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Abstract Phytochelatins (PCs) are nonprotein cysteine-rich oligopeptides having

the general structure of (γ-glutamyl-cysteinyl)n-glycine (n¼ 2–11). They are syn-

thesized from the precursor glutathione (a reduced form, GSH) by the activity of
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phytochelatin synthase (PCS). The biosynthesis is stimulated by several heavy

metals (HMs), especially Cd and metalloid As. PCs can bind to various HMs like

Cd, As, Cu, Pb, Zn, and Ag, via their sulfhydryl (–SH) and carboxyl (–COOH)

groups. The complexations become more stable and massive in vacuole where acid-

labile sulfides (S2�) are incorporated to make the PCs–S–HMs conjugates. Both the

thiols and S2� are originated from sulfate through a partially common energy-

dependent metabolism (sulfur assimilation), which is again enhanced by Cd,

besides essential metals (Co, Mg). To date, fundamental roles of PCs and also

related iso-peptides such as hPCs in intracellular detoxification and/or transport of

HMs are well demonstrated in various plants, especially in experiments targeting

genes and enzymes for PC and GSH biosynthesis. However, how they function as a

defense molecule in the oxidative stresses or other biological processes are still

unknown or conceiving subtle problems. Some of the possible functions are

highlighted in this chapter as tentative examples for further discussion: (1) PCs–

S–HMs complex as a potent pool/stock of thiols or reducing powers to be reusable

for further robustious responses by the tolerant plants against various abiotic and

biotic stresses including oxidative stress and (2) PCs as a possible mediator for

metal translocation or redistribution via phloem rather than xylem, regardless of a

trait of “hyperaccumulator” for HMs in land plants. Apart from the positive roles of

PCs in HM-tolerant plants, arguments still hot arise an issue (3) the roles of PCs,

GSH, and other thiols as delicate barometer or indicators in the mineral and redox

balance and/or homeostasis, in addition to their well-known functions being sub-

strates and antidotes. In the absence of HMs, the levels of PCs are too minute to

account for their sufficient bindings to the essential metals. Although GSH is

ubiquitous and abundant, it is a multifunctional peptide that rapidly consumed or

oxidized for numerous enzymic or nonenzymic antioxidants/redox systems as well

as direct substrate for PCS. Eventually, importance of preservation of thiols and

sulfide (S2�) as resource for reducing powers in sensitive sessile plants against

various oxidative stresses is again emphasized in return for PCs in the HM-tolerant

plants in metalliferous habitats.

Keywords Glutathione • Heavy metal • Phytochelatin • Reactive oxygen species •

Thiol-sulfide pool

1 Introduction

Degradation of environmental quality due to metal and metalloid pollution has

become a universal problem. Dispersions of untreated industrial and municipal

wastes are widespread and create instability of natural equilibrium increasing the

risk that the toxic pollutants would inflict their harmful effects upon the ecosystem

and the individual organisms in the community. Constituting a diverse group of

elements, heavy metals (HMs) having a density equal or greater than 4.0 or

5.0 g/cm3 vary in their chemical characteristics, biological functions, and toxicity

(Chatterjee et al. 2007). Most of them are microelements essential and vital for
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plant growth and nutrition at optimum concentrations but toxic at excessive con-

centrations (i.e., supra-optimal concentration). The others are nonessential and just

toxic even at low concentrations, simply called as “toxic HMs.” Among the

representatives as shown in Table 1, Cd, Pb, Hg, and Ni are very toxic. As is a

metalloid but often put in to a member of HMs for convenience mainly because of

the highly poisonous chemical property. Those elements are actually listed up in the

high rankings applied for the various toxic and hazardous chemicals, i.e., As, Pb,

Hg are no.1–3, and Cd is no.7 of the list (CERCLA 2007).

Table 1 Some symptoms and remarks related to HM attacks in plant functions and metabolisms

HM Essential

Redox

active

ROS

yield

Molecules targeted and

damages (compositional

molecules or enzymes)

HMs-

binding

ligands

Transporter:

membrane

(tonoplast)

Cd n (no) n (no) y

(yes)

Damages in Zn/Ca/Cu-

enzymes, kinases, and DNA.

Chorosis, lignification, PCD

PC,

GSH,

S2�

ZIP, YSL,

NRAMP

(ABC, CAX,

HMA, CDF)

Ni n n y Mg/Zn-protein, chlorosis,

necrosis

GSH,

PC, His

ZIP, YSL

(CDF)

Pb n n y Damages in pigments, mem-

brane permeability, enzyme

activities

PC, S2� HMA, ABC?

(HMA)

Hg n n y Membrane, aquaporin,

exo-glucanase, other SH

enzymes, phytotoxic, plastid

GSH,

(PC),

S2�

? (ABC)

Asa n n y Disturbance of P and Si, dam-

ages in DNA and SH enzymes

PC,

GSH,

Cys

PiT, NIP

(ABC)

Zn y n y Lipid, protein, DNA damage

if excess (SOD, RNA poly-

merase, ADH, CA, many

Zn-enzymes)

PC,

GSH,

MA, CI,

NA

ZIP, HMA,

YSL (ZAT,

HMA, FDR,

CDF, CAX)

Co y y y Chlorosis, necrosis if excess

(VitamineB12)

PC

GSH

HMA (CDF)

Cr n y y Cell membrane, plastid GSH,

(PC?)

?

Cu y y y Chromosome or nucleus

changes if excess

(Cu-enzymes, SOD, cyt-c,

cyanin)

GSH,

(PC),

S2�,
NA,

YSL (HMA)

Fe y y y Phytotoxic if excess (SOD,

Cyt-c, Fd, other redox

enzymes, heme, plastids)

MU,

NA

ZIP, NRAMP,

YSL (CDF)

PC phytochelatin (including hPC and iso-PC), GSH glutathione (+hGSH), NA nicotianamine,MU
mugineic acids, His histidine, MA malate, CI citrate, PiT phosphate transporter, CA carbonic

anhydrase, ADH alcohol dehydrogenase. See text for other abbreviations. After Shahid

et al. (2014) and Socha and Guerinot (2014)
aMetalloid
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The toxicity of HMs lead to interference with metabolism and other biological

activities through the generation of reactive oxygen species (ROS) such as super-

oxide radical (O2
•�), hydroxyl radical (•OH), and hydrogen peroxide molecule

(H2O2), in addition to their direct disruptive functions to the essential enzymes

and other molecules (Prasad and Freitas 2003). HMs are divided into two groups

(redox-active or -inactive) for the characteristics whether or not having a redox

activity by itself to produce free radicals (Viehweger 2014). According to this

category, Fe, Cu, Cr, Co, Mn, and V are redox-active, and most of the rests

(including Cd, Zn, Ni, Pb, and As, as noted above) are redox-inactive like Al and

Na in light metals (Hossain et al. 2012a; Shahid et al. 2014). The redox-active

metals are directly involved in the redox reaction in cells resulting in the formation

of O2
•� and •OH radicals, while the redox-inactive metals indirectly increase the

levels of O2
•�, •OH, and H2O2 by inhibiting various enzyme activities directing

towards ROS sequestrations (Hossain et al. 2012b; Shahid et al. 2014). After all

HMs are responsible in activating ROS formation and causing strong oxidative

stress in plant cells. In conjunction to this commonality, anti-oxidation systems and

processes that resume the HMs-induced stresses have attracted attention of scien-

tists and experts (Shahid et al. 2014). Various types of anti-oxidative systems

operate using many types of molecules. These are named as the redox (reduction

and oxidation) cycling molecules, quenching antioxidant molecules (low molecular

substances with anti-oxidation powers), detoxification enzymes (high molecular

proteins involved in sequestration of ROS using low molecular antioxidants or

substrates), etc. In these systematic strategies, quantitatively abundant molecules

used are small antioxidants such as GSH and ascorbic acid (AsA), which reach or

exceed 1 mM order at the intracellular concentrations. These play a central role in

the maintenance of redox status and the nutritional homeostasis by buffering or

pooling of the reducing powers within the soluble organic matters that are usable

for the respective cases and places in plants under HMs and/or oxidative stresses.

Concurrently, biological roles of these and other antioxidation systems especially in

relation to plant’s HM stress have been reviewed by several researchers (Shahid

et al. 2014).

As measures to deduce the toxic HM ions within plant cells, vacuolar compart-

mentalization has been also suggested. However, traffic movements of HMs as an

inert binding form from the outside to vacuole are necessary through the cytoplasm,

the vital site of cells. Here, plant cells produce quite unique HMs-chelating thiol

peptides named phytochelatins (PCs) (Grill et al. 1987; Rauser 1999; Inouhe 2005).

These peptides were first recognized to be present in Cd-binding complexes in

plants and yeast cells exposed to Cd as peptides having a function homologous to

metallothioneins (MTs) in animals and other living organisms (Rauser 1999). It has

been demonstrated that PCs are derivatives from glutathione (GSH), after all, not a

protein unlike MTs (Rauser 1999; Inouhe 2005). The roles of PCs in HMs binding

and detoxification have been demonstrated in various plants. However, their roles

in the other biological processes and functions are still unknown in plants and other

living organisms and now being very important questions to be addressed.
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Further, mechanisms that appear independent from PCs and PC-related peptides

have been reported from different aspects, i.e., plant species, HMs, and various

molecular species involved in HM sequestration and/or transportation. Especially,

regulation at transportation level can be useful as HMs defense mechanism by

blocking the entrance via traffic channel or eliminating the toxic matter to outside

of cells or plants. These defense mechanisms as well as intracellular PC- and

antioxidant-mediated mechanisms are all required for normal life cycles of sessile

plants that depend on the mineral uptakes and photosynthetic activities under

different environmental conditions.

In this chapter, we summarize some information’s of HMs-induced oxidative

stress in plants, especially focusing on the functions of PCs and other thiols.

Thereafter, some pros and cons for their biological functions of them and later

are taken for discussion about a possible benefit for the pooling of PCs, GSH, and S

metabolites. All these topics are highlighted on what factors are best involved in the

decrease in ROS evolution in cells.

2 Input and Impact of HMs

2.1 Route into Plant Cells from Environment

Natural or anthropogenic routes are the major source of Cd contamination in soil.

Natural or edaphic stress factors may influence plants development, growth, or

productivity due to alteration of concentrations of different bio-reactive metals

(Schützendübel and Polle 2002; Chatterjee et al. 2011). Natural phenomenon like

Cd-rich rock weathering can enhance natural mineral outcrops which in turn pollute

the environment. While, burning of fossil fuels such as coal or oil and the inciner-

ation of municipal wastes, cement factories, and as a by-product of phosphate

fertilizers are the major anthropogenic sources of the Cd in environment (Mengel

et al. 2001; Chen 2005; Kirkby and Johnson 2008; Lux et al. 2011). The concen-

trations of Cd may be up to 40–300 nM in natural non-polluted soils; however, the

concentration may increase with clay concentration up to 1 μg/g dry soil (Wagner

1993; Mengel et al. 2001; Inaba et al. 2005). Availability of Cd to plants is greater

in acid soils and its solubility increases with exudates of roots (Mengel et al. 2001;

Lux et al. 2011). Delivery of Cd to plant roots is dominated by a transpiration-

driven mass-flow process of the soil solution (Sterckeman et al. 2004; Ingwersen

and Streck 2005).

Accumulation of HMs such as Ni, Pb, and Hg is also the result of several

anthropogenic activities (Gupta et al. 2013a). Nonessential metals like Cd, As,

Pb, and Hg present along with the essential one may also enter into the plant

systems. Varied tactics are followed by plants in response to HMs toxicity, which

include immobilization, exclusion, chelation, and compartmentalization of the

metal ions, and expression of the general stress responses (Cobbett 2000). Several

plants have been identified that possess the unique capability to live on toxic
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conditions at HMs contaminated sites and also been found to accumulate a consid-

erable amount of such metals within their biomass (hyperaccumulators). Various

studies have shown that natural hyperaccumulators like As hyperaccumulating fern

species Pteris vittata (Gumaelius et al. 2004) and Ni hyperaccumulating species

Thlaspi caerulescens (Freeman et al. 2004) can withstand higher amount of metal

accumulation without having significant damage within cell system. Further studies

on the conspicuous properties and functions of the hyperaccumulators will disclose the

different and diverse mechanisms for HMs detoxification by plants (Inouhe et al. 2012).

2.2 Toxicity to Plant Cells

Biological impacts of HMs are different by the metal species, as well as plant

species, their origins, growth stage, and condition. For example, Cd is very toxic for

plants even at low concentrations and often interferes with other essential metals

containing enzymes (enzymes of Zn, Fe, Cu, Mn, Mg, and Ca) by displacing these

elements (Wagner 1993). Cd primarily damages photosystems and some other

enzyme systems in plants. As noted earlier, Cd is a redox-inactive metal, like Zn

or Ni, but usually accompanies an oxidative stress by causing a transient depletion

of GSH and inhibition of antioxidant enzymes (Romero-Puertas et al. 1999). Thus,

the strong and versatile phytotoxicity of Cd in growth, cell death, photosynthesis,

and induced lignification, etc. are due to these direct and indirect effects (Hossain

et al. 2012b). Ni causes inhibition of growth, chlorosis, necrosis, and flaccidity in

plants, and this toxicity is also due to the generation of oxidative stress. Pb affects

many processes of plants, causing a decrease in photosynthetic pigments, an

increase in membrane permeability, and a disturbance of the mineral nutrition

and affecting many enzyme activities. Hg is known to provoke oxidative stress in

many plants accompanying overall increases in the antioxidant enzyme systems.

Arsenic is not strictly a heavy metal since it is classified as a metalloid. However, it

is an important poison, which induces toxicity in plants. Usually, As is present in

two toxic inorganic forms, arsenate (AsO4
2�) and arsenite. Arsenate disrupts

energy flows in cells and is taken up by plants through high-affinity phosphate

transporters. Arsenite provokes toxicity by reacting with sulfhydryl groups of

enzymes and tissue proteins and consequently resulted in inhibition of cellular

function. Both forms of arsenic induce the formation of ROS leading to oxidative

stress.

Apart from these toxic HMs, some others (microelements) are indispensable for

living organisms at low doses, but exposure of plants above certain metal threshold

concentrations, specific for each one, develops damaging effects linked to distur-

bances of the oxidative balance. Thus, contrary to other HMs reported above, Cu at

an adequate concentration is strictly necessary for plants, since it serves as a

cofactor of enzymes required for normal growth and development such as Cu/Zn-

superoxide dismutase (Cu/Zn-SOD), cytochrome c, or plastocyanin. However,

Cu at high concentrations causes multiple toxic effects in plants. Fe is also a key
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element in a large number of plant metabolic routes requiring a redox exchange.

Although Fe is abundant in soils, its availability is depressed in alkaline soils

provoking to plant Fe deficiency, which is a common nutritional disorder for

many dicotyledonous species. However, an excess of Fe have also phytotoxic

effects. Conclusive remarks with examples for the hazardous effects of HMs in

plants are also shown in Table 1.

Almost all HMs are potently to be toxic if present in excess as free ions (e.g.,

Hg2+) or some organo-metallic forms (e.g., methyl-Hg) that are hydrophilic and

hydrophobic, respectively. As mentioned above, free HM ions penetrated via root

systems are the most probable xenobiotics for plants. Further considerations about

the organic forms of HM contaminants are put aside in this chapter, while this will

be a serious problem if the environmental pollution and contamination proceed and

become more complex in the ecosystems during artificial activities.

2.3 ROS Production

Since pathways in which different ROS evolve are quite complex even in common

plants under the influence of HMs, candidate pathways are shown here briefly

(Fig. 1). ROS are produced during normal aerobic metabolisms, especially in

Fig. 1 Reactive oxygen species (ROS) induced by stresses and the possible antioxidants and

detoxifications enzymes involved in the ROS sequestration in plants. Different abiotic and biotic

stresses including HMs and oxidative stresses induce ROS in different sites in cells of plant tissues.

The antioxidants (mainly in water-soluble forms) and enzymes are collaborating to the ROS

sequestration in cases and places under stresses. GSH is a multifunctional thiol peptide which is

also an important precursor for PCs and other HM-binding substances
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chloroplast, mitochondria, peroxisome, apoplast (cell wall), and plasma membrane.

HMs enhance the formations of ROS such as superoxide anion (O2
•�), hydroxyl

radical (•OH), and H2O2 in those sites by inhibiting the enzymatic or nonenzymatic

antioxidant systems (Shahid et al. 2014). The O2
•� is generated when oxygen

molecule (O2) is reduced via electron transfer or energy transfer reactions. This

radical is toxic but short-lived and readily converted to (H2O2) by the enzyme

superoxide dismutase (SOD). The H2O2 molecule is weaker in toxicity than O2
•�

but stable, long lasting, and permeable across membrane and hence also serves as

inter/intracellular second signals for various oxidative stresses. These ROS are able

to generate much toxic •OH radical, in the presence of redox-active HMs such as Fe

and Cu. This radical is extremely reactive and causes strong oxidation damages in

bio-membranes (usually known as lipid peroxidation reaction trigging a self-

propagating chain reaction in membranes resulting in serious problems of the cell

viability) and in other macromolecules including proteins, DNA, conjugated lipids,

and photosynthetic pigments (Gechev et al. 2006; Hossain et al. 2012a, b). After all,

ROS interact with HMs resulting in various damages in several cell sites and

components (Shahid et al. 2014). ROS production is common in all living cells

but the rate of production of ROS in chloroplasts is increased by influence of

excessive light energy, and HM contamination is quite unique to plants. Typically,

HM stress reduces photosynthesis rate and hence lead to increased production of

ROS such as O2
•� and H2O2 (Takahashi and Murata 2008). These adverse effects of

metal stress can be observed in several places of photosynthesis, including PS I, PS

II, and carboxylating enzymes like RuBisCO and phosphoenol pyruvate carboxyl-

ase (PEPC) (Siedlecka and Baszynaski 1993; Hossain et al. 2012b). Usually PS II

reaction center in the chlorophyll is mostly affected by metals like Cd that replaces

Ca and Mn (Atal et al. 1991). Similarly, ROS generation is also evident in

mitochondria at complex I and the ubiquinone (Q) zone (Blokhina and Fagerstedt

2006). Furthermore, several reports suggest that NADPH oxidase-dependent ROS

induction can take place in response to Cd stress in Pisum sativum (Rodrıguez-

Serrano et al. 2006), As stress in Arabidopsis thaliana (Gupta et al. 2013a), Pb

stress in Vicia faba (Pourrut et al. 2008), Cd and Cu stress in A. thaliana (Remans

et al. 2010), and Ni stress in wheat (Hao et al. 2006).

3 Mechanisms Against Heavy Metal Toxicity

3.1 Overview of Phytochelatin-Binding Defense Mechanism

3.1.1 Phytochelatins

Because details for research history and topics of findings for PCs are available in

reviews (Grill et al. 1987; Cobbett 2000; Inouhe 2005), the framework is shown

briefly. PCs are nonprotein cysteine-rich oligopeptides having the general structure

of (γ-glutamyl-cysteinyl)n-glycine (n¼ 2–11). They are synthesized from the
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precursor GSH by the activity of phytochelatin synthase (PCS), encoded in genes

(PCS1, CAD1) isolated in 1999 at three laboratories (Ha et al. 1999; Vatamaniuk

et al. 1999; Clemens et al. 1999). The PCs biosynthesis is stimulated by several

HMs, especially Cd and metalloid As. PCs can bind to various HMs like Cd, As, Cu,

Pb, Zn, and Ag, via their sulfhydryl (–SH) and carboxyl (–COOH) groups, and

these complexations become more stable and massive in vacuole where acid-labile

S2� are incorporated to make the PCs–S–HMs conjugates. Both the thiols and S2�

are originated from sulfate through a partially common energy-dependent metab-

olism (sulfur assimilation), which is again enhanced by Cd, besides essential

metals. Coordinative roles and functional linkages in these sulfur-containing com-

pounds are expectable as discussed in detail later.

PCs and structurally PC-related peptides have been described in various plants

and other organisms. Initially, PCs with different degrees of polymerization were

reported from more than 300 species of plants and other organisms (Grill

et al. 1989; Gekeler et al. 1989). In angiosperms, more than 23 species of mono-

cotyledonous plants and 90 species of dicotyledonous plants were tested, and all of

the plants were shown to produce PCs after Cd treatments (Gekeler et al. 1989). The

PC synthesis was also confirmed either in suspension cultures or differentiated plant

seedlings of various higher plants as well as in the lower plants that belong to

groups of mosses or ferns (Gekeler et al. 1989). Such ubiquitous occurrences of PC

peptides with the same structures among plant kingdom strongly suggest significant

role of PCs as common metabolites in plants, while their physiological roles in the

absence of heavy metals are still in open question at present, as described later.

Fundamental roles of PCs in intracellular detoxification are well demonstrated in

various plants but especially for Cd (and As). This metal might be nonessential for

most living organisms as so far known; nevertheless, why most plants have the most

favorite response with PCs to this metal remains as an interesting question. Recent

molecular phylogenetics approaches have started disclosing the ubiquitous roles of

widespread PCS enzymes and genes in various organisms, which would have been

diverged, specified, or converged during more than hundred billions of years of

evolutionally time-span. However, evidences still show very low levels of PCs

produced in the ancient type of plants like bryophyte as compared with their

substantial levels in the some group of fungi (yeast), green algae, and various

species of vascular plants (Hayashi et al. 1991; Mehra and Winge 1990; Inouhe

et al. 1996; Murasugi 2008). Besides Cd, in response to other HMs stress in plants,

PCs may play a significant role in detoxification in higher plants (Cobbett and

Goldsbrough 2002) and make a complex, as immobilized metals are less toxic than

the free ions. Synthesis and emergence of these metal-binding peptides in plants

indicate HMs contamination under various environments (Gupta et al. 2002, 2004).

It has been reported that in plants, PCs–HMs complexes form during detoxification

process against a wide range metal ions, like Cd, Pb, As, Ag, Hg or Zn, Cu, Ni

(Maitani et al. 1996; Mehra et al. 1996; Rauser 1999; Ha et al. 1999; Manara 2012).

More direct evidence for the role of PCs against HMs contamination was presented

through study on isolated PC-deficient cad1 mutants in heavy metal stress condi-

tion. Indeed, such a mutant of A. thaliana was more sensitive towards Cd and
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arsenate (AsO4
2�) than wild-type plants; however, no considerable difference was

found for the others like Zn, selenite (SeO3
2�), and Ni (Ha et al. 1999). A

PCS-deficient mutant of Schizosaccharomyces pombe showed moderate sensitivity

to Cu and Hg and modestly to Ag (Maitani et al. 1996; Ha et al. 1999; Manara

2012). Further evidence for Cu-induced triggering of PCs biosynthesis in Cu

tolerance has been shown in Cu-tolerant species Mimulus guttatus. In contrast, a

differential tolerance was reported in Silene vulgaris, on exposing root tips to Cu;

both the Cu-tolerant and Cu-sensitive ecotypes produced comparable quantity of

PCs. It is also manifested that PC–Cu complexes are comparatively transient and

relatively poorly sequestered to the vacuole (Schat and Kalff 1992; De Knecht

et al. 1994; Cobbett and Goldsbrough 2002). However, in plant Rubia tinctorum,
exposure to different heavy metals leads to the formation of PC-metal complexes in

the roots. Heavy metals ions like Ag, As, Cd, Cu, Hg, and Pb were appeared most

effective in stimulation of PCs, though, PC complexes known in vivo were with Cd,

Ag, and Cu ions (Maitani et al. 1996; Cobbett and Goldsbrough 2002). Moreover,

the key role of PCs against heavy metal stress in plants and detoxification of

different heavy metals has been corroborated in many studies. However, why

such a change appears in the contribution of PCs to tolerance and detoxification

against different HMs is still not fully understood.

3.1.2 Variation in Phytochelatins: Homo- and Iso-phytochelatins

PCs and structurally PC-related peptides have been described in various plants and

other organisms. Such a ubiquitous occurrence of the PC peptides with the similar

structures among plant kingdom strongly suggests their significant roles as primary

metabolites common in the plants. However, here are some exceptional cases for

the ubiquity of PCs in some restricted plants and yeast, i.e., some diversity is known

for the molecules. PC peptides have Gly in the C-terminal end in general. The

presence of some des-Gly variants of PCs in Cd-binding complexes was reported in

S. pombe (Hayashi et al. 1991) and Candida glabrata (Mehra and Winge 1990).

They have a structure of (γ-Glu-Cys)n. Similar peptides were not abundant in many

higher plants but its substantial level can be found in Zea mays roots treated with Cd
ions. Furthermore, four other PC-related peptides were discovered from plant

sources. They have different amino acid residues at the C-terminal end of

(γ-Glu-Cys)n peptides, Ala, Ser, Glu, or Gln. The (γ-Glu-Cys)n-Ala peptides first

isolated from plants belonging to Fabaceae (Phaseoleae) are called homo-

phytochelatins (hPCs) because they are synthesized from homo-glutathione

(hGSH) with the structure of γ-Glu-Cys-Ala. Some other variants of those peptides

have been also detected in maize and other plants and named as iso-phytochelatins

(iso-PCs), which have the structures of (γ-Glu-Cys)n–Ser, (γ-Glu-Cys)n–Glu, or
(γ-Glu-Cys)n–Gln (Cobbett 2000; Rea 2012). Biological roles of these variant

peptides have not been well understood for a long time; however, their biochemical

functions as thiol peptides are assumed to be basically equivalent to that of PCs.

They also have common pathways in metabolisms, at least, some enzymes and
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precursors such as (γ-Glu-Cys) dipeptidyl units, or glutamate (Glu, E) and cysteine

(Cys, C), except glycine (Gly, E), for biosynthesis. Amount and distribution of

these PC-related peptides may differ in different plant species; as for example, cells

of A. thaliana are capable of synthesizing different PCs and iso-PCs (Ducruix

et al. 2006). Synthesis of iso-PCs typically depends upon the availability of Gly

or GSH synthetase in the cells that helps to switch over to synthesize the peptide (as,

e.g., synthesis of dipeptide γ-glutamyl cysteine (γ-EC) when plant comes under

stress (Ducruix et al. 2006; Rea 2012). The appearance of the mixture of PCs and

iso- PCs such as (γ-Glu-Cys)n–Ser, (γ-Glu-Cys)n–Glu, or (γ-Glu-Cys)n–Gln, and
(γ-Glu-Cys)n has been conceivably demonstrated as characteristic of Poaceae

family (grasses) under Cd stress by several workers (Klapheck et al. 1994; Cobbett

and Goldsbrough 2002) and also under As stress (Zhang et al. 2010; Duan

et al. 2011; Batista et al. 2014). As induced hPCs and other variants PCs in Lotus
japonicus (Ramos et al. 2008). However, it is suggested that for the PCS1 and hPCS

enzymes, hGSH is a good acceptor, but a poor donor, of γ-EC units. Purified

AtPCS1 and LjPCS1 were activated (in decreasing order) by Cd, Zn, Cu, and Fe,

but not by Co or Ni, in the presence of 5 mM GSH and 50 mM metal ions.

Activation of both enzymes by Fe was proven by the complete inhibition of PC

synthesis by the Fe-specific chelator, desferrioxamine. Arabidopsis and Lotus

plants accumulated hPCs only in response to a large excess of Cu and Zn, but to

a much lower extent than did with Cd, indicating that hPC synthesis may not

significantly contribute in vivo to Cu, Zn, and Fe detoxification.

3.1.3 Glutathione and Homo-glutathione

GSH is a direct precursor for PC synthesis but itself a very multifunctional

metabolite and antioxidant important for metal tolerance and many other biological

processes. GSH synthesis consists of two steps of energy-dependent processes that

can occur in the cytosol or in the cell organelle like chloroplasts and mitochondria

(Zechmann and Müller 2010). First step is an ATP-dependent rate-limiting reaction

catalyzed by γ-EC synthetase (EC 6.3.2.2) producing γ-EC from glutamate and

cysteine. Second step is an addition of glycine to γ-EC by GSH synthetase

(EC 6.3.2.3) activity (Noctor et al. 2012). Both enzymes (named as GSH1 and

GSH2, respectively) are encoded by single genes with alternate transcription

initiation sites, and GSH1 is exclusively localized in the plastids, whereas GSH2,

albeit also present in the chloroplasts, is to a large extent, a cytosolic protein. Thus,

the compartmentalization of GSH synthesis functionally links the different cellular

compartments and may provide a platform for intracellular redox signaling

(Wachter et al. 2005). These and other data lead to the view that the synthesis of

γ-EC is restricted to the plastid but that GSH synthesis can also occur in the cytosol

using γ-EC, transported from plastids (Wachter et al. 2005; Noctor et al. 2011). In

general, GSH synthetase expression and activity increased concurrently with that of

γ-EC synthetase, both of which are otherwise indispensable for early developmen-

tal stages in plants. GSH-deficit Arabidopsis resulted in increased sensitivity to Cd
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(Sengupta et al. 2012). The γ-EC synthetase is a rate-limiting enzyme for GSH

synthesis (Noctor and Foyer 1998) whose activity is elevated by the presence of

metal ions like Cd2+ and repressed by the treatment with buthionine sulfoximine

(BSO), a specific inhibitor of this enzyme (Grill et al. 1987; Scheller et al. 1987).

GSH plays also an important role in Pb detoxification in Sedum alfredii, under
stress conditions, where PCs are absent, and chelated Pb, in conjunction with PCs

synthesis and complexation, reduces stress in Pb-tolerant plants (Gupta et al. 2010,

2013b). Likewise, other reports suggested that Vigna radiata under a long-term

stress with water deficit condition showed a decrease in both γ-ECS activity and its

transcript levels in roots but with higher mRNA levels during the recovery period

(Zagorchev et al. 2013). Homo-glutathione (hGSH) has antioxidant activity and

serves functions in the transport of reduced sulfur and as direct substrate for hPC

synthesis in legumes, as GSH does for PCs in these and other plants (Sobrino-Plata

et al. 2009; Zagorchev et al. 2013). If the PCS or hPCS activities are same or samely

reduced, these tripeptide levels become important factors that control the major

antioxidative reactions for HMs and ROS sequestration. Here, the γ-ECS or similar

enzyme has been shown to be involved in hGSH synthesis, while still unknown for

the other iso-peptides. Whereas PC synthases (PCSs) are categorized as the γ-EC
dipeptidyltranspeptidase (EC 2.3.2.15) that adds a γ-EC-unit of GSH to PCs or

another GSH in vitro (Grill et al. 1989; Loeffler et al. 1989), which has been

reported to be effective for the formations of hPCs and other iso-PCs (Ramos

et al. 2008). Biochemical functions of hGSH and GSH are therefore basically

similar if the metabolic or enzymic backgrounds are fulfilled in plants. It was

shown that hGSH is an important regulator of root nodule formation, symbiotic

interactions and nitrogen fixation in legumes (Zagorchev et al. 2013). Furthermore,

their levels, distributions, and redox balances change differently in specific plants in

response to different stress or hormone treatments and the developmental stages of

the plants (Becana et al. 2010; Clemente et al. 2012; Zagorchev et al. 2013). The

biological and evolutionary importance of hGSH and those for substitutions or

deletion of the C-terminal amino acid in GSH to form other isotypes in different

plants or organ sites await further investigations.

3.2 Other Mechanisms

3.2.1 Transport

Metal ions are vital for life and therefore maintenance of homeostasis of those ions

is tremendously important (Fig. 2). Loss of homeostatic balance of elements may

create severe metabolic and physiological dysfunction leading to death or severe

illness of the plants. The homeostatic maintenance is a highly regulated process

integrating uptake, storage, and secretion, where a number of transporters and

antiporters proteins are involved. Inhibition in essential nutrient will decrease the

plant vitality and its ability to cope with (metal) stress (Huang et al. 2008). Precise
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activation of metal-responsive genes to counteract the stress through the synthesis

of proteins and signaling molecules related to stress takes place (Maksymiec 2007).

Physiological transport of nutrients like Ca, Fe, Mg, Mn, Co, and Zn is unique in

plants and some of these are inhibited by HMs. For example, Cd competes with

these essential nutrients during transportation through transmembrane energy-

dependent nutrient transporters and ion channels (Clemens et al. 1998; Curie

et al. 2000; Thomine et al. 2000; Papoyan and Kochian 2004). Cortical tissues of

the root help entering metal ions and usually become accumulated in the roots. It

gets into the xylem by apoplastic and/or symplastic pathway and further transported

to shoots. During the journey, the metal may be complexed by a number of ligands

such as organic acids and/or PCs. Here, plant roots have the ability either to exclude

and/or chelate or sequester Cd and other HMs from the plant tissues (Cataldo and

Wildung 1983; Salt et al. 1995).

HMs-hyperaccumulator plant ecotypes include the Cd-hyperaccumulators such

as Noccaea caerulescens (J&C Presl.) FK Mey, Phytolacca americana L., and

A. halleri (L.) O’Kane and Al-Shehbazsetc (Lux et al. 2011). These plants also have
the defensive mechanism through the production of Cd-chelators (such as organic

acids, etc., as described below) other than PCs at the root zone that confining the

entry of Cd to the xylem to prevent the metal accumulation in shoot tissues (Liu

et al. 2010; Lux et al. 2011). Cd accumulation in shoot of species of the

Fig. 2 Impact and route of HM in three ideal types of plants. (1) Hyperaccumulators absorb HMs

from roots and transport them to shoots via xylem transport, where various kinds of HM-transports

have critical roles. In shoots (and roots), special detoxification/sequestration mechanisms operate.

(2) Plants that developed the HM exclusion mechanisms at roots can be useful in agricultural

purpose as safety products for other organisms. (3) HM-sensitive plant will be good biological/

biochemical index or markers against HMs contaminations
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Caryophyllales and Lamiales was much higher than other species (Broadley

et al. 2001). In general, Cd concentrations are mostly (but not always) higher in

roots than in shoots, indicating that transportation of Cd to the xylem and phloem is

limited in most plants and lowest in seeds, fruits, and tubers (Seregin and

Kozhevnikova 2008; Conn and Gilliham 2010). Absorption of HMs in higher plants

is a critical issue, where especially rhizosphere region interacts with HMs (Wenzel

et al. 2003). They are usually cotransported in the form of cation across the plasma

membrane (Manara 2012). Reports suggest that plant roots primarily secrete exu-

dates in its surrounding soil matrix that helps in the chelation of unwanted metals to

prevent transportation inside the cell (Marschner 1995). For example, histidine

(His) and citrate (CA) are secreted as root exudates to prevent the Ni uptake from

the soil (Salt et al. 2000). Pectic sites and a number of extra cellular carbohydrate

molecules present on the cell wall play an important role for immobilization of

toxic heavy metal ions (Manara 2012). However, HM homeostasis is mainly

maintained by transporters present on the plasma membrane. Typical examples of

these transporters are the ZIP, the HMA, the YSL, the NRAMP, the CDF, and the

CAX families (Williams et al. 2000; Guerinot 2000; Hossain et al. 2012a, b; Sochia

and Guerinot 2014), as shown below briefly.

1. The ZIP (zinc-regulated transporter/iron-regulated transporter [ZRT/IRT1]-

related protein) family transporters are well characterized for divalent metal

uptake, which consists of eight transmembrane domains with similar topology at

N- and C-termini exposed to apoplast also containing a histidine-rich domain

supposed to involve in specific metal binding (Guerinot 2000; Nishida

et al. 2008). ZIP protein gets activated in response to Fe or Zn loading. In

A. thaliana, IRT1, the founding member of ZIP family, was the first reported

transporter in root cells and has an important role in Fe uptake from the soil (Vert

et al. 2002). IRT1 can also transport Mn, Zn, and Cd (Korshunova et al. 1999).

AtIRT1 in yeast enhanced the Ni-uptake activity (Nishida et al. 2011). Further-

more, AtZIP4 proteins, expressed in roots and shoots, are involved in Zn

transport and also helps in Cd uptake from soil into the root cells and Cd

transport from root to shoot (Krämer et al. 2007).

2. The HMAs family transporters (P1B-type ATPases that belong to P-type ATPase

superfamily) efflux various metal cations across biological membranes (Axelsen

and Palmgren 2001). They are basically internal transporters to load Cd and Zn

metals into the xylem from the surrounding tissues and act as an efflux pump. The

HMAs were categorized as both monovalent and divalent cation transporters

(Baxter et al. 2003; Krämer et al. 2007). In A. thaliana, AtHMA3 transporter

helps in sequestration of a wider range of HMs, and its overexpression increases

the tolerance to HMs like Cd, Pb, Co, and Zn (Morel et al. 2009; Manara 2012). In

ABC transporter family, AtPDR8 was discovered in the plasma membrane of

A. thaliana root hairs and epidermal cells that helps in effluxing of Cd and Pb

from plasma membrane (Kobae et al. 2006; Kim et al. 2007).

3. Oligopeptide transporters (OPTs) are a group of membrane-localized proteins.

The OPT proteins belong to a small gene family in plants, named as the YSL
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(yellow stripe-like) subfamily, taken its name from the maize Yellow stripe

1 protein (ZmYS1), and are involved in uptake of Fe by transporting Fe(III)-

phytosiderophore complexes (Curie et al. 2000). Heavy metal ions like Fe, Zn,

Cu, Ni, and to a lesser extent Mn and Cd are transported by ZmYS1 transporter

(Schaaf et al. 2004). Based on sequence similarity with maize gene, eight

presumed YSL transporters have been identified in A. thaliana (Colangelo and

Guerinot 2006). AtYSL1 is expressed in the leaf xylem parenchyma, in pollen,

and in young siliques, whereas AtYSL2 is expressed in shoot and root vascular

tissues and is present in the lateral plasma membrane, steady with a role in the

lateral movement of metals into the veins (DiDonato et al. 2004; Schaaf

et al. 2004).

4. Metal Tolerance Proteins (MTPs) are metal efflux transporters in plants that

belongs to CDF (cation diffusion facilitator) transporter family involved in the

pumping divalent metal cations like Zn, Cd, Co, Fe, Ni, and Mn and transpor-

tation from the cytoplasm to the vacuole (Nies 1992; Krämer et al. 2007; Peiter

et al. 2007; Montanini et al. 2007; Manara 2012). CDF transporters consist of six

transmembrane domains, a C-terminal cation efflux domain, and a histidine-rich

region between transmembrane domains IV and V (Mäser et al. 2001) which

probably act as a sensor for heavy metal concentration (Kawachi et al. 2008).

5. Natural resistance-associated macrophage protein (NRAMP) transporters such

as AtNRAMP3 or AtNRAMP4 are localized in the tonoplast and help in the

transport of Fe from the vacuole (Thomine et al. 2003; Lanquar et al. 2005).

Overexpression of AtNRAMP3 increases Cd sensitivity and prevents the accu-

mulation of Mn, indicating a possible role in the homeostasis of metals other

than Fe (Thomine et al. 2003).

6. The CAX (cation exchanger) proteins are one of five transporter families that

constitute the Ca/cation antiporters (CaCA) superfamily (Shigaki et al. 2006;

Emery et al. 2012). The CAX family members were first identified as Ca trans-

porters but later it was revealed that they are capable of transporting more kinds

of HMs. Typical CAX proteins contain 11 transmembrane domains. They

facilitate the redistribution of cations across a membrane using electrochemical

energy generated by a proton pump in order to maintain optimal ionic concen-

trations in the cell (Socha and Guerinot 2014).

Among these, the HM transporters which are involved in transport to vacuole or

in exclusion at plasma membrane are effective in reducing HMs levels in the

cytological active compartments including cytoplasm and plasmids in the cells,

which reduce the toxicity exerted by HMs as free radicals or indirect inducers of

ROS in the sites. There are strongly convincing proofs that many hyperaccumulator

plants for various HMs are prevailed for these transportation mechanisms via xylem

transport systems rather than their special detoxification mechanisms in the cells.

For details about the respective functions of the transports in hyperaccumulators or

HM-tolerant plants, see recent reviews cited above and others (Hossain et al. 2012b;

Socha and Guerinot 2014).
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3.2.2 Redox Enzymes

Antioxidant system in plants is an intrinsic defense mechanism that regulates ROS

levels according to the cellular requirements at a certain period. This system is

actually governed under the catalytic activities by the several cooperative enzymes,

named redox enzymes or detoxification enzymes (Fig. 1), which involve superoxide

dismutase (SOD; EC 1.15.1.1), monodehydroascorbate reductase (MDHAR; EC

1.6.5.4), ascorbate peroxidase (APX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6),

glutathione peroxidase (GPX; EC 1.11.1.9), dehydroascorbate reductase (DHAR;

EC 1.8.5.1), and glutathione reductase (GR; EC 1.6.4.2). These enzymes are

regulated under HM stresses and hence consequently participate in the mechanism

of protection against oxidative stress mediated by HMs. Glutathione S-transferase

(GST; EC 2.5.1.18) that catalyzes the GSH-dependent conjunction with various

types of substrate molecules to form thioether bond between them also contribute to

detoxification of xenobiotics by conjugation reactions (Sherratt and Hayes 2001).

There are many reports that support the positive effects of HM on the enzymic

defense mechanisms expressed prior to or simultaneously with the enhanced toler-

ance characteristics to the stress. The water-soluble compounds such as AsA and

GSH are used central substrates (Hossain et al. 2012b), but little is known for the

role of PCs and h-PCs in the enzymic antioxidant systems at present. Gene

expressions related with stress responses to quench directly ROS and develop

further tolerance appear to be mediated by GSH and its oxidates (GSSG). In

addition, abiotic stress tolerance through the glyoxalase pathway is widely been

reported which consists of glyoxalase I (Gly I; lactoylglutathionelyase; EC 4.4.1.5)

and glyoxalase II (Gly II; hydroxy-acylglutathione hydrolase; EC 3.1.2.6) (Hossain

et al. 2009).

As mentioned earlier, ROS generation is evident in chloroplast, mitochondria,

peroxisome, and apoplast adjacent to membrane. Here, several reports suggest that

NADPH oxidase-dependent ROS induction can take place in response to Cd stress

in P. sativum (Rodrıguez-Serrano et al. 2006), As stress in A. thaliana (Gupta

et al. 2013a), Pb stress in V. faba (Pourrut et al. 2008), Cd and Cu stress in

A. thaliana (Remans et al. 2010), and Ni stress in wheat (Hao et al. 2006). There

is no evidence that cytoplasmic PCs have a role preventing the ROS induction at

plasma membrane-associated ROS formation or at apoplast. However, it is accept-

able that cell-wall-associated peroxidase catalyzes formation of membrane-

permeable H2O2 in apoplast and then makes it possible to interact with cytosolic

PCs and other thiol peptides. It is interesting that living with the appropriate

concentration level of ROS like H2O2 can promote plant development and support

resistance to environmental stressors by controlling the expression of genes and

redox signaling (Neill et al. 2002). However, direct interactions between PCs and

ROS that result in induction of any HM-tolerant mechanisms are not yet demon-

strated; therefore, their actions might be independent but be synergistic.
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3.2.3 Sulfur Assimilation

Sulfur (S) is an essential and ubiquitous element involved in a large number of vital

biochemical and physiological processes. It is also responsible for developing

hypersensitivity to HMs. Earlier studies on transgenic plants revealed that exces-

sive PC levels helps the plant to accumulate more amounts of HMs without

enhancing tolerance conferring HM-hypersensitivity (Lee et al. 2003; Pomponi

et al. 2006; Manara 2012). Sulfur is known for its catalytic or electrochemical

properties and having a capacity to react with a broad spectrum of agents, like

cytotoxic electrophilic organic xenobiotics, HMs, and free radicals. GSH and PCs

biosynthesis is highly regulated and coordinates to meet the demand for Cys

consuming activities, which indirectly explain the overall S demand by plants.

Sulfur requirement by plants vary under the diverse environmental conditions,

biotic and abiotic stresses including HMs (Rausch and Wachter 2005). It has

been previously observed that the withdrawal of S from the growing medium

dramatically decreases the levels of S, Cys, and GSH in plant tissues (Lappartient

and Touraine 1996; Lappartient et al. 1999; Saito 2004; Nocito et al. 2007). In

addition, importance of PCs in homeostasis of metals, antioxidant property, and

also in S metabolism was suggested (Dietz et al. 1999; Cobbett 2000). Furthermore,

when more stable and massive Cd-PCs conjugates are formed in vacuole under Cd

stress, large quantity of S2� is incorporated to the complexes. All of these thiols and

S2� are originated through the common energy-dependent S assimilation using

sulfate taken by roots. These processes are summarized in Fig. 3 (top), as a series of

five process termed as A to E for convenience, where several transporters and/or

enzymes with some intermediates as the key factors interconnecting functions

among S-containing substances are also shown. Simultaneous or cooperative stim-

ulation of these processes may result in total increase in the level of S-containing

compounds as well as the total reducing power in the plants. The diversity of the

components accumulated in the tissues also increases. Therefore, gross activation

of the processes by HMs or other stressors may contribute to the stress tolerance

mechanisms in many plants. However, it is important to note that such influences on

the process or component are quite different in case and place, as shown in Fig. 3

(bottom) as tentative examples. Furthermore, it is already evident that diverse

species of S-containing substances have diverse functions in plants. Briefly, Cys

is the first organic product of S assimilation in plants and is notably used for

synthesis of proteins (amino acids) directly or after converting to methionine

(Leustek et al. 2000; Saito 2004). These amino acids are thought to be an important

sink for reduced S, as well known as for GSH (Noctor et al. 2011). Such a supply or

increased sink for reduced S in plants has been positively correlated with resistance

to some pathogens, a phenomenon termed S-induced resistance (SIR) by some

researchers (Bloem et al. 2007). Here, tissue contents of GSH or precursors are

thought to be the factors linking S nutrition to the responses of plants to fungal and

viral infection (Noctor et al. 2011).
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Besides their roles as the major storage and transport forms of reduced S, the

importance of GSH and Cys have been implicated in the regulation of S metabolism

(Kopriva and Rennenberg 2004). GSH inhibits sulfate uptake and S assimilation by

repressing the activities and expressions of several functional proteins mediating

the earlier steps of the process, such as sulfate transporter (AST), ATP sulfurylase

(APS1), and adenosine 50-phosphosulfate reductase (APR) in plants (Lappartient

et al. 1999; Leustek 2002; Noctor et al. 2011). In most studies, the increased

Case Activation Ideal Pool-Stock Reservation

1(Cd) A,B,C,D,E Abundant S S2-
, Cys, GSH, PCs, PC-S

2(As) A,B,C,D Moderate S S
2-

, Cys, GSH, PCs, PC-S

3(Zn) A,B,C Shortage S   S2-
, Cys, GSH, PCs, PC-S

4(Cu) A (?) Deficient  S S
2-

, Cys, GSH, PCs, PC-S

①②③④ ⑤ ⑥⑦ ⑧⑨ ⑩⑪ ⑫ ⑬
SO4

2- → → → → S2- →→ Cys → →  γEC   →→ GSH →→ PCs →→→ Cd-S-PCs

＜Apoplas�c route＞ ＜Photosynthe�c biogenesis＞
Root  (Cortex )  →→  Stem  (Xylem) →→→→  Leaf  (Plas�d →Cytosol→Vacuole)  →→

→→ Stem (Phloem) →→→→ Root (Cytosol→ Vacuole)  
＜Symplas�c route＞

A B C D          E

① AST68 (SO4
2- transporter), ② APS1 (ATP sulfurylase), ③ APR (APS reductase),   ④ Sulfite reductase, 

⑤ SAT (O-acetylserine (thiol) lyase),   ⑥ Cys transporter,  ⑦ γEC synthetase, ⑧ γEC transporter, 
⑨ GSH synthetase, ⑩ GSH transporter,  ⑪ PC synthase, ⑫ PC transporter, ⑬ PC-Cd-S complexa�on.

Fig. 3 Diagram of path for PCs, GSH, Cys, and S2�. Top, examples for via root viz shoot circulate

paths. (1) AST68 (SO4
2� transporter), (2) APS1 (ATP sulfurylase), (3) APR (APS reductase),

(4) Sulfite reductase, (5) SAT (O-acetylserine (thiol) lyase), (6) Cys transporter, (7) γEC synthe-

tase, (8) γEC transporter, (9) GSH synthetase, (10) GSH transporter, (11) PC synthase, (12) PC

transporter, (13) PC-Cd-S complexation. Bottom, ideal changes in the S and thiol pools as affected

by representative HMs. The data are tentative ones and never cover all cases or previously reported

respective evidence
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concentrations of Cys in response to oxidative stresses have been reported together

with increased GSH concentrations, leading to the conclusion that Cys is mainly

needed for the biosynthesis of S-rich compounds with antistress activity, such as

GSH and stress-related proteins. However, it is generally thought that at concen-

trations above 50 μM, Cys is toxic for plants (Meyer and Hell 2005). Cys is a potent

chelator of heavy metals ions, but the formed Cys-metal complexes can trigger the

Fenton reaction, thereby producing the highly toxic •OH radical, and free Cys is

often irreversibly oxidized to different by-products. Sulfide is more toxic than

sulfate but stabilized in the complex such as Cd-S-PCs. GSH is quickly turning

over but the balance of it and its oxidized form (GSSG) are strictly regulated under

enzymic redox systems. Therefore, like a general rule for stock chemicals, more

stable S-containing substances (or ones under more strict control) may play a

central role as a stable state S-donors in plants. Cd-S-PC complex may be a

potential stable S donor as well as other S-containing storage proteins or

polysaccharides.

3.2.4 Other Mechanisms: Hypothetical View

The detoxification and sequestration mechanisms driven by PCs may be restricted

to the HMs and ROS invaded or occurring in the cell compartments in

hyperaccumulator plants or tolerant plants grown under naturally metalliferous or

artificially contaminated environments. Here, it is important to note that the direct

precursor of PCs is GSH, which is multifunctional and thus required for the many

other biochemical processes in response to or not to various HMs. In these plants,

by blocking or inefficiency of or inefficiency of HMs and other oxidants to the

synthesis of PC peptides and other S-containing oligo-/poly- peptides, can increase

the small organic and inorganic S-substances such as S2� or Cys, and thus GSH.

This can be mimicked by the case if the final S-conjugated products are stored or

immobilized in a certain compartment apart from cytoplasm. These increased

S-substances are alone or in combination, capable of increasing the binding and

quenching of the free radicals of HMs and ROS more. Furthermore, S can make

more stable complex with PCs-Cd, and the core Cd-S formed inside of the PC-Cd-S

complexes can act as the semi-conductance micro-devise to control electron flow or

exchange between two or more different molecules in cytosol or protein complexes

on the bio-membrane, while a direct association of PC peptides to other biopoly-

mer/oligomer has not yet been proven. PC has been associated with many important

functions in plants against HM ions, including intracellular binding, detoxification,

transport, following compartmentalization in vacuole, and also as a substantial

coordinator for the distinguished characteristics of several plant-hyperaccumulators

of different HM species. However, relatively less attention has been paid on their

potential roles in defense mechanism against ROS induced by various abiotic or

biotic oxidative stresses, other than by HMs. This is mainly due to the smaller

contents of PCs (less than 0.01 mM) than the other antioxidants under normal

condition with little contaminated HMs. Intracellular levels of total PCs rise
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drastically up to 1–10 mM and 0.1–0.5 mM orders as maximum so far reported,

when exposed to 0.2–0.8 mM of metal Cd and 0.02–0.5 mM of metalloid As

respectively; hence, the detoxification and sequestration mechanisms driven by

PCs may be restricted to the HMs and ROS invaded or occurring in the cell

compartments in hyperaccumulator plants or tolerant plants grown under naturally

metalliferous or artificially contaminated environments. However, more interest-

ingly, PC-HM complex has been detected in phloem sap rather than xylem sap,

indicating that PC-functioning site is again intracellular well-reduced state or

symplastic place but not oxidative places to produce ROS like apoplastic sites

with high oxygen pressure and organelle having active electron transport system.

Further assessments are needed but phloem loading and transport will be the

attractive performance stage as nutritional PCs.

4 Conclusion and Future Prospective

PCs and related thiol peptides have been associated with many important functions

in plants against HM ions, including intracellular binding, detoxification, transport,

following compartmentalization in vacuole, and also as a substantial coordinator

for the distinguished characteristics of several plant-hyperaccumulators of different

HM species. However, relatively less attention has been paid on their potential roles

in defense mechanism against ROS induced by HMs and/or other various abiotic or

biotic stresses. This is mainly due to the trace levels of PCs (generally less than

10 μM) constitutively maintained in control plants and their trivial changes after

either the treatment with HMs besides Cd or the influence of the other abiotic/biotic

stresses, where instead evoked are drastic change and activation of the other

antioxidants and redox systems. However, we need further consideration for the

potential roles of PCs in the plants growing or habituated on the grounds with

artificially or naturally HM-dense conditions, as core or polymeric absorbent for

nutritional elements and especially S-coordinated substances, resulting also in a

dominant storage bank for thio-mediated reduction power sources. As linking to a

phenomenon SIR or a concept GSH/thiol pools, it can be urged for our reconsid-

eration that these stocks will play an important role in the maintenance or increase

of the robustious characteristics of the plants against various oxidative stresses

under biotic and abiotic occasions with no further excess biochemical or metabolic

costs. Potential roles of PCs as the key peptidic thiol and reducing agents in the

interconnection to other antioxidant compounds and components, such as LWM

soluble thiols, AsA, sugars and sugar alcohols, proline and other amino acids and

compatible solutes, as well as membrane and cell-wall-associated redox cycle

systems will be highlighted in future.
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Sobrino-Plata J, Ortega-Villasante C, Flores-Cáceres ML, Escobar C, Del Campo FF, Hernández

LE (2009) Differential alterations of antioxidant defenses as bioindicators of mercury and

cadmium toxicity in alfalfa. Chemosphere 77:946–954

Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family

members in manganese uptake and mobilization in plants. Front Plant Sci 5:106
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