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Abstract The optimization of complex civil engineering structures remains a major 
scientific challenge, mostly because of the high number of calls to the finite element 
analysis required by the complete design process. To achieve a significant reduction of 
this computational effort, a popular approach consists in substituting the high-fidelity 
simulation by a lower-fidelity regression model, also called a metamodel. However, 
most metamodels (like kriging, radial basis functions, etc.) focus on continuous vari-
ables, thereby neglecting the large amount of problems characterized by discrete, 
integer, or categorical data. Therefore, in this chapter, a complete metamodel-assisted 
optimization procedure is proposed to deal with mixed variables. The methodology 
includes a multi-objective evolutionary algorithm and a multiple kernel regression 
model, both adapted to mixed data, as well as an efficient on-line enrichment of the 
metamodel during the optimization. A structural benchmark test case illustrates the 
proposed approach, followed by a critical discussion about the generalization of the 
concepts introduced in this chapter for metamodel-assisted optimization.
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1.1  Mixed Variables in Civil Engineering

The need for stronger, safer, and greener structures built at shortened delays and at 
a competitive cost pushes the art of construction to favor elegant lightweight struc-
tures, as the city bridge of Nijmegen (The Netherlands) designed by L. Ney and C. 
Poulissen (see Fig. 1.1),1 for which an optimization study was conducted by the 
first author of this chapter.

Nowadays, the design of such remarkable structures is greatly improved by 
numerical methods, in particular through an efficient combination of evolution-
ary algorithms to explore the design space, and general regression models (also 
called metamodels) to avoid a systematic call to the structural finite element analy-
sis [11, 15]. Seen through a simulation-based perspective, in a classical structural 
optimization process the simulations are integrated within an optimization iterative 
loop, as depicted in Fig. 1.2. The scientific and technical challenge resides in car-
rying out a good balance between the use of the high-fidelity (i.e. finite elements) 
and the low-fidelity (i.e. regression) models, in order to find the best compromise 
between accuracy and CPU time.

Before such numerical considerations, the first step requires the definition of 
relevant design variables. As a general rule, the parameterization of civil engi-
neering structures (bridges, dams, buildings, etc.) involves several types of vari-
ables representing respectively the geometry (sizing of the elements, overall 
shape and topology), the materials used, and the boundary conditions (supports). 
Mathematically, these variables can be classified as follows:

1Credits: http://commons.wikimedia.org/.

Fig. 1.1  Nijmegen city 
bridge “De Oversteek” during 
its construction (September 
2013)

http://commons.wikimedia.org/
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•	 continuous variables are real numbers defined within an interval 
[xmin, xmax] ⊆ R;

•	 discrete variables are continuous variables only available among a dis-
crete set. For instance, the cross-section area of a beam profile is an intrinsi-
cally continuous parameter defined in square meters, but whose availability 
might be limited to a discrete sampling taken from a catalog of beam profiles 
{A(1),A(2), . . . ,A(n)}. This means however that values not available in catalogs 
can still be computed if necessary, and then rounded off;

•	 integer variables are strictly defined in N. Contrary to discrete variables, inter-
mediate values have no physical meaning. For example, the number of holes 
drilled in a plate to reduce its weight can be equal to 3 or 4, but any value 
between these two integer numbers does not correspond to a physical design;

•	 categorical variables represent the remaining non-numerical parameters. 
Although largely neglected in the optimization literature, they have a huge 
practical interest in civil engineering, since they can represent for instance 
the choice of a material ({steel, aluminum, . . .}), the type of connection in the 
assembly of frames ({rigid, semi-rigid, articulated}), the shape of a cross- 
section (  ), etc. If they are endowed with a predefined ranking 
(e.g. a size {S,M, L,XL}, a qualitative appreciation {weak, normal, strong}), they 
are referred to as ordinal variables; otherwise, without intrinsic ordering, they 
are purely nominal.

As mentioned above for the case of discrete variables, a common practice con-
sists in treating non-continuous variables as real numbers, performing an approxi-
mation and/or optimization task, and eventually rounding off the solution. The 
very simple example below will show the danger of using such techniques to deal 
with intrinsically non-continuous problems.

Let us consider the following three-variable minimization problem:

(1.1)

min
x1,x2,x3

f (x1, x2, x3) ≡ x1 + x2 + x3

subject to:







g(x1, x2, x3) ≡ x1 + x2 + x3 − 10 ≥ 0

h(x1, x2, x3) ≡ x1 − x2 = 0

x1, x2, x3 ∈ {1, 2, 3, 4, 5}

Optimizer

Finite element analysis

Input variables
Keeping/removing
the elementsOutput responses

mass
stresses

. . .

Fig. 1.2  Classical structural optimization process
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Figure 1.3 shows the design space and a few solutions of problem (1). On one 
hand, x∗ = (3, 3, 4) is a discrete optimum characterized by an objective function 
value equal to f (x∗) = 10. On the other hand, x∗∗ = (3.6, 3.6, 2.8) is a continu-
ous solution of problem of (1.1) without considering the last constraint on the dis-
crete nature of the variables, and characterized by the same value at the optimum 
f (x∗∗) = 10; however, by rounding off a posteriori the corresponding design vari-
ables to the nearest integer values x∗∗rounded off(4, 4, 3), all constraints are now satis-
fied but the optimality has been lost ( f (x∗∗rounded off) = 11).

This simple application demonstrates the need for considering the discrete, 
integer, or categorical nature of the variables directly in the optimization phase. 
Of course, mixed-integer programming, implying the relaxation of discrete/inte-
ger variables [17], is a powerful approach to handle such problems, and is widely 
used in combinatorial optimization. Nevertheless, its efficiency depends largely on 
the mathematical properties of the functions involved (linearity, convexity, etc.), 
which are usually not guaranteed in civil engineering problems. Besides, recent 
works on the symmetry of optimal designs in sizing and topology optimization 
proved that the solution of symmetric problems is always symmetric with continu-
ous variables, but might be asymmetric when discrete variables are involved [19]. 
All these observations should convince the reader of the importance of treating 
mixed variables appropriately.

1 2 3 4 5
1

2

3

4

5

x
1
 = x

2

x 3

x

x

xrounded off
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Fig. 1.3  Three-variable example showing the danger of using continuous optimization followed 
by rounding off the solution for discrete or integer optimization. The design space is depicted in 
2D, thereby satisfying automatically the equality constraint x1 = x2. The black squares represent 
the discrete design space. While x∗ constitutes a valid feasible solution, x∗∗

rounded off
 obtained by 

rounding off a valid continuous solution loses the optimality criterion
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In this chapter, the emphasis will be put on the simultaneous presence of 
 continuous and categorical variables. After a discussion on the representation of 
mixed variables (Sect. 1.2), a multiple kernel regression metamodel is described 
(Sect. 1.3), followed by an on-line metamodel-assisted optimization proce-
dure applied to the design of a rigid frame (Sect. 1.4), and by the conclusions 
(Sect. 1.5).

1.2  Representation of Mixed Variables

Before diving into the regression and optimization procedures, it is worth consid-
ering how mixed data can be mingled together.

Being familiar with genetic algorithms, or simply with computer science in 
general, the first idea to deal with different types of data is to adopt a binary cod-
ing. According to the range of the available data (or precision for real numbers), a 
binary conversion can be operated as shown in Fig. 1.4.

However, it is often preferable to propose a representation closer to the vari-
able types [13]. In this case, a real-number array can be obtained, as illustrated in 
Fig. 1.5.

1.5472 -4.7198 . . . 1.2 10.4 . . . 6 . . . S . . . . . .

Continuous
variables

Discrete
variables

Integer
variables

Ordinal
variables

Nominal
variables

0 1 1 0 . . . 0 0

Fig. 1.4  Mixed data converted into an array of binary digits

Fig. 1.5  Mixed data converted into an array of real numbers
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However, both approaches require an arbitrary mapping of the categorical var-
iables. As shown in Table 1.1, different mappings lead to different conversions, 
which—without specific care—might lead to a different behavior of the approxi-
mation/optimization tools, viz. to a different output prediction (approximation) or 
optimal solution (optimization).

Therefore, to alleviate this shortcoming, the basic idea of the regular simplex 
method is to assume that any pair of levels of a categorical variable are separated 
by the same distance (see Fig. 1.6). To achieve this, each level of an n-level vari-
able is associated with a distinct vertex of a regular simplex in (n− 1) dimensional 
space [12, 14]. For simplicity, the Euclidean distance between levels is assumed to 
be 1. For example, if xcateg can take values in a set of nattr = 3 possible attributes  

, these attributes can be drawn in a (nattr − 1) space in such a way that 
each attribute is converted to the vertex coordinates of a standard regular simplex. 
By construction, all potential values are thus equally distant [4].

Numerical validation performed on several analytical benchmark test cases [8] 
showed that a real-simplex mapping (i.e. real conversion for continuous, discrete, 
integer, and ordinal variables, and regular simplex for the nominal variables) is a 
sound and competitive conversion technique.

The next sections will describe how such mapping techniques can be seam-
lessly integrated within approximation and optimization procedures.

Table 1.1  Mapping of 
categorical attributes onto a 
real number (a binary vector, 
respectively)

Both mapping operators are equally valid, but might lead to a 
different behavior of the approximation/optimization tools with-
out specific care

Nominal variable Mapping 1 Mapping 2

Real Binary Real Binary

1 (0,0) 2 (0,1)

2 (0,1) 4 (1,1)

3 (1,0) 1 (0,0)

4 (1,1) 3 (1,0)

Fig. 1.6  Representation of a 
nominal variable with three 
attributes in the 2D space by 
a standard regular simplex

-1 0 1
-1

0

1

↔ (-0.5,0)
↔ (0.5,0)
↔ (0,0.866)
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1.3  Approximation by On-line Multiple Kernel Regression

1.3.1  Multiple Kernel Regression and Support  
Vector Regression (SVR)

As discussed in the introduction, a reliable and efficient structural optimization 
process should harmoniously combine an optimization algorithm with an approxi-
mate model in order to reach a feasible solution at an affordable computational 
time. This is the purpose of metamodel-assisted optimization, also referred to as 
surrogate-based optimization.

The main steps to devise a surrogate-based optimization algorithm are the fol-
lowing [6]:

1. the variables to be optimized are selected, often due to their importance, as 
determined by preliminary experiments;

2. a series of initial designs are analyzed by means of the high-fidelity simula-
tion (in structural design, the simulation usually consists in a finite element 
analysis). The set of designs are selected according to a pre-defined sampling 
scheme, for example through Latin hypercube sampling [22];

3. a metamodel (e.g. kriging, radial basis function networks, artificial neural 
networks, polynomial response surfaces, etc.) is used to build a low-fidelity 
model;

4. the optimization is performed using the low-fidelity model;
5. the results of the optimization are post-processed in order to keep the best 

point(s). According to the infill criterion selected, new designs are assessed 
by the high-fidelity simulation, and the corresponding results are added to the 
existing database to improve the reliability of the metamodel. The process can 
go back to step 3 and the optimization-approximation cycling is repeated until 
the stopping criterion is reached (convergence or maximum number of cycles 
attained).

An off-line optimization process would stop just after step 4, the best 
solution(s) found being re-assessed by the high-fidelity simulation for verification 
purposes. In the approach advocated by the authors, an on-line learning process is 
proposed (see step 5). It consists in updating the metamodel both by adding new 
information and by updating the regression parameters. Thus, this on-line model 
is updated by the results of an optimization process adapting itself to work better 
in areas close to the optimum (or optima in multi-objective optimization) found at 
each cycle (see Fig. 1.7).

First, the metamodel for mixed variables must be presented. In this study, 
a kernel-based approach is followed. Common kernel-based learning methods 
[20] use an implicit mapping of the input data into a high dimensional feature 
space defined by a kernel function, i.e. a function K returning the inner product 
�φ(x),φ(x′)� between the images of two data points x, x′ in the feature space (see 
Table 1.2). The choice of the map φ aims at converting the nonlinear relations into 
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linear ones. The learning then takes place in the feature space and the learning 
algorithm can be expressed so that the data points only appear inside dot products 
with other points. This is often referred to as the “kernel trick” [21].

The use of kernel methods is well adapted to the problem of data integration 
as it enables multiple types of data to be converted into a common usable format, 
using one of the representations mentioned in Sect. 1.2. These can be combined 
eventually with a weighted summation and used as training data for a classical 
support vector regression (SVR) scheme.

A detailed explanation of SVR is outside the scope of this chapter, but its 
main principles are summarized hereafter. The key characteristic of SVR is that 
it allows to specify a margin ε within which we are ready to accept errors in the 
sample data without affecting the prediction quality. The SVR predictor is defined 
by the points lying outside the region formed by the band of width ±ε around the 
regression (see Eq. 1.2). Those vectors are the so-called support vectors.

Fig. 1.7  On-line optimization with high-fidelity (= structural finite element analysis) and low-
fidelity (= metamodel by multiple kernel regression) simulations

Table 1.2  Short list of some 
common kernel functions

Name Expression

Gaussian
K(x, x′) = exp

(

−||x−x
′ ||2

2σ 2

)

ANOVA
K

(

x, x
′) =

∑

exp

(

−σ

(

x
k − x

′k)2
)

d

Linear K(x, x′) = x
T
x
′ + c

Polynomial K(x, x′) = (αxTx′ + c)d

Rational quadratic
K(x, x′) = 1− ||x−x

′ |2
||x−x′ ||2+c
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The goal is to find a function f̂ (x) that deviates at most by ε from the observed 
output yi for the regression based on the training data, and minimizing at the same 
time the model complexity (see Eq. 1.3):

The constraints in Eq. 1.3 assume that f̂ (x) exists for all yi with precision ±ε. 
Nevertheless, the solution may actually not exist or it would be possible to achieve 
better predictions if outliers were allowed. Consequently, slack variables ξ+ and 
ξ− are introduced:

and the objective function and constraints for SVR are

where n is the number of training patterns and C is a trade-off parameter between 
model complexity and training error. Additionally, ξ+ and ξ− are slack variables 
for exceeding the target value by more than ε and for being below the target 
value by more than ε, respectively. This method of tolerating errors is known as ε
-insensitive.

The usual SVR implementations use a single mapping function φ, and hence 
a single kernel function K. If a data set has a locally varying distribution, using 
a single kernel may not catch up correctly the varying distribution. Kernel fusion 
can help to deal with this problem [2]. Recent applications [10] and developments 
based on support vector machines have shown that using multiple kernels instead 
of a single one can enhance interpretation of the decision function and improve 
classifier performance. By the use of different kernels we can address problems 
from different data nature too. It will reveal beneficial in the perspective of mixed 
variable programming [1, 7].

We will adopt the weighted sum fusion with the following mapping functions:

(1.2)f̂ (x) = �w, φ(x)� + b

(1.3)

min
w,b

1

2
||w||2

subject to: yi − �w,φ(xi)� − b ≤ ε

�w,φ(xi)� + b− yi ≤ ε

(1.4)ξ+ = f̂ (xi)− y(xi) > ε

(1.5)ξ− = y(xi)− f̂ (xi) > ε

(1.6)

min
w,b

1

2
||w||2 + C

1

n

n
∑

i=1

(ξ+i + ξ−i )

subject to: yi − �w,φ(xi)� − b ≤ ε + ξ+i ,

�w,φ(xi)� + b− yi ≤ ε + ξ−i ,

ξ+i , ξ−i ≥ 0 i = 1, . . . , n

(1.7)�(x) = [√µ1φ1(x),
√
µ2φ2(x), . . . ,

√
µMφM(x)]
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where µ1,µ2, . . . ,µM are weights of component functions. Now, the regression 
problem includes the optimization of two parts. One part is the regression hyper-
plane f (x) and the other part is the weight vector m = [µ1,µ2, . . . ,µM ]. The idea 
is to address these two parts of the optimization process in one step, based on the 
parametric dependence idea.

The resulting multi-kernel, expressed by Eq. 1.8:

is the weighted sum of M kernel functions, constituting a new kernel function. We 
can solve the regression hyperplane by plugging this multi-kernel into the expres-
sion of the SVR regression surface, as shown in Eq. 1.9:

1.3.2  On-line Multiple Kernel Regression

In metamodel-assisted optimization, the metamodel is not defined once for all, 
but is likely to be updated whenever new information from the high-fidelity sim-
ulation is made available. Therefore, a metamodel-updating on-line technique is 
mandatory.

Most of the kernel-based algorithms cannot be used to operate on-line due to 
a number of difficulties such as time and memory complexities (because of the 

(1.8)

K̃(xi, xj) =��(xi),�(xj)�
=µ1�φ1(xi),φ1(xj)� + µ2�φ2(xi),φ2(xj)�

+ · · · + µM�φM(xi),φM(xj)�
=µ1K1(xi, xj)+ µ2K2(xi, xj)+ · · · + µMKM(xi, xj)

=
M
∑

s=1

µsKs(xi, xj)

(1.9)f̂ (x) = b+
n

∑

i=1

(α+
i − α−

i )K̃(xi, x).

Fig. 1.8  Example of the 
design of a rigid frame
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growing kernel matrix), and due to the need to avoid over-fitting. However, a few 
recent experiments were successfully conducted in this sense [9]. For example, a 
kernel-based recursive least-squares algorithm implementing a fixed size “sliding-
window” technique was proposed in [24].

In this chapter, an extension of this methodology to the use of multiple kernels 
for mixed variables is proposed. Moreover, the windowing process is embedded 
here into an optimization process. Some additional improvements have thus been 
included, the main one being to discard the data far from the optimum at each 
iteration of the process (see Fig. 1.9).

Practically, in the sliding window approach proposed here, only the last N pairs 
of the stream are selected to perform the multi-kernel regression. When a new 
observed pair {xn+1, yn+1} is obtained, the kernel matrix K(n)

j  is first down-sized by 
extracting the contribution from xn−N (see Eq. 1.10):

and then the K(n)
j  dimension is augmented again by importing the data input xn+1 

to obtain the kernel expressed in Eq. 1.11.

where Xn = (xn−N+1, . . . , xn)
T and � is a correction factor.

(1.10)
⌣

K
(n)

j =









K
(n)
j (2, 2) · · · K

(n)
j (2,N)

...
. . .

...

K
(n)
j (N , 2) · · · K

(n)
j (N ,N)









(1.11)K
(n+1)
j =

(

⌣

K
(n)

j Kj(Xn, xn+1)

Kj(xn+1,Xn) Kj(xn+1, xn+1)+ �

)

Fig. 1.9  Windowing strategy
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Next, the kernel matrices are summed again (see Fig. 1.10) and their weights µ 
are updated too. Afterwards, the weights and parameters are tuned by a multi-start 
trust region algorithm for the off-line part [18] (a fast version of this algorithm is 
included to update the values of the weights at every step of the on-line process).

In the next section, this on-line metamodeling procedure will be coupled to a 
multi-objective evolutionary algorithm, and applied to a structural optimization 
test case.

1.4  On-line Metamodel-Assisted Optimization

In order to illustrate the efficiency of on-line regression within an optimization 
scheme, a structural design optimization problem will be considered (see Fig. 1.8). 
The numerical application consists in the multi-objective design optimization of a 
three-dimensional rigid frame with respect to categorical and continuous variables 
(see Fig. 1.8 [16]). The problem is formulated as follows:

(1.12)

Fig. 1.10  On-line multiple 
kernel regression: tuning of 
the regression parameters
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Evolutionary algorithms, thanks to the flexibility of their data structure, are 
well adapted to deal with mixed variables [23]. The multi-objective optimizer 
used in this study is the second version of the Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [3], where the probabilities of simulated binary crossover 
and mutation are respectively set to 0.9 and 0.5, and the distribution index for sim-
ulated binary crossover (ηc) and mutation (ηm) are respectively set to 10 and 20. 
Its implementation has been modified to tackle nominal variables by adapting the 
evolutionary operators as follows [5]:

•	 crossover: for each nominal variable and at the user-defined probability of 
crossover, the operation consists in swapping the values of the parents provided 
a randomly generated number is above 0.5;

•	 mutation: for each nominal variable and for the user-defined probability of 
mutation, the operation consists in changing the value of the variable randomly 
among the set of attributes.

The population of the evolutionary algorithm is set to 200 individuals. In the 
metamodel-assisted optimization, an initial database of 2,000 samples is needed. 
Then, at each cycle (i.e. after each optimization with the low-fidelity model), the 
best 60 designs (according to the NSGA-II ranking criterion) are calculated by 
means of the high-fidelity finite element analysis, and added to the training data-
base to eventually update the metamodel. The numerical results show (surpris-
ingly) a better coverage of the Pareto front than with the high-fidelity model alone, 
apparently due to a smoothing of the objective functions predicted by the meta-
models (see Fig. 1.11), leading in this case to an improved behavior of the opti-
mizer. Besides, these excellent results are obtained for a reduced number of calls 
to the finite element (FE) program: at the final (25th) generation, 3,500 FE runs 
are needed for the on-line process, to be compared to the 5,000 FE runs when the 
FE program is called systematically.
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Fig. 1.11  Comparison between high-fidelity optimization process (⇔ without using a meta-
model, (left) and metamodel-assisted on-line optimization (right), at the 25th iteration/cycle
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1.5  Conclusions

In this chapter, mixed-variate metamodel-assisted optimization has been intro-
duced. Based on the experience of the authors and peers in the field of evolu-
tionary optimization with mixed variables, the reader should keep in mind the 
following points:

•	 for both approximation and optimization tasks, the inner nature of the variables 
should be taken into account. In particular, rounding off continuous optimal 
solutions to discrete values should be avoided or used with utmost care;

•	 categorical data should be handled by means of appropriate coding techniques 
like the regular simplex mapping used in classification and clustering;

•	 a multi-kernel function is well adapted to deal with variables of different 
types. Although presented here in the context of support vector regression, it is 
believed by the authors that the general idea could be fruitfully used in other 
families of metamodels (for instance with radial basis function networks, which 
also make use of kernels);

•	 an efficient on-line procedure to update the metamodels can be coupled seam-
lessly to an evolutionary algorithm. However, although not treated in detail in 
this chapter, the main issue consists in defining a proper interaction between 
the metamodel and the optimizer, by means of suitable infill criteria [6]. These 
criteria define which points should be assessed by the high-fidelity model and 
added to the database. New points can typically be the best points obtained 
so far, the points endowed with the highest prediction error of the metamod-
els (hence requiring a re-sampling to improve the accuracy of the low-fidelity 
model), or a combination of both paradigms.

Future prospects in this field include the handling of all kinds of variables (con-
tinuous, discrete, integer, and categorical altogether), and its validation on several 
benchmark test cases.
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