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Abstract The paper presents the results of numerical simulations of an incompress-
ible flow in a converging–diverging channel performed with Large Eddy Simulation
(LES) combined with the immersed boundary (IB) method. The computations are
carried out using a high-order code with the spatial discretization based on the com-
pact difference method for half-staggered meshes. IB method is implemented in the
so-called direct forcing approach with a second-order interpolation near the bound-
aries. Two relatively new subgrid models are used in the simulations, i.e. the model
proposed by Vreman, Phys Fluids 16:3670–3681, 2004, [1] and the model proposed
by Nicoud et al., Phys Fluids 23:193–202, 2011, [2]. It is demonstrated that both of
them perform well and there is no evident advantage for either of them. The mean
and r.m.s velocity profiles agree with exemplary DNS data.

1 Introduction

Undoubtedly, from the point of view of a solution accuracy none of the discretization
methods may compete with the spectral and pseudo-spectral methods which are
regarded as the most accurate [3]. The weak point of these approaches is that they can
only be applied in rather simple computational domains and with nodes distribution
and boundary conditions enforced by the type of the method. The high-order compact
difference methods [4] seem to give more possibilities regarding non-uniformity
of the computational meshes, selection of the boundary conditions or shapes of
computational domains. They are successfully applied on non-uniform meshes and
in irregular domains [5–7]. However, such applications require domain division,
normalisation, coordinate transformations, etc., which are not trivial tasks. Possibly
the easiest solution allowing to use the compact methods in complicated domains is
to combine them with the so-called Immersed Boundary (IB) method. Application of
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this approach seems to be relatively easy and very efficient [8]. The Navier–Stokes
equations are solved on Cartesian regular grids with arbitrary boundaries or arbitrary
objects embedded directly on the grid points. The influence of such objects on the
flow field is enforced by body force terms added to the Navier–Stokes equations
[8, 9]. The present work focuses on application of the high-order compact method
with IB approach for LES of incompressible flows. The computations are performed
using two well-known and relatively new subgrid models proposed by Vreman [1]
and Nicoud et al. [2] and the obtained solutions agree very well with DNS data.

2 Mathematical Model and Numerical Algorithm

Flow of an incompressible fluid is governed by the continuity equation and Navier–
Stokes equations which in the framework of LES combined with the IB method are
given as:
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where the bar symbol denotes spatial filtering [10], ui are velocity components, ρ is
constant density, p—pressure, ν, νt —kinematic and eddy viscosity and fIB denotes
source terms which will be used to force zero values of velocity at the domain
boundaries or inside the bodies embedded on the computational nodes.

2.1 Subgrid Modelling

In this paper we compare the results obtained using the models proposed by Vreman
[1] and Nicoud et al. [2]. These models belong to the family of the so-called eddy
viscosity models and hence their implementation relies on calculation of the νt which
is then added to the kinematic viscosity as in Eq. (2). In the case of the model proposed
by Vreman [1] νt is computed as:

νt = C

√
Bβ

αi jαi j
(3)
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13 + β22β33 − β2
23 (4)

αi j = ∂u j

∂xi
, βkl = Δ2αmkαml (5)
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where the constant in (3) is taken as C = 2.5 × 10−2 [1]. The LES filter width is
computed as Δ = (ΔxΔyΔz)1/3 where Δx, Δy, Δz are the mesh spacings.

The model proposed by Nicoud et al. [2] is commonly known as σ -model. In the
case we compute νt as follows:

νt = (Cσ Δ)2 Dσ (6)

Dσ = σ3(σ1 − σ2)(σ2 − σ3)

σ 2
1

(7)

where the model constant is Cσ = 1.35 [2] and σ1 ≥ σ2 ≥ σ3 ≥ 0 are the singular
values of the matrix

G = gt g with gi j = ∂ui

∂x j
(8)

Above models share features desirable in modelling of turbulent flows, i.e. they yield
zero eddy viscosity close to a solid wall, in laminar flows or in pure shear regions.

2.2 Description of the Flow Solver

The set of Eqs. (1)–(2) is solved using the numerical code (SAILOR) which is an
academic high-order flow solver based on the low Mach number approximation. The
solution algorithm in the SAILOR code is based on the projection method in which
the pressure is computed from the Poisson equation. The time advancement of Eq. (2)
is performed with a predictor–corrector method with the help of the second-order
Adams–Bashforth and Adams–Moulton methods. The spatial discretization is based
on sixth-order compact differencing developed for half-staggered meshes (see Fig. 1)
in the Cartesian coordinate system. In the present paper, the SAILOR code is used
together with the IB method which is briefly presented in the next subsection.

- Pressure nodes

- Velocity nodes

- Internal body nodes

- Interpolated nodes

Fig. 1 Linear velocity interpolation method
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2.3 Immersed Boundary (IB) Method

In general, there are two options of the IB method called feedback forcing method
[11] and direct forcing method [8]. They differ in the evaluation of the forcing term.
In this work the latter approach is implemented which seems to be simpler and more
efficient. Interested reader is referred to [12] where all details and variants of IB
methods may be found. Here, we limit the description to the definition of the forcing
term used in the predictor step together with the second-order Adams–Bashforth
method. In this case the term fIB is defined as:

fIB = uWALL − ūn
i

Δt
−

[
3

2
Res(ūn) − 1

2
Res(ūn−1)

]
+ 1

ρ

∂ p̄n

∂xi
(9)

where Res(ūn), Res(ūn−1) represent the convection and diffusion terms in (2) dis-
cretized on the time levels n and n − 1. The symbol uWALL stands for the velocity at
the wall which is a part of the computational domain as shown in Fig. 1 by black bold
line. The velocity on that boundary is known and this allows to estimate the values
of velocity in its closest vicinity, i.e. in the computational nodes shown in Fig. 1 by
black squares. In the present approach the velocity in these nodes is obtained from a
second-order linear interpolation based on the velocity values from the second node
line from the boundary (shown by high arrow in Fig. 1) and the desired boundary
values. Inside the immersed body, i.e. in the nodes with crosses, the velocity is set
equal to zero.

3 Results

The accuracy of the SAILOR-IB code has been validated by computations of laminar
flows in a lid-driven skewed cavity and over a backward facing step [13]. The obtained
results were in very good agreement with the literature data obtained using the
classical body fitted meshes. Most likely, in the present implementation the errors
due to the approximate treatment of the walls are compensated by the high-order
approximation far from the boundaries.

In this paper we deal with the turbulent flow in the converging–diverging channel
in which the solution accuracy in near wall regions is of crucial importance. The
computational domain for this test case is shown in Fig. 2. The dotted lines indicate
the locations in which we will compare our results with DNS data obtained from
Laboratoire de Mécanique de Lille (LML). The length of the domain (dimension-
alised by a half domain height) is L = 4π , its height is equal to H = 2 and width
is W = 2π . The computations are performed for Reτ = ut h/ν = 395 where uτ is
the friction velocity and h = H/2. At the inlet the fully developed turbulent flow is
prescribed using the solution obtained from the simulations of periodic channel flow
for the same Reτ .
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Fig. 2 Computational domain. The vertical dotted lines indicate the locations at which the solutions
are compared with DNS data
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Fig. 3 Three types of the meshes used in the computations, every fourth grid lines are shown

The computational meshes used in the simulations consist of 192 × 160 × 64
nodes and 384 × 320 × 64 nodes. The denser mesh is additionally used with two
different grid refinements. This is shown in Fig. 3 where additionally in a zoomed
region of the bump the bold line shows location of the wall of the bump. The dense
meshes will be denoted as (a) and (b). In all the cases, near the upper wall the grid
nodes are distributed such that the first node is at y+ = 0.95. On the bump side, the
meshes are uniform and y+ on the top of the bump is equal to 3.2 for the coarse mesh
and 1.76 and 1.23 for the dense meshes (a) and (b), respectively.

3.1 Mesh Sensitivity Study

In this subsection, we analyse the influence of the mesh density based on the results
obtained using the subgrid model proposed by Vreman. The reference DNS data
were obtained on the mesh with 1536 × 257 × 384 nodes which is approximately
77 and 20 times more nodes than in our coarse and dense meshes, respectively.
Sample results obtained using the coarse mesh are presented in Fig. 4 showing an
isosurface of the Q-parameter. It can be seen that the large turbulent scales vanish on
the left-hand side of the bump and they reappear again on the falling side of the bump.
This behaviour coincides with the regions where the flow accelerates and decelerates.
These regions can be easily found in Fig. 5 showing instantaneous and time-averaged
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Fig. 4 Isosurface of Q-parameter (Q = 2000(uτ /h)2) coloured by vorticity magnitude

instantaneous streamwise velocity

time averaged streamwise velocity

(a)

(b)

Fig. 5 Contours of the streamwise velocity normalised by uτ : a mean values and b time-averaged
values

contours of the streamwise velocity. We remind that in the IB method the velocity
near the boundary of the bump is computed from the interpolation whereas in the
nodes located inside the bump the velocity is explicitly set to zero every time step.
Careful analysis of instantaneous velocity field near the wall of the bump shows small
unphysical wrinkles. They are limited to the first two layers of the nodes, however
they are not seen at all in the time-averaged solutions.

Detailed comparison and verification of the results are performed based on the
velocity profiles at different locations in the channel. In all the cases the present
solutions are very close to DNS data. In general, it cannot be said that the denser
meshes provide significantly better results than using the coarse mesh. A sample
comparison is presented in Fig. 6 showing the profiles of the mean and fluctuating
components of the streamwise and the wall normal velocity along the line ‘a’ from
Fig. 2. At this particular location it seems that the best solution is obtained using the
dense mesh (a), though the results on the coarse mesh are also correct.
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Fig. 6 Profiles of the streamwise and wall normal velocity components along line ‘a’

3.2 Comparison of the SGS Models

The comparison of the subgrid models is performed using the mesh 384×320×64(a).
Figure 7 shows the contours of the total turbulent kinetic energy and the subgrid

kinetic energy defined as ksgs = ν2
t

(CvΔ)2 with Cv = 0.1 [14]. These results were
obtained using the σ -model but we note that the solution obtained using the Vreman
model is very similar and practically indistinguishable by visual inspection. The
maxima of kinetic energy are located in the regions of separation existing near the
wall of the bump and close the upper wall. The ratio of ksgs to the total kinetic energy
is maximally 0.15. Hence, according to Pope’s criterion [15] the mesh used in these
simulations ensure the proper resolution. Detailed comparison of the solutions is
presented in Figs. 8 and 9. It can be seen that both subgrid models provide accurate
and similar solutions and it cannot be said which one performs better. In the centre
of the channel both the mean and fluctuating velocity profiles match the DNS results
almost exactly. Only closer to the walls some discrepancies are observed. This can
be caused by the IB method as well as by the errors due to the subgrid modelling.
Nevertheless, it can be seen that the location of the velocity extrema in separation
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Fig. 7 Contours of the time-averaged subgrid and total kinetic energy. a Total turbulent kinetic
energy. b Subgrid turbulent kinetic energy
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Fig. 8 Profiles of the streamwise and wall normal velocity components along the line ‘a’ obtained
using two subgrid models

zones (the regions where the mean streamwise velocity near the walls is negative) is
predicted relatively well by both models. The velocity fluctuations are also computed
with good accuracy. Both the shapes of their profiles and their maximum values are
close to DNS data.
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Fig. 9 Profiles of the streamwise and wall normal velocity components along the line ‘b’ obtained
using two subgrid models

4 Conclusions

This paper shows results of flow modelling in a converging–diverging channel using
LES combined with the Immersed Boundary (IB) method. With respect to exemplary
literature DNS computations the application of LES allows significant reduction of
the computational costs by using relatively coarse computational meshes. The use of
the IB method allows to use the high-order code in the non-Cartesian computational
domain without significant modifications of the solution algorithm. The LES com-
putations were performed with the help of two subgrid models, proposed by Vreman
[1] and Nicoud et al. [2] and in both the cases the obtained results were accurate.
It could be seen that the better or worse agreement with DNS data was dependent
on which quantity was compared and at which location in the channel. Hence, we
conclude that both models are suitable for LES computations using IB method.
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