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Abstract Advances in development of highly efficient dedicated Evolutionary 
Algorithms (EA) for a wide class of large non-linear constrained optimization 
problems are considered in this paper. The first objective of this general research 
is development and application of the improved EA to residual stress analysis in 
 railroad rails and vehicle wheels. However, the standard EA are not sufficiently 
efficient for solving such large optimization problems. Therefore, our current 
research is mostly focused on development of various new very efficient accelera-
tion techniques proposed, including smoothing and balancing, adaptive step-by-
step mesh refinement, as well as a’posteriori error analysis and related techniques. 
This paper presents an efficiency analysis of chosen speed-up techniques using 
several simple but demanding benchmark problems, including residual stress anal-
ysis in elastic-plastic bodies under cyclic loadings. Preliminary results obtained 
for numerical tests are encouraging and show a clear possibility of practical appli-
cation of the improved EA to large optimization problems.
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4.1  Introduction

A lot of scientific and engineering problems, including many important problems 
of mechanics, may be formulated in terms of constrained optimization. Complexity 
of such problems results mostly from their non-linearity, as well as from a large 
number of decision variables and constraints. Thus, this paper considers develop-
ment of an efficient optimization approach based on the Evolutionary Algorithms 
(EA) for a wide class of large non-linear constrained optimization problems.

In contrast to most deterministic methods, the EA may be successfully applied 
with similar efficiency to both the convex and non-convex problems [4, 10]. 
However, general efficiency of the standard EA is rather low. Therefore, signifi-
cant acceleration of the convergence process is needed. Moreover, the improved 
EA should provide possibility of solving such optimization problems, when the 
standard EA fail. Improvement of the standard EA may be obtained in several 
ways. We have already proposed several new acceleration techniques [5, 15, 16, 
18]. These techniques have been preliminarily tested using several demanding 
benchmark problems. Numerical results of these tests indicate significant accelera-
tion of the large optimization processes involved.

The engineering objective of our research includes residual stress analysis in 
railroad rails and vehicle wheels [7, 12, 13], as well as a wide class of problems 
resulting from the Physically Based Approximation (PBA) of experimental and/
or numerical data [8]. Tensile residual stresses are of great importance in reliable 
prediction of rail and wheel life service resulting from its fatigue failure. Both the 
theoretical and experimental investigations of residual stress may be expressed 
in terms of constrained optimization problems. Theoretical model of residual 
stress analysis in bodies under cyclic loadings is based on the shakedown theory 
and may be found in [12–14]. Several discrete methods (Finite Element Method, 
Boundary Element Method, Meshless Finite Difference Method) and the deter-
ministic solution approach were already used to solve such problems [13, 14]; 
neural networks were also investigated. The experimental model is based on the 
PBA approach [8, 13]. In general, the PBA may be applied for smoothing of 
any experimentally measured data. It allows for simultaneous use of the whole 
experimental, theoretical, and heuristic knowledge of analyzed problems in a way 
dependent on the reliability of such information [8]. The PBA may be also applied 
for smoothing of discrete data obtained from any rough numerical solution of any 
boundary value problem. So far mostly the deterministic methods have been used 
for solving the PBA problems [8, 13]. However, preliminary attempts of applica-
tion of the EA to such problems have been also recently made in [17].

Due to the size and complexity of the considered optimization problems, 
our research is focused, first of all, on the efficiency increase of the algorithms 
applied. We are presenting here the state of the art of our research, including over-
view of the proposed acceleration techniques, advances in their development, 
and chosen numerical results carried out for various benchmarks problems. The 
 present work is a continuation of the previous papers [5, 15–18].
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4.2  General Problem Formulation

Considered is a wide class of large non-linear constrained optimization problems. 
Usually such problems are formulated as optimization of functionals, where a 
function u(x), x ∈ RN is sought, usually in the discrete form of the vector u = {ui} 
consisting of nodal values ui, i = 1, 2, …, n. These nodal values are defined on 
a mesh formed by arbitrarily distributed nodes. Here, N is the dimension of the 
physical space (1D, 2D or 3D), and n is a number of decision variables. In general, 
considered optimization problems may be posed as follows:

find a function u = u(x), that yields the stationary point of a functional �(u), 
satisfying the equality

and inequality constraints

In particular case of the PBA approach [8], the functional

consists of the experimental �E(σ ) and theoretical �T (σ ) parts, scaled to be 
dimensionless quantities. Here, σ is the required solution, and � is a scalar weight-
ing factor. In the PBA, the equality constraints are usually of theoretical nature, 
while the inequality ones are mostly of experimental nature.

The experimental part of the functional is defined as the weighted averaged error 
resulting from discrepancies between the measured data and its approximation [8]:

where σ represents the required unknown field, f is a measured function of σ, f expi  
is its experimental value at the point ri, ei is an admissible experimental error, m is 
a number of measurements, F(x) = p(x̄)− p(x − x̄) is a data scattering function 
defined by the probability density function p(x − x̄), and x̄ is the expected value.

The enhanced field σ(r) cannot differ too much from experimental data. Thus, 
the inequality constraints are defined as local requirements:

It is useful to impose also an averaged global constraint:

Admissible experimental errors eE and ei, i = 1, 2, 3, . . . , m should be evaluated 
taking into account the true statistics of measurements.

The theoretical part of the functional (4.3) is based on a known theory, and/
or on heuristic principles [8]. In mechanics it may be represented by an energy 

(4.1)A(u) = 0

(4.2)B(u) ≤ 0
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functional that has to be minimized, e.g., the total complementary energy of stati-
cally admissible stresses. On the other hand, as a heuristic principle, e.g., require-
ment of smoothness may be also introduced. In such case, the minimal average 
curvature κ in the whole domain Ω can be used, hence

where

In the 2D Cartesian coordinate system the above definition may be replaced by the 
following one:

and transformed to the polar coordinate system if necessary.
One of the main difficulties in the general formulation is the problem of how 

to establish the weighting factor �, i.e., how to determine a reasonable balance 
between experiment and theory involved. Specific formulations addressing this 
problem may be found in [8].

4.3  Evolutionary Algorithms and Acceleration Techniques

Nowadays, the EA form a wide group of biologically inspired methods based on 
theory of evolution and genetics. This group includes such methods like genetic 
algorithms, genetic programming, evolutionary strategies, evolutionary program-
ming, and others [4, 10]. In this paper, the EA are precisely understood as genetic 
algorithms with decimal (floating-point) chromosomes. The standard algorithm 
consists of three operators: selection, crossover and mutation [4]. Significant 
acceleration of the EA-based solution approach may be achieved in various ways, 
including appropriate hardware, software, and algorithm improvements.

Hardware acceleration techniques include distribution and parallelization of 
calculations on various parallel architectures, e.g., general-purpose Graphics 
Processing Units (GPUs), Field-Programmable Gate Array (FPGA) devices, or 
standard computer clusters. Efficient software implementations dedicated for 
 particular hardware architectures are crucial as well. Many various parallel EA 
have been already developed and tested [9, 11]. Algorithmic acceleration of an 
optimization process may be obtained by, e.g., development of hybrid algorithms 
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[2, 6] combining the EA with deterministic methods (such as feasible direction 
method), and introduction of new, problem-oriented operators.

Our approach includes three ways for the EA speed-up. At first, a choice of the 
most efficient combination of particular selection, crossover, and mutation opera-
tors was sought, out of a variety of available ones. Three types of classification 
rules were proposed and applied for this purpose. Evaluation of the best values of 
EA parameters (like population size, probability of mutation and crossover) was 
done as well. Later on, we have proposed and preliminarily investigated several 
new acceleration techniques based on simple concepts. These techniques include 
smoothing and balancing [15, 16], a’posteriori error analysis and related tech-
niques (like solution averaging and cloning, creating population of representatives) 
[18], as well as adaptive step-by-step mesh refinement [5, 16], and possible com-
binations of the above. Proposed techniques are well supported by non-standard 
use of parallel and distributed calculations. Some of them are problem- (or class 
of problems) oriented, other are of more general nature. Some of these techniques 
are addressed to optimization of functionals, where a large set of nodal values of 
a function is searched. Appropriate constraint handling [3] is also very important, 
especially in the case of optimization problems involving large number of inequal-
ity constraints. Therefore, we have paid particular attention to investigation of 
various penalty functions for constraint handling and their impact on the conver-
gence rate of the optimization process. Finally, we consider application and fur-
ther development of chosen well-known acceleration techniques, such as standard 
distribution and parallelization of computations, hybrid approach, and use of other 
evolutionary operators (e.g. gradient mutation).

4.3.1  Smoothing and Balancing

In the case of optimization processes involving large number of decision variables, 
raw results obtained from the EA approach usually present a collection of locally 
scattered data. If information about solution smoothness (at least in subdomains) 
is available, it may be used for acceleration of the solution process. This may be 
done in various ways [5, 15]. First of all, an extra procedure based on the Moving 
Weighted Least Squares (MWLS) technique [19, 20], or any other equivalent 
approximation method, is applied in order to smooth the raw results obtained from 
the standard EA procedure.

In the MWLS technique, the weighted error functional

is minimized at each point x̄ with the respect to the set of local derivatives of 
 function u. Here ui is a nodal function value supplied by the EA, while ūi presents 

(4.10)B =
n
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i=1

(ui − ūi)
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its approximation by means of expansion into the p-th order truncated Taylor 
series, and wi is a weighting factor. In the case of 1D, a local p-th order approxi-
mation is obtained as follows:

where hi = xi − x̄, and R is a residuum of the Taylor series. Weighting function 
may be introduced as in [8]:

where g is a smoothing parameter, allowing us to control the intensity of smooth-
ing. Minimization conditions:

provide a set of linear equations to be solved for the unknown function ū and its 
derivatives up to the order p at each point x̄.

The above formulation may be easily transformed into a 2D one. It may be 
found in [19, 20].

Appropriate choice of a value of the smoothing parameter g ≥ 0 is of signifi-
cant importance. For g = 0 the weighting function is singular and provides inter-
polation. Otherwise, we deal with the best approximation problem. The higher the 
value of the parameter is, the smoother is the approximation obtained.

In problems of mechanics each smoothing may result in the global equilibrium 
loss of a considered body. The equilibrium may be restored by the standard EA 
approach in a series of iterations. However, it may be also faster restored by means 
of an artificial balancing of body forces performed directly after the smoothing [16].

Information about smoothness may be also used in a selection of chromosomes 
process [5, 15]. A new criterion based on a mean solution curvature may be intro-
duced into any selection operator. Mean local solution curvature κ may be calcu-
lated, e.g., using the definition based on the directional derivative, the same as in 
the case of the PBA formulation (4.8 and 4.9). The mean curvature of the solution 
in the whole domain may be calculated using the formula (4.7).

4.3.2  A’posteriori Error Analysis and Related Techniques

Due to stochastic nature of evolutionary computations, solutions obtained from 
independent populations may differ from each other. The weighted average of the 
best solutions taken from such populations is expected to be more precise than 
majority of these solutions. Such averaged and additionally smoothed afterwards 
solution may be used as a reference one for a’posteriori error estimation [1, 18].
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Later on, the knowledge about the magnitude and the distribution of solution 
errors is used in order to intensify calculations in zones of large errors. We have 
proposed improved mutation and crossover operators taking into account informa-
tion about local solution errors [18]. Information about estimated global error may 
be used by the modified selection operator.

A’posteriori error analysis may be well supported by parallel and distrib-
uted calculations in addition to other standard advantages provided by clusters. 
Moreover, representation of the best chromosomes, collected at the same time 
from all populations involved, may be also very useful, and significantly improve 
the solution process. All independent populations, as well as a population of repre-
sentatives, are calculated simultaneously in a parallel way. Calculations carried out 
in each population may be partitioned among processing units as well.

More detailed information and wider numerical analysis of mentioned tech-
niques using chosen benchmark problems may be found in [18].

4.3.3  Adaptive Step by Step Mesh Refinement

Solution time needed for optimization of functional is in many problems strictly 
dependent on the number of decision variables used, i.e. on the mesh density in the 
domain. The denser is a mesh in the domain the more time-consuming the solu-
tion process is. Therefore, the analysis can start from a coarse mesh and a fast, 
though not precise enough solution may be obtained at first. Starting from such 
solution, the mesh may be refined by inserting new nodes. Initial function values 
at these new nodes are found by means of an approximation built upon the nodal 
values of the coarse mesh. A general approach for most optimization problems 
may be obtained by using the MWLS approximation [19, 20] approach. However, 
any other approximation or interpolation method might be applied as well. Such 
approach may be repeated several times, until a sufficiently dense mesh is obtained.

Furthermore, the step-by-step mesh refinement may be also combined with the 
a’posteriori error analysis. Such strategy, using all techniques mentioned above, 
may be found in [5, 16].

4.4  Selected Benchmark Problems

The EA efficiency was examined using several benchmark problems, including 
residual stress analysis in chosen elastic perfectly-plastic bodies under various 
cyclic loadings. In particular, we have analyzed the residual stress in a cyclically 
bent bar, and in a thick-walled cylinder subject to cyclic loadings, like internal 
pressure, torsion and tension, including combined loadings [5, 15, 16, 18]. These 
problems may be analyzed as either 1D (taking into account existing symmetries) 
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or as 2D ones as well. Another advantage of the considered benchmark problems 
is possibility of testing almost any number of decision variables involved.

We have also investigated several benchmark problems using simulated 
pseudo-experimental data and the PBA approach, including smoothing of beam 
deflections, and reconstruction of residual stresses in a thick-walled elastic-per-
fectly plastic cylinder subject to cyclic internal pressure [17]. For smoothing of 
beam deflections we also used real experimental data obtained by vision measure-
ment system.

Three chosen benchmark problems are described in a more detailed way below.

4.4.1  Residual Stress Analysis in Bending Bar

Considered is the residual stress analysis in an elastic-perfectly plastic bar of the 
rectangular cross-section subject to cyclic bending by the moment exceeding its 
elastic capacity. In the simplest 1D case the solution of the following optimization 
problem was searched:

Find self-equilibrated normal stress σ = σ(z) minimizing complementary 
energy of the bar

and satisfying the global self-equilibrium bending moment equation

as well as the inequality conditions resulting from the yield criterion

where σY is the yield stress (plastic limit), and σ e is the purely elastic solution 
of the problem considered. After discretization, where the sought normal stress 
σ = σ(z) is replaced by the piecewise linear function spanned over the nodal 
 values σi, the following formulation is obtained:

Find stresses σ1, σ2, . . . , σn satisfying

(4.14)min
σ
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and inequality constraints

Numerical integration is used providing the exact results for piece-wise linear 
functions.

The target 3D non-linear constrained optimization problem resulting from 
residual stress analysis in railroad rails, and vehicle wheels is of similar, though 
much more complex nature. The exact formulation of this problem is given in 
[12, 13].

4.4.2  Residual Stress Analysis in Pressurized Thick Walled 
Cylinder

Considered is an elastic-perfectly plastic thick-walled cylinder under cyclic inter-
nal pressure. The following optimization problem given in the polar coordinates 
for residual stress is analyzed:

find the minimum of the total complementary energy

subject to the equilibrium equation

the yield condition

the incompressibility equation

and boundary conditions

where σrr , σ
r
t , σ

r
z are respectively the radial, circumferential and longitudinal resid-

ual stresses, σe = {σer , σet , σez} is the purely elastic solution of the same problem, 
σY is the yield stress, a, b are respectively the internal and external cylinder radii, 
L is its length, and E is the Young modulus.
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4.4.3  Reconstruction of Residual Stresses Using  
the PBA Approach

Given are strains εexpi , i = 1, 2, 3, . . . , n, experimentally measured in the 2D 
cross-section of the thick-walled cylinder under cyclic internal pressure. Find the 
residual stresses in its 2D cross-section. The following formulation in the polar 
coordinate system is used:

find the stationary point of the functional

where

satisfying equality constraints (4.20, 4.22 and 4.23), and inequality constraints for 
admissible local and global errors

The mean solution curvature is calculated using the formula (4.9).

4.5  Numerical Results

The main objective of numerous executed tests was to evaluate correctness, effi-
ciency, and ability of the proposed acceleration techniques to deal with large, and 
very large optimization problems. At first a choice of the most efficient combi-
nation of the standard EA operators was sought. Searching the best combination 
of operators, as well as adjusting their parameters, the acceleration up to sev-
eral times may be reached. From numerous variants of operators we preliminar-
ily chose several popular ones: rank and tournament selection, arithmetic and 
heuristic crossover, uniform, non-uniform and border mutation. Using the best 
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combination found, namely rank selection, heuristic crossover, and non-uniform 
mutation, particular already mentioned acceleration techniques were analyzed. 
Some other results of our efficiency analysis were also described in [16, 18], and 
very briefly in [5, 15].

Acceleration of calculations was measured using four speed-up factors pro-
posed, and defined in [18]. These factors take into account convergence of mean 
solution error as a function of time, or number of iterations. Convergence of fit-
ness function is also measured.

All presented results were averaged over 10 independent solution processes.

4.5.1  Smoothing and Balancing

In the considered tests, the MWLS technique was used for additional smoothing 
of raw EA results. When using this technique it is necessary to establish values 
for two extra parameters: order of local approximation p, and smoothing param-
eter g. Various values of these parameters may have significant influence on the 
convergence of the solution process. Number of standard iterations between 
subsequent smoothing and balancing operations has to be considered as well. 
In Figs. 4.1 and 4.2 one may see results obtained in the bending bar analysis 
(benchmark 4.4.1).

In the case of this benchmark test, the best results were obtained for the linear 
local approximation p = 1 (see Fig. 4.1). There is also no significant difference 
between results obtained for p = 2 and p = 3. However, the best results obtained 
in case of p = 1 may result from the specific features of the sought solution of 
the problem, which is piece-wise linear. For more complex solutions higher local 
approximation orders will be needed. In general, the order of local approximation 
should depend on the order of differential operators used.

In Fig. 4.1 you may also see additional time needed for each smoothing and 
balancing operation. These operations were repeated after each 300 iterations. 
All optimization processes shown in Fig. 4.1 were carried out for 3000 itera-
tions, so you may find the whole additional time needed for all extra smooth-
ing operations. This extra time is not significant when compared to obtained 
gains. The results were obtained for smoothing parameter g = 5. Other exe-
cuted tests, not presented here, showed that choice of the value of g parameter 
was not significant, excluding small ones. For g ∈ [3, 20] obtained results were 
very similar.

Application of our smoothing technique based on the MWLS, and balancing 
procedure based on the linear correction terms allowed to achieve up to about 4 
times efficiency increase (see Fig. 4.2). Smoothing technique was also tested using 
benchmark 4.4.2 and gave encouraging results as well.



62 J. Orkisz and M. Glowacki

4.5.2  Constraint Handling—Penalty Functions

A type of penalty function, as well as its parameters may have a significant impact 
on the convergence rate of the optimization process. In our research, the following 
function was used for constraint handling:

where F is the new (expanded) objective function, f is the standard fitness func-
tion, di is the distance of i-th decision variable to constraint boundaries, n is the 
number of decision variables, α and β are parameters.

(4.29)F = f +
n

∑

i= 1

α d
β
i

Fig. 4.1  Results of smoothing and balancing for various orders of local approximation in the 
MWLS technique
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In Fig. 4.3 one may see results obtained for various values of parameters α and β  
in cyclically pressurized cylinder analysis (benchmark 4.4.2). In this example, the 
best results were obtained for α = 1 and β = 1.5. When comparing the best and the 
worst cases shown in Fig. 4.3, the speed-up about 3 times was reached.

4.5.3  Step by Step Mesh Refinement

Results shown in Fig. 4.4 were obtained in reconstruction of residual stresses in 
the thick walled cylinder under cyclic internal pressure using pseudo-measure-
ments of strains and the PBA approach (benchmark 4.4.3). Numerical data used 
in this experiment were randomly generated using the true (analytical) solution as 
a base curve. A strain gauge technique was simulated. Assumed were delta type 
rosettes, giving three components of strains. All calculations were carried out 
in the 2D domain. The random data generator used Gaussian distribution. More 
detailed description of methodology of such tests, as well as solutions obtained, 
may be found in [17]. In this paper only a brief analysis of calculation efficiency is 
presented.

Comparison of the convergence of mean solution error for standard and 
improved algorithms is shown in Fig. 4.4. In this case, the improved EA used a 
series of denser and denser meshes, combined with smoothing technique. The 
process started with 16 nodes, and was continued until the number of 1248 nodes 
was reached. The mesh was refined 4 times. Each nodal value corresponded to one 
decision variable (gene in a chromosome). In comparison to the standard EA, the 
acceleration factor of the optimization process up to about 140 times was reached.
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4.6  Conclusions

The general objective of this research is development of highly efficient, dedicated 
EA for solving large non-linear constrained optimization problems. Preliminary 
results of many executed tests clearly show a possibility of significant efficiency 
increase when using all proposed acceleration techniques. The speed-up about 
140 times was reached. It is also worth noticing, that the improved EA allowed 
obtaining solutions in cases when the standard EA failed to solve problems due to 
too large number of decision variables. Results obtained indicate also a clear pos-
sibility of practical application of the improved EA to the PBA of experimental 
and/or numerical data for large optimization problems. Application of the acceler-
ated EA to the PBA is still at the initial stage of research development, however 
preliminary results are very encouraging.

Future research includes continuation of various efforts oriented towards effi-
ciency increase of the EA-based optimization approach, analysis of further, 
demanding benchmark problems, and application of such developed method to 
residual stress analysis in railroad rails, and vehicle wheels [8, 12, 13]. The PBA 
approach for smoothing of experimental data is also expected.
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