
Sebastian Maneth (Ed.)

 123

LN
CS

 9
14

7

30th British International Conference
on Databases, BICOD 2015
Edinburgh, UK, July 6–8, 2015, Proceedings

Data Science

Lecture Notes in Computer Science 9147

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Sebastian Maneth (Ed.)

Data Science
30th British International Conference
on Databases, BICOD 2015
Edinburgh, UK, July 6–8, 2015
Proceedings

123

Editor
Sebastian Maneth
University of Edinburgh
Edinburgh
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-20423-9 ISBN 978-3-319-20424-6 (eBook)
DOI 10.1007/978-3-319-20424-6

Library of Congress Control Number: 2015941362

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at BICOD 2015: the 30th British Interna-
tional Conference on Databases held during July 6–8, 2015, in Edinburgh.

The BICOD Conference (formerly known as BNCOD) is a venue for the presen-
tation and discussion of research papers on a broad range of topics related to databases
and data-centric computation. The theme of BICOD 2015 was “Data Science”, i.e., the
extraction of meaning from big data. The conference featured three invited lectures and
three invited keynotes, all centered around the theme of data science.

This year, BICOD attracted 37 complete submissions from 14 different countries,
namely, Austria, China, Egypt, France, Germany, Ireland, Italy, The Netherlands,
Pakistan, Sweden, Switzerland, Tunisia, Turkey, and the UK. Each submission was
reviewed by at least three Program Committee members. The committee decided to
accept 19 papers on such topics as benchmarking, data integration, data replication,
deep learning, graph processing, linked data, log processing, main memory processing,
NoSQL querying, and social network analysis.

We would like to thank the authors for submitting their work to this year’s BICOD
conference, the Program Committee members for their help in selecting an excellent
conference program, and the distinguished speakers and lecturers for accepting our
invitation. We also thank Linda Hope and Magdalena Mazurczak for their involvement
in the local organization of the conference.

May 2015 Sebastian Maneth

Organization

Program Committee

Philippe Bonnet IT University of Copenhagen, Denmark
Jan Van den Bussche University of Hasselt, Belgium
Bogdan Cautis University of Paris-Sud 11, France
James Cheney University of Edinburgh, UK
Barry Eaglestone University of Sheffield, UK
Wenfei Fan University of Edinburgh, UK
Alvaro Fernandes University of Manchester, UK
George Fletcher TU Eindhoven, The Netherlands
Georg Gottlob University of Oxford, UK
Anne James Coventry University, UK
Sebastian Maneth University of Edinburgh, UK (PC Chair)
Ioana Manolescu Inria Saclay, France
Peter McBrien Imperial College London, UK
Hannes Muehleisen CWI Amsterdam, The Netherlands
David Nelson University of Sunderland, UK
Dan Olteanu University of Oxford, UK
Norman Paton University of Manchester, UK
Peter Pietzuch Imperial College London, UK
Alex Poulovassilis Birkbeck College, University of London, UK
Juan Reutter PUC Chile, Chile
Tore Risch Uppsala University, Sweden
Mark Roantree Dublin City University, Ireland
Kai-Uwe Sattler TU Ilmenau, Germany
Sławek Staworko Inria and University of Lille, France
Jens Teubner TU Dortmund, Germany
John Wilson University of Strathclyde, UK
Peter Wood Birkbeck College, University of London, UK

Sponsoring Institutions

University of Edinburgh, Edinburgh, UK
EPSRC Centre for Doctoral Training in Data Science
sicsa: The Scottish Informatics and Computer Science Alliance

VIII Organization

Keynotes/Invited Lectures

Big Data Curation

Renée J. Miller

Department of Computer Science, University of Toronto
miller@cs.toronto.edu

http://cs.toronto.edu/∼miller

Keynote Abstract. More than a decade ago, Peter Buneman used
the term curated databases to refer to databases that are created and
maintained using the (often substantial) effort and domain expertise of
humans. These human experts clean the data, integrate it with new
sources, prepare it for analysis, and share the data with other experts
in their field. In data curation, one seeks to support human curators
in all activities needed for maintaining and enhancing the value of their
data over time. Curation includes data provenance, the process of under-
standing the origins of data, how it was created, cleaned, or integrated.
Big Data offers opportunities to solve curation problems in new ways.
The availability of massive data is making it possible to infer semantic
connections among data, connections that are central to solving diffi-
cult integration, cleaning, and analysis problems. Some of the nuanced
semantic differences that eluded enterprise-scale curation solutions can
now be understood using evidence from Big Data. Big Data Curation
leverages the human expertise that has been embedded in Big Data, be
it in general knowledge data that has been created through mass collab-
oration, or in specialized knowledge-bases created by incentivized user
communities who value the creation and maintenance of high quality
data.

In this talk, I describe our experience in Big Data Curation. This
includes our experience over the last five years curating NIH Clinical Tri-
als data that we have published as Open Linked Data at linkedCT.org. I
overview how we have adapted some of the traditional solutions for data
curation to account for (and take advantage of) Big Data.

Keywords: Data Curation · Big Data · Data Integration ·
Data Provenance

R.J. Miller—Supported by Bell Canada, NSERC and the NSERC Business Intelli-
gence Network.

Dealing with a Web of Data

Nigel Shadbolt

Web and Internet Science, University of Southampton,
Southampton, SO17 1BJ, UK

nrs@ecs.soton.ac.uk

http://users.ecs.soton.ac.uk/nrs/

Keynote Abstract. We live in an age of superabundant information.
The Internet and World Wide Web have been the agents of this revo-
lution. A deluge of information and data has led to a range of scientific
discoveries and engineering innovations. Data at Web scale has allowed
us to characterise the shape and structure of the Web itself and to effi-
ciently search its billions of items of contents. Data published on the
Web has enabled the mobilisation of hundreds of thousands of humans
to solve problems beyond any individual or single organisation.

The last five years have seen increasing amounts of open data being
published on the Web. Open data published on the Web is improving
the efficiency of our public services and giving rise to open innovation.
In particular, governments have made data available across a wide range
of sectors: spending, crime and justice, education, health, transport,
geospatial, environmental and much more. The data has been published
in a variety of formats and has been reused with varying degrees of suc-
cess. Commercial organisations have begun to exploit this resource and
in some cases elected to release their own open data.

Data collected at scale by public and private agencies also gives rise
to concerns about its use and abuse. Meanwhile, data science is emerging
as an area of competitive advantage for individuals, companies, univer-
sities, public and private sector organisations and nation states. A Web
of data offers new opportunities and challenges for science, government
and business. These include issues of provenance and security, quality
and curation, certification and citation, linkage and annotation.

Statistical Thinking in Machine Learning

Padhraic Smyth

Department of Computer Science, University of California,
Irvine, CA 92607-3435, USA

http://www.ics.uci.edu/∼smyth

Abstract. Machine learning began as a subfield of artificial intelligence
several decades ago but has grown to become a major research area
within computer science in its own right. In particular, in the past few
years machine learning has played a key role in making progress on a vari-
ety of application problems in areas such as image recognition, speech
recognition, online advertising, and ranking of Web search results. The
field is enjoying continued attention with the resurgent interest in neural
network models via deep learning, and the broad interest outside com-
puter science in topics such as “data science” and “big data.”

In this talk we will discuss the role of statistics in the success of
machine learning. Statistical theories and models have long provided a
foundational basis for many of the techniques used in machine learning,
particularly in models with explicit probabilistic semantics such as logis-
tic regression, hidden Markov models, and so on. But even for models
which appear on the surface to have no explicit probabilistic or sta-
tistical semantics, such as neural networks or decision trees, there are
fundamental statistical trade-offs at play, lurking beneath the surface of
problems that appear to be more closely related to optimization than
they are to statistical modeling. Focusing primarily on predictive model-
ing (classification and regression) we will explore how statistical thinking
is fundamental to machine learning even when statistical models do not
appear to be involved.

Keywords: Machine learning · Statistics · Classification · Regression

Streaming Methods in Data Analysis

Graham Cormode

University of Warwick
G.Cormode@Warwick.ac.uk

Abstract. A fundamental challenge in processing the massive quanti-
ties of information generated by modern applications is in extracting
suitable representations of the data that can be stored, manipulated and
interrogated on a single machine. A promising approach is in the design
and analysis of compact summaries: data structures which capture key
features of the data, and which can be created effectively over distrib-
uted, streaming data. Popular summary structures include the count
distinct algorithms, which compactly approximate item set cardinalities,
and sketches which allow vector norms and products to be estimated.
These are very attractive, since they can be computed in parallel and
combined to yield a single, compact summary of the data. This talk
introduces the concepts and examples of compact summaries.

The Power of Visual Analytics:
Unlocking the Value of Big Data

Daniel Keim

Data Analysis and Visualization Group,
University of Konstanz, Konstanz, Germany

keim@uni-konstanz.de

http://www.vis.uni-konstanz.de/mitglieder/keim/

Keynote Abstract. Never before in history data is generated and col-
lected at such high volumes as it is today. For the analysis of large
data sets to be effective, it is important to include the human in the
data exploration process and combine the flexibility, creativity, and gen-
eral knowledge of the human with the enormous storage capacity and
the computational power of today’s computers. Visual Analytics helps
to deal with the flood of information by integrating the human in the
data analysis process, applying its perceptual abilities to the large data
sets. Presenting data in an interactive, graphical form often fosters new
insights, encouraging the formation and validation of new hypotheses for
better problem-solving and gaining deeper domain knowledge. Visual
analytics techniques have proven to be of high value in exploratory data
analysis. They are especially powerful for the first steps of the data explo-
ration process, namely understanding the data and generating hypothe-
ses about the data, but they also significantly contribute to the actual
knowledge discovery by guiding the search using visual feedback.

In putting visual analysis to work on big data, it is not obvious what
can be done by automated analysis and what should be done by interac-
tive visual methods. In dealing with massive data, the use of automated
methods is mandatory - and for some problems it may be sufficient to
only use fully automated analysis methods, but there is also a wide range
of problems where the use of interactive visual methods is necessary. The
presentation discusses when it is useful to combine visualization and ana-
lytics techniques and it will also discuss the options how to combine
techniques from both areas. Examples from a wide range of application
areas illustrate the benefits of visual analytics techniques.

Differential Privacy and Preserving Validity
in Adaptive Data Analysis

Aaron Roth

University of Pennsylvania

In this talk, we briefly introduce differential privacy, a rigorous privacy solution
concept developed over the last decade [DMNS06], and explain how it allows
various sorts of accurate data analyses to be performed while giving very strong
privacy guarantees to the individuals in the data set. Among other things, we
will describe recent work which allows the private generation of synthetic data,
accurate for large numbers of statistics, even on very high dimensional data sets
[GGH+14]. We then explain a very recent and surprising connection between
differential privacy and statistical validity in adaptive data analysis, in which
the guarantees of differential privacy can actually improve the accuracy of an
analysis!

Machine learning and hypothesis testing in empirical science share a common
goal: to identify generalizable facts about the distribution from which data points
were drawn, while avoiding what is called overfitting the data-set in machine
learning and false discovery in empirical science. The theory of how to do this
is well developed when the analysis being performed is non-adaptive – i.e. when
the set of hypotheses to be tested, the set of models to be fit, or the set of
queries to be made to the data are fixed before the data is gathered, and do not
change as a function of the outcomes observed. For example, standard sample
complexity bounds in learning theory (see e.g. [KV94]) guarantee that for any
set of k hypotheses, their value on a dataset sampled i.i.d. from a distribution
will be very close to their value on the underlying distribution, so long as the
data set contains a number of samples that scales with log k. In contrast, the
practice of data-analysis and scientific research is by its nature adaptive. Within a
single study, new hypotheses are suggested as a result of the outcome of previous
exploratory analysis on the data, and data sets are shared and re-used between
studies leading to complex dependencies. Unfortunately, this adaptivity breaks
the standard generalization guarantees in both machine learning and in the
theory of hypothesis testing – in fact, it is not hard to demonstrate that it is
easy to over-fit the data when adaptive data analysis is done using direct access
to the data set.

We have given the first technique for performing arbitrary adaptive data
analyses together with rigorous generalization guarantees, that requires a num-
ber of data points comparable to what would be required for non-adaptive data
analyses [DFH+15]. Our result derives from a powerful transfer theorem, which
informally states: any analysis performed on a data-set subject to the guarantees
of differential privacy automatically generalizes to the distribution from which
the data was drawn. This connection, which seems surprising at first blush, is
in fact natural – differential privacy is an algorithmic stability guarantee, and

Differential Privacy and Preserving Validity in Adaptive Data Analysis XVII

algorithmic stability is known to prevent overfitting – informally because over-
fitting is not a stable operation. The connection has important implications
for adaptive data analysis precisely because we know how to perform adaptive
data analysis subject to differential privacy! Our original result has since been
improved upon, both quantitatively and in terms of generality [BSSU15,NS15].

References

[BSSU15] Bassily, R., Smith, A., Steinke, T., Ullman, J.: More general queries and
less generalization error in adaptive data analysis. arXiv:1503.0484 (2015)

[DFH+15] Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A.:
Preserving statistical validity in adaptive data analysis. In: Proceedings of
the 47th Annual ACM Symposium on Theory of Computing. ACM (2015)

[DMNS06] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sen-
sitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

[GGH+14] Gaboardi, M., Jesús Gallego, E., Hsu, J., Roth, A., Steven Wu, Z.: Dual
query: practical private query release for high dimensional data. In: Pro-
ceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21–26 June 2014, vol. 32, pp. 1170–1178. JMLR.org
(2014)

[KV94] Kearns, M.J., Vazirani, U.V.: An introduction to computational learning
theory. MIT Press (1994)

[NS15] Nissim, K., Stemmer, U.: On the generalization properties of differential
privacy. arXiv:1504.05800 (2015)

http://arxiv.org/abs/1503.0484
http://arxiv.org/abs/1504.0580

Contents

Invited Lectures

Streaming Methods in Data Analysis . 3
Graham Cormode

Data Integration

A Framework for Scalable Correlation of Spatio-temporal Event Data 9
Stefan Hagedorn, Kai-Uwe Sattler, and Michael Gertz

Towards More Data-Aware Application Integration 16
Daniel Ritter

Applying NoSQL Databases for Integrating Web Educational
Stores - An Ontology-Based Approach . 29

Reem Qadan Al Fayez and Mike Joy

Implementing Peer-to-Peer Semantic Integration of Linked Data 41
Mirko M. Dimartino, Andrea Calì, Alexandra Poulovassilis,
and Peter T. Wood

Graph Data

Virtual Network Mapping: A Graph Pattern Matching Approach. 49
Yang Cao, Wenfei Fan, and Shuai Ma

A Fast Approach for Detecting Overlapping Communities in Social
Networks Based on Game Theory . 62

Lihua Zhou, Peizhong Yang, Kevin Lü, Lizhen Wang,
and Hongmei Chen

Consistent RDF Updates with Correct Dense Deltas 74
Sana Al Azwari and John N. Wilson

Query-Oriented Summarization of RDF Graphs . 87
Šejla Čebirić, François Goasdoué, and Ioana Manolescu

http://dx.doi.org/10.1007/978-3-319-20424-6_1
http://dx.doi.org/10.1007/978-3-319-20424-6_2
http://dx.doi.org/10.1007/978-3-319-20424-6_3
http://dx.doi.org/10.1007/978-3-319-20424-6_4
http://dx.doi.org/10.1007/978-3-319-20424-6_4
http://dx.doi.org/10.1007/978-3-319-20424-6_5
http://dx.doi.org/10.1007/978-3-319-20424-6_6
http://dx.doi.org/10.1007/978-3-319-20424-6_7
http://dx.doi.org/10.1007/978-3-319-20424-6_7
http://dx.doi.org/10.1007/978-3-319-20424-6_8
http://dx.doi.org/10.1007/978-3-319-20424-6_9

Data Exploration

ReX: Extrapolating Relational Data in a Representative Way 95
Teodora Sandra Buda, Thomas Cerqueus, John Murphy,
and Morten Kristiansen

Evaluation Measures for Event Detection Techniques on Twitter Data
Streams . 108

Andreas Weiler, Michael Grossniklaus, and Marc H. Scholl

A Framework for Selecting Deep Learning Hyper-parameters 120
Jim O’ Donoghue and Mark Roantree

Using Virtual Meeting Structure to Support Summarisation 133
Antonios G. Nanos, Anne E. James, Rahat Iqbal, and Yih-ling Hedley

NoSQL and Distributed Processing

NotaQL Is Not a Query Language! It’s for Data Transformation
on Wide-Column Stores . 139

Johannes Schildgen and Stefan Deßloch

NoSQL Approach to Large Scale Analysis of Persisted Streams 152
Khalid Mahmood, Thanh Truong, and Tore Risch

Horizontal Fragmentation and Replication for Multiple Relaxation
Attributes . 157

Lena Wiese

Scalability

Scalable Queries Over Log Database Collections. 173
Minpeng Zhu, Khalid Mahmood, and Tore Risch

ECST – Extended Context-Free Straight-Line Tree Grammars 186
Stefan Böttcher, Rita Hartel, Thomas Jacobs, and Markus Jeromin

Configuring Spatial Grids for Efficient Main Memory Joins 199
Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki

Transactional and Incremental Type Inference from Data Updates 206
Yu Liu and Peter McBrien

Author Index . 221

XX Contents

http://dx.doi.org/10.1007/978-3-319-20424-6_10
http://dx.doi.org/10.1007/978-3-319-20424-6_11
http://dx.doi.org/10.1007/978-3-319-20424-6_11
http://dx.doi.org/10.1007/978-3-319-20424-6_12
http://dx.doi.org/10.1007/978-3-319-20424-6_13
http://dx.doi.org/10.1007/978-3-319-20424-6_14
http://dx.doi.org/10.1007/978-3-319-20424-6_14
http://dx.doi.org/10.1007/978-3-319-20424-6_15
http://dx.doi.org/10.1007/978-3-319-20424-6_16
http://dx.doi.org/10.1007/978-3-319-20424-6_16
http://dx.doi.org/10.1007/978-3-319-20424-6_17
http://dx.doi.org/10.1007/978-3-319-20424-6_18
http://dx.doi.org/10.1007/978-3-319-20424-6_19
http://dx.doi.org/10.1007/978-3-319-20424-6_20

Invited Lectures

Streaming Methods in Data Analysis

Graham Cormode(B)

University of Warwick, Coventry, UK
G.Cormode@Warwick.ac.uk

Abstract. A fundamental challenge in processing the massive quanti-
ties of information generated by modern applications is in extracting
suitable representations of the data that can be stored, manipulated and
interrogated on a single machine. A promising approach is in the design
and analysis of compact summaries: data structures which capture key
features of the data, and which can be created effectively over distrib-
uted, streaming data. Popular summary structures include the count
distinct algorithms, which compactly approximate item set cardinalities,
and sketches which allow vector norms and products to be estimated.
These are very attractive, since they can be computed in parallel and
combined to yield a single, compact summary of the data. This talk
introduces the concepts and examples of compact summaries.

1 Introduction

Business and scientific communities all agree that “big data” holds both tremen-
dous promise, and substantial challenges [8]. There is much potential for extract-
ing useful intelligence and actionable information from the large quantities of
data generated and captured by modern information processing systems. Big
data challenges involve not only the sheer volume of the data, but the fact that
it can represent a complex variety of entities and interactions between them, and
new observations that arrive, often across multiple locations, at high velocity.
Examples of applications that generate big data include:

– Physical Data from sensor deployments and scientific experiments—astronomy
data from modern telescopes generates terabytes of data each night, while the
data collected from a single particle physics experiment is too big to store;

– Medical Data, as we can now sequence whole genomes economically, generating
data sets of the order of 200TB in one example [7];

– Activity Data, as human activity data is captured and stored in ever greater
quantities and detail: interactions from online social networks, locations from
GPS, Internet activity etc.

Across all of these disparate settings, certain common themes emerge. The data
in question is large, and growing. The applications seek to extract patterns,
trends or descriptions of the data. Ensuring the scalability of systems, and the
timeliness and veracity of the analysis is vital in many of these applications. In
order to realize the promise of these sources of data, we need new methods that
can handle them effectively.
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 3–6, 2015.
DOI: 10.1007/978-3-319-20424-6 1

4 G. Cormode

While such sources of big data are becoming increasingly common, the
resources to process them (chiefly, processor speed, fast memory and slower
disk) are growing at a slower pace. The consequence of this trend is that there
is an urgent need for more effort directed towards capturing and processing
data in many critical applications. Careful planning and scalable architectures
are needed to fulfill the requirements of analysis and information extraction on
big data. In response to these needs, new computational paradigms are being
adopted to deal with the challenge of big data. Large scale distributed computa-
tion is a central piece: the scope of the computation can exceed what is feasible
on a single machine, and so clusters of machines work together in parallel. On
top of these architectures, parallel algorithms are designed which can take the
complex task and break it into independent pieces suitable for distribution over
multiple machines.

A central challenge within any such system is how to compute and repre-
sent complex features of big data in a way that can be processed by many single
machines in parallel. A vital component is to be able to build and manipulate a
compact summary of a large amount of data. This powerful notion of a small sum-
mary, in all its many and varied forms, is the subject of this tutorial. The idea of
a summary is a natural and familiar one. It should represent something large and
complex in a compact fashion. Inevitably, a summary must dispense with some of
the detail and nuance of the object which it is summarizing. However, it should also
preserve some key features of the object in a very accurate fashion. Effective com-
pact summaries are often approximate in their answers to queries and randomized.

The theory of compact summaries can be traced back over four decades.
A first example is the Morris Approximate Counter, which approximately counts
quantities up to magnitude n using O(log log n) bits, rather than the �log n�
bits to count exactly [15]. Subsequently, there has been much interest in sum-
maries in the context of streaming algorithms: these are algorithms that process
data in the form of a stream of updates, and whose associated data structures
can be seen as a compact summary [16]. More recently, the more general notion
of mergeable summaries has arisen: summaries that can be computed on different
portions of a dataset in isolation, then subsequently combined to form a sum-
mary of the union of the inputs [1]. It turns out that a large number streaming
algorithms entail a mergeable summary, hence making this class of objects a
large and interesting one.

There has beenmuch effort expended on summary techniques over recent years,
leading to the invention of powerful and effective summaries which have found
applications in Internet Service Providers [5], Search Engines [12,17], and beyond.

2 Outline

The accompanying talk will introduce the notion of summaries, and outline ideas
behind some of the most prominent examples, which include:

– Counts, approximate counts [15], and approximate frequencies [14]
– Count distinct, set cardinality, and set operations [9,10]

Streaming Methods in Data Analysis 5

– Random projections with low-independence vectors to give sketch data struc-
tures [3,4,6]

– Summaries for medians and order statistics [11,13]
– Linear summaries for graphs: connectivity, bipartiteness and sparsification [2]
– Summaries for matrix and linear algebra operations [18]
– Problems for which no compact summary can exist, via communication com-

plexity lower bounds.

Acknowledgments. This work supported in part by a Royal Society Wolfson
Research Merit Award, funding from the Yahoo Research Faculty Research and Engage-
ment Program, and European Research Council (ERC) Consolidator Grant ERC-CoG-
2014-647557.

References

1. Agarwal, P., Cormode, G., Huang, Z., Phillips, J., Wei, Z.: Mergeable summaries.
ACM Principles Database Sys. 38(4), 1–28 (2012)

2. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: ACM-SIAM Symposium on Discrete Algorithms (2012)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. ACM Symp. Theor. Comput. 46(2), 20–29 (1996)

4. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP) (2002)

5. Cormode, G., Korn, F., Muthukrishnan, S., Johnson, T., Spatscheck, O.,
Srivastava, O.: Holistic UDAFs at streaming speeds. In: ACM SIGMOD Inter-
national Conference on Management of Data, pp. 35–46 (2004)

6. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the Count-
Min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

7. Cravedi, K., Randall, T., Thompson. L.: 1000 genomes project data available on
Amazon Cloud. NIH News, March 2012

8. Cukier, K.: Data, data everywhere. The Economist, February 2010
9. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for database applica-

tions. J. Comput. Syst. Sci. 31, 182–209 (1985)
10. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of

a near-optimal cardinality estimation algorithm. In: International Conference on
Analysis of Algorithms (2007)

11. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: ACM SIGMOD International Conference on Management of Data
(2001)

12. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M.,
Vassilakis, T.: Dremel: interactive analysis of web-scale datasets. In: International
Conference on Very Large Data Bases, pp. 330–339 (2010)

13. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: International Conference on Database Theory
(2005)

14. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2, 143–152
(1982)

6 G. Cormode

15. Morris, R.: Counting large numbers of events in small registers. Commun. ACM
21(10), 840–842 (1977)

16. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers,
Norwell (2005)

17. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel
analysis with sawzall. Dyn. Grids Worldwide Comput. 13(4), 277–298 (2005)

18. Woodruff, D.: Sketching as a tool for numerical linear algebra. Found. Trends
Theor. Comput. Sci. 10(1–2), 1–157 (2014)

Data Integration

A Framework for Scalable Correlation
of Spatio-temporal Event Data

Stefan Hagedorn1(B), Kai-Uwe Sattler1, and Michael Gertz2

1 Technische Universität Ilmenau, Ilmenau, Germany
{Stefan.Hagedorn,Kai-Uwe.Sattler}@tu-ilmenau.de

2 Heidelberg University, Heidelberg, Germany
gertz@informatik.uni-heidelberg.de

Abstract. Spatio-temporal event data do not only arise from sensor
readings, but also in information retrieval and text analysis. However,
such events extracted from a text corpus may be imprecise in both dimen-
sions. In this paper we focus on the task of event correlation, i.e., finding
events that are similar in terms of space and time. We present a frame-
work for Apache Spark that provides correlation operators that can be
configured to deal with such imprecise event data.

1 Introduction

An event is often described as “something that happens at some place at some
time”. Thus, events inherently have a spatial and a temporal component. These
spatio-temporal events do not only origin from sensor readings, but can also be
extracted from text corpora like news, weblogs, and tweets.

The task we focus on in this paper is to find events that are correlated to a
given event in terms of its time and place of occurrence. The result is, e.g., a list
of pointers to documents in which similar events have been detected. For such
correlation tasks, we are facing the following problems:

– First, event specifications are often imprecise. For example, for the event
extracted from the sentence “Obama visited Germany in April 2009”, we do
not know (using only the text source) which part of Germany Obama visited
or at what exact dates he visited Germany.

– Second, for comparing events in terms of their similarity solely based on their
temporal and geographic components, we need a distance measure.

– Third, depending on the specific application different correlation techniques
are needed: for finding similar events, nearest neighbor or skyline queries are
an appropriate approach, whereas for determining hot spots, clustering (such
as DBSCAN) might be a better choice.

– Finally, because (extracted) event data can be large datasets, scalable tech-
niques are required. Modern data processing frameworks such as Apache
Hadoop or Spark provide a suitable platform for addressing this challenge.
In [2] an adaption of DBSCAN to MapReduce is proposed, whereas in [1] and
[4] adaptions of the skyline algorithm are shown.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 9–15, 2015.
DOI: 10.1007/978-3-319-20424-6 2

10 S. Hagedorn et al.

In this paper, we propose a framework that addresses the problem of deter-
mining the correlation between events. For this, we introduce an event model
and indicate different distance measures for both the temporal and geographic
components of events. We further introduce a set of basic operators for prepar-
ing as well as exploring and analyzing event data correlations. These operators
are provided as transformation operators in Apache Spark and allow to define
application-specific spatio-temporal event analysis pipelines including top-k and
skyline processing as well as (density-based) clustering.

2 Event Data Model

We assume an event model in which information about events has been extracted
from some document and is represented by a temporal and a geographic compo-
nent along with other information like an ID and metadata such as the origin.
The expressions underlying these components are based on concept hierarchies
for time and space.

Temporal expressions can be of different granularities, with days being the
finest and years the coarsest level of granularity. Although further granularities
such as weeks or centuries can be included. For the sake of simplicity, in the
following, we only focus on days, months, and years. We denote the corresponding
domains as T = {Tday, Tmonth, Tyear}.

Analogously, geographic expressions are taken from the domains in G =
{Gcity, Gstate, Gcountry}. We assume that with each expression a spatial object
in the form of a single polygon (without holes) is associated.

Definition 1. (Event) Given concept hierarchies T and G for temporal and
geographic expressions, respectively. An event e = 〈t, g〉 consists of a temporal
expression t with t.type ∈ T and a geographic expression g with g.type ∈ G.

Examples of (imprecise) event specifications are (2013-09-02, Munich), (1955,
Germany), or (2000-04, Bavaria). To account for these types of imprecision, in
our framework we make the following assumptions:

1. Temporal and geographic expressions of the finest granularity are certain.
2. Every temporal (resp. geographic) expression of type P ′ that refines a given

temporal (resp. geographic) expression of type P , with P ′ being of finer gran-
ularity than P , is equally likely.

Distance Measures. To compute correlations between events, we need a dis-
tance measure that takes both the temporal and the geographic component of
an event into account, both of which can be imprecise. For the most fine-grained,
point-based locations (e.g., cities) and days, this is trivial, resulting in a scalar
value for time (e.g., distance in days) and location (e.g., distance in kilome-
ters), which can be combined into some single (weighted) distance value. For
events having an imprecise temporal or geographic expressions, different types
of distance functions are meaningful and can be specified accordingly.

A Framework for Scalable Correlation of Spatio-temporal Event Data 11

In general, there are two approaches for realizing a distance function for
imprecise event data. First, dates representing a month or year can be mapped
to intervals of days (e.g., “2014-05” can be mapped to [2014-05-01, 2014-05-30])
with each subinterval being valid instance of “2014-05”. Similarly, a country can
be mapped to a polygon or minimum bounding box. Then, a function is devised
that determines the distance between intervals (for time) and boxes/polygons
(for regions). Each such a function can either yield a single scalar value (e.g., the
average distance between points of two intervals/boxes), or an interval, giving the
minimum and maximum distance between two intervals/boxes. In our current
framework, we only consider the former case where single scalar values for both
the temporal and geographic component are determined and linearly combined
using a weight. That is, for two events e1 and e2, we assume a distance function
dist(e1, e2) := wt distt(e1, e2) + wg distg(e1, e2), with diste and distg functions
for determining the distance between intervals and regions/boxes, respectively,
and wt, wg ∈ [0, 1], wt + wg = 1.

3 Techniques for Correlating Event Data

Correlating events means to find events in the dataset that have something in
common or which have the same or a similar context. In this paper, we focus on
the spatio-temporal aspect of events, which means we consider the similarity of
events in terms of their spatial and/or temporal properties. Depending on the
specific application different approaches can be used to determine correlations.

Nearest Neighbor Queries. Nearest neighbor queries represent the most straight-
forward solution. Given a set of events E , a reference event er and a distance
function dist, the task is to find the set kNN(er) of the k nearest events. In the
case of our spatio-temporal event data this requires a single distance measure,
which is usually defined using weights for the spatial and temporal distances.

Skyline. Defining appropriate weights is often difficult. Skyline queries avoid
this problem. Adapted to our scenario, the notion of the Skyline algorithm is to
find those events in E that “match” a query event q = 〈tq, gq〉 best. Since we
consider two dimension for events, time and space, it is thus intuitive to employ
a skyline-based approach as there might be events that match tq well but not
gq, and vice versa. A core concept of skylines is the dominance relationship. The
skyline Sq consists of all events that are not dominated by any other event in E
with respect to q. Because the dominance of an event with respect to another
event is decided by their respective distances to q, the distance function outlined
in the previous section come into play.

Clustering. Clustering represents another useful technique for correlating event
data. Applied to the problem of event correlation we can form clusters of events
on their distance values and, in this way, events belonging to the same cluster are
considered to be correlated. Focusing only on the spatial and temporal dimension
results in clusters of events that occur in close proximity in terms of space and time.

12 S. Hagedorn et al.

SkylineOp

EventCluster

ClusteringOpCalcDistance

PrepareEvents EventData

EventSkyline

RawEventData

EventDistanceData

time, location

distancedominates

reference
event

GeoDB

TopKOp

EventList

k, weights

distance-func

Fig. 1. Framework showing operators and event analysis pipeline

4 A Spark-Based Correlation Framework

Given the event data model, the distance functions, and the set of correlation
functions described above, the goal of our work is to provide a framework for scal-
able event data correlation. As the underlying platform we have chosen Apache
Spark1, but our framework can be easily ported to other platforms providing a
similar (Scala-based) API such as the Apache Flink2 project. Figure 1 shows the
components of the framework and their role in an event analysis pipeline.

The core components are the following operators implemented as transfor-
mations on Spark’s resilient distributed datasets (RDD):

PrepareEvents: This operator transforms a set of raw (textual) event data into
a set of event records 〈t, q〉 conforming to our framework. This means that
textual temporal and spatial properties are normalized into numerical values,
i.e., date/time values and points or polygons for the spatial descriptions such
as names of cities or locations. For the latter, a service such as GeoNames3

can be used.
CalcDistance: This implements a transformation operator for calculating the

spatial and temporal distance dist of each event of a RDD to a given reference
event.

TopKOp: This operator computes the top-k list of events from an input RDD
produced by CalcDistance. Parameters to this operator are k as well as the
weights for the geographic (wg) and temporal (wt) distance.

SkylineOp: This operator computes the skyline of event records from a RDD
produced by CalcDistance. The dominance relation can be passed as para-
meter to the operator.

ClusteringOp: Finding groups of correlated events is realized by the
ClusteringOp operator implementing a parallel variant of DBSCAN [3] for
spatio-temporal data. Parameters are the standard clustering parameters ε

1 http://spark.apache.org.
2 http://flink.apache.org.
3 http://www.geonames.org.

http://spark.apache.org
http://flink.apache.org
http://www.geonames.org

A Framework for Scalable Correlation of Spatio-temporal Event Data 13

and MinPts as well as a global distance function taking both spatial and
temporal distances into account.

While the implementation of PrepareEvents, CalcDistance, and – a sort-
based – TopKOp operator is rather straightforward, efficient skyline processing
and density-based clustering require more effort. As mentioned in Sect. 1, there
already exist some proposals for MapReduce-based implementations of these
operators that have inspired our Spark implementations.

Both SkylineOp and ClusteringOp are based on a grid partitioning, where
the dimensions of the grid are either the spatial and temporal dimensions (in
case of skyline processing) or longitude, latitude, and time in case of clustering.
For simplicity, we assume – non-optimal – equally-sized grid cells representing
partitions of Spark’s RDDs.

Our skyline operator implements the idea presented in [4] by computing in a
first phase bitstrings representing grid cells containing data points. This can be
done in parallel without moving data. By combining these bitstrings in a reduce
step, dominated as well as empty cells can be pruned. In the second phase, all
nodes compute a local skyline of their data by taking the information from this
global bitstring into account. Finally, the local skylines are merged.

For density-based clustering, grid cells must not be disjoint in order to deter-
mine the neighborhood for objects at the border of cells. Thus, we compute an
overlap between neighboring cells and assign objects in this overlap area to its
neighbor cells, too. Next, for each cell a local DBSCAN is performed. Note that
compared to the skyline processing strategy, this requires to repartition data
according their grid cell membership. Finally, we build a global graph of all local
clusters in order to merge clusters from different cells.

5 Use Cases

In this section, we show the outcome of the skyline and top-k operations. Due
to space limitations we do not present a full performance evaluation. Our test
dataset was crawled from the website eventful.com and contains 122,467 events.
It consists only of events that took place in Germany where the earliest event
appeared on 2007-06-30 and the latest on 2020-06-30. For the test of our opera-
tors, we manually removed all events in the eastern part of Germany (which is
the federal state of Saxony).

Figure 2 shows the spatial distribution of all events in our dataset. On the left,
the skyline (marked with +) is shown. The right figure shows the result of the top-
k query (k = 10; marked with •). The reference point for both queries is shown
as �. One can see that the spatio-temporal skyline not only finds correlated
events that have both a small spatial and temporal distance to the reference
event, but also considers events as correlated that are near to the reference event
in at least one dimension. The two shown skyline points in the north and the
south have a large spatial distance, but only a small temporal distance and thus,
are considered correlated to the reference event. On the other hand, the top-
k operator accepts user-defined weights for the spatial and temporal distances

14 S. Hagedorn et al.

Fig. 2. Left: the skyline (+); right: top-10 result (•) for a reference event (�).

to express a desired preference over one or the other dimension. In the given
example these weights are wg = 0.10 for the geographic and wt = 0.90 for the
temporal dimension, i.e., the temporal distance is considered more important. As
Fig. 2 shows, the resulting points have a large geographic distance, but are near
to the reference event in the temporal dimension. Note, there are events that
take place at the exact same position, so that they cover each other in the figure
and appear as one point. Thus, the figure shows only eight result points. Due to
space limitations, we cannot show the results of the spatio-temporal clustering.

6 Conclusions and Ongoing Work

In this paper, we presented a framework for Apache Spark that provides opera-
tors for computing correlated events. We provide operators for data import and
cleaning as well as operators for the actual correlation tasks. These operators can
be configured by their parameters and the distance function - for which we also
provide several alternatives. Our ongoing work focuses more on imprecise data
and respective distance functions that return intervals instead of scalar values,
which will result in, e.g., SkyBands instead of Skylines.

Acknowledgement. This work was funded by the DFG under grant no. SA782/22.

A Framework for Scalable Correlation of Spatio-temporal Event Data 15

References

1. Chen, L., Hwang, K., Wu, J.: MapReduce skyline query processing with a new
angular partitioning approach. In: IPDPSW (2012)

2. Dai, B.-R., Lin, I.-C.: Efficient map/reduce-based DBSCAN algorithm with opti-
mized data partition. In: CLOUD (2012)

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD (1996)

4. Mullesgaard, K., Pederseny, J.L., Lu, H., Zhou, Y.: Efficient skyline computation in
MapReduce. In: EDBT (2014)

Towards More Data-Aware
Application Integration

Daniel Ritter (B)

SAP SE, Technology Development, Dietmar-Hopp-Allee 16,
69190 Walldorf, Germany
daniel.ritter@sap.com

Abstract. Although most business application data is stored in rela-
tional databases, programming languages and wire formats in integration
middleware systems are not table-centric. Due to costly format conver-
sions, data-shipments and faster computation, the trend is to “push-
down” the integration operations closer to the storage representation.
We address the alternative case of defining declarative, table-centric
integration semantics within standard integration systems. For that, we
replace the current operator implementations for the well-known Enter-
prise Integration Patterns by equivalent “in-memory” table processing,
and show a practical realization in a conventional integration system for
a non-reliable, “data-intensive” messaging example. The results of the
runtime analysis show that table-centric processing is promising already
in standard, “single-record” message routing and transformations, and
can potentially excel the message throughput for “multi-record” table
messages.

Keywords: Datalog · Message-based/Data integration · Integration
system

1 Introduction

Integration middleware systems in the sense of EAI brokers [5] address the funda-
mental need for (business) application integration by acting as a messaging hub
between applications. As such, they have become ubiquitous in service-oriented
enterprise computing environments. Messages are mediated between applications
mostly in wire formats based on XML (e. g., SOAP for Web Services).

The advent of more “data-aware” integration scenarios (observation O1)
put emphasis on (near) “real-time” or online processing (O2), which requires us
to revisit the standard integration capabilities, system design and architectural
decisions. For instance, in the financial/utilities industry, China Mobile gener-
ates 5–8 TB of call detail records per day, which have to be processed by inte-
gration systems (i. e., mostly message routing and transformation patterns),
“convergent charging”1 (CC) and “invoicing” applications (not further dis-
cussed). In addition, the standard XML-processing has to give ground to other
1 Solace Solutions, visited 02/2015; last update 2012: http://www.solacesystems.com/

techblog/deconstructing-kafka.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 16–28, 2015.
DOI: 10.1007/978-3-319-20424-6 3

http://www.solacesystems.com/techblog/deconstructing-kafka
http://www.solacesystems.com/techblog/deconstructing-kafka

Towards More Data-Aware Application Integration 17

formats like JSON and CSV (O3). These observations (O1–3) are backed by
similar scenarios from sports management (e. g., online player tracking) and the
rapidly growing amount of data from the Internet of Things and Cyber Physical
System domains. For those scenarios, an architectural setup with systems like
Message Queuing (MQ) are used as reliable “message buffers” (i. e., queues,
topics) that handle “bursty” incoming messages and smoothen peak loads
(cf. Fig. 1). Integration systems are used as message consumers, which (transac-
tionally) dequeue, transform (e. g., translation, content enrichment) and route
messages to applications. For reliable transport and message provenance, inte-
gration systems require relational Database Systems, in which most of the (busi-
ness) application data is currently stored (O4). When looking at the throughput
capabilities of the named systems, software-/hardware-based MQ systems like
Apache Kafka or Solace(See footnote 1) are able to process several millions of
messages per second. RDBMS benchmarks like TPC-H, TPC-DI measure queries
and inserts in PB sizes, while simple, header-based routing benchmarks for inte-
gration systems show message throuphputs of few thousands of messages per sec-
ond [2] (O5). In other words, MQ and DBMS (e. g., RDBMS, NoSQL, NewSQL)
systems are already addressing observations O1–5. Integration systems, however,
seem to not be there yet.

Compared to MQs, integration systems work on message data, which seems
to make the difference in message throughput. We argue that integration opera-
tions, represented by Enterprise Integration Patterns (EIP) [9], can be mapped
to an “in-memory” representation of the table-centric RDBMS operations to
profit from their efficient and fast evaluation. Early ideas on this were brought
up in our position papers [11,13]. In this work, we follow up to shed light on
the observed discrepancies. We revisit the EIP building blocks and operator
model of integration systems, for which we define RDBMS-like table operators
(so far without changing their semantics) as a symbiosis of RDBMS and inte-
gration processing, e. g., by using Datalog [17]. We choose Datalog as example
of an efficiently computable, table-like integration co-processing facility close to
the actual storage representation with expressive foundations (e. g., recursion),
which we call Table-centric Integration Patterns (TIP). To show the applicabil-
ity of our approach to integration scenarios along observations O1–5 we conduct
an experimental message throughput analysis for selected routing and transfor-
mation patterns, where we carefully embed the TIP definitions into the open-
source integration system Apache Camel [3] that implements most of the EIPs.
Not changing the EIP semantics means that table operations are executed on
“single-record” table messages. We give an outlook to “multi-record” table mes-
sage processing.

The remainder of this paper is organized along its main contributions. After
a more comprehensive explanation of the motivating CC example and a brief
sketch of our approach in Sect. 2, we analyse common integration patterns with
respect to their extensibility for alternative operator models and define a table-
centric operator/processing model that can be embedded into the patterns (still)

18 D. Ritter

aligned with their semantics in Sect. 3. In Sect. 4 we apply our approach to a con-
ventional integration system and briefly describe and discuss our experimental
performance analysis, and we draw an experimental sketch of the idea of “multi-
record” table message processing. Section 5 examines related work and Sect. 6
concludes the paper.

2 Motivating Example and General Approach

In this section, the motivating “Call Record Detail” example in the context
of the “Convergent Charging” application is described more comprehensively
along with a sketch of our approach. Figure 1 shows aspects of both as part of a
common integration system architecture.

Fig. 1. High-level overview of the convergent charging integration scenario.

2.1 The Convergent Charging Scenario

Mobile service providers like China Mobile generate large amounts of “Call
Record Details” (CRDs) per day that have been processed by applications like
SAP Convergent Charging2 (CC). As shown in Fig. 1, these CRDs are usually
sent from mobile devices to integration systems (optionally buffered in an MQ
system), where they are translated to an intermediate (application) format and
enriched by additional master data (e. g., business partner, product). The mas-
ter data helps to calculate pricing information, with which the message is split
into several messages, denoting billable items (i. e., item for billing) that are
routed to their receivers (e. g., DB). From there applications like SAP Conver-
gent Invoicing generate legally binding payment documents. Alternatively, new
application and data analytics stacks like LogicBlox [7], WebdamLog [1], and SAP
S/4 HANA3 (not shown) access the data for further processing. Some of these
2 SAP Convergent Charging, visited 04/2015: https://help.sap.com/cc.
3 SAP S/4 HANA, visited 04/2015: http://discover.sap.com/S4HANA.

https://help.sap.com/cc
http://discover.sap.com/S4HANA

Towards More Data-Aware Application Integration 19

“smart” stacks even provide declarative, Datalog-like language for application
and user-interface programming, which complements our integration approach.
As motivated before, standard integration systems have problems processing the
high number and rate of incoming messages, which usually leads to an “offline”,
multi-step processing using indirections like ETL systems and pushing integra-
tion logic to the applications, leading to long-running CC runs.

2.2 General Approach

The Enterprise Integration Patterns (EIPs) [9] define “de-facto” standard opera-
tions on the header (i. e., payload’s meta-data) and body (i. e., message payload)
of a message, which are normally implemented in the integration system’s host
language (e. g., Java, C#). This way, the actual integration operation (i. e., the
content developed by an integration expert like mapping programs and routing
conditions) can be differentiated from the implementation of the runtime sys-
tem that invokes the content operations and processes their results. For instance,
Fig. 1 shows the separation of concerns within integration systems with respect to
“system-related” and “content-related parts” and sketches which pattern oper-
ations to re-define using relational table operators, while leaving the runtime
system (implementation) as is. The goal is to only change these operations and
make integration language additions for table-centric processing within the con-
ventional integration system, while preserving the general integration semantics
like Quality of Service (e. g., best effort, exactly once) and the Message Exchange
Pattern (e. g., one-way, two-way). In other words, the content-related parts of
the pattern definitions are evaluated by an “in-process” table operation proces-
sor (e. g., a Datalog system), which is embedded into the standard integration
system and invoked during the message processing.

3 Table-Centric Integration Patterns

Before defining Table-centric Integration Patterns (short TIP) for message rout-
ing and transformation more formally, let us recall the encoding of some relevant,
basic database operations/operators into Datalog: join, projection, union,
and selection. The join of two relations r(x, y) and s(y, z) on parameter y
is encoded as j(x, y, z) ← r(x, y), s(y, z), which projects all three parameters
to the resulting predicate j. More explicitly, a projection on parameter x of
relation r(x, y) is encoded as p(x) ← r(x, y). The union of r(x, y) and s(x, y) is
u(x, y) ← r(x, y). u(x, y) ← s(x, y), which combines several relations to one. The
selection r(x, y) according to a built-in predicate φ(x), where φ(x) can contain
constants and free variables, is encoded as s(x, y) ← r(x, y), φ(x). Built-in pred-
icates can be binary relations on numbers such as <,<=,=, binary relations on
strings such as equals, contains, startswith or predicates applied to expressions
based on binary operators like +,−, ∗, / (e. g., x = p(y) + 1), and operations on
relations like z = max(p(x, y), x), z = min(p(x, y), x), which would assign the
maximal or the minimal value x of a predicate p to a parameter z.

20 D. Ritter

Although our approach allows each single pattern definition to evaluate
arbitrary, recursive Datalog operations and built-in predicates, the Datalog to
pattern mapping tries to identify and focus on the most relevant table-centric
operations for a specific pattern. An overview of the mapping of all discussed
message routing and transformation operations to Datalog constructs is shown
in Fig. 2 and is subsequently discussed. Subsequently, we enumerate common
EIPs and separate system- from content-related parts more formally for the TIP
definition by example of standard Datalog.

bu
ilt
-in

jo
in

se
le
ct
io
n

pr
oj
ec
tio

n
un

io
n

Message Routing
Router, Filter:
Recipient List

Multicast, Join Router
Splitter

Correlation, Completion
Aggregation

Message Transformation
Message translator

Content filter
Content enricher

Fig. 2. Message routing and transformation patterns mapped to Datalog. Most com-
mon Datalog operations for a single pattern are marked “dark blue”, less common ones
“light blue”, and possible but uncommon ones “white” (Color figure online).

3.1 Canonical Data Model

When connecting applications, various operations are executed on the trans-
ferred messages in a uniform way. The arriving message instances are converted
into an internal format understood by the pattern implementation, called the
Canonical Data Model (CDM) [9], before the messages are transformed to the
target format. Hence, if a new application is added to the integration solution,
only conversions between the CDM and the application format have to be cre-
ated. Consequently, for a table-centric re-definition of integration patterns, we
define a CDM similar to relational database tables as Datalog programs, which
consists of a collection of facts/a table, optional (supporting) rules as message
body and an optional set of meta-facts that describes the actual data as header.
For instance, the data-part of an incoming message in JSON format is trans-
formed to a collection of Open-Next-Close (ONC)-style table iterators, each
representing a table row or fact. These ONC-operators are part of the evaluated
execution plan for more efficient evaluation.

Towards More Data-Aware Application Integration 21

3.2 Message Routing Patterns

In this section the message routing pattern implementations are re-defined, which
can be seen as control and data flow definitions of an integration channel pipeline.
For that, they access the message to route it within the integration system and
eventually to its receiver(s). They influence the channel and message cardinality
as well as the content of the message.

Content-Based Router/Message Filter. The most common routing patterns that
determine the message’s route based on its body are the Content-based Router
and the Message Filter. The stateless router has a channel cardinality of 1 : n,
where n is the number of leaving channels, while one channel enters the router,
and a message cardinality of 1 : 1. The entering message constitutes the leaving
message according to the evaluation of a routing condition. This condition is
a function rc, with {bool1, bool2, ..., booln} := rc(msgin, conds), where msgin
is the entering message. The function rc evaluates to a list of Boolean output
{bool1, bool2, ..., booln} based on a list of conditions conds of the same arity
(e. g., Datalog rules in Listing 1.1) for each of the n ∈ N leaving channels. In
case several conditions evaluate to true, only the first matching channel receives
the message.

Through the separation of concerns, a system-level routing function provides
the entering message msgin to the content-level implementation (i. e., in CDM
representation), which is configured by conds. Since standard Datalog rules are
truth judgements, and hence do not directly produce Boolean values, we decided,
for performance and generality considerations, to add an additional function
boolrc to the integration system. The function boolrc converts the output list
fact of the routing function from a truth judgement to a Boolean by emitting
true if fact �= ∅, and false otherwise. Accordingly we define the TIP routing
condition as fact := rctip(msgin, conds), while being evaluated for each channel
condition (e. g., selection/built-in predicates). The integration system will then
use the function boolrc to convert this into a Boolean value. For the message
filter, which is a special case of the router that differs only from its channel
cardinality of 1:1 and message cardinality of 1:[0|1], the filter condition is equal
to rctip.

Splitter. The Splitter pattern has a channel cardinality of 1:1 and creates new,
leaving messages. Thereby the splitter breaks the entering message into multiple
(smaller) messages (i. e., message cardinality of 1:n). Hereby, the stateless split-
ter uses a split condition sc on the content-level, with {out1, out2, ..., outn} :=
sc(msgin, conds), which accesses the entering message’s body to determine a list
of distinct body parts {out1, out2, ..., outn}, based on a list of conditions conds,
that are each inserted to a list of individual, newly created, leaving messages
{msgout1,msgout2, ...,msgoutn} with n ∈ N by a splitter function. The header
and attachments are copied from the entering to each leaving message.

The re-defined split condition sctip evaluates a set of Datalog rules as conds
(i. e., mostly selection, and sometimes built-in and join constructs; the latter two

22 D. Ritter

are marked “light blue”). Each part of the body outi with i ∈ N is a set of facts
that is passed to a split function, which wraps each set into a single message.

3.3 Message Transformation Patterns

The transformation patterns exclusively target the content of the messages in
terms of format conversations and content modifications.

The stateless Message Translator changes the structure or format of the
entering message without generating a new one (i. e., channel, message car-
dinality 1:1). For that, the translator computes the transformed structure by
evaluating a mapping program mt (e. g., Datalog rules in Listing 1.2), with
msgout.body := mt(msgin.body). Thereby the field content can be altered. The
related Content Filter and Content Enricher patterns can be subsumed by the
general Content Modifier pattern and share the same characteristics as the trans-
lator pattern. The filter evaluates a filter function mt, which only filters out parts
of the message structure (e. g., fields or values) and the enricher adds new fields
or values as data to the existing content structure using an enricher program
ep, with msgout.body := ep(msgin.body, data).

The re-definition of the transformation function mttip for the message transla-
tor mainly uses join and projection (plus built-in for numerical calculations
and string operations, thus marked “light blue”) and selection, projection
and built-in (mainly numerical expressions and character operations) for the
content filter. While projections allow for rather static, structural filtering, the
built-in and selection operators can be used to filter more dynamically based
on the content. The resulting Datalog programs are passed as msgout.body. In
addition, the re-defined enricher program eptip mainly uses union operations to
add additional data to the message as Datalog programs.

4 Experimental Evaluation

As System under Test (SuT) for an experimental evaluation we used the open
source, Java-based Apache Camel integration system [3] in version 2.14.0, which
implements most of the EIPs. The Camel system allows content-level extensions
through several interfaces, with which the TIP definitions were implemented
and embedded (e. g., own Camel Expression definitions for existing patterns,
and Camel Processor definitions for custom or non-supported patterns). The
Datalog system we used for the measurements is a Java-based, standard näıve-
recursive Datalog processor (i. e., without stratification) [17] in version 0.0.6
from [14].

Subsequently, the basic setup and execution of the measurements are intro-
duced. However, due to brevity, a more detailed description of the setup, the
integration scenarios and more detailed results are provided in the Suppl. Mate-
rial of the extended version of this paper [12].

Towards More Data-Aware Application Integration 23

4.1 Setup

In the absence of an EIP benchmark, which we are currently developing on the
basis of this paper, we used Apache JMeter4 in version 2.12 as a load generator
client that sends messages to the SuT. We implemented a JMeter Sampler, which
allows to inject messages directly to the integration pipeline via a Camel direct
endpoint/adapter. For the throughput measurements, we used the JMeter jp@gc
transaction per second listener plugin from the standard package.

To measure the message throughput in a “data-intensive” (cf. O1), non-
reliable integration scenario, we use the standard TPC-H order, customer and
nation data sets. We added additional, unique message identifier and type fields
and translate the single records to JSON objects (cf. O3), each representing
the payload of a single message (i. e., “single-record” table message). In this
way we generated 1.5 million order-only messages (i. e., TPC-H scale level 1)
and the same amount of “multi-format” customer/nation messages, consisting
of one customer and all 25 nation records per message (in the “single-record”
table message case). During the measurements these messages are streamed to
the Camel endpoint, serialized to either Java Objects for the Camel-Java and to
the ONC representation for the Camel-Datalog case (cf. recall ONC-iterators as
canonical data model).

All measurements are conducted on a HP Z600 work station, equipped with
two Intel processors clocked at 2.67 GHz with a total of 12 cores, 24 GB of main
memory, running a 64-bit Windows 7 SP1 and a JDK version 1.7.0. The JMeter
Sampler and the integration system pipeline JVM process get 5 GB heap space.

4.2 “Single-Record”/“Multi-Format” Table Message Processing

Instead of testing all discussed patterns, we focus on the identified table-
operations (e. g., selection/built-in, projection, join) and show the
respective evaluation by example of a representative pattern (cf. Fig. 2). The
measurements for selection and projection use the TPC-H Order-based, approx-
imately 4 kB messages (i. e., 1.5 million order messages). The union operation
(e. g., aggregation strategy, content enricher) is not tested.

We measured the selection/built-in operations in a content-based router sce-
nario with a routing condition tip rc (cf. Listing 1.1), which routes the order
message to its receiver based on conds for {string equality, integer bigger than}
on fields {objecttype, ototalprice}. The boolrc function is implemented in Java
to pass the expected value to the runtime system on system-level. The cor-
responding “hand-coded” content-level Camel-Java implementation uses JSON
path statements for O(1) element access and conducts the type-specific condition
evaluation. The routing condition is defined to route 904, 500 of the 1.5 million
messages to the first and the rest to the second receiver. Similarly, the projection
operation is measured using a message translator. The translator projects the
fields of the incoming order message to a target format (cf. Listing 1.2) using

4 Apache JMeter, visited 02/2015: http://jmeter.apache.org/.

http://jmeter.apache.org/

24 D. Ritter

a mttip implementation or a “hand-coded” projection on the Java Object rep-
resentation. Now, the “multi-format” customer messages (cf. O1) with nation
records as processing context are used to measure a routing condition with
selection/built-in and join operations (cf. Listing 1.3). The customer message
is routed, if and only if, the customers balance (ACCTBAL) is bigger than 3, 000
and the customer is from the European region determined through join via nation
key.

Listing 1.1. Routing condition: tip rc

1 cbr−order (id ,− ,OTOTALPRICE,−):−
2 order (id , otype ,− ,
3OTOTALPRICE,−OPRIORITY,−) ,
4=(OPRIORITY, ”1−URGENT”)
5>(OTOTALPRICE, 1 0 0 0 0 0 . 0 0) .

Listing 1.2. Message translation pro-
gram: mttip

1 conv−order (id , otype ,
2ORDERKEY,CUSTKEY,SHIPPRIORITY):−
3 order (id , otype ,ORDERKEY,
4CUSTKEY,− ,SHIPPRIORITY,−) .

Listing 1.3. Routing condition with
join over “multi-format” message

1 cbr−cust (CUSTKEY,−):−
2 customer (cid , ctype ,CUSTKEY,− ,
3CNATIONKEY,− ,ACCTBAL,−) ,
4 nat ion (nid , ntype ,NATIONKEY,− ,
5NREGIONKEY,−) ,
6>(ACCTBAL, 3 0 0 0 . 0) ,
7=(CNATIONKEY,NATIONKEY)
8=(NREGIONKEY, 3) .

Table 1. Throughput measurements for format conversion, message routing and tran-
formation patterns based on 4 kB messages generated from 1.5 million standard TPC-H
orders records.

The throughput test streams all 1.5 million order/customer messages to the
pipeline. The performance measurement results are depicted in Table 1 for a sin-
gle thread execution. Measurements with multiple threads show a scaling up to
factor 10 of the results, with a saturation around 36 threads (i. e., factor of num-
ber of cores; not shown). The stream conversion to JSON object aggregated for
all messages is slightly faster than for ONC. However, in both order messages
cases the TIP-based implementation reaches a slightly higher transaction per
second rate (tps), which lets the processing end 7 s and 4 s earlier respectively,

Towards More Data-Aware Application Integration 25

due to the natural processing of ONC iterators in the Datalog engine. Although
the measured 99 % confidence intervals do not overlap, the execution times are
similar. The rather theoretical case of increasing the number of selection/built-
in operations on the order messages (e. g., date before/after, string contains)
showed a stronger impact for the Camel-Java case than the Camel-Datalog
case (not shown). In general, the Camel-Java implementation concludes with
a routing decision as soon as a logical conjunction is found, while the conjunc-
tive Datalog implementation currently evaluates all conditions before returning.
In the context of integration operations this is not necessary, thus could be
improved by adapting the Datalog evaluation for that, which we could experi-
mentally show (not shown; out of scope for this paper). The measured through-
put of the content-based router with join processing on “multi-format” the
1.5 million TPC-H customer/nation messages again shows similar results. Only
this time, the too simple NestedLoopJoin implementation in the used Datalog
engine causes a loss of nine seconds compared to the “hand-coded” JSON join
implementation.

4.3 Outlook: “Multi-record” Table Message Processing

The discussed measurements assume that a message has a “single-record” pay-
load, which results in 1.5 million messages with one record/message identifier
each. So far, the JSON to ONC conversion creates ONC collections with only
one table iterator (to conform with EIP semantics). However, the nature of our
approach allows us to send ONC collections with several entries (each repre-
senting a unique message payload with message identifier). Knowing that this
would change the semantics of several patterns (e. g., the content-based router),
we conducted the same test as before with “multi-record” table messages of bulk
size 10, which reduces the required runtime to 12 s for the router and 11 s for
the translator, which can still be used with its original definition (cf. Table 1).
Increasing the bulk size to 100 or even 1, 000 reduces the required time to 1 s,
which means that all 1.5 million messages can be processed with one step in
one single thread. Hereby, increasing the bulk size means reducing the number
of message collections, while increasing the rows in the single collection. The
impressive numbers are due to the efficient table-centric Datalog evaluation on
fewer, multi-row message collections. The higher throughput comes with the
cost of a higher latency. The noticed join performance issue can be seen in
the Datalog-bulk case as well, which required 13 steps/seconds to process the
1.5 million customer/nation messages.

5 Related Work

The application of table-centric operators to current integration systems has not
been considered before, up to our knowledge, and was only recently introduced by
our position paper [13], which discusses the expressiveness of table-centric/logic
programming for integration processing on the content level.

26 D. Ritter

The work on Java systems like Telegraph Dataflow [16], and Jaguar [19]) can
be considered related work in the area of programming languages on application
systems for faster, data-aware processing. These approaches are mainly target-
ing to make Java more capable of data-processing, while mainly dealing with
threading, garbage collection and memory management. None of them considers
the combination of the host language with table-centric processing.

Declarative XML Processing. Related work can be found in the area of declara-
tive XML message processing (e. g., [4]). Using an XQuery data store for defining
persistent message queues (i. e., conflicting with O3), the work targets a com-
plementary subset of our approach (i. e., persistent message queuing).

Data Integration. The data integration domain uses integration systems for
querying remote data that is treated as local or “virtual” relations. Starting with
SQL-based approaches (e. g., using Garlic [8]), the data integration research
reached relational logic programming, summarized by [6]. In contrast to such
remote queries, we define a table-centric, integration programming approach for
application integration, while keeping the current semantics (for now).

Data-Intensive and Scientific Workflow Management. Based on the data pat-
terns in workflow systems described by Russel et al. [15], modeling and data
access approaches have been studied (e. g., by Reimann et al. [10]) in simula-
tion workflows. The basic data management patterns in simulation workflows
are ETL operations (e. g., format conversions, filters), a subset of the EIP and
can be represented among others by our approach. The (map/reduce-style) data
iteration pattern can be represented by combined EIPs like scatter/gather or
splitter/gather.

Similar to our approach, data and control flow have been considered in scien-
tific workflow management systems [18], which run the integration system opti-
mally synchronized with the database. However, the work exclusively focuses on
the optimization of workflow execution, not integration systems, and does not
consider the usage of table-centric programming on the application server level.

6 Concluding Remarks

This paper motivates a look into a growing “processing discrepancy” (e. g., mes-
sage throughput) between current integration and complementary systems (e. g.,
MQ, RDBMS) based on known scenarios with new requirements and fast grow-
ing new domains (O1–O3). Towards a message throughput improvement, we
extended the current integration processing on a content level by table-centric
integration processing (TIP). To remain compliant to the current EIP definitions
the TIP-operators work on “single-record” messages, which lets us compare with
current approaches using a brief experimental throughput evaluation. Although
the results slightly improve the standard processing, not to mention the declar-
ative vs. “hand-coded” definition of integration content, the actual potential

Towards More Data-Aware Application Integration 27

of our approach lies in “multi-record” table message processing. However, that
requires an adaption of some pattern EIP definitions, which is out of scope for
this paper.

Open Research Challenges. For a more comprehensive, experimental evaluation,
an EIP micro-benchmark will be developed on an extension of the TPC-H and
TPC-C benchmarks. EIP definitions do not discuss streaming patterns/opera-
tors, which could be evaluated (complementarily) based on Datalog streaming
theory (e. g., [20,21]). Eventually, the existing EIP definitions have to be adapted
to that and probably new patterns will be established. Notably, the used Datalog
engine has to be improved (e. g., join evaluation) and enhanced for integration
processing (e. g., for early-match/stop during routing).

Acknowledgements. We especially thank Dr. Fredrik Nordvall Forsberg,
Dr. Norman May and Prof. Dr. Erhard Rahm for proof-reading and valuable discussions
on the paper.

References

1. Abiteboul, S., Antoine, E., Miklau, G., Stoyanovich, J., Testard, J.: Rule-based
application development using webdamlog. In: ACM SIGMOD (2013)

2. AdroitLogic: Esb performance (2013). http://esbperformance.org/
3. Anstey, J., Zbarcea, H.: Camel in Action. Manning, Stamford (2011)
4. Böhm, A., Kanne, C., Moerkotte, G.: Demaq: a foundation for declarative XML

message processing. In: CIDR 2007, pp. 33–43 (2007)
5. Chappell, D.: Enterprise Service Bus. O’Reilly Media Inc., Sebastopol (2004)
6. Genesereth, M.R.: Data Integration: The Relational Logic Approach. Morgan &

Claypool Publishers, San Rafael (2010)
7. Green, T.J., Aref, M., Karvounarakis, G.: LogicBlox, platform and language:

a tutorial. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494,
pp. 1–8. Springer, Heidelberg (2012)

8. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: VLDB, pp. 276–285 (1997)

9. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman, Boston (2003)

10. Reimann, P., Schwarz, H.: Datenmanagementpatterns in simulationsworkflows. In:
BTW, pp. 279–293 (2013)

11. Ritter, D.: What about database-centric enterprise application integration? In:
ZEUS, pp. 73–76 (2014)

12. Ritter, D.: Towards more data-aware application integration (extended version).
CoRR abs/1504.05707 (2015). arXiv: 1504.05707

13. Ritter, D., Bross, J.: DatalogBlocks: relational logic integration patterns. In:
Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014,
Part II. LNCS, vol. 8645, pp. 318–325. Springer, Heidelberg (2014)

14. Ritter, D., Westmann, T.: Business network reconstruction using datalog. In: Bar-
celó, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 148–152. Springer,
Heidelberg (2012)

http://esbperformance.org/
http://arxiv.org/abs/1504.05707

28 D. Ritter

15. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data pat-
terns: identification, representation and tool support. In: ER (2005)

16. Shah, M.A., Madden, S., Franklin, M.J., Hellerstein, J.M.: Java support for data-
intensive systems: experiences building the telegraph dataflow system. SIGMOD
Rec. 30(4), 103–114 (2001)

17. Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I. Computer
Science Press, New York (1988)

18. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft,
T.: An approach to optimize data processing in business processes. In: VLDB
(2007)

19. Welsh, M., Culler, D.E.: Jaguar: enabling efficient communication and I/O in Java.
Concurr. Pract. Exp. 12(7), 519–538 (2000)

20. Zaniolo, C.: A logic-based language for data streams. In: SEBD 2012 (2012)
21. Zaniolo, C.: Logical foundations of continuous query languages for data streams.

In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 177–189.
Springer, Heidelberg (2012)

Applying NoSQL Databases for Integrating Web
Educational Stores - An Ontology-Based

Approach

Reem Qadan Al Fayez(B) and Mike Joy

Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK

{r.qadan-al-fayez,m.s.joy}@warwick.ac.uk

Abstract. Educational content available on the web is playing an
important role in the teaching and learning process. Learners search for
different types of learning objects such as videos, pictures, and blog arti-
cles and use them to understand concepts they are studying in books
and articles. The current search platforms provided can be frustrat-
ing to use. Either they are not specified for educational purposes or
they are provided as a service by a library or a repository for searching
a limited dataset of educational content. This paper presents a novel
system for automatic harvesting and connecting of medical educational
objects based on biomedical ontologies. The challenge in this work is to
transform disjoint heterogeneous web databases entries into one coher-
ent linked dataset. First, harvesting APIs were developed for collecting
content from various web sources such as YouTube, blogging platforms,
and PubMed library. Then, the system maps its entries into one data
model and annotates its content using biomedical ontologies to enable
its linkage. The resulted dataset is organized in a proposed NoSQL RDF
Triple Store which consists of 2720 entries of articles, videos, and blogs.
We tested the system using different ontologies for enriching its content
such as MeSH and SNOMED CT and compared the results obtained.
Using SNOMED CT doubled the number of linkages built between the
dataset entries. Experiments of querying the dataset is conducted and
the results are promising compared with simple text-based search.

Keywords: Linked Data · Web databases · Ontologies

1 Introduction

The use of web content is increasing because of its accessibility at any time and
from any place. Online libraries have started to support open access and profes-
sionals are increasingly using Web 2.0 technologies to spread their knowledge. In
medical education, although its content should be of a high quality and provided
by authorized sources, the web had played an important role in providing such
content. Medical communities have a high awareness of the range of educational
content available and show substantial interest in using such resources [1].
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 29–40, 2015.
DOI: 10.1007/978-3-319-20424-6 4

30 R.Q. Al Fayez and M. Joy

Searching for relevant educational content on the web can be challenging for
its users. The vast amount of information available and the diversity of its types
makes the search process time consuming. The content of any website is usually
stored in a relational database with different fields used for describing its records.
Therefore, integrating web databases into one data store is a challenging issue.
New practices for publishing web content using Linked Data are being adopted
by an increasing number of content providers leading to the web of data [2].

In this paper, we present a novel system that adopts Linked Data practices for
automatic linking of heterogeneous web stores into one dataset based on biomed-
ical ontologies enrichment. The developed system links some of the high quality
User Generated Content (UGC), published on YouTube and blogs by medical
educators and organizations, with content from online medical libraries. Using
biomedical ontologies, we enriched the content of these databases by annotating
free-text descriptions provided in their metadata records. Ontology-based anno-
tation allows the system to discover keyword terms in web database content and
builds dynamic linkages between them. The final linked dataset is represented
in RDF/XML format and URIs are used for describing the dataset content.

Researchers in the field of e-learning refer to online educational resources that
can be used in the learning process as Learning Objects (LOs). Learning Objects
as defined in [3] can be of different types -images, videos, or text-, and differ in
granularity from books to small web pages. Since the application domain of this
work is medical education, we refer to the educational resources retrieved from
the web and used in this system as Educational Medical Objects (EMOs). The
result of our work is a linked dataset of EMOs named the LEMO dataset and a
system for managing them called the LEMO system.

The paper is structured as follows. Section 2 presents background and related
work about the subject. Section 3 describes the processes applied for harvesting
distributed web stores and building the LEMO RDF Triple Store. Section 4 pro-
vides more details about the ontologies used in the LEMO system, and explains
the use of these ontologies in the annotation and enrichment process. Further-
more, a detailed description of the NoSQL RDF Triple Store components are
presented in this section. Section 5 details a comparative analyses for using
the LEMO system with the MeSH and SNOMED CT ontologies, and discusses
experiments conducted for querying this dataset using ontological-based queries.
Finally, Sect. 6 presents the conclusions and future work.

2 Background and Related Work

Using Linked Data and ontologies for data enrichment have been researched heav-
ily in the recent years. The enrichment methods can happen at the server-side or
client-side of a system. Both variations have been tested in [4] and the advantages
and disadvantages were compared. Enriching queries is another method applied
at the server-side of the system, and the work presented in [5] investigated enrich-
ing queries made to a collection of medical images provided by one library. The
queries have been expanded after enriching the text with MeSH ontology terms.

Applying NoSQL Databases for Integrating Web Educational Stores 31

Data enrichment has also been used with UGC content on the web, because user
generated tags or folksonomies describing YouTube videos may be poorly chosen.
The tag expansion and raking applied in [6] has been shown to enhance the descrip-
tion of the videos on YouTube. Enriching the content of a single dataset has been
heavily researched, especially in the medical field. This is due to having mature
and well maintained biomedical ontologies [7].

Linked Data principles have been adopted in education. Projects have been
developed for supporting the use of web educational data [8]. Efforts for linking
different educational ICT tools registries are presented in [9]. Another project
for publishing datasets of educational medical materials in Linked Data has been
developed in [10], which focused on providing a data model for exposing various
types of educational materials to the web in order to enhance their interoperabil-
ity and reuse across the web. It is clear that Linked Data will have a potential
in the education field. A project presented in [11] developed a curriculum from
Open Educational Resources tailored for teaching and training practitioners to
use Linked Data. These days, educational organizations and universities are con-
sidering storing and publishing data using a Linked Data format [12].

3 LEMO Triple RDF Store

Before integrating web educational stores, we need to harvest and model distrib-
uted Educational Medical Objects (EMOs) into one data model. Our goal is to
integrate different types of EMOs into one linked data set that is searchable and
queryable.

In order to accomplish this goal, we developed two harvesting endpoints. In
the first one, we incorporated the OAI-PMH protocol [13]. The other endpoint
is basically an RSS feed reader storing web feeds from websites that provide
them. Many online libraries expose their metadata using an OAI-PMH protocol
such as the PubMed library. Using these harvesting endpoints, developed in the
LEMO system, we harvested articles from the PubMed library and videos and
blogs from YouTube and blogging platforms. The resulted dataset consisted of
2720 medical educational objects divided into 1000 articles from PubMed library
and 1720 blogs and videos harvested from five different blogging websites and 6
YouTube channels. The chosen blogs and YouTube channels are maintained by
either medical academics or journals and dedicated to educational purposes.

The harvested metadata records are retrieved in XML formats. The OAI
service in PubMed supports DCMI metadata, therefore we can set the format
parameter in the OAI requests produced by LEMO to be DCMI for harvesting
content. On the other hand, blogs and video RSS feeds are structured XML
documents which are machine interpretable and provide access to parts of the
website entries such as title, authors, publication date, and content [14]. A frag-
ment of the XML files harvested is illustrated in Fig. 1 along with the processes
needed to build LEMO RDF Triple Store.

The heterogeneous metadata structures for all EMOs retrieved are mapped
into the LEMO data model using XSLT techniques. The LEMO data model has

32 R.Q. Al Fayez and M. Joy

Fig. 1. LEMO RDF Triple Store structure and development process

been proposed in [15] at an earlier stage of developing the LEMO system after
conducting a comparative study of existing data model in medical education. It is
based on the DCMI metadata schema and implemented in RDF/XML formats.
New LEMO properties were introduced for describing the enriched resources
in LEMO store which will be discussed in detail in Sect. 4. The mapped files
are then sent to the ontology enrichment process which annotates the free-text
of EMOs, and discovers possible subjects to categorize them. This will result in
having an enriched LEMO Triple Store which consists of EMOs, terms annotated
in EMOs, and ontology classes used for annotation, as shown in Fig. 1.

4 Ontology-Based Annotations

Biomedical ontologies are formal representations of knowledge with definition of
concepts and their relations [16]. Such ontologies have been used for indexing
data produced by researchers in the field to ease its integration [17]. They are also
used for indexing articles in medicine libraries such as the use of MeSH ontology
for indexing PubMed library articles. In the LEMO system, we use ontologies to
annotate free-text in the harvested EMO metadata such as titles and descrip-
tions. Annotating the free-text enables us to discover relations between non
related objects on the web. In the LEMO system, we adopt the Linked Data
format for building the LEMO Triple Store which is considered the best practice
for connecting semantically related data that was not previously linked [2].

The application domain of the LEMO system is medicine education. The
BioPortal1 open repository for biomedical ontologies is used to explore possible
ontologies to integrate them with the LEMO system. BioPortal provides access
to ontologies developed in different formats via web services which enable its
1 http://bioportal.bioontology.org/.

http://bioportal.bioontology.org/

Applying NoSQL Databases for Integrating Web Educational Stores 33

users to get information about the ontologies or its content [18]. The LEMO
system uses additional web services such as the annotator service provided by
Bioportal for annotating and linking objects in the dataset. The ontologies used
in the LEMO system so far are the Systematized Nomenclature of Medicine -
Clinical Terms SNOMED CT and the Medical Subject Headings MeSH.

4.1 SNOMED CT and MeSH Ontologies

The SNOMED CT ontology has been developed by specialized organizations
in both the USA and the UK and offers a standardized healthcare terminology
which is comprehensive, scientifically validated, with relationships built into its
core concepts [19]. This ontology was released in 2002 and since then new versions
of it have been released semi-annually. SNOMED CT has been designated as
the preferred clinical terminology to use in 19 countries [20]. Its application in
medical information systems is expected to increase. The popularity and broad
use of this ontology in the field of medicine was the main reason for applying
SNOMED CT in the LEMO system.

As for the second ontology applied in the LEMO system, MeSH has been used
for indexing PubMed Library content. Therefore, we applied it in the LEMO
system to annotate and link EMOs based on its classes and relations. MeSH has
been developed by the National Library of Medicine (NLM) in the USA and is
considered the controlled vocabulary set used for indexing its articles. It consists
of a set of terms naming descriptors organized in a hierarchical structure from
general to more specific descriptors [21].

4.2 EMOs Annotation Enrichment

The LEMO RDF Triple Store consists of collections of linked resources describing
its content and organized as illustrated in Fig. 2. Each resource is identified by
a unique URI and a set of predicates to describe its properties. The major
component in the LEMO RDF Triple Store is EMOs. After applying ontology
enrichment, additional term annotations resources are added to the collection of
EMOs’ title and description resources to enrich them. The smallest component
of the LEMO store is ontology classes. Each annotation made in the free-text
points to a class in the ontology used for annotation. The classes of an ontology
are arranged in a graph structure where relations exist to identify the class
hierarchy. The collection of classes used in annotating the LEMO RDF Triple
Store forms a subset of the original ontology graph.

The resources of the LEMO RDF Triple Store are described using the LEMO
data model. The model is based on DCMI properties enhanced with new prop-
erties proposed for representing the annotations in LEMO. Such new properties
are defined using the prefix “lemo”. As shown in the XML fragment of Fig. 2,
EMOs are described using only DCMI properties. The values of their title and
description predicates are new resources created, rather than textual values,
used for linking the EMOs to annotations using the lemo:lemoTitleAnnotation
and lemo:lemoDescAnnotation properties. The term annotations are described

34 R.Q. Al Fayez and M. Joy

Fig. 2. Snippet of LEMO RDF Triple Store components

in detail using LEMO properties that store details about the original text anno-
tated, its indices and content along with details about the class it was annotated
to using a specific ontology, its ID, label, definition, and synonyms if they exist.
The terms’ annotated classes are nodes in the original ontology used for enriching
the dataset. Hence, a sub graph of the original ontology can be built using the
collection of ontology classes used for annotating its terms. The class relations
are stored using the lemo:adjacentTo property. These class resources will enable
further processing of the LEMO Triple Store to discover subjects or categories
for EMOs and build dynamic linkages between its resources.

In the annotation process, free-text of EMOs is sent for the BioPortal anno-
tator service and an ontology is specified in the request parameter. Then, the
response is read and terms’ annotated resources are created and linked to EMOs
stored in the LEMO RDF Triple Store. After the annotation process, each EMO
is represented by a set of keywords which are the terms annotated in its title
and description. Each set of keywords representing an EMO forms a smaller
sub graph of linked ontology classes based on their adjacency lists stored in the
LEMO Triple Store. For discovering subjects for an EMO, we apply a simple
term filtering technique to identify a smaller set of keywords which represent the
EMO subject property and stored as the value of the dc:subject predicate for
that EMO. In term filtering, we assign weights for the keywords based on their
position and co-occurrence in an EMO term annotation set. Then, the accu-
mulated weight for each keyword is calculated based on its hierarchical level in
ontology. If the term annotated class is a parent of many terms annotated for
the same EMO, then it will be more important than a term that is leaf in the
ontology. The final weight value for each term annotated is stored in the rdf:value
property of the term annotation resource. After normalizing the weights of the
keywords, the top ranked keywords are selected as subjects of an EMO.

We tested the LEMO system against two biomedical ontologies: MeSH and
SNOMED. Comparison of annotation results, term filtering, and linkage discov-
ery of these two experiments are detailed in the following section. The results of

Applying NoSQL Databases for Integrating Web Educational Stores 35

Table 1. Number of terms annotated for the set of EMOs using different ontologies

MeSH annotations SNOMED CT annotations

Type of Number of Title Description Total Title Description Total

EMOs EMOs

Article 1000 3887 12192 16079 6166 29859 36025

Video 1259 3027 4304 7331 3677 5710 9387

Blog 461 754 4720 5474 1572 9756 11328

Total 2720 7668 21216 28884 11415 45325 56740

the comparisons helps to decide which ontology to use in LEMO system based
on the larger number of annotations created.

5 Results and Discussion: MeSH vs. SNOMED Ontology

The components of the dataset, harvested from the web for testing this system,
are detailed in Table 1. The table details the numbers of resources harvested
grouped by its type. It also details the number of keywords discovered after
annotating its textual content whether annotated in the title or the description
based on MeSH and SNOMED CT ontologies.

We notice that the number of terms annotated using the SNOMED CT
ontology is greater than the number of keywords annotated using the MeSH
ontology. The difference is not significant for video and blog EMOs compared to
article EMOs. This is due to the short text provided in the metadata of blogs and
videos compared to the longer text provided for articles in the online libraries.
The collection of terms annotated for the dataset is used for building linkages
between the EMOs and discovering subjects for categorizing the EMOs.

5.1 Discovering Subjects Using Ontologies

After processing the keyword set for each EMO, subjects were selected from the
keywords annotated for categorizing each EMO. The resulting sets of subjects
selected for each EMO are variable in size. We calculated the total numbers of
subjects selected in the LEMO dataset and compared them against the keywords
set sizes. The results are detailed in Fig. 3a and b for the MeSH and SNOMED
CT subject selections respectively. The percentage of keywords chosen as subject
terms from the SNOMED CT annotated terms is less than the percentage from
the MeSH annotated collection. In both experiments, the subjects discovered are
mainly chosen from the keywords annotated in the titles of EMOs. This indicates
that the term filtering techniques have succeed in this matter. We can notice that
in SNOMED CT, only 11 % of the keywords annotated in the description were
chosen as a subject, compared to a higher percentage of 26 % keywords in the
description using MeSH.

36 R.Q. Al Fayez and M. Joy

(a) Subjects based on MeSH (b) Subjects based on SNOMED

Fig. 3. Subject selection

The LEMO dataset consists of different types of EMOs. Video and blog
EMOs usually have shorter descriptions in their metadata fields if any. This
affects the number of keywords annotated for EMOs from such types and that
reflects on the number of subjects selected. Using MeSH and SNOMED CT
annotations, the results of discovering subjects for video and blog EMOs are not
enhanced in both experiments. Figure 4a and b illustrate the relation between
the counts of subjects discovered in MeSH and SNOMED CT annotated EMOs
and their types. In both experiments, video and blog EMOs have low subject
counts. This is due to the low numbers of terms annotated in this type of EMOs.
Comparing the subject selection process based on MeSH and SNOMED CT, we
notice that in the SNOMED CT based dataset, very few EMOs did not have
any subject count, while in the MeSH based dataset, more than 150 EMOs from
articles, videos or blog types have subject counts equal to zero.

5.2 Links Analysis

After the subject selection process, we analysed and compared the dynamically
built links in the LEMO dataset. We consider that there exists a link between two
EMOs if they have a similar annotated class in their subjects or keywords set.
Also, we count a link between two EMOs as directed links. Therefore, if there is
a link from node a to node b the link count will be two not one. We compared the
number of links built in the dataset in the two experiments conducted. Table 2
illustrates the number of links built in LEMO dataset in both experiments;
MeSH and SNOMED CT annotations. As detailed in the table, the number
of links based on SNOMED CT ontology is greater than ones based on MeSH
ontology. The results are almost doubled in the links count. This is due to the
large number of annotation discovered using SNOMED CT ontology.

5.3 Ontology-Based Access

We provided a user interface for querying the LEMO Triple Store enriched with
SNOMED CT ontology classes since it resulted in higher number of annotations

Applying NoSQL Databases for Integrating Web Educational Stores 37

(a) EMOs annotated in MeSH and their subjects

(b) EMOs annotated in SNOMED and their subjects

Fig. 4. Relation between Subjects count and EMOs types

Table 2. Links count in LEMO dataset based of MeSH And SNOMED CT ontologies

Number of Links based on

Based on Ontology Title Desc Subject

MeSH 352029 867636 248704

SNOMED CT 464876 1443667 418782

in LEMO content. The system binds the user with choosing ontological classes
rather than writing a free-text in the search box. Figure 5 illustrates the auto-
complete feature presented in LEMO for ontological based access. The auto-
complete text box retrieves SNOMED CT ontology classes used in LEMO store.
Algorithm 1 explains the ontological-based technique for searching and ranking
the results of searching for a selected class.

The algorithm developed in LEMO is based on the NoSQL structure for
LEMO store explained previously in Fig. 2. As explained in the ontology-based
query algorithm, the search process starts with one ontology class Q. Then, a
query vector is built based on the class adjacency properties stored in LEMO
store. Now, we start searching for EMOs annotated with any of the ontology
classes related to the query class Q. So far the search results are not ranked
according to its relevance to the query initiated. Hence, the related classes
retrieved are weighted according to their co-occurrences with Q class in the
search result set. Then, the weights are normalized according to the length of
the search result size and the class Q in the vector will have a weight of 1. For
each EMO in the search result, the weights of its annotations found in QVecor

38 R.Q. Al Fayez and M. Joy

Algorithm 1: Ontology-based Query
inputs :

Ontology class to be queried Q, LEMO dataset LEMO
output:

Ranked Search Result set of EMOs

RelClasses ← getRelatedClasses(Q) �Stores related classes to Q

foreach c ∈ RelClasses do
qResults ← getEMOsAnnotatedWith(c)
add qResults to ResSet �ResSet is the final search results

end

QVector ← weightQVector(RelClasses) �Weight related classes to Q

foreach d ∈ ResSet do
dV ector ← weightDV ector(d) �Weight d annotations based on QVector

end
foreach d ∈ ResSet do

calculatedEucildeanDist(dVector,qVector)
end
Sort(ResSet) �Sort results ascendingly

Fig. 5. The ontology-based LEMO search user interface

are retrieved from rdf:value in LEMO store which is used to store the weight
of an annotated class as explained in the previous sections. In order to have
more accurate weights for EMOs’ classes, the weights are normalized based on
the length of their annotation list. Finally, the search results are ranked based
on its euclidean distance from the query vector as shown in the algorithm. In
order to test this algorithm, we conducted random queries of 5 classes found in
LEMO Triple Store. The results are shown in Table 3 and compared with exact
text matching search.

From the sample of classes queried in this experiments, we can notice that
the ontological-based search always retrieved higher number of results than text-
based access. The overlap coefficient always indicated a percentage higher than
90 % for all the queries tested. In other words, the ontological access covers
almost all the search results of text-based access. We calculated the Jaccard
Similarity coefficient to emphasize the case in the last query “RENAL DIS-
EASE”. In this query, the text-based results are only 4 EMOs since we used
exact text matching. Hence, the jaccard similarity is very low between the two
search results. The query vector resulted from searching for “RENAL DISEASE”

Applying NoSQL Databases for Integrating Web Educational Stores 39

Table 3. Ontological-based vs. Text-based search results in LEMO Store

Query Class Size of Ontology- Size of Text-based Overlap Coefficient Jaccard Similartiy

based Result set (O) Result set (T) O ∩ T Coef

HEPATITIS 27 21 100% 0.78

INFLUENZA 30 25 92% 0.71

MUSCLE 66 65 95% 0.89

BRAIN 61 49 100% 0.80

RENAL DISEASE 36 4 100% 0.11

included 24 other classes related to it based on SNOMED CT ontology as stored
in LEMO dataset. The list of related classes include: (Renal vascular disorder,
Nephritis, nephrosis and nephrotic syndrome, Renal impairment, Infectious dis-
order of kidney and, · · · , others). The algorithm of ontological-based query gives
higher weight for the class queried Q which results in having EMOs containing
the class Q ranked at the top of the search result set.

6 Conclusions and Future Work

In this paper, we present a system for linking Educational Medical Objects
(EMOs) harvested from distributed web databases. The aim of the system was
to bridge the gap between UGC content, provided by YouTube and blogging
platforms, and online medical libraries such as PubMed. We have tested the
system against a sample dataset and compared the results of using MeSH and
SNOMED CT ontologies in the enrichment process. The final dataset consisted
of 2720 linked EMOs which are annotated, linked, and accessed by the system
developed. Using LEMO dataset enriched with SNOMED CT, we tested access-
ing the dataset using ontological-based approach vs. simple text-based matching.
The results indicated the efficiency of ontological-based access in LEMO dataset
and the overlapping coefficient between the search results of the two approaches
presented values above 90 % in all queries tested. In the future, a more devel-
oped user interface will be built with more advanced features for browsing and
querying the LEMO dataset presented.

References

1. Sandars, J., Schroter, S.: Web 2.0 technologies for undergraduate and postgraduate
medical education: an online survey. Postgrad. Med. J. 83(986), 759–762 (2007)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Seman.
Web Inform. Syst. 5(3), 1–22 (2009)

3. McGreal, R.: Learning objects: a practical definition. Instr. Technol. 1, 21 (2004)
4. Ritze, D., Eckert, K.: Data enrichment in discovery systems using linked data. In:

Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine
Learning and Knowledge Discovery, pp. 455–462. Springer, Heidelberg (2014)

40 R.Q. Al Fayez and M. Joy

5. Dı́az-Galiano, M.C., Garćıa-Cumbreras, M.Á., Mart́ın-Valdivia, M.T., Montejo-
Ráez, A., Ureña-López, L.A.: Integrating MeSH ontology to improve medical infor-
mation retrieval. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W.,
Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 601–606.
Springer, Heidelberg (2008)

6. Choudhury, S., Breslin, J.G., Passant, A.: Enrichment and ranking of the YouTube
tag space and integration with the linked data cloud. In: Bernstein, A., Karger,
D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.)
ISWC 2009. LNCS, vol. 5823, pp. 747–762. Springer, Heidelberg (2009)

7. Hoehndorf, R., Dumontier, M., Gkoutos, G.V.: Evaluation of research in biomedical
ontologies. Briefings Bioinform. (2012)

8. Domingue, J., Mikroyannidis, A., Dietze, S.: Online learning and linked data: lessons
learned and best practices. In: Proceedings of the Companion Publication of the 23rd
International Conference on World Wide Web Companion, pp. 191–192 (2014)

9. Ruiz-Calleja, A., Vega-Gorgojo, G., Asensio-Perez, J.I., Bote-Lorenzo, M.L.,
Gomez-Sanchez, E., Alario-Hoyos, C.: A data approach for the discovery of educa-
tional ICT tools in the web of data. Comput. Educ. 59(3), 952–962 (2012)

10. Mitsopoulou, E., Taibi, D., Giordano, D., Dietze, S., Yu, H.Q., Bamidis, P.,
Bratsas, C., Woodham, L.: Connecting medical educational resources to the linked
data cloud: the meducator RDF schema, store and API. In: Proceedings of Linked
Learning 22 (2011)

11. Mikroyannidis, A., Domingue, J., Maleshkova, M., Norton, B., Simperl, E.: Devel-
oping a curriculum of open educational resources for linked data. In: Proceedings
of 10th Annual OpenCourseWare Consortium Global Conference (OCWC) (2014)

12. d’Aquin, M.: Putting linked data to use in a large higher-education organisation.
In: Proceedings of the Interacting with Linked Data (ILD) workshop at Extended
Semantic Web Conference (ESWC) (2012)

13. Lagoze, C., Van de Sompel, H.: The making of the open archives initiative protocol
for metadata harvesting. Library Hi Tech 21(2), 118–128 (2003)

14. Gkotsis, G., Stepanyan, K., Cristea, A.I., Joy, M.: Self-supervised automated wrap-
per generation for weblog data extraction. In: Gottlob, G., Grasso, G., Olteanu,
D., Schallhart, C. (eds.) BNCOD 2013. LNCS, vol. 7968, pp. 292–302. Springer,
Heidelberg (2013)

15. Al Fayez, R.Q., Joy, M.: A framework for linking educational medical objects:
connecting web2.0 and traditional education. In: Benatallah, B., Bestavros, A.,
Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part II. LNCS, vol.
8787, pp. 158–167. Springer, Heidelberg (2014)

16. Rubin, D.L., Shah, N.H., Noy, N.F.: Biomedical ontologies: a functional perspec-
tive. Briefings Bioinform. 9(1), 75–90 (2008)

17. Jonquet, C., LePendu, P., Falconer, S., Coulet, A., Noy, N.F., Musen, M.A., Shah,
N.H.: NCBO resource index: ontology-based search and mining of biomedical
resources. Web Seman. Sci. Serv. Agents World Wide Web 9(3), 316–324 (2011)

18. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Rubin, D.L., Storey, M.A., Chute, C.G., et al.: BioPortal: ontologies and integrated
data resources at the click of a mouse. Nucleic Acids Res. 37, W170–W173 (2009)

19. Elevitch, F.R.: SNOMED CT: electronic health record enhances anesthesia patient
safety. AANA J. 73(5), 361 (2005)

20. Lee, D., de Keizer, N., Lau, F., Cornet, R.: Literature review of SNOMED CT use.
JAMIA J. Am. Med. Inform. Assoc. 21, e11–e19 (2013)

21. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3),
265 (2000)

Implementing Peer-to-Peer Semantic
Integration of Linked Data

Mirko M. Dimartino1(B), Andrea Cal̀ı1,2, Alexandra Poulovassilis1,
and Peter T. Wood1

1 London Knowledge Lab, Birkbeck, University of London, London, UK
{mirko,andrea,ap,ptw}@dcs.bbk.ac.uk

2 Oxford-Man Institute of Quantitative Finance, University of Oxford, Oxford, UK

1 Introduction

The World Wide Web has expanded from a network of hyper-linked documents to
a more complex structure where both documents and data are easily published,
consumed and reused. Ideally, users should be able to access this information
as a single, global data space. However, Linked Data on the Web is highly het-
erogeneous: different datasets may describe overlapping domains, using different
approaches to data modelling and naming. A single global ontological conceptu-
alisation is impracticable, and instead a more extensible approach is needed for
semantic integration of heterogeneous Linked Data sets into a global data space.

In a recent paper [2], we introduced a theoretical framework for the inte-
gration of linked data sets, defining the semantic relationships between them
through peer-to-peer mappings. In [2], we specified the semantics of query
answering in this framework, as well as query answering and query rewriting
algorithms. Here, we build on this work by introducing a prototype system that
implements these techniques. After briefly summarising our theoretical frame-
work, we present the architecture of the system and the main tasks that the
system carries out. Finally, we summarise our current research and we establish
some goals for future work.

To motivate our research, we begin by presenting an example. Suppose
two RDF sources describe data in the domain of movies (source 1) and peo-
ple (source 2). A user wants to retrieve the names and ages of actors in the
movie Mulholland Drive, and poses the following query over their local source
(source 1), hoping for additional information from other relevant sources too:

SELECT ?name ?age

WHERE {db1:Mulholland_Dr_2001 db1:actor ?x . ?x rdfs:label ?name

. ?x foaf:age ?age }

An empty result will be returned because source 1 does not contain foaf data.
The problem can be addressed by using the SPARQL 1.1 SERVICE clause, as
follows:

SELECT ?name ?age

WHERE {db1:Mulholland_Dr_2001 db1:actor ?x . ?x rdfs:label ?name

SERVICE <http://data.people.org/sparql> { ?x foaf:age ?age } }

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 41–45, 2015.
DOI: 10.1007/978-3-319-20424-6 5

42 M.M. Dimartino et al.

Even now, it is likely that query evaluation returns an empty result, because
real-world entities may be denoted by different IRIs in different sources. In this
case, mappings for the variable ?x may not be found. To cope with this issue,
Linked Data best practices suggest the adoption of the built-in OWL property
sameAs, which states that two linked IRIs represent the same real-world entity.
The user can leverage the semantics of the owl:sameAs predicate and submit
the following query, so as to perform coreference resolution of the “equivalent”
IRIs:

SELECT ?name ?age

WHERE { { db1:Mulholland_Dr_2001 db1:actor ?x . ?x rdfs:label ?name

. ?x owl:sameAs ?z

SERVICE <http://data.people.org/sparql> { ?z foaf:age ?age } }

UNION { db1:Mulholland_Dr_2001 db1:actor ?x . ?x rdfs:label ?name

SERVICE <http://data.people.org/sparql>

{ ?z owl:sameAs ?x . ?z foaf:age ?age } } }

The user may not know whether the owl:sameAs triples are stored in source 1
or source 2, so these two cases need to be taken into consideration by including
the UNION operator and two disjuncts in the query pattern. A non-empty result
is still not guaranteed since the owl:sameAs triples may be missing.

The drawbacks of this approach are: (1) the user needs to be aware of all
the potential sources of information, (2) the user needs to be familiar with the
semantic links between sources, and (3) as the number of sources increases, the
queries become more complicated to formulate. What is needed is a system that
does not require the user to be aware of what other sources are available and
where query rewriting is performed automatically in order to obtain as many
answers to user queries as possible. We describe such a system in the rest of the
paper.

2 Theoretical Foundations

Our approach to semantic integration of heterogeneous Linked Data sources
is based on the RDF Peer System (RPS) introduced in [2]. This is a frame-
work for peer-based integration of RDF datasets, where the semantic rela-
tionships between data at different peers are expressed through mappings.
Formally, an RPS P is defined as a tuple P = (S, G,E), where S is the set
of the peer schemas in P, G is a set of graph mapping assertions and E is a
set of equivalence mappings. A peer schema in S is the set of IRIs that a peer
(i.e. an RDF data source) adopts to describe its data. The sets of schema-level
mappings and instance-level mappings between peers are given by G and E,
respectively. G provides semantic linkage between the schemas of different peers
and it contains mapping assertions of the form Q � Q′, where Q and Q′ are
“conjunctive” SPARQL queries with the same arity over two peers, e.g.

Q := q(x, y) ← (x, actor, y)
Q′ := q(x, y) ← (x, starring, z) AND (z, artist, y)

in our earlier example setting. Mappings in E are of the form c ≡e c
′, where c and

Implementing Peer-to-Peer Semantic Integration of Linked Data 43

c′ are IRIs located in the same peer or in two different peers. Each equivalence
mapping states that the two IRIs represent the same real-world object. In this
sense, equivalence mappings are used to provide coreference resolution during
query processing.

A solution for an RPS P, denoted by I, is defined as a “global” RDF data-
base which contains: (i) all the triples in the peers; (ii) triples inferred through
the graph mapping assertions, by testing that for each mapping Q � Q′, Q eval-
uated over I is contained in Q′ evaluated over I; and (iii) triples inferred from
the equivalence mappings, such that, for each equivalence mapping c ≡e c′, c
appears in I at a certain position in a triple (i.e., subject, predicate or object)
if and only if I contains also a triple such that c′ appears at the same position.
Following this, query answering under RPSs is defined by extending the notion
of certain answers [1,2]. For a graph pattern query q, expressed in any peer
schema(s), the set of certain answers is given by the tuples contained in all the
results of q evaluated over all the possible solutions I. In this regard, a query is
answered by leveraging the semantics of the mappings so that a more complete
answer is given, integrating data from multiple RDF sources. We use the notion
of certain answers in RPSs to assess the correctness and completeness of our
query processing techniques.

3 Overview of the System

Our system provides a query interface between the user and the Linked Data
sources. A unified SPARQL endpoint accepts queries expressed in any source
vocabulary. The queries are rewritten with respect to the semantic mappings of
the RPS, so as to retrieve the set of certain answers; we envisage that mappings
between peers can either be designed manually or automatically inferred. Then,
a second rewriting step is performed, generating a SPARQL 1.1 federated query
to be evaluated over the sources. The query result is then presented to the user.
The system’s main components are shown below.

Query

SPARQL endpoint

Semantic integration

Query federation

Query rewriting engine

Stored mappings
(RPS)

Manually designed
mappings

Coreference resolution

Schema alignment

Automated alignment

Linked Data

SPARQL 1.1
federated query

44 M.M. Dimartino et al.

In more detail: The query rewriting engine performs query rewriting of the
user’s query. The rewritten query is then evaluated over the sources and the
result is presented to the user. The query rewriting engine is composed of two
sub-engines:

(i) The semantic integration module generates a “perfect rewriting” of the user’s
query, that is, a query that preserves a sound and complete answer of the
original query based on the semantic mappings in the RPS. Note that, in
general, sets of RPS mappings are not FO-rewritable (see [2]), so at present
our system is confined to FO-rewritable ones.

(ii) The query federation module executes a second rewriting step in order to
generate a federated query to be evaluated over multiple RDF sources. Triple
patterns in the body of the query are grouped with respect to the RDF
sources that can provide a successful graph pattern match. Then, the groups
are assigned to the endpoints of the related sources, and evaluated using the
SPARQL 1.1 SERVICE clause.

The system provides for automated alignment of the peer schemas, to link enti-
ties and concepts in the Linked Open Data cloud. This part has not yet been
implemented, but we envisage that it would extract structural information from
the sources, such as the sets of entities, predicates, classes etc. Then, it would
perform schema alignment and coreference resolution by:

– retrieving mappings between sources, such as owl:sameAs or VoID1 triples,
and other semantic links between sources;

– generating new mappings, using existing ontology matching and instance link-
age techniques, such as Falcon-AO [3];

– translating these alignments into our peer mapping language; and
– storing the mappings in the RPS.

4 Current and Future Work

Current work includes: (i) designing and implementing optimisations to the
query rewriting algorithm, for example to eliminate redundant sub-queries (that
cannot have any matchings) and to include containment tests between sub-
queries; (ii) evaluating query performance and scalability with respect to large
real and synthetic datasets; (iii) extending our query rewriting to encompass the
full range of possible mappings, and not just FO-rewritable ones as at present.
Specifically, one possibility is to adopt a combined materialisation and virtual
approach, where part of the universal solution is materialised and the rest is
computed through query rewriting. Another possible approach is to devise a
query rewriting algorithm that produces rewritten queries in a language more
expressive than FO-queries, for instance Datalog.

For the future, we wish to investigate the query answering/query rewriting
problem for more expressive query languages, in particular for larger subsets of
1 http://www.w3.org/TR/void/.

http://www.w3.org/TR/void/

Implementing Peer-to-Peer Semantic Integration of Linked Data 45

SPARQL. Another area of future investigation is automatic discovery of map-
pings between peers, i.e. implementation of the Automated Alignment module
of our system.

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: PODS, pp. 254–263 (1998)

2. Dimartino, M.M., Cal̀ı, A., Poulovassilis, A., Wood, P.T.: Peer-to-peer semantic
integration of linked data. In: EDBT/ICDT Workshops, pp. 213–220 (2015)

3. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: a divide-and-conquer app-
roach. Data Knowl. Eng. 67(1), 140–160 (2008)

Graph Data

Virtual Network Mapping: A Graph Pattern
Matching Approach

Yang Cao1,2(B), Wenfei Fan1,2, and Shuai Ma1

1 RCBD and SKLSDE Lab, Beihang University, Beihang, China
{caoyang,mashuai}@act.buaa.edu.cn, wenfei@inf.ed.ac.uk

2 University of Edinburgh, Edinburgh, UK

Abstract. Virtual network mapping (VNM) is to build a network on
demand by deploying virtual machines in a substrate network, subject
to constraints on capacity, bandwidth and latency. It is critical to data
centers for coping with dynamic cloud workloads. This paper shows that
VNM can be approached by graph pattern matching, a well-studied data-
base topic. (1) We propose to model a virtual network request as a graph
pattern carrying various constraints, and treat a substrate network as a
graph in which nodes and edges bear attributes specifying their capacity.
(2) We show that a variety of mapping requirements can be expressed
in this model, such as virtual machine placement, network embedding
and priority mapping. (3) In this model, we formulate VNM and its opti-
mization problem with a mapping cost function. We establish complex-
ity bounds of these problems for various mapping constraints, ranging
from PTIME to NP-complete. For intractable optimization problems,
we further show that these problems are approximation-hard, i.e., NPO-
complete in general and APX-hard even for special cases.

1 Introduction

Virtual network mapping (VNM) is also known as virtual network embedding
or assignment. It takes as input (1) a substrate network (SN, a physical net-
work), and (2) a virtual network (VN) specified in terms of a set of virtual nodes
(machines or routers, denoted as VMs) and their virtual links, along with con-
straints imposed on the capacities of the nodes (e.g., cpu and storage) and on
the links (e.g., bandwidth and latency). VNM is to deploy the VN in the SN such
that virtual nodes are hosted on substrate nodes, virtual links are instantiated
with physical paths in the SN, and the constraints on the virtual nodes and links
are satisfied.

VNM is critical to managing big data. Big data is often distributed to data
centers [23,26]. However, data center networks become the bottleneck for dynamic
cloud workloads of querying and managing the data. In traditional networking
platforms, network resources are manually configured with static policies, and
new workload provisioning often takes days or weeks [1]. This highlights the need
for VNM, to automatically deploy virtual networks in a data center network in
response to real-time requests. Indeed, VNM is increasingly employed in industry,
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 49–61, 2015.
DOI: 10.1007/978-3-319-20424-6 6

50 Y. Cao et al.

(a) VN Request (b) SN

Fig. 1. VN requests found in practice

e.g., Amazon’s EC2 [2], VMware Data Center [3] and Big Switch Networks
[1]. It has proven effective in increasing server utilization and reducing server
provisioning time (from days or weeks to minutes), server capital expenditures
and operating expenses [1]. There has also been a host of work on virtualization
techniques for big data [23] and database systems [7,24].

Several models have been proposed to specify VNM in various settings:

(1) Virtual machine placement (VMP): it is to find a mapping f from virtual
machines in a VN to substrate nodes in an SN such that for each VM v, its
capacity is no greater than that of f(v), i.e., f(v) is able to conduct the
computation of the VM v that it hosts [12].

(2) Single-path VNembedding (VNESP): it is to find
(a) an injective mapping fv that maps nodes in VN to nodes in SN, subject

to node capacity constraints; and
(b) a function that maps a virtual link (v, v′) in VN to a path from fv(v) to

fv(v′) in SN that satisfies a bandwidth constraint, i.e., the bandwidth of
each link in the SN is no smaller than the sum of the bandwidth require-
ments of all those virtual links that are mapped to a path containing
it [20].

(3) Multi-path VNembedding (VNEMP): it is to find a node mapping fv as in
VNESP and a function that maps each virtual link (v, v′) to a set of paths
from fv(v) to fv(v′) in SN, subject to bandwidth constraints [14,25].

However, there are a number of VN requests commonly found in practice, which
cannot be expressed in any of these models, as illustrated by the following.

Example 1. Consider a VN request and an SN, depicted in Figs. 1(a) and 1(b),
respectively. The VN has three virtual nodes VM1, VM2 and VM3, each specifying
a capacity constraint, along with a constraint on each virtual link. In the SN,
each substrate node bears a resource capacity and each connection (edge) has an
attribute, indicating either bandwidth or latency. Consider the following cases.

(1) Mapping with Latency Constraints (VNML). Assume that the numbers
attached to the virtual nodes and links in Fig. 1(a) denote requirements on cpus
and latencies for SN, respectively. Then the VNM problem, denoted by VNML,
aims to map each virtual node to a substrate node with sufficient computational
power, and to map each virtual link (v, v′) in the VN to a path in the SN such
that its latency, i.e., the sum of the latencies of the edges on the path, does not

Virtual Network Mapping: A Graph Pattern Matching Approach 51

exceed the latency specified for (v, v′). The need for studying VNML arises from
latency sensitive applications such as multimedia transmitting networks [21],
which concern latency rather than bandwidth.

(2) Priority Mapping (VNMP). Assume that the constraints on the nodes in
Fig. 1(a) are cpu capacities, and constraints imposed on edges are bandwidth
capacities. Here the VNM problem, denoted by VNMP, is to map each virtual
node to a node in SN with sufficient cpu capacity, and each virtual link (v, v′)
in the VN to a path in SN such that the minimum bandwidth of all edges on
the path is no less than the bandwidth specified for (v, v′). The need for this is
evident in many applications [4], we want to give different priorities at run time
to virtual links that share some physical links, and require the mapping only to
provide bandwidth guarantee for the connection with the highest priority.

(3) Mapping with Node Sharing (VNESP(NS)). Assume that the numbers
attached to the virtual nodes and links in Fig. 1(a) denote requirements on cpus
and bandwidths for SN, respectively. Then VNESP(NS) is an extension of the
single-path VN embedding (VNESP) by supporting node sharing, i.e., by allow-
ing mapping multiple virtual nodes to the same substrate node, as needed by
X-Bone [6].
There is also practical need for extending other mappings with node sharing,
such as virtual machine placement (VMP), latency mapping (VNML), priority
mapping VNMP and multi-path VN embedding (VNEMP). We denote such an
extension by adding a subscript NS.

Observe that (a) VNM varies from practical requirements, e.g., when latency,
high-priority connections and node sharing are concerned; (b) Existing models
are not capable of expressing such requirements; indeed, none of them is able to
specify VNML, VNMP or VNESP(NS); And (c) it would be an overkill to develop a
model for each of the large variety of requirements, and to study it individually.

As suggested by the example, we need a generic model to express virtual net-
work mappings in various practical settings, including both those already studied
(e.g., VMP, VNESP and VNEMP) and those being overlooked (e.g., VNML, VNMP

and VNESP(NS)). The uniform model allows us to characterize and compare VNMs
in different settings, and better still, to study generic properties that pertain to
all the variants. Among these are the complexity and approximation analyses
of VNMs, which are obviously important but have not yet been systematically
studied by and large.

Contributions & Roadmap. This work takes a step toward providing a uni-
form model to characterize VNMs. We show that VNMs, an important problem
for managing big data, can actually be tackled by graph pattern matching tech-
niques, a database topic that has been well studied. We also provide complexity
and approximation bounds for VNMs. Moreover, for intractable VNM cases, we
develop effective heuristic methods to find high-quality mappings.

(1) We propose a generic model to express VNMs in terms of graph
pattern matching [18] (Sect. 2). In this model a VN request is specified as a graph

52 Y. Cao et al.

pattern, bearing various constraints on nodes and links defined with aggregation
functions, and an SN is simply treated as a graph with attributes associated
with its nodes and edges. The decision and optimization problems for VNMs are
then simply graph pattern matching problems. We also show that the model is
able to express VNMs commonly found in practice, including all the mappings
we have seen so far (Sect. 3).

(2) We establish complexity and approximation bounds for VNMs (Sect. 4). We
give a uniform upper bound for the VNM problems expressed in this model, by
showing that all these problems are in NP. We also show that VNM is poly-
nomial time (PTIME) solvable if only node constraints are present (VMP), but
it becomes NP-complete when either node sharing is allowed or constraints on
edges are imposed. Moreover, we propose a VNM cost function and study opti-
mization problems for VNM based on the metric. We show that the optimization
problems are intractable in most cases and worse still, are NPO-complete in gen-
eral and APX-hard [10] for special cases. To the best of our knowledge, these are
among the first complexity and approximation results on VNMs.

We contend that these results are useful for developing virtualized cloud data
centers for querying and managing big data, among other things. By modeling
VNM as graph pattern matching, we are able to characterize various VN requests
with different classes of graph patterns, and study the expressive power and
complexity of these graph pattern languages. The techniques developed for graph
pattern matching can be leveraged to study VNMs. Indeed, the proofs of some of
the results in this work capitalize on graph pattern techniques. Furthermore, the
results of this work are also of interest to the study of graph pattern matching [18].

2 Graph Pattern Matching Model

Below we first represent virtual networks (VNs) and substrate networks (SNs) as
weighted directed graphs. We then introduce a generic model to express virtual
network mapping (VNM) in terms of graph pattern matching [18].

2.1 Substrate and Virtual Networks

An SN consists of a set of substrate nodes connected with physical links, in which
the nodes and links are associated with resources of a certain capacity, e.g., cpu
and storage capacity for nodes, and bandwidth and latency for links. A VN is
specified in terms of a set of virtual nodes and a set of virtual links, along with
requirements on the capacities of the nodes and the capacities of the links. Both
VNs and SNs can be naturally modeled as weighted directed graphs.

Weighted Directed Graphs. A weighted directed graph is defined as G =
(V,E, fV , fE), where (1) V is a finite set of nodes; (2) E ⊆ V × V is a set of
edges, in which (v, v′) denotes an edge from v to v′; (3) fV is a function defined
on V such that for each node v ∈ V , fV (v) is a positive rational number; and
similarly, (4) fE is a function defined on E.

Virtual Network Mapping: A Graph Pattern Matching Approach 53

Substrate Networks. A substrate network (SN) is a weighted directed graph
GS = (VS , ES , fVS

, fES
), where (1) VS and ES denote sets of substrate nodes

and physical links (directly connected), respectively; and (2) the functions fVS

and fES
denote resource capacities on the nodes (e.g., cpu) and links (e.g.,

bandwidth and latency), respectively.

Virtual Networks. A virtual network (VN) is specified as a weighted directed
graph GP = (VP , EP , fVP

, fEP
), where (1) VP and EP denote virtual nodes

and links, and (2) fVP
and fEP

are functions defined on VP and EP in the same
way as in substrate networks, respectively.

Example 2. The SN depicted in Fig. 1(b) is a weighted graph GS , where (1) the
node set is {a, b, ..., f}; (2) the edges include the directed edges in the graph; (3)
the weights associated with nodes indicate cpu capacities; and (4) the weights of
edges denote bandwidth or latency capacities. Figure 1(a) shows a VN, where (1)
the node set is {VM1, VM2, VM3}; (2) the edge set is {(VMi,VMj) | i, j = 1, 2, 3};
(3) fVP

(VM1) = 66, fVP
(VM2) = 20, fVP

(VM3) = 30; and (4) the function fEP

is defined on the edge labels. As will be seen when we define the notion of VN
requests, the labels indicate requirements on deploying the VN in an SN.

Paths. A path ρ from node u0 to un in an SN GS is denoted as (u0, u1, . . . , un),
where (a) ui ∈ VS for each i ∈ [0, n], (b) there exists an edge ei = (ui−1, ui)
in ES for each i ∈ [1, n], and moreover, (c) for all i, j ∈ [0, n], if i �= j, then
ui �= uj . We write e ∈ ρ if e is an edge on ρ. When it is clear from the context,
we also use ρ to denote the set of edges on the path, i.e., {ei | i ∈ [1, n]}.

2.2 Virtual Network Mapping

Virtual network mapping (VNM) from a VN GP to an SN GS is specified in terms
of a node mapping, an edge mapping and a VN request. The VN request imposes
constraints on the node mapping and edge mapping, defining their semantics.
We next define these notions.

A node mapping from GP to GS is a pair (gV ,rV) of functions, where gV maps
the set VP of virtual nodes in GP to the set VS of substrate nodes in GS , and for
each v in VP , if gV (v) = u, rV (v, u) is a positive number. Intuitively, function
rV specifies the amount of resource of the substrate node u that is allocated to
the node v.

For each edge (v, v′) in GP , we use P (v, v′) to denote the set of paths from
gV (v) to gV (v′) in GS . An edge mapping from GP to GS is a pair (gE , rE) of
functions such that for each edge (v, v′) ∈ EP , gE(v, v′) is a subset of P (v, v′),
and rE attaches a positive number to each pair (e, ρ) if e ∈ EP and ρ ∈ gE(e).
Intuitively, rE(e, ρ) is the amount of resource of the physical path ρ allocated to
the virtual link e.

VN Requests. A VNrequest to an SN GS is a pair (GP , C), where GP is a VN,
and C is a set of constraints such that for a pair ((gV , rV), (gE , rE)) of node and
edge mappings from GP to GS , each constraint in C has one of the forms below:

54 Y. Cao et al.

(1) for each v ∈ VP , fVP
(v) ≤ rV (v, gV (v));

(2) for each u ∈ VS , fVS
(u) ≥ sum(N(u)), where N(u) is {|rV (v, u) | v ∈

VP , gV (v) = u|}, a bag (an unordered collection of elements with repetitions)
determined by virtual nodes in GP hosted by u;

(3) for each e ∈ EP , fEP
(e) op agg(Q(e)), where Q(e) is {|rE(e, ρ) | ρ ∈ gE(e)|},

a bag collecting physical paths ρ that instantiate e; here op is either the
comparison operator ≤ or ≥, and agg() is one of the aggregation functions
min, max and sum;

(4) for each e′ ∈ ES , fES
(e′) ≥ sum(M(e′)), where M(e′) is {|rE(e, ρ) | e ∈ EP ,

ρ ∈ gE(e), e′ ∈ ρ|}, a bag collecting those virtual links that are instantiated
by a physical link ρ containing e′; and

(5) for each e ∈ EP and ρ ∈ gE(e), rE(e, ρ) op agg(U(ρ)) where U(ρ) is {|fES
(e′)

| e′ ∈ ρ|}), a bag of all edges on a physical path that instantiate e.

Constraints in a VN request are classified as follows.

Node Constraints: Constraints of form (1) or (2). Intuitively, a constraint of form
(1) assures that when a virtual node v is hosted by a substrate node u, u must
provide adequate resource. A constraint of form (2) asserts that when a substrate
node u hosts (possibly multiple) virtual nodes, u must have sufficient capacity
to accommodate all those virtual nodes. When u hosts at most one virtual node,
i.e., if node sharing is not allowed, then |N(u)| ≤ 1, where we use |N(u)| to
denote the number of virtual nodes hosted by u.

Edge Constraints: Constraints of form (3), (4) or (5). Constraints of form (3)
assure that when a virtual link e is mapped to a set of physical paths in the
SN, those physical paths together satisfy the requirements (on bandwidths or
latencies) of e. We denote by |Q(e)| the number of physical paths to which
e is mapped. Those of form (4) assert that for each physical link e′, it must
have sufficient bandwidth to accommodate those of all the virtual links that are
mapped to some physical path containing e′. Those of form (5) assure that when
a virtual link e is mapped to a set of paths, for each ρ in the set, the resource of
ρ allocated to e must be consistent with the capacities of the physical links on
ρ, e.g., may not exceed the minimum bandwidth of the physical links on ρ.

VNM. We say that a VN request (GP , C) can be mapped to an SN GS , denoted
by GP �CGS , if there exists a pair ((gV , rV), (gE , rE)) of node and edge mappings
from GP to GS such that all the constraints of C are satisfied, i.e., the functions
gV and gE satisfy all the inequalities in C.

The VNMproblem is to determine, given a VN request (GP , C) and an SN GS ,
whether GP �C GS .

3 Case Study

All the VNM requirements in the Introduction (Sect. 1) can be expressed in our
model, by treating VN request as a pattern and SN as a graph. Below we present
a case study.

Virtual Network Mapping: A Graph Pattern Matching Approach 55

Fig. 2. VN request and SN for case study

Case 1: Virtual Machine Placement. VMP can be expressed as a VN request
in which only node constraints are present. It is to find an injective mapping
(gV , rV) from virtual nodes to substrate nodes (hence |N | ≤ 1) that satisfies the
node constraints, while imposing no constraints on edge mapping.

Case 2: Priority Mapping. VNMP can be captured as a VN request specified as
(GP , C), where C consists of (a) node constraints of forms (1) and (2), and (b)
edge constraints of form (3) when op is ≤ and agg is max, and form (5) when op
is ≤ and agg is min. It is to find an injective node mapping (gV , rV) and an edge
mapping (gE , rE) such that for each virtual link e, gE(e) is a single path (hence
|Q(e)| = 1). Moreover, it requires that the capacity of each virtual node v does
not exceed the capacity of the substrate node that hosts v. When a virtual link
e is mapped to a physical path ρ, the bandwidth of each edge on ρ is no less than
that of e, i.e., ρ suffices to serve any connection individually, including the one
with the highest priority when ρ is allocated to the connection.

Example 3. Consider the VN given in Fig. 1(a) and the SN of Fig. 1(b). Con-
straints for priority mapping can be defined as described above, using the node
and edge labels (on bandwidths) in Fig. 1(a). There exists a priority mapping
from the VN to the SN. Indeed, one can map VM1,VM2 and VM3 to b, a and d,
respectively, and map the virtual links to the shortest physical paths uniquely
determined by the node mapping, e.g., (VM1,VM2) is mapped to (b, a).

Case 3: Single-Path VN Embedding. A VNESP request can be specified as
(GP , C), where C consists of (a) node constraints of forms (1) and (2), and
(b) edge constraints of form (3) when op is ≤ and agg is sum, and edge con-
straints of forms (4) and (5) when op is ≤ and agg is min. It differs from VNMP

in that for each physical link e′, it requires the bandwidth of e′ to be no less than
the sum of bandwidths of all those virtual links that are instantiated via e′. In
contrast to VNMP that aims to serve the connection with the highest priority
at a time, VNESP requires that each physical link has enough capacity to serve
all connections sharing the physical link at the same time.

Similarly, multi-path VN embedding (denoted by VNEMP) can be expressed
as a VN request. It is the same as VNESP except that a virtual link e can be
mapped to a set gE(e) of physical paths. When taken together, the paths in
gE(e) provide sufficient bandwidth required by e.

56 Y. Cao et al.

When node sharing is allowed in VNESP, i.e., for single-path embedding with
node sharing (VNESP(NS)), a VN request is specified similarly. Here a substrate
node u can host multiple virtual nodes (hence |N(u)| ≥ 0) such that the sum of
the capacities of all the virtual nodes does not exceed the capacity of u. Similarly,
one can also specify multi-path VN embedding with node sharing (VNEMP(NS)).

Example 4. Consider the VN of Fig. 2(a), and the SN of Fig. 2(b). There is a
VNESP from the VN to the SN, by mapping VM1,VM2,VM3 to a, b, e, respectively,
and mapping the VN edges to the shortest paths in the SN determined by the
node mapping. There is also a multi-path embedding VNEMP from the VN to the
SN, by mapping VM1,VM2 and VM3 to a, c and e, respectively. For the virtual
links, (VM1,VM2) can be mapped to the physical path (a, b, c), (VM1,VM3)
to (a, e), and (VM3,VM2) to two paths ρ1 = (e, b, c) and ρ2 = (e, d, c) with
rE((VM3,VM2), ρ1) = 5 and rE((VM3,VM2), ρ2) = 15; similarly for the other
virtual links.

One can verify that the VN of Fig. 2(a) allows no more than one virtual node
to be mapped to the same substrate node in Fig. 2(b). However, if we change the
bandwidths of the edges connecting a and e in SN from 30 to fVS

(a, e) = 40 and
fVS

(e, a) = 50, then there exists a mapping from the VN to the SN that supports
node sharing. Indeed, in this setting, one can map both VM1,VM2 to e and map
VM3 to a; and map the virtual edges to the shortest physical paths determined
by the node mapping; for instance, both (VM1,VM3) and (VM2,VM3) can be
mapped to (e, a).

Case 4: Latency Constrained Mapping. A VNML request is expressed as (GP , C),
where C consists of (a) node constraints of forms (1) and (2), and (b) edge
constraints of form (3) when op is ≥ and agg is min, and of form (5) when op
is ≥ and agg is sum. It is similar to VNESP except that when a virtual link e is
mapped to a physical path ρ, it requires ρ to satisfy the latency requirement of
e, i.e., the sum of the latencies of the edges on ρ does not exceed that of e.

Example 5. One can verify that there is no latency mapping of the VN shown
in Fig. 1(a) to the SN in Fig. 1(b). However, if we change the constraints on
the virtual links of the VN request to: (VM1,VM2) = 50, (VM2,VM1) = 55,
(VM1,VM3) = (VM3,VM1) = 120 and (VM2,VM3) = (VM3,VM2) = 60, then
there is a mapping from the VN to the SN. We can map VM1,VM2,VM3 to c, b,
a, respectively, and map the edges to the shortest physical paths determined by
the node mapping.

4 Complexity and Approximation

We next study fundamental issues associated with virtual network mapping. We
first establish the complexity bounds of the VNM problem in various settings,
from PTIME to NP-complete. We then introduce a cost metric for virtual network
mapping, formulate optimization problems based on the function, and finally,
give the complexity bounds and approximation hardness of the optimization
problems. Due to the space constraint, we defer the detailed proofs to [5].

Virtual Network Mapping: A Graph Pattern Matching Approach 57

4.1 The Complexity of VNM

We provide an upper bound for the VNM problem in the general setting, by
showing it is in NP. We also show that the problem is in PTIME when only node
constraints are present. However, when node sharing or edge constraints are
imposed, it becomes NP-hard, even when both virtual and substrate networks
are directed acyclic graphs (dags). That is, node sharing and edge constraints
make our lives harder.

Theorem 1. The virtual network mapping problem is
(1) in NP regardless of what constraints are present;
(2) in PTIME when only node constraints are present, without node sharing, i.e.,
VMP is in PTIME; However,
(3) it becomes NP-complete when node sharing is requested, i.e., VMP(NS),
VNMP(NS), VNML(NS), VNESP(NS) and VNEMP(NS) are NP-complete; and
(4) it is NP-complete in the presence of edge constraints; i.e., VNMP, VNML,
VNESP and VNEMP are intractable.

All the results hold when both VNs and SNs are dags.

4.2 Approximation of Optimization Problems

In practice, one typically wants to find a VNM mapping with “the lowest cost”.
This highlights the need for introducing a function to measure the cost of a
mapping and studying its corresponding optimization problems.

A Cost Function. Consider an SN GS = (VS , ES , fVS
, fES

), and a VN request
(GP , C), where GP = (VP , EP , fVP

, fEP
). Assume a positive number associated

with all nodes v and links e in GS , denoted by w(v) and w(e), respectively, that
indicates the price of the resources in the SN.

Given a pair ((gV , rV), (gE , rE)) of node and edge mappings from (GP , C) to
GS , its cost c((gV , rV), (gE , rE)) is defined as
c((gV , rV), (gE , rE)) =

∑
v∈VP

hV (gV , rV , v) ·w(gV (v)) +
∑

e′∈ES
hE(gE , rE , e′) ·w(e′),

where (1) hV (gV , rV , v) = rV (v, gV (v))/fVS
(gV (v)),

(2) hE(gE , rV , e′) =
∑

e∈EP ,ρ∈gE(e),e′∈ρ

rE(e, ρ)/fES (e′) when the resource of physical

links is bandwidth, and
(3) when latency is concerned, hE(gE ,rV ,e′) is 1 if there exists e ∈ EP such that
e′ ∈ gE(e), and 0 otherwise.

Intuitively, hV indicates that the more cpu resource is allocated, the higher
the cost it incurs; similarly for hE when bandwidth is concerned. When latency
is considered, the cost of the edge mapping is determined only by gE , whereas
the resource allocation function rE is irrelevant.

The cost function is motivated by economic models of network virtualiza-
tion [13]. It is justified by Web hosting and cloud storage [11], which mainly sell
cpu power or storage services of nodes, and by virtual network mapping, which
also sells bandwidth of links [14]. It is also to serve cloud provision in virtual-
ized data center networks [19], for which dynamic routing strategy (latency) is
critical while routing congestion (bandwidth allocation) is considered secondary.

58 Y. Cao et al.

Minimum Cost Mapping. We now introduce optimization problems for vir-
tual network mapping.

The minimum cost mapping problem is to find, given a VN request and an
SN, a mapping ((gV , rV), (gE , rE)) from the VN to the SN such that its cost
based on the function above is minimum among all such mappings.

The decision problem for minimum cost mapping is to decide, given a number
(bound) K, a VN request and an SN, whether there is a mapping ((gV , rV),
(gE , rE)) from the VN to the SN such that its cost is no larger than K.

We shall refer to the minimum cost mapping problem and its decision problem
interchangeably in the sequel.

Complexity and Approximation. We next study the minimum cost mapping
problem for all cases given before. Having seen Theorem1, it is not surprising
that the optimization problem is intractable in most cases. This motivates us to
study their efficient approximation algorithms with performance guarantees.

Unfortunately, the problem is hard to approximate in most cases. The results
below tell us that when node sharing is requested or edge constraints are present,
minimum cost mapping is beyond reach in practice for approximation.

Theorem 2. The minimum cost mapping problem is
(1) in PTIME for VMP without node sharing; however, when node sharing is
requested, i.e., for VMP(NS), it becomes NP-complete and is APX-hard;
(2) NP-complete and NPO-complete for VNMP , VNESP, VNEMP, VNML,
VNMP(NS), VNESP(NS), VNEMP(NS), VNML(NS); And
(3) APX-hard when there is a unique node mapping in the presence of edge
constraints. In particular, VNMP does not admit ln(|VP |)-approximation, unless
P = NP.

The NPO-hardness results remain intact even when both VNs and SNs are
dags.

Here NPO is the class of all NP optimization problems (cf. [10]). An NPO-
complete problem is NP-hard to optimize, and is among the hardest optimization
problems. APX is the class of problems that allow PTIME approximation algo-
rithms with a constant approximation ratio (cf. [10]).

Heuristic Algorithms. These above results tell us that it is beyond reach
in practice to find PTIME algorithms for VNMs with edge constraints such as
VNMP and VNESP, or to find efficient approximation algorithms with decent
performance guarantees. In light of these, we study heuristic algorithms.

We develop heuristic algorithms for priority mapping VNMP, with node shar-
ing or not [5]. We focus on VNMP since it is needed in, e.g., internet-based vir-
tualized infrastructure computing platform (iVIC [4]). Our algorithm reduces
unnecessary computation by minimizing VNs requests and utilizing auxiliary
graphs of SNs [5]. While several algorithms are available for VN embedding
(e.g., [20]), no previous work has studied algorithms for VNMP. We encourage
interested readers to look into [5] for the detailed introduction and experimental
study of these algorithms.

Virtual Network Mapping: A Graph Pattern Matching Approach 59

5 Related Work

Virtualization techniques have been investigated for big data processing [23] and
database applications [7,8,24]. However, none of these has provided a systematic
study of VNM, by modeling VNM as graph pattern matching. The only exception
is [20], which adopted subgraph isomorphism for VNM, a special case of the
generic model proposed in this work. Moreover, complexity and approximation
analyses associated with VNM have not been studied for cloud computing in
database applications.

Several models have been developed for VNM. (a) The VM placement prob-
lem (VMP, [12]) is to map a set of VMs onto an SN with constraints on node
capacities. (b) Single-path VN embedding (VNESP, [22]) is to map a VN to an
SN by a node-to-node injection and an edge-to-path function, subject to con-
straints on the cpu capacities of nodes and constraints on the bandwidths of
physical connections. (c) Different from VNESP, multi-path embedding (VNEMP,
[14,25]) allows an edge of a VN to be mapped to multiple parallel paths of an
SN such that the sum of the bandwidth capacities of those paths is no smaller
than the bandwidth of that edge. (d) While graph layout problems are similar
to VN mapping, they do not have bandwidth constraints on edges but instead,
impose certain topological constraints (see [15] for a survey). In contrast to our
work, these models are studied for specific domains, and no previous work has
studied generic models to support various VN requests that commonly arise in
practice.

Very few complexity results are known for VNM. The only work we are aware
of is [9], which claimed that the testbed mapping problem is NP-hard in the pres-
ence of node types and some links with infinite capacity. Several complexity and
approximation results are established for graph pattern matching (see [18] for
a survey). However, those results are for edge-to-edge mappings, whereas VNM
typically needs to map virtual links to physical paths. There have been recent
extensions to support edge-to-path mappings for graph pattern matching [16,17],
with several intractability and approximation bounds established there. Those
differ from this work in that either no constraints on links are considered [17], or
graph simulation is adopted [16], which does not work for VNM. The complexity
and approximation bounds developed in this work are among the first results
that have been developed for VNM in cloud computing.

6 Conclusion

We have proposed a model to express various VN requests found in practice,
based on graph pattern matching, and we have shown that that the model is
able to express VNMs commonly found in practice. We have also established a
number of intractability and approximation hardness results in various practical
VNM settings. These are among the first efforts to settle fundamental problems
for virtual network mapping. A few topics are targeted for future work. We are
developing practical heuristic algorithms and optimization techniques for VNM.

60 Y. Cao et al.

We are also exploring techniques for processing VN requests for different appli-
cations, as well as their use in graph pattern matching.

Acknowledgments. Fan and Cao are supported in part by NSFC 61133002, 973
Program 2014CB340302, Shenzhen Peacock Program 1105100030834361, Guangdong
Innovative Research Team Program 2011D005, EPSRC EP/J015377/1 and
EP/M025268/1, and a Google Faculty Research Award. Ma is supported in part by
973 Program 2014CB340304, NSFC 61322207 and the Fundamental Research Funds
for the Central Universities.

References

1. http://www.bigswitch.com/
2. http://aws.amazon.com/ec2/
3. http://www.vmware.com/solutions/datacenter/
4. http://frenzy.ivic.org.cn/
5. http://homepages.inf.ed.ac.uk/s1165433/papers/vnm-full.pdf
6. http://www.isi.edu/xbone/
7. Aboulnaga, A., Amza, C., Salem, K.: Virtualization and databases: state of the

art and research challenges. In: EDBT (2008)
8. Aboulnaga, A., Salem, K., Soror, A., Minhas, U., Kokosielis, P., Kamath, S.:

Deploying database appliances in the cloud. IEEE Data Eng. Bull 32(1), 13–20
(2009)

9. Andersen, D.: Theoretical approaches to node assignment (2002)(unpublished
manuscript)

10. Ausiello, G.: Complexity and Approximation: Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer Verlag, Heidelberg (1999)

11. Bavier, A.C., Feamster, N., Huang, M., Peterson, L.L., Rexford, J.: In VINI veritas:
realistic and controlled network experimentation. In: SIGCOMM (2006)

12. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing sla violations. In: IM (2007)

13. Chowdhury, N., Boutaba, R.: A survey of network virtualization. Comput. Netw.
54(5), 862–876 (2010)

14. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coor-
dinated node and link mapping. In: INFOCOM (2009)

15. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. CSUR 34(3),
313–356 (2002)

16. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from
intractable to polynomial time. In: VLDB (2010)

17. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for
graph matching. In: VLDB (2010)

18. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. In: AAAI FS (2006)

19. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.:
Bcube: a high performance, server-centric network architecture for modular data
centers. In: SIGCOMM (2009)

20. Lischka, J., Karl, H.: A virtual network mapping algorithm based on subgraph
isomorphism detection. In: SIGCOMM workshop VISA (2009)

http://www.bigswitch.com/
http://aws.amazon.com/ec2/
http://www.vmware.com/solutions/datacenter/
http://frenzy.ivic.org.cn/
http://homepages.inf.ed.ac.uk/s1165433/papers/vnm-full.pdf
http://www.isi.edu/xbone/

Virtual Network Mapping: A Graph Pattern Matching Approach 61

21. Reinhardt, W.: Advance reservation of network resources for multimedia applica-
tions. In: IWACA (1994)

22. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM CCR 33, 65–81 (2003)

23. Trelles, O., Prins, P., Snir, M., Jansen, R.C.: Big data, but are we ready? Nat.
Rev. Genet. 12(3), 224 (2011)

24. Xiong, P., Chi, Y., Zhu, S., Moon, H.J., Pu, C., Hacigümüs, H.: Intelligent man-
agement of virtualized resources for database systems in cloud environment. In:
ICDE (2011)

25. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:
substrate support for path splitting and migration. SIGCOMM CCR 38(2), 17–29
(2008)

26. Zong, B., Raghavendra, R., Srivatsa, M., Yan, X., Singh, A.K., Lee, K.: Cloud
service placement via subgraph matching. In: ICDE (2014)

A Fast Approach for Detecting Overlapping
Communities in Social Networks Based

on Game Theory

Lihua Zhou1, Peizhong Yang1, Kevin Lü2(&), Lizhen Wang1,
and Hongmei Chen1

1 School of Information, Yunnan University, Kunming 650091, China
{lhzhou,lzwang,hmchen}@ynu.edu.cn, 285342456@qq.com

2 Brunel University, Uxbridge UB8 3PH, UK
kevin.lu.brunel@gmail.com

Abstract. Community detection, a fundamental task in social network analysis,
aims to identify groups of nodes in a network such that nodes within a group are
much more connected to each other than to the rest of the network. The
cooperative theory and non-cooperative game theory have been used separately
for detecting communities. In this paper, we develop a new approach that uti-
lizes both cooperative and non-cooperative game theory to detect communities.
The individuals in a social network are modelled as playing cooperative game
for achieving and improving group’s utilities, meanwhile individuals also play
the non-cooperative game for improving individual’s utilities. By combining the
cooperative and non-cooperative game theories, utilities of groups and indi-
viduals can be taken into account simultaneously, thus the communities detected
can be more rational and the computational cost will be decreased. The
experimental results on synthetic and real networks show that our algorithm can
fast detect overlapping communities.

Keywords: Social network � Overlapping community detection � Cooperative
game � Non-cooperative game

1 Introduction

In social network analysis, the task of community detection is to identify groups of
nodes in a network such that nodes within a group are much more connected to each
other than to the rest of the network [1, 2]. Detecting communities is important to
understand the structural properties of social networks, and to improve user-oriented
services such as identification of influential users and the setup of efficient recom-
mender systems for targeted marketing. With online social networks become increasely
popular, community detection has received a great deal of attention [3–5].

In social network environments, behaviors of individuals are not entirely inde-
pendent [6], co-operations co-exist with conflicts amongst individuals, and thus social
networks can be analyzed based on the game theory. The game theory is a mathematic
tool for studying the complex conflict and cooperation amongst rational agents. In
general, the game theory can be divided into the non-cooperative and the cooperative

© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 62–73, 2015.
DOI: 10.1007/978-3-319-20424-6_7

game theory. The non-cooperative game theory [7] studies the individual behaviors of
agents, where each agent selects its strategy independently for improving its own
utility. The cooperative game theory [8] studies the cooperative behaviors of groups of
agents, where agents cooperate to each other for improving the group’s utility and a
group of agents is called a coalition.

The game theory, either cooperative or not, has been used separately to solve
community detection problems. The non-cooperative game theory-based methods
consider community formation as the result of the individual behaviors of selfish agents
and the community structure as the equilibrium amongst individual agents, while the
cooperative game theory-based methods consider community formation as the result of
the group behaviors of rational agents and the community structure as the equilibrium
amongst groups of rational agents. The cooperative game theory-based methods
neglect individual utilities of agents while the non-cooperative game theory-based
methods neglect utilities of groups. Thus, it is a challenging task to improve existing
methods to obtain more rational and logical results.

In this study, we develop a new approach that utilizes both cooperative and non-
cooperative game theory to detect communities. Firstly, individuals in a social network
are regarded as rational agents who cooperate with other agents to form coalitions for
achieving and improving group’s utilities. Then, each individual is modelled as a
selfish agent who selects coalitions to join or leave based on its own utility measure-
ment. Each agent is allowed to select multiple coalitions, thus overlapping coalitions
can be formed. Because the non-cooperative game is played on the basis of the result of
the cooperative game rather than taking the initiative in which every agent has one
community of its own, the number of agents that would change their community
memberships to improve their utilities could decrease, thus the efficiency of the
non-cooperative game will be improved. By combining the cooperative and non-
cooperative game theory, utilities of groups and individuals can be taken into account
simultaneously, thus the rational and accuracy of communities detected can be
improved and the computational cost will be decreased.

The rest of this paper is organized as follows: Sect. 2 introduces related work and
Sect. 3 introduces a game theory-based approach for community detection. The
experimental results on the real networks and benchmark networks are presented in
Sects. 4 and 5 summarizes this paper.

2 Related Work

To detect overlapping communities, Palla et al. [9] defined a k-clique-community as the
union of all k-cliques that can be reached from each other through a series of adjacent
k-cliques, however the size of the clique is required as an input that is usually unknown
beforehand. Ahn et al. [10] considered a community to be a set of closely interrelated
links. This algorithm suffers from more computation cost because the number of links
is more than the number of nodes. Ball et al. [11] proposed a probabilistic model of link
communities, but they do not offer criterion for determining the number of commu-
nities in a network.

A Fast Approach for Detecting Overlapping Communities 63

Chen et al. [12] proposed a non-cooperative game theory-based framework for
overlapping community detection. Alvari et al. [13] considered the formation of
communities in social networks as an iterative game in a multiagent environment, in
which each node is regarded as an agent trying to be in the communities with members
such that they are structurally equivalent. Lung et al. [14] formulated the community
detection problem from a game theory point of view and solved this problem by using
an algorithm adapted for detecting Nash equilibrium of non-cooperative games.
Hajibagheri et al. [15] used a framework based on the information diffusion model and
the Shapley Value concept to address the community detection problem.

In our previous studies [16, 17], we proposed two coalitional game models for
community detection. The first model [16] mainly focused on the structure information
of a network and used the Shapley Value to evaluate each individual’s contribution to
the closeness of connection; while the second model [17] incorporated the structure
information of a network and the attribute information of individuals, and used the
Shapley Value to evaluate each individual’s contribution to the closeness of connection
and its preference to a specific topic. These two approaches do not able to identify
overlapping communities.

3 A Game Theory-Based Approach for Community
Detection

Consider G ¼ ðV ;EÞ be an undirected unweighted graph representing a social network
with n ¼ jV j nodes and m ¼ jEj edges. Let A be an adjacency matrix of G with
Aðx; yÞ ¼ 1 if ðx; yÞ 2 E for any pair of nodes x; y 2 V and 0 otherwise. Let Si denote
a subset of V and Si be a coalition, meanwhile let C denote a coalition structure
(a collection of coalitions), i.e. C ¼ fS1; S2; . . .; Skg.

Our approach consists of the group game and the individual game. The former is a
cooperative game in which agents cooperate to each other for improving the utilities of
coalitions, while the later is a non-cooperative game in which each agent chooses its
strategy independently for improving its own utility. Agents first play group game to
achieve equilibrium of coalitions in which no coalition can improve the group’s utility
by cooperating with others, and then they play the individual game to achieve equi-
librium of agents in which no agent can improve its own utility by changing its
strategy. The equilibrium of agents in the individual game is regarded as the com-
munity structure of a network. The framework of our study is shown in Fig. 1.

The graph

),(EVG =

The stable coalition structure

},...,,{ 21 kSSS=

The stable community structure

},...,,{' 21 kSSS=

The group

game

The individual

game

Fig. 1. The framework of our approach

64 L. Zhou et al.

3.1 Group Game

In the group game, individuals in a social network are modeled as rational agents trying
to achieve and improve group’s utilities by cooperating with other agents to form
coalitions. Coalitions with fewer agents can merge into larger coalitions as long as the
merge operation can contribute to improve the utilities of coalitions merged. The game
starts from the nodes as separate coalitions (singletons), coalitions that can result
the highest utility increment are iteratively merged into larger coalitions to improve
groups’ utilities until no such merge operation can be performed. It indicates that
the game has achieved an equilibrium state of coalitions, in which no group of agents
has an interest in performing a merge operation any further.

Definition 1. The utility function of a coalition. Let Si be a coalition of G ¼ ðV ;EÞ,
eðSiÞ be the number of edges amongst nodes inside Si and dðxÞ be the degree of node x,
then the utility function vðSiÞ of Si is defined by the following Eq. (1):

vðSiÞ ¼ 2eðSiÞP

x2Si
dðxÞ �

P

x2Si
dðxÞ

2m

0

@

1

A

2

ð1Þ

In fact, vðSiÞ is a modified version of the summand term of the Newman and

Girvan’s [1] modularity Q (that is defined as Q ¼ Pnc

c¼1

eðScÞ
m � dðScÞ

m

� �2
� �

) .

Definition 2. Stable coalitions. A coalition Si is regarded as a stable coalition if Si can
not further improve its utility by merging with other coalitions, i.e. 8Sj 6¼ Si, vðSi þ
SjÞ\vðSiÞ and 8Sj�Si; vðSiÞ[vðSjÞ.
Definition 3. The increment of utility of a coalition. Let Sij ¼ Si þ Sj, a super coalition
obtained by merging coalition Si and Sj, then the increment of utility of coalition Si
with respect to Sij is defined by DvðSi; SijÞ ¼ vðSijÞ � vðSiÞ.
There are two conditions must be satisfied for merging Si and Sj, i.e. eðSi; SjÞ 6¼ 0 and
DvðSi; SijÞ[0 & DvðSj; SijÞ[0. The former condition implies that two coalitions
without an edge between them can not merge into a larger coalition. This is natural
because this merge operation cannot contribute to improve the closeness of the con-
nection. So, whether a coalition is merged with others can be decided by looking only
at its neighbors (coalitions that have edges between them), without an exhaustive
search over the entire network. The later condition implies that the utilities of Si and Sj
should be improved through the merge operation. The unilateral meet of two
inequalities shows that two coalitions fail to reach an agreement to cooperate.

Definition 4. Stable coalition structure. A collection of coalitions C ¼ fS1; S2; . . .; Skg
is regarded as a stable coalition structure if 8Si 2 C;maxðmax

Sij
DvðSi; SijÞ; 0Þ ¼ 0 holds.

A stable coalition structure can be regarded as a kind of equilibrium state of coalitions,
in which no group of agents has an interest in performing a merge operation any

A Fast Approach for Detecting Overlapping Communities 65

further. After the group game achieves equilibrium state of coalitions, the utility of
each coalition can not be improved any further, but some agents may do not satisfy
their individual utilities, so agents begin to play the individual game to improve their
individual utilities.

3.2 Individual Game

In an individual game, each individual in a social network is modeled as a selfish agent,
who selects independently coalitions from the stable coalition structure C ¼
fS1; S2; . . .; Skg to join or leave based on its own utility measurement. Each agent is
allowed to select multiple coalitions to join or leave. A community structure can be
interpreted as equilibrium of this individual game, in which no agent has an interest in
changing its coalition memberships any further.

Definition 5. The utility function of a node. Let x 2 V , Si 2 C, dðxÞ be the degree of
node x, then the utility function of node x with respect to Si is defined by the following
Eq. (2):

vxðSiÞ ¼ eðx; SiÞ
dðxÞ ð2Þ

Where eðx; SiÞ denotes the the number of edges that link x to nodes of coalition Si.
The value of vxðSiÞ is the ratio of edges between x and Si over the degree of x, and it
measures how close between x and Si. 0� vxðSiÞ� 1. vxðSiÞ ¼ 1 means all edges of x is
connected to nodes of Si, in this case, x will be an inner node of Si after x joins Si;
vxðSiÞ ¼ 0 means no one edge connects x to a node of Si. The greater the value of vxðSiÞ
is, the closer the connection between x and Si will be.

Definition 6. Two operations: join and leave. Let x 2 V , Si 2 C. If x 62 Si &
vxðSiÞ�x, then x joins Si, Si ¼ Si þ fxg; If x 2 Si & vxðSiÞ\e, then x leaves Si,
Si ¼ Si � fxg.

x is the lower bound of the utility value of x who can join a new coalition, and e is
the upper bound of the utility value of x who can leave the coalition that it is in.

Definition 7. The ðx; eÞ-stable community structure. A collection of coalitions C ¼
fS1; S2; . . .; Skg is regarded as a stable community structure if 8Si 2 C, 8x 2 Si,
vxðSiÞ�x, and 8x 62 Si, vxðSiÞ\e holds.

A stable community structure can be regarded as a kind of equilibrium state of
agents, in which no agent has an interest in changing its coalition memberships any
further.

3.3 The Game Theory-Based Algorithm for Community Detection

The main steps of our game theory-based algorithm for community detection, referred
as CoCo-game algorithm, are described as follows:

66 L. Zhou et al.

4 Experiments

To evaluate our approach, we conduct experiments on two well-known real networks
and the benchmark network of Lancichinetti & Fortunato [18]. We visualize the results
of real networks and compute the Normalized mutual information (NMI) [19, 20]
between the detected community structures and the underlying ground truth of
benchmark networks as the evaluation metric. We also compare our results of the
group game (Step(1)–Step(3) of the CoCo-game algorithm) and the CoCo-game with
the results of LocalEquilibrium [12], an approach for detecting overlapping commu-
nities based on non-cooperative game theory.

4.1 Real Networks

The real networks used in this study are the Zachary’s network of Karate [21] and the
Les Misèrables’ network of characters [22]. They are two well-known networks used
to test community detection algorithms. The Zachary’s network of Karate consists of
34 nodes and 79 edges that were set between individuals who were observed to interact
outside the activities of the club, and the Les Misèrables’ network of characters
consists of 77 nodes and 508 edges that represent co-appearance of the corresponding
characters in one or more scenes. In the CoCo-game, x ¼ 1=3, e ¼ 1=4.

Figure 2 presents the result of the Zachary’s Karate network, where (a) is the result
of LocaEquilibrium [12], (b) is the result of the group game of this study, and (c) is the
result of the CoCo-game. In this network, LocaEquilibrium detects 6 communities, the
group game detects 3 communities, and the CoCo-game detects 4 communities.
Compare (b) with (c), node 3 changes its memberships and this change initiate the
result that the right community of (b) is split into two right communities of (c).
Compare (a) with (c), we can see that the community structures detected by the
LocaEquilibrium and the CoCo-game are refinements of the community structures
discovered in the Newman and Girvan’s study [1], in which the network are divided

A Fast Approach for Detecting Overlapping Communities 67

into two components, corresponding to the left overlapping communities and the two
right communities in Fig. 2(c).

Figure 3 presents the result of the Les Misèrables’ network of characters, where (a)
is the network structure, (b) is the result of the LocaEquilibrium, (c) is the result of the
group game, and (d) is the result of the CoCo-game. In this network, the LocaEqui-
librium detects 13 communities, the group game detects 6 communities, and the CoCo-
game detects 5 communities. Compare (c) with (d), node 3, 4, 47, 48 change their

(c) (a) (b)

Fig. 2. The community structures of the Zachary’s karate network. (a) The LocalEquilibrium
[12]; (b) The group game; (c) The CoCo-game

(b)

(c) (d)

(a)

Fig. 3. The community structures of the Les Misèrables’ network of characters. (a) The
networks (b) The LocalEquilibrium; (c) The group game; (d) The CoCo-game

68 L. Zhou et al.

memberships. Compare (b) with (d), we can see that the middle community of (d)
approximates the combination of communities containing node 12 in (b).

4.2 Benchmark Networks

We produce a series of benchmark networks by using the method of Lancichinetti &
Fortunato [18]. The parameters used are listed as follows: the average degree k ¼ 20,
the maximum degree maxk ¼ 50, the number of memberships of overlapping nodes
om ¼ 2, and the fractions of overlapping nodes range between 0 and 0.5; the number of
nodes N ¼ 1000 for Figs. 4 and 5 (a)–(d), N ¼ 5000 for Figs. 4 and 5 (e)–(h); the
mixing parameter mu ¼ 0:1 for Figs. 4 and 5 (a), (c), (e), (g), and mu ¼ 0:3 for Figs. 4
and 5 (b), (d), (f), (h); the minimum and maximum of the community sizes minc ¼ 10
and maxc ¼ 50 for Figs. 4 and 5 (a), (b), (e), (f), while minc ¼ 20 and maxc ¼ 100 for
Figs. 4 and 5 (c), (d), (g), (h). In the CoCo-game, x ¼ 1=3, e ¼ 1=4.

minc=10

maxc=50

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

mu=0.3 mu=0.1

mu=0.3

minc=20

maxc=100

minc=10

maxc=50

Fraction of Overlapping Vertices

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

mu=0.3

mu=0.3

mu=0.1

minc=20

maxc=100

Fig. 4. The NMI values between the community structures detected by the LocalEquilibrium/the
group game/the CoCo-game and the benchmark community structures under different fractions
of overlapping nodes, (a)–(d) consist of 1,000 nodes, (e)–(h) consist of 5,000 nodes.

A Fast Approach for Detecting Overlapping Communities 69

Figure 4 presents the NMI values between the community structures detected by the
LocalEquilibrium/the group game/the CoCo-game and the benchmark community
structures under different fractions of overlapping nodes. Figure 5 compares the run-
ning times of the LocalEquilibrium, the group game and the CoCo-game for detecting
community structures on the produced benchmark networks. The x-axis represents the
portion of nodes that belong to multiple communities.

Figure 4 show that the CoCo-game outperforms the group game in all cases. It
indicates that the individual game after the group game is effective. Meanwhile, the
CoCo-game is similar to the LocalEquilibrium for mu ¼ 0:1 and outperforms the
LocalEquilibrium for mu ¼ 0:3.

Figure 5 indicates that the running time for both the group game and the CoCo-
game are acceptable, and they are much faster than the LocalEquilibrium over all
instances. Moreover, the running time of the LocalEquilibrium increases greatly with
the number of nodes N, the portion of crossing edges mu, and the fraction of over-
lapping nodes. Meanwhile, the running times of both the group game and the CoCo-
game are more stable than the LocalEquilibrium.

minc=10

maxc=50

R
un

ni
ng

 T
im

e
(s

)

minc=20

maxc=100

mu=0.1 mu=0.3

mu=0.3
mu=0.1

minc=10

maxc=50

Fraction of Overlapping Vertices

R
un

ni
ng

 T
im

e
(s

)

minc=20

maxc=100

mu=0.3

mu=0.3

mu=0.1

mu=0.1

Fig. 5. The running times of the LocalEquilibrium, the group game and the CoCo-game under
different fractions of overlapping nodes, (a)–(d) consist of 1,000 nodes, (e)–(h) consist of 5,000
nodes.

70 L. Zhou et al.

Figure 6 (a) and (b) present the NMI values between the community structures
detected by the CoCo-game and the benchmark community structures under different x
and e. The network used consists 1000 nodes in which 150 nodes belong to 2 com-
munities, mu ¼ 0:3, minc ¼ 20, maxc ¼ 100. The x-axis represents the value of x or e.
From Fig. 6, we can see that the value of NMI is affected by x and e. How to set
automatically x and e is our future work.

5 Summary

In this paper, we develop a new approach that utilizes both cooperative and non-
cooperative game theory to detect communities with improved accuracy. Because each
agent is allowed to select multiple coalitions, the overlapping communities can be
identified rationally. The experimental results demonstrated the features of our
approach, they show that the joint use of cooperative and non-cooperative game the-
ories to detect overlapping communities is effective and efficient.

Acknowledgement. The authors thank sincerely Mr. Wei Chen from Microsoft Research Asia
for providing code on their work and helps. This work is supported by the National Natural
Science Foundation of China under Grant No.61262069, No. 61472346, Program for Young and
Middle-aged Teachers Grant, Yunnan University, and Program for Innovation Research Team in
Yunnan University (Grant No. XT412011).

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

4/1=ε

ω

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

ω
3/1=ω

ε

Fig. 6. The NMI values between the community structures detected by the CoCo-game and the
benchmark community structures under different x and e.

A Fast Approach for Detecting Overlapping Communities 71

References

1. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69, 026113 (2004)

2. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
3. Li, X.T., Ng, M.K., Ye, Y.M.: Multicomm: finding community structure in multi-

dimensional networks. IEEE Trans. Knowl. Data Eng. 26(4), 929–941 (2014)
4. Folino, F., Pizzuti, C.: An evolutionary multiobjective approach for community discovery in

dynamic networks. IEEE Trans. Knowl. Data Eng. 26(8), 1838–1852 (2014)
5. Zhou, L., Lü, K., Cheng, C., Chen, H.: A game theory based approach for community

detection in social networks. In: Gottlob, G., Grasso, G., Olteanu, D., Schallhart, C. (eds.)
BNCOD 2013. LNCS, vol. 7968, pp. 268–281. Springer, Heidelberg (2013)

6. Zacharias, G.L., MacMillan, J., Hemel, S.B.V. (eds.): Behavioral Modeling and Simulation:
From Individuals to Societies. The National Academies Press, Washington (2008)

7. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
8. Zlotkin, G., Rosenschein J.: Coalition cryptography and stability mechanisms for coalition

formation in task oriented domains. In: Proceedings of The Twelfth National Conference on
Artificial Intelligence, Seattle, Washington, 1-4 August, pp.432–437. The AAAI Press,
Menlo Park, California (1994)

9. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structures of complex networks in nature and society. Nat. 435, 814–818 (2005)

10. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multi-scale complexity in
networks. Nat. 466(7307), 761–764 (2010)

11. Ball, B., Karrer, B., Newman, M.E.J.: An efficient and principled method for detecting
communities in networks. Phys. Rev. E 84, 036103 (2011)

12. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify overlapping
communities in social networks. Data Min. Knowl. Disc. 21(2), 224–240 (2010)

13. Alvari, H., Hashemi, S., Hamzeh, A.: Detecting overlapping communities in social networks
by game theory and structural equivalence concept. In: Deng, H., Miao, D., Lei, J., Wang,
F.L. (eds.) AICI 2011, Part II. LNCS, vol. 7003, pp. 620–630. Springer, Heidelberg (2011)

14. Lung, R.I., Gog, A., Chira, C.: A game theoretic approach to community detection in social
networks. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO
2011. SCI, vol. 387, pp. 121–131. Springer, Heidelberg (2011)

15. Hajibagheri, A., Alvari, H., Hamzeh, A., Hashemi, A.: Social networks community detection
using the shapley value. In: 16th CSI International Symposium on Artificial Intelligence and
Signal Processing (AISwww.lw20.comP), Shiraz, Iran, 2-3 May, pp. 222–227 (2012)

16. Zhou, L., Cheng, C., Lü, K., Chen, H.: Using coalitional games to detect communities in
social networks. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013.
LNCS, vol. 7923, pp. 326–331. Springer, Heidelberg (2013)

17. Zhou, L., Lü, K.: Detecting communities with different sizes for social network analysis.
The Comput. J. Oxford University Press (2014). doi:10.1093/comjnl/bxu087

18. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1),
16118 (2009)

19. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure
identification. J. Stat. Mech.: Theory Exp. 2005(09), P09008 (2005)

72 L. Zhou et al.

http://www.lw20.com
http://dx.doi.org/10.1093/comjnl/bxu087

20. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical
community structure in complex networks. New J. Phys. 11, 033015 (2009)

21. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33, 452–473 (1977)

22. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM
Press, New York (1993)

A Fast Approach for Detecting Overlapping Communities 73

Consistent RDF Updates
with Correct Dense Deltas

Sana Al Azwari and John N. Wilson(B)

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, UK

{sana.al-azwari,john.n.wilson}@strath.ac.uk

Abstract. RDF is widely used in the Semantic Web for representing
ontology data. Many real world RDF collections are large and contain
complex graph relationships that represent knowledge in a particular
domain. Such large RDF collections evolve in consequence of their repre-
sentation of the changing world. Although this data may be distributed
over the Internet, it needs to be managed and updated in the face of
such evolutionary changes. In view of the size of typical collections, it is
important to derive efficient ways of propagating updates to distributed
data stores. The contribution of this paper is a detailed analysis of the
performance of RDF change detection techniques. In addition the work
describes a new approach to maintaining the consistency of RDF by using
knowledge embedded in the structure to generate efficient update trans-
actions. The evaluation of this approach indicates that it reduces the
overall update size at the cost of increasing the processing time needed
to generate the transactions.

1 Introduction

Resource Description Framework (RDF) is an annotation language that provides
a graph-based representation of information about Web resources in the Seman-
tic Web. Because RDF content (in triple form) is shared between different agents,
a common interpretation of the terms used in annotations is required. This inter-
pretation is typically provided by an ontology expressed as RDF Schema (RDFS)
or Web Ontology Language (OWL). Both RDFS and OWL are expressed as RDF
triples. The schema provides additional semantics for the basic RDF model. In
any particular data collection, changes in the domain that are reflected by evo-
lution of the ontology may require changes in the underlying RDF data. Due to
the dynamic and evolving nature of typical Semantic Web structures, RDF data
may change on a regular basis, producing successive versions that are available
for publication and distribution [4]. In the context of such dynamic RDF data
collections, which may be very large structures, it quickly becomes infeasible
to store a historic sequence of updates in any accessible form as a consequence
of the significant storage space needed. An alternative solution to propagation
and storage of successively updated copies of a data collection is to compute the
differences between these copies and use these as a means of transforming the
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 74–86, 2015.
DOI: 10.1007/978-3-319-20424-6 8

Consistent RDF Updates with Correct Dense Deltas 75

base data structure into subsequent versions. These differences (the delta) show
triple content that has been changed between two RDF models and can be used
to transform one RDF model into another. Rather than storing all versions of a
data structure, it is only necessary to store one version and retain the capability
of restoring any version of interest by executing the consecutive deltas.

The work presented in this paper addresses the problem of change detection
in RDF knowledge bases. An important requirement of change detection tools is
their ability to produce the smallest correct delta that will efficiently transform
one RDF model to another. This is a particularly important problem when
RDF collections are large and dynamic. In this context, propagation between
server and client or between nodes in a peer-to-peer system becomes challenging
as a consequence of the potentially excessive use of network bandwidth. In a
scenario where RDF update is carried out by push-based processes, the update
itself needs to be minimised to restrict network bandwidth costs. In addition, in
pull-based scenarios, it is important to limit server processing so that updates
can be generated with maximum efficiency. The contribution of this work is an
approach for using the smallest deltas that will maintain the consistency of an
RDF knowledge base together with an evaluation of the performance challenges
of generating this structure.

2 Related Work

Managing the differences between RDF knowledge bases using deltas is an impor-
tant task in the ontology evolution process. because they allow the synchro-
nization of ontology changes [2], the update of ontologies to newer versions,
and the reduction of storage overhead required to hold ontology versions [8].
Changes between ontologies can be detected using change detection tools that
report changes in low-level (RDF) or high level (ontology) structures. High-
level change detection techniques typically focus on exploiting semantic vari-
ation between ontologies. Example of these tools include SemVersion [9] and
PromptDiff [6]. High-level changes may involve adding or generalising domains or
renaming classes [7]. By contrast, low-level change detection techniques focus on
reporting ontology changes in terms of simple change operations (i.e. add/delete
triples). These tools differ in the level of semantic complexity represented by
the ontology languages. Work in low-level change detection tools focuses on the
exploitation of useful properties for producing deltas (e.g. the delta size and
the level of execution semantics) that can be interpreted by both human and
machine.

For example, Zeginis et al. [10] proposed three RDF/S differential delta func-
tions associated with the inferred knowledge from RDFS knowledge bases: dense
(ΔD); dense & closure (ΔDC) and explicit & dense (ΔED). These deltas vary in
the application of inference to reduce their size and are explained in greater detail
in Sect. 3. Results show that ΔD produced the smallest delta but was prone to
ambiguity and may potentially produce inconsistently updated RDF knowledge
bases. In this paper, we characterise ΔDc, which is a correction method for ΔD

76 S. Al Azwari and J.N. Wilson

that supports consistency when updating an RDF knowledge base. We demon-
strate the correctness of ΔDc and evaluate ΔDc, ΔED and ΔE in terms of delta
size and the processing performance of producing the deltas using different sizes
of synthetic datasets.

3 RDF Change Detection Techniques

RDF updates allow low-level triple operations for insertion and deletion that
were formalised by Zeginis et al. [10]. In the context of the two example RDF
models M and M ′ in Fig. 1, the näıve way of generating the delta involves
computing the set-difference between the two versions using the explicit sets of
triples forming these versions. The explicit delta (ΔE) contains a set of triples
to be deleted from and inserted into M in order to transform it into M ′.

Fig. 1. Sample data structure before and after update

Definition 1 (Explicit Delta). Given two RDF models M and M ′, let t
denote a triple in these models, Del denote triple deletion which is calculated
by M −M ′, and Ins denote triple insertion which is calculated by M ′ −M . The
explicit delta is defined as:

ΔE = {Del(t) | t ∈ M − M ′} ∪ {Ins(t) | t ∈ M ′ − M}

From the example in Fig. 1, the delta obtained by applying the above change
detection function is shown in Fig. 2.

Executing these updates against M will correctly transform it to M ′. How-
ever, this function handles only the syntactic level of RDF and does not exploit
its semantics. In the latter context, executing some of the updates in ΔE is not
necessary as they can still be inferred from other triples. For instance, we can
observe from the example in Fig. 1 that deleting (Graduate subClassOf Person)
from M , in order to transform it into M ′, is not necessary as this triple can still
be inferred from the triples (Graduate subClassOf Student) and (Student sub-
ClassOf Person) in M ′. Since this update is not necessary, it is useful to remove
it from the delta. RDF data is rich in semantic content and exploiting this in
the process of updating RDF models can minimize the delta size and therefore
the storage space and the time to synchronize changes between models.

Consistent RDF Updates with Correct Dense Deltas 77

Fig. 2. The explicit delta Fig. 3. The explicit dense delta

Unnecessary updates can be avoided by applying a differential function that
supports reasoning over the closure of an RDF graph. In RDF inference, the
closure can be calculated in order to infer some conclusions from explicit triples.
This process is carried out by applying entailment rules against the RDF knowl-
edge base. In this work, we consider the RDFS entailment rules provided by the
RDFS semantics specification [3]. This specification contains 13 RDFS entail-
ments rules, however only the rules that have an effect on minimizing the delta
size are used in the current approach for change detection. These rules are shown
in Table 1.

Table 1. Relevant rules

If KB contains Then add to KB

rdfs1 s rdf:type x and x rdfs:subClassOf y s rdf:type y

rdfs2 x rdfs:subClassOf y and y rdfs:subClassOf z x rdfs:subClassOf z

rdfs3 p rdfs:subPropertyOf q and q rdfs:subPropertyOf r p rdfs:subPropertyOf r

Definition 2 (Closure). Let t be a triple with subject, predicate, object (SPO).
The closure of M is defined as M extended by those triples that can be inferred
from the graph M. The closure of an RDF graph M is denoted by:

C(M) = M ∪ {t ∈ (SPO) | M |= t}
Example 1. Let M = {a subClassOf b, b subClassOf c} then the closure of M
will contain these triples and a further triple {a subClassOf c}.

The rules in Table 1 can be used in the explicit dense function (ΔED), which
combines both explicit and inference approaches for computing the delta. The
inserted set of triples is computed explicitly as in ΔE, while the delete set is
computed based on inference using the rule set.

Definition 3 (Explicit Dense Delta). Let M, M’, Del(t), Ins(t) be as stated in
Definition 1. Additionally let C(M ′) denote the closure of M ′. ΔED is defined as:

ΔED = {Del(t) | t ∈ M − C(M ′)} ∪ {Ins(t) | t ∈ M ′ − M}

78 S. Al Azwari and J.N. Wilson

Applying this function to the example in Fig. 1 produces the delta shown in
Fig. 3. The inserts in this delta are achieved by explicitly calculating the set
difference M ′ − M to provide the set of triples that should be inserted to M in
order to transform it into M ′. On the other hand, the set of deleted triples is
achieved by calculating the closure of M ′ using the RDFS entailment rules to
infer new triples and add them to M ′. From the example, the inferred triples in
M ′ are:

(Teacher subClassOf Person)
(Head Teacher subClassOf Person)
(Head Teacher subClassOf Staff)
(Graduate subClassOf Student)

These inferred triples are then added to M ′ to calculate the set difference
M − C(M ′) which results in only one triple to delete: (John type Student).
The number of updates produced by this delta is smaller than the one produced
by the ΔE as a result of the inference process.

The effect of the inference process in minimising ΔED was limited to apply-
ing the inference rules when computing the deleted set of triples only. Applying
inference rules for computing the inserted triples may further reduce the number
of updates. For example, inserting the three triples (Teacher subClassOf Person),
(Head Teacher subClassOf Person) and (John type Person) into M may not be
necessary because these triples implicitly exist in M and can be inferred in M
using the RDFS entailment rules. In this example, applying rdfs1 to M would
infer (John Type Person) while the other two triples could be inferred using
rdfs2. The application of inference over both the insert and delete sets produces
the dense delta (ΔD).

Definition 4 (Dense Delta). Let M, M’, Del(t), Ins(t) be as stated in
Definition 1. The dense delta is defined as:

ΔD = {Del(t) | t ∈ M − C(M ′)} ∪ {Ins(t) | t ∈ M ′ − C(M)}

Figure 4(a) and (b) illustrate the distinction between ΔED and ΔD. In the
former only the deletes that are not in C(M ′) need to be carried out. In this case,
C(M) is not checked to see whether all of the planned inserts need to be applied.
In the case of ΔD, deletes are handled in the same way as in ΔED however
inserts are only applied if they are not in C(M). This results in minimising both
delete and insert operations.

From the example in Fig. 1, the updates generated by applying (ΔD) are
shown in Fig. 5. ΔD is smaller than either ΔE or ΔED with only three updates
to transform M to M ′. However, in contrast to ΔE and ΔED, ΔD does not
always provide the correct delta to carry out the transformation. In this case,
applying ΔD to transform M into M ′ will transform M as shown in Fig. 7. This
delta function does not correctly update M to M ′ because when applying the
updates, (John type Person) is not inserted into M and cannot be inferred in
M after the triple (John type Student) has been deleted.

Consistent RDF Updates with Correct Dense Deltas 79

Algorithm 1. Generation of the corrected dense delta ΔDc

Data: M ,M ′

Result: ΔDc

1 Del = M − M ′;
2 Ins = M ′ − M ;
3 for a ∈ Del do
4 if inferable(a, M ′) then
5 remove a from Del;

6 for b ∈ Ins do
7 if (inferable(b, M)) and (all antecedents of b /∈ Del) then
8 remove b from Ins;

9 ΔDc = Del ∪ Ins;

Δ D(b)(a) ΔED

C(M)

M MÊ

C(MÊ)

D
el

et
es

U
nc

ha
ng

ed

In
se

rt
sA B

M MÊ

C(MÊ)

D
el

et
es

U
nc

ha
ng

ed

In
se

rt
sA

A � deletes that are still in C(MÊ) once MÊ has been generated
B � inserts that are already in C(M) before it is updated

Fig. 4. The distinction between ΔED and ΔD.

Fig. 5. The dense delta (ΔD) Fig. 6. The corrected dense delta ΔDc

4 Checking the Dense Delta

The contribution of this work is a solution to the correctness of ΔD.

Definition 5 (Corrected dense delta). Let ΔE, C(M) and C(M ′) be as
defined previously and additionally let s → t indicate that s is an antecedent of
t. The corrected dense delta ΔDc is defined as

ΔDc = ΔE−({Del(t) | t ∈ C(M ′)}∪{Ins(t) | t ∈ C(M)∧{s → t | s �∈ Del(t)}})

Under the semantics of the subset of RDFS rules in Table 1 all deltas are unique
with respect to the difference between C(M) and C(M ′). ΔDc does not require
M or M ′ to be closed and consequently it is not unique.

80 S. Al Azwari and J.N. Wilson

Fig. 7. Incorrect updates Fig. 8. Correct updates

The corrected dense delta is produced by checking triples in both the insert
and delete sets of ΔE. Firstly, the delete set should be calculated before the
insert set. Secondly, all antecedents for each inferred triple must be checked to
see whether they exist in the delete set. If one or both antecedents exist in the
delete set then this triple cannot be inferred. To calculate the closure for M
in order to compute the insert set, if two triples in M point to a conclusion
based on the rules, then these triples are checked against the deleted set. The
conclusion cannot be true if at least one of the two triples exists in the delete
set, otherwise, the conclusion is true and the triple can be inferred in M . This
process (Algorithm 1) produces the corrected dense delta ΔDc.

Because the delete set is calculated first, the triple (John Type Person) will
not be inferred from (John Type Student) and (Student SubclassOf Person) given
that the former is included in the delete set. The delta will result in the updates
shown in Fig. 6. Applying these updates to M will result in the model in Fig. 8.
This model is identical to M ′, indicating the correctness of ΔDc. The number
of updates after fixing the incorrectness problem is increased but it produces
a correct delta. However, this number is smaller than the number of updates
produced by ΔED or equal to it in the worst case. In such a worst case, none
of the inserted triples in ΔDc can be inferred in M because either there are no
triples that can be inferred or at least one of the antecedents of every inferable
triple is included in the delete set.

Both ΔED and ΔDc functions discussed above apply inference-then-
difference strategy. This implies that the full closure of the RDF models should
be calculated and all the possible conclusions under the RDFS entailment rules
are stored in these models. By contrast, a backward inference approach uses the
difference-then-inference strategy. That is, instead of computing the entire clo-
sure of M ′, in the case of ΔED, this method calculates first the set-differences
M − M ′ and M ′ − M , and then checks every triple in M − M ′ and removes it
if it can be inferred in M ′. The operation becomes:

Remove t from (M − M ′) if t ∈ C(M ′)

Instead of pre-computing the full closure in advance, this method infers only
triples related to the result of M − M ′. This would be expected to improve the
time and space required in change detection by comparison with the forward
inference approach.

Consistent RDF Updates with Correct Dense Deltas 81

In the example dataset shown in Fig. 1, to calculate ΔED using the backward
inference strategy, the sets of inserted and deleted triples are calculated using set-
difference operation in the same way as when calculating ΔE. After calculating
the changes at the syntactic level, each triple in the delete set is checked to
see if it can be inferred in M ′ using the RDFS entailment rules. For example,
the triple (Graduate subClassOf Person) in M − M ′ is checked to see if it can
be derived in M ′. Using the RDFS entailment rules this triple can be derived
from the two triples (Graduate subClassOf Student) and (Student subClassOf
Person), therefore, this triple is removed from M − M ′. Rather than checking
all the triples in M ′, only the three triples in M − M ′ are checked.

For applying the backward inference in ΔDc, first the set of deleted triples
in M − M ′ is inferred as explained above, then the set of inserted triples in
M ′ − M is also checked to see if it can be derived in M . However, to guarantee
the correctness of the delta, before removing the inferable triples from the delta,
antecedents of each inferable triple in M ′ − M are checked to see if at least one
of them exists in M − M ′. If this is the case, this triple cannot be removed from
the delta. Algorithm 1 describes the generation of ΔDc by backward inference.

Both forward inference and backward inference produce the same delta, but
the latter applies the inference rules on only the necessary triples. However,
although the backward inference method is applied to infer only relevant triples,
applying the inference on some of these triples might be unnecessary allowing
pruning to be applied before backward inference [4]. The general rule for pruning
is that if the subject or object of a triple in M −M ′ or M ′ −M does not exist in
M ′ or M , respectively, then this triple cannot be inferred, consequently the triple
can be pruned before the inference process begins. Although pruning may reduce
the workload for inferencing, it carries a potential performance penalty [1].

5 Results and Discussion

To evaluate the correction method described above in the context of ΔE and
ΔED, the correctness, processing time and delta size of updates to enhanced
RDF KBs of different sizes are assessed. The objective of this evaluation is to
compare the different delta computation methods (i.e. ΔE, ΔED, ΔDc) and
approaches (i.e. forward inference (FI), backward inference (BI) and pruned
backward inference (PBI)) by measuring and comparing their delta computation
times over synthetic datasets and by validating their effect on the integrity of
the resulting RDFS KBs.

The dataset contains both the Gene Ontology (GO) vocabulary and associ-
ations between GO terms and gene products including the Uniprot Taxonomy.
This data set was chosen because it is frequently updated, with a new version
being released every month. The dataset includes five versions selected to show
a range of values over the period 2005 and 2014. Using this dataset, the oldest
version (i.e. the 2005 version) was transformed to five versions released between
2006 and 2014. This gradually increases the delta size with a consequent effect
on the performance of the different change detection methods. The real-world

82 S. Al Azwari and J.N. Wilson

Table 2. Triple counts used in evaluation. Table 3. Change detection tech-
niques.

data was enhanced by synthetic data prepared by incorporating 20 % additional
triples representing subClass, subProperty and type properties. Synthetic data
was added to ensure that subProperty rule was exercised and to arrange for the
model to contain redundant triples (i.e. explicit data that can also be inferred
from antecedents). The level of enhancement was chosen to secure a measurable
effect without obscuring the structure of the original data.

Using the enhanced datasets, change detection techniques shown in Table 3
were implemented. A triple store was constructed in MySQL to handle the RDF
collections and the deltas. Indexing was excluded to preserve the validity of the
use-case. The Jena framework was used to read the RDF dataset into the triple
store and to validate change detection techniques by comparing the updated
RDF dataset with the target RDF dataset. All experiment were performed on
Intel Xeon CPU X3470 @ 2.93 GHz - 1 cpu with 4 cores and hyperthreading,
Ubuntu 12.04 LTS operating system and 16 GB memory. Garbage collection
and JIT compilation were controlled.

Table 2 and Figs. 9, 10, 11 and 12 report the delta sizes and the delta com-
putation times, respectively. From Table 1, the deltas produced by ΔE exceed
those of ΔED and ΔD. These deltas are smaller than those produced by ΔE
as a consequence of applying inference on the delete set of triples (ΔED) and
ΔDc further reduces the deltas as a result of inferring both the delete and insert
set of triples when calculating the deltas. ΔD in turn may be smaller than ΔDc

but its application in the update process may lead to an inconsistent result as
noted in Fig. 7.

In Fig. 9 it can be seen that of the deltas evaluated in these experiments, EDBI
and the pruned version of the same approach can be generated with the lowest
inference time. This is a consequence of both the efficiency of backward inference
and the application of inference only to the delete set. At the other end of the spec-
trum, forward inference methods are slower, as a consequence of the time needed to
produce the closure for both models. Forward inference is expensive but becomes
useful where models are being queried. However since the focus of this work is
updating models, backward inference is a more appropriate approach.

Pruning generally helps to further reduce the inference time however the
process adds further expense. Figure 10 shows the reasoning time (i.e. the time
taken up by both inferencing and pruning). This indicates that for the data

Consistent RDF Updates with Correct Dense Deltas 83

Fig. 9. Inference time Fig. 10. Reasoning times

Fig. 11. Delta time Fig. 12. Delta size

Fig. 13. Comparison of delta approaches.

84 S. Al Azwari and J.N. Wilson

structure used, the time required to carry out pruning exceeds the inference
time both for ΔDc and ΔED. This is consistent with previous findings [1]. The
overall delta time shown in Fig. 11 indicates that taking account of set difference
operations, inferencing and pruning, approaches that prune the delta set tend
to require significantly more processing power than non-pruning approaches.
Overall, the ΔE is the fastest process since no pruning or inferencing is carried
out. The delta sizes shown in Fig. 12 indicate that applying inference on this
data set reduces the updates that need to be executed, particularly when it is
applied to both the insert and delete sets.

The relationship between Figs. 11 and 12 is summarised in Fig. 13, which is
based on the average delta size and average generation time for all the data
models. Figure 13 shows the interaction between the degree of inference (i.e.
the delete set and/or the insert set or no inference at all) and the approach to
inferencing (i.e. inferring all triples or only necessary triples) and their impact
on the delta size and the delta computation time. It can be seen that ΔDc

has the smallest delta size compared to ΔED and ΔE. It can also be seen
that the approach to inferencing affects the delta computation time. Figure 13
indicates that ΔBc is more efficient (i.e. smaller delta size and faster generation)
than the other methods tested. Overall, Fig. 12 shows that the computation
time increases in the sequence of explicit, backward inference, pruned backward
inference, forward inference whereas the delta size increases in the sequence ΔDc,
ΔED, ΔE.

The consistency of M ′ after delta application was evaluated by comparing
the in-memory M ′ produced by applying the delta to M in the database with the
original in-memory M ′ using the Jena isIsomorphic method. Applying ΔDc using
the approach described above was found to result in the same M ′ as that used
to generate the delta. By contrast, tests carried out to assess the consistency
of applying the uncorrected ΔD indicate that in all the models tested, this
approach always failed to produce consistent updates.

The overall effect of these results is to indicate that ΔDc provides a viable
route to minimising the data that would need to be transferred from a server
to a client in order to update copies of an RDF data store. Pruning may assist
this process but comes at a cost of additional processing time, which may be
unacceptable in a peer-to-peer context or where updates need to be generated
on demand.

By contrast with inference strength1 [10, p 14:20], reduction strength shown
in Table 2 indicates when the size of ΔE, ΔED and ΔDc are different i.e. when
inference is capable of making a difference to the size of the delta. When the
inference strength is zero, there are no inferences to be made and the model is
closed. Under these circumstances, |ΔE| = |ΔDc|. However, |ΔE| may still
be equal to |ΔDc| when the inference strength is greater than zero. This occurs
when, for example, none of the triples in the delta are inferable in M .

1 Inference strength = |C(M)|−|M|
|M| .

Consistent RDF Updates with Correct Dense Deltas 85

Example 2 Let M = {w subClassOf x, x subClassOf y, y subClassOf z} and
M ′ = {w subClassOf x, x subClassOf y, y subClassOf z, n subClassOf r}. Under
these circumstances, ΔE = {ins{n subClassOf r}} and since this triple can not
be inferred in M, ΔDc = {ins{n subClassOf r}}. Using the expression in foot-
note 2, the inference strength has a value of 1 but |ΔE| = |ΔDc| i.e. the inference
strength is significantly different from zero but there are no inferred triples. This
contrasts with the definition provided by [10, p14:20], which states that infer-
ence strength is proportional to the count of inferable triples. Alternatively, the
reduction strength in this example is zero, thereby providing an effective guide
to indicate when |ΔE| = |ΔDc|, which is not clearly shown by the inference
strength.

Both inference strength and reduction strength also give an indication of the
work load of pruning. High values for these parameters indicate that a large
number of triples can be inferred. However, adding such inferable triples provides
a large collection of data that needs to be checked for possible pruning before
inference can take place.

Example 3 Let M = {w subClassOf x, x subClassOf y, y subClassOf z} and
M ′ = {w subClassOf x, x subClassOf y, y subClassOf z, nsubClassOf r, w
subClassOf z, w subClassOf y, x subClassOf z}. Here, ΔE = {ins{n subClassOf
r}, ins{w subClassOf z}, ins{w subClassOf y}, ins{x subClassOf z}}. Pruning
this list will involve checking every entry to ensure that the subject or object
does not occur in M in order to prune that triple from the list to be entered
into the inference process. Of the four triples added in this example, all must be
checked for pruning but only one triple (ins{n subClassOf r}) will be removed
before the remaining three triples will enter the inference process.

In general terms, reduction strength appears to be a better indication of the
differences between ΔE and ΔDc than inference strength. Similar arguments
apply to establishing the difference between ΔE and ΔED

6 Conclusion and Future Work

This paper describes a correction method for dense deltas that results in con-
sistent update of RDF datasets. We have eliminated the need for conditions on
the dataset by checking the antecedents of inferable triples in the insert set. If
at least one such antecedent is found in the delete set then the inferable triple
in the insert set cannot be removed from the delta. Otherwise, this triple can be
safely removed from the delta to minimize its size.

A summary of our results is shown in Fig. 13, which characterises the inter-
action between the degree of inference (i.e. the delete set and/or the insert set
or no inference at all) and the approach to inferencing (i.e. inferring all triples
or only necessary triples) and their combined impact on the delta size and com-
putation time. It can be seen that ΔDc has the smallest delta size compared
to ΔED and ΔE. It can also be seen that the approach to inferencing affects

86 S. Al Azwari and J.N. Wilson

the delta computation time. Figure 13 indicates that backward inference is more
efficient (i.e. smaller delta size and faster generation) than the other methods
tested.

In this work we have investigated the effect of inference degree and infer-
ence approach on both the delta computation time and storage space over RDF
datasets. Similar methods can be applied to ontologies that are represented in
OWL 2. Here the RL rule set [5] is much richer than the rule set for RDFS with
consequent potential for benefits to delta generation performance and size. Also,
it is worth exploring different inference strengths to further evaluate the delta
sizes and performance of the different approaches to producing these deltas. In
particular while backward inference may be efficient, combining it with pruning
may be expensive in terms of computation time where data is characterised by
large inference strengths. Exploiting the inferred triples to infer new information
may provide further improvements in update performance.

References

1. Al Azwari, S., Wilson, J.N.: The cost of reasoning with RDF updates. In: ICSC
2015, pp. 328–331. IEEE (2015)

2. Cloran, R., Irwin, B.: XML digital signature and RDF. In: Information Society
South Africa (ISSA 2005), July 2005

3. Hayes, P., McBride, B.: RDF semantics. W3C recommendation. World Wide Web
Consortium (2004)

4. Im, D.H., Lee, S.W., Kim, H.J.: Backward inference and pruning for RDF change
detection using RDBMS. J. Info. Science 39(2), 238–255 (2013)

5. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
ontology language profiles, W3C Recommendation 11 December 2012 (2013)

6. Noy, N., Musen, M.: Promptdiff: a fixed-point algorithm for comparing ontology
versions. AAAI/IAAI 2002, 744–750 (2002)

7. Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: High-
level change detection in RDF(S) KBs. ACM Trans. Database Syst. 38, 1:1–1:42
(2013)

8. PaPavaSSiliou, S., PaPagianni, C., DiStefano, S.: M2M interactions paradigm
via volunteer computing and mobile crowdsensing. In: Misic, V., Misic, J. (eds.)
Machine-to-machine communications: architectures, technology, standards, and
applications, pp. 295–309. CRC Press, Boca Raton (2014)

9. Völkel, M., Groza, T.: SemVersion: An RDF-based ontology versioning system. In:
Nunes, M., Isaas, P., Martnez, I. (eds.) Proceedings of the IADIS International
Conference on WWW/Internet, p. 44. IADIS (2006)

10. Zeginis, D., Tzitzikas, Y., Christophides, V.: On computing deltas of RDF/S knowl-
edge bases. ACM Trans. Web (TWEB) 5(3), 14 (2011)

Query-Oriented Summarization of RDF Graphs

Šejla Čebirić1(B), François Goasdoué1,2, and Ioana Manolescu1

1 INRIA and U. Paris-Sud, Saclay, France
{sejla.cebiric,ioana.manolescu}@inria.fr

2 U. Rennes 1, Lannion, France
fg@irisa.fr

Abstract. The Resource Description Framework (RDF) is the W3C’s
graph data model for Semantic Web applications. We study the prob-
lem of RDF graph summarization: given an input RDF graph G, find an
RDF graph SG which summarizes G as accurately as possible, while being
possibly orders of magnitude smaller than the original graph. Our app-
roach is query-oriented, i.e., querying a summary of a graph should reflect
whether the query has some answers against this graph. The summaries
are aimed as a help for query formulation and optimization. We intro-
duce two summaries: a baseline which is compact and simple and satisfies
certain accuracy and representativeness properties, but may oversimplify
the RDF graph, and a refined one which trades some of these properties
for more accuracy in representing the structure.

1 Introduction

The Resource Description Framework (RDF) is a graph-based data model pro-
moted by the W3C as the standard for Semantic Web applications; SPARQL is
the W3C’s standard language for querying RDF data.

RDF graphs are often large and varied, produced in a variety of contexts,
e.g., scientific applications, social or online media, government data etc. They
are heterogeneous, i.e., resources described in an RDF graph may have very differ-
ent sets of properties. An RDF resource may have: no types, one or several types
(which may or may not be related to each other). RDF Schema (RDFS) infor-
mation may optionally be attached to an RDF graph, to enhance the descrip-
tion of its resources. Such statements also entail that in an RDF graph, some
data is implicit. According to the W3C RDF and SPARQL specification, the
semantics of an RDF graph comprises both its explicit and its implicit
data; in particular, SPARQL query answers must be computed reflecting both
its explicit and implicit data, even if the latter is not physically stored.

In this work, we study the problem of RDF graph summarization, that is:
given an input RDF graph G, find an RDF graph SG which summarizes G as
accurately as possible, while being possibly orders of magnitude smaller than the
original graph. Such a summary can be used in a variety of contexts: to help
an RDF application designer get acquainted with a new dataset, as a first-level
user interface, or as a support for query optimization as traditionally the case in
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 87–91, 2015.
DOI: 10.1007/978-3-319-20424-6 9

88 Š. Čebirić et al.

semi-structured graph data management [3] etc. Our approach is query-oriented,
i.e., querying a summary of a graph should reflect whether the query has some
answers against this graph. The properties our summaries aim at are related
to query processing, in particular enabling static analysis, query formulation
and optimization (i.e., deciding if a query is empty or finding a simpler way to
formulate a query). While semi-structured data summarization has been studied
before, our work is the first focused on partially explicit, partially implicit RDF
graphs. Our ongoing technical report [5] provides proofs for the results presented
here and a discussion of related work.

2 RDF Graphs and Summary Requirements

RDF graphs and queries An RDF graph (or graph) is a set of triples of the
form s p o, stating that the subject s has the property p, and the value of that
property is the object o. Triples are formed using uniform resource identifiers
(URIs), typed or untyped literals (constants), and blank nodes (unknown URIs
or literals) corresponding to incomplete information. We use s, p, and o in triples
as placeholders. Literals are shown as strings between quotes, e.g., “string”.

Fig. 1. Sample RDF graph

The RDF standard provides a
set of built-in classes and proper-
ties in the rdf: and rdfs: pre-defined
namespaces, e.g., triples of the form
s rdf:type o specify the class(es) to
which a resource belongs. For brevity,
we use type to denote rdf:type. For
example, the RDF graph G below
describes a book, identified by doi1:
its author (a blank node :b1 related
to the author name), title and publi-
cation date.

G =
{doi1 rdf:type Book, doi1 writtenBy :b1, doi1 publishedIn “1932”,
doi1 hasTitle “Port des Brumes′′, :b1 hasName “G. Simenon”}

RDF Schema triples allow enhancing the descriptions in RDF graphs by declar-
ing deductive constraints between the graph classes and properties, namely: sub-
ClassOf, subPropertyOf, domain and range, where the latter two denote the first
and second attribute of a property, respectively. Consequently, an RDF graph
may have implicit triples even though they do not exist explicitly. For instance,
assume the RDF graph G above is extended with the following constraints:

– books are publications: Book rdfs:subClassOf Publication
– writing something means being an author:
writtenBy rdfs:subPropertyOf hasAuthor

– writtenBy is a relation between books and people:
writtenBy rdfs:domain Book and writtenBy rdfs:range Person

Query-Oriented Summarization of RDF Graphs 89

The resulting graph is depicted in Fig. 1. Its implicit triples are those represented
by dashed-line edges. Adding all the implicit triples to an RDF graph G leads to
its saturation G∞, which is the RDF graph stating the semantics of G.

In this work, we consider conjunctive SPARQL queries, a.k.a. Basic Graph
Pattern (BGP) queries. The evaluation of a query q against an RDF graph G
based on G’s explicit triples may lead to an incomplete answer; the complete
answer is obtained by evaluating q against G∞. e.g., consider:
q(x3) :- x1 hasAuthor x2, x2 hasName x3, x1 hasTitle “Le Port des Brumes′′

Its answer against the graph in Fig. 1 is q(G∞) = {〈“G. Simenon′′〉}. Note
that evaluating q against G leads to an empty answer.

Summary Requirements We assume that the summary SG of an RDF graph
G is an RDF graph itself. Further, we require summaries to satisfy the following
conditions: (i) The saturation of the summary of an RDF graph G must be
the same as the summary of its saturation G∞, since the semantics of an RDF
graph is its saturation; (ii) The summary should be (if possible, much) smaller
than the RDF graph; (iii) The summary should be representative: queries with
results on G should also have results on the summary; (iv) The summary should
be accurate: queries with results on the summary should reflect that such data
existed indeed in the graph. To formalize these, let Q be a SPARQL dialect.

Definition 1. (Query-Based Representativeness) SG is Q-representative of G if
and only if for any query q ∈ Q such that q(G∞) �= ∅, we have q(S∞

G) �= ∅.
Note that several graphs may have the same summary, since a summary loses
some of the information from the original graph. If two RDF graphs differ only
with respect to such information, they have the same summary. We term inverse
set of SG, the set of all RDF graphs whose summary is SG. This leads to the
accuracy criterion, with respect to any graph a summary may correspond to:

Definition 2. (Query-Based Accuracy) Let SG be a summary, and G the inverse
set of SG. The summary SG is Q-accurate if for any query q ∈ Q such that
q(S∞

G) �= ∅, there exists G ∈ G such that q(G∞) �= ∅.
For compactness, the (voluminous) set of literals, along with subject and object
URIs for non-type triples from G should not appear in the summary. However,
given that property URIs are often specified in SPARQL queries [1], and that
typically there are far less distinct property URIs than the subject or object
URIs [4], property URIs should be preserved by the summary. This leads us to
considering the following SPARQL dialect:
Definition 3. (RBGP queries) A relational basic graph pattern query (RBGP)
is a conjunctive SPARQL query whose body has: (i) URIs in all the property
positions, (ii) a URI in the object position of every type triple, and (iii) variables
in any other positions.
We define RBGP representativeness and RBGP accuracy by instantiating Q in
Definition 1 and Definition 2, respectively, to RBGP queries.

90 Š. Čebirić et al.

3 RDF Summaries

We assume a function newURI() returning a fresh URI on each call. We call data
property any property p in G different from type. Further, for any data property
p, the property source of p, denoted S(p), is a URI set using newURI(), and
similarly, the property target of p, denoted T (p), is a URI set using newURI().

We introduce our summaries below; examples are delegated to [5] and can
also be found at https://team.inria.fr/oak/projects/rdfsummary/.

Definition 4. (Baseline Summary) Given an RDF graph G, the baseline sum-
mary of G is an RDF graph BG such that:
Schema BG has the same schema triples as G.
DNT (Data triples of BG whose property is not type) Let p, p1, p2 be some data

properties from G.
DNT1 The triple S(p) p T (p) belongs to BG;
DNT2 if s p1 o1, s p2 o2 ∈ G, then S(p1) = S(p2);
DNT3 if s1 p1 o, s2 p2 o ∈ G, then T (p1) = T (p2);
DNT4 if s p1 o1, o1 p2 o2 ∈ G, then T (p1) = S(p2);

DT (Data triples of BG whose property is type)
DT1 If s p o, s type c are in G, then S(p) type c is in BG;
DT2 if s p o, o type c are in G, then T (p) type c is in BG;
DT3 Let nall be set to newURI(). If s type c ∈ G, and � ∃s p o ∈ G, then

nall type c ∈ BG.

Refined Summary The baseline summary may unify property source and
target URIs quite aggressively. For instance, if a store and a person both have
a zipcode, they will lead to the same baseline URI, even though they are very
different things. To mitigate this issue, we designed a second flavor of summary of
an RDF graph G, termed refined and denoted RG. For space reasons, the definition
is delegated to [5]. Intuitively, the difference between the baseline and the refined
summary is that the latter fuses data property source and/or target URIs only
if one resource in G that leads to their unification has no type at all.

Summary Properties Both summaries meet our requirements (i), (iii) and
(iv) as follows. We say two summary graphs are equivalent, denoted ≡, iff they are
identical up to a bijection between their sets of URIs. The summaries commute
with saturation, i.e., (SG)∞ ≡ SG∞ , and are RBGP accurate. The BG is fully RBGP
representative, and the RG is representative of RBGPs having no more than one
type triple with the same subject. This follows from a graph homomorphism from
G∞ to (SG)∞ [5]. Observe that SG is not a core of G, since we cannot guarantee a
homomorphism from SG to G (SG may comprise false positives).

The size of the baseline summary is bounded by the size of G’s schema plus
the number of data properties and class assertions from G. It can be built in
O(|G|2) time. Computing the refined summary has O(|G|5) complexity, requiring
an efficient underlying system e.g., based on triple partitioning and indexing or
a distributed processing platform such as [2]. An upper bound for its size is the
number of classes in G × the number of distinct data properties in G.

https://team.inria.fr/oak/projects/rdfsummary/

Query-Oriented Summarization of RDF Graphs 91

Acknowledgments. This work has been partially funded by the projects Datalyse
“Investissement d’Avenir” and ODIN “DGA RAPID”.

References

1. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries (2011). CoRR, abs/1103.5043

2. Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J.-A., Zampetakis, S.:
CliqueSquare: flat plans for massively parallel RDF queries. In: ICDE (2015)

3. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization
in semistructured databases. In: VLDB (1997)

4. Statistics on The Billion Triple Challenge Dataset (2010). http://gromgull.net/
blog/2010/09/btc2010-basic-stats

5. Technical report (2015)

http://gromgull.net/blog/2010/09/btc2010-basic-stats
http://gromgull.net/blog/2010/09/btc2010-basic-stats

Data Exploration

ReX: Extrapolating Relational Data
in a Representative Way

Teodora Sandra Buda1(B), Thomas Cerqueus2, John Murphy1,
and Morten Kristiansen3

1 Lero, Performance Engineering Lab, School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland

teodora.buda@ucdconnect.ie, j.murphy@ucd.ie
2 Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, 69621 Lyon, France

thomas.cerqueus@insa-lyon.fr
3 IBM Collaboration Solutions, IBM Software Group, Dublin, Ireland

morten kristiansen@ie.ibm.com

Abstract. Generating synthetic data is useful in multiple application
areas (e.g., database testing, software testing). Nevertheless, existing syn-
thetic data generators generally lack the necessary mechanism to pro-
duce realistic data, unless a complex set of inputs are given from the
user, such as the characteristics of the desired data. An automated and
efficient technique is needed for generating realistic data. In this paper,
we propose ReX, a novel extrapolation system targeting relational data-
bases that aims to produce a representative extrapolated database given
an original one and a natural scaling rate. Furthermore, we evaluate our
system in comparison with an existing realistic scaling method, UpSizeR,
by measuring the representativeness of the extrapolated database to the
original one, the accuracy for approximate query answering, the database
size, and their performance. Results show that our solution significantly
outperforms the compared method for all considered dimensions.

Keywords: Representative extrapolation · Scaling problem · Synthetic
data generation · Relational database

1 Introduction

Generating synthetic data is convenient in multiple application areas (e.g., soft-
ware validation, data masking, database testing). Synthetic data is generally
used when real data is not available, when it cannot be published publicly or
when larger amounts of data are needed. Therefore, it represents an artificial
enabler for any analysis that requires data. When using synthetic data, a neces-
sary evaluation is how representative it is in comparison to real-life data.

Extrapolating the data from an existing relational database is a potential
solution to overcome the lack of realism of the synthetic data. There are two
directions that can be explored for scaling data: (i) to a particular size, or (ii) to
a particular time in the future. The first is useful in multiple application areas
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 95–107, 2015.
DOI: 10.1007/978-3-319-20424-6 10

96 T.S. Buda et al.

where the size of the generated database matters, such as scalability testing. The
second direction could be addressed by applying machine learning techniques to
predict how data will evolve using accurate historical data. In this paper, we
explore the first path, which represents a starting point for studying the evolu-
tion of a database. Maintaining the distributions present in the original database
contributes to the realism of the generated data. The representativeness dimen-
sion is crucial as the results of the analysis to be applied on the representative
extrapolated database are expected to be similar to the ones from the original
database (e.g., in approximate query answering). This path has been explored
before. In [19], the authors introduce the scaling problem as follows:

Scaling Problem. Given a relational database D and a scaling factor s, gen-
erate a database D′ that is similar to D but s times its size.

The authors propose a novel tool, namely UpSizeR, which aims to solve the scal-
ing problem in an innovative way, using mining algorithms such as clustering to
ensure that the representativeness is maintained. The method requires complex
inputs from the user (e.g., the probability perturbation exponent). Most of the
existing synthetic database generators require complex inputs from the user in
order to generate realistic data [1,3,11]. However, complex inputs require expert
knowledge, and thus may lead to poor accuracy in the results.

In this paper, we propose an automated representative extrapolation tech-
nique, ReX, that addresses the scaling problem above. Similarly to [4] and [19],
we define a representative database as a database where the distributions of the
relationships between the tables are preserved from the original database. As
foreign keys are enforced links between tables, they represent invaluable inputs
to depict the relationships between data in a relational database. This represents
a first step towards achieving a representative extrapolated database. We devise
two techniques for handling non-key attributes. To illustrate ReX’s applicability
in a real scenario, we perform approximate query answering evaluation. We com-
pare ReXto UpSizeR [19] and show that our solution outperforms UpSizeR in
terms of representativeness, query answering, database size, and execution time.

The remainder of this paper is organized as follows: Sect. 2 introduces the
potential solutions to the scaling problem. Section 3 presents the representative
extrapolation system, ReX. Section 4 presents the evaluation of ReX. Section 5
presents the related work. Finally, Sect. 6 concludes the paper.

2 Potential Scaling Strategies

In this section we investigate the potential directions in which relational data
should grow such that it is representative of the original database.

Notations. We denote by FKj
i the set of attributes of table ti that reference

table tj . We denote this relationship by ti → tj and say that ti and tj are
associated tables. This notation is used for constructing the graph structure
of a database where an edge represents a relationship and a node represents

ReX: Extrapolating Relational Data in a Representative Way 97

Fig. 1. Example graph schema and distributions.

Fig. 2. Extrapolation solution, with
s = 2.

Table 1. fi(x) example.

Pos k : (k1, k2) f0(x) f1(x)

1 8, “a” 1, “1” 6, “6”

2 15, “b” 2, “2” 7, “7”

3 13, “c” 3, “3” 8, “8”

4 1, “g” 4, “4” 9, “9”

5 3, “e” 5, “5” 10, “10”

a table. Moreover, we refer to parents of t as the set of tables that reference t:
parents(t) = {ti ∈ T : ti → t}. In Fig. 1(a), parents(t1) = {t2, t3}. Similarly,
we refer to children of table t by: children(t) = {ti ∈ T : t → ti}. For instance,
children(t2) = {t1}. A table with no children is called a leaf table (e.g., t1).
In order to determine the growth direction of a database O, we represent the
relationships between each pair of tables, ∀ti, tj ∈ T , tj → ti, through a scatter
plot denoted by sp

tj
ti , where ti appears on the x-axis and tj on the y-axis. Let

us consider the case study presented in Fig. 1. Figure 1(a) presents the graph-
structured schema of the database O. Figure 1(b) portrays the generated scatter
plots spt2t1 between t1 and t2, and spt3t1 between t1 and t3. A point at a coordinate
(x, y) of a scatter plot sptjti expresses that x tuples of ti are individually referenced
by y distinct tuples of tj , and that y · x tuples of tj reference x tuples of ti. For
instance, point p1(2, 6) in spt2t1 indicates that two tuples of table t1 are each
individually referenced by six tuples of table t2 (i.e., 6 · 2 = 12 tuples of t2
reference 2 tuples of t1). When the axes are inverted, sptitj , since tj → ti, a point
p(x, y) of sptitj expresses the x tuples of tj reference y distinct tuples of ti. In
this case, sptitj consists of a single point, p(‖tj‖, 1), as each tuple of tj has a
single foreign key value referencing ti. For instance in Fig. 1(c), the scatter plot
spt1t2 indicates that ‖t2‖ tuples of t2 are referencing a single tuple of t1, as each
tuple of t2 contains a single reference to t1. Through a scatter plot sp

tj
ti we can

compute the number of tuples of ti and tj from O, ‖O(ti)‖ and ‖O(tj)‖, with:

98 T.S. Buda et al.

‖O(ti)‖ =
∑

∀p(x,y)∈sp
tj
ti

x, and ‖O(tj)‖ =
∑

∀p(x,y)∈sp
tj
ti

(y · x)

From Fig. 1(b), we determine that: ‖O(t1)‖ = 12, ‖O(t2)‖ = 40, and ‖O(t3)‖ =
52. When extrapolating O by s to produce the extrapolated database X, we
expect that each table t of O will be scaled in size by s such that: ‖X(t)‖ =
s · ‖O(t)‖.

A horizontal growth direction for each point of a scatter plot produces
the optimal results in terms of database size. Considering a horizontal growth
direction, each point p of sp

tj
ti scales s times on the x-axis: ∀p(x, y) becomes

p′(x′, y), where x′ = s ·x. This leads to the following properties of ti and tj in X:

‖X(ti)‖=
∑

∀p(x′,y)∈sp
tj
ti

(s · x)=s · ‖O(ti)‖,‖X(tj)‖=
∑

∀p(x′,y)∈sp
tj
ti

(y · (s · x))=s · ‖O(tj)‖

Through horizontal scaling: ‖X(t1)‖ = 24, ‖X(t2)‖ = 80, and ‖X(t3)‖ = 104.
These are the desired expected sizes of the tables. This leads to X being repre-
sentative of O (i.e., as each point is scaled by s), and of accurate size (i.e., as each
table is scaled by s). Therefore, the extrapolation solution must create for each
of the x identifiers of ti, pki, exactly s-1 new identifiers, pk′

i, and for each of the
x ·y key values of tj , (pkj , fkj), exactly s-1 new key values of tj , (pk′

j , fk
′
j), each

individually referencing one of the s-1 new identifiers created for ti, fk′
j = pk′

i.
This is exemplified in Fig. 2, where ti = t1, and parents(ti) = {t2, t3}.

3 ReX: Extrapolation System

In this paper, we propose a system called ReX1 that aims to produce a repre-
sentative extrapolated database X, given a scaling rate, s ∈ N, and a relational
database O. The objective is to maintain the distributions between the consecu-
tive linked tables and the referential integrity of the data. We assume that there
are no cycles of dependencies and that foreign keys only reference primary keys.

ReXproduces the extrapolated database in a single pass over the entire origi-
nal database and thus reduces the complexity of a two-step algorithm that would
compute the expected scaled distribution and generate data accordingly through
horizontal scaling to ensure representativeness.

Natural Scale Discussion. When the scaling rate is a real number (i.e., s /∈ N),
the floating part requires the generation of tuples for only a fraction of each table
from O. Thus, the method must decide for which partial number of tuples of tj
it should create new tuples. As this represents a different problem by itself [4,8],
in this paper we consider only natural scaling rates. Moreover, the scenario
of naturally scaling databases is commonly applicable to enterprises where it
is rarely needed to extrapolate to a fraction rather than a natural number.

1 Representative eXtrapolation System, https://github.com/tbuda/ReX.

https://github.com/tbuda/ReX

ReX: Extrapolating Relational Data in a Representative Way 99

The maximum error brought by approximating the real scaling rate to a natural
number is 33.33 %, and occurs for s = 1.5 (i.e., caused by X containing 33.33 %
less or more tuples than desired). The impact of the floating part decreases as s
increases (e.g., when s = 10.5 the error caused by approximating is is reduced to
4.8 %). Another solution is using a sampling method for the remaining fractional
number. However, both solutions would introduce errors in the results, and in
this paper we are interested in evaluating the extrapolation technique.

3.1 Key Attributes Generation

The keys generation function targets both primary and foreign keys of a table.
We denote the function by fi : Dk → Dk, where Dk is the domain of the key k,
and i is the iteration number, i ∈ [0, s). The function is required to satisfy the
following properties: (i) injectivity: ∀i, j ∈ N,∀x1, x2 ∈ Dk, x1 �= x2 ⇒ fi(x1) �=
fj(x2), (ii) uniqueness between iterations: ∀ i, j ∈ N, i �= j,∀x ∈ Dk,
fi(x) �= fj(x). ReXuses a positive arithmetic progression with a common
difference of 1 (i.e., 1,2,3,...). The function receives as input a value x and
the iteration number i ∈ [0, s), and outputs a new value converted to Dk:
fi(x) = cast(p(x) + i · ‖t‖)Dk

, where x is a value of the key k, primary in
table t, and p(x) represents the position of the tuple identified by x in O(t). The
cast function converts the natural number produced by the arithmetic progres-
sion to the domain of the key. An example of fi(x) is presented in Table 1 where
T = {t}, ‖O(t)‖ = 5, ‖PKt‖ = 2, integer and varchar, and s = 2. When a key is
composed of multiple attributes, the function is applied on each attribute, using
the first position for each value across their occurrences to ensure referential
integrity. Moreover, for the same key value and position, the function generates
the same output. This ensures that the referential integrity is not breached as the
newly generated foreign key values will reference the new primary key values.

3.2 Non-key Attributes Generation

ReXcan perform the following operations: (1) generate new values for the non-
key attributes either by: (i) generating synthetic values using the generation
function proposed, or (ii) using a dictionary with sample values for each type
of attribute, or (2) manipulate the existing values for the non-key attributes
either by: (i) selecting a random value from the original database, (ii) selecting
a random value from the original database such that the frequency count of
the non-key attribute is maintained, or (iii) maintaining their original values. In
this paper, we present results of ReXimplemented using (2.ii) denoted further
by ReXrfc, and (2.iii) denoted by ReXmain, as these ensure that the value range
constraints are not breached and that the approximate query evaluation will
not be affected by the synthetic values. The first solution, ReXrfc, increases the
diversity of the data produced by generating random content from O, and might
cover certain scenarios that the second solution would miss. Such a scenario is for
instance the sudden growth of female computer scientists. This could be vital for
instance in software testing, as a random selection of non-key attributes’ values

100 T.S. Buda et al.

could cover more test cases than the original ones. Moreover, we expect that
maintaining the frequency count of the non-key attributes ensures that queries
that compute an aggregate of a non-key attribute scale according to s with
no errors (e.g., the maximum age entry in a Person table). Furthermore, the
second solution, ReXmain, ensures that the X preserves intra-tuple correlations
(e.g., between the age and marital status attributes of a Person table), intra-
table correlations at an attribute level (e.g., between the age of a Person table
and its balance in an Account table) and frequency count of non-key values.

3.3 Approach

ReXselects the leaf tables as starting tables. The algorithm maintains the posi-
tion of each primary key value when populating a table using a hash table.
Thus, by starting with the leaf tables, the method avoids potentially time con-
suming queries for determining the position of a foreign key value in its original
referenced table, and retrieves is from the hash table previously constructed.
Moreover, through this bottom-up approach, X is produced through a single
pass over each table of O. Phase one of the algorithm consists of generating the
new key and non-key attributes’ values for the leaf tables. The method retrieves
the records of the leaf table from O and enforces a horizontal growth direction
by generating s new tuples for each tuple of a table from O. Regarding key val-
ues, ReXwill call the generation function fi(x), described in Sect. 3.1. Regarding
non-key values, ReXmain maintains their values from the original tuple. ReXrfc

randomly selects a value from O(ti), while maintaing its frequency count. This is
achieved through the SQL query on O: SELECT nk FROM ti ORDER BY RAND().
In order to maintain the frequency count, ReXrfc runs the query s times and
iterates through the result set returned, ensuring that each value has been used
s times for producing X. Phase two consists of identifying the next table to
be filled. The algorithm recursively fills the parents of the already populated
tables until the entire database is processed. To avoid size overhead or referential
breaches due to processing a table multiple times (e.g., due to diamond patterns
[8]), a table can only be populated once its children have been populated.

4 Evaluation

In this section, we compare our extrapolation system ReXto the UpSizeR app-
roach [19]. Both methods aim to construct an extrapolated database, X, repre-
sentative of the original database, O, that maintains the referential integrity of
the data.

UpSizeR Overview. UpSizeR represents a representative scaling method that
addresses the scaling problem. Its objective is to generate synthetic data with
similar distributions of the relationships between the tables of the database (i.e.,
between primary and foreign key pairs) to the ones from the original data-
base [19]. For this purpose, the approach computes the relationship degree (i.e.,
cardinality constraint) of each existing key of each table in the original database
and generates synthetic data accordingly.

ReX: Extrapolating Relational Data in a Representative Way 101

Table 2. Queries used for approximate query evaluation.

G1 F1: SELECT AVG(‘Order’ .amount) FROM ‘Order’

��Account��Disposition��Card WHERE Card.type=‘classic’;

F4: SELECT SUM(Trans.balance) FROM Trans��Account��Disposition

��Card WHERE Card.type=‘junior’;

G2 F2: SELECT Card.card id FROM Card

��Disposition WHERE Disposition.type=‘OWNER’;

F3: SELECT Loan.loan id FROM Loan

��Account��Disposition WHERE Disposition.type=‘DISPONENT’;

F5: SELECT Client.client id FROM Client��Disposition

��Account WHERE Account.frequency=‘POPLATEK MESICNE’;

G3 F6: SELECT AVG(IQ.N) FROM (SELECT district id, COUNT(account id) as

N FROM Account GROUP BY district id) AS IQ;

H6: SELECT AVG(IQ.N) FROM (SELECT l orderkey, COUNT(l id) as

N FROM Lineitem GROUP BY l orderkey) AS IQ;

G4 F7: SELECT AVG(avg-salary) FROM District;

In the case of a table with multiple foreign key constraints, the method uses
a clustering algorithm for generating a joint degree distribution of the table.
However, the mechanisms employed by UpSizeR can lead to time-consuming
operations and require complex parameters as inputs from the user, which can
lead to inaccurate results.

Environment and Methodology. ReXwas developed using Java 1.6. ReXand
UpSizeR were applied on MySQL 5.5.35 databases. They were deployed on a
machine consisting of 2 Intel Xeon E5-2430 CPUs of 2.20 GHz and 6 cores
each, 64 GB RAM, and 2 TB Serial ATA Drive with 7,200 rpm, running 64-bit
Ubuntu 12.04. The MySQL server was run with default status variables. We used
the centralized version of UpSizeR available online2. We assume that the user
has no prior knowledge of the database to be extrapolated and keep the default
parameters’ values. This coincides with the evaluation strategy the authors pre-
sented in [19]. Moreover, we show in Sect. 4.1 that the default parameters provide
a near optimal configuration for the database considered.

Database. We used the Financial database3 from the PKDD’99 Challenge Dis-
covery in order to evaluate ReXand UpSizeR in a real environment. It contains
typical bank data, such as clients information, their accounts, and loans. It con-
tains 8 tables, and a total of 1,079,680 tuples. The sizes of the tables range
from 77 (District) to 1,056,320 tuples (Trans). The Financial database schema
is depicted in [4]. The starting table identified by ReXis the District table.

2 comp.nus.edu.sg/∼upsizer/#download.
3 lisp.vse.cz/pkdd99/Challenge/berka.htm.

comp.nus.edu.sg/~upsizer/#download
http://lisp.vse.cz/pkdd99/Challenge/berka.htm

102 T.S. Buda et al.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10

R
ep

re
se

nt
at

iv
en

es
s

er
ro

r
(%

)

Scale rate s

UpSizeR
ReX

(a) Representativeness.

-15

-10

-5

 0

 5

 10

 15

1 2 3 4 5 6 7 8 9 10

G
lo

ba
l s

iz
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReX

(b) Global size.

Fig. 3. Representativeness and database size errors.

Moreover, we performed similar experiments using the TPC-H4 database, and
UpSizeR showed lower errors for the criteria considered. Similar observations
were drawn regarding ReX’s performance compared to UpSizeR’s.

Metrics. Both ReXand UpSizeR aim to scale the distributions of the relation-
ships between tables by s (i.e., through primary and foreign keys). In [4] we
proposed a sampling method that aimed to scale the same distributions by a
sampling factor. We use the average representativeness error metric defined
in [4], replacing the sampling rate with the scaling rate. Moreover, we use the
global size error metric defined in [4] to evaluate the size of X related to O. We
measure the query relative error of the extrapolated database X for evaluating
the query answering on X compared to O. The metric is described in detail in [5].
In this evaluation, we consider: (G1) queries that compute an aggregate value
on a non-key attribute with a WHERE clause on a non-key attribute (e.g., average
account balance for a male client), (G2) queries that compute an aggregate value
on a key attribute with a WHERE clause on a non-key attribute (e.g., average num-
ber of cards for a female client), (G3) queries that compute an aggregate value
on a key attribute (e.g., average number of cards per account), and (G4) queries
that compute an aggregate value on a non-key attribute. G3 queries investigate
whether the distributions between the tables have been preserved from a query
answering perspective. Moreover, G4 queries investigate if the frequency count
preservation of non-key attributes increases the accuracy of queries targeting
the attributes. Table 2 presents the queries used in this evaluation. Finally, we
evaluate the methods’ performance by measuring their execution time. This
represents the run time (i.e., the pre-processing phases, such as the graph con-
struction or diamond patterns discovery, together with the extrapolation time).

4.1 Results and Observations

In this section, we discuss the results of the evaluation of ReXand UpSizeR.

Representativeness. Fig. 3(a) presents the results of UpSizeR and ReX (i.e.,
ReXmain and ReXrfc) in terms of representativeness of the relationships between

4 tpc.org/tpch.

http://tpc.org/tpch

ReX: Extrapolating Relational Data in a Representative Way 103

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10

F
1

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReXrfc

ReXmain

(a) F1 query relative error.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10

F
4

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReXrfc

ReXmain

(b) F4 query relative error.

Fig. 4. G1 query relative error on Financial.

consecutively linked tables of the Financial database. We observe that UpSizeR
produces an extrapolated database with the representativeness error varying
between 21.2 % and 6.5 %, and an average of 10.5 %. We observe that ReX
maintains 0 % error with regards to representativeness. This is because both
ReXmain and ReXrfc enforce a horizontal scaling which leads to generating for
each (pk,fk) pair of each table exactly s new pairs, described in Sect. 2.

Database Size. Fig. 3(b) presents the results of UpSizeR and ReX (i.e., ReXmain

and ReXrfc) in terms of expected database size. We observe that UpSizeR’s global
size error varies between −16.9 % and 2.7 % error, with an absolute average of
4.6 % on the Financial database. Moreover, we observe that ReX maintain 0 %
error in terms of global size errors due to horizontal scaling of each relationship,
which determines scaling each table by s.

Query Answering. We observe in Fig. 4 that UpSizeR and ReXrfc show sim-
ilar query answering errors on the Financial database. UpSizeR shows slightly
worse results than ReXrfc, with a peak error of 39.7 %, occurring for F4 when s
equals 1. This is because both methods do not aim at preserving intra table cor-
relations at a non-key attribute level, and as such, their answers are influenced
firstly by their non-key attribute generation strategy and secondly by how well
they preserve the representativeness of the relationships across tables. The query
answering errors are expected to decrease in the case of G2 type queries, as a
single non-key attribute is involved in the WHERE clause of the queries. Therefore,
we observe in Figs. 5, 6 and 7 improved results of ReXrfc over UpSizeR due to its
precision in preserving both representativeness of the key attributes relationships
and frequency count of the non-key attributes. ReXrfc shows close to 0 % error
for F5 query. We observe from Figs. 4, 5, 6 and 7 that ReXmain maintains 0 %
query relative error in terms of G1 and G2 queries due to horizontal scaling and
maintaining the original values of the non-key attributes. Moreover, we observe
a similar trend between Figs. 8 and 3(a), for the F6 query answering and the
representativeness error for UpSizeR. We notice that ReX maintains 0 % error
for the G3 query answering, due to horizontal scaling. Moreover, we observe in
Fig. 9 that UpSizeR shows little errors, confirming that the method considers
preserving the frequency count when generating non-key attributes. We observe

104 T.S. Buda et al.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10

F
2

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 5. F2 query error.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

F
3

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 6. F3 query error.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

F
5

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 7. F5 query error.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

F
6

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReX

Fig. 8. G3 query error.

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10

F
7

re
la

tiv
e

er
ro

r
(%

)

Scale rate s

UpSizeR
ReX

Fig. 9. G4 query error.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(s

)

Scale rate s

UpSizeR
ReXrfc

ReXmain

Fig. 10. Execution time.

that ReX maintain 0 % error for the G4 query answering, due to them preserving
the frequency count of the non-key attributes.

Execution Time. Figure 10 presents the methods’ execution time on the Finan-
cial database. We notice that ReX is up to 2 times faster than UpSizeR. When
applied on a larger database, such as a 1 GB TPC-H database, we observed
more significant differences between the methods’ performance. In particular,
ReX performed between 3 and 8.5 times faster with an average of 23 m differ-
ence between UpSizeR and ReX’s execution run time.

Additional Discussion. When using a system with complex inputs, the chal-
lenge stands in determining the optimal parameters on the target database. We
investigate the impact of the number of clusters expected, k (used in the gener-
ation of the joint degree distribution) and the probability perturbation exponent,
p (used in the generation of the joint probability matrix) on UpSizeR, as they
represent key inputs for UpSizeR’s generation process. We considered the follow-
ing set of values for k and p: {3,5,25,50,100,500,2500,5000}, and {-15,-10,-7,-5,-3,
-1,0,10}, respectively. Increasing k to 5,000 raised the run time of UpSizeR to
16.4h, compared to 12 s when k is 3 by default. Running UpSizeR with p equal
to −25 and −50 did not scale and after 10 days their execution was stopped.
Identical results were found for p equal to 10, 50, and 500. The query relative
error of F7 is 1.8 %, regardless of k and p. Similar conclusions were drawn for

ReX: Extrapolating Relational Data in a Representative Way 105

s = {2, 5, 8} and when jointly varying k and p. Results suggest that the modifi-
cation of the parameters brings little benefits for all dimensions considered. In
contrast, we observe that UpSizeR’s parameters have a significant impact mainly
on the query answering accuracy. Small variations of the parameters resulted in
high errors in query answering. This suggests that a trial and error approach
might not lead to any benefits, even after a large amount of time is invested.

5 Related Work

Significant efforts have been made to improve the realism of synthetic data gen-
erators. We acknowledge them below, based on their application area.

General Methods. Many commercial applications generate synthetic data-
bases that respect the given schema constraints and use real sources as input
for several attributes (e.g., names, age)5. Furthermore, the academic community
have proposed many general-purpose synthetic data generators [9,11,12]. MUDD
[17] is another parallel data generator that uses real data for the attributes’
domain. In [3], the authors propose a Data Generation Language to specify and
generate databases that can respect inter and intra table correlations. However,
the user must learn the specification language and input the distributions.

Software Testing. Existing methods for populating testing environments usu-
ally generate synthetic data values or use some type of random distribution to
select data from the production environment to be included in the resulting
database [14,18]. AGENDA [7] is a synthetic data generator based on a-priori
knowledge about the original database (e.g., test case expected behavior). Fur-
thermore, in [6] the authors describe a new approach for generating data for
specific queries received as input. QAGen [2], MyBenchmark [13], and Data-
Synth [1] similarly generate query-aware test databases through cardinality con-
straints. However, they require complex inputs (e.g., distribution of an attribute,
queries), which can be error-prone, as they might exclude vital test cases.

Data Mining. In [15], the authors propose a synthetic data generator for data
clustering and outlier analysis, based on the parameters given as input (e.g.,
number of clusters expected, size, shape). In [16], the authors propose a syn-
thetic data generator that receives as input a set of maximal frequent itemset
distributions and generate itemset collections that satisfy these input distribu-
tions. Other tools that can be used in this field are WEKA [10], GraphGen6,
IBM QUEST7. For instance, GraphGen generates synthetic graph data for fre-
quent subgraph mining. However, the approaches require input parameters and
generally produce synthetic data targeting a data mining algorithm.

5 sqledit.com/dg, spawner.sourceforge.net, dgmaster.sourceforge.net,
generatedata.com.

6 cse.ust.hk/graphgen.
7 ibmquestdatagen.sourceforge.net.

http://sqledit.com/dg
http://spawner.sourceforge.net
http://dgmaster.sourceforge.net
http://generatedata.com
http://cse.ust.hk/graphgen
http://ibmquestdatagen.sourceforge.net

106 T.S. Buda et al.

6 Conclusion and Future Work

In this paper, we proposed ReX, a novel automated and efficient system to rep-
resentatively extrapolate a relational database, given an existing database and a
natural scaling rate. The objective is to preserve the distributions of the relation-
ships between tables and the referential integrity of the data. We presented two
variations of ReX: (i) ReXmain, which maintains the original non-key attributes’
values of the generated tuples, and (ii) ReXrfc which randomly selects values for
the non-key attributes from the original database such that their frequency count
is preserved. We compared our technique with a representative scaling technique,
UpSizeR, and showed that ReX significantly outperforms UpSizeR in representa-
tiveness and database size. Moreover, ReX is up to 2 times faster than UpSizeR.
Results show that ReX is highly suitable for approximate query answering, which
leads to various application scenarios, such as scalability testing. Finally, results
suggest that UpSizeR is sensitive to the variation of the parameters, and a time
consuming trial and error approach might not lead to significant benefits.

As future work, we plan to extend our system such that real scaling rates
are accepted. A potential solution is to combine ReXwith a sampling technique
in order to handle real scaling rates [4,8]. Furthermore, we plan to investigate a
solution to extrapolate a database to a particular time in future by adapting the
existing approach. This represents an interesting future direction, as it raises the
challenge of studying an evolving dataset. Moreover, we plan to apply ReXon
an existing testing environment from our industrial partner, IBM, and use the
extrapolated database for testing the scalability of the system under test.

Acknowledgments. This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Cen-
tre (www.lero.ie). The authors also acknowledge Dr. Nicola Stokes’ feedback.

References

1. Arasu, A., Kaushik, R. Li, J.: Data generation using declarative constraints. In:
SIGMOD, pp. 685–696 (2011)

2. Binnig, C., Kossmann, D., Lo, E., Özsu, M.T.: Qagen: Generating query-aware
test databases. In: SIGMOD, pp. 341–352 (2007)

3. Bruno, N., Chaudhuri, S.: Flexible database generators. In: VLDB, pp. 1097–1107
(2005)

4. Buda, T.S., Cerqueus, T., Murphy, J., Kristiansen, M.: CoDS: a representative
sampling method for relational databases. In: Decker, H., Lhotská, L., Link, S.,
Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp. 342–356.
Springer, Heidelberg (2013)

5. Buda, T.S., Cerqueus, T., Murphy, J., Kristiansen, M.: VFDS: Very fast database
sampling system. In: IEEE IRI, pp. 153–160 (2013)

6. Chays, D., Shahid, J., Frankl, P.G.: Query-based test generation for database appli-
cations. In: DBTest, pp. 1–6 (2008)

7. Deng, Y., Frankl, P., Chays, D.: Testing database transactions with agenda. In:
ICSE, pp. 78–87 (2005)

http://www.lero.ie

ReX: Extrapolating Relational Data in a Representative Way 107

8. Gemulla, R., Rösch, P., Lehner, W.: Linked bernoulli synopses: sampling along
foreign keys. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol.
5069, pp. 6–23. Springer, Heidelberg (2008)

9. Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J.: Quickly
generating billion-record synthetic databases. SIGMOD Rec. 23(2), 243–252 (1994)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD 11(1), 10–18 (2009)

11. Hoag, J.E., Thompson, C.W.: A parallel general-purpose synthetic data generator.
SIGMOD Rec. 36(1), 19–24 (2007)

12. Houkjær, K., Torp, K., Wind, R.: Simple and realistic data generation. In: VLDB,
pp. 1243–1246 (2006)

13. Lo, E., Cheng, N., Hon, W.-K.: Generating databases for query workloads. PVLDB
3(1–2), 848–859 (2010)

14. Olston, C., Chopra, S., Srivastava, U.: Generating example data for dataflow pro-
grams. In: SIGMOD, pp. 245–256 (2009)

15. Pei, Y., Zaane, O.: A synthetic data generator for clustering and outlier analysis.
Technical report (2006)

16. Ramesh, G., Zaki, M.J., Maniatty, W.A.: Distribution-based synthetic database
generation techniques for itemset mining. In: IDEAS, pp. 307–316 (2005)

17. Stephens, J.M. Poess, M.: MUDD: a multidimensional data generator. In: WOSP,
pp. 104–109 (2004)

18. Taneja, K., Zhang, Y., Xie, T.: MODA: Automated test generation for database
applications via mock objects. In: ASE, pp. 289–292 (2010)

19. Tay, Y., Dai, B.T., Wang, D.T., Sun, E.Y., Lin, Y., Lin, Y.: UpSizeR: synthetically
scaling an empirical relational database. Inf. Syst. 38(8), 1168–1183 (2013)

Evaluation Measures for Event Detection
Techniques on Twitter Data Streams

Andreas Weiler(B), Michael Grossniklaus, and Marc H. Scholl

Department of Computer and Information Science, University of Konstanz,
P.O. Box 188, 78457 Konstanz, Germany

{andreas.weiler,michael.grossniklaus,marc.scholl}@uni-konstanz.de

Abstract. Twitter’s popularity as a source of up-to-date news and
information is constantly increasing. In response to this trend, numer-
ous event detection techniques have been proposed to cope with the rate
and volume of social media data streams. Although most of these works
conduct some evaluation of the proposed technique, a comparative study
is often omitted. In this paper, we present a series of measures that we
designed to support the quantitative and qualitative comparison of event
detection techniques. In order to demonstrate the effectiveness of these
measures, we apply them to state-of-the-art event detection techniques
as well as baseline approaches using real-world Twitter streaming data.

1 Introduction

Microblogging is a form of social media that enables users to broadcast short mes-
sages, links, and audiovisual content to a network of followers as well as to their
own public timeline. In the case of Twitter, the most popular and fastest-growing
microblogging service, these so-called tweets can contain up to 140 characters.
Twitter’s 288 million monthly active users produce a total of over 500 million
tweets per day1. As a consequence, several proposals have been made to lever-
age Twitter as a source of up-to-date news and information, e.g., to respond to
natural disasters [13], to track epidemics [7], or to follow political elections [17].

A number of techniques have been designed and developed to detect such
events in the Twitter social media data stream. Typically, they adopt the defini-
tion of an event introduced by research on Topic Detection and Tracking (TDT),
i.e., a real-world occurrence that takes place in a certain geographical location
and over a certain time period [2]. The main focus of these event detection tech-
niques lies in addressing the specific requirements introduced by Twitter data,
such as the brevity of tweets together with the fact that they contain a substan-
tial amount of spam, typos, slang, etc. Although most proposals provide some
qualitative evidence to motivate the benefits of the technique, few perform a
quantitative evaluation or compare their results to competing approaches.

We argue that this lack of comparative evaluation is explained by the fact
that measuring the quantitative and qualitative performance of event detection
1 https://about.twitter.com/company/.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 108–119, 2015.
DOI: 10.1007/978-3-319-20424-6 11

https://about.twitter.com/company/

Evaluation Measures for Event Detection Techniques 109

techniques for Twitter data is itself a challenging research question. Crafting a
gold standard manually in order to use textbook precision and recall measures is
painstakingly slow and does therefore not scale to the volumes of data generated
by Twitter users. In order to address this requirement, we build on our previous
work in this field [15] and, in this paper, propose several scalable measures that
can be automatically applied to the results of current and future event detection
techniques. The specific contributions of this paper are as follows.

1. Definition of evaluation measures to automatically evaluate the precision and
recall of event detection techniques for Twitter (Sect. 3).

2. Realization of several state-of-the-art event detection techniques as query
plans for a data stream management (Sect. 4).

3. Detailed study using real-life Twitter data that demonstrates the ability of
our measures to evaluate the different techniques (Sect. 5).

As our evaluation approach is platform-based and modular, it will also enable
further systematic performance studies of future event detection techniques.

2 Background

Several event detection techniques for Twitter data streams have recently been
proposed. Farzindar and Khreich [8] survey sixteen techniques and conclude that
most approaches are evaluated by self-defined measures with manually labeled
reference data sets. Also, almost none of the reviewed techniques are compared
to competing approaches. In the following, we summarize what evaluations have
been performed by the authors of the most-cited approaches and what corpora
are currently available for evaluation purposes. Our findings show that neither
the works discussed below nor the sixteen in the above-mentioned survey provide
a general solution that can be used to evaluate approaches comparatively.

2.1 Evaluation of Event Detection Approaches

enBlogue [3] identifies unusual shifts in the co-occurrence of tag pairs and reports
these shifts as events, which are rated in terms of quality in a user study. Twitter-
Monitor [9] detects “bursty” keywords and then groups them into trends, which
are visualized in order for users to decide whether a trend is interesting or not.
Cordeiro [6] proposes the use of continuous wavelet analysis to detect event peaks
in a signal based on hashtags frequency and summarizes the detected events into
topic clusters with latent dirichlet allocation (LDA [5]). The technique is evalu-
ated using a visualization of the results obtained from an eight day dataset with
13.6 million tweets. All of these manual evaluations are, however, not general in
the sense that they do not scale and might suffer from human error or bias. Weng
et al. [17] present a technique that uses term frequencies of individual terms as a
signal for discrete wavelet analysis to detect event terms. Then, graph partition-
ing is used to group similar terms into events. The approach is evaluated using a
custom ground truth that is built using LDA on a dataset containing of 4,331,937

110 A. Weiler et al.

tweets collected from Singapore-based users. After cleaning and filtering, a total
of 8,140 unique words are retained per month of Twitter data. Detected events
are compared to this ground truth on a daily basis. The result of this evaluation
is that detected events are plausible, but also that there are several days with
no events detected. Since event detection is often time-critical and events should
be reported in (near) real-time, this coarse evaluation technique is not suited for
general evaluations.

2.2 Available Corpora for Evaluation

In our work, we propose to address the problem of comparing various event
detection techniques by defining general evaluation measures. In contrast to our
approach, which does not rely on an existing reference data set, other works focus
on the creation of evaluation corpora for Twitter-related analysis techniques.

For example, McCreadie et al. [10] created a set of approximately 16 million
tweets for a two-week period. The proposed corpus contains an average of 50,000
tweets per hour, which is almost equal to the number of tweets per minute in our
10 % stream. Since no language filtering is performed, which can be estimated
to retain approximately 30 % (see Fig. 2) of these tweets, only about 4,800,000
tweets are in English. Furthermore, their list of 49 reference topics for the two-
weeks period is very limited and no description is given how these topics were
created. Finally, this corpus focusses on ad-hoc retrieval tasks and is, therefore,
not suited for the large-scale evaluation of event detection approaches. Becker
et al. [4] created a Twitter corpus, that consists of over 2,600,000 Twitter mes-
sage posted during February 2010. Since they only used their own approach to
detect events, the corpus is strongly biased to their technique and not suited for
general evaluation purposes. Furthermore, no list of reference events is provided
and the data set is restricted to tweets from users located in New York City.
Petrović et al. [12] presented a corpus of 50 million tweets, created from a man-
ual analysis of the Twitter data stream between July 2011 and mid-September
2011, which led to the definition of 27 events for the whole time-frame. This
very low number of “hits” makes it difficult to compare different event detec-
tion methods, if techniques used are very different. McMinn et al. [11] propose a
methodology to create a corpus for evaluating event detection approaches. They
used existing event detection techniques [1,12] together with Wikipedia to build
a set of candidate events and associated tweets. The final corpus covers four
weeks with about 120 million tweets and more than 500 events. However, since
events are given in prose, they cannot be compared automatically to results
of event detection techniques. It is important to note that all of these corpora
only consist of tweet identifiers. To use them, the tweets themselves have to be
crawled, which can be time-consuming and error-prone as some tweets might
not exist anymore.

3 Measures

In order to address the lack of a common evaluation method for event detection
in Twitter data streams, we propose a number of measures. Our goal is to define

Evaluation Measures for Event Detection Techniques 111

measures that can easily be used by other researchers and that do not depre-
cate over time as most reference corpora do. While all of our measures support
relative comparisons, we do not claim that they can be used to draw absolute
conclusions. A single event detection technique can, therefore, only be evaluated
“against itself”, e.g., with respect to different parameter settings or to confirm
that improvements to the technique yield better results. For a set of techniques,
the measures can be used to rank them with respect to different criteria. In this
paper, we focus on the second application.

Run-Time Performance. We measure run-time performance as the number of
tweets that an approach processes per second. This measure is important to judge
the feasibility of a technique. Most event detection techniques can be configured
based on numerous parameter that influence both the processing speed and result
quality. In combination with other measures, the run-time performance measure
can, therefore, also be used to study the trade-off between these two objectives.

Duplicate Event Detection Rate (DEDR). This measure captures the per-
centage of duplicate events detected by an approach. The implementations of
state-of-the-art event detection techniques used in this paper avoid the reporting
of duplicate events within their processing time-frame, e.g., a one-hour window.
Nevertheless, important or long-lasting events can reoccur across several time-
frames and, therefore, expecting a 0 % rate of duplicate events is not reasonable.

Precision. Our precision measure is composed of two components. First, we
query Google using the five event terms and a specific date range as search query
input. Doing so, we are able to verify if the detected event has been described
by an important article returned by Google for the corresponding time frame.
As important articles we define search results that are from one of the top 15
news websites such as CNN, CBSNews, USAToday, BBC, and Reuters. For the
second part of our precision measure, we query the archive of the New York
Times2 with the five event terms as well as the specific date range. Since the
number of hits (h), which are in the range between 0 and 10 both for Google
(hG) or New York Times (hNYT), is an indicator of how important a reported
event is, we calculate the final precision score for all results (N) by weighting
the single results as

1
N

N∑

i=0

(
1
2
hG
i +

1
2
hNYT
i

)
.

Recall. We propose to calculate recall by crawling the world news headlines on
the Reuters website3 for the days corresponding to the analysis. Each headline
is represented as a list of terms T hl. With this measure we intend to reflect the
percentage of detected events with respect to important news appearing on a
real-world news archive. To weigh the single results, we check for each term in
a news headline, which reported event, represented as a list of terms T e, has
2 http://query.nytimes.com/search/sitesearch/.
3 http://www.reuters.com/news/archive/worldNews?date=02112015/.

http://query.nytimes.com/search/sitesearch/
http://www.reuters.com/news/archive/worldNews?date=02112015/

112 A. Weiler et al.

the maximal similarity value (max sim). Since we exclude matches on one term
only, this similarity value can either be two, three, four, or five terms. With this
weighting, we calculate the final recall score for all headlines (N) as

1
N

N∑

i=0

1
2
max sim(T hl

i ,T e).

4 Event Detection Approaches

In order to realize streaming implementations of state-of-the-art event detection
techniques for Twitter, we use Niagarino4, a data stream management system
developed and maintained by our research group. The main purpose of Niagarino
is to serve as an easy-to-use and extensible research platform for streaming appli-
cations such as the ones presented in the paper. Based on its operator-based
processing pipeline our implementations are modular and can be easily config-
ured. For example, we can configure the approaches to report the same number
of events, which are represented as one main event term together with four asso-
ciated event description terms. Using a common implementation platform also
has the advantage that run-time performance results can be compared fairly.

For the evaluation of our measures we take nine different approaches
into account. Figure 1 shows the Niagarino-based implementations of these
approaches. Additionally, the pre-processing pipeline, which is used by all
approaches, is shown on the left. The pre-processing removes all non-English
tweets and retweets. Then, it tokenizes and unnests the terms of the remaining
tweets. It also discards terms that can be classified as stop-words or as noise (e.g.,
too short, invalid characters, etc.). Finally, a tumbling window of size sinput is
continuously applied and its contents are forwarded to the subsequent operators.

At the bottom of Fig. 1, the query plans for LDA, TopN, LastN, Ran-
domEvents (RE), and FullRandom (FR) are shown. Since these approaches are
not specifically tailored to the task of event detection, we use them as baseline
approaches in order to confirm that the proposed measures are discriminating.
LDA [5] uses the probabilities of terms in documents and groups those terms
together that have the highest probability of belonging together. We realized
LDA in Niagarino based on its user-defined function operator. Since LDA is
normally used for topic modeling, we equate a topic to an event. The parame-
ters that can be set for this approach include the number of topics, the number
of terms per topic, and the number of iterations of the probability modeling. As
there are a lot of repeating terms in tweets and also per time window, we expect
that this technique is not suitable for event detection and therefore classify it as
a baseline method. The other four baseline techniques use a grouping operator
followed by a selection operator. FR constructs “events” by randomly selecting
five terms from all distinct terms in a time window. RE selects the main event
term in the same way as FR, but uses the four most co-occurring terms of the
4 http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/.

http://www.informatik.uni-konstanz.de/grossniklaus/software/niagarino/

Evaluation Measures for Event Detection Techniques 113

Fig. 1. Niagarino query plans of the studied event detection techniques.

event term as the associated event description terms. Both of these approaches
report N events per time window. The next two approaches, TopN and LastN
are based on the IDF score of single terms among all distinct terms in the time
window. While TopN selects the N most frequent terms, LastN selects the N
terms with the lowest frequency. Both of them report the selected event terms
together with the four most co-occurring terms.

In addition to these baseline approaches, we implemented several techniques
that have been proposed to detect events in Twitter data streams. The corre-
sponding Niagarino query plans are shown at the top of Fig. 1. The first tech-
nique, LLH, is a reimplementation of Weiler et al. [16], which is realized as a
log-likelihood ratio user-defined function that is applied to the grouped set of
terms of a time window. In contrast to the original technique that detected
events for pre-defined geographical areas, we adjusted the approach to calcu-
late the log-likelihood measure for the frequency of all distinct terms in the
current time window against their frequency in the past time windows. Events
are reported by selecting the top N terms with the highest log-likelihood ratio
together with the corresponding top four most co-occurring terms. Since, these
are the terms with the highest abnormal behavior in their current frequency
with respect to their historical frequency, we define these terms to be events.
The second technique, Shifty, is a reimplementation of Weiler et al. [14]. In con-
trast to the original paper, which additionally analysis bigrams, we now only use
single terms in the analysis. The technique calculates a measure that is based
on the shift of IDF values of single terms in pairs of successive sliding windows
of a pre-defined size sinput. First, the IDF value of each term in a single window
is continuously computed and compared to the average IDF value of all terms
within that window. Terms with an IDF value above the average are filtered out.
The next step builds a window with size s1 that slides with range r1 in order

114 A. Weiler et al.

to calculate the shift from one window to the next. In this step, the shift value
is again checked against the average shift of all terms and only terms with a
shift above the average are retained. In the last step, a new sliding window with
size s2 that slides with range r2 is created. The total shift value is computed
as the sum of all shift values of the sub-windows of this window. If this total
shift value is greater than the pre-defined threshold Ω, the term is detected as
event and reported together with its top four co-occurrence terms. The third
technique, WATIS, is an implementation of Cordeiro [6]. The algorithm parti-
tions the stream into intervals of s seconds and builds DF-IDF signals for each
distinct term. Due to the noisy nature of the Twitter data stream, signals are
then processed by applying an adaptive Kolmogorov-Zurbenko filter (KZA), a
low-pass filter that smoothens the signal by calculating a moving average with
ikza iterations over N intervals. It then uses a continuous wavelet transforma-
tion to construct a time/frequency representation of the signal and two wavelet
analyses, the tree map of the continuous wavelet extrema and the local maxima
detection, to detect abrupt increases in the frequency of a term. In order to
enrich events with more information, the previously mentioned LDA algorithm
(with iLDA iterations) is used to model one topic consisting of five terms. After
the LDA phase the event is reported. Finally, the fourth technique, EDCoW, is
an implementation of Weng et al. [17]. The first step of the algorithm is to parti-
tion the stream into intervals of s seconds and to build DF-IDF signals for each
distinct term in the interval. These signals are further analyzed using a discrete
wavelet analysis that builds a second signal for the individual terms. Each data
point of this second signal summarizes a sequence of values from the first signal
with length Δ. The next step then filters out trivial terms by checking the cor-
responding signal auto-correlations against a threshold γ. The remaining terms
are then clustered to form events with a modularity-based graph partitioning
technique. Insignificant events are filtered out using a threshold parameter ε.
Since this approach detects events with a minimum of two terms, we introduced
an additional enrichment step that adds the top co-occurring terms to obtain
events with at least five terms. Since the original paper fails to mention the
type of wavelet that was used, we experimented with several types. The results
reported in this paper are based on the Discrete Meyer wavelet.

5 Evaluation

In order to demonstrate that the measures proposed in this paper are discrim-
inating, we run experiments against three different real-world Twitter stream
datasets (consisting of five days each) that we collected. The three datasets
respectively contain the days of February 1 to 6, 11 to 16, and 21 to 26,
2015 (EST). By using the Gardenhose access of the Twitter streaming API,
we are able to obtain a randomly sampled 10 % stream of all public tweets.
The collection contains an average of 2.2 million tweets per hour and almost 50
million tweets per day. We pre-filtered the dataset for tweets with English lan-
guage content by using a pre-existing Java library5. After this step, the dataset
5 https://code.google.com/p/language-detection/.

https://code.google.com/p/language-detection/

Evaluation Measures for Event Detection Techniques 115

Total English

0

500000

1000000

1500000

2000000

2500000

3000000

Fig. 2. Average hourly total and English tweets for all three datasets.

contains an average of 660,000 tweets per hour and 16 million tweets per day.
Figure 2 shows the distribution of the total and the English number of tweets
per hour for each day as an average of all three datasets.

5.1 Experimental Setup

The event detection techniques that we use for our evaluation have all been
defined with slightly different use cases in mind. In order to fairly compare
them, we defined a common task that all of the techniques can accomplish. As
we are interested in (near) real-time event detection, we set the length of the
time-window used for event reporting to one hour. This means that after each
hour of processing the techniques need to report the results obtained so far.
Note that within the time window of one hour no duplicate events are possible
for any technique. As the number of events reported by the different techniques
may vary significantly (depending on the parameter settings), we adjusted the
parameters of each technique to report a number of events in a certain range.
For techniques, for which the number of detected events is based on a single
parameter N, we set this parameter to obtain 15 events per hour, which results
in 1800 events per dataset. Note that some techniques report a few events with
less than five terms, which are discarded. We compensated for this behavior by
adjusting the parameters of such event detection techniques accordingly. Table 1
summarizes the parameter settings used. Note, however, that these settings are
purely required to obtain comparable output and might not correspond to the
optimal settings for each techniques. Also, it is unlikely that events are uniformly
distributed over the hours of a day. Using these setting, we obtain 1,745 events
for Shifty, 1,520 for WATIS, and 2,020 for EDCoW.

Table 1. Parameter settings for Shifty, WATIS, and EDCoW.

Approach Parameters

Shifty sinput = 1min, s1 = 2 min, r1 = 1 min, s2 = 4min, r2 = 1 min, Ω = 30

WATIS s = 85 s, N = 5 intervals, ikza = 5, ilda = 500

EDCoW s = 10 s, N = 32 intervals, γ = 1, ε = 0.2

116 A. Weiler et al.

5.2 Results

In the following, we present the results of our evaluation. Note, that we sum-
marized the results of both datasets as an average. First, we start with the
run-time performance. Run-time performance was measured using Oracle Java
1.8.0 25 (64 bit) on server-grade hardware with 2 Intel Xeon E5345s processors
at 2.33 GHz with 4 cores each and 24 GB of main memory.

LastN FR RE LDA TopN LLH Shifty WATIS EDCoW

Tw
ee

ts
/s
ec

0

2000

4000

6000

8000

10000

12000

14000

Fig. 3. Run-time performance.

Figure 3 shows the run-time
performance results for all tech-
niques measured in terms of
average throughput (tweets/
second) for all three datasets.
The baseline techniques, except
for LDA, as well as the LLH
technique achieve the highest
throughput with around 12,000
tweets/second. The rate of our
Shifty technique is lower at
around 8,000 tweets/second. How-
ever, it should be noted that Shifty is the only online technique that processes the
input incrementally. Therefore, Shifty ’s performance does not depend on changes
to the reporting schedule that we used (after each hour), which will affect the
throughput of all other approaches. In contrast to WATIS, EDCoW scores very
well. Since WATIS uses LDA at the end of processing to create the final events,
this result is not surprising. As we see, applying LDA with 500 iterations is the
slowest approach with around 1,700 tweets/second. If we take into account the
50 million tweets per day (∼ 580 per second) of the 10 % stream, we can observe
that all techniques could process this stream in (near) real-time and are there-
fore feasible. However, if these techniques were applied to the full 100 % stream
(∼ 5, 800 tweets per second), WATIS and LDA would not be feasible. Based on
these observations, we conclude that our measure for run-time performance is
discriminating and can be used to judge the feasibility of approaches.

In contrast to run-time performance, the remaining three measures assess
the task-based performance, i.e., the quality of an event detection technique. To
further evaluate our measures, we also include the results of applying them to
the so-called Trending Topics (TT) of Twitter in the following discussion. We
collected the top 15 trending topics and enriched them by querying the Twitter
API for the most current tweets belonging to each topic. The enrichment process
also tokenizes and cleans the obtained tweets, and summarizes the five most co-
occurring terms to a final event. Hereby, we also get 1,800 events per dataset. We
begin by presenting the results obtained from our DEDR measure. For each tech-
nique, we calculate the percentage of events, which are classified as duplicates.
As this classification is configurable, we present results obtained by requiring
that one, two, three, four, or all five event terms need to be equal (DEDR1, . . . ,
DEDR5). Figure 4 plots the average results of the duplicate event detection rate
for all datasets. We can observe that all techniques report a very high number

Evaluation Measures for Event Detection Techniques 117

LastN FR RE LDA TopN LLH Shifty WATIS EDCoW TT

DEDR1 DEDR2 DEDR3 DEDR4 DEDR5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 4. Average duplicate event detection rate.

of duplicates for DEDR1. Since the terms of FR and RE are randomly chosen,
they generally report a lower number of duplicates. From the event detection
techniques, the results for Shifty, WATIS, and EDCoW closely resemble the
results of applying our DEDR measure to TT, whereas the all other approaches
have significantly different profiles. We therefore argue that DEDR is a useful
measure to characterize event detection techniques.

For the evaluation of our precision and recall measures, we only use events
that were not filtered out by DEDR3, i.e., all events with three or more com-
mon terms are removed from the result set and only the remaining non-duplicate
events are further analyzed. Note that this results in an implicit inclusion of the
DEDR measure in our precision and recall measures. Figure 5 shows the aver-
age precision, recall, and F-measure over all three data sets for all techniques.
Based on these measure, we observe that all of the dedicated event detection
techniques clearly outperform the baseline approaches. This finding confirms
the validity of the precision and recall measure proposed in this paper. We con-
clude our evaluation by discussing the results shown in Fig. 5 in more detail.
First, we note that the scores are generally very low. However, since we are only
interested in relative comparisons, this is not a problem. Among the baseline
approaches, both LDA and RE score comparable to dedicated event detection
techniques with respect to specific measures. The precision of LDA is higher
than the one of LLH and Shifty, RE scores well in terms of recall. In both cases,
this result can be explained with the way these approaches work. Also, it demon-
strates the importance of studying both precision and recall, which we support
with our F-measure. The best approaches according to our measures are the
advanced WATIS and EDCoW techniques, which are also the most cited event
detection techniques. Since EDCoW produces the most events of all techniques,
its parameters could also be adjusted to increase its precision score. Also, the
basic enrichment process that we implemented for EDCoW could be improved.
For example, WATIS uses LDA for the same purpose and scores very well in
terms of recall. Our own techniques, LLH and Shifty, do not perform as well as
the two advanced techniques. However, we note that Shifty is the only online
event reporting technique and therefore only uses very short time intervals (of
four minutes in this case) instead of a full hour to classify terms as events.

118 A. Weiler et al.

LastN FR RE LDA TopN LLH Shifty WATIS EDCoW TT

Precision
Recall
FMeasure

0.0

0.1

0.2

0.3

0.4

Fig. 5. Precision, Recall, and F-Measure of all techniques.

Additionally, we do not use bigrams in this paper as opposed to the original
Shifty algorithm. LLH was originally designed to use both the spatial and the
time dimension to detect unusual rates of terms in pre-defined geographical areas
over time. In this paper, we only use the time dimension, which has weakened
the performance of the approach. Finally, our measures assign high precision and
recall scores to the Twitter Trending Topics (TT). However, in contrast to our
results, TT is based on the full 100 % stream.

6 Conclusions

In this paper, we have addressed the lack of quantitative and comparative evalu-
ation of event detection techniques by proposing a number of measures, both for
run-time and task-based performance. In contrast to previous evaluation meth-
ods, all our measures can be automatically applied to evaluate large results sets
without the requirement of an existing gold standard. In order to demonstrate
the validity of our proposed measures, we have studied them based on several
baseline approaches and state-of-the-art event detection techniques. We have
shown that our measures are able to discriminate between different techniques
and support relative comparisons.

As future work, we plan to further confirm the findings presented in this paper
by implementing additional event detection techniques, such as enBlogue [3],
in our evaluation framework. Based on these fully validated measures, we will
tune the parameters of each technique, which will enable us to draw absolute
conclusions about their performance.

Acknowledgement. We would like to thank our students Christina Papavasileiou
and Harry Schilling for their contributions to the implementations of WATIS and
EDCoW.

References

1. Aggarwal, C.C., Subbian, K.: Event detection in social streams. In: Proceedings of
the SIAM International Conference on Data Mining (SDM), pp. 624–635 (2012)

Evaluation Measures for Event Detection Techniques 119

2. Allan, J.: Topic Detection and Tracking: Event-based Information Organization.
Kluwer Academic Publishers, The Netherlands (2002)

3. Alvanaki, F., Michel, S., Ramamritham, K., Weikum, G.: See what’s enBlogue:
real-time emergent topic identification in social media. In: Proceedings of
the International Conference on Extending Database Technology (EDBT),
pp. 336–347 (2012)

4. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event
identification on twitter. In: Proceedings of the International Conference on
Weblogs and Social Media (ICWSM), pp. 438–441 (2011)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

6. Cordeiro, M.: Twitter event detection: combining wavelet analysis and topic infer-
ence summarization. In: Proceedings of the Doctoral Symposium on Informatics
Engineering (DSIE) (2012)

7. Culotta, A.: Towards detecting influenza epidemics by analyzing twitter messages.
In: Proceedings of the Workshop on Social Media Analytics (SOMA), pp. 115–122
(2010)

8. Farzindar, A., Khreich, W.: A survey of techniques for event detection in twitter.
Comput. Intell. 31(1), 132–164 (2015)

9. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter
stream. In: Proceedings of the International Conference on Management of Data
(SIGMOD), pp. 1155–1158 (2010)

10. McCreadie, R., Soboroff, I., Lin, J., Macdonald, C., Ounis, I., McCullough, D.: On
building a reusable twitter corpus. In: Proceedings of the International Conference
on Research and Development in Information Retrieval (SIGIR), pp. 1113–1114
(2012)

11. McMinn, A.J., Moshfeghi, Y., Jose, J.M.: Building a large-scale corpus for evalu-
ating event detection on twitter. In: Proceedings of the International Conference
on Information and Knowledge Management (CIKM), pp. 409–418 (2013)

12. Petrović, S., Osborne, M., Lavrenko, V.: Using paraphrases for improving first
story detection in news and twitter. In: Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL HLT), pp. 338–346 (2012)

13. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: Proceedings of the International Conference
on World Wide Web (WWW), pp. 851–860 (2010)

14. Weiler, A., Grossniklaus, M., Scholl, M.H.: Event identification and tracking in
social media streaming data. In: Proceedings of the EDBT Workshop on Multi-
modal Social Data Management (MSDM), pp. 282–287 (2014)

15. Weiler, A., Grossniklaus, M., Scholl, M.H.: Run-time and task-based perfor-
mance of event detection techniques for twitter. In: Zdravkovic, J., Kirikova, M.,
Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 35–49. Springer,
Heidelberg (2015)

16. Weiler, A., Scholl, M.H., Wanner, F., Rohrdantz, C.: Event identification for local
areas using social media streaming data. In: Proceedings of the SIGMOD Work-
shop on Databases and Social Networks (DBSocial), pp. 1–6 (2013)

17. Weng, J., Lee, B.S.: Event detection in twitter. In: Proceedings of the Interna-
tional Conference on Weblogs and Social Media (ICWSM), pp. 401–408 (2011)

A Framework for Selecting Deep Learning
Hyper-parameters

Jim O’ Donoghue(B) and Mark Roantree

Insight Centre for Data Analytics, School of Computing, DCU,
Collins Ave., Dublin 9, Ireland
jodonoghue@computing.dcu.ie

Abstract. Recent research has found that deep learning architec-
tures show significant improvements over traditional shallow algorithms
when mining high dimensional datasets. When the choice of algorithm
employed, hyper-parameter setting, number of hidden layers and nodes
within a layer are combined, the identification of an optimal configu-
ration can be a lengthy process. Our work provides a framework for
building deep learning architectures via a stepwise approach, together
with an evaluation methodology to quickly identify poorly performing
architectural configurations. Using a dataset with high dimensionality,
we illustrate how different architectures perform and how one algorithm
configuration can provide input for fine-tuning more complex models.

1 Introduction and Motivation

The research presented here was carried out as part of the FP7 In-Mindd project
[10,19] where researchers use the Maastricht Ageing Study (MAAS) dataset
[9,16,22] to understand the determinants of cognitive ageing from behavioural
characteristics and other biometrics. The MAAS dataset recorded a high number
of features regarding the lifestyle and behaviour of almost 2,000 participants over
a 12-year period. The challenge with this dataset is to determine those features
which provide the best predictive capabilities for a particular outcome. Unlike
health base studies where data is automatically generated using electronic sen-
sors [8,20], data in MAAS is not easily mined. Machine learning takes two broad
strategies: the more common shallow approach and the more complex deep learn-
ing (DL) approach. Where multiple issues - like high-dimensionality or sparsity -
arise within the dataset, the use of many shallow algorithms in series is generally
required. Shallow refers to the depth of algorithm architecture and depth refers to
the number of layers of learning function operations [4], where anything less than
3 layers is considered shallow. Deep architectures are algorithms where multiple
layers of hidden, usually latent variables are learned through many layers of non-
linear operations [4], usually in the context of artificial neural networks (ANNs).

Research funded by In-MINDD, an EU FP7 project, Grant Agreement Number
304979.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 120–132, 2015.
DOI: 10.1007/978-3-319-20424-6 12

A Framework for Selecting Deep Learning Hyper-parameters 121

Furthermore, these DL architectures have in the past, proved very successful in
learning models from high-dimensional datasets [14,21].

DL architectures have been shown to perform well in learning feature rep-
resentations but require the optimisation of many hyper-parameters1 which is
a difficult process. In this work, we have developed a framework which can test
combinations of features and hyper-parameters in different deep learning config-
urations. Our goal is to find the Deep Learning architectural configuration most
applicable to prediction in the MAAS clinical study for dementia.

Contribution. Deep architectures have primarily been used in image, audio and
video domains where feature sets are often large and complex. Our contribution
is to develop an easily-configurable machine to facilitate the generic implemen-
tation of algorithms with interchangeable activation functions. As a result, we
can easily run and evaluate many experiments with deep or shallow learners in
a variety of configurations. Essentially, we provide a framework for the selection
of an initial hyper-parameter configuration in a deep learning algorithm.

Paper Structure. The paper is structure as follows: in Sect. 2, we present a
detailed description of the Configurable Deep Network (CDN) which under-
pins our framework; Sects. 3 and 4, describe our evaluation approach and
setup together with results and analysis; in Sect. 5, we discuss related research;
and finally in Sect. 6, we present our conclusions.

2 CDN - The Configurable Deep Network Architecture

Most classification algorithms have a similar procedure for training. First, ini-
tialisation occurs. This instantiates the model parameters (known as θ, a com-
bination of the weights and biases for the entire model) which allow for prediction
and this process gives a starting point from which these parameters can then be
tuned. A hypothesis function hθ(x)hθ(x)hθ(x) is then employed through which the data,
bounded by the model parameters goes, in order to predict an outcome, which
in our case is “forgetful? (yes/no)”. The cost J(θ)J(θ)J(θ) of these initial parameters
is then calculated with a function that measures the information lost between
the predicted outcome (result of hypothesis function) and the actual outcome.
A predictive model is learned by minimising the cost calculated by this function.

Gradient descent is one method to optimise the cost function and it proceeds
as follows: compute the gradient (or partial derivative) of the cost function with
respect to the model parameters, giving the slope denoted by δ

δθJ(θ); then update
the model parameters by taking the value found for the slope, multiplied by a
term called the learning rate (determines how far down the slope the update
will take the model parameters) and subtract the result from the previous para-
meters; and finally, repeat these steps until the model converges on the lowest
possible cost for the data. Stochastic Gradient Descent (SGD) calculates the
cost on an individual sample in the dataset and subsequently updates the para-
meters. Mini-batch Stochastic Gradient Descent (MSGD) instead calculates the
1 Parameters not learned by the algorithm but instead passed as input.

122 J.O. Donoghue and M. Roantree

cost on a subset of the dataset and then updates the parameters. This process
allows us to achieve a predictive model for: “forgetful? (yes/no)” in MAAS.

2.1 Framework Overview

There are three high-level constructs in our architecture: nodes which contain
and execute the activation functions, layers which contain the nodes and handle
connections between layers and machines which contain the logic for the over-
arching algorithm. Each node in the bottom visible input layer reflects a feature
in the dataset and for supervised models (predicts an outcome given an input)
there is a visible output layer at the top of each configuration which performs
classification. In unsupervised models (learns a model without a class label) as
well for the internal layers (where applicable) in supervised models there is a
hidden layer or layers, where the feature representation is learned.

Fig. 1. Machine configurations within the framework

Our architecture is implemented in Python and built upon Theano [2,7] - a
library for building and compiling symbolic mathematics expressions and GPU
computation. The functions below are implemented for every algorithm.

– initialise: instantiates model parameters (weights and biases), configures
layers and nodes, and associates hyper-parameters with the architecture.

– buildhypothesis: dependent on the classification type it builds a symbolic
expression for the hypothesis function, giving the prediction hθ(xi) = ŷi for
the sample xi.

A Framework for Selecting Deep Learning Hyper-parameters 123

– buildcost: based on the classification type it creates symbolic expressions
for: the cost J(θ) with regularisation2 (if applicable) and prediction error.

– buildmodel: computes the gradient of the cost function with respect to the
model parameters and uses this gradient to build a symbolic expression to
update the parameters. It compiles these symbolic expressions into functions
to train and (if applicable) pre-train the model.

– train: optimises the cost function. Can be supervised (with respect to a
class label) or unsupervised (no class label) depending on the algorithm. For
the DBN it performs unsupervised pre-training and supervised fine-tuning
(explained further in Sect. 2.5).

– predict: uses the hypothesis function and model learned to predict an out-
come, or reconstruct the data dependent on the algorithm.

The following four machines: Regression, Multi-Layer Perceptron (MLP),
Restricted Boltzman Machine (RBM) and Deep Belief Network (DBN) are cur-
rently implemented in our architecture and displayed in Fig. 1. As our focus
is not an in-depth discussion of the technical detail of these algorithms but
their application to high dimensional clinical data and determining a DBNs best
hyper-parameters via a step-wise optimisation of its constituent algorithms, we
refer the reader to [4] for detailed technical information.

2.2 Regression

Three types of regression are currently implemented in our architecture: Linear,
Logistic and Softmax regression. As our experiments only evaluate softmax
regression, it will form the focus of our discussion. Softmax regression is a non-
linear multi-class classification algorithm which uses the softmax function for
the hypothesis and the negative log likelihood function for the cost. It is used
where class membership is mutually exclusive (sample can only belong to one
class) to generate a probability of class membership from 1, . . . ,K where K
is the number of classes. In our architecture we train softmax regression with
stochastic gradient descent.

2.3 Multi-layer Perceptron

An MLP is a simple form of one hidden layer neural network, where latent and
abstract features are learned in the hidden layer. As with the other machines in
our architecture and for artificial neural networks (ANN) in general, each node
in a hidden layer L(i) is connected to every node in layer L(i−1) and every node
in L(i+1). Each node n(i)

1 to n(i)
n in layer L(i) contains a non-linear activation

function, which calculates a node’s activation energy. This value is propagated
through the layers via the connections, a subset of which are shown in Fig. 1.
This process is called feed-forward propagation and is the hypothesis function
for all shallow and deep feed-forward neural networks.
2 ensures features with large data values does not overly impact the model.

124 J.O. Donoghue and M. Roantree

Our MLP was trained with SGD and back-propagation. It is similar to train-
ing a regression model and uses the same cost function except the parameters
in each layer must be updated with respect to the cost of the output.

2.4 Restricted Boltzmann Machine

An RBM is an energy-based, two-layer neural network. An RBM’s aim is to
learn a model which occupies a low energy state over its visible and hidden
layers for likely configurations of the data. The energy paradigm is an idea
taken from particle physics and associates a scalar energy value (real-number)
for every configuration of the variables in a dataset. Highly likely configurations
of the data occupy low energy states, synonymous to low energy configurations
of particles being most probable [4]. Training achieves this by maximising the
probability of the training data in the hidden and visible layers by learning their
joint probability distribution. This process gives a way of learning the abstract
features that aid in prediction in MAAS. The RBM was trained with contrastive
divergence [13] and MSGD.

2.5 Deep Belief Network

A Deep Belief Network is a deep ANN, meaning it can be successfully trained
with more than one hidden layer and differs from RBMs and MLPs as such. Each
subsequent layer learns a more abstract feature representation and increases the
models predictive power. DBNs are generative models characterised by unsuper-
vised pre-training and supervised fine-tuning. Unsupervised pre-training updates
the weights in a greedy layer-wise fashion, where two layers at a time are trained
as an RBM, where the hidden layer of one acts as the visible layer in the next.
Supervised fine-tuning then adjusts these parameters with respect to an outcome
via back-propagation, in much the same way as an MLP. Again, like an MLP it
makes predictions via feed-forward propagation. Here we pre-trained the DBN
with MSGD and fine-tuned with SGD.

3 Experimental Set-Up and Design

3.1 Dataset Preparation and Preprocessing

The MAAS dataset [16] is a longitudinal clinical trial which recorded biometric
data on middle-aged individuals at 3 year intervals over 12 years. There are 3441
unique records and 1835 unique features spread throughout 86 ‘tests’ or study
subsections. To remove the temporal nature of the data, only baseline data was
analysed. To remove test level sparsity, a subset of the dataset was selected and
the remaining sparsity was removed through deletion or mean imputation. The
data was scaled to unit variance and categorised to one-hot encoded vectors so
that it could be input into our DBN and RBM. The continuous data had 523
instances and 337 features, whereas the one-hot encoded categorical data had
523 instances and 3567 features.

A Framework for Selecting Deep Learning Hyper-parameters 125

3.2 Experimental Procedure and Parameter Initialisation

The optimum parameters for each machine were located via a process called grid
search which tests a range of values to find wherein the optimum lies. Regression
was used to determine the learning rate, regularisation term and fine-tune steps
for the RBM, MLP and DBN; and the RBM and MLP were used to determine the
number of nodes in the first and second hidden layers of the DBN respectively.

The range searched for regularisation and learning rate was from 0.001 to 1,
roughly divided into 10 gradations. Three values for steps of GD were tested: 100;
1000; and 10000 as we estimated any larger values would lead to over-fitting (not
generalising well to new data) given the sample-size. All possible combinations
were tested for both continuous and categorical data, giving 246 in total.

The number of hidden nodes tested for both the RBM and MLP were 10, 30,
337, 900, 1300 and 2000. There were 337 features before categorisation therefore,
any more than 2000 hidden nodes was deemed unnecessary. Each configuration
was run twice (for categorical and continuous) in the MLP but 5 times each in
the RBM (only categorical) as there were 5 epoch values (1, 5, 10, 15 and 20)
being tested. Any more than 20 would have over-fit the data.

Bias terms were initialised to zero for all models. From Glorot et. al [12], the
MLP, RBM, and DBN weights were randomly initialised between the bounds:
[−4

√
6

fanin+fanout
, 4

√
6

fanin+fanout
], whereas for regression the weights were

randomly initialised without bounds. fanin is the number of inputs to and
fanout is the number of outputs from a node.

All experiments were run on a Dell Optiplex 790 running 64-bit Windows 7
Home Premium SP1 with an Intel Core i7-2600 quad-core 3.40 GHz CPU and
16.0 GB of RAM. The code was developed in Python using the Enthought Canopy
(1.4.1.1975) distribution of 64-bit Python 2.7.6 and developed in PyCharm 3.4.1
IDE, making use of the NumPy 1.8.1-1 and Theano 0.6.0.

4 Experimental Results and Analysis

4.1 Evaluation Metrics

– Ex.: Experiment number - a particular hyper-parameter configuration. Each
number is an index into a list of the hyper-parameters being tested.

– I. Cost Initial cost - negative log likelihood (NLL) cost of untrained model
on training data

– T. Cost: Training cost - NLL cost of trained model on training data
– V. Cost: Validation cost - NLL cost of trained model on validation data
– Tst. Cost: Test cost - NLL cost of trained model on the test set
– Error: Prediction error achieved on the test set: 1 − (true pos+true neg

num predictions)
– Alpha: Learning rate, a coefficient for the model parameter updates which

decides how big of a step to take in gradient descent.
– Lambda: Regularisation parameter, determines how much to penalise large

data values

126 J.O. Donoghue and M. Roantree

– Steps: Number of steps of stochastic gradient descent taken
– Data: Format of the data - cont. (continuous) or cat. (categorical one-hot

encoded)
– Epochs: Iterations through the dataset, 1 epoch = 1 complete iteration
– Nodes: Number of nodes in each layer, visible-hidden1-. . . -hiddenn(-output)

4.2 Regression: Search for DBN Learning Rate
and Regularisation Term

Table 1 shows the results and hyper-parameter configurations for the ten best
performing models in a series of grid-search experiments for regression. The
models are ranked by the lowest negative log-likelihood found on the training
data out of the 246 experiments performed.

Table 1. Regression learning rate, regularisation and steps grid search

Ex I. Cost T. cost V. cost Error Alpha Lambda Steps Data

8-0-0 13.188452 0.001 45.818 0.258 0.9 0.001 100 cat

8-1-0 4.925 0.002 7.725 0.305 0.9 0.003 100 cat.

8-2-0 7.608 0.00334 22.615 0.225 0.9 0.009 100 cat

7-0-1 21.066 0.003 6.449 0.391 0.3 0.001 1000 cat

8-1-1 9.718 0.004 35.637 0.238 0.9 0.003 1000 cat

8-0-1 9.200 0.003919 15.913 0.305 0.9 0.001 1000 cat

4-0-2 12.103 0.004 14.097 0.298 0.03 0.001 10000 cat

4-0-2 16.553 0.004 16.351 0.338 0.03 0.001 10000 cont

7-0-1 6.193 0.004 8.180 0.298 0.3 0.001 1000 cont

5-0-2 11.149 0.005 9.223 0.291 0.09 0.001 10000 cat

Experiments 8-1-0 and 7-0-1 achieved the best results for the categorical and
continuous data respectively. 8-1-0 achieved a low training cost of 0.002, a valida-
tion cost of 7.725 and a test cost of 0.305. 7-0-1 achieved a slightly poorer result
of 0.004, 8.180 and 2.816 for the same measures. Both experiments achieved the
second lowest cost on the training data, but performed significantly better on
the validation data, meaning these hyper-parameters generalised better. Models
learned were not optimal, but given the amount of data available they were ade-
quate as over 69 % of the instances were correctly classified for the categorical
data and just over 70 % for the continuous data.

Although the categorical data achieved a lower cost, the continuous data
made better predictions. This suggests categorising the data helped remove noise
but along with this the transformation eliminated some information relevant to
modelling. Interestingly the best performing learning rate (alpha) is much higher
for the categorical than the continuous data and ten times less iterations of

A Framework for Selecting Deep Learning Hyper-parameters 127

gradient descent (GD) were required. Therefore gradient descent was far steeper
for the categorical data as it converged and gave us the best parameters much
faster than with the continuous, showing that one-hot encoded data can be
modelled easier, building a predictive model in far less time.

4.3 RBM: To Select Optimum Node Count in First
Hidden Layer of DBN

Table 2 shows the 10 highest scoring RBM model configurations out of 35 runs,
ranked by the best reconstruction cost (closest to 0) achieved on training data.

Table 2. RBM layer 2 hidden nodes grid search

Ex T. cost V. Cost Alpha Epochs Nodes

2-0 -68.719 -22.112 0.9 1 3567-100

1-0 -73.357 -19.580 0.9 1 3567-30

3-0 -75.110 -22.009 0.9 1 3567-337

0-0 -77.774 -20.665 0.9 1 3567-10

4-0 -98.590 -20.914 0.9 1 3567-900

5-0 -107.553 -20.575 0.9 1 3567-1300

6-0 -141.144 -22.532 0.9 1 3567-2000

2-1 -241.274 -18.547 0.9 5 3567-100

1-1 -241.527 -18.823 0.9 5 3567-30

3-1 -246.462 -18.575 0.9 5 3567-337

The result of the best performing RBM configuration can be seen in bold
in Table 2. It has 30 hidden nodes and went through 1 epoch of training.
A node configuration of 100 units in the hidden layer achieved the best recon-
struction cost of -68.719 on the training data, compared to the configuration
with 30 hidden nodes which scored -73.357. The 30 hidden node configuration
was determined to be the better architecture as it performed only slightly worse
on the training data but it scored -19.580 on the validation set, performing
better than every other configuration in the top 5 which measured in the 20’s.
Therefore, the 30 hidden unit configuration generalises better to unseen data.

The reconstruction cost achieved on the training data by Ex. 3-1 is far worse
at -435.809, but the validation score is better at -17.977 due to the higher num-
ber of epochs. As the model iterates through the training data, more and more
abstract features are learned so the model makes a better estimate at recon-
structing unseen data. We want to learn the features that perform comparable
on the training data as well as unseen data, therefore one training epoch gave
the best performance.

128 J.O. Donoghue and M. Roantree

4.4 MLP: To Select Optimum Node Count in Final
Hidden Layer of DBN

Table 3 shows the top 10 scoring experiments out of the 14 performed. Here,
experiments 2 and 10 gave the best results achieving training, validation and
test negative log likelihood costs of 0.17, 2.107, 0.76 and 0.842, 11.664, 0.974
respectively.

Table 3. MLP layer 3 hidden nodes grid search

Ex I. Cost T. cost V. Cost Error Data Alpha Lambda Steps Nodes

2 2.389 0.17 2.107 0.232 cont. 0.3 0.001 1000 337-10-2

4 5.319 0.231 4.609 0.225 cont 0.3 0.001 1000 337-30-2

6 13.466 0.332 12.436 0.225 cont 0.3 0.001 1000 337-100-2

8 33.467 0.456 30.394 0.238 cont 0.3 0.001 1000 337-337-2

1 11.247 0.842 11.664 0.291 cat. 0.9 0.003 100 3567-10-2

10 64.252 0.929 62.453 0.232 cont 0.3 0.001 1000 337-900-2

12 73.305 1.426 78.562 0.212 cont 0.3 0.001 1000 337-1300-2

3 30.256 1.473 35.802 0.318 cat 0.9 0.003 100 3567-30-2

14 121.088 2.211 113.605 0.219 cont 0.3 0.001 1000 337-2000-2

5 99.757 2.549 134.606 0.616 cat 0.9 0.003 100 3567-100-2

From the above table it can be shown that ten hidden nodes - which is the
smallest possible number of hidden nodes - gave the best results for both the
categorical and continuous data. Further to this, the MLP improves upon the
model found with regression for both data-types as the best performing MLP
model was 76.8 % accurate in its predictions for the continuous test data and
70.9 % for the categorical.

As a better predictive model was found through the MLP when we compare
to regression, it would suggest that abstract features were learned in the hidden
layer. Further to this, as the smallest available hidden node value performed best
we conclude that the number of features particularly relevant to the outcome
we are modelling are relatively low. It can again be seen from the results that
that the continuous data lends itself to more powerful models in comparison to
the categorical data and this can be put down to information being lost during
transformation.

4.5 DBN: Comparing Configurations

Table 4 compares the results of the model learned with the hyper-parameters
found through grid-search in earlier experiments (Ex. 6 - parameters in bold
from previous experiments) with a randomly selected configuration (Ex. 1 -
estimated to be a logical starting point) which was then tuned (Ex. 3, 4, 5) and
two other configurations (Ex. 7, 8) which were an attempt to improve upon the
results of Ex. 6.

A Framework for Selecting Deep Learning Hyper-parameters 129

Tuning here refers to adjusting the hyper-parameters to find a better model.
The heuristic used was to start the learning rate and training steps low and
gradually increase one while observing if either the cost achieved or the accuracy
improves. If the measures improve up to a point before deteriorating it can be
seen that the global optimum has been overshot.

Table 4. Comparing DBN configurations

Exp I. Cost T. cost V. Cost Error Alpha Lambda Steps Nodes

1 2.582 0.680 2.950 0.536 0.001 0.003 3000 3567-337-200-2000-10-2

2 1.653 0.434 1.383 0.272 0.001 0.003 3000 3567-3567-200-10-2

3 3.837 0.541 4.435 0.305 0.01 0.003 3000 3567-3567-200-10-2

4 0.694 0.693 0.695 0.616 0.9 0.003 3000 3567-3567-200-10-2

5 0.916 0.344 1.042 0.272 0.01 0.003 1000 3567-3567-200-10-2

6 2.818 0.632 0.858 0.265 0.9 0.003 100 3567-30-10-2

7 9.236 0.451 6.378 0.238 0.9 0.003 100 3567-337-10-2

8 0.748 0.579 0.624 0.245 0.9 0.003 100 3567-337-100-10-2

Ex. 6 achieved the third best error rate on the test data. It immediately
improved on 0.272 which was the lowest error rate achieved by picking a random
initial configuration and tuning using technique outlined above. In fact, 0.272
was the best test error achievable without hyper-parameters found from previous
experiments. Tuning improved the model up to a point (Ex. 2) before it degraded
(Ex. 3, 4) and then again achieved previous levels of accuracy (Ex. 5).

When choosing the estimated best starting point for the comparison configu-
ration it was thought that more hidden layers would better model the data. The
opposite was found when 2 hidden layers performed best. Interestingly, when a
number of nodes the same as the number of features for the continuous data
were inserted for the first hidden layer (Ex. 7) it improved on the test error from
in Ex. 6. Our analysis is that an abstract feature representation similar to that
of the original continuous data was learned in the first hidden layer.

0.238 - the lowest test error achieved (Ex. 7), improved upon on the error
for the best categorical data model found with the MLP and approaches our
previous best continuous data model score of 0.232 with the MLP. We concluded
that this was due to the DBN learning a better feature representation in its
hidden layers. This shows that a DBN with multiple-layers has great potential in
learning a feature representation from text based datasets, given that this model
was learned on only a small subset of the MAAS dataset and deep architectures
have been shown to far outperform shallow models given enough data [24].

Therefore, it can be seen that performing a grid search on: the regression
layer to find the learning rate and regularisation term; the RBM to find the
number of nodes in the first hidden layer; and the MLP to find the number of
nodes in the last hidden layer gave us a methodology for selecting a good starting
point from which to determine the best hyper-parameter configuration for our
deep network, at least in the case of a DBN.

130 J.O. Donoghue and M. Roantree

5 Related Research

In [6], the authors introduce a random search method to find the best hyper-
parameter configuration for a DL architecture and compares their results to
previous work [17] which - like our own - uses a multi-resolution grid-search
coupled with a manual optimisation intervention element. In [6], they also carry
out a series of simulation experiments where random search is compared to both
grid-search and low discrepancy sequential methods. Their main contribution
is a large series of non-simulated experiments which search for the best hyper-
parameters for a one-layer neural network and Deep Belief Network. These are
carried out on eight datasets in order to recreate and compare their experimental
results with those obtained in [17].

Random search is found to outperform grid search on all datasets in a one-
layer neural network, but for the DBN experiments, random and grid search
perform comparably on four datasets with grid search outperforming on three
datasets and random search finding the best model on the fourth dataset. In [6],
the authors offer many reasons as to why random search is a better option but
most hinge on the fact that they show that the hyper-parameter search space,
although high-dimensional, has a low effective dimensionality. This means that
although there are many parameters to tune, only a particular subset of these
have a great effect on training the model and this subset is different for every
dataset (also shown in the paper). This property leads to random search being
more effective as it leaves fewer gaps in the search space and it does not require
as many iterations in order to find the optimum hyper-parameter configuration.
We chose grid and manual search for these exploratory experiments as it was
shown to perform comparably to random search for a DBN. Both [6] and [17]
chose to globally optimise the parameters of the entire DBN at once rather than
incrementally tune its constituent parts. In other words, they do not optimise
each model first where the results of the last set of experiments feed into the
next. Contrary to an adaptive approach, which is the focus of our experiments
and methodology.

A second major issue is the analysis of high-dimensional data and feature
selection [4,5,15] which has been extensively explored in a healthcare context
[1,3,11]. In [11] and [1], both groups describe a methodology where features are
selected in a two-step manually intensive fashion in order to learn predictive mod-
els. In these two approaches for selecting a feature representation in the health
domain, shallow algorithms are utilised and high dimensional data is not encoun-
tered, where in one instance only nine features were modelled [11]. Furthermore,
sometimes relevant features were completely eliminated which impacted on the
performance of the model [1].

Finally, in the medical context, DBNs have been used for medical text classi-
fication [24], as well as to aid in medical decision making with electronic health
recordds [18], but never for the analysis of clinical trial data. Neither [24] or
[18] provide a methodology on how to choose the initial hyper-parameter con-
figuration of a deep learning architecture. Furthermore, they use third party
implementations of a DBN which do not allow for the extension with further

A Framework for Selecting Deep Learning Hyper-parameters 131

algorithms, activation functions or hyper-parameter configurations. In [24], the
authors utilise a single hidden layer in their DBN, which arguably is not a deep
architecture, although they do employ a unsupervised pre-training step.

6 Conclusions and Future Work

Long term clinical studies present a number of key issues for data miners, of
which high dimensionality, the identification of the principal features for pre-
diction and distinguishing the optimal hyper-parameter configuration are most
prevalent. To address these issues, we developed a strategy which uses a config-
urable deep network to facilitate many combinations of attributes and multiple
layers of attribute manipulation using regression, MLP, RBM and DBN models.
Our framework demonstrated the ability to improve upon a randomly selected
and tuned DBN configuration, as well the ability to configure many experimental
runs in order to test hyper-parameter configurations found with grid-search. Fur-
thermore, the MLP and DBN showed an ability to learn a feature representation
in the hidden layers as an increased predictive accuracy was found compared to
regression alone.

We are now extending our CDN to make use of: more accurate imputations
via hidden layer sampling; Gaussian hidden units for continuous data (avoid-
ing one-hot encoding); random search for hyper-parameter optimisation; and
dropconnect for improved accuracy [23].

References

1. Arauzo-Azofra, A., Aznarte, J.L., Bentez, J.M.: Empirical study of feature selection
methods based on individual feature evaluation for classification problems. Expert
Syst. Appl. 38(7), 8170–8177 (2011)

2. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Ian Goodfellow, J., Bergeron,
A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In:
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

3. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues
and guidelines. Int. J. Med. Inform. 77(2), 81–97 (2008)

4. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1),
1–127 (2009)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

7. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expres-
sion compiler. In: Proceedings of the Python for Scientific Computing Conference
(SciPy), June 2010. Oral Presentation

8. Camous, F., McCann, D., Roantree, M.: Capturing personal health data from
wearable sensors. In: International Symposium on Applications and the Internet,
SAINT 2008, pp. 153–156. IEEE (2008)

132 J.O. Donoghue and M. Roantree

9. Deckers, K., Boxtel, M.P.J., Schiepers, O.J.G., Vugt, M., Sánchez, J.L.M., Anstey,
K.J., Brayne, C., Dartigues, J.-F., Engedal, K., Kivipelto, M., et al.: Target risk
factors for dementia prevention: a systematic review and delphi consensus study on
the evidence from observational studies. Int. J.Geriatr. Psychiatry 30(3), 234–246
(2014)

10. Donnelly, N., Irving, K., Roantree, M.: Cooperation across multiple healthcare
clinics on the cloud. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol.
8460, pp. 82–88. Springer, Heidelberg (2014)

11. Fakhraei, S., Soltanian-Zadeh, H., Fotouhi, F., Elisevich, K.: Confidence in medical
decision making: application in temporal lobe epilepsy data mining. In: Proceedings
of the 2011 Workshop on Data Mining for Medicine and Healthcare, pp. 60–63.
ACM (2011)

12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 249–256 (2010)

13. Hinton, G.: A practical guide to training restricted boltzmann machines. Momen-
tum 9(1), 926 (2010)

14. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

15. Humphrey, E.J., Bello, J.P., LeCun, Y.: Feature learning and deep architectures:
new directions for music informatics. J. Intell. Inf. Syst. 41(3), 461–481 (2013)

16. van Boxtel, M.P.J., Ponds, R.H.W.M., Jolles, J., Houx, P.J.: The Maastricht
Aging Study: Determinants of Cognitive Aging. Neuropsych Publishers, Maastricht
(1995)

17. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th International Conference on Machine Learning, ICML
2007, pp. 473–480. ACM, New York, NY, USA (2007)

18. Liang, Z., Zhang, G., Huang, J.X., Hu, Q.V.: Deep learning for healthcare decision
making with EMRs. In: 2014 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 556–559. IEEE (2014)

19. Roantree, M., O’Donoghue, J., O’Kelly, N., Pierce, M., Irving, K., Van Boxtel,
M., Köhler, S.: Mapping longitudinal studies to risk factors in an ontology for
dementia. Health Inf. J., pp. 1–13 (2015)

20. Roantree, M., Shi, J., Cappellari, P., O’Connor, M.F., Whelan, M., Moyna, N.:
Data transformation and query management in personal health sensor networks.
J. Netw. Comput. Appl. 35(4), 1191–1202 (2012). Intelligent Algorithms for Data-
Centric Sensor Networks

21. Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: International Con-
ference on Artificial Intelligence and Statistics, pp. 448–455 (2009)

22. van Boxtel, M.P., Buntinx, F., Houx, P.J., Metsemakers, J.F., Knottnerus, A.,
Jolles, J.: The relation between morbidity and cognitive performance in a normal
aging population. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 53(2), 147–154 (1998)

23. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural
networks using dropconnect. In: Proceedings of the 30th International Conference
on Machine Learning, ICML-2013, pp. 1058–1066 (2013)

24. Jimeno Yepes, A., MacKinlay, A., Bedo, J., Garnavi, R., Chen, Q.: Deep belief net-
works and biomedical text categorisation. In: Australasian Language Technology
Association Workshop, p. 123 (2014)

Using Virtual Meeting Structure to Support
Summarisation

Antonios G. Nanos(&), Anne E. James, Rahat Iqbal, and
Yih-ling Hedley

Distributed Systems and Modelling Group, Faculty of Engineering
and Computing, Coventry University, Coventry CV1 5FB, UK

{nanos,a.james,r.iqbal,y.hedley}@coventry.ac.uk

Abstract. Archiving meeting transcripts in databases is not always efficient.
Users need to be able to catch up with past meetings quickly, and therefore it is
non-productive to read the full meeting transcript from scratch. A summarisation
of the meeting transcript is preferable but the lack of meeting structure may lead
to missing information. Therefore, we have introduced a virtual meeting system
that is characterised by features that provide the meeting session with structure
and a summarisation system that applies a TextRank approach on the structured
meeting transcripts. The agenda with timed items guides the conversation. Thus
the item delineation and title can be considered as the key characteristics of a
valuable summary. Results show that combining an extraction summarisation
technique with meeting structure leads to a relevant summary.

Keywords: Virtual meeting � Data model � Automatic summarisation

1 Introduction

A virtual meeting system has been developed, called V-Room [1], which makes use of
agendas with timed items and meeting roles, leading to improved topic guidance and
subsequent summarisation. The roles currently fall into four categories: the chair; the
facilitator; item leaders; and participants. Roles can always be interpreted in different
ways in order to suit different meeting protocols. For instance in the educational
domain case described in this paper, the chairman is the module leader, the facilitator is
the assistant lecturer and students are the participants. Item leaders can be any of the
participants depending on their interest in the item discussed. The agenda, items and
roles are set up as part of a pre-meeting process. This paper illustrates how the use of
such a model of meeting structure can drive automated summarisation of virtual
meeting content.

The paper is organised as follows. Section 2 briefly describes some related litera-
ture. Section 3 describes our summarisation approach. Some experimental results are
provided in Sect. 4, while Sect. 5 provides a brief conclusion and directions for future
work.

© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 133–136, 2015.
DOI: 10.1007/978-3-319-20424-6_13

2 Related Work

Extensive work has been carried out in automatic summarisation [2, 3]. The approach
adopted in V-ROOM is textual sentence extraction with meta-information added to
provide the context of the discussion. Since both context and content is provided we
consider our summarisation to be indicative and informative. The term indicative is
used to describe summaries that give heading information such as topics of discussion
and the term informative is used to describe summarisations that include the content of
the discussion rather than just the topic headings.

One of the techniques we have used for sentence extraction is TextRank, an
unsupervised method. TextRank is a graph-based algorithm [4] for ranking sentences
within a text. It achieves this by building a graph where a unit of text is represented by
a vertex and a link between two units of text is represented by an edge. A link may be
formed between two text units if the same word or phrase is used in both text units.
Links between natural language text units may be multiple (more than one word or
phrase connection occurs) or partial (part of a phrase connects but not the whole
phrase). For this reason edges are assigned weights.

A novelty of our work is the exploration of the application of summarisation
techniques such as TextRank to the area of virtual meetings and combining such
techniques with the use of an underlying data model which holds the structure of the
meeting and the roles of participants.

3 Our Summarisation Approach

The approach is based on an underlying data model representing structural aspects of the
meeting. An extract from the data model schema is shown below. The use of item titles
and other structural aspects can aid summarisation and automated minutes generation.

chat (time, meeting_id, username, message,)
user (user_id, username, password, last_ login).
item (item_id, item_title, meeting_id, item_endtime, status, leader).
meeting (meeting_id, meeting_title, starttime, endtime, chair, facilitator, status).

The messages are collected, analysed and the most important sentences are used for
the summary. A pre-processing stage ensures basic punctuation of the input text and a
post-processing stage adds meta-data to create the meeting context which helps to convey
further meaning to the summarisation (see Fig. 1). The item title is used in order to locate
and isolate sentences connected to it and then the TextRank algorithm is used in order to
return the sentences that score higher in the marking. All of the sentences receive a score
but the summary is based on the top sentences, returned in chronological order.

Pre-process
(Clean input)

Summarise
(Extract sentences)

process
(Create minutes)

Fig. 1. Stages in the Summarisation Process

134 A.G. Nanos et al.

The summary can only be extracted when the meeting has been finished, otherwise
the results will not be accurate. One of the biggest challenges is to match the item with
the corresponding text on the database [5]. Let us assume that this step has been
completed successfully. Within the summarisation component, the text is split into
sentences. Then a sparse matrix of token counts is created based on the size of the
vocabulary that has been identified by analysing the data. The matrix shows frequency
of words across sentences. The matrix is normalised by associating weights to words
depending on their importance. Then a similarity matrix is created across the sentences
and an associated weighted graph is created. From the graph, we extract the sentences
that are connected to the title based on the expectation that those sentences are more
likely to be the heart of the conversation. Then the TextRank algorithm is applied in
order to give a score to each of them with the assumption that top sentences are the most
highly connected sentences and hence most representative of the conversation. Finally,
the top sentences are returned in chronological order to maintain the flow of discussion.

4 Experimental Results

The evaluation of the summarisation system took place by examining the summari-
sation methods on a meeting transcript that we collected from a virtual meeting
between 2 members of academic staff and 9 students. We tested the system on various
meeting items using TextRank with and without reference to item title (we call these
methods TR-IT and TR-NIT respectively). The results of the test of the item entitled
“Types of Testing” is presented in Table 1. Originally the text conversation consisted
of 36 sentences and the summary configuration was set to reduce to 6 sentences. We
tested summarisation on various items and on the whole meeting without reference to
item delineation or item title.

Table 1. Extractions from summary minutes after post-processing

TextRank without Item Title
(TR-NIT)

TextRank with item title
(TR-IT)

Types of Testing
The following comments were made:
‘For V-room I think usability testing would be
most important.’ ‘Yes, black box will be but
what kind?’ ‘Yes black box or even grey box
as we will have access to both the code and
system right?’‘I have found out about white
box and black box testing.’ ‘I also think
usability testing would be good as we are
trying to develop this system so by using,
testing and finding improvement we can
develop VROOM acceptance testing.’ ‘Black
box is best for this so yes.’

Types of Testing
The following comments were made:
‘For V-room I think usability testing would be
most important.’ ‘I have found out about
white box and black box testing.’ ‘‘Black is
when the internal structure and design of a
software is not known and white is when it is
known.’‘I also think usability testing would
be good as we are trying to develop this
system so by using, testing and finding
improvement we can develop vroom
acceptance testing.’ ‘Grey box testing is
another one involves having knowledge of
internal data structures and algorithms for
purposes of designing tests.’

Using Virtual Meeting Structure to Support Summarisation 135

We found that delineation into items before applying TextRank led to better
summaries. Both summaries shown in Table 1 are indicative and informative according
to the definition given in Sect. 2. The TR-IT summary is perhaps more informative
regarding the breadth of discussion but the TR-NIT gives a better indication of the
emerging decision. For other items we found that TR-IT produced more clearly
enhanced summaries. Our findings led to the recommendation that structural features
could be used to enhance summaries. We noted that if a brief description of the item’s
purpose had been given as part of the agenda setting, further useful indicative context
could have been provided and this would enhance the summaries.

5 Conclusion and Future Work

Our initial findings show that capturing and representing meeting structure can improve
the quality of automated summaries of virtual meetings. Further evaluation is needed
however. TextRank is not the only algorithm that can be used to find the best sentences
for extraction. A future direction of exploration will be utilising the roles of the
participants within the meeting to influence sentence extraction. We also note that
additional meta-information could provide useful context. Our future work will explore
these avenues.

References

1. Thompson, P., James, A., Nanos, A.: V-ROOM: virtual meeting system trial. In: 17th IEEE
International Conference on Computer Supported Cooperative Work in Design, pp. 563–569.
IEEE press, Washington (2013)

2. Jones, K.S.: Introduction to Text Summarisation. In: Mani, I., Maybury, M. (eds.) Advances
in Automated Text Summarization. The MIT Press, Cambridge (1998)

3. Hovy, E., Lin, C., Y.: Automated text summarization and the SUMMARIST system. In:
Proceedings of a Workshop held at Baltimore, Association for Computational Linguistics,
pp. 197–214, Stroudsburg (1998)

4. Rada, M., Tarau, P., TextRank: bringing order into texts. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, Association for Computational Lin-
guistics, pp. 404–411. , Stroudsburg (2004)

5. James, A., Nanos, A., Thompson, P.: V-ROOM: A virtual meeting system with intelligent
structured summarisation. Enterprise Information Systems, doi:10.1080/17517575.2015.
1019571

136 A.G. Nanos et al.

http://dx.doi.org/10.1080/17517575.2015.1019571
http://dx.doi.org/10.1080/17517575.2015.1019571

NoSQL and Distributed Processing

NotaQL Is Not a Query Language! It’s for Data
Transformation on Wide-Column Stores

Johannes Schildgen(B) and Stefan Deßloch

University of Kaiserslautern, Kaiserslautern, Germany
{schildgen,dessloch}@cs.uni-kl.de

Abstract. It is simple to query a relational database because all
columns of the tables are known and the language SQL is easily applica-
ble. In NoSQL, there usually is no fixed schema and no query language. In
this article, we present NotaQL, a data-transformation language for wide-
column stores. NotaQL is easy to use and powerful. Many MapReduce
algorithms like filtering, grouping, aggregation and even breadth-first-
search, PageRank and other graph and text algorithms can be expressed
in two or three short lines of code.

Keywords: NoSQL · Transformation · Language · Wide-column stores

1 Motivation

Fig. 1. Person table with a children graph
and amounts of pocket money

When we take a look at NoSQL
databases1, they differ from clas-
sical relational databases in terms
of scalability, their data model and
query method. The simplest form of
such a database is a key-value store:
One can simply write and read val-
ues using a key-based access. In
this paper, we concentrate on wide-
column stores. Such a store con-
sists of tables that have one row-
id column and one or more column
families. Basically, each column family can be seen as a separate key-value
store where column names function as keys. The three most popular wide-
column stores are Google’s Big Table [2], its open-source implementation Apache
HBase2, and Cassandra3. Figure 1 shows an example table with two column
families.

At first sight, the table looks similar to a relational table. This is because
both consist of columns and these columns hold atomic values. In relational
1 http://nosql-database.org.
2 http://hbase.apache.org.
3 http://cassandra.apache.org.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 139–151, 2015.
DOI: 10.1007/978-3-319-20424-6 14

http://nosql-database.org
http://hbase.apache.org
http://cassandra.apache.org

140 J. Schildgen and S. Deßloch

databases, however, the database schema is static, i.e., all columns of a table
are known, before values are inserted or modified. In contrast, in a wide-column
store, at each insertion, one is able to set and create arbitrary columns. In other
words, the database schema does not exist, or is dynamically evolving. The first
column family information contains attributes of people. Note that different
rows can have different columns which are not predefined at table-creation time.
The second column family children models a graph structure. The names in the
columns are references to row-ids of children and the values are the amounts of
pocket money the children get from their parents. We will later use this table as
an example for all of our NotaQL transformations. Web graphs are very akin to
this example: The first column family comprises information about a web site,
while the second contains links to other web sites.

If the table in Fig. 1 was stored in HBase, one could use a Get operation
in the HBase Shell or the Java API to fetch a row with all its columns by
its row-id. In HBase, there always is an index on the row-id. Other secondary
indexes are not supported. To execute more complex queries, programmers can
utilize a framework that allows access via an SQL-like query language. The most
prominent system for that is Hive [21]; others are presented in the next section.

As an alternative, one may consider generating redundant data which then
can be accessed via simple Get operations. This approach shows similarities with
materialized views in traditional relational DBMS [7]. In [13], ideas are presented
to do selections, joins, groupings and sorts by defining transformations over the
data. The authors advocate that one does not need a query language like SQL
when the data is stored in the way it is needed at query time. If finding all
people with a specific year of birth is a frequent query, the application which
modifies data should maintain a second table whose row-id is a year of birth and
columns are foreign keys to the original row-id in the main table. As a drawback,
applications have to be modified carefully to maintain all the tables, so every
change in the base data immediately leads to many changes in different tables.
In [5], similar approaches are presented to maintain secondary indexes on HBase,
either with a dual-write strategy or by letting a MapReduce [3] job periodically
update an index table.

In this paper, we present NotaQL, a data-transformation language for wide-
column stores. Like SQL, it is easy to learn and powerful. NotaQL is made for
schema-flexible databases, there is a support for horizontal aggregations, and
metadata can be transformed to data and vice versa. Complex transformations
with filters, groupings and aggregations, as well as graph and text algorithms can
be expressed with minimal effort. The materialized output of a transformation
can be efficiently read by applications with the simple Get API.

In the following section, we present some related work. In Sect. 3, NotaQL is
introduced as a data-transformation language. We present a MapReduce-based
transformation platform in Sect. 4 and the last section concludes the article.

2 Related Work

Transformations and queries on NoSQL, relational and graph databases can
be done by using different frameworks and languages. With Clio [8], one can

NotaQL Is Not a Query Language! It’s for Data Transformation 141

perform a schema mapping from different source schemata into a target schema
using a graphical interface. Clio creates views in a semi-automatic way which
can be used to access data from all sources. This virtual integration differs from
our approach because NotaQL creates materialized views. Clio can only map
metadata to metadata and data to data. There is no possibility to translate
attribute names into values and vice versa. In [1], a copy-and-paste model is
presented to load data from different sources into a curated database. Curated
databases are similar to data warehouses, but here it is allowed to modify data
in the target system. A tree-based model is used to support operations from
SQL and XQuery as well as copying whole subtrees. The language presented in
that paper also contains provenance functions to find out by which transaction
a node was created, modified or copied. Although the language is very powerful,
it does not support aggregations, unions and duplicate elimination because in
these cases, the origin of a value is not uniquely defined.

There are many approaches to query wide-column stores using SQL, e.g.
Hive, Phoenix4 or Presto5. On the one hand, one does not need to learn a new
query language and applications which are based on relational databases can be
reused without many modifications. On the other hand, SQL is not well-suited
for wide-column stores, so the expressiveness is limited. Figure 16 at the end of
this paper shows the weak points of SQL: Transformations between metadata
and data, horizontal aggregations and much more can not be expressed with an
SQL query. Furthermore, many frameworks do not support the schema flexibility
of HBase. Before an HBase table can be queried by Hive, one has to create a
new Hive table and define how its columns are mapped to an existing HBase
table6. With Phoenix, an HBase table can be queried with SQL after defining the
columns and their types of a table with a CREATE TABLE command. Presto is an
SQL query engine by Facebook. The presto coordinator creates an execution plan
for a given query and a scheduler distributes the tasks to the nodes that are close
to the data. Usually, Presto directly accesses data that is stored in the Hadoop
distributed file system but connectors for other systems, e.g. HBase, exist as well.
The strength of Presto is a nearly full ANSI-SQL support—including joins and
window functions—and its ten times higher speed than Hive and MapReduce.
But again, only relational queries on relational tables with static schemas are
possible.

The HBase Query Language by Jaspersoft7 can be used to support more
complex queries on an HBase table. It is better suited for wide-column stores
than SQL, but not easy to use. One has to define a query as a JSON document
that can be very long, even for simple queries. The syntax of our language
NotaQL is inspired by Sawzall [19], a programming language used by Google to
define log processing tasks instead of manually writing a MapReduce job. The
input of a Sawzall script is one single line of input (e.g. a log record) and the

4 http://phoenix.apache.org.
5 http://prestodb.io.
6 https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration.
7 https://community.jaspersoft.com/wiki/jaspersoft-hbase-query-language.

http://phoenix.apache.org
http://prestodb.io
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://community.jaspersoft.com/wiki/jaspersoft-hbase-query-language

142 J. Schildgen and S. Deßloch

output are insertions into virtual tables. A Sawzall script runs as a MapReduce
job and the input and output is not an HBase table but a CSV file. The language
Pig Latin [17] provides relational-algebra-like operators to load, filter and group
data. Pig programs can be interconnected with a workflow manager like Nova
[16]. Google BigQuery [20] is the publicly-available version of Dremel [14]. One
can import and analyze data that is stored in the Google Cloud Storage using
SQL. As the data is stored in a column-oriented manner, it can be filtered
and aggregated very fast. In the paper, it is recommended to use BigQuery in
combination with MapReduce. First, MapReduce can join and pre-process data,
then this data can be analyzed using BigQuery. As NotaQL transformations are
based on MapReduce, one can replace the complex MapReduce transformations
by NotaQL scripts and combine them with fast query languages like BigQuery,
Phoenix, or HBase QL.

Graph-Processing Frameworks. The language Green-Marl [9] is used to describe
graph-analysis algorithms. Green-Marl programs are compiled into multi-thread-
ed and highly efficient C++ code. In contrast to NotaQL, Green-Marl was not
designed for graph transformations but to calculate a scalar value (e.g. diame-
ter) of the graph, to add a property to every node (e.g. PageRank, see Sect. 3.3),
or to select a subgraph of interest. Pregel [12] is a system to develop iterative
graph algorithms by exchanging messages between nodes. Every node can send
messages to its neighbors and change its properties and its state depending on
incoming messages. When there is no incoming message, a node becomes inac-
tive. When all nodes are inactive, the algorithm terminates. In PowerGraph [6],
instead of sending messages, every node computes a MapReduce job for all its
incoming edges (Gather phase) and computes a new value for a node attribute
(Apply phase). In the end, for each edge, a predicate is evaluated (Scatter phase).
If it is false for every incoming edge of a node, the node becomes inactive and
it will be skipped in the next Gather-Apply-Scatter (GAS) round. Pregel and
PowerGraph are not well-suited for graph construction and transformation.
GraphX [23] is an extension of Spark [24] and it solves this problem by introduc-
ing a Resiliant Distributed Graph (RDG) interface for graph construction, fil-
ters, transformations, mappings, updates and aggregations. GraphX algorithms
are seven times slower than PowerGraph jobs but eight times faster than native
Hadoop jobs because they use a tabular representation of the graph and a vertex-
cut partitioning over many worker nodes. As the GraphX interface is not easy to
use, it is recommended to develop one’s own API based on that interface. Pregel
and PowerGraph can be reimplemented using GraphX in twenty lines of code.
The NotaQL language is more user-friendly. We are planning to use the GraphX
interface to develop a NotaQL-based API. This makes graph processing not only
fast but also easy to develop. With Naiad [15], one can define a computation
as a dataflow graph. A vertex can send messages to other vertexes for the next
iteration which is executed in an incremental fashion. Like GraphX, it is recom-
mended not to use Naiad directly but to build libraries for higher languages on
top of it.

NotaQL Is Not a Query Language! It’s for Data Transformation 143

3 Transformations on Wide-Column Stores

In this section, we present the NotaQL language to define transformations. The
first examples can be solved with SQL as well, but later in this article, there are
graph algorithms and others which are not expressible in SQL.

3.1 Mapping of Input Cells to Output Cells

As we learned in the motivation section, each row in a wide-column store has
a unique row-id. In the following examples, we access columns independent of
their column family. If a table consists of multiple column families, their names
can be used as a prefix, e.g. information : born instead of born. Each row can
have an arbitrary number of columns and the column names are unique within
one row. The combination of row-id and column name (r, c) is called a cell.
Each cell has one atomic value, so the triple (r, c, v) represents one cell
together with its value, for example (Peter, born, 1967)8.

The basic idea of NotaQL is to define mappings between input and output
cells, or—more precisely—to specify how to construct output cells based on
the input. These mappings are executed in three steps: (1) Selection on the
input table; (2) For each row, split it into cells and perform a cell mapping; (3)
Aggregate all values for the same output cell using an aggregate function.

Figure 2 shows the identity mapping where each cell is simply copied. Here,
no row selection and no aggregation function is used.

Fig. 2. Table copy with NotaQL

When this transformation is executed, a
snapshot of the input table is analyzed row
by row. In every row, for each of its cells an
output cell will be produced with exactly the
same row-id, column name and value. So the
result of this transformation looks just like
the input. An equivalent SQL query would
be: INSERT INTO out (SELECT * FROM in). It
copies a full table. HBase comes with a backup tool CopyTable9 to solve this
problem.

When not all columns should be copied, but only the salary and born
columns, the second line in the table-copy example can be replaced by
OUT.salary <- IN.salary, OUT.born <- IN.born.

Figure 3 shows the NotaQL syntax in BNF. We will see that most algorithms
can be specified in one block containing one row and one cell specification. We
illustrate the syntax further in the following subsections. In general, a NotaQL
script can consist of many blocks to perform multiple cell mappings in one trans-
formation.
8 These triples are known as entity-attribute-value or object-attribute-value. They are

very flexible regarding the number of attributes of each entity.
9 http://blog.cloudera.com/blog/2012/06/online-hbase-backups-with-copytable-2/.

http://blog.cloudera.com/blog/2012/06/online-hbase-backups-with-copytable-2/

144 J. Schildgen and S. Deßloch

Fig. 3. NotaQL language definition (simplified)

3.2 Predicates

Fig. 4. Row predicate

Fig. 5. Cell predicate

There are two kinds of predicates in NotaQL:
a row predicate which acts as an input-row
filter to perform a row selection and a cell
predicate which selects specific cells in a row.
The row predicate is an optional filter defi-
nition placed at the beginning of a NotaQL
script using an IN-FILTER clause. If such a
predicate is set, every row in the input table
which does not satisfy it will be skipped.
That means, before a mapping is performed,
a whole row is handled as if it would not exist when the predicate is evaluated
as false. In this predicate, comparison and logical operators as well as column
names and constants can be used.

The transformation in Fig. 4 is executed as follows: Only rows that contain a
column born with a value greater than 1950 are selected. The rest of the rows are
skipped. In the remaining rows, only the column salary is read and returned.
The result is one table with only one column salary and between zero and n
rows, where n is the number of rows in the base table. The transformation is
equivalent to the SQL query SELECT salary FROM in WHERE born>1950. Some
more examples for row predicates:

– (born>1950 AND born<1960) OR cpny=‘IBM’ OR col count()>5,
– school respectively !school— checks column existence / absence in a row.

When cells should be filtered within one row without knowing their names, a
cell predicate can be used. It starts with a ? and can be placed after an IN. c
or IN. v. The transformation in Fig. 5 only copies columns with a value equal
to e5, independent of their names. The question mark indicates the begin of a
predicate so that cells are skipped which do not satisfy it. The @ symbol is used
to refer to the current cell’s value. A cell predicate can also be used to drop
columns, e.g. OUT.$(IN. c?(!name)) <- IN. v.

NotaQL Is Not a Query Language! It’s for Data Transformation 145

Fig. 6. Aggregation: AVG

Fig. 7. Corrupt NotaQL script

Fig. 8. Aggregation: SUM

SQL does not support predicates for
column existence or absence. Furthermore,
it is not possible to drop columns or
check values of columns independent from
their names. For wide-column stores these
predicates are necessary because of their
schema flexibility.

The logical execution of a NotaQL
transformation starts with splitting each
input row into its cells. After a cell map-
ping is performed, new row-ids together
with columns of an output row are col-
lected. If there is more than one value for
the same row-id/column pair, an implicit
grouping is performed and the user has to
define how the final value is aggregated
based on the single values.

A popular example query is calculating
the average salary values per company. In
SQL, this is done by grouping and aggre-
gation. Here, a row-id in the output table
should be a company name which is stored
as a value in the column cmpny. So, the
first NotaQL mapping is OUT. r <- IN.cmpny,. The output column name is set
to ‘sal avg’. For setting the value of the output cell, the salary has to be read
and summed up (see Fig. 6).

In the very first example which copies a table, the output mapping is uniquely
defined in the sense that there is a single value for each row-id/column pair.
This can be easily proven: As each input cell (r, c) is unique, each output cell
(r, c) is unique, too. Figure 7 shows a transformation where the uniqueness
is not given because different input cells can have equal values. Whenever a
transformation can produce multiple values for the very same cell (OUT. r, c),
an aggregation function must be used. The output table of the query in Fig. 8
has the same number of rows as the input table, but each row only consists
of one column (pm sum) with the sum of all column values. These horizontal
aggregations are not possible in SQL.

3.3 Graph-Processing Applications

The queries from the previous subsections are typical log-processing queries
with projection, selection, grouping, and aggregation. These operations are well
known from the relational algebra and from SQL and have been generalized
further in NotaQL for wide-column stores. But NotaQL supports more complex
computations as well. In this section, we show that graph-processing algorithms
like PageRank and breadth-first search can be implemented in NotaQL. This
illustrates the power of the simple NotaQL language and demonstrates that it

146 J. Schildgen and S. Deßloch

enables new kinds of transformations which are not possible with classical query
languages yet.

Fig. 9. Reversing a graph

Graphs are often modeled as adjacency
lists in a wide-column store. Each row rep-
resents one vertex in a graph and each col-
umn represents an edge to another vertex. If
the edges are weighted, the value of a column
contains the weight. In a relational database,
columns are part of the meta-data level of a
table. In a wide-column store, they are part
of the data level. This is why SQL is not well-suited for graph algorithms.

Reversing a Graph. A simple graph algorithm that reverses the directions of
edges in a graph can be defined by simply taking the first example Table Copy
and swapping IN. r and IN. c (see Fig. 9). When this script is executed on our
example table, it will produce a new table where for every person their parents
can be found. On a web-link graph, this script produces an inverted graph, i.e.
a list of web sites together with their incoming links. The given script can be
extended to manipulate the graph structure. In the transformation in Fig. 10,
row and cell predicates are used to remove vertices (people with less than two
children) and edges (to children receiving e10 or less).

Fig. 10. Parents of persons with
two or more children that give
more than e10 of pocket money.

PageRank. The PageRank algorithm is an iter-
ative algorithm to rank a vertex in a graph
depending on the rank of vertices pointing to it.
The full algorithm can be found in [18]. Here we
concentrate only on the most interesting part of
the PageRank formula—the random-jump fac-
tor is not relevant for our discussion and is
therefore omitted. The NotaQL script for com-
puting the PageRank is very close to its mathematical definition (see Fig. 11).

The idea is to start with a PageRank value of 1
n for each vertex (with n being

the number of vertices in the graph) and running some iterations of the formula
above until the PageRank values converge. In a wide-column store, the graph
is stored in a table with the row-id being the vertex identifier, one column PR
in the column family alg with the starting value of 1

n and one column for each
outgoing edge in the column family edges.

The fraction between the PageRank value and the outdegree of a node y can
be used as one addend of the new PageRank values of the nodes x to whom y has
an outgoing edge. In our example table, the outdegree is the number of columns

Fig. 11. The PageRank algorithm

NotaQL Is Not a Query Language! It’s for Data Transformation 147

in the column family edges. In this transformation, the input and output tables
are the same, so there are no steps needed to preserve the graph structure. The
results are only updated output cells for the column PR. An example: Nodes A
(PR: 0.1) and B (PR: 0.3) have one outgoing edge each, namely to node C. So,
C’s new PageRank value is 0.1

1 + 0.3
1 = 0.4.

Like updates in SQL, NotaQL transformations have snapshot semantics. This
means, logically the full input is read, then all cells are mapped to output cells
and at the end the output is written. So writes into the input table during job-
execution do not interfere with the remaining transformation process. For our
example, the execution framework has to decide after each execution whether
more iterations are needed or not. PageRank can be executed iteratively until
the changes of the PageRank values are below a specific accuracy value. One
approach to control the number of iterations is a change measurement after each
iteration. Depending on the amount of changes since the previous iteration, a
new run is started or the overall job terminates. Another approach is the usage
of an input format that compares the last two versions of each cell value and
ignores a row when the changes are below a threshold. Then, the job terminates
when the input is empty.

Breadth-First Search. The distance between two vertices in a graph is the number
of edges on the shortest path between them. In a weighted graph, it is the sum of
(positive) weights of those edges. Breadth-first search [11] can be used to compute
the distance from one predefined vertex V0 to every other vertex. Therefore, a
dist column is added for start vertex V0 with the value 0. For all other vertices,
the distance is ∞. This can be modeled by the absence of the dist column in
the column family alg.

The NotaQL script in Fig. 12 is executed iteratively until the result does not
change anymore. In a connected graph, the number of iterations is equal to the
diameter of the graph. In each iteration, neighbors of vertices whose distance
are known are updated.

Fig. 12. Breadth-first search

The IN-FILTER skips rows with an unknown
distance. For the others, the distance of each
neighbor vertex is set to the vertex’ own distance
plus one. If multiple vertices have an edge to the
same neighbor, the minimum value is taken. If
the algorithm should take weighted edges into
account, the 1 in the last line has to be replaced by IN. v to add the current
edge weight to the own distance.

3.4 Text Processing

Fig. 13. Word-count algorithm

We extended the NotaQL language with a split
function. It has one input parameter for a delim-
iter and it splits text values in multiple ones.
Figure 13 shows a NotaQL transformation which
counts the occurrences of each word in all input

148 J. Schildgen and S. Deßloch

cells. The output is a table where for each word (row-id) a column count holds
the number of occurrences of the word in all input cells.

With a small modification in the word-count script, one can calculate a term
index with NotaQL: OUT.$(IN. r) <- COUNT(); Here, each term row contains
a count value for each document that contains the term. These can be used to
support an efficient full-text search over large text data. In addition to these
examples, many other graph and text algorithms can be expressed in NotaQL.
For example, the computation of TF-IDF (term frequency/inverse document
frequency) is a chain of three NotaQL transformations.

4 NotaQL Transformation Platform

There are different possibilities to execute NotaQL scripts. They can be mapped
to other languages using a wrapper, the direct API to a wide-column store can be
used, or one could make use of a framework like MapReduce. In this section, we
present a MapReduce-based transformation platform with full NotaQL language
support. It is accessed via a command line interface or with a GUI. The GUI can
be used to plan, execute and monitor NotaQL transformations [4]. When writing
a NotaQL script, the tool immediately visualizes the cell mapping using arrows,
as in the figures in Sect. 3. Alternatively, the user can work just graphically by
defining arrows between cells. The GUI user can define an update period, i.e. a
time interval in which a script will be recomputed.

Fig. 14. NotaQL map function

When a transformation is started, the
input table is read row by row. Rows which
violate the row predicate are skipped. Each
remaining cell fulfilling the cell predicate
is mapped to an output cell in the way
it is defined in the NotaQL script. Cells
with the same identifier are grouped and
all its values are aggregated. We used the
Hadoop10 MapReduce framework for the exe-
cution because of its advantages for dis-
tributed computations, scalability, and fail-
ure compensation. Reading and transforming
input cells is done by the Map function, the
Hadoop framework sorts and groups the out-
put cells, and finally, the aggregation and the
write of the final output is done by the Reduce
function.

Map. The input for one Map function is one
row from the input table that consists of a row-
id and a set of columns and values. Figure 14
10 http://hadoop.apache.org.

http://hadoop.apache.org

NotaQL Is Not a Query Language! It’s for Data Transformation 149

shows how predicates are evaluated and the map output is produced. The Map-
output key is a combination of an output row-id and a column qualifier. So,
each Reduce function processes all the values for one specific cell. It is efficient
to use a Partitioner function which transfers the data directly to the node which
is responsible for storing rows with the given row-id.

Fig. 15. NotaQL reduce
function

Reduce and Combine. Figure 15 shows that the
Reduce function just produces one output cell by
aggregating all values for one column in a row. Sim-
ilar to this, a generic Combine function can aggre-
gate existing values as well. So, the network traffic
is reduced and the Reducers have to aggregate fewer
values for each cell.

Fig. 16. SQL is not well-suited for wide-column stores, 4 easy (4) hard 8 impossible

5 Conclusion

In this paper, we presented NotaQL, a transformation language for wide-column
stores that is easy to use and very powerful. With minimal effort, selections,
projections, grouping and aggregations can be defined as well as operations which
are needed in schema-flexible NoSQL databases like HBase. Each transformation
consists of a mapping between input and output cells and optional predicates.

Figure 16 shows the limits of SQL and that NotaQL supports operations
which are impossible or difficult to express in SQL. SQL is suitable for well-
defined relational schemata, but not for wide-column stores where rows can
have arbitrary columns. That’s why we introduced the NotaQL language and
we showed that it is very powerful. Not only relational operations are supported
but also graph and text algorithms. One should choose a language depending
on the given data model. No one would use SQL instead of XQuery on XML
documents and as NoSQL stands for “Not only SQL”, there is a need for new
query and transformation languages.

As the title of this paper says, NotaQL is not a query language like SQL
or XQuery. On the other hand, one can argue, there is no distinction between
a query and a transformation language. But NotaQL is specialized for trans-
formations over large tables and not for ad-hoc queries. NotaQL does not have
an API. Queries are executed periodically to perform a data transformation on

150 J. Schildgen and S. Deßloch

wide-column stores. The output table can be accessed in the application with a
primitive GET API and the up-to-dateness of the data is defined by the query-
execution interval.

We are currently working on language extensions for NotaQL to support more
complex transformations, e.g. Top-k algorithms. For faster transformations, we
are implementing an incremental component in our framework. This means, a
transformation can reuse the results from a former run and it has only to read
the delta. Currently, only standalone transformations are supported. Iterative
algorithms need to be executed through a batch script which checks a termina-
tion criterion and supervises the iterations. A language extension for iterative
transformations is planned.

Although all experiments are based on the NoSQL database system HBase,
NotaQL scripts can be defined on other wide-column stores and other NoSQL
and relational databases as well. Next, we will apply our findings to Cassandra
because the support of secondary indexes in Cassandra enables better optimiza-
tions for NotaQL computations. Our vision is for cross-platform transformations.
Then, the input and output of a NotaQL transformation can be any data source
from a relational or NoSQL database. So, one can transform a CSV log file into
an HBase table, load a graph from HypergraphDB into MySQL or integrate data
from Cassandra and a key-value store into MongoDB.

References

1. Buneman, P., Cheney, J.: A copy-and-paste model for provenance in curated data-
bases. Notes 123, 6512 (2005)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 1–14 (2008). Article 4

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

4. Emde, M.: GUI und testumgebung für die HBase-schematransformationssprache
NotaQL. Bachelor’s thesis, Kaiserslautern University (2014)

5. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media, Sebastopol
(2011)

6. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: OSDI, vol. 12, p. 2 (2012)

7. Gupta, A., Jagadish, H.V., Mumick, I.S.: Data integration using self-maintainable
views. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 140–144. Springer, Heidelberg (1996)

8. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema
mapping. ACM SIGMOD Rec. 30(2), 607 (2001)

9. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-marl: a DSL for easy and
efficient graph analysis. ACM SIGARCH Comput. Archit. News 40(1), 349–362
(2012)

10. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: SchemaSQL-a language for
interoperability in relational multi-database systems. In: VLDB, vol. 96, pp. 239–
250 (1996)

NotaQL Is Not a Query Language! It’s for Data Transformation 151

11. Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Synth. Lect.
Hum. Lang. Technol. 3(1), 1–177 (2010)

12. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, pp.
135–146. ACM (2010)

13. Grinev, M.: Do You Really Need SQL to Do It All in Cassandra? (2010). http://
wp.me/pZn7Z-o

14. Sergey, M., Andrey, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M.,
Vassilakis, T.: Dremel: interactive analysis of web-scale datasets. Commun. ACM
54(6), 114–123 (2011)

15. Murray, D.G., Sherry, F.M.C., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 439–455. ACM (2013)

16. Olston, C., Chiou, G., Chitnis, L., Liu, F., Han, Y., Larsson, M., Neumann, A., Rao,
V.B.N., Sankarasubramanian, V., Seth, S., et al.: Nova: continuous pig/hadoop
workflows. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pp. 1081–1090. ACM (2011)

17. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report 1999–66, Stanford InfoLab, November
1999. Previous number = SIDL-WP-1999-0120

19. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel
analysis with sawzall. Sci. Program. 13(4), 277–298 (2005)

20. Sato, K.: An inside look at google bigquery. White paper (2012). https://cloud.
google.com/files/BigQueryTechnicalWP.pdf

21. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

22. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM
Trans. Database Syst. (TODS) 30(2), 624–660 (2005)

23. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient distributed
graph system on spark. In: First International Workshop on Graph Data Manage-
ment Experiences and Systems, p. 2. ACM (2013)

24. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

http://wp.me/pZn7Z-o
http://wp.me/pZn7Z-o
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf

NoSQL Approach to Large Scale Analysis
of Persisted Streams

Khalid Mahmood(&), Thanh Truong, and Tore Risch

Department of Information Technology, Uppsala University,
75237 Uppsala, Sweden

{khalid.mahmood,thanh.truong,tore.risch}@it.uu.se

Abstract. A potential problem for persisting large volume of streaming logs
with conventional relational databases is that loading large volume of data logs
produced at high rates is not fast enough due to the strong consistency model
and high cost of indexing. As a possible alternative, state-of-the-art NoSQL data
stores that sacrifice transactional consistency to achieve higher performance and
scalability can be utilized. In this paper, we describe the challenges in large scale
persisting and analysis of numerical streaming logs. We propose to develop a
benchmark comparing relational databases with state-of-the-art NoSQL data
stores to persist and analyze numerical logs. The benchmark will investigate to
what degree a state-of-the-art NoSQL data store can achieve high performance
persisting and large-scale analysis of data logs. The benchmark will serve as
basis for investigating query processing and indexing of large-scale numerical
logs.

Keywords: NoSQl data stores � Numerical stream logs � Data stream archival

1 Introduction

The data rate and volume of streams of measurements can become very high. This
becomes a bottleneck when using relational databases for large-scale analysis of
streaming logs [1–4]. Persisting large volumes of streaming data at high rates requires
high performance bulk-loading of data into a database before analysis. The loading
time for relational databases may be time consuming due to full transactional consis-
tency [5] and high cost of indexing [6]. In contrast to relational DBMSs, NoSQL data
stores are designed to perform simple tasks with high scalability [7]. For providing high
performance updates and bulk-loading, NoSQL data stores generally sacrifice strong
consistency by providing so called eventual consistency compared with the ACID
transactions of regular DBMSs. Therefore, NoSQL data stores could be utilized for
analysis of streams of numerical logs where full transactional consistency is not
required.

Unlike NoSQL data stores, relational databases provide advanced query languages
and optimization technique for scalable analytics. It has been demonstrated in [8] that
indexing is a major factor for providing scalable performance, giving relational dat-
abases a performance advantage compared to a NoSQL data store to speed up the
analytical task. Like relational databases, some state-of-the-art NoSQL data stores

© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 152–156, 2015.
DOI: 10.1007/978-3-319-20424-6_15

(e.g. MongoDB), also provide a query language and both primary and secondary
indexing, which should be well suited for analyzing persisted streams.

To understand how well NoSQL data stores are suited for persisting and analyzing
numerical stream logs, we propose to develop a benchmark comparing state-of-the-art
relational databases with state-of-the-art NoSQL data stores. Using the benchmark as
test bed, we will then investigate techniques for scalable query processing and indexing
of numerical streams persisted with NoSQL data stores.

2 Application Scenario

The Smart Vortex EU project [1] serves as a real world application context, which
involves analyzing stream logs from industrial equipment. In the scenario, a factory
operates some machines and each machine has several sensors that measure various
physical properties like power consumption, pressure, temperature, etc. For each
machine, the sensors generate logs of measurements, where each log record has
timestamp ts, machine identifier m, sensor identifier s, and a measured value mv.
Relational databases are used to analyze the logs by bulk-loading them in table
measures (m, s, ts, mv) which contains a large volume of data logs from many sensors
of different machines [3, 4].

Since the incoming sensor streams can be very large in volume, it is important that
the measurements are bulk-loaded fast. After stream logs have been loaded into the
database, the user can perform queries to detect anomalies of sensor readings. The
following query analyzes the values of mv from sensor logs for a given time interval
and parameterized threshold.

In order to provide scalable performance of the query, we need an index on the
composite key of m, s, ts and a secondary B-tree index on mv.

3 Challenges in Analyzing Large Scale Persisted Streams

Analysis of large-scale stream logs in the above application scenario poses the follow-
ing challenges (C1 to C6) in utilizing relational and NoSQL data stores.

C1. Bulk-Loading: In relational DBMSs, the high cost of maintaining the indexes and
full transactional consistency can degrade the bulk-loading performance of large vol-
ume of data logs. The loading performance of a relational DBMS from a major
commercial vendor, called DB-C and a popular open source relational database, called
DB-O for 6 GB of data logs is shown in Fig. 1. It took more than 1 h in a high
performance commodity machine for the state-of-the-art commercial DBMS, DB-C to
bulk-load data logs consisting of around 111 million sensor measurements. Some of the
data logs consist of more than a billion sensor measurements, which require high-
performance bulk-loading. To boost up the performance, weak consistency level of a
NoSQL or relational database can be utilized.

NoSQL Approach to Large Scale Analysis of Persisted Streams 153

C2. Index Size: Fig. 2 shows the index and database sizes for 6 GB of stream logs
loaded into the two DBMSs. The size of the index created in both relational DBMSs
was larger than the size of the original logs. For high performance and scalable analysis
of typical stream logs, hundreds of gigabytes of memory is required in our application.
It is interesting to see whether the state-of-the-art NoSQL data store can provide
memory efficient indexing strategies. Novel indexing techniques can also be incor-
porated in order to provide a memory efficient indexing for analyzing persisted streams.

C3. Indexing Strategies: Unlike relational databases and MongoDB, most NoSQL
data stores do not provide both primary and secondary indexing, which are essential to
scalable processing of queries over data logs. Some NoSQL data stores such as Hbase,
Cassandra, Memcached, Voldemort, and Riak do not provide full secondary indexing,
which is needed for queries having inequalities over non-key attributes. CouchDB has
secondary index, but queries have to be written as map-reduce views [7], not trans-
parently utilizing indexes.

C4. Query Processing: Unlike relational databases, most NoSQL data stores do not
provide a query optimizer. Some NoSQL data stores, e.g. MongoDB, provide a query
language that is able to transparently utilize indexes. However, the sophistication of
query optimizer still needs to be investigated for scalable analysis of data logs.

C5. Advanced Analytics: Relational DBMS features for advanced analytics such as
joins or numerical expressions is limited in NoSQL data stores. Therefore, it needs to
be investigated how advanced numerical analytics over large-scale data logs could be
performed by NoSQL data stores.

C6. Parallelization of Data: NoSQL data stores have the ability to distribute data over
many machines, which can provide parallel query execution. However, typical queries
for analyzing data logs can generate lots of intermediate results that need to be
transferred over the network between nodes, which can be a performance bottleneck.
Therefore, the performance of both horizontal and vertical partitioning of distributed
NoSQL data stores can be investigated for query execution over numerical logs.

4 Proposed Work

There are several investigations that can be performed for large-scale analysis of
numerical stream logs.

22,105

3,882

0

15,000

30,000

0 2 4 6 8

Lo
ad

 T
im

e
(s

)

DB size (GB)

DB-O
DB-C

Fig. 1. Bulk-loading performance of 6 GB
logs

11.4 7.5

6.3
7.5

0.0

10.0

20.0

DB-O DB-C

Si
ze

 (G
B)

Data Stores

Index
Data

Fig. 2. Index and database size of 6 GB of logs

154 K. Mahmood et al.

Stream Log Analysis Benchmark: Typical TPC benchmarks [9] such as TPC-C,
TPC-DS, and TPC-H are targeted towards OLTP or decision support, not for log
analysis. To benchmark data stream management systems, the Linear Road Benchmark
(LRB) [10] is typically used. However, LRB does not include the performance of
persisted streams. Analysis of large-scale data logs often requires scalable queries (e.g.
[3, 4]) over persisted numerical logs, which should be the focus the benchmark. In the
benchmark, several state-of-the-art NoSQL data stores should be compared with
relational DBMSs to investigate at what degree NoSQL data stores are suitable for
persisting and analyzing large scale numerical data streams. The performance of bulk-
loading capacities of the databases w.r.t. indexing and relaxed consistency should be
investigated in the benchmark. The queries should be fundamental to log analyses and
targeted to discover the efficiency of query processing and utilization of primary and
secondary index of the data logs. The benchmark should analyze and compare the
performance differences of loading with relaxed consistency, index utilization, and
query execution for both NoSQL and relational databases, which can provide the
important insights into challenges C1, C3, C4, and C6.

Query Processing: Supporting advanced analytics using a complete query language
with a NoSQL data store requires the development of query processing techniques to
compensate for the limitation of the NoSQL query languages, for example lack of join
and numerical operators. The push-down of query operators as generated parallel server
side scripts should be investigated. Furthermore, it should be investigated how domain
indexing strategies [11] in a main memory client-side database (e.g. Amos II [12]
developed at UDBL of Uppsala University and [13]) can improve performance of
numerical data log analyses of data retrieved from back-end NoSQL databases. These
can provide the insights of the challenges C2 and C5.

References

1. Smart Vortex Project. http://www.smartvortex.eu/
2. Zeitler, E., Risch, T.: Massive scale-out of expensive continuous queries. In: VLDB (2011)
3. Truong, T., Risch, T.: Scalable numerical queries by algebraic inequality Transformations.

In: DASFAA (2014)
4. Zhu, M., Stefanova, S., Truong, T., Risch, T.: Scalable numerical SPARQL queries over

relational databases. In: LWDM Workshop (2014)
5. Doppelhammer, J., Höppler, T., Kemper, A., Kossmann, D.: Database performance in the

real world. In: SIGMOD (1997)
6. Stonebraker, M.: SQL databases v. NoSQL databases. Comm. ACM. 53(4), 10–11 (2010)
7. Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39, 12–27 (2011)
8. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., Dewitt, D.J., Madden, S., Stonebraker, M.:

A Comparison of approaches to large-scale data analysis. In: SIGMOD (2009)
9. Council, T.P.P.: TPC Benchmarks. http://www.tpc.org/information/benchmarks.asp
10. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stonebraker,

M., Tibbetts, R.: Linear road: a stream data management benchmark. In: VLDB (2004)
11. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30, 47–91

(1998)

NoSQL Approach to Large Scale Analysis of Persisted Streams 155

http://www.smartvortex.eu/
http://www.tpc.org/information/benchmarks.asp

12. Risch, T., Josifovski, V., Katchaounov, T.: Functional data integration in a distributed
mediator system. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.)
The Functional Approach to Data Management. Springer, Heidelberg (2004)

13. Freedman, C., Ismert, E., Larson, P.-Å.: Compilation in the microsoft SQL server hekaton
engine. IEEE Data Eng. Bull. 37, 22–30 (2014)

156 K. Mahmood et al.

Horizontal Fragmentation and Replication
for Multiple Relaxation Attributes

Lena Wiese(B)

Institute of Computer Science, University of Göttingen,
Goldschmidtstraße 7, 37077 Göttingen, Germany

lena.wiese@uni-goettingen.de

Abstract. The data replication problem (DRP) describes the task of
distributing copies of data records (that is, database fragments) among
a set of servers in a distributed database system. For the application of
flexible query answering, several fragments can be overlapping (in terms
of tuples in a database table). In this paper, we provide a formulation of
the DRP for horizontal fragmentations with overlapping fragments; sub-
sequently we devise a recovery procedure based on these fragmentations.

Keywords: Bin packing problem with conflicts (BPPC) · Data repli-
cation problem (DRP) · Distributed database · Fragmentation · Integer
linear programming (ILP)

1 Introduction

When storing large-scale data sets in distributed database systems, these data
sets are usually fragmented (that is, partitioned) into smaller subsets and these
subsets are distributed over several database servers. Moreover, to achieve better
availability and failure tolerance, copies of the data sets (the so-called replicas)
are created and stored in a distributed fashion so that different replicas of the
same data set reside on distinct servers.

In addition to technical requirements of data distribution, intelligent query
answering mechanisms are increasingly important to find relevant answers to
user queries. Flexible (or cooperative) query answering systems help users of a
database system find answers related to his original query in case the original
query cannot be answered exactly. Semantic techniques rely on taxonomies (or
ontologies) to replace some values in a query by others that are closely related
according to the taxonomy. This can be achieved by techniques of query relax-
ation – and in particular query generalization: the user query is rewritten into
a weaker, more general version to also allow related answers.

In this paper we make the following contributions:

– instead of fixing a single relaxation attribute we allow multiple relaxation
attributes which lead to several different fragmentations in which fragments
from different fragmentations may share common tuples (they “overlap”);

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 157–169, 2015.
DOI: 10.1007/978-3-319-20424-6 16

158 L. Wiese

– we devise an m-copy replication scheme for the fragments ensuring the repli-
cation factor m by storing overlapping fragments on distinct servers;

– we state the replication problem as an optimization problem minimizing the
number of occupied servers;

– we describe a recovery procedure for this kind of replication.

1.1 Organisation of the Article

Section 2 introduces the main notions used in this article and gives an illustra-
tive example. Section 3 defines the problem of data replication with overlapping
fragments addressed in this article. Section 4 describes replication and recovery
in a practical system. Related work is presented in Sects. 5 and 6 concludes this
article with suggestions for future work.

2 Background and Example

We provide background on query generalization, fragmentation and replication.

2.1 Query Generalization

Query generalization has long been studied in flexible query answering [8].
Query generalization at runtime has been implemented in the CoopQA sys-
tem [5] by applying three generalization operators to a conjunctive query. Anti-
Instantiation (AI) is one query generalization operator that replaces a constant
(or a variable occurring at least twice) in a query with a new variable y. In
this paper we focus on replacements of constants because this allows for finding
answers that are semantically close to the replaced constant. As the query lan-
guage we focus on conjunctive queries expressed as logical formulas. We assume
a logical language L consisting of a finite set of predicate symbols (denoting
the table names; for example, Ill, Treat or P), a possibly infinite set dom of
constant symbols (denoting the values in table cells; for example, Mary or a),
and an infinite set of variables (x or y). A term is either a constant or a variable.
The capital letter X denotes a vector of variables; if the order of variables in
X does not matter, we identify X with the set of its variables and apply set
operators – for example we write y ∈ X.

A query formula Q is a conjunction (denoted ∧) of literals (consisting of a
predicate and terms) with a set of variables X occurring freely; hence we write
a query as Q(X) = Li1 ∧ . . .∧Lin . The Anti-Instantiation (AI) operator chooses
a constant a in a query Q(X), replaces one occurrence of a by a new variable y
and returns the query QAI(X, y) as the relaxed query. The relaxed query QAI

is a deductive generalization of Q (see [5]).
As a running example, we consider a hospital information system that stores

illnesses and treatments of patients as well as their personal information (like
address and age) in the following three database tables:

Horizontal Fragmentation and Replication 159

The query Q(x1, x2, x3) = Ill(x1,Flu)∧ Ill(x1,Cough)∧ Info(x1, x2, x3) asks
for all the patient IDs x1 as well as names x2 and addresses x3 of patients
that suffer from both flu and cough. This query fails with the given database
tables as there is no patient with both flu and cough. However, the querying
user might instead be interested in the patient called Mary who is ill with both
flu and asthma. We can find this informative answer by relaxing the query con-
dition Cough and instead allowing other related values (like Asthma) in the
answers. An example generalization with AI is QAI(x1, x2, x3, y) = Ill(x1,Flu)∧
Ill(x1, y) ∧ Info(x1, x2, x3) by introducing the new variable y. It results in an
non-empty (and hence informative) answer: Ill(2748,Flu) ∧ Ill(2748,Asthma) ∧
Info(2748,Mary ,‘New Str 3 ,Newtown’). Another answer obtained is the fact
that Mary suffers from a broken leg as: Ill(2748,Flu) ∧ Ill(2748, brokenLeg) ∧
Info(2748,Mary ,‘New Str 3 ,Newtown’) which is however an overgeneralization.

2.2 Clustering-Based Fragmentation

Query generalization at runtime is highly inefficient. That is why we propose a
clustering-based fragmentation that preprocesses data into fragments of closely
related values (with respect to a relaxation attribute). This clustering-based
fragmentation has two main advantages:

– it enables efficient query relaxation at runtime by returning all values in a
matching fragment as relevant answers.

– it reduces the amount of servers contacted during query answering in a distrib-
uted environment because only one server (containing the matching fragment)
has to process the query while other servers can process other queries.

Here we need semantic guidance to identify the set of relevant answers that are
close enough to the original query. In previous work [12], a clustering procedure
was applied to partition the original tables into fragments based on a single
relaxation attribute chosen for anti-instantiation. For this we used a notion of
similarity between to constants; this similarity can be deduced with the help of
an ontology or taxonomy in which the values are put into relation. Finding the
fragments is hence achieved by grouping (that is, clustering) the values of the
respective table column into clusters of closely related values and then splitting
the table into fragments according to the clusters found. For example, clusters
on the Diagnosis column can be made by differentiating between fractures on
the one hand and respiratory diseases on the other hand. These clusters then
lead to two fragments of the table Ill that could be assigned to two different
servers:

160 L. Wiese

Server 1 can then be used to answer queries related to respiratory diseases
while Server 2 can process queries related to fractures. The example query
Q(x1, x2, x3) = Ill(x1,Flu)∧Ill(x1,Cough)∧Info(x1, x2, x3) will then be rewrit-
ten as QResp(x1, x2, x3, y) = Respiratory(x1,Flu) ∧ Respiratory(x1,Cough) ∧
Info(x1, x2, x3) and redirected to Server 1 where only the fragment Respiratory
is used to answer the query. In this way only the informative answer containing
asthma is returned – while the one containing broken leg will not be generated.

2.3 Data Distribution as a Bin Packing Problem

In a distributed database system data records have to be assigned to different
servers. The data distribution problem – however not considering replication
yet – is basically a Bin Packing Problem (BPP) in the following sense:

– K servers correspond to K bins
– bins have a maximum capacity W
– n data records correspond to n objects
– each object has a weight (a capacity consumption) wi ≤ W
– objects have to be placed into a minimum number of bins without exceeding

the maximum capacity W

This BPP can be written as an integer linear program (ILP) as follows – where
xik is a binary variable that denotes whether fragment/object i is placed in
server/bin k; and yk denotes that server/bin k is used (that is, is non-empty).
Moreover, each server/bin has a maximum capacity W and each fragment/object
i has a weight wi that denotes how much capacity the item consumes. As a simple
example, W can express how many rows (tuples) a server can store and wi is
the row count of fragment i.

minimize
K∑

k=1

yk (minimize number of bins) (1)

s.t.

K∑

k=1

xik = 1, i = 1, . . . , n (each object assigned to one bin) (2)

n∑

i=1

wixik ≤ Wyk, k = 1, . . . ,K (capacity not exceeded) (3)

yk ∈ {0, 1}k = 1, . . . ,K (4)
xik ∈ {0, 1}k = 1, . . . ,K,i = 1, . . . , n (5)

Horizontal Fragmentation and Replication 161

An extension of the basic BPP, the Bin Packing with Conflicts (BPPC)
problem, considers a conflict graph G = (V,E) where the node set V = {1, . . . , n}
corresponds to the set of objects. A binary edge e = (i, j) exists whenever the two
objects i and j must not be placed into the same bin. In the ILP representation,
a further constraint (Eq. 9) is added to avoid conflicts in the placements.

minimize
K∑

k=1

yk (minimize number of bins) (6)

s.t.

K∑

k=1

xik = 1, i = 1, . . . , n (each object assigned to one bin) (7)

n∑

i=1

wixik ≤ Wyk, k = 1, . . . , K (capacity not exceeded) (8)

xik + xjk ≤ yk k = 1, . . . , K, ∀(i, j) ∈ E (no conflicts) (9)
yk ∈ {0, 1} k = 1, . . . , K (10)

xik ∈ {0, 1} k = 1, . . . , K, i = 1, . . . , n (11)

Several results were obtained regarding hardness and approximation of bin
packing with conflicts. BPPC can basically be regarded as a combination of a
vertex coloring and the basic BPP: first of all, compute a coloring of the conflict
graph such that items of different color cannot be placed in the same bin, then
solve one classical BPP instance for each color.

3 Overlaps and Multiple Relaxation Attributes

So far, for the taxonomy-based clustering approach only a single relaxation
attribute has been considered in [12]. There it is proposed that, when doing
m-way replication, simply m copies of the fragments obtained for the single
relaxation attribute are replicated; this corresponds to solving a BPPC instance
where the conflict graph states that copies of the same fragment cannot be placed
on the same server. In this paper we want to generalize this procedure to multiple
relaxation attributes. This has the following advantages:

– The system can answer queries for several relaxation attributes.
– The intelligent replication procedure reduces storage consumption and hence

the amount of servers that are needed for replication.

In order to support flexible query answering on multiple columns, one table can
be fragmented multiple times (by clustering different columns); that is, we can
choose more than one relaxation attribute. In this case, several fragmentations
will be obtained. More formally, if α relaxation attributes are chosen and clus-
tered, then we obtain α fragmentations Fl (l = 1 . . . α) of the same table; each
fragmentation contains fragments fl,s where index s depends on the number of
clusters found: if nl clusters are found, then Fl = {fl,1, . . . , fl,nl

}.

162 L. Wiese

For example, clusters on the Diagnosis column can be made by differenti-
ating between fractures on the one hand and respiratory diseases on the other
hand. And additionally, clusters on the patient ID can be obtained by dividing
into rows with ID smaller than 5000 and those with ID larger than 5000.

We assume that each of the clusterings (and hence the corresponding frag-
mentation) is complete: every value in the column is assigned to one cluster and
hence every tuple is assigned to one fragment. We also assume that each cluster-
ing and each fragmentation are non-redundant: every value is assigned to exactly
one cluster and every tuple belongs to exactly one fragment (for one clustering);
in other words, the fragments inside one fragmentation do not overlap.

However, fragments from two different fragmentations (for two different clus-
terings) may overlap. For example, both the Respiratory as well as the IDhigh
fragments contain the tuple 〈8457, Cough〉. Due to completeness, every tuple
is contained in exactly one of the fragments of each of the α fragmentations:
for any tuple j, if α relaxation attributes are chosen and clustered, then in any
fragmentation Fl (l = 1 . . . α) there is a fragment fl,s such that tuple j ∈ fl,s.

3.1 Data Replication for Overlapping Fragments

The main contribution of this paper is to analyze intelligent data replication
schemes with multiple relaxation attributes while at the same time minimizing
the amount of data copies – and hence reducing overall storage consumption of
the underlying flexible query answering system. The approach is as follows:

– Apply the above clustering heuristics to any of the α relaxation attributes.
– Based on each clustering obtain a complete fragmentation of the given table.
– Fragments of different fragmentations (for different clusterings) overlap.
– Ensure replication factor m for tuples by considering these overlaps in BPPC.

While in the standard BPP and BPPC representations usually disjoint fragments
and exactly m copies are considered, we extend the basic BPPC as follows:

Conjecture 1. With our intelligent replication procedure, less data copies (only
m copies of each tuple) have to be replicated hence reducing the amount of
storage needed for replication as opposed to conventional replication approaches
that replicate m copies for each of the α fragmentations Fl (which results in αm
copies of each tuple).

Horizontal Fragmentation and Replication 163

We argue that m copies of a tuple suffice with an advanced recovery pro-
cedure: that is, for every tuple j we require that it is stored at m different
servers for backup purposes but these copies of j may be contained in different
fragments: one fragmentation Fl can be recovered from fragments in any other
fragmentation F ′

l (where l �= l′). From here on we assume that there are exactly
m relaxation attributes (that is, α = m); in case there are less than m relax-
ation attributes, some of the existing fragmentations are simply duplicated; in
case there are more than m relaxation attributes, the remaining fragmentations
can be stored on arbitrary servers. We hence consider the following problem:

Definition 1 (Data Replication Problem with Overlapping Fragments
(Overlap-DRP)). Given m fragmentations Fl = {fl,1, . . . , fl,nl

} and replica-
tion factor m, for every tuple j there must be fragments fl,il (where 1 ≤ l ≤ m
and 1 ≤ il ≤ nl) such that j ∈ f1,i1 ∩ . . . ∩ fα,im and these fragments are all
assigned to different servers.

We illustrate this with our example. Assume that 5 rows is the maximum capac-
ity W of each server and assume a replication factor 2. In a conventional repli-
cation approach, all fragments are of approximately the same size and do not
overlap. Hence, the conventional approach would replicate all fragments (Respi-
ratory, Fracture, IDhigh, IDlow) to two servers each. then assign the Respiratory
fragment (with 4 rows) to one server S1 and a copy of it to another server S2.
Now the Fracture fragment (with 2 rows) will not fit on any of the two servers;
its two replicas will be stored on two new servers S3 and S4. For storing the
IDlow fragment (with 4 rows), the conventional approach would need two more
servers S5 and S6. The IDhigh fragment (with 2 rows) could then be mapped to
servers S3 and S4. The conventional replication approach would hence require
at least six servers to achieve a replication factor 2.

In contrast, our intelligent replication approach takes advantage of the over-
lapping fragments so that three servers suffice to fulfill the replication factor
2; that is, the amount of servers can be substantially reduced if a more intelli-
gent replication and recovery scheme is used that respects the fact that several
fragments overlap and that can handle fragments of differing size to optimally
fill remaining server capacities. This allows for better self-configuration capac-
ities of the distributed database system. First we observe how one fragment
can be recovered from the other fragments: Fragment Respiratory can be recov-
ered from fragments IDlow and IDhigh (because Respiratory = (IDlow ∩ Res-
piratory) ∪ (IDhigh ∩ Respiratory)); Fragment Fracture can be recovered from
fragment IDlow (because Fracture = (IDlow ∩ Fracture)); Fragment IDlow can
be recovered from fragments Respiratory and Fracture (because IDlow = (IDlow
∩ Respiratory) ∪ (IDlow ∩ Fracture)); Fragment IDhigh can be recovered from
fragment Respiratory (because IDhigh = (IDhigh ∩ Respiratory)). Hence, we can
store fragment Respiratory on server S1, fragment IDlow on server S2, and frag-
ments Fracture and IDhigh on server S3 and still have replication factor 2 for
individual tuples.

164 L. Wiese

We now show that our replication problem (with its extensions to overlapping
fragments and counting replication based on tuples) can be expressed as an
advanced BPPC problem. Let J be the amount of tuples in the input table, m
be the number of fragmentations, K the total number of available servers and
n be the overall number of fragments obtained in all fragmentations. In the ILP
representation we keep the variables yk for the bins and xik for fragments – to
simplify notation we assume that i = 1 . . . n where n = |F1| + . . . + |Fm| = n1 +
. . . + nm: all fragments are numbered consecutively from 1 to n even when they
come from different fragmentations. In addition, we introduce K new variables
zjk for each the tuple j such that zjk = 1 if the tuple j is placed on server k;
we maintain a mapping between fragments and tuples such that if fragment i is
assigned to bin k, and j is contained in i, then tuple j is also assigned to k (see
Eq. (15)); the other way round, if there is no fragment i containing j and being
assigned to bin k, then tuple j neither is assigned to k (see Eq. (16)); and we
modify the conflict constraint to support the replication factor: we require that
for each tuple j the amount of bins/servers used is at least m (see Eq. (17)) to
ensure the replication factor.

minimize
K∑

k=1

yk (minimize number of bins) (12)

s.t.
K∑

k=1

xik = 1, i = 1, . . . , n (each fragment i assigned to one bin) (13)

n∑

i=1

wixik ≤ Wyk, k = 1, . . . ,K (capacity not exceeded) (14)

zjk ≥ xik for all j : j ∈ i (tuple j in bin when fragment i is) (15)

zjk ≤
∑

(i:j∈i)

xik for all j (tuple not in bin when no fragment is)(16)

K∑

k=1

zjk ≥ m for all j (replication factor m on tuples) (17)

yk ∈ {0, 1} k = 1, . . . ,K (18)
xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (19)
zjk ∈ {0, 1} k = 1, . . . ,K, j = 1, . . . , J (20)

This ILP will find a valid solution to overlap-DRP.

3.2 Reducing the Amount of Variables

The ILP representation in the previous section is highly inefficient and does
not scale to large amounts of tuples: due to the excessive use of z-variables,

Horizontal Fragmentation and Replication 165

for large J finding a solution will take prohibitively long. Indeed, in the given
representation, we have K y-variables, n · K x-variables, and J · K z-variables
where usually J � n. That is why we want to show now that it is possible to
focus on the x-variables to achieve another ILP representation for overlap-DRP:
for any tuple j such that j is contained in two fragments i and i′ (we assume
that i < i′ to avoid isomorphic statements in the proof), it is sufficient to ensure
that the two fragments are stored on two different servers. In other words, for
the (m · (m − 1))/2 pairs of overlapping fragments i and i′, we can make them
mutually exclusive in the ILP representation; that is, in the ILP representation
we have to satisfy (m · (m − 1))/2 equalities of the form xik + xi′k = 1 to make
them pairwise conflicting.

Theorem 1. If for any two fragments i and i′ such that i ∩ i′ �= ∅ there hold
(m ·(m−1))/2 equations of the form xik +xi′k = 1 where i < i′, i = 1, . . . , n−1,
i′ = 2, . . . , n and k = 1, . . . , K, then it holds for any tuple j that

∑K
k=1 zjk ≥ m.

Proof. First of all, for every tuple j there are m fragments i such that j ∈ i due
to completeness of the m fragmentations. Now we let I be the set of these m
fragments. Then for any two i, i′ ∈ I we have j ∈ i ∩ i′ by construction. Due to
Eq. (13), for every i ∈ I there must be exactly one bin k such that xik = 1 and
for all other i∗ it holds that either xik + xi∗k = 1 (if i < i∗) or xi∗k + xik = 1 (if
i∗ < i) so that none of these fragments is assigned to bin k. Hence, m bins are
needed to accommodate all fragments in I. Due to Eq. (15), we assure that when
xik = 1 then also zjk = 1 for the given j and any i ∈ I. Hence

∑K
k=1 zjk ≥ m

(Eq. 17) holds.

Instead of considering all individual tuples j, we can now move on to considering
only overlapping fragments (with non-empty intersections) and requiring the (m·
(m−1))/2 equations to hold for each pair of overlapping fragments. We transform
the previous ILP representation into the one that enforces a conflict condition
for any two overlapping fragments. This coincides with the conventional BPPC
representation, where the conflict graph is built over the set of fragments (as the
vertex set) by drawing an edge between any two fragments that overlap.

Definition 2 (Conflict Graph for Overlap-DRP). The conflict graph
GDRP = (V,E) is defined by V = F1 ∪ . . . ∪ Fm (one vertex for each frag-
ment inside the m fragmentations) and E = {(i, i′) | i, i′ ∈ V and i∩ i′ �= ∅} (an
undirected edge between fragments that overlap).

Continuing our example, we have a conflict graph over the fragments Respiratory,
Fracture, IDlow and IDhigh with an edge between Respiratory and IDlow, and
an edge between Respiratory and IDhigh, and an edge between Fracture and

166 L. Wiese

IDhigh. The ILP representation for overlap-DRP looks now as follows:

minimize
K∑

k=1

yk (minimize number of bins) (21)

s.t.
K∑

k=1

xik = 1, i = 1, . . . , n (each fragment i assigned to one bin) (22)

n∑

i=1

wixik ≤ Wyk, k = 1, . . . ,K (capacity not exceeded) (23)

xik + xi′k ≤ yk k = 1, . . . ,K, i ∩ i′ �= ∅ (overlapping fragments i, i′) (24)
yk ∈ {0, 1} k = 1, . . . ,K (25)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (26)

4 Experimental Study

Our prototype implementation – the OntQA-Replica system – runs on a dis-
tributed SAP HANA installation which is an in-memory database system and
hence needs a good replication strategy that also reduces the amount of servers
needed. The example data set consists of a table that resembles a medical health
record and is based on the set of Medical Subject Headings (MeSH [11]). The
table contains as columns an artificial, sequential tuple ID, a random patient ID,
and a disease chosen from the MeSH data set as well as the concept identifier
of the MeSH entry. We varied the table sizes during our test runs. The small-
est table consists 56,341 rows, a medium-sized table of 1,802,912 rows and the
largest of 14,423,296 rows. A clustering is executed on the MeSH data based on
the concept identifier (which orders the MeSH terms in a tree); in other words,
entries from the same subconcept belong to the same cluster. One fragmentation
(the “clustered” fragmentation) was obtained from this clustering and consists
of 117 fragments; these fragments have a column called clusterid. Another frag-
mentation (the “range-based” fragmentation) is based on ranges of the patient
ID and consists of 6 fragments for the small table, 19 for the medium-sized table
and 145 for the large table; these fragments have a column called rangeid.

For the replication procedure, first the overlapping fragments (the “con-
flicts”) are identified by using SELECT DISTINCT clusterid, rangeid FROM ci

JOIN ci ON (rj .tupleid= rj .tupleid) for each clustered fragment ci and
each range-based fragment rj .

Afterwards from the conflicts the overlap-DRP ILP is generated and solved.
For the small table, the input had 1820 constraints on 1240 variables; for the
medium-sized table, the input had 5720 constraints on 1370 variables; for the
large table, the input had 43520 constraints on 2630 variables. Based on the ILP
solution, the fragments are moved to different servers by using ALTER TABLE ci

MOVE TO ‘severname’ PHYSICAL.

Horizontal Fragmentation and Replication 167

To enable recovery, a lookup table is maintained that stores for each clusterid
the tupleids of those tuples that constitute the clustered fragment. The recov-
ery procedure was executed on the range-based fragmentation to recover the
clustered fragmentation by running INSERT INTO ci SELECT * FROM r1, . . . , rm

JOIN lookup on (lookup.tupleid = ci.tupleid) WHERE lookup.clusterid= i
for each cluster i. The runtimes obtained are shown in Fig. 1.

Fig. 1. Runtimes of replication computation and recovery

5 Related Work

There is a long history of fragmentation approaches for the relational data
model. Most approaches consider workload-aware fragmentation (see for exam-
ple, [1,4,9]) that optimize distribution of data for a given workload of queries.
However none of these approaches consider semantical similarity of values inside
a fragment as is needed for our approach of query relaxation.

Bin packing is one of the classical NP-complete problems and it has been
shown to be APX-hard (it is not approximable with a ratio less than 1.5; see
[6]). As BPP is a special case of the more general BPPC, these properties carry
over to BPPC as well. Some variants of classical bin packing have been surveyed
in [2]. One of the primary sources of BPPC is [6]. However, as the number of
fragments we consider in our overlap-DRP is comparably low, these complexity
theoretic considerations usually do not affect the practical implementation and
any off-the-shelf ILP solver will find an optimal solution.

There is also related work on specifying resource management problems as
optimization problems. An adaptive solution for data replication using a genetic
algorithm is presented in [7]; they also consider transfer cost of replicas between
servers. Virtual machine placement is a very recent topic in cloud computing
[3,10]. However, these specifications do not address the problem of overlapping
resources as we need for the query relaxation approach in this article.

168 L. Wiese

6 Conclusion and Future Work

We presented and analyzed a data replication problem for a flexible query
answering system. It provides related answers by relaxing the original query and
obtaining a set of semantically close answers. The proposed replication scheme
allows for fast response times due to materializing the fragmentations. By solving
an ILP representation of the data replication problem, we minimize the overall
number of servers used for replication. In this paper the focus lies on support-
ing multiple relaxation attributes that lead to multiple fragmentations of the
same table. A minimization of the number of servers is due to the fact that one
fragmentation can be recovered from other fragmentations based on overlapping
fragments. The experimental evaluation shows sensible performance results.

Future work has to mainly address dynamic changes in the replication
scheme. Deletions and insertions of data lead to changing fragmentations sizes
and hence an adaptation of the server allocations might become necessary (simi-
lar to [7]). The use of adaptive methods will be studied where (a large part of) a
previous solution might be reused to obtain a new solution. Another approach is
to compute the common subfragments (intersections) of overlapping fragments
and use these subfragments as a unit of replication. Copies of these subfragments
will hence be distributed among the servers.

Acknowledgements. The author gratefully acknowledges that the infrastructure and
SAP HANA installation for the test runs was provided by the Future SOC Lab of Hasso
Plattner Institute (HPI), Potsdam.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partition-
ing into automated physical database design. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pp. 359–370. ACM
(2004)

2. Coffman, Jr., E.G., Csirik, J., Leung, J.Y.T.: Variants of classical one-dimensional
bin packing. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and
Meta-Heuristics, pp. 33:1–33:10. Francis and Taylor Books (CRC Press), London
(2007)

3. Goudarzi, H., Pedram, M.: Energy-efficient virtual machine replication and place-
ment in a cloud computing system. In: IEEE 5th International Conference on Cloud
Computing (CLOUD), pp. 750–757. IEEE (2012)

4. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. Proc. VLDB Endow. 4(2), 105–116
(2010)

5. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L.
(eds.) FQAS 2011. LNCS, vol. 7022, pp. 1–12. Springer, Heidelberg (2011)

6. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling.
Inf. Comput. 132(2), 85–108 (1997)

Horizontal Fragmentation and Replication 169

7. Loukopoulos, T., Ahmad, I.: Static and adaptive distributed data replication using
genetic algorithms. J. Parallel Distrib. Comput. 64(11), 1270–1285 (2004)

8. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell.
20(2), 111–161 (1983)

9. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer
Science & Business Media, NewYork (2011)

10. Shi, W., Hong, B.: Towards profitable virtual machine placement in the data center.
In: Fourth IEEE International Conference on Utility and Cloud Computing (UCC),
pp. 138–145. IEEE (2011)

11. U.S. National Library of Medicine: Medical subject headings. http://www.nlm.nih.
gov/mesh/

12. Wiese, L.: Clustering-based fragmentation and data replication for flexible query
answering in distributed databases. J. Cloud Comput. 3(1), 1–15 (2014)

http://www.nlm.nih.gov/mesh/
http://www.nlm.nih.gov/mesh/

Scalability

Scalable Queries Over Log
Database Collections

Minpeng Zhu, Khalid Mahmood, and Tore Risch(&)

Department of Information Technology, Uppsala University,
75237 Uppsala, Sweden

{minpeng.zhu,khalid.mahmood,tore.risch}@it.uu.se

Abstract. Various business application scenarios need to analyse the working
status of products, e.g. to discover abnormal machine behaviours from logged
sensor readings. The geographic locations of machines are often widely dis-
tributed and have measurements of logged sensor readings stored locally in
autonomous relational databases, here called log databases, where they can
be analysed through queries. A global meta-database is required to describe
machines, sensors, measurements, etc. Queries to the log databases can be
expressed in terms of these meta-data. FLOQ (Fused LOg database Query
processor) enables queries searching collections of distributed log databases
combined through a common meta-database. To speed up queries combining
meta-data with distributed logged sensor readings, sub-queries to the log dat-
abases should be run in parallel. We propose two new strategies using standard
database APIs to join meta-data with data retrieved from distributed autonomous
log databases. The performance of the strategies is empirically compared with a
state-of-the-art previous strategy to join autonomous databases. A cost model is
used to predict the efficiency of each strategy and guide the experiments.
We show that the proposed strategies substantially improve the query perfor-
mance when the size of selected meta-data or the number of log databases are
increased.

1 Introduction

Various business applications need to observe the working status of products in order
to analyse their proper behaviours. Our application is from a real-world scenario [11],
where machines such as trucks, pumps, kilns, etc. are widely distributed at different
geographic locations and where sensors on machines produce large volumes of data.
The data describes time stamped sensor readings of machine components (e.g. oil
temperature and pressure) and can be used to analyse abnormal behaviours of the
equipment. In order to analyse passed behaviour of monitored equipment, the sensor
readings can be stored in relational databases and analysed with SQL. In our appli-
cation area, data is produced and maintained locally at many different sites in auton-
omous relational DBMSs called log databases. New sites and log databases are
dynamically added and removed from the federation. The number of sites is potentially
large, so it is important that the query processing scales with increasing number of sites.
A global meta-database enables a global view of the working status of all machines on
different sites. It stores meta-data about machines, sensors, sites, etc.

© Springer International Publishing Switzerland 2015
S. Maneth (Eds.): BICOD 2015, LNCS 9147, pp. 173–185, 2015.
DOI: 10.1007/978-3-319-20424-6_17

A particular challenge in our scenario is a scalable way to process queries that join
meta-data with data selected from the collection of autonomous log databases using
standard DBMS APIs. This paper proposes two strategies to perform such joins,
namely parallel bind-join (PBJ) and parallel bulk-load join (PBLJ). PBJ generalizes
the bind-join (BJ) [4] operator, which is a state-of-the-art algorithm for joining data
from an autonomous external database with a central database. One problem with bind-
join in our scenario is that large numbers of SQL queries will be sent to the log
databases for execution, one for each parameter combination selected from the meta-
database, which is slow. Furthermore, whereas bind-join is well suited for joining data
from a single log database with the meta-database, our application scenario requires
joining data from many sites.

With both PBJ and PBLJ, streams of selected meta-data variable bindings are
distributed to the wrapped log databases and processed there in parallel. After the
parallel processing the result streams are merged asynchronously by FLOQ.

• With PBJ the streams of bindings selected from the meta-database are bind-joined
in the distributed wrappers with their encapsulated log databases. The bind-joins of
different wrapped log databases are executed in parallel.

• With PBLJ the selected bindings are first bulk loaded in parallel into a binding table
in each log database where a regular join is performed between the loaded bindings
and the local measurements.

The strategies are implemented in our prototype system called FLOQ (Fused LOg
database Query processor). FLOQ provides general query processing over collections
of autonomous relational log databases residing on different sites. The collection of log
databases is integrated by FLOQ through a meta-database where properties about data
in the log databases are stored. On each site the log database is encapsulated by a
FLOQ wrapper to pre- and post-process queries.

To investigate our strategies, a cost model is proposed to evaluate the efficiency of
each strategy. To evaluate the performance we define fundamental queries for detecting
abnormal sensor readings and investigate the impact of our join strategies. A relational
DBMS from a major commercial vendor is used for storing the log databases.

In summary the contributions are:

• Two join strategies are proposed and compared: parallel bind-join a parallel bulk-
load join, for parallel execution of queries joining meta-data with data from col-
lections of autonomous databases using external DBMS APIs.

• A cost model is proposed to evaluate the strategies.
• The conclusions from the cost model are verified experimentally.

The rest of this paper is organized as follows: Sect. 2 overviews the FLOQ system
architecture and presents the scenario and queries used for the performance evaluation.
Section 3 presents the join strategies and the cost model used in the evaluation.
Section 4 presents the performance evaluation for the join strategies. Section 5
describes related work. Finally, Sect. 6 concludes and outlines some future work.

174 M. Zhu et al.

2 FLOQ

Figure 1 illustrates the FLOQ architecture. To analyse machine behaviours, the user
sends queries over the integrated log databases to FLOQ. FLOQ processes a query by
first querying the meta-database to find the identifiers of the queried log databases
containing the desired data, then in parallel sending distributed queries to the log
databases, and finally collecting and merging the distributed query results to obtain the
final result. Scalable parallel processing of queries making joins between a meta-
database and many large log databases is the subject of this paper.

Each log database is encapsulated with a FLOQ wrapper called from the FLOQ
server to process queries over the wrapped log database. A FLOQ wrapper contains a
full query processor which enables, e.g. local bind-joins between a stream of bindings
selected from the meta-database and the log database. Parallel processing is provided
since the FLOQ wrappers work independently of each other. Each FLOQ wrapper
sends back to the FLOQ server the result of executing a query as a stream of tuples.
The results from many wrappers are asynchronously merged by the FLOQ server
while emitting the result to the user. Details of the query processor are described in
[10, 13, 14] and are outside the scope of this paper.

2.1 The FLOQ Schema

The schema for the FLOQmeta-database is shown in Fig. 2(a). The tableMachineModel
(m, mmn, descr, mmanuf) stores data about machine models, i.e. a unique ma-chine
model identifier m, along with its name mmn, description descr, and manufacturer
mmanuf. The tableMachineInstallation(mi, m, sid) stores meta-data about each machine
installation, i.e. a unique machine installation identifier mi, its installed site sid and its
machine model identifier m (foreign key). The table SensorModel(sm, sname, smanuf)
stores information about sensor models, i.e. a unique sensor model identifier sm, the
sensor model name sname, and its manufacturer smanuf. The table SensorInstallation

Log databases
..............

Query

Meta-database

RDB RDB RDB

FLOQ wrapper FLOQ wrapper FLOQ wrapper

FLOQ server

Fig. 1. FLOQ system architecture

Scalable Queries Over Log Database Collections 175

(si, mi, sm, ev) stores the sensor installation information, i.e. a sensor installation
identifier si, the machine installation mi of si, the sensor model sm, and the expected
measured value ev. The columns m and sid in table MachineInstallation are foreign
keys in tables MachineModel and Site, respectively. The column mi in table Sensor-
Installation is foreign key to MachineInstallation.

The table Site(sid, name, logdb) stores information about the sites where the log
databases are located: a numeric site identifier sid, its name, and an identifier of its log
database, logdb. A new log database is registered to FLOQ by inserting a new row in
table Site. Each site presents to FLOQ its log data as a temporal local relationMeasures
(mi, si, bt, et, mv) (Fig. 2(b)) representing measurements from the sensors installed on
the machines at the site, i.e. temporal local-as-view [5] data integration is used. For a
machine installation mi at a particular site the local view presents the measured
readings from sensor installation si in the valid time interval [bt,et). The columns mi
and si in Measures are foreign keys from the corresponding columns in the meta-
database tables MachineInstallation and SensorInstallation, respectively.

The view VMeasures (Fig. 2(c)) in FLOQ integrates the collection of log databases.
It is logically a union-all of the local Measures views at the different sites. In VMea-
sures the attribute logdb identifies the origin of each tuple. Through the meta-database
users can make queries over the log databases by joining other meta-data with
VMeasures. Since the set of log databases is dynamic it is not feasible to define
VMeasures as a static view; instead FLOQ processes queries to VMeasures by
dynamically submitting SQL queries to the log databases and collecting the results. In
the experiments we populate the meta-database and the log databases with data from a
real-world application [11].

2.2 Example Queries

Q1 in Fig. 3 is a simple query that retrieves unexpected sensor readings. It returns
machine identifiers mi together with the time intervals [bt,et) when a sensor on the
machine has measured values mv higher than the expected values ev by a threshold
parameter th on line 5 marked ‘?’.

Query Q1 is used for the basic scalability experiments. It contains a simple
numerical expression over the log database view in terms of th. On line 6 there is a
constraint on the selected machine identifiers mi and on line 10 the selected sites sid are

Fig. 2. (a). Meta-database schema. (b) Log table at each site. (c) Integrated view in FLOQ server

176 M. Zhu et al.

restricted. The experiments are scaled by varying these parameters. The number of log
databases is varied by restricting sid, the amount of data selected from each log
database is varied by th, and the number of bindings selected from the meta-database is
varied by mi.

Query Q2 in Fig. 4 is similar to Q1, the difference being that it applies an aggregate
function over Q1, i.e. it computes the number of faulty sensor readings. Here only a
single value is returned from each log database. The purpose of the query is to
investigate the join strategies without concerning the overhead of transferring sub-
stantial amounts of data back to the client.

Query Q3 in Fig. 5 is an example of a more complex numerical query for identi-
fying machine failures. It detects situations where the relative deviation of sensor
readings from ev is larger than a threshold parameter we denote rth. One property of Q3
is that the query optimizer of the used DBMS cannot utilize an ordered index on the
measured value mv, so the entire local table Measures on each site will be scanned
entirely. This query thus has a high query execution cost for searching the log
databases.

Query Q4 in Fig. 6 is a manually transformed version of Q3 to expose the index
column mv of Measures table for query optimizer of the DBMS for scalable search.
Here all parameter occurrences in the query (marked?) refer to the supplied value of
rth. FLOQ automatically makes this algebraic transformation by utilizing the algorithm
in [12]. The difference between Q3 and Q4 shows the trade-off between full scan and
index scan in the log databases enabled by the rewrite. Q3 is an expensive query
compared to Q4.

Fig. 3. Query Q1 Fig. 4. Query Q2

Fig. 5. Query Q3 Fig. 6. Transformed Q3

Scalable Queries Over Log Database Collections 177

3 Join Strategies

The two strategies, PBJ and PBLJ, for parallel execution of queries joining data
between the meta-database and the log databases are illustrated in Figs. 7 and 8,
respectively. With both strategies FLOQ first extracts parameter bindings from the
meta-database. The result is a stream of tuples is called the binding stream B where
each tuple (i, v1, v2, …, vp) is a parameter binding. The elements v1, v2, …, vp of the
binding stream are the values of the free variables in the query fragment sent to the log
databases. For example, in Q1 the free variables are (mi, si, ev). Each binding tuple is
prefixed with a destination site, i, identifying where the log database RDBi resides. The
parameter binding tuples are joined with measurements in the log databases. Thus the
binding stream is split into one site binding stream Bi per log database RDBi, B = B1 [
B2 … [Bn, where n is the number of sites. The destination i determines to which site
the rest of the tuple (v1, v2, …, vp), is routed. The join strategies are defined as follows:

PBJ, parallel bind-join: PBJ (Fig. 7) is a generalization of bind-join [4] to handle
parallel execution between a common meta-database and a collection of wrapped
relational databases RDBi. On each site i the tuples in the binding stream Bi received by
a FLOQ wrapper is bind joined (BJ) with the query σi sent to the database RDBi

through parameterized (prepared) JDBC calls. The tuples in the result stream Ri from
the JDBC calls are then streamed back to the FLOQ server, where they are merged
asynchronously with the result tuples from other sites. With PBJ, a parameterized query
is executed many times in each wrapped log database, once for each parameter binding
in Bi.

PBLJ, parallel bulk-load join: With PBLJ (Fig. 8) each FLOQ wrapper first bulk
loads the entire binding stream Bi into a binding table in RDBi. When all parameter
bindings have been loaded, the system submits a single SQL query to the log database
to join the loaded binding table with σi. As for PBJ, the result stream Ri is shipped back

Fig. 7. PBJ Fig. 8. PBLJ

178 M. Zhu et al.

to the FLOQ server through the wrapper for asynchronous merging. Compared to PBJ,
the advantage of this approach is that only one query is sent to each log database. It
requires the extra step of bulk loading in parallel the entire parameter streams into each
log database, which, however, should be less costly compared to calling many prepared
SQL statements through JDBC with PBJ. The bulk loading facility of the DBMS is
utilized for high performance.

BJ, regular bind-join: If there is a single log database, PBJ is analogous to BJ and is a
baseline in our evaluations. With BJ one prepared SQL query per binding is shipped
from the FLOQ wrapper to only one log database, RDB1.

3.1 Cost Model for Join Strategies

The total cost in terms of response times of the proposed join strategies is divided
between the cost of execution in the FLOQ server CFLOQ and the maximum site cost Ci.

CJoin ¼ CFLOQ þ maxðfCi : i ¼ 1; . . .; ngÞ ð1Þ

The total cost of the FLOQ server execution is approximately divided between two
major components, which are the cost of splitting the binding stream B, Cs, and the cost
of merging all result streams Ri, Cm. The cost of the FLOQ server execution is inde-
pendent of any join strategies, i.e.:

CFLOQ ¼ Cs þ Cm ð2Þ

The variables used in analysing cost models are described in Table 1.

The total site cost Ci is approximately divided between four major cost components:
(i) transferring the binding stream Bi from the FLOQ server to the site, CBi , (ii) exe-
cuting i in the log database, Cri , (iii) local join either in RDBi (for PBLJ)

Table 1. Variables used in the cost model

Scalable Queries Over Log Database Collections 179

or in the FLOQ wrapper (for PBJ), and (iv) transferring the result stream Ri to
the FLOQ server, CRi . Thus the total site cost Ci is defined as:

ð3Þ
By combining Eqs. (1), (2), and (3), the total cost of a distributed join becomes:

ð4Þ
For each site, the binding stream Bi is significantly smaller than the number of

logged measurements in RDBi:

Bij j � MeasuresðRDBiÞj j ð5Þ

For PBJ, the bind-join is performed in each FLOQ wrapper, therefore, the cost of a
local join can be replaced with the cost of a bind-join in the wrapper, .
Also the cost of executing the sub-query σi that selects data from a log database, Cri , is
replaced with the BJ selection cost, CWrapper

ri , in the site cost in (3):

ð6Þ
In PBLJ the joins and selections are combined into one sub-query to each RDBi.

Therefore, the cost of andCri in the site cost in Eq. (3) for PBLJ can be r-
eplaced with the cost of join and selection in the log database
(andCLogDB

ri):

ð7Þ
In PBJ, the FLOQ server transfers the binding stream Bi to a FLOQ wrapper

through the standard network protocol. Therefore, the cost of transferring bindings to
each site, CPBJ

Bi
, is the aggregated network communication overhead for each

binding, CNet.

CPBJ
Bi

¼ Bij j � CNet;where Bij j � 1 ð8Þ

In PBLJ all the bindings Bi are bulk-loaded directly into the log database. The cost
of sending all bindings to site i,CPBLJ

Bi
; is the cost of bulk loading the bindings,

CBulkloadi .

CPBLJ
Bi

¼ CBulkloadi ð9Þ

Obviously, the cost of bulk-loading in PBLJ CBulkloadi is insignificant compared to
sending large numbers of bindings to prepared SQL statements in PBJ:

CBulkloadi\\ Bij j � CNet; where Bij j � 1; therefore,

CPBLJ
Bi

�CPBJ
Bi

ð10Þ

180 M. Zhu et al.

On the other hand, the selection cost of PBLJ is also low compared to PBJ since the
cost of selection performed by RDBi is lower than the combined cost of selection and
JDBC overhead for each binding b of a binding stream Bi:

CLogDB
ri

� Bij j � ðCrb þ CJDBCÞ; where b 2 Bi and Bij j � 1; therefore: ð11Þ

CLogDB
ri

�CWrapper
ri

ð12Þ

Similarly, a local join in the relational DBMS is efficient compared to the join
performed in a FLOQ wrapper since query optimization techniques can be applied
inside a relational DBMS where the overhead JDBC calls are eliminated. Thus,

ð13Þ
From Eqs. (10), (12), and (13), the total cost at site i for the three components,

transferring bindings (CBi), selection (Cri), and join () are lower for PBLJ than for
PBJ. The cost CRi of transferring the result streams Ri to the FLOQ server is equal for
both PBLJ and PBJ, therefore, comparing (6) and (7):

CPBLJ
i �CPBJ

i ð14Þ

From Eq. (1), as the cost of the execution at the FLOQ server CFLOQ is equal for
both PBJ and PBLJ, by combing Eqs. (1) and (14) it can be stated that the overall cost
of join in PBLJ is lower than PBJ:

CPBLJ �CPBJ ð15Þ

3.2 Discussion

According to Eq. (15), PBLJ should always outperform PBJ in every experiment when
Bij j � 1. Equation (8) and (11) suggest that PBLJ will perform increasingly better than
PBJ when scaling the number of bindings Bij j. It is evident from Eq. (4) that, inde-
pendent the chosen join strategy, when the size of the result stream Rij j is large, the
tuple transfer cost (CRi) will be a major dominating component in the cost model.
Therefore, the performance trade-offs between respective join strategies, are more
significant when the number of tuples returned from the log database is small.

To conclude, according to the cost model, the performance evaluation should be
investigated by (i) varying the number of tuples returned from the sites, (ii) scaling the
number of sites, and (iii) scaling the number of bindings from the meta-database.

4 Performance Evaluation

We compared the performance of the join strategies PBJ and PBLJ based on the queries
Q1, Q2, Q3, and Q4. In our real-world application each log database had more than
250 million measurements from sensor readings, occupying 10 GB of raw data.

Scalable Queries Over Log Database Collections 181

The following scalability experiments were performed on six PCs (with 4 processors and
8 GB main memory) running Windows 7 while: (i) scaling the number of result tuples |
Ri|; (ii) scaling the number of sites, n; and (iii) scaling the number of bindings |Bi|.

Scaling the number of result tuples
Figure 9(a) shows the execution times of Q1 for the two join strategies over a single

log database, while scaling the number of result tuples |R| by adjusting th. As expected
from Eq. (12), PBLJ performs better than PBJ. Since there is only one site, PBJ is
equivalent to BJ.

Figure 9(b) compares the performance of Q1 for six log databases while scaling |R|.
As expected PBLJ scales better than PBJ. However, as more tuples are returned from
the log databases the network overhead is becoming a major dominating factor, making
the performance difference of the join strategies insignificant. Notice that the number of
returned tuples remains the same for both strategies; thus the network overhead is
equal. However, PBLJ will always perform better (even with a small fraction) than PBJ
since other overhead is larger for PBJ.

Figure 10 compares PBJ and PBLJ for Q3 and Q4 for six log databases. Q3 is an
example of a slow numerical query requiring a full scan of Measures, whereas Q4 is
faster since it exposes the index on Measures.mv for query Q3. It is evident from

(a) (b)

Fig. 9. Q1 (a) with one log database and (b) with six log databases

(a) (b)

Fig. 10. Execution time for Q3 and Q4 with six log databases

182 M. Zhu et al.

Fig. 10 that PBLJ performs better than PBJ for both query Q3 and Q4. Figure 10(b)
shows the performance improvement due to index utilization compared to sequential
scan in Q3.

To conclude, PBLJ performs better than PBJ when the number of returned tuples is
increased, as also indicated by Eq. (15) of the cost model.

Scaling the number of log databases
Figure 11 compares PBJ and PBLJ for Q1 when scaling the number of log dat-

abases. In Figs. 11(a) and (b) the total number of tuples returned from a single log
database |Ri| is 1 K and 295 K, respectively. Notice that the total number of tuples
returned |R| in each figure is multiplied with the fixed |Ri| from each log database.

In Fig. 11(a) |R| is small, so the performance difference between PBJ and PBLJ is
dominating over the network cost, while in Fig. 11(b) the higher network cost makes
the difference less significant.

In summary, the overall performance of PBLJ is always better while scaling
number of log databases compared to PBJ.

Scaling the number of bindings
This experiment investigates the performance of PBJ and PBLJ while varying the

number of bindings |Bi| from the meta-database. Figure 12 shows the execution times
for Q1 and Q2 for PBJ and PBLJ for a single log database.

From Fig. 12(a) it is evident that PBLJ performs significantly better while scaling
|Bi|. The reason is that in PBJ, the FLOQ wrapper is performing |Bi| bind-joins, so the
overhead of the JDBC calls is multiplied with |Bi|. In all experiments the extra time for
the bulk loading was less than 50 ms irrespective of number of bindings |Bi|. This
makes it insignificant for this small number of bindings relative to the size of the log
databases. This confirms Eqs. (8) and (11) of the cost model that PBJ will not scale
compared to PBLJ when increasing the number of bindings. The experimental results
of query Q2 that returns a single tuple per site are shown in Fig. 12(b). The reason of
the better scalability of PBLJ than for Q1 is because the network communication
overhead CRi in Eq. (4) is negligible since only one tuple is returned from each site.

(a) 1k tuples from each database (b) 295k tuples from each database

Fig. 11. Execution time for Q1 varying number of log databases and selectivity

Scalable Queries Over Log Database Collections 183

In all experiments, the PBLJ join strategy performs better than PBJ, in particular
while scaling the number of bindings |Bi|. This confirms Eq. (15) in the cost model. The
performance improvement is more significant when the number of tuples returned from
each log database is low.

5 Related Work

Bind-join was presented in [4] as a method to join data from external databases [7]. We
generalized bind-join to process in parallel parameterized queries to dynamic collec-
tions of autonomous log databases. Furthermore we showed that our bulk-load join
method scales better in our setting.

In Google Fusion Tables [3] left outer joins are used to combine relational views of
web pages, while [6] uses adaptive methods to join data from external data sources. In
[9] the selection of autonomous data sources to join is based on market mechanisms.
Our case is different because we investigate strategies to join meta-data with data from
dynamic collections of log databases without joining the data sources themselves.

Vertical partitioning and indexing of fact tables in monolithic data warehouses is
investigated in [1]. One can regard our VMeasures view as a horizontally partitioned
fact table. A major difference to data warehouse techniques is that we are integrating
data from dynamic collections of autonomous log databases, rather than scalable
processing of queries to data uploaded to a central data warehouse.

In [2] the problem of making views of many autonomous data warehouses is
investigated. The databases are joined using very large SQL queries joining many
external databases. Rather than integrating external databases by huge SQL queries, our
strategies are based on simple queries over a view (VMeasures) of dynamic collections
of external databases, i.e. the local-as-view approach [5].

A classical optimization strategy used in distributed databases [8] is to cost different
shipping alternatives of data between non-autonomous data servers before joining
them. By contrast, we investigate using standard DBMS APIs (JDBC and bulk load) to
make multi-database joins of meta-data with dynamic sets of autonomous log databases
using local-as-view.

(a) (b)

Fig. 12. Execution time for Q1 and Q2

184 M. Zhu et al.

6 Conclusions

Two join strategies were proposed for parallel execution of queries joining meta-data
with data from autonomous log databases using standard DBMS APIs: parallel bind-
join (PBJ) and parallel bulk-load join (PBLJ). For the performance evaluation we
defined typical fundamental queries and investigated the impact of our join strategies.
A cost model was used to guide and evaluate the efficiency of the strategies. The
experimental results validated the cost model. In general, PBLJ performs better than
PBJ when the number of bindings from the meta-database is increased.

In the experiments a rather small set of autonomous log databases were used. Further
investigations should evaluate the impact of having very large number of log databases
and different strategies to improve communication overheads, e.g. by compression.

Acknowledgments. This work is supported by EU FP7 project Smart Vortex and the Swedish
Foundation for Strategic Research under contract RIT08-0041.

References

1. Datta, A., VanderMeer, D.E., Ramamritham, K.: Parallel star join + dataindexes: efficient
query processing in data warehouses and OLAP. J. IEEE TKDE 14(6), 1299–1316 (2002)

2. Dieu, N., Dragusanu, A., Fabret, F., Llirbat, F., Simon, E.: 1,000 tables inside the from.
J. ACM VLDB 2(2), 1450–1461 (2009)

3. Garcia-Molina, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W.: Google fusion tables: data management, integration and collaboration in the
cloud. In: SoCC, pp. 175–180 (2010)

4. Haas, L., Kossmann, D., Wimmers, E., Yang, J: Optimizing queries across diverse data
source. In: VLDB, pp. 276–285 (1997)

5. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: VLDB, pp. 9–16
(2006)

6. Ives, G., Halevy, A., Weld, D.: Adapting to source properties in processing data integration
queries. In: SIGMOD, pp. 395–406 (2004)

7. Josifovski, V., Schwarz, P., Haas, L., Lin, E.: Garlic: a new flavor of federated query
processing for DB2. In: SIGMOD, pp. 524–532 (2002)

8. Kossmann, D.: The state of the art in distributed query processing. J. ACM Comput. Surv.
32(4), 422–469 (2000)

9. Pentaris, F., Ioannidis, Y.: Query optimization in distributed networks of autonomous
database systems. J. ACM Trans. Database Syst. 31(2), 537–583 (2006)

10. Risch, T., Josifovski, V.: Distributed data integration by object-oriented mediator servers.
J. Concurrency Comput. Pract. Experience 13(11), 933–953 (2001)

11. Smart Vortex Project. http://www.smartvortex.eu/
12. Truong, T., Risch, T.: Scalable numerical queries by algebraic inequality transformations.

In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B.
(eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp. 95–109. Springer, Heidelberg (2014)

13. Zhu, M., Risch, T.: Querying combined cloud-based and relational databases. In: CSC,
pp. 330–335 (2011)

14. Zhu, M., Stefanova, S., Truong, T., Risch, T.: Scalable numerical SPARQL queries over
relational databases. In: LWDM Workshop, pp. 257–262 (2014)

Scalable Queries Over Log Database Collections 185

http://www.smartvortex.eu/

ECST – Extended Context-Free Straight-Line
Tree Grammars

Stefan Böttcher, Rita Hartel(&), Thomas Jacobs, and Markus Jeromin

Computer Science, University of Paderborn, Fürstenallee 11,
33102 Paderborn, Germany

{stb,rst}@uni-paderborn.de,

{tjacobs,mjeromin}@mail.uni-paderborn.de

Abstract. Grammar-based compressors like e.g. CluX [1], BPLEX [2], Tree-
RePAIR [3] transform an XML tree X into a context-free straight-line linear tree
(CSLT) grammar G and yield strong compression ratios compared to other
classes of XML-specific compressors. However, CSLT grammars have the
disadvantage that simulating on G update operations like inserting, deleting, or
re-labeling a node V of X requires to isolate the path from X’s root to V from all
the paths represented by G. Usually, this leads to an increased redundancy
within G, as grammar rules are copied and modified, but the original and the
modified grammar rules often differ only slightly. In this paper, we propose
extended context-free straight-line tree (ECST) grammars that allow reducing
the redundancy created by path isolation. Furthermore, we show how to query
and how to update ECST compressed grammars.

Keywords: Updating compressed XML data � Grammar-based compression

1 Introduction

1.1 Motivation

XML is a widely used, but verbose data exchange and data transmission standard. In
order to reduce the volume and costs involved in storage and transmission of verbose
XML data, a variety of structure-based XML compression technologies to reduce the
size of the structural part of XML documents have been developed. They range from
the compression of an XML tree into a directed acyclic graph (DAG) (e.g. [4]) to the
compression into a context-free straight-line linear tree (CSLT) grammar (e.g. CluX [1],
BPLEX [2], TreeRePAIR [3]). Out of these, compression into a CSLT grammar yields
the most strongly compressed still queryable and updateable data format.

While DAG compression shares identical XML subtrees, i.e., repeated occurrences
of a subtree are replaced with a reference to the subtree, CSLT grammar-based com-
pression additionally shares similar subtrees having an identical connected fragment of
nodes. The identical connected fragment of nodes is represented by a CSLT grammar
rule, and different parts of similar subtrees are represented by parameters. However, a
CSLT grammar rule can only represent a connected fragment of nodes, such that
similar subtrees that differ in an inner node or an inner fragment cannot be shared by a
single CSLT grammar rule. Our extension ECST overcomes this limitation.

© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 186–198, 2015.
DOI: 10.1007/978-3-319-20424-6_18

As a consequence, update operations modifying just one of the shared subtrees
expand CSLT grammars and thereby introduce new redundancies, leading to grammars
that are more complex to decompress, to query, and to manipulate. We refer to this
problem as the redundant fragment problem within this paper.

1.2 Contributions

In this paper, we introduce extended context-free straight-line tree (ECST) grammars as
a compressed XML data format that overcomes the redundant fragment problem. In
particular:

• We define how ECST grammars extend CSLT grammars.
• We show how path isolation which is necessary prior to simulating update opera-

tions on grammars works with ECST grammars.
• We demonstrate why using ECST grammars can avoid copying of large parts of

rules during the process of path isolation.
• We describe how to evaluate path queries on ECST grammar-compressed data.
• We show how standard update operations can be simulated on ECST grammars.

Altogether, on an ECST grammar G representing an XML tree X, we can not only
simulate all query and update operations on X, but also compression to ECST gram-
mars allows keeping the grammars small by avoiding redundant fragments generated
by updates of G.

1.3 Paper Organization

In Sect. 2, we define ECST grammars, and we show how relabel, insert, and delete
operations of nodes of an XML tree X can be simulated on a compressed ECST
grammar G. In Sect. 3, we present an approach to query evaluation and an approach to
update processing for arbitrary ECST grammars. Section 4 gives an overview on
related research, and finally, Sect. 5 contains a short summary.

2 Grammar-Based Compression and Basic Update
Operations

2.1 An Example Using CSLT Grammar-Based Compression

The key idea of CSLT grammar-based compression (e.g., CluX [1], BPLEX [2], or
TreeRePAIR [3]) is as follows. Whenever similar subtrees ST1, …, STk containing an
identical fragment F of connected nodes including the root of STi occur within an XML
tree X, a grammar G representing X stores only one occurrence A of the fragment F. G
replaces all occurrences of such a fragment F in X by a reference to A. This can be
implemented e.g. in form of a grammar, where each fragment F of connected nodes
multiply occurring in X is stored as a grammar rule A and each subtree STi containing
an occurrence of F is represented by a non-terminal symbol representing a call of A.

ECST – Extended Context-Free Straight-Line Tree Grammars 187

Differences between the subtrees ST1, …, STk are represented by providing formal
parameters to the grammar rule for A and by providing different actual parameters for
different calls of A.

To simplify the presentation and the compression algorithm, we follow [1–3] and,
without loss of generality, work on the binary representation of XML trees.

For example, look at the binary XML tree X1 (c.f. Fig. 1) which is represented by
the grammar Grammar 1. X1 represents a database of customers together with their
orders. For each customer, contact data is stored in form of address, first name, and last
name, and for each order, the shipping data is stored in form of address, first name, and
last name. Each address might contain an optional sub-element ‘isPOB’ that defines
whether the address represents a post office box. Due to space limitations, we abbre-
viate the element labels as follows: customer ! cu; order ! od; address !
ad; firstname ! fn; lastname ! ln; and isPOB ! ip:

The repeated fragment consisting of the node with label ‘ad’, its next-sibling with
label ‘fn’, and this node’s next-sibling with label ‘ln’ is represented by the grammar
rule A1. The ‘ad’-labeled nodes are the root nodes of the two similar subtrees con-
taining the repeated fragment. The subtrees differ in the first-child of the ‘ad’-labeled
nodes which is represented by the formal parameter y1 of rule A1 and by the actual
parameter ‘ip’ for the first subtree in preorder and by the nullpointer as actual parameter
for the second subtree. (For readability, we represent the nullpointer by ‘-’).

Note that we can reproduce each XML tree X from G by decompression, i.e.,
recursively applying all rules of G. For this purpose, we would substitute each call of a
rule A(ap1,…, apn) with the right-hand side of the rule A, rhs(A), where we replace A’s
formal parameters y1, …, yn with the actual parameters ap1, …, apn.

When simulating update operations of a node V of X directly on a CSLT grammar
G, i.e., without decompressing G to X, the so called grammar path GP in G repre-
senting the path p from X’s root to V has to be isolated in G first, such that GP
represents only the path p to the node V to be updated.

Fig. 1. Binary XML tree X1 corresponding to Grammar 1

188 S. Böttcher et al.

A grammar path GP = [A0, p0, …, An, pn] is defined as follows (c.f. [5]). Each
grammar path GP contains an alternating sequence of non-terminals Ai, 0 ≤ i ≤ n, and
index positions pi which refer to a symbol within rhs(Ai), which is a non-terminal
calling the next grammar rule Ai+1 for 0 ≤ i < n, and which is a terminal symbol with
the same label as the node V for i = n. A0 is the start symbol S of grammar G. For
example, if we apply the XPath query Q = //od/child::ad to Grammar 1, the
selected node can be described by GP1: = [S,3,A1,1]. Thus, GP1 describes a rule
call to rhs(A1) at position 3 in rule S. Finally, terminal ‘ad’ at position 1 in rhs(A1) is
selected.

While update operations like e.g. the re-labeling of a single node V with label v to
label w is quite simple in the XML document tree X (just change the label of node V
from v to w), simulating these operations on grammar-compressed XML documents is
more complex for the following reason. In grammar-compressed documents G, in
general, a single terminal symbol does not refer to a single node V of a tree X only, but
to a set of nodes of X. This means that prior to changing the terminal label, we first
have to isolate the grammar path GP addressing node V from G, such that the isolated
path represents only the node V to be relabeled. Considering a grammar path GP = [A0,
p0, …, An, pn] representing the node V of X, two steps are necessary in order to relabel
the terminal v to w. First, we have to copy rule An into A0

n. But this is not sufficient. In
the second step, we have to copy each rule Ai, 1 ≤ i < n to A0

i, and we have to adjust the
calling non-terminal to refer to A0

iþ1 within each copied rule A0
i.

Consider for example Grammar 1 given above and the update operation “relabel //
od/child::ad into pob”. The terminal ‘ad’ in rule A1 represents two ‘ad’-labeled nodes
of the XML tree X1 (shown in Fig. 1), out of which only the first node in preorder (i.e.
the node defined by grammar path GP1) is a child of an ‘od’-labeled node in X1. In
order to update only this ‘ad’-labeled node, we have to generate two copies of rule A1.
This leads to the following modified grammar, Grammar 2:

As after copying A1 into A0
1

� �
only the label ‘ad’ has been changed into ‘pob’, the

remaining fragments of the right-hand side rhs(A1) of the rule for A1 occur also
redundantly in rhs A10ð Þ: Redundancy even increases if the rules to be copied are larger.

This is an example for the redundant fragment problem of CSLT grammars
invoked by path isolation and subsequent updates: As a CSLT grammar rule can only
represent a connected fragment of nodes shared by subtrees, subtrees that differ in the
root node or in an inner node cannot be shared by a single CSLT grammar rule.

2.2 Extended CSLT Grammars

To overcome the redundant fragment problem, we extend CSLT grammars to ECST
grammars. In contrast to CSLT grammar rules, ECST grammar rules not only allow
reusing connected fragments of similar subtrees, but also reusing arbitrary tree

ECST – Extended Context-Free Straight-Line Tree Grammars 189

fragments. ECST’s extension to CSLT is that the difference between similar subtrees is
represented by a ranked parameter, i.e. a parameter that itself has parameters.

ECST grammars are defined as follows. Let T be an alphabet of terminal symbols,
N = {A0, …, An} be a ranked alphabet of non-terminal symbols, ‘-’ be the nullpointer,
and Z = {z1, …, zm} be a set of ranked alphabet of parameter symbols. The function
rank: N[Z ! N0 assigns to each non-terminal symbol and to each parameter symbol a
natural number representing its rank. Let the sets T, N, Z, and {-} be disjoint. Let
furthermore ID, LP 2 N be special non-terminal symbols with the following predefined
grammar rules: ID y1ð Þ ! y1;LP y1; y2ð Þ ! y2:Then, a term over T [N [Z [{-} is

• the nullpointer ‘-’,
• a terminal expression of the form t(fc, ns) where t 2 T, and fc and ns are terms

representing the first-child of t and the next-sibling of t respectively,
• a simple term Ai, rank(Ai) = 0, or a non-terminal expression of the form Ai(t1,…, tm)

where Ai 2 N, m = rank(Ai) and ti is a term for i 2 {1,…, m}, or
• a simple parameter zi of rank 0 or a parameter expression zi(t1, …, tm) where zi 2 Z,

m = rank(zi) and ti is a term for i 2 {1, …, m}.

Then, an ECST grammar is defined as a tuple (T, N, Z, P, S, ID, LP) where T, N, Z, ID,
and LP are defined as above. S 2 N is the start symbol, and P is a set of grammar rules,
where the following constraints must be met:

• For each non-terminal Ai 2 N, with rank(Ai) = m there exists exactly one grammar
rule of the form Ai zi1; . . .; zimð Þ ! rhs Aið Þ; where rhs(Ai) is a term that contains
each symbol zi1, …, zim exactly once in that order, with zij 2 Z and all zij are
distinct. Furthermore, for each non-terminal symbol Aj occurring in rhs(Ai), we
have j < i (i.e. calls of grammar rules are acyclic).

• For each rule Ai zi1; . . .; zij; . . .; zin
� � ! rhs Aið Þ; rank Aið Þ ¼ n; and each param-

eter expression zij(t1, …, tm), rank(zij) = m occurring in rhs(Ai), then in all calls of
Ai the appropriate values that can be passed to zij are a non-terminal expression Ak

having rank(Ak) = m or another parameter expression of rank m.

ECST grammars extend CSLT grammars by allowing parameters of arbitrary rank,
instead of parameters of rank 0 only, and the special non-terminal symbols ID and LP.

2.3 Isolating the Path to Be Updated

Each update operation on a node V with label v of an XML tree X can be simulated on
the grammar G representing X by updates along the grammar path GP representing V
in G. No matter, which update operation (relabel, delete, insert) on which node V of X
we simulate on G, at first we isolate the grammar path GP representing V in G. Then,
we perform the update operation on the isolated grammar path.

Isolation of a grammar path GP = [S, p0, A1, p1, …, An, pn] is implemented as
follows.

For the rule An y1; . . .; yjk
� �

! rhs Anð Þ; we define a rule A0
n y1; . . .; yjk
� �

!
rhs Anð Þ: Then, for 1 ≤ m < n for the rules Am y1; . . .; yjl

� �
! rhs Amð Þ; we define a

190 S. Böttcher et al.

rule A0
m y1; . . .; yjl
� �

! rhs A0
m

� �
; where rhs A0

m

� �
is rhs(Am) except that the call to

Am+1 on the grammar path, i.e. at position pm in rhs A0
m

� �
; is replaced with a call of

A0
mþ1: Finally, in rhs(S), we replace the call of A1 at position p0 in rhs(S), with a call of

A0
1:
Grammar path isolation ofGP1 leads to the followingmodified grammar, Grammar 3,

which is an intermediate step towards generating Grammar 2:

In case of the relabel operation, only the label ‘ad’ of the rule A10, i.e. of the last rule
An

0 generated for GP1, has to be changed to ‘pob’. That is, how we get Grammar 2.

2.4 Basic Update Operations Using Ranked Parameter Symbols

In this section, we define, how the basic update operations relabel, delete, and insert
can be performed on rules An and A0

n of the grammar path. How to modify and to copy
the rules A0

1; . . .; A
0
n�1 from the rules A1, …, An-1 is discussed in Sect. 2.5.

Assume that An has rank(An) = j and assume w.l.o.g. that the position in rhs(An) to
be modified occurs between the positions of the parameters yi and yi+1.

To simulate any update operation on G, we first isolate the grammar path to the
selected node from G. The further steps differ depending on the operation.

Relabel. Let V be a node in X that shall be relabeled to w, and let v be a terminal in

rule An y1; . . .; yj
� �

! rhs Anð Þ of G, such that the grammar path GP = [A0, p0, …,

An, pn] to v represents V (note that other grammar paths to v may represent other nodes
of X).

First, we change the call of An at position pn-1 within rhs A0
n�1

� �
into a call of

rhs A0
n

� �
.

Second, we create a new rule An � y1; . . .; yi; z; yiþ1; . . .; yjk
� �

! rhs An�ð Þ;
where rhs(An*) is rhs(An) except that the terminal v at position pn is replaced by the
ranked parameter z 2 Z, rank(z) = rank(v) = 2, and the position of z among the
parameters of An* is so that the parameter order is preserved. Furthermore, we change
rhs(An) into An*(y1, …, yi, v, yi+1, …, yj), and we change rhs A0

n

� �
into An*(y1, …, yi,

w, yi+1, …, yj).
Grammar 4 shows the result of the second step applied to Grammar 3.

ECST – Extended Context-Free Straight-Line Tree Grammars 191

Insert. Let V be a node in X, and let v be a terminal in rule An y1; . . .; yj
� �

!
rhs Anð Þ of G, such that the grammar path GP = [A0, p0, …, An, pn] to v represents V.
We want to simulate on G inserting a subtree as the previous sibling of the node V in
X. Let the subtree to be inserted be represented by a grammar rule I y1ð Þ ! rhs Ið Þ;
where y1 represents the next-sibling of the root node of I.

First, we change the call of An at position pn-1 within rhs A0
n�1

� �
into a call of A0

n.
Let further y1, …, yi be the parameters occuring in rhs(An) at positions smaller than pn.

Then, we create a new rule An � y1; . . .; yi; z; yiþ1; . . .; yj
� �

! rhs An�ð Þ; where rhs
(An*) is rhs(An) except that the term t at position pn is replaced by the term z(t), where z
2 Z is a parameter,with rank(z) = 1, and z’s position among the parameters of An* is so
that the parameter order is preserved. To simulate the insert, the rule

A0
n y1; . . .; yj
� �

! rhs A0
n

� �
is replaced with A0

n y1; . . .; yj
� �

! An �
y1; . . .; yi; I; yiþ1; . . .; yj

� �
; and the rule An y1 ; . . .; yj

� �
! rhs Anð Þ is replaced

with A0
n y1 ; . . .; yj
� �

! An � y1 ; . . .; yi; ID; yiþ1 ; . . .; yj
� �

:

Grammar 5 shows the result of inserting into Grammar 1 the subtree represented by a rule
I y1ð Þ ! od ad �;�ð Þ; y1ð Þ as previous-sibling of the second ‘ad’-labeled node of X1:

Remark. Note that whenever we want to simulate inserting a subtree or a node as the
last child of a node V, we first navigate to the nullpointer representing the non-
existence of a next-sibling of the last child of V and perform the above defined
operations on the position of that nullpointer. Similarly, if we want to insert a subtree or
a node as the only child of V, we first navigate to the nullpointer representing the non-
existence of a first-child of V. In both cases, the selected terminal v is a nullpointer.

Delete. Let V be a node in X that shall be deleted including all of its descendants (i.e.,
V and the subtree rooted in V’s first-child are deleted and the pointer to V is replaced
by a pointer to V’s next-sibling). Furthermore, let v be a terminal in rhs(An) of a rule

An y1; . . .; yj
� �

! rhs Anð Þ of G, such that the grammar path GP = [A0, p0,…, An, pn]

to v represents V. To simulate this delete operation on G, we change the call of An at

position pn-1 within rhs A0
n�1

� �
into a call of A0

n Then, we create a new rule An �
y1; . . .; yi; z; yiþ1; . . .; yj

� �
! rhs An�ð Þ; where rhs(An*) is rhs(An) except that the

terminal v at position pn is replaced by the ranked parameter z 2 Z, rank(z) = rank
(v) = 2, and the position of z among the parameters of An* is so that the parameter

order is preserved. Furthermore, we replace the rule A0
n y1; . . .; yj
� �

! rhs A0
n

� �
with

192 S. Böttcher et al.

the new rule A0
n y1; . . .; yj
� �

! An � y1; . . .; yi; LP; yiþ1; . . .; yj
� �

and the rule

An y1; . . .; yj
� �

! rhs Anð Þ with the new rule An y1; . . .; yj
� �

! An � y1; . . .;ð
yi; v; yiþ1; . . .; yjÞ:

Grammar 6 shows the result of simulating on Grammar 1 the deletion of the second
‘fn’-labeled node in X1 and replacing it by its next-sibling with label ‘ln’:

Whenever the first-child-term fc of node V contains formal parameters yl,…,yk,
using the rule LP leads to a non-linear rule, as the actual parameters for yl,…,yk of rule
A0

n ‘vanish’ when calling A0
n. If an application requires a linear grammar, we propose

the following solution: we create rule A0
n as A

0
n ! rhs A0

n

� �
; where rhs A0

n

� �
is a copy

of rhs(An) except that the term v(fc,ns) at position pn is replaced by the term ns.
Furthermore, we replace the call of An at position p n-1 in rhs A0

n�1

� �
with A0

n and delete
the actual parameters corresponding to yj,…,yk within the parameter list of A0

n. We
repeat this for rules Ai, 0 ≤ i< n, until we reach a rule A0

i ! rhs A0
i

� �
; where we do not

have to adapt the list of actual parameters. Then, for the rules A0
0 ! rhs

A0
0

� �
; . . .; A0

i�1 ! rhs A0
i�1

� �
; we can use the ranked parameters as proposed in

Sect. 2.5.
Thereby, we can avoid using the non-linear rules produced by using LP. As a

tradeoff, we cannot use the concept of ranked parameters for the rules Ai*, …, An*.

2.5 Modifying the Grammar Path

In the previous section, we only considered the last rule of the grammar path. However,
whenever a rule Ai occurring in GP is called also from outside GP, we have to create a
copy A0

i of rule Ai and modify this copy too. Similarly, as for the rule An, the copied
rule A0

i ð1� i\nÞ only differs slightly from the original rule Ai, i.e., we only change the
call to Ai+1 at position pi in Ai into a call of A0

iþ1.
To overcome the redundancy caused by the similarity of Ai and A0

i, we again make
use of ranked parameters. In order to modify rule Ai, we copy rhs(Ai) as the rhs of a
new rule Ai*(y1, …, yi, z, yi+1, …, yj), and replace the call of A0

iþ1 in rhs(An*) by a

parameter z 2 Z. Furthermore, we create a rule A0
i y1; . . .; yj
� �

! Ai � y1; . . .;ð
yi; A0

iþ1; yiþ1 ; . . .; yjÞ and change the rhs(Ai) into Ai*(y1, …, yi, Ai+1, yi+1, …, yj).
As the start rule S is never called, we do not need to copy rule S, but can modify it

directly, as we do not need the original version anymore. For this purpose, we change
the call to A1 at position p0 in S into a call of A0

1.
For example look at Grammar 6. Assume that S was not the start rule of Grammar 6,

but was called from rules that are part of the grammar path in Grammar 6 representing the

ECST – Extended Context-Free Straight-Line Tree Grammars 193

path fromX’s root node to themodified node, as well as from other rules. This means, that
we need the original version of S, i.e., S ! cu od A1 ip �;�ð Þð Þ;A1 �ð Þð Þ; �ð Þ as well as
the modified version S0 ! cu od A1 ip �;�ð Þð Þ;A10 �ð Þð Þ;�ð Þ: In order to avoid this
redundancy, we define a rule S � zð Þ ! cu od A1 ip �;�ð Þð Þ; z �ð Þð Þ;�ð Þ and the two
versions S ! S � A1ð Þ and S0 ! S � A10ð Þ: So again, by using the ranked parameter,
we have avoided storing parts of the rules S and S0 redundantly.

3 Simulating Queries and Updates on ECST Grammars

Up to now, we have shown how to use ECST grammars to perform updates that lead to
fewer redundancies than these updates performed on CSLT grammars. Next, we dis-
cuss how query evaluation on an XML tree X and update processing of nodes of X
selected by queries can be simulated on an ECST grammar G representing X.

3.1 Assumptions and Problem Definition

Let Q be an XPath query, defining the selected node(s) to be updated, G an ECST
grammar representing an XML tree X, and O be an update operation to be simulated on
G. In order to simplify the presentation, in this paper, we describe the simulation of
queries and update operations on G only for XPath queries Q without predicate filters,
i.e., we assume that Q is an absolute XPath query consisting of a single, filter-less path
only using the forward axes child, descendant, following-sibling. Note however that
like our previous XML database system simulated on CSLT grammars [6], this
approach simulating XML queries on an ECST grammar G could be adapted to handle
backward axes and predicate filters as well.

Furthermore, in order to simplify the presentation, we describe path isolation only
for a single path to a node V to be updated. Note however that the ideas of [5] on how
to update multiple paths in parallel can be used for ECST grammars as well.

3.2 Overview of the Query Phase and the Update Phase

First, in the query phase, we simulate on G a preorder walk through X, and for each
step, we modify the grammar path to the current context node ccn and generate first-
child, next-sibling, or parent events. These events are passed to a query automaton QA
that represents the query Q. Whenever QA reaches a final accepting state, i.e., the path
through X to a node V matches Q, we store the grammar path GP representing V.

Then, in the update phase, we process each grammar path GP that is a result of the
query phase by isolating GP as described in Sect. 2.3 and by simulating the update
operation O on the terminal selected by GP as described in Sects. 2.4 and 2.5.

3.3 Simulating a Preorder Walk Through X on an ECST Grammars G

Let GP = [A0, p0, …, An, pn] be the grammar path representing a current context node
V of X, and let GP refer to a terminal symbol v at position pn in the grammar rule An.

194 S. Böttcher et al.

In order to navigate to the first-child (or next-sibling respectively) of node V repre-
sented by GP, we consider the first (or second) parameter fp of v representing V’s first-
child (or next-sibling respectively) that occurs at position pn + i in An. First, we replace
pn in GP by pn + i yielding the new grammar path GP = [A0, p0, …, An, pn+i].

Then, depending on what kind of symbol the parameter fp is, we proceed as
follows:

• If fp is a terminal symbol, we found the first-child (or next-sibling respectively).
• If fp is a nullpointer, there exists no first-child (or no next-sibling), and navigation

continues with the next-sibling (or parent) of V.
• If fp is a non-terminal symbol NT, we have to retrieve the terminal that is the root of

the subtree created by NT. We determine the root terminal by attaching ‘NT,1’ to
GP, i.e., GP becomes GP = [A0, p0, …, An, pn+i, NT, 1], and we examine the first
symbol fs of the right-hand side of NT. If fs is a terminal, GP already refers to the
symbol that we looked for. If fs is a non-terminal symbol, we recursively determine
the root terminal of NT.

• Finally, if fp is a formal parameter z, we have to determine the actual parameter ap
provided by GP for z, and then find the root terminal symbol for ap as follows.

In order to determine the actual parameter ap provided by a grammar path GP = [A0,
p0, …, An−1, pn−1, An, pn] for a formal parameter z having rank(z) = 0, we delete the
last two entries of GP. If z was the ith formal parameter of rule An, we determine the
position pn−1 + j of the ith parameter of the symbol at position pn−1 in An−1, yielding a
new grammar path GP = [A0, p0, …, An−1, pn−1+j]. Then, we determine the root
terminal as described above.

In order to explain how we determine the actual parameter ap provided by a
grammar path GP = [A0, p0,…, An, pn] for a formal parameter z having rank(z) > 0, we
first have to extend the concept of the grammar path slightly: The grammar path GP for
an ECST grammar EG might temporarily contain also a so called virtual non-terminal,
i.e., a non-terminal not defined in EG, together with its rule definition.

For example, GP may contain a virtual non-terminal A10 if a rule for A10 is given.
To determine ap provided by a grammar path GP ¼ A0; p0; . . .; An; pn½ � for a

formal parameter z having rank(z) > 0 occurring in An, we repeatedly follow GP
upwards, until we find a symbol SYM different to a parameter z0. Then we substitute An

in GP by a virtual non-terminal A0
n, and define the rule for A0

n of the rule An where we
replace z by SYM within the definition of A0

n.
To follow GP upwards one step starting at a parameter z means: if z was the ith

formal parameter of rule Ak, we determine the position pk-1+j of the i
th parameter of the

symbol SYM at position pk−1 in Ak−1. If SYM is a parameter, we follow the grammar
path up one further step. If SYM is no parameter, we return SYM. Finally, we continue
in the temporal copy A0

n of An in the same way as for arbitrary CSLT grammars.
The non-terminal symbols ID and LP only occur as an actual parameter of a ranked

parameter. Whenever we have to replace the parameter z by ID in rhs A0ð Þ for any rule
A0 ! rhs A0ð Þ of a virtual non-terminal A0, we replace z by the single parameter of ID.
Whenever we have to replace the parameter z by LP in rhs A0ð Þ for any rule A0 !
rhs A0ð Þ of a virtual non-terminal A0, we replace z by the last parameter of LP.

ECST – Extended Context-Free Straight-Line Tree Grammars 195

For example, consider the Grammar 7 and the grammar path GP1 ¼ S; 1;A1; 1½ �
referring to a node V1 with label ‘b’. When navigating to V10s first-child V2, we get
GP2 ¼ S; 1;A1; 2½ � referring to a parameter z1. As z1 is the first formal parameter of
rhs(A1), its actual value av ¼ A2 is the first parameter of nonterminal A1 at position
[S,1]. Therefore, we substitute A1 in GP2 by a virtual nonterminal A10, i.e., we set
GP2 ¼ S; 1;A10; 2½ �; and we define a rule A10 ! rhs A10ð Þ; where rhs(A10Þ is equal to
rhs(A1) except z1 replaced by A2, such that we get A10 ! b A2 a �;�ð Þ; IDð Þ;�ð Þ:
Now we determine the root terminal for rule A2 resulting finally in grammar path
GP2 ¼ S; 1; A10; 2; A2; 1½ � representing V2 and referring to a terminal symbol ‘d’.

In order to simulate navigating to the next-sibling V3 of V2, we start searching at
position GP3 ¼ S; 1; A10; 2; A2; 3½ � . There, we find the formal parameter z2, having
its actual value ID in rule A1 of Grammar 7. Therefore, we substitute A2 in GP3 by a
virtual nonterminal A20, i.e. we set GP3 = [S, 1, A1’2, A2’ ,3], and we define a rule
A20 ! rhs A20ð Þ; where rhs(A20Þ is equal to rhs(A2) except that we replace z2(A3) by
ID(A3) which is simplified to A3, leading to the grammar rule A20 y1ð Þ ! d y1; A3ð Þ:
As at the third position of A20, we find the nonterminal A3 which has to be expanded
too, the resulting grammar path representing V3 is GP3 ¼ ½S; 1; A10; 2; A20; 3;
A3; 1� referring to a terminal symbol ‘f’.

3.4 Computing the Grammar Paths for Answers to a Query Q

We simulate the evaluation of an XPath query Q on an XML tree X represented by a
grammar G as follows. We simulate a pre-order walk through the XML tree X on G
and thereby modify the grammar path GP that represents the path from X’s root to the
current context node ccn of X and, in the same steps, produce first-child, next-sibling,
or parent events. These events are passed to a query automaton QA that represents the
query Q and reaches a final accepting state whenever the event sequence processed by
QA represents an answer to Q, i.e. a path through X to a node that matches Q.

QA is implemented in a way that it processes first-child and next-sibling events by
changing active states, whereas it processes parent events by using an additional stack
as follows. Whenever the simulated preorder walk through X steps from the current
context node ccn to its first-child (by a first-child event), QA pushes the set of currently
active states on the stack, from which these states are popped and reactivated as soon as
the simulated preorder walk through X returns back to ccn by a parent event before
visiting the next-sibling of ccn. A detailed description on how to build the automaton,
how to produce the events, and how to process the events is given in [7].

Query evaluation simulated on G can be optimized like query evaluation on X as
follows. Whenever during query evaluation, there is no active state of QA that can fire
for a first-child event, the simulated preorder walk can skip the subtree rooted in the
first-child of the current context node ccn and continue query evaluation directly with

196 S. Böttcher et al.

ccn’s next-sibling. While in traditional query evaluation, this optimization allows us to
skip parts of X, in the query evaluation simulated on G, we can skip reading and
unnecessarily decompressing parts of G.

4 Related Work

There are several approaches to XML structure compression which can be mainly
divided into the categories: encoding-based, schema-based or grammar-based
compressors.

Encoding-based compressors (e.g. [8–10], XMill [11], XPRESS [12], and
XGrind [13]) allow for a faster compression speed than the other compressors, as only
local data has to be considered in the compression in comparison to grammar-based
compressors which consider different subtrees.

Schema-based compressors (e.g. XCQ [14], Xenia [15], and XSDS [16]) subtract
the given schema information from the structural information and only generate and
output information not already contained in the schema information.

XQzip [17] and the approaches [18] and [4] belong to grammar-based compression.
They compress the data structure of an XML document by combining identical subtrees.
An extension of [4] and [17] are e.g. CluX [1], BPLEX [2], and TreeRePAIR [3] that not
only combine identical subtrees, but recognize similar patterns within the XML tree, and
therefore allows a higher degree of compression. The approaches [6], [19] and [20]
follow different approaches on how to compute updates on grammar-compressed XML
data. A generalization of grammar-based compression to functional programs repre-
senting the compressed tree data was presented in [21].

In order to eliminate the redundancies caused by performing updates, a recom-
pression of the updated grammar as proposed in [22] might be performed.

In contrast, we propose using ECST grammars instead of CSLT grammars, such
that the overhead can be avoided, instead of eliminating it afterwards.

5 Summary and Conclusions

We proposed extended context-free straight-line tree (ECST) grammars, an extension
of CSLT grammars, for compressing XML documents. In contrast to CSLT grammars,
ECST grammars allow parameters having a rank greater than 0. They can be used for
avoiding redundancies after path isolation which is required for simulating update
operations on the grammar.

In this paper, we have not only discussed, how to use ECST grammars to improve
the evaluation of updates on grammar-compressed XML data, but furthermore, we
presented an approach, how to evaluate queries and updates on ECST grammars.

We assume that ECST grammars are a promising extension of the standard CSLT
grammars, allowing in general even better compression ratios.

ECST – Extended Context-Free Straight-Line Tree Grammars 197

References

1. Böttcher, S., Hartel, R., Krislin, C.: CluX - Clustering XML sub-trees. In: ICEIS 2010,
Funchal, Madeira, Portugal (2010)

2. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML documents.
In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 199–216. Springer,
Heidelberg (2005)

3. Lohrey, M., Maneth, S., Mennicke, R.: Tree structure compression with repair. In: DCC
2011, Snowbird, UT, USA (2011)

4. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB 2003,
Berlin, Germany (2003)

5. Bätz, A., Böttcher, S., Hartel, R.: Updates on grammar-compressed XML data. In:
Fernandes, A.A.A., Gray, A.J.G., Belhajjame, K. (eds.) BNCOD 2011. LNCS, vol. 7051,
pp. 154–166. Springer, Heidelberg (2011)

6. Böttcher, S., Hartel, R., Jacobs, T.: Fast multi-update operations on compressed XML data.
In: Gottlob, G., Grasso, G., Olteanu, D., Schallhart, C. (eds.) BNCOD 2013. LNCS, vol.
7968, pp. 149–164. Springer, Heidelberg (2013)

7. Böttcher, S., Steinmetz, R.: Evaluating XPath queries on XML data streams. In: Cooper, R.,
Kennedy, J. (eds.) BNCOD 2007. LNCS, vol. 4587, pp. 101–113. Springer, Heidelberg (2007)

8. Zhang, N., Kacholia, V., Özsu, M.: A succinct physical storage scheme for efficient
evaluation of path queries in XML. In: ICDE 2004, Boston, MA, USA (2004)

9. Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: DCC 2001,
Snowbird, Utah, USA (2001)

10. Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient representation and
exchange of XML over the Web. Comput. Netw. 33, 747–765 (2000)

11. Liefke, H., Suciu, D.: XMILL: an efficient compressor for XML data. In: SIGMOD 2000,
Dallas, Texas, USA (2000)

12. Min, J.-K., Park, M.-J., Chung, C.-W.: XPRESS: a queriable compression for XML data. In:
SIGMOD 2003, San Diego, California, USA (2003)

13. Tolani, P., Haritsa, J.: XGRIND: a query-friendly XML compressor. In: ICDE 2002, San
Jose, CA (2002)

14. Ng, W., Lam, W., Wood, P., Levene, M.: XCQ: a queriable XML compression system.
Knowl. Inf. Syst. 10, 421–452 (2006)

15. Werner, C., Buschmann, C., Brandt, Y., Fischer, S.: Compressing SOAP messages by using
pushdown automata. In: ICWS 2006, Chicago, Illinois, USA (2006)

16. Böttcher, S., Hartel, R., Messinger, C.: XML stream data reduction by shared KST
signatures. In: HICSS-42 2009, Waikoloa, Big Island, HI, USA (2009)

17. Cheng, J., Ng,W.: XQzip: querying compressedXML using structural indexing. In: Bertino, E.,
Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 219–236. Springer, Heidelberg (2004)

18. Adiego, J., Navarro, G., Fuente, P.: Lempel-ziv compression of structured text. In: DCC
2004, Snowbird, UT, USA (2004)

19. Fisher, D., Maneth, S.: Structural selectivity estimation for XML documents. In: ICDE 2007,
Istanbul, Turkey (2007)

20. Fisher, D., Maneth, S.: Selectivity Estimation. Patent WO 2007/134407 A1, May 2007
21. Kobayashi, N., Matsuda, K., Shinohara, A., Yaguchi, K.: Functional programs as

compressed data. High.-Order Symbolic Comput. 25(1), 39–84 (2012)
22. Böttcher, S., Hartel, R., Jacobs, T., Maneth, S.: OnlineRePair: a recompressor for XML

structures. In: Poster Paper, DCC, Snow Bird, Utah, USA (2015)

198 S. Böttcher et al.

Configuring Spatial Grids for Efficient Main
Memory Joins

Farhan Tauheed2, Thomas Heinis1, and Anastasia Ailamaki2(B)

1 Imperial College London, London, UK
2 DIAS - Data-Intensive Applications and Systems Lab, École Polytechnique

Fédérale de Lausanne (EPFL), Lausanne, Switzerland
anastasia.ailamaki@epfl.ch

Abstract. The performance of spatial joins is becoming increasingly
important in many applications, particularly in the scientific domain.
Several approaches have been proposed for joining spatial datasets on
disk and few in main memory. Recent results show that in main memory,
grids are more efficient than the traditional tree based methods primarily
developed for disk. The question how to configure the grid, however, has
so far not been discussed.

In this paper we study how to configure a spatial grid for joining
spatial data in main memory. We discuss the trade-offs involved, develop
an analytical model predicting the performance of a configuration and
finally validate the model with experiments.

1 Introduction

Spatial joins are an operation of increasing importance in many applications.
Whether for spatial datasets from astronomy, neuroscience, medicine or others,
the join has to be performed to find objects that intersect with each other or
are within a given distance of each other (distance join). An efficient execution
of this operation is therefore key to improve overall performance.

In this context main memory joins are becoming increasingly important
because many datasets fit into the main memory directly. Even if they do not,
and the join has to be performed on disk, a crucial part of a disk-based join is the
in memory join. While the strategies of disk-based approaches to partition the
data (replication or no replication, space-oriented partitioning or data-oriented
partitioning) so it fits into memory differ [1], every approach requires an efficient
algorithm to join two partitions in main memory.

The only approaches specifically designed to join spatial data in memory
are the nested loop join and plane sweep join approach. The nested loop join
technique works by comparing all spatial elements pairwise and is thus compu-
tationally very expensive. The plane sweep approach [2] sorts the datasets in one
dimension and scans both datasets synchronously with a sweep plane. It has a
lower time complexity but compares objects no matter how far apart they are
on the sweep plane.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 199–205, 2015.
DOI: 10.1007/978-3-319-20424-6 19

200 F. Tauheed et al.

To speed up the join time over these two slow approaches, tried and tested
tree-based indexing techniques on disk have been optimized for main mem-
ory. Although these approaches indeed improve performance, recent research
shows that a simple grid performs best to join for one-off spatial joins in mem-
ory [3]. The problem of configuring the grid optimally, however, is challenging
and remains unaddressed to date.

In this paper we therefore develop a cost model that can be used to configure
the grid optimally. With experiments we show that the cost model can accurately
predict the performance of the join.

2 Grid-Based Spatial Join

Spatial joins are typically split into two phases, filtering and refinement [4]. The
filtering phase uses a coarse grained collision detection and finds intersections
between approximations of the actual objects. The refinement phase, is used to
remove the false positive by using an exact, but time-consuming object-object
collision test. The refinement phase is a computationally costly operation with
little room for improvement and so, like other approaches for spatial joins [4],
the spatial grid-based spatial join focuses on improving the filtering phase.

On a high level, the grid-based spatial join tackles the filtering phase with a
three dimensional uniform grid and uses it as an approximate method to group
spatially close objects. In the building step we map the MBRs of the objects of
both datasets on a grid while the probing step retrieves MBRs from the same
cells (which are thus close together) and compares them pairwise.

In the following we first explain the two steps, i.e., building and probing.

2.1 Building Step

The algorithm iterates over both sets of objects and for each object calculates its
MBR and maps it on the uniform grid. The mapping process finds the grid cells
that intersect with the MBR volume and creates a pointer from each intersecting
grid cell to the MBR. By using a uniform grid we simplify the calculation of the
mapping of MBR to cell and can calculate the list of intersecting grid cells
efficiently as follows. First, we use the minimum and maximum coordinate of
the MBR to find the minimum and maximum grid cell intersecting it. Second,
we use a nested loop to iterate over all the grid cells bounded by these minimum
and maximum grid cell.

The mapping of MBR to grid cells is ambivalent as one MBR can also map
to several grid cells. To store this many-many relationship between the MBR
and the grid cell we use a hashmap which maps a list of pointers to a grid cell
identifier. To map an MBR we access the list of pointers for each intersecting
grid cell and insert the pointer in their respective list. Apart from providing a
fast access mechanism to the list of pointers the hash table also helps to reduce
the memory footprint as only grid cells containing one or more pointers to an
MBR require an entry in the hash map and no memory is wasted in storing
empty grid cells.

Configuring Spatial Grids for Efficient Main Memory Joins 201

2.2 Probing Step

The probing step of the algorithm retrieves the mapped MBRs of the two objects
sets from the grid. The algorithm iterates over all the grid cells and separately
retrieves all the MBRs in the cell. For each cell it then compares all MBRs
representing objects from the first dataset with all MBRs representing objects
from the second dataset.

Because MBRs can be mapped to several cells, intersections between the
same pair of MBR’s may be detected multiple times. This leads to (a) additional
computational overhead (because of additional comparisons) and (b) duplicate
results. The spatial grid-based spatial join thus use a global (across all grid cells)
set based data structure in a postprocessing step to deduplicate the results before
reporting them.

3 Configuring the Grid-Based Spatial Join

As we discuss in the following, the performance of the algorithm we propose for
filtering depends on the configuration, i.e., the grid resolution used, as well as
the data distribution.

3.1 Impact of Data Skew

Uniform grids are very sensitive to data skew and using them in spatial join
algorithm can lead to performance degradation because in dense regions the
number of MBRs mapped on a grid cell increases and consequently the number
of comparisons required increases too. All MBRs may be mapped to one single
grid cell. In this scenario the performance of spatial grid hash join becomes
equivalent to a nested loop join because all MBRs need to be compared pairwise
and the total number of comparisons is O(n2). Even worse, all MBRs may be
mapped to the same multiple cells and the nested loop is executed comparing the
same MBRs several times (resulting in duplicates that need to be eliminated).

The problem of data skew can be addressed by setting a finer grid resolution.
With a finer grid resolution also the objects or their MBRs in very dense regions
of the datasets will be distributed to numerous grid cells instead of just a few.
As we will discuss in the next section, the resolution, however, cannot be set
infinitely fine-grained, but reducing the cell size still helps to address the problem
of data skew.

3.2 Impact of Grid Resolution

Changing the grid resolution, i.e., making it coarser or finer grained directly
affects the performance of the algorithm.

202 F. Tauheed et al.

In case of a fine resolution, an MBR is likely to be mapped to many grid
cells and the memory footprint therefore increases. This also leads to degraded
performance because more comparisons need to be performed in the probing
phase. The number of comparisons increases because MBRs mapped to several
cells need to be compared more than once.

In case the resolution is coarse, each grid cell contains many MBRs and
hence the performance degrades because all MBRs in the same grid cell need to
be compared pairwise, thereby increasing the number of comparisons. A coarse
resolution, however, lowers the memory consumption of the algorithm because an
MBR is less likely to be mapped to many grid cells, thereby reducing duplication
(even if pointers are used). Additionally, the probability of comparing the same
pair of MBRs several times because they are assigned to several cells (as is
the problem of a fine resolution) is considerably reduced, reducing the overall
number of comparisons.

Both extremes have advantages and disadvantages and it is difficult to set the
resolution intuitively. In the following we therefore develop an analytical model
that will predict the optimal grid resolution for two sets of objects in terms of
number of total comparisons.

3.3 Analytical Model

To determine the optimal resolution we develop a cost model for predicting the
time for the join. Like our algorithm we also split the cost model into building
and probing costs.

Building Cost. The building phase loops over the MBR of each of the Nd

objects in the first dataset and for each MBR finds the intersecting grid cells
using the getCell (gC) function. For each cell a hashLookup (hL) is performed
to obtain the list of pointers that point to the MBR and in the end the pointer
of the current MBR is added to the list using insertPointer (iP). The resulting
cost is summarized in the following equation with Ci as the number of cells an
MBR intersects with:

BuildingCost =
Nd∑

i=1

⎧
⎨

⎩gC(MBRi) +
Ci∑

j=1

[hL(j) + iP (&MBRi)]

⎫
⎬

⎭ (1)

The cost of the getCell (gC) function is defined as follows:

gC(MBRi) =
Ci∑

j=1

vertexToGridCell(j)

To determine the actual building cost we need to know the duration of each
individual operation and the number of iterations of each loop. vertexToGridCell

Configuring Spatial Grids for Efficient Main Memory Joins 203

and insertPointer both are constant time operations and for the sake of simplic-
ity we also assume hashLookup to be a constant time operation (this essentially
means we use a tuned hash table which is collision-free). The execution time of
all these operations heavily depends on the hardware platform they are executed
on. We use microbenchmarks to determine their execution time.

Nd, the number of objects in the first dataset, is a given and Average(C),
the number of cells an average object’s MBR maps to, is calculated as follows
(instead of calculating Ci for each object we use an approximation, i.e., Aver-
age(C)).

Average(C), the number of cells an average MBRi maps to depends on the
average volume of the MBR and on the grid resolution. On average, the MBR of
an object particular MBRi the number of cells it is mapped to, can be approxi-
mated by V olume(MBRi)/V olume(gridCell). This, however, is only an approx-
imation and it underestimates the number of grid cells because the exact number
of grid cells intersecting depends on the exact loation of MBRi relative to the
grid cells. If MBRi is exactly aligned with the grid cell then the combined vol-
ume of the grid cell is equal to the volume of MBRi. If, however, MBRi is not
aligned, then the combined volume of the grid cell is greater than the volume of
MBRi to at most the volume of a single grid cell.

To resolve this issue we expand the volume of MBRi by half the volume of
a single grid cell, to get a better approximation for the average case.

Total(C) =
Nd∑

i=1

{
V olume(MBRi) + V olume(gridCell)/2

V olume(gridCell)

}

Average(C) = Total(C)/Nd

Probing Cost. Similar to the building step, the probing step loops over each
object in the second dataset. For each object the algorithm finds the list of cells
intersecting the MBR of the object. However, instead of mapping the MBR on
the grid, the probing step retrieves the mapped MBRs from the first dataset for
testing the overlap.

ProbingCost =
Na∑

i=1

⎧
⎨

⎩gC(MBRi) +
Ci∑

j=1

⎡

⎣hL(j) +
Sj∑

k=1

(oT (i, k) + dD())

⎤

⎦

⎫
⎬

⎭
(2)

The operations of the probing step are overlapTest (oT), which compares
two MBRs for overlap, and deduplication (dD), which uses a hash based set to
remove duplicate results. We consider both these operations as constant time
operations, because we assume a near collision free hash set for our estimates.
The number of iterations of the loop Na is the size of the outer data set.

Similar to the building cost model, we use Average(C) to approximate the
number of grid cells that intersect with the MBRs of the outer data set.

204 F. Tauheed et al.

To estimate Sj we use an approximation Average(S). Average(S) is the num-
ber of first dataset objects mapped to grid cells, but only the grid cell which
intersects the MBRs of objects of the second dataset.

The probing step typically takes the majority of the total time of the join.
Setting the resolution optimally therefore has a substantial impact on the per-
formance of the overall algorithm. By using a increasingly fine resolutions, the
cell volume decreases, this increases the number of grid cells that intersect the
MBR of the outer dataset and hence the performance degrades. At the same
time, however, the number of overlap test comparisons decreases because we do
not compare objects for overlap which are not located spatially close.

3.4 Optimal Grid Resolution

The sum of both cost models is a concave up curve and the local minimum and
hence the optimal value is where the first derivative is equal to zero. To validate
the model we have tested it using experiments where we vary the grid cell size.
For the experiments we use neuroscience data where 4.5 million cylinders model
1692 neurons and we use the experimental setup described in [5].

In Fig. 1 (a) we measure the individual components (build & probe) as well
as the total time of the join. Clearly, for both components there is an optimal
(at the same grid cell size) where the join is executed the fastest. The second
experiment (Fig. 1 (b)) plots the total execution time against the analytical
model and shows that the model can indeed be used to accurately predict the
performance and thus to determine the grid configuration.

Fig. 1. Validating the analytical model of the grid-based spatial join.

4 Conclusions

Whether in disk- or in memory spatial joins, the main memory join is a crucial
operation. Recent research demonstrated that grid-based approaches outperform
tree-based ones in main memory [3], but the question of how to set the optimal
resolution remains unaddressed. In this paper we described our implementation

Configuring Spatial Grids for Efficient Main Memory Joins 205

of a grid-based spatial join and, crucially, developed and analytical model to
predict performance. Our experimental results show that with little information
about the datasets to be joined as well as the underlying hardware, the model
accurately predicts performance. While it may be difficult to estimate the exe-
cution of individual operations, microbenchmarks can be used to find accurate
values. Even in the absence of the cost of the operations, the model can still give
insight into how to configure the grid for optimal performance.

References

1. Jacox, E.H., Samet, H.: Spatial join techniques. ACM TODS 32(1), 1–44 (2007)
2. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer,

New York (1993)
3. Šidlauskas, D., Jensen, C.S.: Spatial joins in main memory: implementation mat-

ters! In: VLDB 2015 (2015)
4. Orenstein, J.: A comparison of spatial query processing techniques for native and

parameter spaces. In: SIGMOD 1990 (1990)
5. Tauheed, F., Biveinis, L., Heinis, T., Schürmann, F., Markram, H., Ailamaki, A.:

Accelerating range queries for brain simulations. In: ICDE 2012 (2012)

Transactional and Incremental Type Inference
from Data Updates

Yu Liu(B) and Peter McBrien

Department of Computing, Imperial College London, London, UK
{yu.liu11,p.mcbrien}@imperial.ac.uk

Abstract. A distinctive property of relational database systems is the
ability to perform data updates and queries in atomic blocks called trans-
actions, with the well known ACID properties. To date, the ability of
systems performing reasoning to maintain the ACID properties even
over data held within a relational database, has been largely ignored.
This paper studies an approach to reasoning over data from OWL 2
ontologies held in a relational database, where the ACID properties of
transactions are maintained. Taking an incremental approach to main-
taining materialised views of the result of reasoning, the approach is
demonstrated to support a query and reasoning performance compa-
rable to or better than other OWL reasoning systems, yet adding the
important benefit of supporting transactions.

Keywords: OWL · Incremental reasoning · DBMS transactions · ACID
properties · Materialised views

1 Introduction

Many approaches to reasoning over knowledge bases take a query-rewriting app-
roach (e.g. Ontop [1], Stardog [14], DLDB [13]), where a query over the knowl-
edge base is rewritten to a (often complex) query over the base facts in the
knowledge base. When the number of queries made on the knowledge base
greatly exceeds the number of updates, it might be more efficient to adopt a
materialised approach (e.g. OWLim [6], WebPIE [17], RDFox [12], Oracle’s
RDF store [18], Minerva [19]), where the extent of the knowledge base is cal-
culated after updates to the knowledge base, and hence queries are answered
directly from the inferred facts.

Even if data is stored in a relational database, such as in Minerva, the reason-
ing in materialised approaches is normally conducted outside of the core RDBMS
engine, and hence fails to provide transactional reasoning [7]. In transactional
reasoning, the result of reasoning from data is available at the commit of any
transaction that inserts or deletes data, and hence reasoning obeys the normal
ACID properties of transactions.

This paper considers reasoning over knowledge bases expressed in OWL 2
RL [10]. It restricts itself to consider the issue of efficiently handling ontology
c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 206–219, 2015.
DOI: 10.1007/978-3-319-20424-6 20

Transactional and Incremental Type Inference from Data Updates 207

queries where there are updates occurring to the A-Box (in database terms the
data) and not to the T-Box, and the number of queries greatly exceeds the num-
ber of updates. Hence, the reasoning performed is type inference (i.e. deriving
for each instance its membership of classes and properties), and it adopts a mate-
rialised approach. This paper sets out to provide transactional type inference for
ontologies held in an RDBMS, providing type inference over OWL 2 RL ontolo-
gies that can fully integrate with the data of existing RDBMS applications, and
maintain the full ACID properties of transactions.

To illustrate the issues addressed, consider a T-Box with three rules:

(1) (2) (3)

which define that (1) every man is a person, (2) every parent is a human, and
(3) a person is equivalent to a human. Now suppose that A-Box for the ontol-
ogy is held as four tables Man, Parent, Person and Human in a database, and
four transactions, T1 inserting , T2 inserting , T3 delet-
ing , and finally T4 deleting , are executed. The expected
changes of the database are illustrated in Fig. 1.

Fig. 1. Example of transactional and incremental type inference

The first transaction T1 should change the state of the database from S0

to S1. After executing T1, should be viewed not only from Man but also
from Person and Human, because should be inferred as both a and
a as a result of rules (1) and (3). Transactional type inference requires
that any other transaction Tc concurrent with T1 should view the database
either as S0 or S1, but not any intermediate state. For example, the query

should always evaluate to false in Tc. With regards
to deletes, T3, which only deletes , should not delete inferred facts

or , since and rules (1) and (3) can still infer
them (i.e. the database is changed to S3). However, the same inferred facts must
be deleted when is deleted in T4.

Furthermore, we need to reject user attempts to delete implicit facts. For
example, when in database states S1, S2 or S3, allowing a user to delete

208 Y. Liu and P. McBrien

would make the knowledge base inconsistent, and therefore such
an update must be rejected.

Our approach is based on incremental type inference, and the Delete
& Rederive (DRed) algorithm [4] for incrementally maintaining materialised
views (which might be recursive when considering OWL 2 RL). DRed does not
keep any additional information at the stage of materialising derived facts. When
deleting explicit facts from base relations which form the materialised view, it
first ‘over deletes’ all facts from the view which can be derived from the deleted
facts, and then rederives some facts which are still inferable from the remaining
facts. Hence, this algorithm is inefficient when derived facts have many differ-
ent derivations and have relations to other inferred facts [11]. In this paper, we
present a variant of DRed, and outline our implementation of this variant as
RDBMS triggers, which support transactional and incremental type inference.
Our approach has the following advantages:

• We assign each fact a state when materialising data. Then, deletions over the
database invoke triggers to update the state of related facts, which reduces
the number of real deletes and reinserts.

• The triggers in the RDBMS will be invoked whenever a user updates the data-
base; consequently, our approach preserves ACID properties over the results
of reasoning.

• Since our approach materialises the results of reasoning, it processes queries
more efficiently than non-materialising approaches.

• Our approach can be incorporated into almost all standard RDBMS applica-
tions, in order to enhance their database schemas with type inference reason-
ing.

We have implemented this approach as an extension of SQOWL [8], which
provided type inference over only inserts to an RDBMS, to now perform type
inference over both inserts and deletes. We call our system SQOWL2, and pro-
vide this first RDBMS-based system supporting transactional and incrementally
materialised type inference. We show that the completeness of query processing
is comparable to the same task for other rule-based engines (e.g. OWLim). In
addition, SQOWL’s query processing is shown to be more efficient than compa-
rable systems (i.e. Stardog and OWLim).

The remainder of the paper is organised as follows. Section 2 demonstrates
our approach, especially the process of generating triggers, which are then used
for incremental type inference. Section 3 describes the implementation details of
our approach in SQOWL and Sect. 4 evaluates this implementation. Section 5
provides a brief summary of similar systems, and finally, Sect. 6 concludes this
paper.

2 Our Approach

This section describes what we call an auto type inference database
(ATIDB). Our approach separates the T-Box and A-Box reasoning as shown

Transactional and Incremental Type Inference from Data Updates 209

in Fig. 2. Whilst this separation does entail that the reasoning of a system is not
complete, it is not uncommon in other large-scale reasoners, and as documented
in Sect. 4, the completeness achieved matches that of other approaches.

Fig. 2. Approach architecture Fig. 3. Data state transitions

The T-Box of an ontology is firstly classified by a tableaux-based reasoner, in
order to obtain complete subsumption relationships w.r.t. the T-Box. For exam-
ple, a T-Box rule , can be classified as three subsumption
rules: .

This classified T-Box is used to establish an ATIDB (with relational tables
and SQL triggers). Classes and properties in the classified T-Box are used to
generate a basic database schema. Classes are represented as unary relations
denoted as C(id) (e.g.), and properties are translated into binary
relations denoted as P(domain,range). Axioms in the classified T-Box are used
for generating SQL triggers, which here we present as event condition action
(ECA) rules: when 〈event〉 if 〈condition〉 then 〈action〉 associated with the
relational tables.

With the triggers created, the ATIDB is ready to accept any A-Box rules as
inserts and deletes expressed in SQL. The triggers automatically perform type
inference from these updates in the same transaction in which the updates are
made. Should the reasoning performed in a trigger discover any inconsistency,
then it can perform a rollback, causing the original update to be rejected.

• For inserts to the database, triggers will ignore repeated inserts in order to
avoid duplications. It is possible that triggers may cascade, in order to infer
additional data from other inferred data.

• For deletes from the database, a label & check process is performed to first
recursively label all items of data that might be deleted because of this trans-
action, and then to check as to whether the labelled data can still be inferred
or not from unlabelled data. If an item of labelled data is still inferable, then
we keep this data item; otherwise, we remove the data.

2.1 The State of Each Data Item

In the ATIDB, each value x in the domain of a class C might become a logical
fact C(x). We view C(x) as passing through four states as outlined in Fig. 3.

210 Y. Liu and P. McBrien

A fact might not hold and hence is not in the database (C(x)ø), a fact might
be explicitly stored because an explicit A-Box rule asserts it (C(x)e), or a fact
might be implicitly inferred from other facts (C(x)i). Our method of deleting data
introduces a fourth state (C(x)d), where the data has lost one of the supporting
arguments for being in the database, and a process of checking if the data is still
inferable from other data is being conducted.

The state can be changed by insert and delete operations. We identify two
classes of insert. An ontology insert means that some user or application is
inserting a new explicit fact into the database, and is detected by the trigger
when C(x)e. By contrast, a reasoner insert means that a reasoner has derived
some implicit fact from the existing facts in the database, and is detected by the
trigger when C(x)i. Similarly, an ontology delete is some user or application
deleting an explicit fact from the database, and is detected by when ¬C(x)e,
and a reasoner delete is when some supporting evidence for a fact has been
deleted, detected in triggers by when ¬C(x)i. Figure 3 gives an overview of the
possible state transitions which can occur. For inserts:

• For a data item which is not present in the table, C(x)ø, an ontology insert of
C(x)e updates C(x)ø to C(x)e, and a reasoner insert of C(x)i changes C(x)ø to
C(x)i.

• For a data item implicitly stored, C(x)i, further reasoner inserts of C(x)i, do
not change the state, so that repeated inference of other facts based on C(x)i
is avoided. However, inserting C(x)e gives explicit semantics, and thus updates
C(x)i to C(x)e.

• For a data item explicitly stored, C(x)e, inserting C(x)i does not change the
state, in order to avoid duplicated inference. However, to implement normal
database semantics, a rollback occurs if further attempts are made to insert
C(x)e.

For deletes:

• For a data item C(x)ø, ontology or reasoner deletes are ignored, to match the
normal database semantics that deletes of data not present cause no errors.

• For a data item C(x)i, attempting an ontology delete ¬C(x)e causes inconsis-
tencies since the assertion of being no C(x) conflicts with what can be inferred
from other facts, and the transaction should be rolled back. The reasoner
delete ¬C(x)i, by contrast, changes C(x)i to C(x)d, in order to label the data
for rechecking.

• For a data item C(x)e, attempting the ontology delete ¬C(x)e changes it to
C(x)d, because the data might still be inferable even after removing the explicit
semantics. However, a reasoner delete ¬C(x)i does not change the state, since
only ontology deletes can remove the explicit semantics.

Note that, when the state of C(x) is updated to d, a recursive labelling process
is conducted to implicitly delete other data which depends on C(x)d. When the
whole labelling process is finished, all data items labelled with d are checked as
to whether they are inferable from data in state e or i. If they are still inferable,

Transactional and Incremental Type Inference from Data Updates 211

we change C(x)d to C(x)i; otherwise, C(x)d is updated to C(x)ø (i.e. deleted from
the database).

2.2 Transactional and Incremental Type Inference by Triggers

Now, we demonstrate for the example in the introduction how our approach can
achieve type inference in an incremental manner.

Fig. 4. T1: insert and T2: insert

Figure 4 first shows the trigger events as the database passes from S0 to
S1 through two intermediate database states S0a and S0b whilst executing
T1. Firstly, the attempt to insert Man(John)e is checked by a ‘before trigger’
(indicated by the − prefix) when −Man(x)e if ¬Man(x)e then Man(x)e. Since
Man(John)ø is true, the insert is permitted, and the database enters S0a . Rule (1)
is translated into an ‘after trigger’ (denoted by the + prefix) when +Man(x)e∨i

then Person(x)i. Thus, after Man(John)e is inserted, this trigger is invoked to
infer a reasoner insert of Person(John)i, updating S0a to S0b .

An equivalent relationship between two classes can be treated as two sub-
sumption relations; therefore, rule (3) is translated into two triggers: when
+Person(x)e∨i then Human(x)i and when +Human(x)e∨i then Person(x)i. After
the database is updated to the intermediate state S0b , the insert of Person(John)i
causes the attempt to insert Human(John)i, which changes Human(John)ø to
Human(John)i (i.e. S0b is updated to S1). The insert of Human(John)i gener-
ates the attempt to insert Person(John)i again because of the after insert trigger
on Human. However, the attempt to insert Person(John)i is ignored, because
Person(John)i is true in S1 (i.e. the database stays at S1).

Figure 4 then illustrates the process of executing T2, which inserts
. T2 first attempts to insert Parent(John)e, which updates the state

of Parent(John) from ø to e (i.e. S1 is updated to S2). Afterwards, the after insert
trigger on Parent generates a new reasoner insert of Human(John)i, which is then

212 Y. Liu and P. McBrien

ignored by the before insert trigger on Human, since Human(John)i is already
true (i.e. the database stays at S2).

Attempting ontology deletes of data in state i without removing explicit facts
which infer them causes inconsistencies in the database. Thus, from the
we design a ‘before trigger’ when −¬Person(x)e if Person(x)i then rollback so
that attempting the ontology delete to Person(John)i results in the rollback of the
transaction. In fact, we only allow users to delete explicit facts, C(x)e or P(x,y)e.
As a fact in state e may also be implicitly stated, when executing ontology deletes
to such a fact, the following label &check process is conducted to determine if
the fact is still implicitly inferred.

Label: when a user attempts to delete C(x)e, a before delete trigger on C changes
this to an update of C(x)e to C(x)d. This update leads to reasoner deletes to
data inferred from C(x)e. For example, because rule (1) means that data in
Man infers the same in Person, an after triggers when +Man(x)d if Person(x)i
then Person(x)d is generated to cause the reasoner to attempt the delete of
x from Person after changing the state of x to d in Man. Similarly, rule (2),
gives a trigger when +Parent(x)d if Human(x)i then Human(x)d, and rule (3)
gives two triggers when +Person(x)d if Human(x)i then Human(x)d and when
+Human(x)d if Person(x)i then Person(x)d. Thus an ontology delete cascades to
attempt reasoner deletes on all inferred facts.

Fig. 5. T3: delete

Thus, as shown in Fig. 5, T3, deleting , first changes Parent(John)e
to Parent(John)d as shown from S2 to S2a . Then, a reasoner delete of
Human(John)i is generated, which leads to the change of Human(John)i to
Human(John)d (i.e. S2a to S2b). Similarly, after S2b , the trigger created on Human
for labelling causes reasoner delete of Person(John)i, changing its state to
Person(John)d. The labelling process is finished as the database becomes S2c .

Check: All data items with the state d are checked to determine if they can be
inferred from the data labelled with i or e. If so, the d is changed to i, otherwise

Transactional and Incremental Type Inference from Data Updates 213

d is changed to ø. In order to perform the check, we create for each table a
datalog-style inference rule (with heads CIQ(x) or PIQ(x,y)), that contains all
the inference logic for the table. The checking is then conducted by the following
trigger created on each table: when +C(x)d if CIQ(x) then C(x)i else C(x)ø.
Obviously, if there is no way to infer data to a table, the inference rule is omitted.
For example, when only considering rules (1)–(3), there are no inference rules
for tables Man and Parent. The inference rule of Person or Human contains two
parts as data can be inferred from the subclass table and the equivalent class
table:

PersonIQ(x):- Man(x)i∨e HumanIQ(x):- Parent(x)i∨e

PersonIQ(x):- Human(x)i∨e HumanIQ(x):- Person(x)i∨e

In Fig. 5, the checking starts from Parent(John)d in S2c . Since ParentIQ(x)
is empty, Parent(John)d is changed to Parent(John)ø (i.e. S2c to S2d). If
Human(John)d is then checked, it is also changed to Human(John)ø (i.e.
S2d to S2e), because the state of John in Parent is ø and in Person is d.
Then, Person(John)d is checked and then changed to Person(John)i because of
Man(John)e (i.e. S2e to S2f). Because of the ‘new’ occurrence of Person(John)i,
then trigger for inferring Human(John)i is invoked, to change the database state
from S2f to S3. Similarly, if we adopt the label &check process to deal with T4

which deletes , the database is changed back to the empty one S0.

2.3 Handling Sub Properties and Transitive Properties

Since space does not permit us to detail how we handle all types of OWL 2
RL axioms, we will outline the general nature of our approach by illustrat-
ing how we implement two more constructs. Suppose the ontology contains a

axiom and a axiom
. These can be implemented as the fol-

lowing triggers:

when +hasParent(x,y)e∨i then hasAncestor(x,y)i
when +hasAncestor(x,y)e∨i if hasAncestor(y,z)e∨i then hasAncestor(x,z)i
when +hasAncestor(y,z)e∨i if hasAncestor(x,y)e∨i then hasAncestor(x,z)i

Inserting hasAncestor(John, Jack)e will infer no additional facts, but inserting
fact hasParent(Jack,Mike)e will infer hasAncestor(Jack,Mike)i, and this addition
will continuously infer hasAncestor(John,Mike)i. The inference rule of hasAncestor
has two parts:

hasAncestorIQ(x,y):- hasParent(x,y)e∨i

hasAncestorIQ(x,z):- hasAncestor(x,y)e∨i, hasAncestor(y,z)e∨i

3 Implementation as SQOWL2

In this section, we describe the implementation of our approach, called SQOWL2.
It uses the OWL API [5] to load an ontology, and applies Pellet [15] for the

214 Y. Liu and P. McBrien

T-Box classification. SQOWL2 currently generates triggers to work on Postgres
and on Microsoft SQL Server, and we believe it can be extended to support any
mainstream RDBMS.

The state of each data item can be intuitively represented by creating a
column st to each relational table. However, exposing such an extra column to
users will expose the details of the reasoning implementation to user applications.
To avoid this, each ontology has two schemas, a back-end schema SB which
consists of materialised tables storing both data items and their states, and a
front-end schema SF which contains SQL views (i.e. virtual tables) showing only
data items stored in SB. The views and tables are created by using a set of
SQL CREATE VIEW and CREATE TABLE statements, based on the following
mappings of classes and properties to Datalog rules:

SF.C(id) :- SB.C(id,st)
SF.P(domain,range) :- SB.P(domain,range,st)

Schema SF is used for accepting any inserts and deletes. Then, these database
operations are transferred to SB, where the type inference is processed.

SQL BEFORE triggers (PL/pgSQL) or INSTEAD OF triggers (Transact SQL)
are used to implement − events, and SQL AFTER triggers are used for + events.
All triggers are implemented with table-level semantics rather than row-level
semantics to improve the performance of type inference. For example, in the
physical trigger created on Man in SB for when +Man(x)e∨i then Person(x)i,
when a transaction inserts multiple data items to SB.Man, all inserted items will
be inserted to SB.Person as one reasoner insert rather than inserting each of them
separately. When implementing triggers for deletes, the labelling process must
be guaranteed to finish before starting the checking process. This is achieved
by creating ‘before delete’ triggers on views in SF to control the labelling and
checking which are really processed in SB. On each table in SB, we create SQL
DELETE triggers for labelling, and UPDATE triggers for checking.

Finally, we create indices for the column (id) on each class table, and for
two pairs of columns (domain,range) and (range,domain) on each property table.
These indices improve the query processing performance, both in reasoning, and
in user applications.

4 Evaluation

This section1 compares SQOWL2 to Stardog and OWLim. Stardog is a non-
materialising reasoner, while OWLim is a materialising reasoner. They both store
their data outside of an RDBMS, and do not provide transactional reasoning.

For the comparison of speed of incremental type inference and query process-
ing, we used the well known Lehigh University Ontology Benchmark
(LUBM) [3], which covers a university domain. It provides a T-Box of 43 OWL

1 All experiments were processed on a machine with Intel i7-2600 CPU @ 3.40 GHz,
8 Cores, and 16GB of memory, running Microsoft SQL Server 2014. SQOWL2 uses
OWL API v3.4.3 for ontology loading and Pellet v2.3.1 for classification. For com-
parisons, we used OWLim-Lite v5.4.6486 and Stardog-Community v2.2.1.

Transactional and Incremental Type Inference from Data Updates 215

classes, 32 OWL properties and approximately 200 axioms. LUBM also offers 14
benchmark queries which we numbered as Q1–Q14, and an A-Box generator to
produce data sets of different size. In this section, we use L-n to denote a set of
A-Boxes which contains n universities (each university contains approximately
100,000 class & property instances).

To evaluate the completeness of SQOWL2, we compared the results of
answering LUBM queries by SQOWL2 to those of Pellet (a complete reasoner),
but also used SQOWL2 to process more generic and exhaustive test suites gen-
erated by SyGENiA [16]. SyGENiA generates a test suite for a given query and
a T-Box. Each test suite contains all possible inference logic that infers answers
to this query w.r.t. the T-Box. If a reasoning system successfully passes the test
suite, it is complete to answer this query w.r.t. the T-Box and any arbitrary
A-Box of data.

4.1 Performance of Incremental Type Inference

Data Loading: We loaded into each system LUBM with four A-Box sizes (i.e.
L-25, L-50, L-100 and L-200). Table 1 shows the loading time needed by each
system, and Table 2 demonstrates the speed of data loading by them. All systems
showed scalable data loading as each system’s data loading time grew linearly
from L-25 to L-200. The speed of loading different data sets by each system

Table 1. Data loading time (s)

L-25 L-50 L-100 L-200
SQOWL2 583 1,115 2,133 4,465
OWLim 78 159 335 742
Stardog 14 26 51 -

Table 2. Data loading speed
(inserts/s)

L-25 L-50 L-100 L-200
SQOWL2 5,684 5,966 6,176 5,978
OWLim 42,067 41,623 39,946 35,933
Stardog 242,323 262,752 271,332 -

Table 3. Data deleting speed
(deletes/s)

L-25 L-50 L-100 L-200
SQOWL2 305 587 420 224
Stardog 29,268 28,759 28,903 -

Table 4. Avg. query processing speed
(q/m)

L-25 L-50 L-100 L-200
SQOWL2 1,253 949 519 36
OWLim 446 229 102 42
Stardog 39 17 5 -

Table 5. Detailed query processing time w.r.t. L-100 (ms)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
SQOWL2 0 481 0 2 7.2 38 1 112 931 0 14 4.2 5.4 22
OWLim 476 1,969 1 5.4 8 290 2.6 1,368 3,831 1.2 1.8 86 2.4 155
Stardog 57 830 55 90 58 157,022 879 2,178 831 1,106 57 89 57 52

- Stardog-Community cannot handle L-200, as the size of L-200 exceeds the license limitation.

216 Y. Liu and P. McBrien

was stable (e.g. Data loading speed of SQOWL2 was around 6,000 inserts/s).
Stardog was the fastest, as it does not perform reasoning during data loading.
SQOWL2 was the slowest, because it performs type inference as part of database
transactions with full ACID properties, and materialises the result of reasoning
during inserts. Indeed, due to the overheads associated with providing ACID
properties for database updates, even without reasoning (i.e. with SQOWL2
triggers), the speed of data loading for LUBM in the SQL Server database used
for testing was around 14,600 inserts/s. Thus, the process of reasoning caused a
significant, but not impractical overhead to normal RDBMS database operations.

Data Deleting: After data loading, we used each system to execute a number
of random deletes translated from A-Box data. Table 3 only shows the aver-
age speed of handling deletes by SQOWL2 and Stardog, as the Lite version of
OWLim performs the whole reasoning again after deleting any facts. Again, as
Stardog does not consider reasoning when inserting or deleting facts, its speed
of data deleting was stable over different datasets, and was much faster than
SQOWL2. As expected, the label & check process meant that the speed of han-
dling deletes by SQOWL2 decreased when processing deletes from larger data
sets, except from L-25 to L-50. The reason for this improvement was the RDBMS
switching to a more efficient query plan when moving from L-25 to L-50. Due to
the cost of the reasoning process, SQOWL2 caused a significant overhead when
comparing with the speed of processing deletes without considering reasoning
(but with indicies created), which is at about 20,000 deletes/s.

4.2 Performance of Query Processing

Completeness: We used SQOWL2 to process the 14 LUBM queries over L-1,
and our experiment shows that SQOWL2 generated exactly the same answers as
Pellet; therefore, SQOWL2 is sound and complete for processing the 14 queries
over L-1. However, since the LUBM benchmark data is not very exhaustive [2],
we further used our system to process the test suites generated by SyGENiA
for the LUBM T-Box and the 14 queries. SQOWL2 passed all test suites, and
therefore is complete for the 14 queries w.r.t the T-Box and any arbitrary LUBM
A-Boxes. In [16], the most complete system out of four tested was found to be
OWLim. Our tests show even now it provides incomplete answers for Q6, Q8
and Q10 with completeness 0.96, 0.93 and 0.96 respectively (the completeness
level of processing each test suite is calculated as dividing the number of passed
inference cases in this test suite by the number of all inference cases contained
in this test suite). For example, Q6 is incomplete, since OWLim does not totally
handle reasoning which includes existential quantification.

Efficiency: We used the three systems to answer queries over different LUBM
data sets and recorded the time used for executing each of the queries. Table 4
shows the average speed when processing queries (i.e. how many queries on
average can be processed per minute) by each of the three systems. The speeds
of query processing by SQOWL2 or OWLim were much faster than Stardog,

Transactional and Incremental Type Inference from Data Updates 217

because the two systems store explicit and implicit data at the data load-
ing stage. For example, the average speed for executing queries over L-100 by
SQOWL2 was about 100 times as fast as Stardog. When only comparing the
two materialisation-based systems, SQOWL2’s average speed was significantly
faster than OWLim for L-25, L-50 and L-100, and was comparable to OWLim
for L-200. The average speed of query processing by SQOWL2 dropped sharply
from L-100 to L-200 due mostly to Q2 (which needed 0.48 s over L-100 but 21 s
over L-200). The query plans used by the RDBMS show that it chose Nested
Loops for joining tables when processing Q2 over L-200, which is less efficient
than the Hash Match used over L-100. We intentionally did not tune the database
to solve this problem, but note that as in any RDBMS application, larger data
sets may require certain queries to be manually tuned by a database adminis-
trator.

A more detailed query processing time needed for executing each query by
three systems w.r.t. L-100 is shown in Table 5. SQOWL2 outperformed OWLim
when answering 12 of 14 queries, (i.e. SQOWL2 was slightly slower when process-
ing Q11 and Q13). SQOWL2 was much faster than Stardog when processing all
LUBM queries, except Q9, which was just slightly slower than Stardog. Stardog
was significantly slower when answering Q6 and Q10 than both SQOWL2 and
OWLim, since these two queries are very complex to rewrite and compute the
answers (169 and 168 inference cases are respectively contained in the test suites
generated by SyGENiA for Q6 and Q10).

5 Related Work

Reasoning over large scale data can be classified as dynamic and materialised
approaches. Systems using the former approach (e.g. DLDB [13], Stardog [14]
and Ontop [1]) store only explicit facts and conduct reasoning only when there
is a query executed over the ontology (i.e. query rewriting methods), where no
incremental type inference is required. DLDB can be considered as transactional
reasoning system, as it uses temporal views inside an RDBMS as a manner to
rewrite executed queries. Reasoning systems based on materialised approaches
store both explicit and implicit data, in order to provide a fast query processing
service [9]. Most systems tend to perform reasoning outside an RDBMS (i.e. not
proper transactional reasoning), even though they still choose an RDBMS as a
possible data container. WebPIE [17], as a sample inference engine, applies the
MapReduce model and builds the reasoning mechanism for RDFS and OWL
ter Horst semantics on top of a Hadoop cluster. WebPIE only supports incre-
mental data loading but not deleting. OWLim [6] is another triple-store system,
which uses a file system instead of an RDBMS as a container for storing seman-
tic data. Its standard and enterprise versions support incremental data loading
and deleting, but not in a transactional manner. RDFox [12] adopts a so called
Backward/Forward algorithm (can be more efficient than DRed in some cases)
to achieve incremental reasoning without using an RDBMS, and it is not a
transactional reasoning system. Minerva [19] only uses an RDBMS to hold the

218 Y. Liu and P. McBrien

materialised results generated by an extra reasoner outside the RDBMS, so we
do not consider it as a transactional or incremental reasoning system. Oracle’s
RDF store [18], by contrast, loads the explicit data in advance, and then uses
inference rules to generate an inference closure of the loaded data. Although the
reasoning is inside the database, it is not performed in an incremental manner.

6 Conclusion

We have demonstrated an approach using SQL triggers which extends an
RDBMS to have type inference capabilities. We are the first approach to pro-
vide transactional and incremental type inference from both inserts and deletes
of A-Box data, and holding data in an RDBMS allows ontology reasoning to
be integrated into mainstream data processing. The evaluation shows that our
SQOWL2, compared to two fast reasoners, is faster at query processing, and the
completeness of query answering is comparable to or better than the same task
for other rule-based engines. Of course, the approach is unsuited to applications
where the inferred data is very large, and queries are relatively infrequent com-
pared to updates. As our approach is built as a separate layer over the RDBMS,
our work has not yet addressed the key issue of optimising the efficiency of han-
dling updates to be as fast as the other engines which are specially designed for
triple store (e.g. OWLim and RDFox), which is the subject of our future work.

References

1. Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti, D., Rezk, M.,
Rodŕıguez-Muro, M., Slusnys, M., Xiao, G.: The ontop framework for ontology
based data access. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z.
(eds.) CSWS 2014. CCIS, vol. 480, pp. 67–77. Springer, Heidelberg (2014)

2. Grau, B.C., Motik, B., Stoilos, G., Horrocks, I.: Completeness guarantees for
incomplete ontology reasoners: theory and practice. J. JAIR 43(1), 419–476 (2012)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

4. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
In: Proceedings of SIGMOD, pp. 157–166 (1993)

5. Horridge, M., Bechhofer, S.: The OWL API: a Java API for owl ontologies. Semant.
Web 2(1), 11–21 (2011)

6. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM-a pragmatic semantic repository
for OWL. In: Proceedings of WISE, pp. 182–192 (2005)

7. Liu, Y., McBrien, P.: SQOWL2: transactional type inference for OWL 2 DL in an
RDBMS. In: Description Logics, pp. 779–790 (2013)

8. McBrien, P.J., Rizopoulos, N., Smith, A.C.: SQOWL: type inference in an RDBMS.
In: Parsons, Jeffrey, Saeki, Motoshi, Shoval, Peretz, Woo, Carson, Wand, Yair (eds.)
ER 2010. LNCS, vol. 6412, pp. 362–376. Springer, Heidelberg (2010)

9. McBrien, P., Rizopoulos, N., Smith, A.C.: Type inference methods and perfor-
mance for data in an RDBMS. In: Proceedings of SWIM, p. 6 (2012)

10. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web
ontology language profiles. W3C Recommendation 27, 61 (2007)

Transactional and Incremental Type Inference from Data Updates 219

11. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental Update of Datalog Mate-
rialisation: The Backward/Forward Algorithm. AAAI Press, California (2015)

12. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In: Proceedings
of the AAAI, pp. 129–137 (2014)

13. Pan, Z., Zhang, X., Heflin, J.: DLDB2: a scalable multi-perspective semantic web
repository. In: Proceedings of WI-IAT 2008, pp. 489–495 (2008)

14. Pérez-Urbina, H., Rodrıguez-Dıaz, E., Grove, M., Konstantinidis, G., Sirin, E.:
Evaluation of query rewriting approaches for OWL 2. In: Proceedings of SSWS+
HPCSW, vol. 943 (2012)

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl
reasoner. J. Web Semant. 5(2), 51–53 (2007)

16. Stoilos, G., Grau, B.C., Horrocks, I.: How incomplete is your semantic web rea-
soner? In: AAAI (2010)

17. Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: WebPIE: a web-
scale parallel inference engine using mapreduce. J. Web Semant. 10, 59–75 (2012)

18. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in oracle. In: Proceedings of ICDE, pp. 1239–1248 (2008)

19. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: a scalable OWL
ontology storage and inference system. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F.
(eds.) ASWC 2006. LNCS, vol. 4185, pp. 429–443. Springer, Heidelberg (2006)

Author Index

Ailamaki, Anastasia 199
Al Azwari, Sana 74
Al Fayez, Reem Qadan 29

Böttcher, Stefan 186
Buda, Teodora Sandra 95

Calì, Andrea 41
Cao, Yang 49
Čebirić, Šejla 87
Cerqueus, Thomas 95
Chen, Hongmei 62
Cormode, Graham 3

Deßloch, Stefan 139
Dimartino, Mirko M. 41
Donoghue, Jim O’ 120

Fan, Wenfei 49

Gertz, Michael 9
Goasdoué, François 87
Grossniklaus, Michael 108

Hagedorn, Stefan 9
Hartel, Rita 186
Hedley, Yih-ling 133
Heinis, Thomas 199

Iqbal, Rahat 133

Jacobs, Thomas 186
James, Anne E. 133
Jeromin, Markus 186
Joy, Mike 29

Kristiansen, Morten 95

Liu, Yu 206
Lü, Kevin 62

Ma, Shuai 49
Mahmood, Khalid 152, 173
Manolescu, Ioana 87
McBrien, Peter 206
Murphy, John 95

Nanos, Antonios G. 133

Poulovassilis, Alexandra 41

Risch, Tore 152, 173
Ritter, Daniel 16
Roantree, Mark 120

Sattler, Kai-Uwe 9
Schildgen, Johannes 139
Scholl, Marc H. 108

Tauheed, Farhan 199
Truong, Thanh 152

Wang, Lizhen 62
Weiler, Andreas 108
Wiese, Lena 157
Wilson, John N. 74
Wood, Peter T. 41

Yang, Peizhong 62

Zhou, Lihua 62
Zhu, Minpeng 173

	Preface
	Organization
	Keynotes/Invited Lectures
	Big Data Curation
	Dealing with a Web of Data
	Statistical Thinking in Machine Learning
	Streaming Methods in Data Analysis
	The Power of Visual Analytics:
Unlocking the Value of Big Data
	Differential Privacy and Preserving Validity
in Adaptive Data Analysis

	Contents
	Invited Lectures
	Streaming Methods in Data Analysis
	1 Introduction
	2 Outline
	References

	Data Integration
	A Framework for Scalable Correlation of Spatio-temporal Event Data
	1 Introduction
	2 Event Data Model
	3 Techniques for Correlating Event Data
	4 A Spark-Based Correlation Framework
	5 Use Cases
	6 Conclusions and Ongoing Work
	References

	Towards More Data-Aware Application Integration
	1 Introduction
	2 Motivating Example and General Approach
	2.1 The Convergent Charging Scenario
	2.2 General Approach

	3 Table-Centric Integration Patterns
	3.1 Canonical Data Model
	3.2 Message Routing Patterns
	3.3 Message Transformation Patterns

	4 Experimental Evaluation
	4.1 Setup
	4.2 ``Single-Record''/``Multi-Format'' Table Message Processing
	4.3 Outlook: ``Multi-record'' Table Message Processing

	5 Related Work
	6 Concluding Remarks
	References

	Applying NoSQL Databases for Integrating Web Educational Stores - An Ontology-Based Approach
	1 Introduction
	2 Background and Related Work
	3 LEMO Triple RDF Store
	4 Ontology-Based Annotations
	4.1 SNOMED CT and MeSH Ontologies
	4.2 EMOs Annotation Enrichment

	5 Results and Discussion: MeSH vs. SNOMED Ontology
	5.1 Discovering Subjects Using Ontologies
	5.2 Links Analysis
	5.3 Ontology-Based Access

	6 Conclusions and Future Work
	References

	Implementing Peer-to-Peer Semantic Integration of Linked Data
	1 Introduction
	2 Theoretical Foundations
	3 Overview of the System
	4 Current and Future Work
	References

	Graph Data
	Virtual Network Mapping: A Graph Pattern Matching Approach
	1 Introduction
	2 Graph Pattern Matching Model
	2.1 Substrate and Virtual Networks
	2.2 Virtual Network Mapping

	3 Case Study
	4 Complexity and Approximation
	4.1 The Complexity of VNM
	4.2 Approximation of Optimization Problems

	5 Related Work
	6 Conclusion
	References

	A Fast Approach for Detecting Overlapping Communities in Social Networks Based on Game Theory
	Abstract
	1 Introduction
	2 Related Work
	3 A Game Theory-Based Approach for Community Detection
	3.1 Group Game
	3.2 Individual Game
	3.3 The Game Theory-Based Algorithm for Community Detection

	4 Experiments
	4.1 Real Networks
	4.2 Benchmark Networks

	5 Summary
	Acknowledgement
	References

	Consistent RDF Updates with Correct Dense Deltas
	1 Introduction
	2 Related Work
	3 RDF Change Detection Techniques
	4 Checking the Dense Delta
	5 Results and Discussion
	6 Conclusion and Future Work
	References

	Query-Oriented Summarization of RDF Graphs
	1 Introduction
	2 RDF Graphs and Summary Requirements
	3 RDF Summaries
	References

	Data Exploration
	ReX: Extrapolating Relational Data in a Representative Way
	1 Introduction
	2 Potential Scaling Strategies
	3 ReX: Extrapolation System
	3.1 Key Attributes Generation
	3.2 Non-key Attributes Generation
	3.3 Approach

	4 Evaluation
	4.1 Results and Observations

	5 Related Work
	6 Conclusion and Future Work
	References

	Evaluation Measures for Event Detection Techniques on Twitter Data Streams
	1 Introduction
	2 Background
	2.1 Evaluation of Event Detection Approaches
	2.2 Available Corpora for Evaluation

	3 Measures
	4 Event Detection Approaches
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

	A Framework for Selecting Deep Learning Hyper-parameters
	1 Introduction and Motivation
	2 CDN - The Configurable Deep Network Architecture
	2.1 Framework Overview
	2.2 Regression
	2.3 Multi-layer Perceptron
	2.4 Restricted Boltzmann Machine
	2.5 Deep Belief Network

	3 Experimental Set-Up and Design
	3.1 Dataset Preparation and Preprocessing
	3.2 Experimental Procedure and Parameter Initialisation

	4 Experimental Results and Analysis
	4.1 Evaluation Metrics
	4.2 Regression: Search for DBN Learning Rate and Regularisation Term
	4.3 RBM: To Select Optimum Node Count in First Hidden Layer of DBN
	4.4 MLP: To Select Optimum Node Count in Final Hidden Layer of DBN
	4.5 DBN: Comparing Configurations

	5 Related Research
	6 Conclusions and Future Work
	References

	Using Virtual Meeting Structure to Support Summarisation
	Abstract
	1 Introduction
	2 Related Work
	3 Our Summarisation Approach
	4 Experimental Results
	5 Conclusion and Future Work
	References

	NoSQL and Distributed Processing
	NotaQL Is Not a Query Language! It's for Data Transformation on Wide-Column Stores
	1 Motivation
	2 Related Work
	3 Transformations on Wide-Column Stores
	3.1 Mapping of Input Cells to Output Cells
	3.2 Predicates
	3.3 Graph-Processing Applications
	3.4 Text Processing

	4 NotaQL Transformation Platform
	5 Conclusion
	References

	NoSQL Approach to Large Scale Analysis of Persisted Streams
	Abstract
	1 Introduction
	2 Application Scenario
	3 Challenges in Analyzing Large Scale Persisted Streams
	4 Proposed Work
	References

	Horizontal Fragmentation and Replication for Multiple Relaxation Attributes
	1 Introduction
	1.1 Organisation of the Article

	2 Background and Example
	2.1 Query Generalization
	2.2 Clustering-Based Fragmentation
	2.3 Data Distribution as a Bin Packing Problem

	3 Overlaps and Multiple Relaxation Attributes
	3.1 Data Replication for Overlapping Fragments
	3.2 Reducing the Amount of Variables

	4 Experimental Study
	5 Related Work
	6 Conclusion and Future Work
	References

	Scalability
	Scalable Queries Over Log Database Collections
	Abstract
	1 Introduction
	2 FLOQ
	2.1 The FLOQ Schema
	2.2 Example Queries

	3 Join Strategies
	3.1 Cost Model for Join Strategies
	3.2 Discussion

	4 Performance Evaluation
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

	ECST -- Extended Context-Free Straight-Line Tree Grammars
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Paper Organization

	2 Grammar-Based Compression and Basic Update Operations
	2.1 An Example Using CSLT Grammar-Based Compression
	2.2 Extended CSLT Grammars
	2.3 Isolating the Path to Be Updated
	2.4 Basic Update Operations Using Ranked Parameter Symbols
	2.5 Modifying the Grammar Path

	3 Simulating Queries and Updates on ECST Grammars
	3.1 Assumptions and Problem Definition
	3.2 Overview of the Query Phase and the Update Phase
	3.3 Simulating a Preorder Walk Through X on an ECST Grammars G
	3.4 Computing the Grammar Paths for Answers to a Query Q

	4 Related Work
	5 Summary and Conclusions
	References

	Configuring Spatial Grids for Efficient Main Memory Joins
	1 Introduction
	2 Grid-Based Spatial Join
	2.1 Building Step
	2.2 Probing Step

	3 Configuring the Grid-Based Spatial Join
	3.1 Impact of Data Skew
	3.2 Impact of Grid Resolution
	3.3 Analytical Model
	3.4 Optimal Grid Resolution

	4 Conclusions
	References

	Transactional and Incremental Type Inference from Data Updates
	1 Introduction
	2 Our Approach
	2.1 The State of Each Data Item
	2.2 Transactional and Incremental Type Inference by Triggers
	2.3 Handling Sub Properties and Transitive Properties

	3 Implementation as SQOWL2
	4 Evaluation
	4.1 Performance of Incremental Type Inference
	4.2 Performance of Query Processing

	5 Related Work
	6 Conclusion
	References

	Author Index

