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Abstract The current knowledge about some particular kinds of coherent struc-
tures in the logarithmic and outer layers of wall-bounded turbulent flows is briefly
reviewed. It is shown that a lot has been learned about their geometry, flow properties
and temporal behaviour. It is also shown that, although the wall-attached structures
carry the largest fraction of most flow properties, they are only extreme cases of
smaller wall-detached eddies, and that the latter connect with the more classical
behaviour of homogeneous turbulence away from walls. Nevertheless, it is argued
that little is known about the dynamical origin of these structures, and that a con-
cerned effort is required to quantitatively identifywhich one (or ones) of the plausible
available dynamical models is a better representation of the observed behaviour.

1 Introduction

It is ‘a-priori’ unclear whether there are coherent structures in turbulence, or how
they should be defined. Their most compelling support derives from free-shear flows,
where visualisations reveal a wave-like organisation of advected scalars [1], which
can be traced for relatively long times, and that can be linked to theKelvin–Helmholtz
instability of the mean velocity profile. Besides that visual impression, which did a
lot to crystallise a structural view of turbulent flowswithwhich to complement earlier
stochastic descriptions, the identification of those waves in terms of a known dynam-
ical process was important. It opened the way to the prediction of their properties,
and later to effective control strategies [2, 3].

The situation is not as satisfactory for wall-bounded turbulence, inwhich themean
velocity profile does not sustain a linear modal instability. Long-lived structures
were identified in wall turbulence even earlier than in free-shear flows [4], mainly
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in the form of long streaky structures of the streamwise velocity, but it was soon
realised that the streaks could not survive by themselves, and that other structures
were needed to complete a self-sustaining regeneration cycle [5–7]. In the past 20
years, numerous models for the dynamics of such flows have been proposed, such
as linearised approximations, both modal and non-modal [8–10]; specific structures
such as hairpin vortices [11–13]; instabilities of the velocity streaks [14, 15] and
equilibrium and time-periodic exact solutions of the Navier–Stokes equations [16,
17].

In most cases, structures that approximately answer to the description in those
models can be identified in turbulent flows, and there are physical grounds to believe
that they really exist and may even be common. Moreover, all of them share some
degree of intellectual appeal that is at the root of the original proposal. However, the
question of how often the structures and the evolution that they predict actually occur
in the flow, and how relevant are they to its dynamics, has generally been addressed at
most qualitatively or partially (e.g. hairpin ‘heads’, or wall-normal velocity ‘bursts’).

There is little doubt that exact structures of any kind are unlikely to be found in
turbulence. All of the examples given above either exist only at Reynolds numbers
well below those of fully developed turbulence, or are unstable or transient. On
the other hand, it has been persuasively argued that equilibrium solutions and other
simple trajectories in phase space, even if unstable or transient, are approached by the
flow more often than other random non-equilibrium states, and are therefore more
relevant to the statistics than other kinematically possible flow fields [17, 18].

In recent years, temporally and spatially resolved numerical databases have begun
to allow the quantitative analysis of how closely a particular solution is approached by
the flow, and how often that happens, although the analysis often involves isolating a
particular subset of the flow, a restricted range of wavenumbers, or both. It is usually,
but not always, also necessary to inhibit or discount the effect of interactions between
different structures. We will discuss some examples in which it has recently become
possible to test particular simplified turbulence ‘cartoons’ in essentially natural flows,
examine their shortcomings, and point to possible avenues for future tests of other
popular (or less popular) ones.

The organisation of the paper is as follows. Section2 describes in some detail
what has been found about two particular kinds of long-lived structures in wall-
bounded flows, about how they evolve in time, and about how they are related to
similar structures in shear flows far from the wall. It will be seen that a lot is known,
but that optimistic impression is tempered in Sect. 3, which discussed how little we
really know about the dynamical origin of what is observed, and how far are we
from conclusively identifying the observations with any of the conceptual models
mentioned above. Section4 summarises and concludes.
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2 We Know Everything About Turbulent Structures

Channels are often used as archetypes for the theoretical characterisation of wall-
bounded turbulence because they are relatively simple to simulate (although appar-
ently hard to realise experimentally), and because numerical simulations offer the
best chance of studying the flow in detail. There are channel simulations available
at relatively high Reynolds numbers [19–23], and time-resolved databases of their
evolution have recently become available for analysis [24].

Two kinds of structures have been studied in detail for this flow: Vortex ‘clusters’
are connected objects of particularly strong discriminant of the velocity gradient
[25], and ‘Qs’ [26] are connected regions of strong Reynolds stresses that are the
three-dimensional analogues of the classical ‘quadrant’ events studied by experimen-
talists from single-point signals [27]. The most important Qs are those in the second
‘quadrant’ (Q2 or ejections) and in the fourth quadrant (Q4 or sweeps), i.e. those for
which the wall-normal velocity fluctuations, v, have opposite sign to the streamwise
velocity fluctuations, u, so that they carry a Reynolds stress consistent with the mean
shear (uv < 0 for ∂ yU > 0). Both the clusters and the Qs can be classified into
wall-attached and wall-detached families, depending on whether or not their roots
reach the neighbourhood of the wall. The wall-attached structures have been studied
in most detail. They are larger than the local Corrsin scale [28], interact directly
with the ambient mean shear, and presumably draw their energy from it [29]. The
wall-attached sweeps and ejections carry over 60% of the total tangential Reynolds
stress.

Above the viscous layer near thewall, Qs and clusters are complicated objectswith
fractal dimensions of the order of DF = 2 − 2.5. Two examples are given in Fig. 1,
both of which are wall-attached and large enough to extend into the logarithmic layer
(L y/h = 0.15−0.20), where L y is the wall-normal dimension, and h is the channel
half-width. It is known that the large attached eddies of both kinds (L+

y � 100) have
self-similar aspect ratios, Lz ≈ L y and Lx ≈ 3L y [25, 26], and lifetimes that also
scale linearly with their height, t+ ≈ L+

y [30].

Fig. 1 a Wall-attached vortex cluster. b Ejection (‘second quadrant’ Reynolds stress event). Tur-
bulent channel at Reτ = 4200 [22]. Flow is from left to right, and axes are in wall units
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Attached sweeps and ejections are almost always found in side-by-side pairs,
with a vortex cluster near their base. The mean flow conditioned to one of these
pairs is a quasi-streamwise roller sitting at the boundary between a high- and a
low-velocity streak of the streamwise velocity, in an arrangement reminiscent of
the better-known associations of streaks and vortices in the viscous layer [15, 31].
Above the buffer region, they are typically much larger than those closer to the wall,
and involve disorganised turbulent objects similar to those in Fig. 1. In those cases,
the association of Qs with rollers can only be recognised in a conditional statistical
sense. For an example of an individual pair, the reader is referred to Fig. 12 in [26],
or to the three-dimensional version of that figure in the supplementary material to
that paper.

It is interesting that, even if attached eddies play a dominant role in wall-bounded
flows, the proximity of the wall does not appear to be required for their formation.
A recent simulation of homogeneous shear flow [32] was found to contain vortex
clusters, sweeps and ejections with statistical properties very similar to those of the
large detached eddies in channels (see Fig. 2a for an example), and these large Qs
are also responsible for most of the tangential Reynolds stress. It is also known that
channels with rough-like walls [33] or even with no wall at all [34] have vortex
clusters indistinguishable from those of normal channels.

In fact, attached eddies appear to be particular cases of detached ones that have
become large enough to collide with the wall. Figure2b shows the probability distrib-
ution of the vertical dimensions of sweeps and ejections in a channel and in homoge-
neous shear. Those in the channel have been separated in bands of the position of their
farthest point from the wall. The probability of their vertical dimension decreases
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Fig. 2 a Large ejection in a homogeneous shear flowwithmicroscale Reynolds number Reλ = 100
[32]. Flow is from left to right. Compare with Fig. 1b. b Probability density function of the logarithm
of the wall-normal dimension of sweeps and ejections (Q2+Q4). , Attached or detached
eddies with a given maximum height, ymax/h = 0.3, 0.5, 0.7, increasing in the direction of the
arrow. Turbulent channel at Reτ = 2000 [22]. , Homogeneous shear, Reλ = 100 [32].
Axes in both panels are in Kolmogorov units
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for larger eddies, roughly as pdf(L y) ∼ L−5/2
y , until it reaches L y = ymax . The

eddies then hit the wall, and the p.d.f. accumulates into the distribution of attached
eddies. Choosing a higher band simply extends the probability tail to taller eddies
before they reach the wall. The figure also contains data from a homogeneous shear,
where the eddies follow the same probability distribution, but never accumulate at
the (non-existent) wall.

Even more revealing is the temporal evolution of these structures, which requires
tracking them in time and unravelling the numerous interactions in which they split
or merge with one another along their lifetimes [24, 30]. It was in this way that
the previously mentioned lifetimes were computed, although they refer to ‘primary’
eddies that are not born from a split or disappear into a merger. When interactions
are taken into account, it turns out that most eddies larger than a few Kolmogorov
scales (η) lose or receive some fragments of comparable size at some point in their
lives [30], and that such direct or inverse ‘cascade’ events are responsible for the
largest part of their growth and decay. Numerically, however, most of the splits and
mergers take place between a larger eddy and a smaller fragment of the order of the
Kolmogorov scale.

The connection of these events with a cascade can be made more quantitative.
Centring on the direct cascade, the interactions between eddies can be best studied by
ordering the different branches, each of which represents the evolution of a particular
eddy, into a graph in which the nodes are the splits. In each split, one ‘main’ branch
survives and one is created anew. Each branch can be assigned a ‘split index’ as the
number of splits that separate it from its farthest descendent. A sketch is Fig. 3a. It
can be expected that eddies with a larger index are also bigger, and that their size
decreases as they approach the extremal branches in which they are dissipated by
viscosity. This is demonstrated in Fig. 3b which shows the p.d.f. of the eddy size
(the cubic root of its volume) for eddies with a given index [35]. The characteristics
size of the smallest eddies (index = 0) is L ≈ 0.05h ≈ 10η, comparable to the
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Fig. 3 a Sketch of the splitting tree of a large eddy into smaller fragments. The index of each
branch is the number of splits that separates it from its farthest descendent. b Probability density
function of the (cube root of) the volume of Q-structures, separated by their splitting index, ranges
from 0 to 6 in the direction of the arrow [35]. Turbulent channel at Reτ = 950 [22]
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diameter of the small-scale vortices [36], and those with the highest index are of
the order of the integral scale, L ≈ 0.2h. It is interesting that the ratio between the
mean volume of consecutive indices changes from about 0.2 in the viscous range
(L < 30η) to about 0.5 later on. There is a complicated relation between this ratio
and the average volume fraction typically lost in a split, because a given eddy can
break into fragments with very different future histories, and therefore with very
different indices. But, if we take the volume ratio between consecutive indices as
an estimate of the ratio between the volume of successive eddy ‘generations’, the
first value can be interpreted as being dominated by the loss of Kolmogorov scale
fragments, and the second one as a more classical equilateral inertial cascade. A
similar analysis can be done for the merging of structures, giving information on the
inverse component of the cascade.

3 We Know Nothing About Turbulent Structures

Wehave seen in the previous section thatwhat amounts to a complete characterization
of the behaviour of two kinds of coherent structures in channel flows. This has been
an important advancement of the last few years that would have been difficult to
predict a decade ago. Although most of it has been based on information from
simulations, some experimental time-resolved datasets, generally limited to two-
dimensional sections, have contributed substantially [37–40]. All these information
have given us a fresh outlook on what is going on inside the turbulent wall-bounded
flows, but it can be argued that our understanding of these flows is still well below
that of the free-shear turbulence.

We lack a theoretical model for the behaviour that we observe. As mentioned in
the introduction, the problem is not as much a lack of models, but a superabundance.
It is probably true that several of those models are equivalent, although that remains
to be proved. For example, it is not inconceivable that the structures described in
the previous section can be described as packets of approximate hairpin vortices.
There have been numerous attempts to show that particular theories are ‘compatible’
with statistical data, e.g. [41]. They are often successful, but that should not be
considered as a sufficient proof. We know from RANSmodelling that suitably tuned
semiempirical models with little or no structural information can predict turbulence
statistics very accurately.

That is true evenwhen fairly detailed statistics are used. For example, it was shown
in [42] that the temporal evolution of minimal channels was consistent with the lin-
earised Orr’s mechanism of inviscid transient growth. The similarities include such
high-order quantities as temporal correlation functions and the detailed exchange
of energy among velocity components. Similarly, it was shown in [9] that opti-
mally amplified linearised perturbations agree well with the highest POD modes
of full channels. However, it has proved difficult in both cases to identify in the
flow the three-dimensional structures implied by the linear models, or their temporal
evolution.
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There may be several reasons for these failures. In the first place, as mentioned
in the introduction, it is highly unlikely that any structure predicted by an essen-
tially laminar model would be found in the chaotic environment of real turbulence at
even moderate Reynolds numbers. The most that can probably be expected is some
approximation, such as is evident, for example in the steady retreat from the identi-
fication of hairpin packets into ‘heads’, ‘legs’ or ‘incomplete’ hairpins. This is not
necessarily bad, but it may easily become meaningless without a clear definition of
the metric used to define the ‘presence’ of a structure.

The second problem is that many of these models actually predict transient phe-
nomena. This is probably the best that can be expected from a system without modal
instabilities, but it means that we have to identify something that only lives for a
fraction of the system evolution. For example, the Orr model in [42] describes a
relatively short burst in the wall-normal velocity that quickly decays after creating a
streamwise velocity streak that lasts much longer. This is a fairly accurate descrip-
tion of the evolution of the flow in minimal channels [5–7, 43], but it means that we
are trying to identify something that is not there most of the time. Again, we need
to define a metric to describe not only how close is the system to a given solution,
but also how often it happens. Note that this may be more complicated than just
tracking time intervals or the contribution to the statistics. In the previous example,
the bursts are probably not large contributors to the statistics of u or v [44], but they
are necessary ‘catalysts’ for the injection of energy into the turbulent fluctuations.

A newer development has been the attempt to identify turbulent structures with
exact solutions of the Navier–Stokes equations, whether permanent waves or more
complex invariant sets. These efforts have generally centred on transitional flows, but
some of them extend into the incipient turbulent regime. Early attempts to represent
the statistics of pipes in terms of permanent waves were only moderately successful
[45], and the focus quickly moved to recurrent solutions [46, 47], and to homoclinic
and heteroclinic orbits as models for bursting [48–51]. All these studies share the
usual ambiguity about the norm used as a measure of proximity. A promising tech-
nique that partially bypasses this limitation is to use an arbitrary norm to identify
approximately a recurrent flow state, which is then used as an initial condition for the
computation of exact recurrent solutions [46, 47]. However, most of these techniques
have only been used on flows at low Reynolds numbers, or even on two-dimensional
ones, and it is unclear whether they can be extrapolated to more complex situations.

4 Discussion and Conclusions

We have tried to show how we are both very near and very far from understanding
the dynamics of shear-dominated wall-bounded turbulent flows. Very near in the
sense that we have collected in the past decades what is probably a reasonably
complete catalogue of coherent structures in these flows, of their properties, and of
their temporal evolution. But very far in the sense that we lack a consensus theoretical
model for their behaviour. Two questions suggest themselves. The first one iswhether
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coherent structures are more than an observational construct, and whether we should
really expect a theory for them. The second one is whether such a theory would be
of any use.

Tackling the second question, first, our best guide could be the experience with
free-shear flows mentioned at the beginning of this paper. In that case, a linearised
theory for the nature of the structures naturally led to control strategies. The same
has been true of our partial theoretical understanding of wall-bounded flows, even
if the applications are as yet limited to simulations at moderate Reynolds numbers.
For example, the early realisation of the role of sublayer streaks in determining fric-
tion drag, and of the buffer-layer vortices in sustaining the streaks, led to successful
drag reduction strategies based on damping the vortices [52]. Further removed from
intuition, [53] was able to laminarise turbulent Couette flow by acting on the system
as it spontaneously approaches a fixed point in the ‘edge’ of the basin of attrac-
tion of turbulence. Although it is impossible to predict whether a better theoretical
understanding would lead to better control strategies at realistic Reynolds numbers,
the success rate of past ‘intuitive’ approaches has been at most moderate, and the
previous examples offer some hope that better methods lay hidden within deeper
theories.

The question about the relation between theory and structure is more complex,
and cannot probably be answered conclusively at this point. Many of the theoretical
models mentioned above were motivated by attempts to explain (‘postdict’) struc-
tures observed in highly constrained simulations. They were usually successful, but
we have seen that the inverse question of identifying theoretical solutions in real
flows has been more problematic. It is also clear that the idea of a coherent blob of
strong vorticity is a very different concept from an invariant set of the Navier–Stokes
equations. On the other hand, structures stay coherent for some reason, and turbulent
flows are nothing but solutions of the Navier–Stokes equations. Consider one of the
problems of describing any statistically stationary solution of a dissipative system
such as turbulence, which is to understand how the energy is injected into the sys-
tem. This is a basic question as much in fully turbulent flows, in permanent waves,
or in any invariant set. In shear-dominated flows, it is known that energy injection
is mediated by the production term, −〈uv〉∂ yU , and it is reasonable to expect that
the Q-structures described in Sect. 2, which are the dominant carriers of 〈uv〉, play
a role in that process. Similarly, vortex clusters, which label regions of high energy
dissipation can be expected to be controlled by, and to modulate, the energy balance.

The basicmessage of this paper should be that, in spite of all the new observational
information on the behaviour of turbulent wall-bounded flows, a lot remains to be
understood about the reasons for that behaviour. It is the opinion of the present
authors that, in the same way as a dominant thread of turbulence research during the
past 50 years has been the reconciliation of the structural and statistical views of the
flow, an important task for the next years will be to relate theoretical models with
structural observations.
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