at query time. If finding all
people with a specific year of birth is a frequent query, the application which
modifies data should maintain a second table whose row-id is a year of birth and
columns are foreign keys to the original row-id in the main table. As a drawback,
applications have to be modified carefully to maintain all the tables, so every
change in the base data immediately leads to many changes in different tables.
In [5], similar approaches are presented to maintain secondary indexes on HBase,
either with a dual-write strategy or by letting a MapReduce [3] job periodically
update an index table.

In this paper, we present NotaQL, a data-transformation language for wide-
column stores. Like SQL, it is easy to learn and powerful. NotaQL is made for
schema-flexible databases, there is a support for horizontal aggregations, and
metadata can be transformed to data and vice versa. Complex transformations
with filters, groupings and aggregations, as well as graph and text algorithms can
be expressed with minimal effort. The materialized output of a transformation
can be efficiently read by applications with the simple Get API.

In the following section, we present some related work. In Sect. 3, NotaQL is
introduced as a data-transformation language. We present a MapReduce-based
transformation platform in Sect. 4 and the last section concludes the article.

2 Related Work

Transformations and queries on NoSQL, relational and graph databases can
be done by using different frameworks and languages. With Clio [8], one can

NotaQL Is Not a Query Language! It’s for Data Transformation 141

perform a schema mapping from different source schemata into a target schema
using a graphical interface. Clio creates views in a semi-automatic way which
can be used to access data from all sources. This virtual integration differs from
our approach because NotaQL creates materialized views. Clio can only map
metadata to metadata and data to data. There is no possibility to translate
attribute names into values and vice versa. In [1], a copy-and-paste model is
presented to load data from different sources into a curated database. Curated
databases are similar to data warehouses, but here it is allowed to modify data
in the target system. A tree-based model is used to support operations from
SQL and XQuery as well as copying whole subtrees. The language presented in
that paper also contains provenance functions to find out by which transaction
a node was created, modified or copied. Although the language is very powerful,
it does not support aggregations, unions and duplicate elimination because in
these cases, the origin of a value is not uniquely defined.

There are many approaches to query wide-column stores using SQL, e.g.
Hive, Phoenix4 or Presto5. On the one hand, one does not need to learn a new
query language and applications which are based on relational databases can be
reused without many modifications. On the other hand, SQL is not well-suited
for wide-column stores, so the expressiveness is limited. Figure 16 at the end of
this paper shows the weak points of SQL: Transformations between metadata
and data, horizontal aggregations and much more can not be expressed with an
SQL query. Furthermore, many frameworks do not support the schema flexibility
of HBase. Before an HBase table can be queried by Hive, one has to create a
new Hive table and define how its columns are mapped to an existing HBase
table6. With Phoenix, an HBase table can be queried with SQL after defining the
columns and their types of a table with a CREATE TABLE command. Presto is an
SQL query engine by Facebook. The presto coordinator creates an execution plan
for a given query and a scheduler distributes the tasks to the nodes that are close
to the data. Usually, Presto directly accesses data that is stored in the Hadoop
distributed file system but connectors for other systems, e.g. HBase, exist as well.
The strength of Presto is a nearly full ANSI-SQL support—including joins and
window functions—and its ten times higher speed than Hive and MapReduce.
But again, only relational queries on relational tables with static schemas are
possible.

The HBase Query Language by Jaspersoft7 can be used to support more
complex queries on an HBase table. It is better suited for wide-column stores
than SQL, but not easy to use. One has to define a query as a JSON document
that can be very long, even for simple queries. The syntax of our language
NotaQL is inspired by Sawzall [19], a programming language used by Google to
define log processing tasks instead of manually writing a MapReduce job. The
input of a Sawzall script is one single line of input (e.g. a log record) and the

4 http://phoenix.apache.org.
5 http://prestodb.io.
6 https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration.
7 https://community.jaspersoft.com/wiki/jaspersoft-hbase-query-language.

http://phoenix.apache.org
http://prestodb.io
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://community.jaspersoft.com/wiki/jaspersoft-hbase-query-language

142 J. Schildgen and S. Deßloch

output are insertions into virtual tables. A Sawzall script runs as a MapReduce
job and the input and output is not an HBase table but a CSV file. The language
Pig Latin [17] provides relational-algebra-like operators to load, filter and group
data. Pig programs can be interconnected with a workflow manager like Nova
[16]. Google BigQuery [20] is the publicly-available version of Dremel [14]. One
can import and analyze data that is stored in the Google Cloud Storage using
SQL. As the data is stored in a column-oriented manner, it can be filtered
and aggregated very fast. In the paper, it is recommended to use BigQuery in
combination with MapReduce. First, MapReduce can join and pre-process data,
then this data can be analyzed using BigQuery. As NotaQL transformations are
based on MapReduce, one can replace the complex MapReduce transformations
by NotaQL scripts and combine them with fast query languages like BigQuery,
Phoenix, or HBase QL.

Graph-Processing Frameworks. The language Green-Marl [9] is used to describe
graph-analysis algorithms. Green-Marl programs are compiled into multi-thread-
ed and highly efficient C++ code. In contrast to NotaQL, Green-Marl was not
designed for graph transformations but to calculate a scalar value (e.g. diame-
ter) of the graph, to add a property to every node (e.g. PageRank, see Sect. 3.3),
or to select a subgraph of interest. Pregel [12] is a system to develop iterative
graph algorithms by exchanging messages between nodes. Every node can send
messages to its neighbors and change its properties and its state depending on
incoming messages. When there is no incoming message, a node becomes inac-
tive. When all nodes are inactive, the algorithm terminates. In PowerGraph [6],
instead of sending messages, every node computes a MapReduce job for all its
incoming edges (Gather phase) and computes a new value for a node attribute
(Apply phase). In the end, for each edge, a predicate is evaluated (Scatter phase).
If it is false for every incoming edge of a node, the node becomes inactive and
it will be skipped in the next Gather-Apply-Scatter (GAS) round. Pregel and
PowerGraph are not well-suited for graph construction and transformation.
GraphX [23] is an extension of Spark [24] and it solves this problem by introduc-
ing a Resiliant Distributed Graph (RDG) interface for graph construction, fil-
ters, transformations, mappings, updates and aggregations. GraphX algorithms
are seven times slower than PowerGraph jobs but eight times faster than native
Hadoop jobs because they use a tabular representation of the graph and a vertex-
cut partitioning over many worker nodes. As the GraphX interface is not easy to
use, it is recommended to develop one’s own API based on that interface. Pregel
and PowerGraph can be reimplemented using GraphX in twenty lines of code.
The NotaQL language is more user-friendly. We are planning to use the GraphX
interface to develop a NotaQL-based API. This makes graph processing not only
fast but also easy to develop. With Naiad [15], one can define a computation
as a dataflow graph. A vertex can send messages to other vertexes for the next
iteration which is executed in an incremental fashion. Like GraphX, it is recom-
mended not to use Naiad directly but to build libraries for higher languages on
top of it.

NotaQL Is Not a Query Language! It’s for Data Transformation 143

3 Transformations on Wide-Column Stores

In this section, we present the NotaQL language to define transformations. The
first examples can be solved with SQL as well, but later in this article, there are
graph algorithms and others which are not expressible in SQL.

3.1 Mapping of Input Cells to Output Cells

As we learned in the motivation section, each row in a wide-column store has
a unique row-id. In the following examples, we access columns independent of
their column family. If a table consists of multiple column families, their names
can be used as a prefix, e.g. information : born instead of born. Each row can
have an arbitrary number of columns and the column names are unique within
one row. The combination of row-id and column name (r, c) is called a cell.
Each cell has one atomic value, so the triple (r, c, v) represents one cell
together with its value, for example (Peter, born, 1967)8.

The basic idea of NotaQL is to define mappings between input and output
cells, or—more precisely—to specify how to construct output cells based on
the input. These mappings are executed in three steps: (1) Selection on the
input table; (2) For each row, split it into cells and perform a cell mapping; (3)
Aggregate all values for the same output cell using an aggregate function.

Figure 2 shows the identity mapping where each cell is simply copied. Here,
no row selection and no aggregation function is used.

Fig. 2. Table copy with NotaQL

When this transformation is executed, a
snapshot of the input table is analyzed row
by row. In every row, for each of its cells an
output cell will be produced with exactly the
same row-id, column name and value. So the
result of this transformation looks just like
the input. An equivalent SQL query would
be: INSERT INTO out (SELECT * FROM in). It
copies a full table. HBase comes with a backup tool CopyTable9 to solve this
problem.

When not all columns should be copied, but only the salary and born
columns, the second line in the table-copy example can be replaced by
OUT.salary <- IN.salary, OUT.born <- IN.born.

Figure 3 shows the NotaQL syntax in BNF. We will see that most algorithms
can be specified in one block containing one row and one cell specification. We
illustrate the syntax further in the following subsections. In general, a NotaQL
script can consist of many blocks to perform multiple cell mappings in one trans-
formation.
8 These triples are known as entity-attribute-value or object-attribute-value. They are

very flexible regarding the number of attributes of each entity.
9 http://blog.cloudera.com/blog/2012/06/online-hbase-backups-with-copytable-2/.

http://blog.cloudera.com/blog/2012/06/online-hbase-backups-with-copytable-2/

144 J. Schildgen and S. Deßloch

Fig. 3. NotaQL language definition (simplified)

3.2 Predicates

Fig. 4. Row predicate

Fig. 5. Cell predicate

There are two kinds of predicates in NotaQL:
a row predicate which acts as an input-row
filter to perform a row selection and a cell
predicate which selects specific cells in a row.
The row predicate is an optional filter defi-
nition placed at the beginning of a NotaQL
script using an IN-FILTER clause. If such a
predicate is set, every row in the input table
which does not satisfy it will be skipped.
That means, before a mapping is performed,
a whole row is handled as if it would not exist when the predicate is evaluated
as false. In this predicate, comparison and logical operators as well as column
names and constants can be used.

The transformation in Fig. 4 is executed as follows: Only rows that contain a
column born with a value greater than 1950 are selected. The rest of the rows are
skipped. In the remaining rows, only the column salary is read and returned.
The result is one table with only one column salary and between zero and n
rows, where n is the number of rows in the base table. The transformation is
equivalent to the SQL query SELECT salary FROM in WHERE born>1950. Some
more examples for row predicates:

– (born>1950 AND born<1960) OR cpny=‘IBM’ OR col count()>5,
– school respectively !school— checks column existence / absence in a row.

When cells should be filtered within one row without knowing their names, a
cell predicate can be used. It starts with a ? and can be placed after an IN. c
or IN. v. The transformation in Fig. 5 only copies columns with a value equal
to e5, independent of their names. The question mark indicates the begin of a
predicate so that cells are skipped which do not satisfy it. The @ symbol is used
to refer to the current cell’s value. A cell predicate can also be used to drop
columns, e.g. OUT.$(IN. c?(!name)) <- IN. v.

NotaQL Is Not a Query Language! It’s for Data Transformation 145

Fig. 6. Aggregation: AVG

Fig. 7. Corrupt NotaQL script

Fig. 8. Aggregation: SUM

SQL does not support predicates for
column existence or absence. Furthermore,
it is not possible to drop columns or
check values of columns independent from
their names. For wide-column stores these
predicates are necessary because of their
schema flexibility.

The logical execution of a NotaQL
transformation starts with splitting each
input row into its cells. After a cell map-
ping is performed, new row-ids together
with columns of an output row are col-
lected. If there is more than one value for
the same row-id/column pair, an implicit
grouping is performed and the user has to
define how the final value is aggregated
based on the single values.

A popular example query is calculating
the average salary values per company. In
SQL, this is done by grouping and aggre-
gation. Here, a row-id in the output table
should be a company name which is stored
as a value in the column cmpny. So, the
first NotaQL mapping is OUT. r <- IN.cmpny,. The output column name is set
to ‘sal avg’. For setting the value of the output cell, the salary has to be read
and summed up (see Fig. 6).

In the very first example which copies a table, the output mapping is uniquely
defined in the sense that there is a single value for each row-id/column pair.
This can be easily proven: As each input cell (r, c) is unique, each output cell
(r, c) is unique, too. Figure 7 shows a transformation where the uniqueness
is not given because different input cells can have equal values. Whenever a
transformation can produce multiple values for the very same cell (OUT. r, c),
an aggregation function must be used. The output table of the query in Fig. 8
has the same number of rows as the input table, but each row only consists
of one column (pm sum) with the sum of all column values. These horizontal
aggregations are not possible in SQL.

3.3 Graph-Processing Applications

The queries from the previous subsections are typical log-processing queries
with projection, selection, grouping, and aggregation. These operations are well
known from the relational algebra and from SQL and have been generalized
further in NotaQL for wide-column stores. But NotaQL supports more complex
computations as well. In this section, we show that graph-processing algorithms
like PageRank and breadth-first search can be implemented in NotaQL. This
illustrates the power of the simple NotaQL language and demonstrates that it

146 J. Schildgen and S. Deßloch

enables new kinds of transformations which are not possible with classical query
languages yet.

Fig. 9. Reversing a graph

Graphs are often modeled as adjacency
lists in a wide-column store. Each row rep-
resents one vertex in a graph and each col-
umn represents an edge to another vertex. If
the edges are weighted, the value of a column
contains the weight. In a relational database,
columns are part of the meta-data level of a
table. In a wide-column store, they are part
of the data level. This is why SQL is not well-suited for graph algorithms.

Reversing a Graph. A simple graph algorithm that reverses the directions of
edges in a graph can be defined by simply taking the first example Table Copy
and swapping IN. r and IN. c (see Fig. 9). When this script is executed on our
example table, it will produce a new table where for every person their parents
can be found. On a web-link graph, this script produces an inverted graph, i.e.
a list of web sites together with their incoming links. The given script can be
extended to manipulate the graph structure. In the transformation in Fig. 10,
row and cell predicates are used to remove vertices (people with less than two
children) and edges (to children receiving e10 or less).

Fig. 10. Parents of persons with
two or more children that give
more than e10 of pocket money.

PageRank. The PageRank algorithm is an iter-
ative algorithm to rank a vertex in a graph
depending on the rank of vertices pointing to it.
The full algorithm can be found in [18]. Here we
concentrate only on the most interesting part of
the PageRank formula—the random-jump fac-
tor is not relevant for our discussion and is
therefore omitted. The NotaQL script for com-
puting the PageRank is very close to its mathematical definition (see Fig. 11).

The idea is to start with a PageRank value of 1
n for each vertex (with n being

the number of vertices in the graph) and running some iterations of the formula
above until the PageRank values converge. In a wide-column store, the graph
is stored in a table with the row-id being the vertex identifier, one column PR
in the column family alg with the starting value of 1

n and one column for each
outgoing edge in the column family edges.

The fraction between the PageRank value and the outdegree of a node y can
be used as one addend of the new PageRank values of the nodes x to whom y has
an outgoing edge. In our example table, the outdegree is the number of columns

Fig. 11. The PageRank algorithm

NotaQL Is Not a Query Language! It’s for Data Transformation 147

in the column family edges. In this transformation, the input and output tables
are the same, so there are no steps needed to preserve the graph structure. The
results are only updated output cells for the column PR. An example: Nodes A
(PR: 0.1) and B (PR: 0.3) have one outgoing edge each, namely to node C. So,
C’s new PageRank value is 0.1

1 + 0.3
1 = 0.4.

Like updates in SQL, NotaQL transformations have snapshot semantics. This
means, logically the full input is read, then all cells are mapped to output cells
and at the end the output is written. So writes into the input table during job-
execution do not interfere with the remaining transformation process. For our
example, the execution framework has to decide after each execution whether
more iterations are needed or not. PageRank can be executed iteratively until
the changes of the PageRank values are below a specific accuracy value. One
approach to control the number of iterations is a change measurement after each
iteration. Depending on the amount of changes since the previous iteration, a
new run is started or the overall job terminates. Another approach is the usage
of an input format that compares the last two versions of each cell value and
ignores a row when the changes are below a threshold. Then, the job terminates
when the input is empty.

Breadth-First Search. The distance between two vertices in a graph is the number
of edges on the shortest path between them. In a weighted graph, it is the sum of
(positive) weights of those edges. Breadth-first search [11] can be used to compute
the distance from one predefined vertex V0 to every other vertex. Therefore, a
dist column is added for start vertex V0 with the value 0. For all other vertices,
the distance is ∞. This can be modeled by the absence of the dist column in
the column family alg.

The NotaQL script in Fig. 12 is executed iteratively until the result does not
change anymore. In a connected graph, the number of iterations is equal to the
diameter of the graph. In each iteration, neighbors of vertices whose distance
are known are updated.

Fig. 12. Breadth-first search

The IN-FILTER skips rows with an unknown
distance. For the others, the distance of each
neighbor vertex is set to the vertex’ own distance
plus one. If multiple vertices have an edge to the
same neighbor, the minimum value is taken. If
the algorithm should take weighted edges into
account, the 1 in the last line has to be replaced by IN. v to add the current
edge weight to the own distance.

3.4 Text Processing

Fig. 13. Word-count algorithm

We extended the NotaQL language with a split
function. It has one input parameter for a delim-
iter and it splits text values in multiple ones.
Figure 13 shows a NotaQL transformation which
counts the occurrences of each word in all input

148 J. Schildgen and S. Deßloch

cells. The output is a table where for each word (row-id) a column count holds
the number of occurrences of the word in all input cells.

With a small modification in the word-count script, one can calculate a term
index with NotaQL: OUT.$(IN. r) <- COUNT(); Here, each term row contains
a count value for each document that contains the term. These can be used to
support an efficient full-text search over large text data. In addition to these
examples, many other graph and text algorithms can be expressed in NotaQL.
For example, the computation of TF-IDF (term frequency/inverse document
frequency) is a chain of three NotaQL transformations.

4 NotaQL Transformation Platform

There are different possibilities to execute NotaQL scripts. They can be mapped
to other languages using a wrapper, the direct API to a wide-column store can be
used, or one could make use of a framework like MapReduce. In this section, we
present a MapReduce-based transformation platform with full NotaQL language
support. It is accessed via a command line interface or with a GUI. The GUI can
be used to plan, execute and monitor NotaQL transformations [4]. When writing
a NotaQL script, the tool immediately visualizes the cell mapping using arrows,
as in the figures in Sect. 3. Alternatively, the user can work just graphically by
defining arrows between cells. The GUI user can define an update period, i.e. a
time interval in which a script will be recomputed.

Fig. 14. NotaQL map function

When a transformation is started, the
input table is read row by row. Rows which
violate the row predicate are skipped. Each
remaining cell fulfilling the cell predicate
is mapped to an output cell in the way
it is defined in the NotaQL script. Cells
with the same identifier are grouped and
all its values are aggregated. We used the
Hadoop10 MapReduce framework for the exe-
cution because of its advantages for dis-
tributed computations, scalability, and fail-
ure compensation. Reading and transforming
input cells is done by the Map function, the
Hadoop framework sorts and groups the out-
put cells, and finally, the aggregation and the
write of the final output is done by the Reduce
function.

Map. The input for one Map function is one
row from the input table that consists of a row-
id and a set of columns and values. Figure 14
10 http://hadoop.apache.org.

http://hadoop.apache.org

NotaQL Is Not a Query Language! It’s for Data Transformation 149

shows how predicates are evaluated and the map output is produced. The Map-
output key is a combination of an output row-id and a column qualifier. So,
each Reduce function processes all the values for one specific cell. It is efficient
to use a Partitioner function which transfers the data directly to the node which
is responsible for storing rows with the given row-id.

Fig. 15. NotaQL reduce
function

Reduce and Combine. Figure 15 shows that the
Reduce function just produces one output cell by
aggregating all values for one column in a row. Sim-
ilar to this, a generic Combine function can aggre-
gate existing values as well. So, the network traffic
is reduced and the Reducers have to aggregate fewer
values for each cell.

Fig. 16. SQL is not well-suited for wide-column stores, 4 easy (4) hard 8 impossible

5 Conclusion

In this paper, we presented NotaQL, a transformation language for wide-column
stores that is easy to use and very powerful. With minimal effort, selections,
projections, grouping and aggregations can be defined as well as operations which
are needed in schema-flexible NoSQL databases like HBase. Each transformation
consists of a mapping between input and output cells and optional predicates.

Figure 16 shows the limits of SQL and that NotaQL supports operations
which are impossible or difficult to express in SQL. SQL is suitable for well-
defined relational schemata, but not for wide-column stores where rows can
have arbitrary columns. That’s why we introduced the NotaQL language and
we showed that it is very powerful. Not only relational operations are supported
but also graph and text algorithms. One should choose a language depending
on the given data model. No one would use SQL instead of XQuery on XML
documents and as NoSQL stands for “Not only SQL”, there is a need for new
query and transformation languages.

As the title of this paper says, NotaQL is not a query language like SQL
or XQuery. On the other hand, one can argue, there is no distinction between
a query and a transformation language. But NotaQL is specialized for trans-
formations over large tables and not for ad-hoc queries. NotaQL does not have
an API. Queries are executed periodically to perform a data transformation on

150 J. Schildgen and S. Deßloch

wide-column stores. The output table can be accessed in the application with a
primitive GET API and the up-to-dateness of the data is defined by the query-
execution interval.

We are currently working on language extensions for NotaQL to support more
complex transformations, e.g. Top-k algorithms. For faster transformations, we
are implementing an incremental component in our framework. This means, a
transformation can reuse the results from a former run and it has only to read
the delta. Currently, only standalone transformations are supported. Iterative
algorithms need to be executed through a batch script which checks a termina-
tion criterion and supervises the iterations. A language extension for iterative
transformations is planned.

Although all experiments are based on the NoSQL database system HBase,
NotaQL scripts can be defined on other wide-column stores and other NoSQL
and relational databases as well. Next, we will apply our findings to Cassandra
because the support of secondary indexes in Cassandra enables better optimiza-
tions for NotaQL computations. Our vision is for cross-platform transformations.
Then, the input and output of a NotaQL transformation can be any data source
from a relational or NoSQL database. So, one can transform a CSV log file into
an HBase table, load a graph from HypergraphDB into MySQL or integrate data
from Cassandra and a key-value store into MongoDB.

References

1. Buneman, P., Cheney, J.: A copy-and-paste model for provenance in curated data-
bases. Notes 123, 6512 (2005)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 1–14 (2008). Article 4

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

4. Emde, M.: GUI und testumgebung für die HBase-schematransformationssprache
NotaQL. Bachelor’s thesis, Kaiserslautern University (2014)

5. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media, Sebastopol
(2011)

6. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: OSDI, vol. 12, p. 2 (2012)

7. Gupta, A., Jagadish, H.V., Mumick, I.S.: Data integration using self-maintainable
views. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 140–144. Springer, Heidelberg (1996)

8. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema
mapping. ACM SIGMOD Rec. 30(2), 607 (2001)

9. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-marl: a DSL for easy and
efficient graph analysis. ACM SIGARCH Comput. Archit. News 40(1), 349–362
(2012)

10. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: SchemaSQL-a language for
interoperability in relational multi-database systems. In: VLDB, vol. 96, pp. 239–
250 (1996)

NotaQL Is Not a Query Language! It’s for Data Transformation 151

11. Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Synth. Lect.
Hum. Lang. Technol. 3(1), 1–177 (2010)

12. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, pp.
135–146. ACM (2010)

13. Grinev, M.: Do You Really Need SQL to Do It All in Cassandra? (2010). http://
wp.me/pZn7Z-o

14. Sergey, M., Andrey, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M.,
Vassilakis, T.: Dremel: interactive analysis of web-scale datasets. Commun. ACM
54(6), 114–123 (2011)

15. Murray, D.G., Sherry, F.M.C., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 439–455. ACM (2013)

16. Olston, C., Chiou, G., Chitnis, L., Liu, F., Han, Y., Larsson, M., Neumann, A., Rao,
V.B.N., Sankarasubramanian, V., Seth, S., et al.: Nova: continuous pig/hadoop
workflows. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pp. 1081–1090. ACM (2011)

17. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report 1999–66, Stanford InfoLab, November
1999. Previous number = SIDL-WP-1999-0120

19. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel
analysis with sawzall. Sci. Program. 13(4), 277–298 (2005)

20. Sato, K.: An inside look at google bigquery. White paper (2012). https://cloud.
google.com/files/BigQueryTechnicalWP.pdf

21. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

22. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM
Trans. Database Syst. (TODS) 30(2), 624–660 (2005)

23. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient distributed
graph system on spark. In: First International Workshop on Graph Data Manage-
ment Experiences and Systems, p. 2. ACM (2013)

24. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

http://wp.me/pZn7Z-o
http://wp.me/pZn7Z-o
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf

	NotaQL Is Not a Query Language! It's for Data Transformation on Wide-Column Stores
	1 Motivation
	2 Related Work
	3 Transformations on Wide-Column Stores
	3.1 Mapping of Input Cells to Output Cells
	3.2 Predicates
	3.3 Graph-Processing Applications
	3.4 Text Processing

	4 NotaQL Transformation Platform
	5 Conclusion
	References

