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Abstract  Additive manufacturing (AM) has become in a competitive method for 
short series production and high flexibility applications even for functional parts. 
Few constraints in the manufacturing process involve a great design freedom, 
allowing minimization of weight by using internal cellular and lattice structures, 
while minimal mechanical requirements are kept. Weight minimization implies a 
lower use of material and hence a reduction in manufacturing time, leading to a 
cost reduction. However, design optimization requires a greater effort in the design 
process, which also results in more costs. In order to reduce the design process, 
an optimization method based on genetic algorithms (GAs) and computer aided 
design/finite element method (CAD/FEM) simulations is proposed to optimize the 
cellular structure design and minimize the weight for AM parts. New optimization 
strategies based on GAs combined with surrogate models are evaluated and com-
pared to reduce as much as possible the number of FEM simulations.
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5.1 � Introduction and Objectives

The continuous evolution of AM technologies in terms of materials, reliability 
and reproducibility of the processes, as well as cost reduction compared with con-
ventional manufacturing techniques have led to an increasing use of these tech-
nologies in the industry. The low manufacturing constraints associated to these 
processes involve an enormous design freedom ideal to manufacture complex 
parts without any cost increase.

Moreover, the possibilities around the CAD/FEM software are well known. 
FEM numerical simulations allow the determination of the mechanical behavior 
of any part, being a fundamental tool in the design process. Combining the poten-
tial of AM technologies and CAD/FEM tools is possible to reduce the part weight 
by introducing cellular structures repeated inside the part (without changing the 
previous external design) [1]. Cellular structures can be generated and param-
eterized in a CAD model without an excessive effort, especially if the cells are 
defined with a repeated pattern. FEM simulations of any new design with cellular 
structures allow knowing its mechanical properties, information that is essential 
for the design process. Weight minimization can be achieved by optimizing the 
cell pattern dimensions with an optimization method. In fact, results of finite ele-
ment analysis (FEA) can be employed to the evaluation of the fitness function in 
an optimal searching with GAs [3]. Finally, the best design can be manufactured 
by AM technologies despite the complex internal cellular structure.

Weight minimization not only means a greater efficiency in multiple applica-
tions, but also significant reduction of manufacturing costs, either material savings 
or manufacturing time. However, the extra time required for the design optimiza-
tion also entails a cost increase, which means that the optimization time must be 
minimized in order to obtain a more competitive product.

For these reasons, weight minimization will be made through repeated cell 
geometries (from a pattern) inside the part, which implies less variability of indi-
viduals and a smaller number of design variables (less than 7). Although this sim-
plification reduces the searching space and probably the quality of the optimal 
individual, greatly facilitates the CAD modeling and optimization tasks, signifi-
cantly reducing the design costs.

Moreover, the evaluation of the fitness function for each individual generated 
during the GA evolution requires FEM simulations. This would involve an exces-
sive computational time [3]. Therefore, the use of surrogate models to estimate the 
FEM results without doing the simulations is proposed, reducing the number of 
the computationally expensive analyses as much as possible [5]. The aim of this 
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approach is to establish a simple methodology that can be used by any AM user 
through commercial CAD/FEM software. These technologies are becoming more 
and more affordable due to cost decreasing associated to the patent expiration. 
Thus, SMEs or even particular users will be able to buy AM machines and manu-
facture their own parts, taking advantage of the optimization strategies developed 
in this proposal through commercial CAD/FEM software easily accessible.

5.2 � Main Program Structure

To create a surrogate model it is necessary a previous information of the system 
behavior. This information is achieved through an initial design of experiments 
(DOE), where a set of designs are simulated by FEM.

Once the surrogate model is defined, a GA is applied to search the optimal 
design by evaluating the fitness function of each individual through the surro-
gate model estimations. Although different versions of the program were tested, 
the general approach is to refine the metamodel by simulating new designs stra-
tegically located in interesting regions, including the results into the database to 
upload the metamodel. Once the surrogate model guarantees a certain level of 
accuracy in the estimations, the optimal design is searched again using GAs and 
metamodel to evaluate the fitness function, reducing as much as possible the num-
ber of FEM simulations.

The design variables are related to the dimensions of the pattern cell geometry 
repeated inside the part, existing in this case a monotonic relation with the system 
responses. An increase in a variable associated with the hollow cell size always 
involves a mass reduction and a worse mechanical behavior, adversely affecting 
the problem optimization constraints (displacements or stresses). This particular 
relation implies that the optimal design will be always in the border between the 
feasible and unfeasible regions, so that the optimum will have at least one con-
straint very close to its limit value.

Given this fact, the addition of new points in the DOE phase or metamodel 
refinement stage is carried out trying to increase the sampling density in areas 
close to this border (feasible/unfeasible), which means simulating designs in inter-
esting zones. This strategy of DOE and surrogate model refinement also implies a 
better fitting in the feasible/unfeasible border than in other regions of the search-
ing space. Refinement strategies usually add new sample points where the lowest 
accuracy of the metamodel are estimated. However, in this proposal the accuracy 
of the metamodel is only relevant in the feasible/unfeasible zones. In other regions 
the surrogate model has a lower precision, but enough to estimate the results with-
out affecting the convergence of the GAs. This refinement method requires a lower 
sampling, allocating the new points in areas near to the optimum and consequently 
maximizing the sampling effort.
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5.3 � Comparison Between Different Metamodels

First a comparison between different surrogated models was carried out to deter-
mine the most appropriated metamodels in terms of estimation error for this appli-
cation. The evaluated metamodels were:

•	 Inverse distance interpolation: Four different configurations of this interpolation 
method were evaluated. The first one was implemented using an exponent of 2 
in the inverse distance calculation and involving all the available data (IDI2). 
This same method (with exponent 2 in the inverse distance calculation) was 
applied again but involving only the 6 nearest data to the point to be estimated 
(IDI2 6p). After that, the inverse distance exponent was increased to 3, consider-
ing all available data in the estimations (IDI3). Finally, a fourth configuration 
was carried out by using again exponent 3 in the inverse distance calculation 
but taking into account only the 6 nearest data to the point to be estimated (IDI3 
6p). Some authors have observed better results for low sampling problems with 
this method than with other more complex ones [7].

•	 Spline interpolation (SI). The main advantage of this method is that it allows the 
interpolation of values that are below the minimum or above the maximum of 
the available data, while other methods cannot [2].

•	 Least square fitting: Two different configurations of the least square fitting were 
evaluated. The first configuration was developed by fitting the coefficients of a 
two-order polynomial to the available data (LSF2). The second configuration 
was carried out in a similar way but using a three-order polynomial to be fitted 
to the available data (LSF3). The use of polynomial equations in fitting prob-
lems with unknown response is a common practice, although the most usual 
practice is to employ one- or two-order equations [6].

•	 Linear interpolation based on Delaunay triangulation (LIDT). This method parti-
tions the space into discrete simplex (n-dimensional) following the Delaunay tri-
angulation (dual to the Voronoi diagram or Thiessen polygons). Given a set of 
points (P) in the n-dimensional space, the Delaunay triangulation is a triangula-
tion such that no point in P is inside the circumhypersphere of any simplex. This 
method maximizes the minimum angle of all the simplexes. Once the space is 
discretized according to Delaunay triangulation, the method identifies the sim-
plex of the point to be evaluated and finally a linear interpolation of the vertex 
values is applied (by a weighted sum of the vertex values, being the weights the 
barycentric coordinates). The main disadvantage of this interpolation method 
(also known as Triangulated Irregular Network, TIN) is that the domain is limited 
to the convex envelope of the data and the resulting surface is not smooth [2].

•	 Nearest neighbor interpolation (NNI). The NNI selects the value of the nearest 
point. This is equivalent to the Voronoi diagram, which means that the interpola-
tion values will be the same in each one of the tessellation cells. This method is 
less accurate but quite simple.

A problem of four design variables was employed in order to compare the accu-
racy or estimation error among the different surrogated models mentioned above. 
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Eighty one individuals related to a 3-level full factorial DOE were evaluated by 
FEM simulations. The different types of metamodels were constructed with the 
data obtained in the previous simulations. After that, 10 random points of the 
domain were evaluated by FEM and were also estimated by the surrogate models 
in order to evaluate the estimation error (difference between the estimated value 
and the FEM result in absolute value). Figure 5.1 shows the mean absolute per-
centage error (MAPE) of these 10 points for the different metamodels and for the 2 
responses of the problem.

Best results were obtained for SI, LSF2/LSF3 and LIDT. Although SI provides 
more accurate results for both responses, the data distribution required to construct 
the spline must be in a grid, which complicates the refinement tasks and implies an 
enormous sampling intensity even using T-splines with the “quadtree” method [4].

Another similar study was made comparing only the LSF2, LSF3 and LIDT. 
In this case 33 different designs were evaluated by FEM. The allocation of these 
points was defined according to the first optimization strategy developed in Sects. 
5.5 and 5.5.1. The first 17 points correspond to a 2-level full factorial DOE and 
central point, and the 16 remaining points correspond to an iteration of the bor-
der (feasible/unfeasible) approximation. The metamodels were elaborated from 
the results of these 33 sampling points. Then 16 new points associated with a new 
iteration of the border approximation were evaluated either by FEM or by the pre-
dictions of the surrogate models. Figure 5.2 shows the MAPE obtained for LIDT, 
LSF2 and LSF3, for both constraint and objective responses.

Fig. 5.1   MAPE for evaluated metamodels

Fig. 5.2   MAPE for least square fitting and linear interpolation metamodels
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Although the results of LSF2 and LSF3 are even better than those of LIDT, this 
last metamodel was chosen for this proposal because it is an interpolation method, 
which means exact predictions on the data points and ensures greater accuracy 
than the least squares fitting when the sampling is intensified in an area. The least 
square fitting does not estimate exact results in the data points and its potential is 
limited by the shape of the equation to be fitted, which could imply a high distor-
tion and error in some areas when the sampling density is increased in a specific 
zone. Furthermore, the refinement strategy discussed above will only work cor-
rectly with a surrogate model which can improve its accuracy as new points are 
added.

5.4 � Genetic Algorithm

A GA with different configurations was implemented to solve a known problem 
with four variables (real numbers), one constraint and one objective to be mini-
mized. This reference problem was employed to validate the different programs 
developed in this paper without doing the FEM simulations. The fitness value of 
the theoretical optimal design is F = 1600.809. The number of individuals of the 
population was fixed in 100, with a tournament selection of 2 individuals, arithme-
tic crossover and application of elitism. The parameters of the different GA con-
figurations were as follows:

•	 Penalty amplification factor (AF): individuals who did not satisfy any constraint 
of the optimization problem were penalized with a certain penalty which was 
amplified by a factor defined as a fixed value or as a value that grew exponen-
tially with the number of generations. This latter option seeks to assign a greater 
freedom in the first iterations of the GA and become more restrictive as the GA 
evolves.

•	 Type of penalty: individuals who did not satisfy any constraint of the optimi-
zation problem were penalized with an error value which was obtained from 
the squared error (SE) or absolute error (AE), always amplified by the penalty 
amplification factor mentioned above. The total penalty for each individual was 
determined as the sum of the penalties associated with each of the non-satisfied 
restrictions.

•	 Total number of generations evaluated: 50 or 100.
•	 Cross probability: 50 or 80 %.
•	 Mutation probability: mutation probability was defined as a fixed value or a 

variable value that increases linearly with the number of generations. This lat-
ter option seeks to provide a greater localized variability as the GA evolves, 
in order to avoid convergence problems (convergence to local optima instead 
of global optima). The more evolved the population is, the higher the muta-
tion probability becomes, which reduces the problems of stagnation in a local 
optimum.
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•	 Mutation amplitude: individuals were randomly mutated with a maximum 
amplitude value defined by a fixed value or variable with the number of genera-
tions. This latter option seeks to provide a more intensive mutation as the GA 
evolves in order to improve the convergence to the optimal.

Table  5.1 shows a summary of the six configurations tested and an average 
value of the optimal fitness function for 10 different runs. The best results were 
obtained for configurations 4, 5 and 6, with fitness values very close to the theo-
retical optimal value. This means that the GA can converge to the optimal with 
different configurations, which demonstrates its robustness and flexibility. 
Configurations 5 and 6 were chosen to be implemented in the different developed 
programs, while configuration 4 was rejected due to be a more complex option.

5.5 � Optimization Programs Developed

Different optimization strategies were developed and tested with the previous 
known problem (without FEM simulations). The last 2 versions were also tested 
with a case study with FEM analysis.

5.5.1 � Version 1

The first version consist of a 2-level full factorial DOE and central point, followed 
by a phase of addition of points near to the feasible/unfeasible border and finally a 
GA.

LIDT can only be applied inside the convex hull of the data. For this reason, 
it is important that the initial DOE allows the creation of a convex hull that cov-
ers the entire domain, in order to apply LIDT throughout the searching space. A 
2-level full factorial DOE was chosen as the best option to achieve the desired 
convex hull with the minimal number of points (which is equivalent to evaluating 

Table 5.1   Different configurations tested

Geometry parameters Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 Config. 6

Amplification factor 1099 10gen 10gen 10gen 1099 1099

Penalty SE·AF SE·AF SE·AF AE·AF SE·AF SE·AF

Number of generations 50 50 100 50 50 50

Cross probability (%) 80 80 80 80 50 50

Mutation probability (%) 10 10 10 0–60 60 80

Mutation amplitude (%) 10 10 10 0–50 50 10

Fitness average (F) 1615.3 1615.0 1606.3 1601.7 1601.9 1601.8
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all vertices of the domain). Apart from these points, the central point of the 
domain was also simulated in this initial stage of DOE (black crosses in Fig. 5.3).

The phase of approximation to the feasible/unfeasible border was divided into 2 
parts: (a) an “internal” approximation by adding new points in the middle between 
the central point and the corners when one of them is in the feasible space and 
the other does not (or vice versa); (b) an approximation “along the edges of the 
domain”, adding new points in the middle between adjacent corners when one of 
them is in a feasible area and the other does not (square, triangle and circle points 
in Fig. 5.3). This new points will be closer to the feasibly/unfeasible border and 
consequently closer to the optimal design. This phase is repeated in a loop until 
the mean absolute deviation of the points added in the last iteration is less than 
the maximum deviation assigned by the user to each response. Triangles, squares 
and circles of Fig. 5.3 represent the points added in 3 iterations respectively, both 
internal (in grey) and external (in black) approximation.

Finally, a GA based on configuration 5 is applied. In this case, the fitness value 
is evaluated by LIDT through the available data of previous simulations. In addi-
tion, the best individual of each generation is simulated and then the information 
obtained is added to the available data in order to refine the metamodel, thus get-
ting a more accurate metamodel as the GA evolves. Once the GA ends, the best 
simulated design is chosen.

This version was executed 10 times with the reference problem (5 tests with 
100 generations and 5 with 500). The average value of the optimal fitness func-
tions was 1659.267 and 1660.593 respectively, so no improvements were observed 
by increasing the number of generations. The total average value of fitness func-
tion was 1659.93 (with an average of 80 points evaluated), which differs signif-
icantly from the fitness value of the theoretical optimum (F =  1600.809). After 
several tests, it was observed that the GA does not converge to the theoretical opti-
mum because of the lack of accuracy of the metamodel. Hence, the simulation of 

Fig. 5.3   Points added during 
the initial DOE and border 
approximation in a 2D 
problem
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the best individual of each generation does not significantly improve the fit of the 
metamodel. So, new points must be added before applying the GA if the results 
are intended to be improved.

5.5.2 � Version 2

In order to improve the results, new middle points were added between the point 
with minimum mass found in the last iteration of the border approximation along 
the edges and the remaining points associated with adjacent corners of the fea-
sible/unfeasible border. This approach was implemented in version 2. Figure 5.4 
shows this new strategy in a 3D problem. The square black point outlined in grey 
represents the point with lower mass among the square black points added in the 
last iteration of the border approximation along the edges. This point is combined 
with the remaining adjacent square black points to obtain the two middle points 
represented as black circles in Fig. 5.4.

Additionally, the phase of border approximation (internally and along the 
edges) was carried out by linear interpolation to improve the convergence to the 
border, identifying the two closest points to the border (each in the opposite fea-
sible/unfeasible space) and allocating the new point on the border line estimated 
by linear interpolation of the 2 selected data for each constraint of the problem. 
Finally, the proposed point that is closer to the feasible zone (corresponding to 
the most restrictive constraint) is simulated. For example, in the case of having 
2 constraints involved in a border approximation along one edge (see Fig.  5.5), 
each involved constraint will lead to a proposed point (square and triangle points). 
These points are obtained by linear interpolation of the constraint values associ-
ated with the 2 closest data on this edge (one in the feasible zone of the specific 
constraint and another one in the unfeasible zone). Therefore, only one of the 2 
proposed points must be chosen. The closest to the feasible vertex of the edge will 

Fig. 5.4   New middle points 
(black circles) added in a 3D 
problem
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be selected (in this case the square point). This step is repeated while the MAPE of 
the critical constraint value of the different points added in the last iteration (com-
pared to the limit value) is greater than 1 %.

Afterwards a border approximation phase by GAs (configuration 5 with 100 
generations) was implemented, using LIDT to evaluate the fitness function. The 
best individual achieved by the GA is analyzed by FEM and added to the database 
to upload the metamodel. The GA is executed again, but penalizing the individual 
that is near to the points added previously in this phase. This strategy converges to 
a different optimum in each successive GA execution, which involves adding dif-
ferent new points along the feasible/unfeasible border, exploring interesting zones. 
For example, the circle black point (Fig. 5.6, left image) would be penalized by 
proximity to the triangle grey point (added in the previous execution of the GA). 
Hence, the GA evolves towards a point out of the proximity penalty radius of the 
points added in this stage of the program. Once the circle black point (Fig. 5.6, 
right image) is evaluated, the GA is executed again but also penalizing the prox-
imity to this new point. This step is repeated until at least “n” points (n = number 
of design variables) have been added in this phase. After that, the MAPE of the 
last added point (response estimations compared to simulations) is evaluated. If 
the MAPE is bigger than 1 %, the metamodel is uploaded with this last point and 
this GA is executed again applying proximity penalty. And so on until the MAPE 
value is less than 1 %.

Fig. 5.6   Proximity penalty strategy during the border approximation phase by GAs

Fig. 5.5   Border approximation phase through different constraints and selection of the proposed 
point which is closer to the feasible zone
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Subsequently a final GA (configuration 6 with 200 generations) is run, using 
LIDT to calculate the fitness function value. The best individual is simulated by 
FEM. If it is in the feasible zone, is the optimum, otherwise the results are added 
to the database and the metamodel is uploaded to execute again this final GA. And 
so on until reaching a feasible optimum.

In 10 different runs of this program version with the reference problem, the 
average value of the optimal fitness function was F = 1603.715, very close to the 
fitness value of the theoretical optimum (1600.809), with an average of 62 evalu-
ated designs.

A case study with FEM simulations (see Fig. 5.7) in which it is pretended to 
minimize the weight of a blade for wind power micro-turbine lightened by cel-
lular structures (3 design variables) keeping the maximum deflection under 15 mm 
(constraint) was also solved. The 3 design variables (see Fig. 5.7) were the length 
of the sides of the cubic hollows (“L”, varying between 20 and 60 mm), the exter-
nal thickness (“e”, varying between 3 and 8 mm) and the thickness between the 
cubic hollows (“eh” varying between 3 and 8 mm).

The optimization problem can be represented as follows:

Figure 5.8 shows the responses for each one of the 40 designs evaluated during 
the program evolution (maximum deflection and weight). The weight values were 
divided by the weight of the optimal design obtained (1632.55 g), while the deflec-
tion values were divided by the maximum permitted deflection (15  mm), repre-
senting then the relative values of both responses in the same graphic. It can be 
observed how the relative deflection tends to 1, which means that the program 

(1)

Minimize mass (L, e, eh)

Subject to max.deflection ≤ 15

20 ≤ L ≤ 60

3 ≤ e ≤ 8

3 ≤ eh ≤ 8

Individual (L, e, eh)

Fig. 5.7   Case study 
geometry and design 
variables
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evolves to designs with a maximum deflection close to 15 mm in order to mini-
mize the weight as much as possible. Therefore, as it was expected, best design is 
near to the feasible/unfeasible border.

The optimal design obtained after 40 FEM simulations has a mass of 
1632.55  g and 14.992  mm of maximum deflection, being its design variables 
“L = 39.875 mm”, “e = 4.091 mm” and “eh = 3 mm”. This same problem was 
also solved by an optimization method based on Box-Behnken DOE and optimal 
estimation by response surface method (BBRS), an optimization strategy avail-
able in the commercial software of design and FEM simulations, SolidWorks. 
Response Surface Methods (RSMs) are considered a very effective approach 
for optimization problems with a small number of design variables, which is 
ideal for this application. The BBRS method achieves an optimal of 1690.07  g 
(“L = 47.531 mm”, “e = 4.496 mm” and “eh = 3.193 mm”) with only 14 simula-
tions. The proposed methodology reaches an optimum 3.52 % better but requires 
quite more simulations. For this reason, a new version was developed in order to 
reduce the number of FEM simulations required during the evolution of the opti-
mization algorithm.

5.5.3 � Version 3

The last two phases of the program (based on GAs) were tested by excluding dif-
ferent data set in order to evaluate the convergence of the program to the optimum 
without these points. These tests were carried out solving the reference problem 
without FEM analysis in order to accelerate the process. The conclusions obtained 
in this analysis are listed below:

Fig. 5.8   Relative responses of the designs evaluated during the optimization process
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•	 The points added during the internal feasible/unfeasible border approximation 
were deleted and the algorithm evolved to practically the same optimal solu-
tion, which means that the points added during the internal border approxima-
tion have no effect on the quality of the optimum. For this reason, this step was 
excluded.

•	 The phase of border approximation along the edges was carried out only edge 
by edge, achieving a deviation from the real feasible/unfeasible border less than 
1 % at each affected edge. This new strategy showed a significant improvement 
in the solution because it helps to correctly select the best corner of the feasible/
unfeasible border for the next phase of the code. Furthermore, this idea has the 
advantage of varying the number of iterations depending on the design variable 
that is being changed during the border approximation. This means that the bor-
der approximation through one of the design variables may need 5 iterations to 
achieve a deviation less than 1  % at the most restrictive constraint, while the 
border approximation along another edge may need just 2 iterations. Hence, the 
control statement in the new program (version 3) is just the difference (absolute 
value) between the critical value of the most restrictive constraint and the value 
obtained for this same constraint in the simulation of the last point added dur-
ing the border approximation, thus controlling the deviation in the associated 
edge. However, in the previous version, the border approximation was carried 
out by adding a new point in each affected edges, repeating this process if the 
MAPE of the points simulated in this iteration was greater than 1  %. So, the 
number of points added during the border approximation was the same in all 
the edges affected and thus some points were probably closer to the border than 
others, increasing the risk of error in the next phase of the program, where it 
must be selected the best corner (best point added in the last iteration) of the 
border between feasible and unfeasible regions.

•	 Despite the proposal has been developed for a small number of design variables 
(less than 7), the addition of new middle points between the best border cor-
ner and the remaining adjacent corners involves incorporating a lot of points, 
growing exponentially as the number of design variables increases. However, 
after some tests it was observed that the method also converged to the theoreti-
cal optimum just combining the best border corner with the “n-1” best remain-
ing adjacent corners. For this reason, version 3 was implemented with this new 
strategy, which means to combine only the best border corner with the “n-1” 
best remaining adjacent corners instead of considering all possible combina-
tions, hence reducing the sampling intensity.

The new version 3 was programmed and then it was executed 10 times for 
solving the reference problem (without FEM analysis). The average value of the 
optimal fitness function was F = 1606.050, with an average of 44 sampling points. 
The new version converges to a solution 0.15 % worse than the previous version, 
but requires only 44 instead of 62 simulations, reducing in approximately 29 % the 
CPU time if a linear relation between CPU time and number of designs evaluated 
by FEM is assumed.
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Applying this new version in the previous case study (with FEM analy-
sis), an optimal design of 1634.85  g and only 29 sampling points was found 
(“L = 60.000 mm”, “e = 4.540 mm” and “eh = 3.000 mm”). This optimal design 
increased the mass by 0.14 % compared to the optimum obtained with version 2, but 
the number of evaluated designs was reduced from 40 to 29 (approximately 27.5 % 
of CPU time reduction). Compared with the result of BBRS method, this pro-
gram improves the optimal 3.38 % but requires more sampling points (29 vs. 14).  
However, it ensures the convergence to the theoretical optimum due to the refine-
ment loops, while the BBRS method does not guarantee the convergence to a fea-
sible design and its refinement is quite limited by the equation shape to be fitted. In 
addition, it should be noted that the sampling point number 18, which is added dur-
ing the border approximation along the edges, improves the optimum obtained by 
BBRS method with only 4 more simulations (see Table 5.2).

Table 5.2 shows most of the designs evaluated during the optimization process. 
Points from 1 to 9 correspond to the initial DOE (2-level full factorial DOE and 
central point). Points 10–11, 12–13, 14–15, 16–18 and 19–22 are added during 
the border approximation (5 different edges of the domain). Points 23 and 24 are 
associated to the middle points added between the best corner of the border (point 
18) and the 2 best remaining adjacent corners (points 22 and 13). Points 25–27 are 
added during the phase of exploration along the feasible/unfeasible border by GAs 
with proximity penalty. Finally, points 28 and 29 are added in 2 different execu-
tions of the final GA.

Table 5.2   Some of the designs evaluated during the evolution of version 3 (with FEA)

Point L (mm) e (mm) eh (mm) Maximum deflection (mm) Mass (g)

1 20 3 3 16.061 1705.09

8 60 8 8 11.543 2470.68

9 40 5.5 5.5 12.741 2087.14

11 20 3 4.7 14.905 1948.70

13 20 3.562 3 14.975 1814.40

15 35.157 3 8 15.015 1847.10

18 60 4.577 3 14.851 1643.70

22 60 4.115 8 15.045 1741.10

23 60 4.346 5.5 14.987 1694.90

24 40 4.07 3 15.04 1626.80

25 60 4.521 3 15.07 1630.30

27 31.33 3.858 3 14.943 1668.40

28 56.705 4.479 3 15.043 1631.60

29 60 4.54 3 14.975 1634.85
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5.6 � Conclusions

A new lightweight optimization method for cellular structures in AM has been 
presented, based on a 2-level full factorial DOE and central point, border approxi-
mation along the edges, addition of new middle points between the best border 
corner and the best “n-1” adjacent remaining corners, addition of new points along 
the feasible/unfeasible border using GAs with proximity penalty and LIDT met-
amodel, and a final optimal searching through a GA also combined with LIDT 
metamodel.

The border approximation phase along the edges allows achieving good designs 
with a low sampling effort in the case of a small number of design variables. 
Moreover, in many cases, the optimum is on the boundary of the domain. For this 
reason, the border approximation phase along the edges is a good and simple strat-
egy for problems with a small number of design variables.

The proximity penalty in the GA allows the addition of new points along the 
feasible/unfeasible border (interesting zones). These points improve the fitting of 
the surrogate model in areas where the optimal will be found. Hence, in the next 
executions of the GAs, the algorithm leads to solutions closer to the theoretical 
optimum thanks to the refinement achieved during this stage of the program.

Finally, it should be also noted that the linear interpolation metamodel drasti-
cally reduced the FEM simulations, obtaining a methodology that guarantees con-
vergence to the optimal design with a low sampling density.

Although this proposal achieves good results in lightweight optimization of 
cellular structures for Additive Manufacturing parts, further research must be con-
ducted in the future to further reduce the number of FEA and consequently allow 
design cost savings. In addition, new strategies must be developed in order to 
apply this concept in problems with a larger number of design variables.
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