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Preface

This book brings together contributions from participants of the second
WALLTURB workshop on “Understanding and modelling of wall turbulence” held
in Lille (France) from June 18 to 20, 2014.

This workshop follows the inaugural workshop organized in 2009 by the
WALLTURB EC project, and aimed to assess the progress made in the field of
near-wall turbulence in the 5 years separating the two workshops.

The workshop assembled 60 participants from all over the world, with 6 invited
lecturers and 39 contributions, and provided an opportunity to review the recent
progress in theoretical, experimental and numerical approaches to wall turbulence.

This book gathers papers from most of the contributors to the workshop. It is
aimed as being a milestone in the research field, thanks to the high level of invited
speakers and the involvement of the contributors.

Lille Michel Stanislas
Madrid Javier Jimenez
Melbourne Ivan Marusic
August 2009
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Part I
Invited Lectures



On the Size of the Eddies in the Outer
Turbulent Wall Layer: Evidence
from Velocity Spectra

Sergio Pirozzoli

Abstract The scaling of size of the momentum-bearing eddies in wall-parallel
planes in the outer part of turbulent wall layers is analyzed, by examining spectra of
the fluctuating velocities taken from direct numerical simulations and experiments.
For all flows under scrutiny the normalized spectra highlight growth of the eddies
size with the wall distance. The results indicate the capability of a modified mixing
length (Pirozzoli, J Fluid Mech 702:521–532, 2012 [1]) of accounting with greater
precision for the wall-normal variation of the size of the eddies bearing streamwise
momentum. This observation can be explained by assuming that outer layer momen-
tum streaks (superstructures) spread under the collective action of the other eddies,
which impart a (nearly) uniform eddy diffusivity throughout the outer wall layer.

Keywords Wall-bounded flows · Turbulence · Coherent structures

1 Introduction

This is the follow-up of a previous study [1] (hereafter referred to as P12), in which
the issue of the proper scaling of the size of eddies (broadly defined as regions which
retain some degree of coherence in turbulent flow)was addressed. Themain results of
that study were that, in the outer part of turbulent wall layers (including channels and
boundary layers, also in the compressible regime) the spanwise size of the eddies, as
measured through the integral correlation length scale, is controlled by a modified
mixing length, defined as

�1/2

δ
∼

(
∂u+

∂η

)−1/2

, (1)

where η = y/δ, u+ = ũ/u∗
τ , y is the distance from the wall, u∗

τ = (τw/ρ)1/2 is the
effective friction velocity at a given off-wall location (at the wall, u∗

τ coincides with

S. Pirozzoli (B)
Dipartimento di Ingegneria Meccanica E Aerospaziale, Università di Roma
‘La Sapienza’, Rome, Italy
e-mail: sergio.pirozzoli@uniroma1.it

© Springer International Publishing Switzerland 2016
M. Stanislas et al. (eds.), Progress in Wall Turbulence 2,
ERCOFTAC Series 23, DOI 10.1007/978-3-319-20388-1_1
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4 S. Pirozzoli

the conventional definition of the friction velocity, uτ ), τw is the wall shear stress,
ρ is the mean local density, δ is the thickness of the wall layer, and ũ = ρu/ρ (which
coincides with u in strictly incompressible flow). The scaling given in Eq. (1) (here-
after referred to as the modified mixing length) should be contrasted with Prandtl’s
classical mixing length, namely �m ∼ y, and with its proposed generalization [2]

�m

δ
∼

(
∂u+

∂η

)−1

, (2)

which reduces to Prandtl’s scaling in the presence of a sizeable log layer. As shown
by Mizuno and Jiménez [2], Eq. (2) provides a better prediction for the growth of
the eddies with the wall distance than the wall distance itself, and hence it will be
hereafter used instead of the classical Prandtl’s scaling.

In this paper, we address the issue of the proper scaling of the outer layer eddies
in greater detail than in P12 by: (i) scrutinizing the spectral densities of the velocity
components, to separately establish the growth of the various scales of motion with
thewall distance; (ii) including additional numerical and experimental data, to further
verify the robustness of the observations.

2 Numerical and Experimental Data

The numerical database used for the analysis includes direct numerical simulations
(DNS) of compressible boundary layer flows and incompressible channel flows of
the Couette–Poiseuille family. The boundary layer data cover the range of friction
Reynolds numbers, Reτ = 250 − 4000 (with Reτ = δ/δv , where δv = νw/uτ is
the inner length scale, and δ is the boundary layer thickness), and free-stream Mach
number M∞ ≤ 4. Details on the numerical implementation and mesh resolution are
provided in earlier studies [3, 4], and will not be repeated here. The channel flow
database includes DNS performed in a rectangular channel (whose half-height is h),
and it includes simulations with stationary walls (corresponding to pure turbulent
Poiseuille flow, cases P, PH, PHH), and simulations with with one stationary (S) and
one moving (M) wall, the controlling parameters being the bulk Reynolds number
and the ratio of the shear stress at the two walls γ = τM/τS (γ = −1 for Poiseuille
flow). Specifically, flow case P1 corresponds to a Poiseuille-like flow with reduced
shear; flow cases C1 and C are Couette-like flows, the latter being very close to pure
Couette flow. Details on the channel flow simulations can be retrieved in the original
references [5, 6]. Two Poiseuille flow cases from the DNS database of del Álamo
et al. [7] were also included (labeled as TO1, TO2). It is noteworthy that the M2HH
and the PHH simulations represent the upper limit of Reynolds number currently
reached in DNS of boundary layers and channel flows, and they both exhibit slightly
less than a decade of quasi-logarithmic variation of the mean velocity [4, 6], thus
satisfying the requirements [8, 9] for being representative of high-Reynolds-number
wall turbulence.
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Table 1 Flow properties for numerical turbulent boundary layers (left) and Couette–Poiseuille
flows (right)

Flow case M∞ Reτ Reθ Flow case γ Reτ M Reτ S

M03 0.3 432 1098 P −1 284 284

M2L 2 251 1122 P1 −0.24 128 261

M2 2 508 2434 C1 0.27 130 250

M2H 2 1116 6046 C 0.98 242 245

M2HH 2 3940 18787 PH −1 541 541

M3 3 504 3867 PHH −1 4080 4080

M4 4 506 5824 TO1 −1 991 991

TO2 −1 2000 2000

In the table on the left, Reθ = ρ∞ u∞θ/μ∞, Reτ = δ/δv , where θ is the momentum thickness.
In the table on the right, γ = τM/τS , Reτ M,S = uτ M,Sh/ν, uτ M,S = (|τM,S |/ρ)1/2, where the
subscripts M and S refer to the moving and the stationary wall, respectively

In the following, δ is stipulated to be the 99% velocity thickness for boundary
layers, even though other choices are possible. In the channel flow cases the outer
length scale is defined to be the distance from the stationary wall to the point where
the mean shear becomes zero, if any (hence, δ = h for flow cases P, PH, PHH, and
TOx). The main parameters for the DNS hereafter reported are shown in Table1.

As will be made clearer in the analysis, verification of the scaling formulas (1) and
(2) requires access to the spectral densities of the velocity components in the spanwise
and/or the streamwise direction at several wall distances. For that purpose, we have
considered the boundary layer experimental database of Hutchins et al. [10] which
covers frictionReynolds numbers in the rangeReτ = 500−2300, andwhich includes
two-point correlations of streamwise velocity fluctuations in the spanwise direction
at several off-wall stations. For the sake of preciseness, we point out that the values of
the friction Reynolds number quoted here are slightly lower than those reported in the
original reference, because of the different definition of the boundary layer thickness,
which was estimated in experiments through a Coles law-of-the-wake fit of the mean
velocity profile. We also consider the pipe flow experimental database by Bailey and
Smits [11], which covers a single Reynolds number,Reτ = 3400, andwhich includes
spanwise and streamwise correlations of u at five off-wall stations [11]. The reader
is referred to the original references for details on the experimental setup.

3 Spectral Densities of Velocity Fluctuations

The power spectral densities associated with the u, v,w velocity fluctuations (respec-
tively, the streamwise, wall-normal, and spanwise components) have been analyzed
for all flows presented in Sect. 2, at various wall distances, limited to y/δ ≥ 0.1.
Here and in the following ‘+’ superscripts will be used to denote quantities made



6 S. Pirozzoli

nondimensional with respect to uτ and δv . The attention is mainly focused on the
spanwise spectra, but information on the scaling of the streamwise spectra is also
provided. For the sake of the analysis we define the power spectral densities of the
generic property ϕ in the i th direction, Ei

ϕ , in such a way that

ϕ′2 =
∫ ∞

0
Ei

ϕ(ki ) dki , (3)

where ki is the Fourier wavenumber in the i th direction. To account for the effect of
turbulence kinetic energy variation across the wall layer, we consider the normalized
energy spectra, defined as

Ê i
ϕ(ki ) = Ei

ϕ(ki )/ϕ′2. (4)

As shown in standard textbooks, the integral length scale ofϕ in a given homogeneous
direction, defined as the integral of the corresponding two-point correlation function

�i
ϕ =

∫ ∞

−∞
Cϕϕ(xi ) dxi , (5)

is linked with the corresponding normalized spectra through the relation

�i
ϕ = lim

ki →0
π Ê i

ϕ(ki ). (6)

Equation (6) shows that the integral length scale is closely connected with the asymp-
totic behavior of the power spectrum at the largest scales.

The typical organization of the spanwise velocity spectra is shown in Fig. 1, for
some boundary layer DNS at y/δ = 0.3. Note that, for the sake of representation,
wavelengths (λz = 2π/kz) are shown on the horizontal axis, rather than the corre-
sponding wavenumbers, here scaled by the boundary layer thickness. The spectra of
u and v (those ofw are similar to the former) are both bump shaped, and they exhibit
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Fig. 1 Premultiplied spanwise spectral densities of u (a) and v (b) at y/δ = 0.3 for flow casesM2L
(dashes); M2 (dash-dot); M2H (dash-dot-dot); M2HH (solid). The straight diagonal lines mark a
k−5/3

z behavior
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a k−5/3
z power-law behavior in the small-scale range, which reflects the establishment

of a locally isotropic energy cascade [12], and which becomes evident at the highest
Reτ .

It is the main goal of the forthcoming discussion to verify whether this variation
can be compensated through a suitable scale transformation. For that purpose, in the
following we will inspect the premultiplied normalized energy spectra as a function
of the wavelength (λi = 2π/ki ), scaled by a suitable mixing length (either �m or
�1/2), in semi-log scale. This type of representation provides hints on the possible
universality of the distributions, while retaining the illustrative advantage that equal
areas underneath the graphs correspond to equal energies.

3.1 DNS Data

We first consider the spanwise velocity spectra extracted from DNS of boundary
layer and channel flows. The data are shown at several off-wall stations, namely
y/δ = 0.1 i, i = 1, . . . , 7, thus covering the whole outer layer, well into the wake
region. Only the spectra of u and v are shown in the following for space limitations,
those ofw being similar to those of u. The u spectra scaled in classical mixing length
units, shown in the left column of Fig. 2 for selected flow cases, have a reasonable
degree of universality. This observation was also made by Mizuno and Jiménez [2],
and taken in support for the validity of the classical mixing length scaling, in the
generalized form given in Eq. (2). However, careful inspection of the figures shows
consistent shift of the scaled spectra to shorter wavelengths as the wall distance
increases (from the dotted curves to the solid curves). This discrepancy is more
evident at the large scales (i.e., the right end of the spectra), which explains the poor
collapse of the integral length scales with �m observed in P12. The spectra of v scaled
with �m , shown in the right column of Fig. 2, have a slightly different behavior.While
the same shift of the normalized spectra of the small scales is found as for u, in this
case the trend at the largest resolved scales appears to be nearly insensitive to y, and
this is again consistent with the success of �m in parameterizing the integral length
scales of v observed in P12.

The u and v spanwise spectra scaled with the modified mixing length are shown
in Fig. 3. Of course, the qualitative nature of the graphs does not change from Fig. 2,
since a y-dependent shift of the horizontal axis is involved. However, all the u-spectra
exhibit approximate collapse with the wall distance in this case. In fact, the spectral
energy density of both the small and the large scales becomes nearly y-independent,
and scatter is mainly found in the peak amplitude associated with what we defined
as energy-containing eddies. Greater scatter is observed in the DNS at the higher
Reynolds number (M2HH and PHH), which is likely caused by slow convergence of
the outer layer spectra. It is noteworthy that in boundary layers the spectral peak is
placed at λz ≈ 3�1/2, and at λz ≈ 4�1/2 in channel flows. Hence, in agreement with
previous observations [13], eddies in channels are found to be somewhat larger than
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Ê

v
(k

z
)

λz m

10-2 10-1 100 101 102

10-2 10-1 100 101 102 10-2 10-1 100 101 102

10-2 10-1 100 101 102 10-2 10-1 100 101 102

10-2 10-1 100 101 102 10-2 10-1 100 101 102

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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in boundary layers. Comparing the v spectra in Fig. 3 with those in Fig. 2, onewill see
that both �m and �1/2 perform similarly in removing the y dependence for all the flow
cases. However, the �1/2 scaling seems to be more effective in parameterizing the
small eddies,whereas the large eddies are probablymore accurately parameterized by
�m . The position of the spectral peak is also less sensitive to y in the �1/2 scaling, with
λz ≈ 1 − 2�1/2 for boundary layers, and λz ≈ 2�1/2 for channels. Normalization of
the spectrawith respect to thewall distancewas also attempted as a further possibility,
but it was found to yield poorer data collapse than both �1/2 and �m .

Streamwise spectra of u and v are shown in Fig. 4, limited to the TO2 case [7],
scaled with respect to δ, �m , and �1/2. In this case, δ scaling yields the best collapse
of the u spectra across the whole range of scales, which implies that the longitudinal
size of the u-bearing eddies does not depend on the wall distance to leading order,
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shown from y/δ = 0.1 (dots) to y/δ = 0.7 (solid lines), in intervals of 0.1δ
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and the energy-containing eddies are about 4− 5 δ long. As pointed out by Hutchins
and Marusic [9], the spectral peak of u in the outer layer is the imprint of large-
scale momentum streaks, which have a typical meandering pattern in the streamwise
direction. Thus, streamwise spectra do not necessarily convey exhaustive information
on their actual length, and indeed visual inspection supports lengths in excess of
20δ [9]. As a consequence, the observed invariance of the δ-scaled u spectra with y
is probably to bemore correctly interpreted as evidence that the turns of themeanders
have a spacing that does not depend on y. The streamwise spectra of v (right column
of Fig. 4) appear again to be very accurately parameterized by �1/2, both at the small
and at the energy-containing scales. However, the large-scale end of the spectra seems
to scale on δ, and the longitudinal integral scale of v is nearly y-independent.

3.2 Experimental Data

The boundary layer data from Hutchins et al. [10] are considered first. The span-
wise spectra of u, which we estimated by Fourier transforming the corresponding
two-point velocity correlations, shown in Fig. 5, further support the notion that the
modifiedmixing length is significantly more accurate in accounting for the growth of
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the whole range of u-bearing eddies with y. Comparison with the numerical bound-
ary layer spectra of u presented in Fig. 3 shows very close similarities, including the
position of the spectral peak, which is very nearly constant (λz ≈ 3�1/2) across the
range of wall distances and Reynolds numbers.

We next consider the pipe flow data from Bailey and Smits [11], shown in Fig. 6.
The spanwise spectra (left column) exhibit some energy pileup at the smallest scales,
caused by lack of smoothness of the spatial correlations. Nevertheless, we refrained
from using any smoothing procedure, and we present the raw data. With this caveat,
the spectra at the large-scale end appear to have little sensitivity on y, when scaled
with �1/2, with a peak at λz ≈ 3 − 4�1/2. On the other hand, the streamwise spectra
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Fig. 6 Pipe flow experiments [11]: premultiplied spanwise (left column) and streamwise (right
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(right column) in the large-scale range appear to be insensitive to y (and thus to
scale on δ), whereas the small scales are perhaps equally well parameterized by
�1/2. The apparent insensitivity of the streamwise velocity spectra to y was also
noticed by Bailey and Smits [11], who identified two separate peaks in the spectrum,
corresponding to large-scale and very-large-scale motions, whose size varies weakly
with y. They found that this dependence can be further minimized by using the same
convection velocity at all off-wall stations when applying Taylor’s hypothesis, and
interpreted this fact with the argument that spectral peaks at different wall-normal
positions correspond to the same coherent motions.

4 Conclusions

The key finding is certainly that the typical length scale ofmost eddies inwall-parallel
planes is proportional to �1/2, rather than to �m . Although the two alternatives are
not vastly different, we believe that the consistent improvement in the universality
of the scaled spectra in the �1/2 normalization, observed for a variety of flow cases
(only a part of which has been shown), is a sufficient proof of the validity of the new
scaling. In this respect, as also observed by Chernyshenko and Baig [14], we argue
that the growth of eddies in wall-parallel planes must be controlled by the inter-
play between the local mean shear and diffusion. Turbulent diffusion in wall-parallel
planes in mainly associated with u and w velocity fluctuations. These “sloshing”
motions (inactive motions, in Townsend’s terminology, [15]) are not constrained by
the impermeability condition at the wall, and hence their typical length scale is not
bound to be proportional to the wall distance. This is not the case for turbulent trans-
port in the vertical direction, which is controlled bywall-normal velocity fluctuations
(active motions, according to Townsend), whose typical length scale is bound to be
proportional (at least sufficiently close to the wall) to the wall distance. This obser-
vation points to the relevance of an eddy viscosity based on the friction velocity
and on the total wall layer thickness in controlling turbulent diffusion processes in
wall-parallel planes,

νt I ∼ u∗
τ δ, (7)

where the subscript I denotes the contribution of inactive motions, to discriminate
from the classical eddy viscosity. Note that the effective friction velocity (u∗

τ ) may
vary across the wall layer in compressible flow, owing to mean density variations.
However, since density variations are concentrated in the wall proximity, νt I is
approximately constant in the outer layer. Next, based on this observation, we assume
that the growth of eddies in wall-parallel planes is controlled by turbulent diffusion.
Borrowing arguments used by del Álamo et al. [7] we note that, on a time scale t ,
diffusion would yield eddies with size � ∼ (νt I t)1/2. If the relevant eddy viscosity
for diffusion is (nearly) constant across the wall layer, as given in Eq. (7), it appears
that the size of the eddies should be the same at all off-wall locations. However, dif-
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fusion processes at a given wall distance are limited in time by the disruptive effect
of the mean shear, whose typical time scale is

τS =
(

∂ ũ

∂y

)−1

. (8)

It is then reasonable to conclude that the typical size of eddies resulting from time-
limited wall-parallel diffusion processes is

� ∼ (νt I τS)1/2 ∼ (
u∗

τ δ
)1/2 (

∂ ũ

∂y

)−1/2

, (9)

which is identical to the mixing length defined in Eq. (1).
It is important to state that by no means our arguments imply that the classical

Prandtl’s theory should be discarded. Indeed, our observations do not apply to tur-
bulent transport in the wall-normal direction (hence, to the Reynolds shear stress),
which is probably still controlled by the classical mixing length, as suggested from
the analysis of the wall-normal velocity correlations [2]. Hence, it is expected that
a signature of Prandtl’s scaling is observed in the wall-parallel spectra of v. This is
consistent with the observation that the largest v-bearing eddies scale on �m , rather
than on �1/2.

We expect that the present results, while not directly relevant for meanmomentum
balance in wall-bounded flows, may shed some light onto the mechanisms of growth
of turbulent eddies in the strongly anisotropic wall layer, and perhaps to build deter-
ministic models for the outer layer eddies, in the same line of thought as Townsend’s
conical eddies [15]. Also, our results might be relevant for the study of the dispersion
of contaminants/pollutants in shear flow. Investigation of the two-dimensional spec-
tra in wall-parallel planes and of the vertical velocity correlations, currently ongoing,
might lead to fuller characterization of the shape and size of the typical outer layer
coherent structures.
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Sensitized-RANS Modelling of Turbulence:
Resolving Turbulence Unsteadiness
by a (Near-Wall) Reynolds Stress Model

Suad Jakirlić and Robert Maduta

Abstract A turbulence model designed and calibrated in the steady RANS
(Reynolds-Averaged Navier-Stokes) framework has usually been straightforwardly
applied to an unsteady calculation. It mostly ended up in a steady velocity field in the
case of confined wall-bounded flows; a somewhat better outcome is to be expected in
globally unstable flows, such as bluff body configurations. However, only a weakly
unsteady mean flow can be returned with the level of unsteadiness being by far
lower compared to a referent database. The latter outcome motivated the present
work dealing with an appropriate extension of a near-wall Second-Moment Clo-
sure (SMC) RANSmodel towards an instability-sensitive formulation. Accordingly,
a Sensitized-RANS (SRANS) model based on a differential, near-wall Reynolds
stress model of turbulence, capable of resolving the turbulence fluctuations to an
extent corresponding to the model’s self-balancing between resolved and modelled
(unresolved) contributions to the turbulence kinetic energy, is formulated and applied
to several attached and separated wall-bounded configurations—channel and duct
flows, external and internal flows separating from sharp-edged and continuous curved
surfaces. In most cases considered the fluctuating velocity field was obtained started
from the steady RANS results. Themodel proposed does not comprise any parameter
depending explicitly on the grid spacing. An additional term in the corresponding
length scale-determining equation providing a selective assessment of its produc-
tion, modelled in terms of the von Karman length scale (formulated in terms of the
second derivative of the velocity field) in line with the SAS (Scale-Adaptive Simula-
tion) proposal (Menter and Egorov, Flow Turbul Combust 85:113–138, (2010) [14]),
represents here the key parameter.
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1 Introduction

The work on development of the hybrid RANS/LES (Large-Eddy Simulation) meth-
ods and novel Unsteady RANS (URANS) methods (RANSmodel plays here the role
of a sub-scale model) has been greatly intensified in recent years. The relevant meth-
ods have been proposed by Spalart et al. ([20], DES—Detached Eddy Simulation;
see Spalart, [19] for the DES method upgrades, namely Delayed DES and Improved
Delayed DES), Menter and Egorov ([14]; SAS—Scale-Adaptive Simulations), Gir-
imaji ([7]; PANS—Partially Averaged Navier Stokes; see also Basara et al. [1], for
the PANS method extension to account for the near-wall effects), and Chaouat and
Schiestel ([4]; PITM—Partially Integrated Transport Model). The common feature
of all these models is an appropriate modification of the scale-determining equation
providing a dissipation rate level which suppresses the turbulence intensity towards
the subgrid (i.e. sub-scale) level in the regions where large coherent structures with
a broader spectrum dominate the flow, allowing in such a way evolution of struc-
tural features of the associated turbulence. Whereas an appropriate dissipation level
enhancement in the PANS method (similar is in the case of the PITM method)
is achieved by reducing selectively (e.g. in the separated shear layer region) the
destruction term in the model dissipation equation, i.e. its coefficient Cε,2 (e.g. the
grid-spacing-dependent model coefficient function in the PANS method provides
appropriate decrease of the standard value Cε,2 = 1.92, prevailing in the near-wall
region, towards a significantly lower value in the separated shear layer of the peri-
odic 2D hill flow, see e.g. [3]), an additional production term was introduced into
the ω equation (ω ∝ ε/k—inverse turbulent time scale) in the SAS framework. This
term is modelled in terms of the von Karman length scale comprising the second
derivative of the velocity field (∇2U), which is capable of capturing the vortex size
variability, [14].

The work reported here aims at developing an instability sensitive, anisotropy-
resolving Second-Moment Closure (SMC) model. This model scheme, functioning
as a ‘sub-scale’ model in the Unsteady Sensitized-RANS (SRANS) framework, rep-
resents a differential near-wall Reynolds stress model formulated in conjunction
with the scale-supplying equation governing the homogeneous part of the inverse
turbulent time scale: ωh = εh/k. The model capability to account for the vortex
length and time scales variability was enabled through a selective enhancement of
the production of the dissipation rate in line with the SAS proposal (Scale-Adaptive
Simulation, Menter and Egorov, [14]) pertinent particularly to the highly unsteady
separated shear layer region. The predictive performances of the proposed model are
checked by computing series of internal and external, two-dimensional and three-
dimensional flows in channels, ducts and past bluff bodies including separation from
sharp-edged and continuous curved surfaces in a range of Reynolds numbers.
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2 Computational Method

The following section briefly outlines the computational model proposed. It is
followed by description of the numerical method and associated details.

2.1 Computational Model

The equation governing the homogeneous part of the total viscous dissipation rate,
εh = ε−0.5ν∂2k/(∂x j∂x j ), modelled in term-by-termmanner by Jakirlic and Han-
jalic [8] represents the starting point for the present development. The RSM-based
ωh-equation following directly from the εh-equation (here, instead of originally used
General-Gradient-Diffusion-Hypothesis (GGDH) for the turbulent diffusion mod-
elling, the Simple GDH with diffusion coefficient modelled in terms of turbulence
viscosity was applied; thereby, no difference between the Prandtl-Schmidt numbers
corresponding to the quantities k and εh was made; σk = σε = σω = 1.1 is adopted
finally) by using well-known relationship
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with Pk = −ui u j∂Ui/∂x j representing production of the kinetic energy of tur-
bulence and coefficients Cω,1 = Cε,1 − 1 = 0.44, Cω,2 = Cε,2 − 1 = 0.8 and
Cω,3 = 1.0 taking their standard values. The introduction of the ‘correction’ coeffi-
cients Ccr,1 = 0.55 and Ccr,2 = 0.275 into the cross-derivative term copes with the
correction of the near-wall behaviour of the ωh-variable (see [9] for more details).
Last term on the right-hand side represents the gradient production term; here,
instead of the original formulation (modelled byusing the vorticity transport theorem)



20 S. Jakirlić and R. Maduta

comprising both the mean rate of strain and second derivative of the velocity field a
simplified version (pertinent to an eddy-viscosity model) is applied in line with the
request for a practical model usage. The model for turbulent viscosity νt , accounts
for both Reynolds stress anisotropy (being beyond the reach of the eddy-viscosity
model group) and viscosity effects, with characteristic length representing a switch
between the Kolmogorov length scale and the turbulent length scale.

The latter equation is appropriately extended through the introduction of the SAS
term [14] into the ωh-equation:

Dωh,S AS
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with L = k1/2/ωh being the turbulent length scale, Lvk = κS/|∇2U | (with
∇2U = [∂2Ui/∂x2j × ∂2Ui/∂x2j ]1/2) representing the 3D generalization of the clas-
sical boundary layer definition of the von Karman length scale and S the invariant of
the mean strain tensor (S = √

2Si j Si j ; Si j = 0.5(∂Ui/∂x j + ∂U j/∂xi )). It should
be noted that the PSAS term introduced in the ωh-equation has almost identical form
as the one being used in the eddy-viscosity-based k −ω SST-SAS model [14]. How-
ever, two coefficients, CRSM,1 = 0.004 and CRSM,2 = 8 and exponent of the length
scales ratio ((1/2) instead of 2)are introduced adjusting its use in the framework of
a Second-Moment Closure model. The natural decay of the homogeneous isotropic
turbulence, fully developed channel flows in a range of Reynolds number (with
underlying velocity field following the logarithmic law) and the non-equilibrium
2D hill flow at two different Reynolds numbers (ReH = 10,600 and 37,000) have
been interactively computed in the process of the coefficients calibration. Equa-
tion (3) represents a grid-spacing-free formulation. This explicit non-dependence on
the grid-spacing represents certainly an advantage over some hybrid LES/RANS
models, especially in the case of unstructured grids with arbitrary grid-cell topology.
The contours of the PSAS term in the flow over a periodical arrangement of 2D hills
and past a tandem cylinder configuration depicted in Fig. 1 clearly shows that it is
active only in the region of the separated shear layer. In the reminder of the flow
domain, especially in the near-wall regions, its effect vanishes.

The proposed model is solved in conjunction with the Jakirlic and Hanjalic’s [8]
Reynolds stress model equation (εh = ωhk, k = ui ui/2, Pi j = −ui uk∂U j/xk −
u j uk∂Ui/∂xk); similar to the scale-supplying equation (Eq.2) the GGDH turbulent
diffusion model is replaced by the corresponding SGDH model formulation:
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Fig. 1 Contours of the PSAS term (Eq.3) coloured by its magnitude in the 2D hill flow (upper) and
flow past a tandem-cylinder (lower)

For more detailed insight into the modelling rationale interested readers are
referred to [9].

2.2 Numerical Method

All computations were performed using the codeOpen-FOAM, an open source Com-
putational Fluid Dynamics toolbox (www.opencfd.co.uk/openfoam), utilizing a cell-
center-based finite volume method on an unstructured numerical grid and employing
the solution procedure based on the implicit pressure algorithmwith splitting of oper-
ators (PISO) for coupling between pressure and velocity fields. SIMPLE procedure
was applied when computing the steady flows using the RANS-RSM model. The
convective transport was discretized by a scheme blending between the second order
central differencing (CDS) and first order upwind (UDS) schemes with γCDS = 0.95
and γUDS = 0.05 in most of the cases considered. For the time integration the
second order three point backward scheme was used. The code is parallelized apply-
ing the Message Passing Interface (MPI) technique for communication between the
processors.

www.opencfd.co.uk/openfoam
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3 Results and Discussion

The predictive performances of the proposed instability-sensitive Reynolds stress
model (denoted by IS-RSM throughout the work) are intensively assessed in numer-
ous aerodynamic-type flows of different complexity featured also by 2D and 3D
separation along with available experimental, DNS (Direct Numerical Simulation)
and LES reference results: fully developed flow in a plane channel, flow over a series
of axisymmetric 2Dhills, flowover a backward-facing step, flowover awall-mounted
fence, flow in a three-dimensional diffuser and flow past tandem cylinder configura-
tions. Figures2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 display exemplarily some selected
results obtained by the consequent models application. For purpose of the mutual
comparison the results of the ‘background’ RANS-RSMmodel are also depicted. For
more extensive result presentation and more detailed discussion, also with respect to
the computational issues, interested readers are referred to [9].

3.1 Fully Developed Flow in a Plane Channel

Fully developed turbulent flow in a plane channel represents most important repre-
sentative of wall-bounded flow configurations for studying wall proximity effects
on turbulence structure characterized by enhanced anisotropy of both the Reynolds
stress tensor and stress dissipation tensor. Channel flow represents a globally stable,
unidirectional (in mean) flow (∂/∂x1 = 0, ∂/∂x3 = 0) characterized by a strong
mean shear (∂U1/∂x2) but with a low level of inherent forcing. In such a flow, the
employment of conventional RANSmodels, especially those on the second-moment
closure level, leads traditionally to correctly predicted distribution of the Reynolds
stress components andmean velocity. Accordingly, capturing the turbulence instabil-
ities is here not of decisive importance (as e.g. in the flow over a 2D hill). However, as
the consequence of the enhanced sensitivity to turbulence unsteadiness, appropriate
eddy-structure resolving is enabled also in such a globally stable flow configuration.

Figure2-left illustrates the instantaneous flow field obtained by the present
instability-sensitivemodel starting from themean flow and turbulence fields obtained
by the RSMmodel within the steady RANS framework (periodic inlet/outlet bound-
ary conditions have been applied with the streamwise pressure gradient imposed in
accordance with the relevant Reynolds number). Presently, friction-velocity-based
Reynolds number Reτ = 395 is considered; reference DNS database is from
[15]. The solution domain adopted (Lx × L y × Lz = 4h × 2h × 2h); with h
representing the half channel width) was meshed by a grid comprising 462,000
(Nx × Ny × Nz = 70 × 110 × 60) grid cells, implying the near-wall resolution in
terms of the height of the wall-next grid cell corresponding to Δy+ = 1.6. Figure2-
right shows themodelled and resolved fractions of the streamwise and shearReynolds
stress components obtained using the present IS-RSM model. The maximum ratio
of the modelled to total kinetic energy related to both turbulent stress components
corresponding approximately to 25% is found in the near-wall region.
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Fig. 2 Fully developed flow in a plane channel at Reτ = 395—instantaneous axial velocity field
obtained by the present IS-RSM (left) and the streamwise (u2) and shear (uv) Reynolds stress
components (right); DNS from [15]

3.2 Periodic Flow Over a 2D Hill

Flow over a series of the hill-shaped constrictions (reference LES results have been
made available by Fröhlich et al. [6] and Breuer et al. [2]; complementary experi-
mental investigations have been performed by Rapp and Manhart, [18]) exhibits a
number of features typically associated with a separating flow: boundary layer sep-
aration from a continuous curved surface, reattachment, highly unsteady shear layer
that separates the main stream from the recirculation flow, relaxation in the post-
reattachment region, alternating adverse (flow deceleration) and favourable (flow
acceleration) pressure gradient effects (globally along the flow but even across the
same streamwise location), strong departure from the equilibrium conditions, stream-
line curvature effects, wall proximity effects, Reynolds stress anisotropy, etc. This
flow configuration is characterized by high level of natural instability, originating
primarily from the highly intermittent separation region oscillating over a wider wall
area. Consequently, a highly unsteady separated shear layer spread over a larger por-
tion of the flow domain was generated. Accordingly, it could be concluded without
going into greater details that the correct capturing of the present 2D-hill flow con-
figuration is beyond the reach of the conventional, inherently steady RANS closures,
almost independent of the modelling level (the complementary RANS-RSM results
are also illustrated). The incapability of accounting for any spectral dynamics makes
RANS closures limited for capturing correctly such flows dominated by large-scale
dynamics. A direct consequence is inadequate (low) level of turbulence activity (con-
trolling the reattachment process) in the separated shear layer and correspondingly
longer recirculation zone (see e.g., Fig. 4). The solution domain (with dimensions
(Lx , L y, Lz) = (9H, 3.03H, 4.5H), see Fig. 3-left, is in accordance with the refer-
ence LES simulation. The mesh consisting of Nx × Ny × Nz = 160× 160× 60 grid
cells was designed by an appropriate coarsening of the 13 Mio. cells fine grid made
available by Breuer et al. [2]. Both the ReH = 10,600 case and the ReH = 37,000
case (the mean velocity and Reynolds stress results of the former case are not shown
here due to sake of brevity—these are of the similar quality) were computed using
the same mesh (lower Re-number case was computed also by using a substantially
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coarser grid—Nx × Ny × Nz = 80 × 100 × 30—no important difference in results
was obtained). Similar to the fully developed channel flow (previous section), peri-
odic inlet/outlet boundary conditions have been utilizedwith the streamwise pressure
gradient corresponding to the prescribed Reynolds number. It is interesting to report
that no initial turbulence fluctuations were necessary in this periodical flow con-
figuration. The mean flow and turbulent quantities obtained by the steady RANS
computations using the background ui u j − ωh model served for the initialization of
the computations with the present IS-RSM formulation.

The results obtained by computing the 2D hill configuration, displayed in Fig. 3-
left, document appropriate vortex structure reproduction—visualized here by the
instantaneous velocity field—being beyond the reach of any RANS model. The
introduction of the PSAS-term (Eq.3) within the instability sensitive second-moment
closure in the Unsteady RANS framework contributed strongly to the turbulence
activity intensification (originating from the resolved motion) in the region around
the separation point (see the PSAS-field in Fig. 1-upper). The model capability to
account for the large-scale structures and bulk unsteadiness led consequently to the
increased magnitude of the turbulent shear stress component (Fig. 4-lower; typical
result pertinent to anyRANSmodel is a significantly lower turbulence intensity in the
separated shear layer; for comparison, the results of the RANS computations by the
ui u j − ωh model denoted by RSM are also displayed), improved shape of the mean
velocity profiles (Fig. 4-upper) and correctly predicted reattachment length, Figs. 3-
right and 5. The latter figures illustrate appropriate recirculation zone shortening,
from (x/H)R P = 4.62 (pertinent to the lower Reynolds number ReH = 10,600)
towards (x/H)R P = 3.72 (pertinent to the higher Reynolds number ReH = 37,000)
in good agreement with the LES ((x/H)R P = 4.62) and experimental ((x/H)R P =
3.76) reference results.

Fig. 3 Periodic flow over a 2D hill: instantaneous velocity field obtained by the present IS-RSM
at ReH = 10,600 (left) and friction coefficient development at the lower wall for both Reynolds
numbers considered (right)
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Fig. 4 Periodic flow over a 2D hill at ReH = 37,000—mean velocity (upper) and shear stress
component (lower) profile developments obtained by the present IS-RSM; Exp. from [18]

Fig. 5 Periodic flow over a 2D hill at ReH = 10,600 (left) and ReH = 37,000 (right)—mean
streamlines obtained by the present IS-RSM

3.3 Turbulent Flow over a Backward-Facing Step

The low Reynolds number configuration (ReH = 5100 based on the step height H ;
the Reynolds number based on the expanding channel height is Re(10H) = 51,000)
investigated experimentally by Jovic and Driver [10] and by means of DNS by Le
et al. [13]was chosen as the next test case. 1.59Million grid cells in totalwere used (30
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cells are distributed uniformly over the spanwise extension of 4H ). The inflow plane
was located at the step wall at −3.5H ; the solution domain is extended up to 20H .
The fluctuating field was generated by applying the method of Kornev and Hassel
[11] onto the flow field obtained by the background RSM model. This configuration
possesses all the features typical for a separating flow, as described in the previous
section. However, as the flat plate boundary layer separates at the sharp edge (fixed
separation point with the time-averaged mean dividing streamline running parallel to
the step wall for a certain distance) its subsequent transformation into a shear layer is
characterized by a much less intensive oscillations compared to the separation from
a curved surface. Consequently, the capturing of the unsteady character of the flow
is not of decisive importance for correct representation of the mean flow and time-
averaged turbulence quantities. Good results could be obtained even if computing
the flow in a steady manner by applying an advanced RANS model (the present
Reynolds stress model is certainly such a model). The only important departure from
the reference database is pertinent to a slight underprediction of the turbulence level
immediately after separation similar to the separation at a curved surface (not shown
here); however, unlike in the latter flow it recovers by itself leading consequently to a
correct prediction of themean reattachment length ((x/H)R P = 6.28; see the friction
coefficient development inFig. 6-lower-left).A certainweakening of theflow reversal

Fig. 6 Flow over a backward-facing step—vortex structure illustrated by the Q-criteria (upper),
friction and pressure coefficients (lower)
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intensity leads to an important underprediction of the friction coefficient magnitude
whose (negative) peak coincides with the location x/H = 4. It is a typical RANS
result pertinent especially to such a low Reynolds number. Its correct prediction (this
is valid also for the pressure coefficient, Fig. 6-lower-right) requires the employment
of a model being capable of capturing the instantaneous flow field. The application of
the present IS-RSMmodel led to the vortex structure capturing (Fig. 6-upper) leading
consequently to an appropriate intensification of the back-flow (not shown here) and
the magnitude enhancement (negative peak) of the friction coefficient. The quality
of the latter result is especially dependent on the correct capturing of the inherently
unsteady impact of the near-wall streams corresponding to the mean recirculation
zone and the corner bubble at the secondary reattachment point (C f curve crosses
zero value at x/H ≈ 2).

3.4 Turbulent Flow over a Wall-Mounted Fence

The structure of the flow separated at a fence-shaped, sharp-edged obstacle mounted
at the bottom wall of a plane channel is extremely complex despite the fact that
the separation occurs at a fixed point coinciding with the fence tip. An impression
about the flow structure complexity could be gained from Fig. 7-upper illustrating
instantaneous flow field. The flow conditions upstream of the fence comply with the
fluid impingement onto the fence and, consequently, with a strong upward skewing.
The flow separating from the fence tip is characterized by a strongly curved, highly
unsteady separated shear layer oscillating and spreading over an expanded flow
region. The strong shear layer oscillations occur in a broader frequency range; the
entire flow domain is dominated by large coherent structures (unlike in the case
of the flat boundary layer separation from the backward-facing step, see previous
section)—accordingly, themean recirculation zone ismuch longer (almost two times)
compared to a relevant backward-facing step configuration with (x/H)R P ≈ 6 − 7
(see the previously computed backward-facing step flow). Expectedly, these features
are beyond the reach of RANS equations independent of the modeling level. The
outcome is significant underpredictionof the turbulence activity in the separated shear
layer (see Fig. 8-lower), causing a too long recirculation zone, up to (x/H)R P ≈ 14.5
(see C f -coefficient evolution in Fig. 7-lower).

The reference database is provided experimentally byLarsen et al. [12]. The fence-
height-based (H = 40mm) Reynolds number corresponds to ReH = 3000 and the
Reynolds number based on the channel height (7.5H ) equals to Re(7.5H) = 22,000.
The inlet plane of the solutiondomain adopted is situated 8.25H upstreamof the fence
and the outlet plane is positioned at 32.5H . The spanwise extent corresponds to 10H .
Numerical mesh comprising 1.0 Million cells in total is squeezed towards the chan-
nel and fence walls providing the dimensionless distance of the wall-adjacent grid
node corresponding to y+ ≈ 1; the uniform distribution of 45 grid cells is adopted
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Fig. 7 Flowover a 2D fence—vortex structure illustrated by the instantaneous vorticityfield (upper)
and friction coefficient evolution at the bottom wall (lower)

in the spanwise direction. The RANS-RSM computations have been performed by
prescribing the experimentally available velocity profile at the inflow plane. The
fluctuating inflow at−8.25H for the simulations using the instability-sensitive RSM
model is generated by a precursor simulation of the corresponding, fully developed
channel flow at Re(7.5H) = 22,000 (with bulk velocity Ub = 1.17m/s) using the
same turbulence model (see Fig. 8; however, the difference in the inflow conditions
is not regarded to be of decisive importance concerning the objectives of the present
work dealing with the turbulence intensity enhancement being appropriately corre-
lated with the mean velocity field).

Similarly to the case of the flow over a 2D hill important improvement is obtained
by applying the IS-RSM model with the scale-supplying equation extended appro-
priately to account for the turbulence level enhancement in the separated shear layer
region. Figure8-lower displays the profile development of turbulent shear stress
component. The improvement in the results compared to the initial Reynolds stress
model is obvious. The intensified turbulence activity in the region of separation led
subsequently to the separated shear layer reattachment at a distance corresponding
to (x/H)R P ≈ 11 (the experimentally determined reattachment point position is at
(x/H)R P = 11.7; see also the friction coefficient development, Fig. 7-lower). This
contributed strongly to the correct reproduction of the uv profile development in its
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Fig. 8 Flow over a 2D fence—mean velocity (upper) and shear stress component (lower) profile
developments obtained by the present IS-RSM; Exp. from [12]

entirety. The improved prediction is especially reflected in the correct capturing of
the specific sign change of the shear stress component at the fence tip. The direct
consequence of the correctly returned turbulent stress level increase is the greatly
improved predictions of the mean velocity development, Fig. 8-upper.

3.5 Turbulent Flow in a 3D Diffuser

Theflow in a presently considered three-dimensional diffuser is featured by an incom-
pressible fully developed duct flow (height h = 1cm; width B = 3.33cm) discharg-
ing into a diffuser (of the length L = 15h), whose upper-wall and one-side wall are
appropriately inclined with the expansion angles of 11.3◦ and 2.56◦, respectively,
Fig. 9-upper. The bulk velocity in the inflow duct is 1m/s resulting in the Reynolds
number based on the duct height of Reh = 10,000. The reference experimental
and DNS databases were provided by Cherry et al. [5] and Ohlsson et al. [17].
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Fig. 9 Flow in a three-dimensional diffuser—instantaneous velocity field obtained by the present
IS-RSM model (upper) and pressure coefficient development at the lower flat diffuser wall (lower)

The solution domain whose inlet plane is located at x/h = −15 (origin of the
coordinate system coincides with the duct expansion onset—x/L = 0—and the
non-expanded side wall—z/B = 0) in the inflow duct and exit plane at x/h = 45
in the straight outflow duct was meshed with the grid consisting of 3.75 Mio. cells
in total; it corresponds to the position of the wall-adjacent computational node at
y+ ≈ 1.5. Similar to the previous 2D fence case, the fluctuating inflow was gen-
erated by performing the simulation of the fully developed flow in the 3D duct by
applying the IS-RSM model.

This is a fairly complex flow characterized by the boundary layer separation
starting in the corner built by two sloped walls (corner separation) and spreading
over the entire upper wall (Figs. 9-upper and 10) due to an adverse pressure gradient
imposed on the duct flow by expanding the cross-section area. The results obtained
by the IS-RSM model are in a good qualitative agreement with the experimental
findings despite a somewhat thinner recirculation zone, unlike theRANS-RSMmodel
resulting in a growth of the corner bubble without occupying the upper wall in its
entirety (not shown here). Figures9-lower and 11 display a quantitative comparison
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Fig. 10 Flow in a three-dimensional diffuser—iso-contours of the axial velocity field in the cross
planes y − z at selected streamwise locations (x/h = 5, 8, 12 and 15, respectively) within the
diffuser section (thick lines denote the zero-velocity lines) obtained by the present IS-RSM model

Fig. 11 Flow in a three-dimensional diffuser—evolution of the axial velocity and streamwise
turbulence intensity profiles in the vertical x–y plane positioned at z = 7B/8. Exp. from [5, 17]
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between the presently computed pressure coefficients, axial velocity and streamwise
turbulence intensity profile developments and the reference experimental and DNS
databases. The results obtained exhibit reasonable agreement with both data sets,
especially with respect to the pressure recovery.

3.6 Flow Past Tandem-Cylinder Configurations

The presently considered pair of circular cylinders (with diameter D) in tandem
(Fig. 12) represents a simplified landing gear configuration of an aircraft. The inter-
action between the flow fields past cylinder components was in focus of relevant
experimental investigations by Neuhart et al. [16] providing details about the mean
velocity, mean surface pressure, root-mean-square of the fluctuation pressure and
time-averaged turbulence intensity. Two distinct tandem-cylinder configurations
characterized by different in-between spacing were considered: L = 3.7D (long-
distance case) and L = 1.435D (short-distance case). The corresponding Reynolds
and Mach numbers based on the cylinder diameter D and velocity of the oncoming
flow amount 166,000 (Uinlet = 1.66m/s) and 0.1285 respectively. The grid adopted
consists of the 60,000 cells in the x–y plane for both cases. This two-dimensional
grid was extended in the spanwise direction by two cylinder diameters for the IS-
RSM simulations. 80 uniformly distributed grid cells were placed in the spanwise
direction resulting in 4.8 Million cells in total.

According to Zdravkovich [21] the distance L/D = 3.7 relates to the so-called
bistable case corresponding to a configuration in which the flow structure at/behind
the first cylinder switches from the continuous shedding resembling the well-known
von Karman vortex street to a continuously separated shear layer reattaching tem-
porarily at the front side of the rear cylinder; behind the second cylinder a con-
tinuous vortex street develops, Fig. 12-upper-left. Unlike the long-distance case,
in the short-distance configuration (L/D = 1.435) the cylinders are that close to
each other resembling one long obstacle for the oncoming flow, Fig. 12-lower-left.
Accordingly, thewall boundary layer separating quasi-stationary from the front cylin-
der transforms into a shear layer which reattaches at the rear cylinder. The flow in
the wake behind the downstream cylinder exhibits a continuous shedding behaviour.
These descriptions reveal the flow structure past the large-distance case being more
challenging for turbulence models due to the bistable (intermittent) behaviour. Cap-
turing of turbulence unsteadiness by applying the present IS-RSMmodel is illustrated
in Fig. 1-lower displaying the field of the PSAS production term. As mentioned previ-
ously, the tandem cylinder configuration can be regarded as a simplified version of a
landing gear and can therefore serve as the first step in testing turbulence models for
predicting the airframe noise. The unsteady pressure field is the most important flow
variable acting as the noise-source representative. Conventional RANS models fail
traditionally in predicting it because of their time-averaging rationale. Only unsteady
interactions involving large scales can be reasonably captured. The unsteady feature
of the pressure field is represented through the root-mean-square of the fluctuating
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Fig. 12 Flow past tandem cylinder configurations—large (L/D = 3.7; upper) and small in-
between spacing (L/D = 1.435; lower); vorticity magnitude coloured by the normalized axial
velocity (Ux/Uinlet) obtained by the present IS-RSM (left) and root-mean-square (rms) of the
fluctuating pressure on the downstream cylinder (right); Exp. from [16]

pressure on downstream cylinder for both cylinder separations, Fig. 12-right. It was
experimentally found that the second cylinder is the main source of noise as the rele-
vant (C

′
p)rms values are four to five times higher than thosemeasured on the upstream

cylinder. Therefore, the model results compared to the experiment relate only to this
downstream cylinder. The IS-RSM model results exhibit reasonable agreement in
regard to both peak values and (C

′
p)rms distribution over the most of the cylinder

surface indicating high potential for being used as a tool for the noise prediction.

4 Conclusion

Potential of the presently formulated near-wall differential Reynolds stress model
(RSM) extended appropriately to account for turbulence instabilities within ‘Sen-
sitized RANS’ framework (SRANS) was illustrated by computing a series of 2D
and 3D wall-bounded flow configurations featured by separation and reattachment
in a broad range of Reynolds numbers. The key element in the present model is
an additional SAS-based production term (in line with Menter and Egorov, [14])
introduced into the scale-determining equation governing the inverse time scale
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ωh (∝ εh/k). This term, formulated in terms of the ratio of the turbulent length scale
to the von Karman length scale (comprising the second derivative of the velocity
field), enables appropriate model receptivity to the turbulence unsteadiness promot-
ing a selective enhancement of the turbulent dissipation rate production influencing
consequently an adequate suppression of the modelled turbulence intensity towards
the respective sub-scale level (relatedmostly to the separated shear layer region). Sig-
nificantly improved predictions, compared to the baseline RSM model, with respect
to the structural characteristics of the instantaneous flow field, some most impor-
tant integral characteristics (e.g. friction and surface pressure coefficients), the mean
velocity field and turbulence quantities demonstrate the model’s potential in solving
the complex flows separated from continuous curved surfaces and obstacles exhibit-
ing broader frequency range. In addition, the capability of the model to operate in
scale-resolving mode in some globally stable flows, such as flow in a plane channel
and flow over a backward-facing step, is also illustrated.
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Coherent Structures in Wall-Bounded
Turbulence

Javier Jiménez and Adrián Lozano-Durán

Abstract The current knowledge about some particular kinds of coherent struc-
tures in the logarithmic and outer layers of wall-bounded turbulent flows is briefly
reviewed. It is shown that a lot has been learned about their geometry, flow properties
and temporal behaviour. It is also shown that, although the wall-attached structures
carry the largest fraction of most flow properties, they are only extreme cases of
smaller wall-detached eddies, and that the latter connect with the more classical
behaviour of homogeneous turbulence away from walls. Nevertheless, it is argued
that little is known about the dynamical origin of these structures, and that a con-
cerned effort is required to quantitatively identifywhich one (or ones) of the plausible
available dynamical models is a better representation of the observed behaviour.

1 Introduction

It is ‘a-priori’ unclear whether there are coherent structures in turbulence, or how
they should be defined. Their most compelling support derives from free-shear flows,
where visualisations reveal a wave-like organisation of advected scalars [1], which
can be traced for relatively long times, and that can be linked to theKelvin–Helmholtz
instability of the mean velocity profile. Besides that visual impression, which did a
lot to crystallise a structural view of turbulent flowswithwhich to complement earlier
stochastic descriptions, the identification of those waves in terms of a known dynam-
ical process was important. It opened the way to the prediction of their properties,
and later to effective control strategies [2, 3].

The situation is not as satisfactory for wall-bounded turbulence, inwhich themean
velocity profile does not sustain a linear modal instability. Long-lived structures
were identified in wall turbulence even earlier than in free-shear flows [4], mainly
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in the form of long streaky structures of the streamwise velocity, but it was soon
realised that the streaks could not survive by themselves, and that other structures
were needed to complete a self-sustaining regeneration cycle [5–7]. In the past 20
years, numerous models for the dynamics of such flows have been proposed, such
as linearised approximations, both modal and non-modal [8–10]; specific structures
such as hairpin vortices [11–13]; instabilities of the velocity streaks [14, 15] and
equilibrium and time-periodic exact solutions of the Navier–Stokes equations [16,
17].

In most cases, structures that approximately answer to the description in those
models can be identified in turbulent flows, and there are physical grounds to believe
that they really exist and may even be common. Moreover, all of them share some
degree of intellectual appeal that is at the root of the original proposal. However, the
question of how often the structures and the evolution that they predict actually occur
in the flow, and how relevant are they to its dynamics, has generally been addressed at
most qualitatively or partially (e.g. hairpin ‘heads’, or wall-normal velocity ‘bursts’).

There is little doubt that exact structures of any kind are unlikely to be found in
turbulence. All of the examples given above either exist only at Reynolds numbers
well below those of fully developed turbulence, or are unstable or transient. On
the other hand, it has been persuasively argued that equilibrium solutions and other
simple trajectories in phase space, even if unstable or transient, are approached by the
flow more often than other random non-equilibrium states, and are therefore more
relevant to the statistics than other kinematically possible flow fields [17, 18].

In recent years, temporally and spatially resolved numerical databases have begun
to allow the quantitative analysis of how closely a particular solution is approached by
the flow, and how often that happens, although the analysis often involves isolating a
particular subset of the flow, a restricted range of wavenumbers, or both. It is usually,
but not always, also necessary to inhibit or discount the effect of interactions between
different structures. We will discuss some examples in which it has recently become
possible to test particular simplified turbulence ‘cartoons’ in essentially natural flows,
examine their shortcomings, and point to possible avenues for future tests of other
popular (or less popular) ones.

The organisation of the paper is as follows. Section2 describes in some detail
what has been found about two particular kinds of long-lived structures in wall-
bounded flows, about how they evolve in time, and about how they are related to
similar structures in shear flows far from the wall. It will be seen that a lot is known,
but that optimistic impression is tempered in Sect. 3, which discussed how little we
really know about the dynamical origin of what is observed, and how far are we
from conclusively identifying the observations with any of the conceptual models
mentioned above. Section4 summarises and concludes.
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2 We Know Everything About Turbulent Structures

Channels are often used as archetypes for the theoretical characterisation of wall-
bounded turbulence because they are relatively simple to simulate (although appar-
ently hard to realise experimentally), and because numerical simulations offer the
best chance of studying the flow in detail. There are channel simulations available
at relatively high Reynolds numbers [19–23], and time-resolved databases of their
evolution have recently become available for analysis [24].

Two kinds of structures have been studied in detail for this flow: Vortex ‘clusters’
are connected objects of particularly strong discriminant of the velocity gradient
[25], and ‘Qs’ [26] are connected regions of strong Reynolds stresses that are the
three-dimensional analogues of the classical ‘quadrant’ events studied by experimen-
talists from single-point signals [27]. The most important Qs are those in the second
‘quadrant’ (Q2 or ejections) and in the fourth quadrant (Q4 or sweeps), i.e. those for
which the wall-normal velocity fluctuations, v, have opposite sign to the streamwise
velocity fluctuations, u, so that they carry a Reynolds stress consistent with the mean
shear (uv < 0 for ∂ yU > 0). Both the clusters and the Qs can be classified into
wall-attached and wall-detached families, depending on whether or not their roots
reach the neighbourhood of the wall. The wall-attached structures have been studied
in most detail. They are larger than the local Corrsin scale [28], interact directly
with the ambient mean shear, and presumably draw their energy from it [29]. The
wall-attached sweeps and ejections carry over 60% of the total tangential Reynolds
stress.

Above the viscous layer near thewall, Qs and clusters are complicated objectswith
fractal dimensions of the order of DF = 2 − 2.5. Two examples are given in Fig. 1,
both of which are wall-attached and large enough to extend into the logarithmic layer
(L y/h = 0.15−0.20), where L y is the wall-normal dimension, and h is the channel
half-width. It is known that the large attached eddies of both kinds (L+

y � 100) have
self-similar aspect ratios, Lz ≈ L y and Lx ≈ 3L y [25, 26], and lifetimes that also
scale linearly with their height, t+ ≈ L+

y [30].

Fig. 1 a Wall-attached vortex cluster. b Ejection (‘second quadrant’ Reynolds stress event). Tur-
bulent channel at Reτ = 4200 [22]. Flow is from left to right, and axes are in wall units
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Attached sweeps and ejections are almost always found in side-by-side pairs,
with a vortex cluster near their base. The mean flow conditioned to one of these
pairs is a quasi-streamwise roller sitting at the boundary between a high- and a
low-velocity streak of the streamwise velocity, in an arrangement reminiscent of
the better-known associations of streaks and vortices in the viscous layer [15, 31].
Above the buffer region, they are typically much larger than those closer to the wall,
and involve disorganised turbulent objects similar to those in Fig. 1. In those cases,
the association of Qs with rollers can only be recognised in a conditional statistical
sense. For an example of an individual pair, the reader is referred to Fig. 12 in [26],
or to the three-dimensional version of that figure in the supplementary material to
that paper.

It is interesting that, even if attached eddies play a dominant role in wall-bounded
flows, the proximity of the wall does not appear to be required for their formation.
A recent simulation of homogeneous shear flow [32] was found to contain vortex
clusters, sweeps and ejections with statistical properties very similar to those of the
large detached eddies in channels (see Fig. 2a for an example), and these large Qs
are also responsible for most of the tangential Reynolds stress. It is also known that
channels with rough-like walls [33] or even with no wall at all [34] have vortex
clusters indistinguishable from those of normal channels.

In fact, attached eddies appear to be particular cases of detached ones that have
become large enough to collide with the wall. Figure2b shows the probability distrib-
ution of the vertical dimensions of sweeps and ejections in a channel and in homoge-
neous shear. Those in the channel have been separated in bands of the position of their
farthest point from the wall. The probability of their vertical dimension decreases
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Fig. 2 a Large ejection in a homogeneous shear flowwithmicroscale Reynolds number Reλ = 100
[32]. Flow is from left to right. Compare with Fig. 1b. b Probability density function of the logarithm
of the wall-normal dimension of sweeps and ejections (Q2+Q4). , Attached or detached
eddies with a given maximum height, ymax/h = 0.3, 0.5, 0.7, increasing in the direction of the
arrow. Turbulent channel at Reτ = 2000 [22]. , Homogeneous shear, Reλ = 100 [32].
Axes in both panels are in Kolmogorov units
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for larger eddies, roughly as pdf(L y) ∼ L−5/2
y , until it reaches L y = ymax . The

eddies then hit the wall, and the p.d.f. accumulates into the distribution of attached
eddies. Choosing a higher band simply extends the probability tail to taller eddies
before they reach the wall. The figure also contains data from a homogeneous shear,
where the eddies follow the same probability distribution, but never accumulate at
the (non-existent) wall.

Even more revealing is the temporal evolution of these structures, which requires
tracking them in time and unravelling the numerous interactions in which they split
or merge with one another along their lifetimes [24, 30]. It was in this way that
the previously mentioned lifetimes were computed, although they refer to ‘primary’
eddies that are not born from a split or disappear into a merger. When interactions
are taken into account, it turns out that most eddies larger than a few Kolmogorov
scales (η) lose or receive some fragments of comparable size at some point in their
lives [30], and that such direct or inverse ‘cascade’ events are responsible for the
largest part of their growth and decay. Numerically, however, most of the splits and
mergers take place between a larger eddy and a smaller fragment of the order of the
Kolmogorov scale.

The connection of these events with a cascade can be made more quantitative.
Centring on the direct cascade, the interactions between eddies can be best studied by
ordering the different branches, each of which represents the evolution of a particular
eddy, into a graph in which the nodes are the splits. In each split, one ‘main’ branch
survives and one is created anew. Each branch can be assigned a ‘split index’ as the
number of splits that separate it from its farthest descendent. A sketch is Fig. 3a. It
can be expected that eddies with a larger index are also bigger, and that their size
decreases as they approach the extremal branches in which they are dissipated by
viscosity. This is demonstrated in Fig. 3b which shows the p.d.f. of the eddy size
(the cubic root of its volume) for eddies with a given index [35]. The characteristics
size of the smallest eddies (index = 0) is L ≈ 0.05h ≈ 10η, comparable to the
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Fig. 3 a Sketch of the splitting tree of a large eddy into smaller fragments. The index of each
branch is the number of splits that separates it from its farthest descendent. b Probability density
function of the (cube root of) the volume of Q-structures, separated by their splitting index, ranges
from 0 to 6 in the direction of the arrow [35]. Turbulent channel at Reτ = 950 [22]
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diameter of the small-scale vortices [36], and those with the highest index are of
the order of the integral scale, L ≈ 0.2h. It is interesting that the ratio between the
mean volume of consecutive indices changes from about 0.2 in the viscous range
(L < 30η) to about 0.5 later on. There is a complicated relation between this ratio
and the average volume fraction typically lost in a split, because a given eddy can
break into fragments with very different future histories, and therefore with very
different indices. But, if we take the volume ratio between consecutive indices as
an estimate of the ratio between the volume of successive eddy ‘generations’, the
first value can be interpreted as being dominated by the loss of Kolmogorov scale
fragments, and the second one as a more classical equilateral inertial cascade. A
similar analysis can be done for the merging of structures, giving information on the
inverse component of the cascade.

3 We Know Nothing About Turbulent Structures

Wehave seen in the previous section thatwhat amounts to a complete characterization
of the behaviour of two kinds of coherent structures in channel flows. This has been
an important advancement of the last few years that would have been difficult to
predict a decade ago. Although most of it has been based on information from
simulations, some experimental time-resolved datasets, generally limited to two-
dimensional sections, have contributed substantially [37–40]. All these information
have given us a fresh outlook on what is going on inside the turbulent wall-bounded
flows, but it can be argued that our understanding of these flows is still well below
that of the free-shear turbulence.

We lack a theoretical model for the behaviour that we observe. As mentioned in
the introduction, the problem is not as much a lack of models, but a superabundance.
It is probably true that several of those models are equivalent, although that remains
to be proved. For example, it is not inconceivable that the structures described in
the previous section can be described as packets of approximate hairpin vortices.
There have been numerous attempts to show that particular theories are ‘compatible’
with statistical data, e.g. [41]. They are often successful, but that should not be
considered as a sufficient proof. We know from RANSmodelling that suitably tuned
semiempirical models with little or no structural information can predict turbulence
statistics very accurately.

That is true evenwhen fairly detailed statistics are used. For example, it was shown
in [42] that the temporal evolution of minimal channels was consistent with the lin-
earised Orr’s mechanism of inviscid transient growth. The similarities include such
high-order quantities as temporal correlation functions and the detailed exchange
of energy among velocity components. Similarly, it was shown in [9] that opti-
mally amplified linearised perturbations agree well with the highest POD modes
of full channels. However, it has proved difficult in both cases to identify in the
flow the three-dimensional structures implied by the linear models, or their temporal
evolution.
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There may be several reasons for these failures. In the first place, as mentioned
in the introduction, it is highly unlikely that any structure predicted by an essen-
tially laminar model would be found in the chaotic environment of real turbulence at
even moderate Reynolds numbers. The most that can probably be expected is some
approximation, such as is evident, for example in the steady retreat from the identi-
fication of hairpin packets into ‘heads’, ‘legs’ or ‘incomplete’ hairpins. This is not
necessarily bad, but it may easily become meaningless without a clear definition of
the metric used to define the ‘presence’ of a structure.

The second problem is that many of these models actually predict transient phe-
nomena. This is probably the best that can be expected from a system without modal
instabilities, but it means that we have to identify something that only lives for a
fraction of the system evolution. For example, the Orr model in [42] describes a
relatively short burst in the wall-normal velocity that quickly decays after creating a
streamwise velocity streak that lasts much longer. This is a fairly accurate descrip-
tion of the evolution of the flow in minimal channels [5–7, 43], but it means that we
are trying to identify something that is not there most of the time. Again, we need
to define a metric to describe not only how close is the system to a given solution,
but also how often it happens. Note that this may be more complicated than just
tracking time intervals or the contribution to the statistics. In the previous example,
the bursts are probably not large contributors to the statistics of u or v [44], but they
are necessary ‘catalysts’ for the injection of energy into the turbulent fluctuations.

A newer development has been the attempt to identify turbulent structures with
exact solutions of the Navier–Stokes equations, whether permanent waves or more
complex invariant sets. These efforts have generally centred on transitional flows, but
some of them extend into the incipient turbulent regime. Early attempts to represent
the statistics of pipes in terms of permanent waves were only moderately successful
[45], and the focus quickly moved to recurrent solutions [46, 47], and to homoclinic
and heteroclinic orbits as models for bursting [48–51]. All these studies share the
usual ambiguity about the norm used as a measure of proximity. A promising tech-
nique that partially bypasses this limitation is to use an arbitrary norm to identify
approximately a recurrent flow state, which is then used as an initial condition for the
computation of exact recurrent solutions [46, 47]. However, most of these techniques
have only been used on flows at low Reynolds numbers, or even on two-dimensional
ones, and it is unclear whether they can be extrapolated to more complex situations.

4 Discussion and Conclusions

We have tried to show how we are both very near and very far from understanding
the dynamics of shear-dominated wall-bounded turbulent flows. Very near in the
sense that we have collected in the past decades what is probably a reasonably
complete catalogue of coherent structures in these flows, of their properties, and of
their temporal evolution. But very far in the sense that we lack a consensus theoretical
model for their behaviour. Two questions suggest themselves. The first one iswhether
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coherent structures are more than an observational construct, and whether we should
really expect a theory for them. The second one is whether such a theory would be
of any use.

Tackling the second question, first, our best guide could be the experience with
free-shear flows mentioned at the beginning of this paper. In that case, a linearised
theory for the nature of the structures naturally led to control strategies. The same
has been true of our partial theoretical understanding of wall-bounded flows, even
if the applications are as yet limited to simulations at moderate Reynolds numbers.
For example, the early realisation of the role of sublayer streaks in determining fric-
tion drag, and of the buffer-layer vortices in sustaining the streaks, led to successful
drag reduction strategies based on damping the vortices [52]. Further removed from
intuition, [53] was able to laminarise turbulent Couette flow by acting on the system
as it spontaneously approaches a fixed point in the ‘edge’ of the basin of attrac-
tion of turbulence. Although it is impossible to predict whether a better theoretical
understanding would lead to better control strategies at realistic Reynolds numbers,
the success rate of past ‘intuitive’ approaches has been at most moderate, and the
previous examples offer some hope that better methods lay hidden within deeper
theories.

The question about the relation between theory and structure is more complex,
and cannot probably be answered conclusively at this point. Many of the theoretical
models mentioned above were motivated by attempts to explain (‘postdict’) struc-
tures observed in highly constrained simulations. They were usually successful, but
we have seen that the inverse question of identifying theoretical solutions in real
flows has been more problematic. It is also clear that the idea of a coherent blob of
strong vorticity is a very different concept from an invariant set of the Navier–Stokes
equations. On the other hand, structures stay coherent for some reason, and turbulent
flows are nothing but solutions of the Navier–Stokes equations. Consider one of the
problems of describing any statistically stationary solution of a dissipative system
such as turbulence, which is to understand how the energy is injected into the sys-
tem. This is a basic question as much in fully turbulent flows, in permanent waves,
or in any invariant set. In shear-dominated flows, it is known that energy injection
is mediated by the production term, −〈uv〉∂ yU , and it is reasonable to expect that
the Q-structures described in Sect. 2, which are the dominant carriers of 〈uv〉, play
a role in that process. Similarly, vortex clusters, which label regions of high energy
dissipation can be expected to be controlled by, and to modulate, the energy balance.

The basicmessage of this paper should be that, in spite of all the new observational
information on the behaviour of turbulent wall-bounded flows, a lot remains to be
understood about the reasons for that behaviour. It is the opinion of the present
authors that, in the same way as a dominant thread of turbulence research during the
past 50 years has been the reconciliation of the structural and statistical views of the
flow, an important task for the next years will be to relate theoretical models with
structural observations.
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Attached Eddies and High-Order Statistics

Ivan Marusic and James D. Woodcock

Abstract The attached eddy hypothesis of Townsend [16] is the basis of a model
of the logarithmic region in wall-bounded turbulent flows, in which the inertially
dominated part of the flow is described by a hierarchy of self-similar eddyingmotions
that extend to the wall. The hypothesis has gained considerable support from high
Reynolds number experiments and recently from DNS Sillero et al., Phys. Fluids
25:105102, 2013, [14].Meneveau andMarusic, J. FluidMech., 719:R1, 2013, [9] also
recently used the attached eddy hypothesis, together with the central limit theorem,
to deduce that all even-ordered moments of the streamwise velocity will exhibit a
logarithmic dependence on the distance from thewall. Thiswas also further supported
by experimental evidence.

In this paper, we consider a more rigorous physical and mathematical basis for the
attached eddy hypothesis than those considered in the past, and extend the proof of
Campbells theorem to apply to the velocity field corresponding to a forest of variously
sized eddies that are randomly placed on the wall. Thus, by modelling the flow as a
hierarchy of self-similar eddies that are perfectly randomly and independently placed
on the wall, we have been able to derive functional forms for the average velocity, as
well as all higher order moments of the velocity fluctuations, and cross-correlations
between velocity fluctuations in different directions (such as the Reynolds shear
stress). This leads to a derivation of the Meneveau and Marusic result for high-
order moments without invoking the central limit theorem and indicates that such
logarithmic behaviours will only be realisable in the large Reynolds number limit.

The model predicts that the streamwise and spanwise fluctuations will be super-
Gaussian, while the wall-normal fluctuations will soon approach a constant skew-
ness as the Reynolds number increases. (This is notably different behaviour from
that which would be predicted by the use of the central limit theorem.) In the span-
wise and wall-normal cases, this agrees with experimental results. Conversely, how-
ever, experiments have also shown the streamwise fluctuations to be sub-Gaussian.
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This indicates that the present model will need to be refined in order to capture the
sub-Gaussian behaviour of the streamwise fluctuations. One obvious potential refine-
ment can be seen in the interdependent placement of the eddies.

1 Introduction

The great complexity of turbulence can be seen in the scarcity of phenomenological
models capable of reproducing its various features. Much of the early modelling of
turbulent flows simply regarded the flow as consisting of perfectly random fluctua-
tions, the average behaviours of which could be experimentally determined.

Taking a different approach, Townsend [15] proposed a remarkably simple model
for turbulent flow in the near-wall log-region. Thismodel, now known as the attached
eddy hypothesis, states that the flow in this regionwill be dominated by geometrically
self-similar eddies, whose corresponding flow fields extend to the wall.

Using this attached eddy hypothesis, Townsend [16] was able to derive simple
relationships between the second-order velocity fluctuations and the distance from
the wall, z. If u, v and w represent the fluctuations in the streamwise, spanwise and
wall-normal fluctuations respectively, Townsend found that

〈
u2

〉+ = B1 − A1 log
( z

δ

)
, (1a)

〈
v2

〉+ = B1,v − A1,v log
( z

δ

)
, (1b)

〈
w2

〉+ = B1,w, (1c)

−〈uw〉+ = 1, (1d)

where the angled brackets represent ensemble averages. The superscript ‘+’ indicates
that the quantities have been scaled according to viscous wall-units, and δ denotes the
maximum distance from the wall at which the flow is dominated by the presence of
the attached eddies. All of the As and Bs above are constants. Recent experiments at
highReynolds number [2, 4, 6, 8, 10, 17], aswell as numerical simulations [14], have
supported such logarithmic behaviours for the profiles of the velocity fluctuations.

At the time, however, existing flow visualisation technology did not enable
Townsend to search real turbulent flows for coherent structures or repeating patterns.
Furthermore, scientific computing, then in its infancy, was not up to the challenge
of simulating high (or even moderate) Reynolds number turbulent flows. Nonethe-
less, the attached eddy hypothesis was further refined and its use extended over the
following decades.

The hypothesis has been used to derive the mean velocity of wall-flows by
[11, 12]. The streamwise flow in the log-region obeys the well known equation

〈U 〉+ = 1

κ
log

(
z+) + C, (2)
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where κ is von Kármán’s constant, and C depends on the roughness of the surface,
but is otherwise constant.

More recently,Meneveau andMarusic [9] proposed amethod for extending the use
of the attached eddy hypothesis to higher order moments of the velocity. For this,
they assumed that the eddies would display perfectly Gaussian behaviour, which
allowed the use of the central limit theorem. The even-ordered moments derived in
this way are 〈(

u+)2p
〉1/p = Bp − Ap log

( z

δ

)
, (3)

where Bp and Ap are constants, and the Aps relate to each other via

Ap = (2p − 1)!! A1, where n!! ≡ n(n − 2)(n − 4) . . . 1.

In this work, we do not assume Gaussian behaviour. In fact, we will subsequently
show that the assumption of Gaussianity produces incorrect results for higher order
moments.

To this end, we revisit the basic theory and physical assumptions that underpin the
attached eddy hypothesis. This has allowed us to place the model on a firmer basis,
and to expand the application of the model to higher order moments. We utilise
Campbell’s theorem, which was originally applied to the attached eddy hypothesis
by Marusic [7], following a suggestion by R.J. Adrian (private communication).
Following the analysis of Townsend and Perry and Chong, we model the flow as a
random distribution of eddies that are geometrically self-similar and whose locations
are entirely independent.

The model is formulated and the results are briefly discussed in Sect. 2. A proof
of Campbell’s theorem is given in Appendix.

2 Velocity Statistics

The velocity field is modelled as the superposition of the individual velocity fields
corresponding each of many eddies. The eddies all have the same shape and relative
dimensions, differing from each other only in height. One sketch of a possible eddy
shape is given in Fig. 1.

Each eddy can therefore be considered as a separate entity, defined only by its
own properties. Its only defining properties being its location on the wall, xe, and
its height, h. It is clear therefore that the defining length scale of the eddy will be h,
while its velocity scale will be the friction velocity.

It follows that if Q is the velocity field at x corresponding to an individual eddy,
then its spatial and height dependence will be

Q = Q
(

x − xe

h

)
. (4)
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x
y

z

Fig. 1 Sketch of a typical representative eddying motion. The red and blue regions represent,
respectively, the portion of the flow with streamwise velocity in excess of and below the mean. This
shape is typical of the motions that have been observed to appear within turbulent flows [5]

The total velocity, U(x), will therefore simply be a sum over Q for all eddies.
However, since we could never postulate the simultaneous locations of all eddies
present, wemust therefore consider instead the statistical properties of a large number
of eddies.

The observation that h is the system’s only natural length scale can be used to
determine the size distribution of the eddies: If ρh denotes the density of eddies of
size h, then it follows from simple dimensional analysis that

ρh ∝ 1

h3 . (5)

The probability of an eddy having size h, which we denote by P(h), will be propor-
tional to ρh . It can therefore be derived via normalisation. If all eddies have sizes
between hmin and hmax, then their probability distributions will be

P(h) = 2
(

h−2
min − h−2

max

)−1 1

h3 . (6)

The derivations of the first- and second-order moments of the velocity are given
in Appendix. The extension to higher order moments will not be given here due to
limited space.

To simplify the equations, particularly at higher orders, we introduce a new func-
tion, λk,l,m , known as a cumulant. It is defined by

λk,l,m(z)
def= β

hmax∫
hmin

Ik,l,m(Z)h2P(h) dh, (7)

where β represents the average density (per area) of eddies on the wall. The function
Ik,l,m is known as the eddy contribution function, and is given by
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Ik,l,m(Z)
def=

∞∫∫
−∞

Qk
x (X) Ql

y (X) Qm
z (X) dX dY. (8)

The capital X, and its components X , Y and Z , represent the location scaled by h.
Using cumulants, the mean velocity can be expressed as

〈U 〉 = λ1, 〈V 〉 = λ0,1,0, 〈W 〉 = λ0,0,1, (9)

where we have used the shorthand

λn ≡ λn,0,0 (10)

for purely streamwise quantities. If we denote velocity fluctuations by u, so that

u(x) = U(x) − 〈U(x)〉, (11)

then

〈u2〉 = λ2, 〈v2〉 = λ0,2,0, 〈w2〉 = λ0,0,2,

〈uv〉 = λ1,1,0, 〈uw〉 = λ1,0,1, (12)

and the moments of the streamwise velocity fluctuations are given by

〈u3〉 = λ3, (13a)

〈u4〉 = λ4 + 3λ22, (13b)

〈u6〉 = λ6 + 15λ2λ4 + 10λ23 + 15λ32, etc. (13c)

and similarly for 〈v2p〉 and 〈w2p〉. It is instructive to compare these results to those
obtained by Meneveau and Marusic [9], who assumed the distribution of eddies
would be perfectly Gaussian. Their resulting even order moments were given in
Eq. (3).

It can be seen in Eq. (13) that our results agree with the Gaussian behaviour in
only the second-order statistics, but begin to deviate at higher order moments. We
will now look more closely at the third- and fourth-order statistics.

2.1 Skewness Statistics

The skewness is denoted by Su , Sv and Sw. They are defined by

Su = 〈u3〉
〈u2〉3/2 , Sv = 〈v3〉

〈v2〉3/2 , Sw = 〈w3〉
〈w2〉3/2 . (14)
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Fig. 2 Plots showing the
skewness of the three
velocity components
calculated using the typical
attached eddy depicted in
Fig. 1 at z+ = 100, where it
is assumed that
Reτ = 100hmax/hmin
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By inspection of (13), we can see that the skewness is

Su = λ3

λ
3/2
2

, Sv = λ0,3,0

λ
3/2
0,2,0

, Sw = λ0,0,3

λ
3/2
0,0,2

. (15)

To investigate these and higher order moments of the velocity, we must have some
conception of the behaviour of Q(x). To this end, we introduce an assumed eddy
shape and derive a velocity field from it via the Biot–Savart equation. The procedure
for doing so has been described byMarusic [7]. The eddy shape chosen is as given in
Fig. 1, and consists of a train of six arch-shaped rods that are aligned in the streamwise
direction in ascending order of height. This is intended to produce a purely qualitative
appreciation for the output of the model.

The computed skewness is shown in Fig. 2. As expected, the spanwise skewness
is zero. The streamwise skewness approaches zero gradually as the Reynolds num-
ber increases. The wall-normal skewness, on the other hand, rapidly approaches a
constant.

2.2 Flatness Statistics

The flatness is of particular interest, since it allows us to compare the results of the
attached eddy model to experimental results and to the Gaussian results reported by
Meneveau and Marusic [9]. The flatness is denoted by Fu , Fv and Fw, and is defined
by

Fu = 〈u4〉
〈u2〉2 , Fv = 〈v4〉

〈v2〉2 , Fw = 〈w4〉
〈w2〉2 . (16)

Following the example set by the derivation of the skewness, it can be shown that
the flatness will be given by
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Fig. 3 Plots showing the
flatness of the three velocity
components calculated using
the typical attached eddy
depicted in Fig. 1 at
z+ = 100, where it is
assumed that
Reτ = 100hmax/hmin
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Fu = 3 + λ4

λ22
, Fv = 3 + λ0,4,0

λ20,2,0
, Fw = 3 + λ0,0,4

λ20,0,2
. (17)

If the flow were perfectly Gaussian, the flatness would be 3, and it is clear from the
above equation that it is here that the results of the attached eddy model differ from
Gaussian behaviour.

The computed flatness is shown in Fig. 3. There it can be seen that all three com-
ponents of the flatness will be super-Gaussian at finite Reynolds numbers, according
to this attached eddymodel (and in fact, a cursory glance at (7) and (8) will reveal that
all of the above flatnesses must be super-Gaussian under the present model). How-
ever, experimental results compiled by Fernholz and Finley [3] up to Reτ = 22, 000
show that in the log-region, Fu ≈ 2.8, Fv ≈ 3.4 and Fw ≈ 3.4.

Therefore, while our results agree qualitatively with experimentation in the span-
wise and wall-normal cases, it clearly disagrees in the streamwise case. This limita-
tion has previously been recognised by Meneveau and Marusic [9], and will require
some modification to the model.

3 Conclusions

Townsend’s attached eddy hypothesis states that the flow in the log-region will be
dominated by a forest of eddies, whose corresponding velocity fields extend to the
wall. Previous studies have used the hypothesis to derive the first- and second-
order moments of the velocity. In this work, we extend this analysis to higher order
moments.

In order to do so, we have extended the use of Campbell’s theorem to apply to
the placement of eddies on a wall. As with earlier applications of the attached eddy
hypothesis, we have modelled the flow as a random distribution of geometrically
self-similar eddies.
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Using Campbell’s theorem, we have been able to derive the higher order moments
of the velocity without resorting to the use of the central limit theorem (and the
assumptions it carries with it). Importantly, we have found that the higher order
moments we have derived in this way differ noticeably from those derived via the
central limit theorem.

The model will not be complete until we also have an accurate function repre-
senting the flow field corresponding to the average eddy. However, the assumed eddy
shape used in this work has been sufficient to demonstrate the qualitative behaviour
of the model.

With this, we have shown that the model produces qualitatively correct skew-
nesses, as well as qualitatively correct flatness in the spanwise and wall-normal
directions. The streamwise flatness, however, differs from experimentally reported
the sub-Gaussian behaviour.

This indicates that the model will need to be modified in order to capture the true
nature of real turbulent flows. The most obvious refinement is in the placement of the
eddies, since they are reported to align in packets of various lengths [1], whereas the
assumed eddies used in these calculations are all of exactly six arch-shaped vortex
rods in length.

The authors wish to gratefully acknowledge the Australian Research Council for
the financial support of this research, and Jason Monty and Charles Meneveau for
valuable discussions.

Appendix

SinceCampbell’s theorem is usually applied to systems inwhich events are randomly
placed in time, rather than space as the eddies are here, it is worthwhile to extend the
existing proofs to cover spacial rather than temporal averages. This is an extension
of a proof of Campbell’s theorem by Rice [13], and applies to the mean velocity and
the Reynolds stresses.

Central to the following proof are two physical assumptions we have made about
the eddies. The first is the inherently reasonable assumption that there is a limited
region of space over which the velocity field corresponding to a single eddy is non-
negligible. Mathematically, this manifests as the fact that any integral over the x-y
plane of the velocity field corresponding to a single eddy will be equivalent.

We illustrate here in one dimension: For any function f (x),

∞∫
−∞

f (x − a) da =
∞∫

−∞
f (x) dx . (18)



Attached Eddies and High-Order Statistics 55

In fact, it is not necessary for the integral to be taken over the entire real line. It is
sufficient that the value of f (x) should be zero (or negligible) outside the bounds
of integration. In this work, we will always take integrals over the entire x-y plane
when using the above equation.

The second assumption we make use of is more controversial, namely that the
locations of each eddy are independent of each other. As has been stated in Sect. 1,
the angled brackets refer to ensemble averages in this work. Again we demonstrate
with a one-dimensional example: If F(x) represents the sum of K copies of the
function f (x), each of which is randomly located, so that

F(x) =
K∑

k=1

f (x − ak), (19)

then the ensemble average of F(x) will be given by

〈F(x)〉 =
∞∫

−∞
p1(a1)

∞∫
−∞

p2(a2) . . .

∞∫
−∞

pK (aK )

K∑
k=1

f (x − ak) da1 da2 . . . daK ,

(20)

where the pk(ak) represent the probability that the kth variable has the value ak . For
each element k of the sum above, it is only the integral over ak that will be non-zero.
This is because, as we have assumed, the location of each eddy is independent of
the location of every other eddy. The implication is that the above equation can be
simplified to

〈F(x)〉 =
K∑

k=1

∞∫
−∞

pk(ak) f (x − ak) dak . (21)

We will make use of (18) and (21) subsequently. We now explicitly consider
eddies in three-dimensional space. Imagine there are N eddies randomly placed on a
two-dimensional space of area L2. (Wewill ultimately consider the limit as L → ∞.)
The velocity field that corresponds to these N eddies is given by

UN (x) =
N∑

k=1

Q
(

x − xek

hk

)
. (22)

When we take the ensemble average of UN (x), we are averaging over infinitely
many realisations in which N eddies are randomly placed on a plane of area L2.
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Because the eddies are perfectly randomly placed, p(xe), the probability density
function for the location of an eddy is given by

p(xe) = 1

L2 . (23)

The difference between the various realisations of this system will simply be the
different placements of each of the eddies. Averaging over the ensemble therefore
entails averaging over the possible locations of each of the eddies. Therefore,

〈UN (x)〉 =
L/2∫∫

−L/2

p(xe1) . . .

L/2∫∫
−L/2

p(xeN )

N∑
k=1

hmax∫
hmin

Q
(

x − xek

h

)
P(h) dh dxeN . . . dxe1 .

(24)

(Note that because the wall-normal component of xe is universally zero, it has been
taken to be a two-dimensional vector in the above integrals. Throughout this work,
any integral over xe should be assumed to be over the x and y planes only.) By
substituting (23) into the above, we get

〈UN (x)〉 =
L/2∫∫

−L/2

1

L2 . . .

L/2∫∫
−L/2

1

L2

N∑
k=1

hmax∫
hmin

Q
(

x − xek

h

)
P(h) dh dxeN . . . dxe1 .

(25)

We can now make use of the fact that the locations of each eddy are independent, in
the same manner as Eq. (21), to simplify this to

〈UN (x)〉 = 1

L2

N∑
k=1

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Q
(

x − xek

h

)
dxek dh. (26)

It is here that we make use of (18) and the fact that any integrals of a certain
function over the entire x-y plane will be equivalent. The above equation therefore
simplifies to

〈UN (x)〉 = N

L2

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Q
(x

h

)
dx dy dh. (27)

We can now average U over all possible values of N . The overall velocity will
therefore be expected to be

〈U(x)〉 =
∞∑

N=0

P(N )〈UN (x)〉, (28)
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where P(N ) represents the probability that there are exactly N eddies. According
to Poisson’s law of small probabilities, the probability that there will be exactly N
eddies on a plane of area L2 will be

P(N ) = (βL2)N

N ! e−βL2
. (29)

Using this value of P(N ), it is easy to verify that

∞∑
n=0

NP(N ) = L2β. (30)

Using (27) and (30) we can evaluate the sum in (28). In doing so we find that

〈U(x)〉 = β

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Q
(x

h

)
dx dy dh. (31)

The mean velocity can now be related to the eddy contribution functions, Ik,l,m(Z),
which have been defined in (8). For the streamwise velocity in the limit as L → ∞,

〈U 〉 = β

hmax∫
hmin

I1,0,0(Z)h2P(h) dh, (32)

and similarly for 〈V 〉 and 〈W 〉. This result could be achieved through other means,
since it essentially states that the velocity field corresponding to many geometrically
identical eddies will simply be the sum of the velocity fields corresponding to each
individual eddy. However, by extending this methodology to the averages of higher
powers of the velocity, we see its utility.

We demonstrate this now by deriving the Reynolds shear stress. It would be trivial
to modify the following derivation so that it instead derives 〈u2〉, 〈v2〉 or 〈w2〉.

〈uw〉 = 〈(U − 〈U 〉)(W − 〈W 〉)〉
=〈U W 〉 − 〈U 〉〈W 〉. (33)

The definition of UN given in (22) can be extended to

UWN (x) =
N∑

k=1

N∑
m=1

Qx

(
x − xek

hk

)
Qz

(
x − xem

hm

)
. (34)
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Once again, the ensemble average is found by averaging over all of the possible
heights and locations of the eddies, as it was in (24). This leads to

〈U WN 〉 =
N∑

k=1

N∑
m=1

hmax∫∫
hmin

P(hk)P(hm)

×
L/2∫∫

−L/2

p(xe1 ) . . .

L/2∫∫
−L/2

p(xeN )Qx

(
x − xek

hk

)
Qz

(
x − xem

hm

)
dhk dhm dxeN . . . dxe1 . (35)

Naturally, there will be N cases in which Qx and Qz refer to the same eddy (i.e.
where k = m). In these cases, the multiple integrals over hk , hm and the various xe

simplify to

hmax∫
hmin

P(hk)

L/2∫∫
−L/2

p(xek )Qx

(
x − xek

hk

)
Qz

(
x − xek

hk

)
dxek dhk =

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qx

(x
h

)
Qz

(x
h

) dx
L2 dh. (36)

We have again made use of (18), and so the right-hand side above reflects the fact
that we are taking the limit as L → ∞, and in this limit, any integral over the entire
x-y plane will be equivalent. It has also been made use of (23) on the right-hand side
above.

This leaves the N 2 − N cases in which Qx and Qz refer to different eddies (i.e.
k 	= m). In these cases, the multiple integral in (35) becomes

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qx

(
x
hk

)
dx
L2 dh

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qz

(
x

hm

)
dx
L2 dh. (37)

By substituting these two into (35), we arrive at

〈UWN 〉 = N

L2

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qx

(x
h

)
Qz

(x
h

)
dx dy dh

+ N 2 − N

L4

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qx (x) dx dy dh

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qz(x) dx dy dh. (38)
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To determine 〈UWN 〉, we must now sum over all possible values of N , as we did in
(31). This gives

〈UW〉 =
∞∑

N=0

P(N )〈UWN 〉. (39)

By using (29) we can easily show that

∞∑
n=0

(N 2 − N )P(N ) = L4β2. (40)

After we substitute (30), (38), (40) and the above into (39), we find that the sum over
N reduces to

〈UW〉 = β

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qx

(x
h

)
Qz

(x
h

)
dx dy dh

+ β

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qx (x) dx dy dh . β

hmax∫
hmin

P(h)

L/2∫∫
−L/2

Qz(x) dx dy dh. (41)

If we take the limit as L → ∞ then, after taking (9) into account, the above becomes

〈UW〉 = β

hmax∫
hmin

P(h)

∞∫∫
−∞

Qx

(x
h

)
Qz

(x
h

)
dx dy dh + 〈U 〉〈W 〉. (42)

By substituting the above into (33), we obtain

〈uw〉 = β

hmax∫
hmin

P(h)

∞∫∫
−∞

Qx

(x
h

)
Qz

(x
h

)
dx dy dh. (43)

By comparing the above to (8), we can relate the Reynolds shear stress above to the
eddy contribution function. This results in

〈uw〉 = β

hmax∫
hmin

I1,0,1(Z)h2P(h) dh. (44)
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DNS of Turbulent Boundary Layers
in the Quasi-Laminarization Process

Guillermo Araya, Luciano Castillo and Fazle Hussain

Abstract In this investigation, Direct Numerical Simulations (DNS) of turbulent
spatially developing boundary layers (SDBL) with prescribed Very Strong Favorable
Pressure Gradients (VSFPG) are performed by means of the Dynamic Multi-scale
Approach (DMA) developed by Araya et al. JFM, 670:518–605, 2011 [1]. Although
the prescription of an external VSFPG significantly reduces turbulence production,
the flow never becomes completely laminar due to the finite value of the streamwise
Reynolds normal stress, and thus the flow is quasi-laminar. In this sense, the mean
flow carries the footprint of turbulence, particularly in the streamwise direction of the
Reynolds stresses. In addition, the vertical transports toward thewall of v′2+ and uv′+
practically disappear in the inner region and significantly decrease in the outer region
of the boundary layer during the quasi-laminarization stage. As a consequence, the
“communication” between inner and outer regions is seriously restricted.

1 Introduction

Turbulent boundary layers subjected to severe acceleration or strong Favorable Pres-
sure Gradients (FPG) are of great industrial interest, particularly, due to the drag
reduction characteristics. If the external FPG is strong enough, the flow might expe-
rience a quasi-laminarization or a reversion process characterized by a meaningful
depression of turbulent production and reduction of skin friction; however, there
is a residual turbulence given by the flow history. Narasimha and Sreenivasan [2]
concluded that the reversion process in highly accelerated flows was attributed to a
dominance of pressure forces over almost unchanging (or frozen) Reynolds stresses
in the outer region with the generation of a new laminar boundary in the inner region
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stabilized by the favorable pressure gradient. Also, Narasimha and Sreenivasan [2]
stated that the quasi-laminarization process was not associated to absorption or dis-
sipation despite the fact that it could contribute, particularly in the near-wall region.
Several studies in the past have recommended different methods to identify the rever-
sion or laminarization process in highly accelerated low-speed boundary layers as
well as various criteria, as summarized in [3, 4]. Traditionally, FPG flows have been
characterized by the acceleration parameter K = ν

U2∞
dU∞

dx , where ν is the kinematic

viscosity and U∞ is the freestream velocity [5]. For K > 3.0 × 10−6, it is expected
that laminarization of the turbulent flow will take place. Spalart [6] performed DNS
of sink flows and found that laminarization occurred at K = 3.0×10−6 by suddenly
increasing the viscosity from simulations at K = 2.5× 10−6 and K = 2.75× 10−6.
Kline et al. [7] proposed that relaminarization in highly accelerated flows could be
associated with the ending of turbulent bursting. They measured the occurrence of
bursts in a boundary layer subjected to strong favorable pressure gradient and inferred
by extrapolation a critical acceleration parameter, Kc, of 3.5 × 10−6 at which the
bursting process almost disappeared. Moretti and Kays [8] proposed a critical value
for K (Kc = 3.5 × 10−6) based on the significant decrease of the heat transfer
rate in the near-wall region during laminarization. On the other hand, Patel [9] sug-
gested a critical value of −0.025 for Δp (= ν d P/dx

u3τ
, where P is the mean pressure

and uτ is the friction velocity). Additionally, the Δp parameter can be expressed
as K (2/C f )

3/2. This clearly indicates that Δp carries information not only from
the outer region, but also from the near-wall region, which is necessary to evaluate
if the onset of laminarization is associated with the breakdown of the log law for
the mean streamwise velocity [9]. Therefore, the parameter Δp might be considered
a more complete indicator of the laminarization outbreak. More recently, Cal and
Castillo [10] showed that a quasi-laminar state could be characterized by the pres-
sure parameter Λδ (= − δ

U∞dδ/dx
dU∞

dx ). As a consequence, flows with Λδ > 0 are in

the quasi-laminar state, while for Λδ < 0 a turbulent FPG quadrant can be defined.
Consequently, understanding the mechanisms responsible for quasi-laminarization
due to an external strong FPG is a challenging problem and not yet quite understood
at the fundamental level. Most of the previous studies on quasi-laminar flows have
focused on the analysis of the mean flow. The fact that in VSFPG the boundary layer
thickness becomes thinner even at low Reynolds numbers, makes experimental mea-
surements very challenging even to measure a single component of the velocity field
very close to the wall. On the contrary, this does not represent a severe limitation
for DNS. However, the computational cost (CPU time) is greatly penalized due to
the necessary mesh resolution, which coupled with the need for long computational
domains in the simulations of turbulent SDBL, make these simulations extremely
difficult. In this article, the purpose is to shed some light on VSFPG turbulent flows
with quasi-laminarization. Specifically, we seek to evaluate the vertical transport of
the Reynolds stresses during the quasi-laminarization process. The uniqueness of the
present study rely on twomain aspects: (i) the acceleration parameter, K = νdU∞/dx

U2∞
,

has been kept constant for a long distance (≈ 40δinlet), while most of previous works
have considered varying values of K , (ii) extensive DNS have been performed in a
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long computational domain with independent and realistic turbulent inflow condi-
tions.

Finally, in this investigation we are performing extensive DNS of Very Strong
Favorable Pressure Gradient (FPG) flows. The strength of the FPG is strong enough
(acceleration) to provoke flow reversion or quasi-laminarization. Focus is given to
the behavior and transport of the wall-normal component of the Reynolds normal
stresses and the Reynolds shear stresses (the two more affected components dur-
ing the quasi-laminarization process) under a constant value of the acceleration
parameter K .

2 Numerical Details

The prescription of accurate turbulent inflow boundary conditions in SDBL is not
a trivial task. For that reason, the DMA by Araya et al. [1] is employed in this
investigation. The proposed approach is based on the rescaling-recycling method
by Lund et al. [11]. The main philosophy of the rescaling-recycling method is to
prescribe time-dependent turbulent information at the “inlet” plane based on the
transformed flow solution downstream by using scaling laws from a downstream
plane called “recycle”. The principal differences of the DMA with respect to the
original rescaling-recycling method are twofold: (i) the consideration of different
transforming or scaling functions in the inner and outer regions of the boundary
layer (i.e., Multi-scale) which may absorb more effectively the effects of external
conditions such as the Reynolds number dependence; (ii) there is no need to use an
empirical correlation in order to compute the inlet friction velocity, such information
is deduced dynamically by involving an additional plane, the so-called “test plane”
located between the inlet and recycle stations.More specifically, the scaling functions
utilized in this investigation are based on the similarity analysis performed byGeorge
and Castillo [12]. Furthermore, the principal purpose of the upstream ZPG zone is
to prescribe an equilibrium region to generate and feed turbulent information to the
VSFPG zone. Additionally, the method has been tested and validated in a suite of
DNS for zero (ZPG) and pressure gradient flows including in thermal boundary layers
(Araya and Castillo [13, 14]) as well as in rough surfaces, Cardillo et al. [15].

Figure1 shows the computational domain consisting of a region for ZPG with a
length of 20δinlet and the VSFPG region with a length of 40δinlet, where δinlet is the
99% boundary layer thickness at the domain inlet. The dimensions of the composite
computational box (Lx , L y and Lz) are 60δinl , 3δinl and 3δinl along the streamwise,
wall-normal, and spanwise directions, respectively. Notice that L y is not constant
in the FPG region but linearly decreases as in sink flows. The mesh configuration
is: 600 × 80 × 80, which represents the numbers of points along the streamwise,
wall-normal, and spanwise directions, respectively. The mesh resolution is: Δx+ =
15, Δy+

min = 0.2, Δy+
max = 13 and Δz+ = 8. The Courant, Friedrichs, Levy (CFL)

parameter remains constant during the simulation (∼ 0.24) and the time step is Δt+
≈ 0.19.
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Fig. 1 Computational domain including the ZPG region and Very Strong FPGwith eventual quasi-
laminarization

Direct simulations of the Navier-Stokes equations for incompressible flows are
performed using the PHASTA code (Parallel Hierarchic Adaptive Stabilized Tran-
sient Analysis). PHASTA is an open-source code and based on the Finite Element
method with a Streamline Upwind Petrov-Galerkin (SUPG) stabilization [16]. The
classical no-slip condition is prescribed for the three components of the velocity at
the bottomwall. The top surface is prescribed as shear-less, the composite mesh pos-
sesses a constant cross-sectional area in the ZPG zone (where the freestream veloc-
ity U∞ remains constant) and a zero-value for the normal component of velocity
is imposed (streamline) in the VSFPG region. Moreover, periodic boundary condi-
tions were prescribed in the spanwise direction. At the outlet plane, the pressure is
assigned a value (Dirichlet condition).

3 Discussion of Results

Figure2a shows the streamwise development of the momentum thickness Reynolds
number Reθ (= U∞θ/ν, where θ is the momentum thickness), the acceleration para-
meter K , and the shape factor H (= δ∗/θ , where δ∗ is the displacement thickness).
The streamwise coordinate is normalized in terms of δinlet, i.e., x/δinlet. The Reynolds
number exhibits almost a linear behavior not only in the ZPG zone (increasing) but
also in the VSFPG region (decreasing). In addition, the acceleration parameter, K ,
shows an abrupt rise in the ZPF-VSFPG intersection to finally tend asymptotically
toward the value of 4.0 × 10−6 from around x/δinlet ≈ 30. At around x/δinlet ≈
32, the shape factor H reaches a minimum, which can be attributed to the onset of
quasi-laminarization. Moreover, the freestream velocity versus x/δinlet is depicted
in Fig. 2b and a good agreement with the analytical solution (by assuming a value
of K = 4.0 × 10−6) can be observed in the VSFPG region. This indicates that the
design and boundary condition of the top surface are quite appropriate.

In Fig. 3 the skin-friction coefficient C f (= 2(uτ /U∞)2) is shown. A short
developing section of about 3δinlet (defined as that inlet region where the turbu-
lent structures behave in a nonphysical sense) can be observed for the C f parameter.
Downstream, the skin-friction coefficient exhibits the typical monotonic decay of
ZPG flows and starts to sharply increases at the ZPG-VSFPG intersection as the
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Fig. 2 Streamwise variation of a Reθ , K and H ; and, b the freestream velocity (numerical vs.
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freestream accelerates. Nevertheless, the C f profile reaches a maximum and quickly
drops, in agreement with the quasi-laminar theory in Narasimha and Sreenivasan [2].

Streamwise developments of the local maxima of the turbulence intensities (u′+
rms ,

v′+
rms and w′+

rms) as well as of Reynolds shear stresses (uv′+) in local wall units are
shown in Fig. 4. It can be observed the sudden reduction of velocity fluctuations in
the ZPG-FPG intersection around x/δinlet ≈ 20. Downstream, local maxima of v′+

rms ,

w′+
rms and |uv′+| keep diminishing steadily, with similar slopes and with decreases

between 50–60% with respect to the ZPG values. It is interesting to highlight the
evident change of slope (from steep to mild) in the |uv′+|max profile at x/δinlet ≈ 32.
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Fig. 4 Streamwise variation
of local maxima of
turbulence intensities and
Reynolds shear stresses
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This is consistent with the location of Hmin (in Fig. 2a) that may be attributed to
the onset of the quasi-laminarization process. On the other hand, local values of
(u′+

rms)max exhibit reductions in the order of 15%. Notice the almost constant values
of (u′+

rms)max in the VSFPG region. Thus, the fact that (u′+
rms)max is finite and nonzero

is the main reason why the FPG flow never settles to a laminar flow and the rationale
for which we refer to quasi-laminar flow.

Triple correlations v′v′2+ and v′uv′+ are shown in Fig. 5 for the ZPG region (at
x/δinlet = 15) and for the VSFPG region (at x/δinlet = 58). The vertical transport
toward the wall of the Reynolds normal stresses v′2+ significantly decreases around
y+ ≈ 10 in the VSFPG zone. Similarly, the vertical transport away from the wall
of the Reynolds normal stresses v′2+ exhibits a prominent reduction (up to 9 times)
in the outer region (y+ ≈ 100) during the quasi-laminarization stage. Analogous
conclusions can be drawn with respect to the vertical transport of Reynolds shear
stresses in Fig. 5b. In fact, this supports the proposedmodel by Sreenivasan [4] during
quasi-laminarization, in which the inner and outer layers develop independently due
to the restricted communication between layers.

The production (P12) and velocity-pressure gradient (Π12) terms of the Reynolds
shear stress budget are depicted in Fig. 6 normalized by local values of u4

τ /ν and
in outer units y/δ, also for the ZPG and VSFPG regions. Both terms experience
meaningful reductions in the entire boundary layer during the quasi-laminarization
process; particularly, in peak values. Additionally, peak values of P12 and Π12
approximately remain at the same y/δ locations (0.07 < y/δ < 0.09) even during
quasi-laminarization. The observed residual values of the velocity-pressure gradient
term at x/δinlet = 58 can be attributed mainly to the contribution from u′∂p′/∂y as
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a consequence of “frozen” streamwise Reynolds normal stresses, u′2+, as the flow
laminarizes.

Figure7 depicts iso-surfaces of instantaneous wall-normal velocity fluctuations
v′/U∞ in the composite domain. It is observed a prominent reduction of v′ as the flow
moves downstream in the Very Strong FPG region. As a consequence, the “messen-
ger” (wall-normal component of velocity fluctuations) between the inner and outer
regions is practically annihilated. This might be consistent with the proposed model
byNarasimha andSreenivasan [3]: inner and outer layers are quasi-independent in the
quasi-laminarization process. However, further studies should be carried out to verify
the proposed two-layer model by Narasimha and Sreenivasan [3], which is beyond
the scope of the present article. Furthermore, the presence of highly stretched streaks
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Fig. 7 Iso-surfaces of instantaneous wall-normal velocity fluctuations v′/U∞

Fig. 8 Iso-surfaces of
instantaneous streamwise
velocity fluctuations u′/U∞

are observed in the Very Strong FPG zone of Fig. 8. Also, notice that not only the
low speed streaks experience the stretching process but also the high speed streaks.

4 Conclusions

The Dynamic Multi-scale Approach (DMA) by Araya et al. [1] is employed as
turbulent inflow generator for Very Strong FPG flows in the quasi-laminarization
process. It has been observed that the flow never becomes completely laminar due
to the finite value of the streamwise Reynolds normal stresses. Furthermore, the
vertical transports toward the wall of v′2+ and uv′+ practically disappear in the inner
region and significantly decrease in the outer region of the boundary layer during
the quasi-laminarization stage. Therefore, the “communication” between inner and
outer regions is seriously suppressed.
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Numerical ABL Wind Tunnel Simulations
with Direct Modeling of Roughness Elements
Through Immersed Boundary Condition
Method

Bruno Lopez, Gabriel Usera, Gabriel Narancio, Mariana Mendina,
Maritn Draper and Jose Cataldo

Abstract Reproduction of atmospheric boundary layer wind tunnel experiments by
numerical simulation is achieved in this work by directly modeling, with immersed
boundary method, the geometrical elements placed in the wind tunnel’s floor to
induce the desired characteristics to the boundary layer. The numerical model is
implemented on the basis of the open-source flow solver caffa3d.MBRi, which
uses a finite volume method over block structured grids, coupled with various LES
approaches for turbulence modeling and parallelization through domain decompo-
sition with MPI. The Immersed boundary method approach followed the work of
Liao et al. (Simulating flows with moving rigid boundary using immersed-boundary
method. Comput. Fluids 39, 152–167, 2010). Numerical simulation results are com-
pared to wind tunnel measurements for the mean velocity profiles, rms profiles,
and spectrums, providing good overall agreement. We conclude that the Immersed
Boundary Condition method is a promising approach to numerically reproduce ABL
Boundary Layer development methods used in physical modeling.
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1 Introduction

The global trend toward urbanization explains the growing interest in recent decades
in studying the Atmospheric Boundary Layer (ABL), comprising the first layer of
the atmosphere that extends about 1–2km from ground and hosts a large part of
human activities. The effect of winds on buildings and other structures, as well as on
pedestrian in urban environments, the transport of pollutants in air, or wind power
generation are a few examples of human activities that develop within the ABL and
require its study [2, 3, 9]. The characteristics of the ABL flow are shaped up mainly
by the interaction with the ground and so will vary depending on the characteristics
of the terrain and its roughness which might correspond for example to different
urban environments, sea, or vegetated fields.

Physically modeling ABL processes in a Wind Tunnel its traditional well estab-
lished technique. SpecialWindTunnels are built for this purpose, namedAtmospheric
Boundary Layer Wind Tunnels, in which the test sections is preceded by a relatively
longworking zone in which themodeled ABL flow is developed over selected rough-
ness elements.

While this technique is traditionally used for the study of the ABL, numerical
modeling has emerged as a complementary contribution to it in the last decades.The
development ofmodern parallel computers and computational fluid dynamics numer-
ical methods presently allows to numerically simulate turbulent flows with differ-
ent approaches, ranging from Reynolds Averaged Navier–Stokes methods (RANS),
through Large Eddy Simulation (LES), up to Direct Numerical Simulation (DNS)
[12].

The Numerical Wind Tunnel methodology targets the numerical simulation of
flows which are physically modeled in Wind Tunnels. In the case of the ABL a
primary concern in thismethodology is to appropriately reproduce the boundary layer
characteristics, which in turn aremainly driven by the roughness characteristics of the
terrain. Different approaches have been proposed for thismatter, including roughness
wall functions and drag-based representation of vegetation [1].

This paper aims at a preliminar analysis of viability of using immersed bound-
ary method to explicitly represent roughness elements in numerical simulations of
ABLWind Tunnel experiments. Section2 presents the referenceWind Tunnel exper-
iments used for comparision with the numerical simulations developed in this work.
Section3 presents the numerical method, describing the base open-source solver
used, caffa3d.MBRi, as well as the immersed boundary approach followed to repre-
sent roughness elements. Section4 presents the results and conclusions are derived
in Sect. 5.

2 Wind Tunnel Experiments

The experimental data used in this work were obtained in the Atmospheric Boundary
LayerWind Tunnel of the Facultad de Ingenieria inUruguay, which is an open-circuit
wind tunnel with a 2.20×2.25m square test section, and a 14m long inlet region for
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Fig. 1 Layout of the atmospheric boundary layer wind tunnel at IMFIA. Lengths in (m)

Fig. 2 General (left) and detailed (right) views of the wind tunnel test section and boundary
layer preparation section, with roughness element cubes and vortex induction Standen spires type
elements

the development of the ABL, capable of achieving maximum wind speeds of 30m/s.
In Fig. 1 the general layout of the Wind Tunnel is presented.

Boundary layer development is shaped up with a series of cubical elements, 3 cm
in side, placed in a regular staggered arrangement with a 15cm spacement, 3 Standen
spires type vortex generators [14], of 134cm height, and a 31.5cm height wall placed
at the inlet. This arrangement is used to reproduce an urban boundary layer with a
length scale 1:200. Figure2 gives general and detailed views of this arrangement.

Velocity was measured with a TSI IFA 100 hot wire anemometer. SN hot film
probes were used for this purpose. The sampling rate was 4000Hz and a low-pass
filtering of the signal at 2000Hz was used to avoid aliasing. 65,536 samples were
taken in each location accounting to a sampling time of 16,384s. The positioning
of the hot film probe was done using a robotic arm designed to perform this task.
Vertical profiles of mean velocity, root mean square fluctuations are obtained as
well as power spectrums at selected locations. Experimental results are reported and
compared with numerical simulation results in Sect. 4.

3 Numerical Method

The methodology developed to numerically simulate atmospheric boundary layer
wind tunnel tests is based on the open-source solver caffa3d.MBRi [10], coupled
with a specific immersed boundary conditions module, following the work of [7], to
explicitly represent the geometry of roughness elements used in the Wind Tunnel.



76 B. Lopez et al.

The open source incompressible flow solver caffa3d.MBRi is a Fortran90 imple-
mentation of the finite volume method, evolved from the work of Ferziger and Peric
[4]. It features a block structured framework to accommodate both a flexible approach
to geometry representation and a straightforward implementation of parallel capa-
bilities through the MPI library. Representation of complex geometries can be han-
dled semi automatically through a combination of body fitted blocks of grids and
the immersed boundary condition strategy over both Cartesian and body fitted grid
blocks. The parallelization strategy is based on the same block structured framework,
by means of encapsulated MPI calls performing a set of conceptually defined high
level communication tasks.

3.1 Mathematical Model

The mathematical model comprises the mass balance equation (1) and momentum
balance equation (2) for a viscous incompressible fluid, together with generic non-
reacting scalar transport equation (3) for scalar field φ with diffusion coefficient Γ .
Note that (2) has been written only for the first Cartesian direction here.

∫
S

(
v · n̂S

)
d S = 0 (1)

∫
Ω

ρ
∂u

∂t
dΩ +

∫
S
ρu

(
v · n̂S

)
d S =
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Ω

ρβ
(
T − Tre f

)
g · ê1dΩ +

∫
S
−pn̂S · ê1d S+ (2)
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(
2μD · n̂S

) · ê1d S

∫
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ρ
∂φ

∂t
dΩ +

∫
S
ρφ

(
v · n̂S

)
d S =

∫
S
Γ

(∇φ · n̂S

)
d S (3)

In these equations, v = (u, v, w) is the fluid velocity, ρ is the density, β is the
thermal expansion factor, T the fluid temperature and Tref a reference temperature, g
is the gravity, p the pressure, μ the dynamic viscosity of the fluid and D the strain
tensor. The balance equations are written for a region Ω , limited by a closed surface
S, with unit outward pointing normal n̂S . Finally, ê1 is the first Cartesian direction.
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The generic transport equation (3) for non-reacting scalars can be used to
implement in a straightforward manner further physical models like heat transport
required for the temperature field, both Reynolds Averaged and Large Eddy Sim-
ulation turbulence closures, wet air processes which include evaporation and con-
densation, etc. An arbitrary number of scalar fields can be solved simultaneously,
with coupling between them as for the case of temperature field influencing both
momentum equations through buoyancy and wet air process equations through con-
densation and evaporation conditions. The use of equations in their global balance
form together with the finite volume method, as opposed to the differential form,
favors enforcing conservation laws for fundamental quantities such as mass and
momentum into the solving procedure [4]. For the present simulations a standard
Smagorinsky large eddy turbulence model was attached to the solver.

3.2 Discretization and Solving Procedure

Complete details for discretization of each term will not be given here but can be
found in [16], together with various validations of the solver [10, 15, 16]. Second
order central differencing scheme for diffusive terms is used, while convective terms
are discretized blending first order upwind approximations and second order central
differences.

Further, the SIMPLE [13] method for pressure-velocity coupling is used to obtain
a discretized equation for the pressure, from the mass balance equation (1). Refined
methods for pressure-velocity coupling can also be incorporated [6], together with
improved linear interpolations [5]. Also different implicit time stepping schemes can
be combined for themomentum equations, like first order backwards Euler or second
order Cranck-Nicholson.

The usual lexicographical order in 3D implies that the resulting segregated lin-
ear equation system is hepta-diagonal in each grid block, and thus globally block
hepta-diagonal. Either a block structured variant of the Stone-SIP solver [8] or
a block structured Algebraic Multigrid (AMG) solver with SIP as a smoother
[11, 16] are used for iterative solution of each linear system. The SIP solver algorithm
accommodates well the block structure inherited from the grid, allowing efficient
parallelization.

3.3 Immersed Boundary Conditions Method

Following the work of [7], a specific immersed boundary conditions module was
included in the solver. In this approach the geometry of roughness elements used
in the Wind Tunnel is explicitly represented over the structured grid, by means of
a triangulated surface as shown in Fig. 3, and the distance from each grid node
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Fig. 3 Immersed boundary condition representation of roughness element cubes and vortex induc-
tion Standen spires type elements

to the closest roughness element wall is computed. For grid nodes that fall inside
roughness elements an additional body force term is computed to enforce null velocity
at that node. For grid nodes falling outside roughness elements, but close enough,
an interpolation procedure is applied to estimate the target velocity at the node and
the additional body force is applied based on that estimate. This computation is
embedded into the overall implicit outer iteration procedure, so that the additional
body force value at each node is adjusted within each time step until convergence is
reached.

This procedure leads to an almost automatic meshing strategy for a geometry
in which developing a body fitted block structured grid would be seldom feasible.
Unstructured grids would be better suited for a body fitted approach, but still would
require considerablemeshing effort, especially considering the intricate global geom-
etry of the roughness elements set.

While the grid resolution does not warrants that the boundary layer over each
individual roughness element will be adequately captured, it is expected that the
overall contribution to the development of the ABL like flow, comprised of the
superposition of each elements wakes, will be indeed well represented.
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3.4 Numerical Simulations Setup

The computational domain corresponds to the working area of the wind tunnel,
13.72 m long up to the test section, within which the boundary layer is developed.
Buffer regions for inlet and outlet boundary conditions add up to the total length
of 16.25m for the computational domain, with a cross section 2.25m wide and 2m
high. This domain was split into 26 identical regions or grid blocks, each 1.25m long,
1.125mwide and 2mhigh. Two gridswere setupwith different spatial resolution. For
the coarse grid, a uniform horizontal grid spacing of 1.56cm was used. A vertical
nonuniform distribution of cells was selected, with minimum vertical spacing of
1mm at the floor. Each grid block then required 80 cells in the streamwise direction,
72 cells spanwise and 104 cells in the vertical, for a total of almost 600.000 cells
per grid block. For the fine grid, the horizontal resolution was set to 1.04cm while
the vertical resolution was kept at 1mm at the floor. The total number of cells per
grid block for the fine grid was about 2 million cells, 120 cells streamwise, 108 cells
spanwise and 156 in the vertical direction.

Wall boundary conditions with non slip condition were applied at the floor, while
slip conditions were applied at the roof and side walls of the tunnel. The inlet was set
to a uniform velocity of Uo= 13.5m/s and null gradient boundary condition normal
to the outlet was applied.

For the coarse grid a time step of 0.5 s was used, while for the fine grid computa-
tions were performed for time steps of 0.5 and 0.01 s. Computations were distributed
in 26 cores on the Cluster-FING infrastructure [www.fing.edu.uy/cluster].

4 Results

Mean velocity profiles from Wind Tunnel experimental data and from the three
numerical simulation runs are presented in Fig. 4, showing good agreement between
numerical and experimental data, as well as almost grid and time-step independance.
In Fig. 5, urms profiles are given for the same set of experimental and numerical data,
showing a goodmatch as well. Finally, power spectrums for longitudinal velocity are
given at 100mm from floor for experimental data in Fig. 6 and for numerical results
from the fine grid in Fig. 7.
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Fig. 4 Mean velocity
profiles form experiments
and numerical simulations.
symbols experimental data;
solid line coarse grid
dt = 0.5 s; dashed line fine
grid dt = 0.5 s; dotted line
fine grid dt = 0.01 s

Fig. 5 Urms profiles form
experiments and numerical
simulations. symbols:
experimental data; solid line
coarse grid dt = 0.5 s;
dashed line fine grid
dt = 0.5 s; dotted line fine
grid dt = 0.01 s
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Fig. 6 Power spectrum for
longitudinal velocity at
100 mm height, from
experimental data

Fig. 7 Power spectrum for
longitudinal velocity at
100 mm height, from fine
grid numercial simulations
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5 Conclusions

Preliminary results showing good overall agreement between experimental data
and numerical simulations suggest that representation of roughness elements by
immersed boundary condition method is an effective way of numerically modeling
ABLWind tunnel tests. Both mean velocity profile and urms profile were adequately
captured at the applied grid resolutions, which must be fine enough to geometrically
resolve the roughness elements. While computational intensive the proposed method
has the advantage of requiring almost no calibration to reproduce wind tunnel test
conditions.
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Three-Dimensional Nature of 2D Hairpin
Packet Signatures in a DNS of a Turbulent
Boundary Layer

S. Rahgozar and Y. Maciel

Abstract The existence of the outer region “hairpins” and “hairpin packets” is visu-
ally assessed in a well-resolved DNS of a zero-pressure-gradient turbulent boundary
layer at moderately high Reynolds number. For this purpose, 50 independent 2D
streamwise–wall-normal slices at Reθ = 4300 are extracted. The slices are then
used to mimic the coarser resolution PIV velocity fields of Adrian et al. J. Fluid
Mech, 422:1–54, 2000 [2] using the mimicking procedure of Rahgozar et al. J.
Turbul, 14(10):37–66, 2013 [5] based on Gaussian filtering and linear interpolation.
Afterwards, in the same manner as Adrian et al. J. Fluid Mech, 422:1–54, 2000 [2],
the mimicked fields are inspected in order to discover the signatures of hairpin and
hairpin packets. The vortices that are identified as hairpins are then isolated and
visualized in three dimensions using the fully resolved DNS data. In agreement with
Adrian et al. J. Fluid Mech, 422:1–54, 2000 [2], signatures associated by them to
hairpin and hairpin packets are observed frequently in the mimicked planes. How-
ever, the 3D character of the 2D signatures is found to be more convoluted than the
proposed hairpin packet model.

1 Introduction

Coherent vortices are believed to play an important role in the dynamics of turbulent
flows. Among them, in wall turbulence, hairpins and hairpin packets have received
great attention for more than a decade [1, 4]. By performing planar PIV measure-
ments, Adrian et al. [2] (hereafter referred to as AMT) found that the cross sections
of detected swirling regions in the streamwise–wall-normal plane are consistent with
the idea that wall turbulence is populated by hairpin vortices. They also suggested
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that the hairpins are often coherently aligned in the streamwise direction and tend to
occur in packets. Since the study of AMT, the hairpin and hairpin packet paradigms
have gained considerable support (see Marusic and Adrian [4]). The hairpin and
hairpin packet paradigms are appealing concepts for numerous researchers in the
turbulence community since these relatively simple structures can explain, or at least
are consistent with, many observed flow events such as near-wall low-speed streaks,
multiple ejections near the wall, scale variation observed throughout the logarithmic
layer and bulges. However, themajority of evidence to support the hairpin and hairpin
packet concepts comes from relatively coarse-resolution planar PIV measurements
or low Reynolds number DNS data and moreover, three-dimensional visualizations
of hairpins and hairpin packets have been so far restricted to the cases of near-wall
generation and simplified artificial flows. Only recently it has become possible to
fully resolve wall-bounded flows in both space and time at relatively high Reynolds
numbers comparable to the ones in experimental investigations.

Throughout the paper, u, v and w are, respectively, the fluctuating streamwise,
wall-normal and spanwise velocities and U , V and W denote their instantaneous
values. The streamwise, wall-normal and spanwise coordinates are, respectively, x ,
y and z. Second quadrant motions (u < 0, v > 0) and fourth quadrant motions
(u > 0, v < 0) are represented by (uv)2 or Q2 and (uv)4 or Q4, respectively.

1.1 Database

The high-resolution DNS data employed is that of a ZPG TBL of Schlatter and
Örlü [6]. The simulations were done using a full spectral method to solve the time-
dependent, incompressible Navier–Stokes equations. The DNS is finely resolved and
the turbulence statistics are in very good agreementwith experiments. The considered
subdomains of the DNS data are two time-independent volumes of 5δ ×3δ ×1δ size
in the streamwise, spanwise and wall-normal directions, respectively. The Reynolds
number Reθ varies from 4139 to 4300 in the streamwise direction. The spatial resolu-
tion in outer units in the subdomains is approximately: Δx/δ = 0.005 (streamwise),
Δz/δ = 0.003 (spanwise) and Δy/δ = 0.006 at y/δ = 0.5 (wall normal) which
ranges roughly from 1η to 2η.

For the purpose of the present study, a total of 50 streamwise–wall-normal slices
are extracted from the aforementioned sub-volumes. Furthermore, the DNS data is
interpolated into a fine uniform mesh grid (Δx/δ = Δy/δ = 0.0037) to be able to
mimic the AMT database and to identify vortices in the same manner as in AMT.

1.2 Signatures of Hairpins and Hairpin Packets
According to AMT

AMT characterized the hairpin vortex signatures in a two-dimensional
streamwise–wall-normal velocity vector field as follows: (i) a compact region of



Three-Dimensional Nature of 2D Hairpin Packet Signatures … 85

spanwise vorticity in the head; (ii) a Q2 flow located beneath the head along a
roughly 45◦ locus with a maximum somewhere below the vortex head; (iii) a region
of low momentum fluid located below and upstream of the vortex head (iv) a shear
layer caused by stagnation-point flow resulting from the Q2/Q4 interaction. The
last signature was observed frequently but not always. AMT noticed that the hairpin
vortex signatures very frequently occur in groups; the groups of hairpins, convecting
with nearly the same streamwise velocity, form packets.

1.3 Approach

Since the packet structures were first conjectured in 2D velocity fields (see AMT),
2D streamwise–wall-normal slices of the DNS data are first extracted. Subsequently,
the spatial resolution of the 2D well-resolved velocity fields is degraded using the
technique described in [5] in order to have the same spatial resolution as in the PIV
fields of AMT. Rahgozar et al. [5] showed that their technique can properly mimic
the PIV database of AMT in terms of vortex characteristics (i.e. average swirling rate
(λci ), diameter, circulation and vortex population density). As in AMT, the vortices
are identified with swirling rate λci in the PIV-mimicking 2D fields. These fields are
then inspected, in the same manner as AMT, in order to discover the signatures of
hairpin and hairpin packets. A zone of intense swirling rate is identified as the head
of a hairpin if a region of Q2 motion is located beneath the vortex with an inclination
of roughly 45◦. A train of hairpins are considered to form a packet candidate if the
number of hairpins is at least five, their locus is coincident with a contour of constant
velocity and a low momentum zone exists beneath the hairpin heads. In the last step,
three-dimensional λ2 [3], u and uv objects which are located in the vicinity of the
detected 2D packets are identified and visualized in the fully resolved DNS data. For
each parameter, different threshold values are also examined in order to determine
the effect of thresholds on the observed structures. The features of “hairpins” and
“hairpin packets” are then examined to investigate if the three-dimensional reality is
consistent with the AMT proposed features.

2 Results and Discussion

2.1 Effects of a Coarse Spatial Resolution on the Cross
Section of Vortices

Figure1a shows a streamwise–wall-normal slice of the DNS data in which vortex
cross sections are identified by the two-dimensional λci . The same slice is shown
in Fig. 1e, but this time, the velocity field was processed in order to have a spatial
resolution corresponding to that of the PIV data of AMT, which was obtained with
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Fig. 1 a, b, c and d respectively, contours of two-dimensional λci , dU/dy, u and (uv)2 in a
streamwise–wall-normal slice of the DNS data. Righthand side figures are same as those on the left
but for the mimicked field. Black lines represent iso-velocity line of U/Ue = 0.82

an interrogation window size of 0.027δ (square windows) and a mesh size of 0.014δ.
For both velocity fields, the only threshold applied on λci is the minimum number of
grid points necessary to consider a patch of non-zero λci as a vortex and this number
is adjusted according to the type of velocity field. Hence, in the original velocity
field (Fig. 1a), a patch of non-zero λci with at least four points is considered as a
vortex. However, in the PIV-mimicking velocity field (Fig. 1e), the threshold size
has to correspond to the size of the interrogation window that was used by AMT.
Since an overlap of 50% of the interrogation windows is used by AMT, a square
composed of nine mesh points is the equivalent of the interrogation window size and
therefore the threshold used is nine points.
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The effects of spatial resolution of planar PIV on vortex size, swirling strength,
circulation and population density were extensively analysed by [5] using a series
of experimental and numerical databases. They found that typical values of mesh
size and interrogation window size (0.01−0.03δ) and typical levels of measurement
uncertainties have significant effects on the vortex parameters. In agreement with
[5], Fig. 1e shows a significant decrease in the vortex population density due to the
lack of spatial resolution. This is caused partly by the filtering out of large and
especially small vortices and partly by artificial merging of vortices. By comparing
the AMT database and the well-resolved DNS data, Rahgozar et al. [5] reported
that the ensemble average of the vortex diameter is double in the case of the AMT
database, while the vortex population density is four times smaller. Moreover, as
shown in Fig. 1b, f, the velocity gradient dU/dy is also significantly affected by the
spatial resolution.

Nevertheless, the iso-velocity lines (U/Ue = 0.82, black lines) and the contours
of u and (uv)2 in Fig. 1c, d, g, h show that the spatial resolution has no important
effect on the shape and size of large-scale u- and uv-structures.

2.2 Hairpin and Hairpin Packet Signatures in 2D Slices

In agreement with AMT, the conjectured hairpin and hairpin packet signatures are
frequently observed in all slices of the resolution-degraded DNS data. Figure1e
epitomizes an “ideal packet” as described by AMT: an almost linear ramp with a
growth angle of approximately 12◦, regrouping the four aforementioned signatures of
the hairpin and hairpin packets. The linear ramp is an iso-velocity line with U/Ue =
0.82 closely aligned with a train of vortices. The pattern is very much similar to
the ramp-shaped patterns shown in Figs. 19 and 20 of AMT. Instantaneous velocity
vectors in Fig. 2 clearly demonstrate rotational motions around the patches of λci

located on the iso-velocity line (candidates of hairpin head), inclined regions of Q2
vectors and stagnation points between Q2 and Q4 motions. Note that the velocity
vector map is viewed in a convective frame of reference Uc = 0.82Ue. Figure1f
presents contours of velocity gradients in the same velocity field. Consistent with

Fig. 2 Velocity vector map
viewed in a convective frame
of reference Uc = 0.82Ue
for the same slice shown in
Fig. 1
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the hairpin packet model, the contour of constant velocity (solid line) coincides
closely with the regions of intense shear. The contours of u and (uv)2 are shown in
Fig. 1g and h. In agreement with the hairpin packet model, Fig. 1g, h show large-scale
regions of low-speed flow and (uv)2 motions beneath the constant velocity line. In
brief, the patterns observed in Fig. 1 are in every respect consistent with the signatures
conjectured to be those of hairpins andhairpin packets byAMT.Although the velocity
field shown in this figure is a quintessential example of hairpin and hairpin packet
signatures, broadly similar patterns are frequently observed in other slices.

Asmentioned earlier, although the lackof spatial resolutionhas no important effect
on the iso-velocity lines and the contours of u and (uv)2, a large number of small
vortices are filtered out ormerged into larger vortices by the lack of spatial resolution.
Hence, the lack of spatial resolution may reinforce the idea that the outer region of
the boundary layer is mostly and densely populated by large-scale vortices which
are sufficiently large and intense to form large-scale u- and uv-structures. However,
a comparison between Fig. 1a, e rather suggests that these vortices only form a small
subset of all vortices present and that many vortices are embedded within the low
momentum zones. This means that the lack of spatial resolution indeed promotes the
appearance of the hairpin packet signatures in 2D velocity fields.

2.3 Three-Dimensional Reality

Figure3 shows the well-resolved, three-dimensional volume of the same velocity
field shown in Figs. 1 and 2. The black line is the same iso-velocity line as in Fig. 1,
which is situated in the streamwise–wall-normal slice at the mid-span of the vol-
ume. The colour contours are iso-surfaces of λ2 with different thresholds, namely
−2,−1 and − 0.5σλ2 (σλ2 is the standard deviation of λ2) shown in Fig. 3a, b, c,
respectively. In order to produce these iso-surfaces the following steps are taken: (1)
Rotational regions are identified using λ2 criteria. (2) Regions with λ2 lower than the
chosen thresholds are discarded. (3) Only sets of connected points comprising more
than 500 points are kept. Note that voxels must share a face (and not only an edge
or a vertex) to be considered as connected. (4) Among remaining λ2 regions, only
those located on or very near the iso-velocity line with U/Ue = 0.82 are shown.

A cursory glance at the field shown in Fig. 3a reveals that no hairpin-like vortices
are observable. The vortex tubes have an irregular shape and are not necessarily
spanwise oriented near the mid-span plane. The streamwise–wall-normal slice cuts
of these vortices identified in Fig. 1 do not correspond in general to “hairpin heads”.
Figure3b, c presents the same field as in Fig. 3a but with lower thresholds on λ2.
These figures confirm that the irregular shape of the vortices is not caused by the
threshold since the lower threshold leads to a more complicated picture in which the
vortices tend to merge into a few complex and intertwined vortex clusters.

Moreover, as it is shown in Fig. 3b, c, by lowering the threshold a hairpin-like
vortex (marked with an arrow) appears above the iso-velocity line. However, this
vortex is not a member of the conjectured hairpin heads (see Fig. 1) and it appears
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Fig. 3 Iso-surfaces of λ2 structures identified according to the steps described in Sect. 2.3.
a λ2/σλ2 = −2, b λ2/σλ2 = −1 and c λ2/σλ2 = −0.5

here because, as the threshold is lowered, it becomes connected to another vortex
which is located near the iso-velocity line. Furthermore, the head of this hairpin-like
vortex is located far away from the iso-velocity line in both spanwise and wall-
normal directions and is not aligned in the streamwise direction but rather crooked
in a spanwise path.

In order to examine how comparable the extracted vortices in Fig. 3 are with
other neighbouring vortices, all vortices satisfying the threshold of λ2 ≤ −σλ2 and



90 S. Rahgozar and Y. Maciel

Fig. 4 Iso-surfaces of λ2 structures shown in Fig. 3b (yellow) with: a other vortices in the volume
satisfying the threshold of λ2 ≤ −σλ2 and corresponding to more than 500 connected grid points
(grey); b iso-surfaces of Q2

σuσv
= −1; c iso-surfaces of u

σu
= −1

corresponding to more than 500 connected grid points are shown in Fig. 4a. The
vortices belonging to the conjectured hairpin packet are shown in yellow, while all
others are in grey. This figure shows no significant disparity between these two sets
of vortices in terms of shape, size and intensity.

The iso-surfaces of Q2 (u < 0, v > 0) and low-speed (u < 0) motions are shown
in Fig. 4b, c. We use a similar approach as for λ2 for detecting and visualizing the
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Q2 and low-speed regions. However, for these structures bigger than vortices, only
regions comprising more than 5000 connected grid points are kept. These figures
clearly show large-scale, three-dimensional structures which are closely intertwined
with the vortex tubes. Similar to λ2, the threshold has significant effects on the large-
scale u- and uv-structures. Contrary to Q2 structures, large-scale Q4 (u > 0, v < 0)
structures are mostly located around the vortex patches (not shown). Note that in
the absence of a statistical analysis, the relation between the vortex patches and u-
uv-structures cannot be generalized here. Nevertheless, we can confirm the frequent
existence of large-scale u- and uv-structures and a possible association between these
structures.

3 Conclusion

The outer region of a ZPGTBL is analysed from the perspective of AMT by applying
their structure identification scheme on 2D streamwise–wall-normal slices of DNS
data that mimic their coarser resolution planar PIV velocity fields. The 2D motions
that are identified as signatures of “hairpins” and “hairpin packets” are compared to
those found byAMT.These identifiedmotions (vortices, low-momentum regions and
quadrant motions) are then visualized in three dimensions using the fully resolved
DNS data.

It is found that the 2D filtered fields of swirling strength significantly differ from
the original well-resolved ones. Numerous vortices are filtered out by coarser spatial
resolution and some vortices merge artificially into bigger vortices. Nevertheless,
the shape and size of large-scale u- and uv-structures are not importantly altered by
the mimicking approach. In agreement with AMT, signatures associated by them to
hairpin and hairpin packets are observed frequently in the mimicked planes. This
shows that the hairpin and hairpin packet signatures described by AMT are present
in the perfect flow conditions of DNS and are not caused by imperfections in real
flow fields such as wall roughness. However, the 3D character of the 2D signatures
is found to be more convoluted than the proposed hairpin model. For instance, the
vortex cross sections in 2D planes that were candidates for heads of hairpins are
usually cross sections of vortex tubes with irregular and complex shapes, and locally
not spanwise oriented. Moreover, a large vortex cross section in 2D low spatial
resolution view is sometimes the imprint of intertwined smaller vortices. The 3D
view of 2D packet signatures reveals a series of irregular vortex tubes which are not
necessarily different from other nearby vortex tubes in terms of their shape, size and
intensity. The large bunches of intertwined vortices generally cohabit with large-
scale u- and uv-structures, but it seems unlikely that the fine and sparse irregular
vortex tubes, detected from 2D packet signatures, can produce these large structures.
Furthermore, although the threshold on the swirling strength has an important effect
on the visual aspect of the vortices, the above conclusions are found to be not affected
by the threshold.
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Wall Pressure Signature in Compressible
Turbulent Boundary Layers

N.A. Buchmann, Y.C. Kücükosman, K. Ehrenfried and C.J. Kähler

Abstract Large-scale turbulent flow structures associatedwith positive and negative
wall pressure fluctuations in a compressible turbulent boundary layer are investigated.
Experiments are conducted in a closed-loop transonic wind tunnel at Ma = 0.5–0.8,
Reτ = 5,100–9,500 with combined velocity field and wall pressure measurements.
Both, velocity and pressure statistics are analysed and compare well with existing
lowMach number data. Spatial two-point correlation is applied to determine the size
and orientation of the large-scale flow structures, which depending on the wall height
have an averaged length scales of 4–6 δ and a maximum inclination angel of ≈12◦–
13◦. The wall pressure fluctuations are associated with shear layer structures and it
is shown that positive pressure fluctuations are correlated with low speed large-scale
flow structures over streamwise extents of 4–5 δ.

1 Introduction

Understanding the relationship between coherent flow structures and associated wall
pressure fluctuations in turbulent boundary layers is fundamental in the prediction
and control of wall-bounded turbulent flows. In incompressible flows the turbulent
velocity field and the fluctuating pressure field are connected by the solution of the
Poisson’s equation [10].

∇2 p = −ρ ũi, j ũ j,i , (1)

where ρ is the fluid density and ũi, j the partial derivative of the velocity ũi = Ui +ui .
Assuming the boundary layer flow is two-dimensional and homogenous in spanwise
and streamwise direction Eq.1 simplifies to
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1

ρ
∇2 p = −2

dU

dy

u2

dx
− ui, j u j,i . (2)

The two terms on the right hand side represents the pressure sources. The first term
is frequently referred to as the fast, or linear mean−turbulent pressure source and
the second slow, nonlinear turbulent–turbulent interaction.

According to Farabee andCasarella [4] wall pressure fluctuations can be classified
as low and high frequency fluctuations, which originate in the inner and outer region
of the boundary layer. Significant contribution to the high wavenumber fluctuations
comes from the viscous sublayer, while the logarithmic layer largely contributes to
low wavenumber fluctuations [2]. Of particular interest are high-amplitude pressure
peaks (HAPPs) with strong fluctuations 2–3 times above the r.m.s. pressure fluctua-
tions. These pressure events have a low occurrence probability, but large contribution
to the total r.m.s. pressure [11]. It is believed that positive pressure fluctuations are
associated with shear layer structures and sweep–ejection events [13], while large
negative pressure fluctuations are related to spanwise and quasi-streamwise vortices
[6].

The wall pressure is affected by the entire velocity field as given by (2) and the
role of large-scale flow structures, originating in the logarithmic and outer layer
(i.e. super-structures,VLSM), in this relationship is yet nuclear. Large-scale flow
structures are characterised by long meandering regions of positive and negative
velocity fluctuations with significant contribution to the overall Reynolds stress [8].
More importantly, the large-scale flow structures have a direct influence on the near-
wall cycle via amplitude modulation of the small-scale velocity fluctuations [9].

By logic extension one can hypothesis a similar connection between the large-
scale structures and the fluctuating wall pressure field. Therefore, the present study
applies simultaneous velocity and wall pressure measurements to first identify the
large-scale flow structures and second to link them to the fluctuation wall pressure
field.

2 Experimental Procedure

2.1 Turbulent Boundary Layer Experiment

Experiments are conducted in theTransonic-Wind-Tunnel atDLRGöttingen (TWG).
The TWG can be operated continuously and has a 4.5m long adaptive test section
with 1 × 1 m2 cross-sectional area. The wind tunnel and plenum chamber are pres-
surised such that the Mach number Ma and stagnation pressure p0 can be adjusted
independently. A rigid plate of 2.75m length and 1m span is mounted symmetrically
in the test section (Fig. 1). The plate has an elliptical nose and the flow is tripped
180mmdownstreamof the leading edge. Adaption of the upper and lower test section
wall ensures a nearly nearly zero pressure gradient, which decreases slightly towards
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Fig. 1 Side view of the experimental setup showing with the boundary layer plate, pressure trans-
ducers P1 − 5 and PIV measurement region

Table 1 Characteristics of the turbulent boundary layer for the different operating conditions (Ma,
p0) considered in the present study

Ma p0 (kPa) U (m/s) uτ (m/s) δ (mm) θ (mm) ν/uτ

(µm)
Reτ Reθ

0.5 50 173.9 6.00 26.8 4.0 5.3 5,100 16,700

0.8 50 274.8 9.32 26.5 3.7 3.4 7,800 24,800

0.5 100 178.4 5.90 26.8 3.7 2.8 9,500 31,200

the end of the plate. The wind tunnel is operated at free-streamMach numbers Ma =
0.5 and 0.8 and stagnation pressures p0 = 50 and 100 kPa. Under these conditions
the Reynolds number is Reτ = 5,100–9,500 and the boundary layer thickness is
δ = 26–27mm (see Table1).

2.2 Velocity Field and Wall Pressure Measurements

In order to resolve the large and very large scale flow structures simultaneous planar
PIVmeasurementswith three sCMOS cameras are conducted to cover a large stream-
wise field-of-view of 1.5 × 10 δ. The cameras have a sensor size of 2560 × 2160
pixel2 and 6.5µmpixel pitch and are equippedwith 100mm focal length Zeissmacro
lenses with an optical magnification ofM = 0.17. Illumination in the x − y −plane
is provided by a Spectra Physics Quanta-Ray PIV 400 Nd:YAG dual-cavity laser.
The light-sheet with a thickness of 0.5–1mm thickness is introduced from the trail-
ing edge of the flat plate model. The flow is seeded with DEHS droplets with 1µm
mean diameter. A total of 20,000 images are recorded and analysed with an itera-
tive multi pass window-correlation routine. The final interrogation window size is
16×16 pixel2 with 50% overlap. This corresponds to a spatial resolution of 0.62mm
or Δx+ = 116 − 489 depending on Reτ .

The measurement section is equipped with 9 static pressure taps and an array of 5
dynamic piezo-resistive pressure transducers (EPE-S449-0.35B, Entran) (see [3] for
details). TransducersP3−P5 are alignedwith the light-sheet in streamwise direction
and have a mean separation of approximately 7.5δ (see Fig. 1). Transducer P1−P2
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are located of-axis at identical streamwise positions and spanwise separation of 0.23
δ and are used to assess the spanwise coherence of the pressure fluctuations across
the light-sheet width. The pressure transducers have a sensing diameter of 2.4mm
and a 35 kPa pressure range. In order to improve the spatial resolution the sensors
are mounted in an adaptor and connected to the surface pressure via a 0.5mm orifice.
Thus, depending on Reτ the effective spatial resolution of the dynamic pressure
measurements is d+ = duτ /ν = 94–147. Note that in order to fully resolve the
wavenumber spectrum of the pressure fluctuations a resolution of d+ ≤10–12 is
required [7, 11]. Consequently, the presentmeasurements are restricted to large-scale
pressure fluctuations only. A static calibration is performed for each transducer and
the analog pressure signals are pre-amplified via a Endevco signal conditioner. The
AC component of the signals are filtered and digitised by a Dewetron A/D converter
at a rate of 20 kHz (Δtu2

τ /ν = 137) over a time period of 500s (T U∞/δ > 106).
In addition the camera and Q-switch trigger signal are also digitised such that the
velocity and dynamic wall pressure measurements can be synchronised off-line.

3 Characterisation of the Turbulent Boundary Layer

3.1 Velocity Field Statistics

An example of the instantaneous velocity field at Ma = 0.8, Reτ = 7,800 is given
in Fig. 2. The velocity field consists of a hierarchy of coherent δ-scale structures
that appear to be inclined in the streamwise direction by approximately 14◦. The
intermittency of the turbulent/non-turbulent interface is also clearly visible. The
turbulent boundary layer develops in streamwise direction and δ and Reτ increase by
approximately 8% over a distance of 10 δ. Mean flow statistic sampled in the center
of the domain are summarised in Table1 for the two Mach numbers investigated in
this study. Mean velocity and Reynolds normal stress profiles are illustrated in Fig. 3
and are in good agreement with the data of Fernholz and Finley [5]. Since the focus of
the current study is on the large-scale flow structure the measurements only resolve
the flow in the logarithmic region and the outer part of the turbulent boundary layer
(i.e. 800 ≤ y+ ≤ 1.5δ+).

0 1 2 3 4 5 6 7 8 9

0.5

1

1.5

y
/
δ

y/δ

Fig. 2 Instantaneous velocity field U/U∞ for Reτ = 7,800 (Ma = 0.8). Black line indicates the
boundary layer thickness δ and colour contours are from 0.5 to 1.0
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Fig. 3 Mean velocity profile U+ (a) and Reynolds normal stress u+2 (b) in inner scaling. Present
data: ◦, Reτ = 5,100 (Ma = 0.5); �, Reτ = 7,800 (Ma = 0.8); ×,+, Fernholz and Finley [5]

3.2 Statistical Properties of Wall Pressure Fluctuations

Typical power density spectra of the wall pressure fluctuations Φpp for sensor P1−
P4 are shown in Fig. 4. The spectra show distinct peaks at the low frequency range,
which are associated with tones produces by the wind tunnel turbine and structural
vibrations of the test section. These acoustic fluctuations decay rapidly at higher
frequencies and the power spectrum becomes dominated by the convective pres-
sure fluctuations for frequencies above 1.5–2kHz [3]. In the range from 2 to 10kHz
the spectra are flat and do not show a maximum typically seen in low Mach num-
ber boundary layers. The cut-off frequency of the Helmholz resonator is approxi-
mately 11 kHz above which the pressure fluctuations are attenuated by more than
−3 dB (see [3] for details). In order to remove the acoustic pressure fluctuations the
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Fig. 4 Power spectral density of the wall pressure fluctuations Φpp for Reτ = 7,800 (Ma = 0.8)
and sensors: P1; P2; P3; P4. The dashed line indicates the−3 dB
cut-off frequency of the Helmholz resonator
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Fig. 5 Root-mean-square wall pressure p′ in inner scaling as a function of the Reynolds number.
Present results: �, Reτ = 5,100 (Ma = 0.5); •, Reτ = 7,800 (Ma = 0.8). �, Bull and Thomas
[1]; ∗, Farabee and Casarella [4]; �, Schewe [11]; ×, Tsuji et al. [14]; �, Spalart [12];
(p′/ρu2

τ )2 = 6.5 + 1.86 ln(Reτ /333) [4]

signals are filtered at 1.5 kHz using a phase preserving high-pass filter. The filter
frequency is optimised by comparing the pressure auto-correlations, which remain
largely unchanged for filter frequencies above 1.5 kHz.

The r.m.s. values of the filtered wall pressure fluctuations p′ normalised by inner
scaling are plotted in Fig. 5 together with previous results. The r.m.s. wall pres-
sure increases slowly with Reτ and follows the prediction (p′/ρu2

τ )
2 = 6.5 +

1.86 ln(Reτ /333) of Farabee and Casarella [4]. The current result for Ma = 0.5
and Ma = 0.8 also follow this trend and extend the currently available data to larger
Reτ .

The probability density function (PDF) of the wall pressure fluctuations is shown
in Fig. 6. The PDFs are normalised by p′ and displayed in linear and logarithmic scal-
ing. ThePDFs show little variationwithMachnumber, respectivelyReynolds number
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Fig. 6 Probability density function of wall pressure fluctuations. Symbols indicate the different
sensorsP1−P5.Solid symbols, Reτ = 5,100 (Ma = 0.5);open symbols, Reτ = 7,800 (Ma = 0.8);

, Gaussian distribution
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and obey a near Gaussian distribution. However, the tails of the PDFs approach an
exponential distribution and show some slight dependency on the Reynolds/Mach
number, which agrees well with observations in [14]. The skewness is approximately
−0.09 for both cases and consistent with the low Mach number data of Gravante
et al. [7]. The flatness decreases from 3.6 to 3.3 with increasing Reτ and also follows
the trends in [7] albeit at different spatial resolutions. It is important to note that
spectral quantities and higher order statistics are dependent on the spatial resolution
as pointed out in [7, 11] and that some caution needs to be taken when interpreting
data from different sources.

4 Organisation of the Large-Scale Flow Structures

Two-point velocity correlations of the form Ruu(ξ, y) = 〈 u(x − ξ, yp) u(x, y) 〉 for
the Ma = 0.8 (Reτ = 7,800) case and different wall heights of the conditioning
point yp are shown in Fig. 7. The averaged coherent flow structures extend over large
streamwise domains (5–6 δ) and have large wall-normal extends (0.75–1 δ). The
structures maintain their coherence for different wall height, but their streamwise
length scale decreases with wall height (Fig. 8a). Different Mach/Reynolds numbers
exhibits a good collapse when scaled on outer variables similar to the low Mach
number data in Hutchins and Marusic (2007) [8]. Although the present data indicate
averaged streamwise length-scales that are approximately 25–50% larger than those
given in [8] (see Fig. 9a). The contours of Ruu show a clear inclination in streamwise
direction, which increase from approximately 3◦ near the wall (y/δ = 0.1) to a
maximum angle of 12◦–13◦ at y/δ − 0.5. The regions of positive correlations reach
far into the boundary layer and persist over large streamwise extents and give an
indication of the average size of the superstructures or VLSM-type events in the
outer region of the turbulent boundary layer.
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Fig. 7 Two-point correlation of the streamwise velocity fluctuation Ruu(ξ, y) for Reτ = 7,800 (Ma
= 0.8) calculated at y/δ = 0.1 (top) and y/δ = 0.5 (bottom). Contour levels are from Ruu/u′2 = 0.1
to 1.0 in increments of 0.1
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5 Space-Time PressureVelocity Correlations

Possible links between the large-scale flow structures and wall pressure fluctuations
are assessed by means of the space-time correlation Rpu defined as:

Rpu(x, y, τ ) = 〈 p(x0, 0, t − τ) u(x, y, t) 〉 / (ρ u3
τ ), (3)

where (x0, 0) is the position of the transducer P5, t the time of the velocity field
recording and 〈 〉 the ensemble average over all velocity field realisations. Addi-
tionally, the space-time correlation is conditioned on the occurrence of positive and
negative pressure fluctuation to obtain Rpu | p>0 and Rpu | p<0.

Figure10a shows the space-time correlation Rpu(x, y, 0) for Reτ = 5,100
(Ma = 0.5). Positive correlations exists upstream of the reference point, while a
large region (4–5 δ) of negative correlation extends downstream of the reference
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point. According to Thomas and Bull [13], wall pressure fluctuations are associated
with sweep−ejection events and the formation of the inclined shear layer upstream
of the coherent structures. Indeed the negative pressure velocity fluctuations show an
inclination angle of approximately 12◦, which is consistent with the inclination of the
coherent large-scale structures. Additionally, the conditioned space-time correlations
reveal a strong link between the large-scale shear layer structures and positive pres-
sure fluctuations (Fig. 10b). On the other hand, negative pressure fluctuations only
exhibit a weak link with the large-scale streamwise flow organisation. The significant
streamwise (6–7 δ) and wall-normal (0.75 δ) extend of the pressure-velocity corre-
lation Rpu and Rpu | p>0 suggest that large-scale flow structures play an important
role in determining the near wall velocity and wall pressure field.

6 Concluding Remarks

Relationships between large-scale streamwise velocity fluctuations andwall pressure
fluctuations in a turbulent boundary layer are investigated. Velocity and pressure
statistics at Ma = 0.5–0.8, Reτ = 5,100–9,500 are analysed and compare well
with existing low Mach number data. Analysis of the streamwise two-point velocity
correlation reveals the size (4–6 δ) and orientation of the large-scale flow structures.
When scaled on outer units, two-point correlations, averaged structure length and
inclination angle collapse for the current range of Mach and Reynolds numbers.
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Space-time correlations between wall pressure and streamwise velocity fluctuations
reveal structures of large streamwise extent (5–6 δ). Positive pressure fluctuations
are strongly correlated with negative velocity fluctuations, which provides evidence
of a possible link between the large-scale flow structures in the buffer and outer layer
and the near wall pressure field.
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Three-Dimensional Structure
of Pressure–Velocity Correlations
in a Turbulent Boundary Layer

Yoshitsugu Naka, Michel Stanislas, Jean-Marc Foucaut,
Sebastien Coudert and Jean-Philippe Laval

Abstract Three-dimensional pressure–velocity correlations in a turbulent boundary
layer have been investigated to understand the relationship between the pressure fluc-
tuations and the coherent structures. Simultaneous measurements of the fluctuating
pressure and velocity fields have been performed by the point pressure measure-
ment technique and stereo PIV. The space–time three-dimensional structures of the
pressure–velocity correlations, Rpu , Rpv and Rpw, are evaluated. The wall pressure
fluctuations are closely coupled with large-scale coherent structures, i.e., large-scale
sweep and ejection. For the pressure fluctuations in the field, the pressure–velocity
correlations Rpu and Rpw exhibit a meaningful correlation in a region very extended
in time in addition to the structures observed with the wall pressure. The Reynolds
number effect is quantified from the data at Reθ= 7300, 10000, and 18000, it is
mostly evidenced on the size and intensity of the correlations. Such 3D structures of
the pressure–velocity correlations can be consistent with the evidence of large-scale
and very-large-scale motions reported in the literature.

1 Introduction

The pressure fluctuations in incompressible flows are closely linked with the vortex
structures andplay a significant role in the transport of the turbulent kinetic energy and
the Reynolds stress. In wall-bounded turbulent shear flows, the wall pressure pattern
is observed as a footprint of the turbulent events occurring above it. The relationship
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between the wall pressure fluctuation and the turbulent structure passing above the
wall has extensively been studied theoretically, experimentally, and numerically ([1,
2] among others). Kim [2] investigated the pressure fluctuations from the database
of a direct numerical simulation (DNS) of channel flow at low Reynolds number,
and reported that the contributions to the pressure–strain correlations are local near
the wall, but global away from the wall.

The large-scale correlated motions have been investigated by many authors, and
it is known that structures typically larger than 3δ carry a significant fraction of the
turbulent kinetic energy and Reynolds stress [3]. Adrian et al. [4] and Christensen
and Adrian [5] performed PIV studies of such large-scale motions, called hairpin
packets, in the boundary layer. Furthermore, very long structures called “superstruc-
tures” of the streamwise velocity component (more than 20δ)were also reported from
atmospheric boundary layer measurements [6]. Such hairpin packets and superstruc-
tures are therefore important features of near-wall turbulence, but their relation to
the pressure fluctuations, especially at the wall still remains unclear.

In the statistical sense, the large coherent structures can be observed in the two-
point correlations. Foucaut et al. [7] visualized the three-dimensional structures of the
two-point velocity correlations in a turbulent boundary layer from the stereoPIVmea-
surements with two planes positioned orthogonally. The correlation of streamwise
velocity shows an elongated ellipsoidal shape in the streamwise direction, inclined to
the wall at an angle of approximately 10◦. Tutkun et al. [8] evaluated the space–time
correlations of the streamwise velocity component from the data of a rake of 143 sin-
gle hot-wire probes, and found that the correlation spreads approximately 7–8δ/Ue

in time. Such an elongated shape of two-point streamwise velocity correlations is
considered to be associated with the large-scale structures. Further, the wall-normal
velocity correlation is much more localized and even close to isotropy as soon as the
fixed point is far enough away from the wall.

Since an appropriatemeasurement technique is not yet available for the fluctuating
pressure at a point in the flow, the pressure fluctuation in turbulent near-wall flows
has been out of reach of experimental studies. The difficulty is mainly caused by
the fact that the turbulent pressure fluctuations are weak, and are easily distorted by
the ambient noise and probe intrusion, especially very close to the wall. Tsuji et al.
[9] made a first attempt of measurements of the pressure fluctuations in a turbulent
boundary layer by a small static pressure probe, which was originally developed by
Toyoda et al. [10]. They reported successful results in the fundamental statistical
quantities such as the mean, r.m.s., and power spectra of pressure fluctuations and
investigated their scaling law.

In the present study, the simultaneous measurements of the fluctuating pressure
and the three velocity components have been performed to investigate the three-
dimensional structures of the space–time pressure–velocity correlations in a turbulent
boundary layer. The pressure fluctuations at the wall and in the field are captured
together with stereo PIV planes which are arranged perpendicular to the wall and to
the mean flow direction. The stereo PIV system is designed to capture the large-scale
motionwhich spreads over thewhole boundary layer thickness and the small scales at
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the same time. Our target is to clarify how the pressure–velocity correlation is related
to the large-scale coherent structure, and to evaluate their extension quantitatively.

2 Experiment

Simultaneous measurements of the fluctuating pressure and velocity field were per-
formed in a closed-loop turbulent boundary layer wind tunnel at Laboratoire de
Mécanique de Lille. The wind tunnel has a cross-section of 1 m × 2 m in transverse
and spanwise directions, and a 21.6m long development section. Themaximumoper-
ating velocity is 10.5 m/s, and the boundary layer thickness δ reaches approximately
0.3m at the measurement position.

An (x, y, z) Cartesian coordinate system is defined for the streamwise, wall-
normal, and spanwise directions respectively. The origin is set at the center of the
wall pressure hole which is located at the center in span on the lower wall of the wind
tunnel section and at 18m from the contraction outlet. The free stream velocity Ue

was regulated at 3, 5 and 10m/s with a stability of 0.5% giving Reynolds numbers
based on the momentum thickness θ and Ue, of Reθ = 7300, 10000, and 18000.

A schematic of the experiment is presented in Fig. 1. The fluctuating pressure
signals at two points (at the wall and at the pressure probe) were captured, and the
field of three velocity components close to the pressure holes was measured. The
pressure probe consists of the tip, the pipe, and the connecting part to themicrophone.
The outer diameter of the pipe is 1.0mm and its thickness is 0.05mm. Two 0.4mm
diameter holes are opened with a separation angle of 180◦ at 19.5mm from the tip.
Therefore, the present pressure probe has a measurement volume of 0.4mm × 0.4
mm × 1.0 mm in x-y-z directions. The design of the probe is mostly the same as in
the previous study [11] except for the number of pressure holes. The wall pressure

Wall pressure tap: w = 0.5 mm

pressure probe: d =1.0 mm
 = 0.4 mm x 2

SPIV plane #1

SPIV plane #2

Combined FoV
308 mm X 110 mm

Flow

φ

φ

Fig. 1 Schematic of the simultaneous measurements of the fluctuating pressure at the wall tap and
at the pressure probe and the velocity field by stereo PIV
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tap is a 0.5mm diameter hole, and is located next to the stereo PIV measurement
plane. A 1/4-inch condenser microphone (B&K microphone 4938 and pre-amplifier
2670) was used to capture the pressure fluctuation. The signals were recorded by a
16-bit A/D converter board (Measurement Computing PCI-DAS6034) installed on
a PC. The sampling rate was set to 40kHz, and the Q-switch signals of the laser
was simultaneously recorded for synchronization. The acoustic or electric frequency
response of each component in the pressure measurement system is quantified, and
the overall transfer function is taken into account in the post processing. The back-
ground noise in the pressure signal is reduced by the auxiliary microphone which is
fixed at the center of the wind tunnel section (y = 0.5m).

As depicted in Fig. 1, two stereo PIV planes were arranged in y−z plane and were
placed side by side in the wall-normal direction to cover the whole boundary layer
thickness with a good spatial resolution. A 250mJ/pulse Nd:YAG laser (BMI 5000)
was used for illumination. The scattered light from particles was captured by 4 CCD
cameras with 2048 × 2048pixels (Hamamatsu C9300-024) through Nikon 105mm
lenses. The aperture f#8 gave a diffraction spot of approximately 2 pixels. These
cameras were mounted in the Scheimpflug condition [12] and the viewing angle and
distance between the two cameras were 45◦ and 1.37m, respectively. For seeding,
polyethylene glycol particles whose diameter was about 1 µm were generated by a
smoke generator. Each stereo PIV plane had a 16 × 11 cm field of view, and the
combined field of 31 × 11cm was obtained with a small overlap. The streamwise
position of the light sheet was set to the holes of the pressure probe and the wall
pressure tap. The two light sheets are slightly separated in the x direction (approx-
imately 0.75mm) to obtain better correlation. Note that the light sheet thickness is
about 1.85 mm. The time separation between two exposures was set to Δt = 250,
150, and 75µs for 3, 5, and 10m/s to optimize maximum displacements to 10 pixels.
The image signals from the four cameras were acquired by two-frame grabbers (X64
Xcelera-CL PX4), and the digitized images were recorded on PC hard drives. The
sampling rate of stereo PIV was 4 Hz.

The PIV analysis was performed by a multi-pass FFT-based cross-correlation
method with integer shift of both windows [13, 14]. A 1D Gaussian peak-fitting
algorithm was used for the subpixel displacement determination. Three passes with
different window sizes were used. The interrogation window size of the final pass
was 26 × 39 pixels. The scale relationship between the physical and image spaces
was 11.6 pixel/mm in y and 17.6 pixel/mm in z. Therefore, the physical size of the
interrogation window was 2.24 × 2.21mm in y and z. The PIV overlap ratio was
77%. The Soloff method [15] was used to reconstruct the three velocity components.
From a set of calibration and stereo PIV particle images, the misalignment between
the light sheet and the calibration plane was compensated [16]. The characteristics of
the boundary layer obtained by the present stereo PIV measurements are presented
in Table1 and coincide well with the previous hot-wire data obtained in the same
facility [17].
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Table 1 Experimental
conditions

Ue (m/s) δ99 (m) δ+ Reθ

3.03 0.33 2 465 7 324

5.11 0.28 3 509 9 971

10.2 0.285 6 390 17 972

3 Space–Time Pressure–Velocity Correlations

The space–time correlation of the fluctuating pressure and velocity, Rpui is defined
here as

Rpui (yp,Δt,Δy,Δz) =
N∑

j=1

{
p(t j + Δt, yp, 0)ui (t j , yp + Δy,Δz)

}
/N , (1)

where t j is the time of stereo PIV recording, yp is the wall-normal position of the
pressure probe, Δy and Δz are the separation of the moving point along y and z,
respectively, (here Δz = z as z p = 0), Δt is the time separation of the pressure
measurement with respect to t j and N is the number of samples. Since the time-
resolved pressure signal is available, the correlation of the velocity field at time t j

and pressure signal around t j is evaluated. Each run of simultaneous measurement
was repeated for nine different wall-normal positions of the pressure probe within
yp = 3.8mm and 307mm. The number of valid velocity field is 10000 for each run.
Note that the wall pressure–velocity correlation is evaluated from 90000 samples,
and is much better converged compared to the field pressure–velocity correlation.

3.1 3D Structure of the Wall Pressure–Velocity Correlations

First, we will look at the 3D structure of the correlation between the wall pressure
fluctuations and the three velocity components. Figure2 shows the 3D structures of
the pressure–velocity correlations, Rpu , Rpv and Rpw, at Reθ= 10 000. For Rpu ,
the positive correlation extends in the upstream (Δt ≤ 0) on a significant part of
the boundary layer thickness. The wall-normal extension at Δt = 0 is 0.3δ at Reθ=
10000 and exhibits the Reynolds number dependence. Taking into account the sym-
metry with respect to z/δ = 0, the spanwise extent reaches to approximately 0.8δ
(± 0.4δ) in the upstream region. As this significant correlation region is positive just
above the fixed point, positive pressure fluctuations at the wall are mostly correlated
with positive streamwise velocity fluctuations and vice-versa. This is opposite to
the idea that wall pressure fluctuations are generated directly by streamwise veloc-
ity fluctuations (which would lead to the opposite sign of the correlation). On the
positive Δt side, negative correlation regions are evident but they are much weaker.
These negative regions seem to be composed of two distinct subregions: an inclined
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Fig. 2 3D structures of the pressure–velocity correlations, Rpu , Rpv and Rpw at Reθ= 10000.
Isocontours of dark orange and blue gray indicate positive and negative values, respectively. Box
size of each plot is 5δ/Ue × 1.1δ × 0.4δ

structure extending away from the wall and a near-wall thin layer spreading toward
outside of the field of view downstream. The spanwise extent of the first one is com-
parable to the positive upstream region while the second one is limited near z = 0.
The pressure–wall-normal velocity correlation Rpv is relatively localized in time but,
as a difference to Rpu , it is nearly equally significant on both positive and negative
Δt and it shows both positive and negative correlation regions of comparable size.

The positive and negative lobes are at a strong angle to the wall (approximately
45◦). It is noted that the Reynolds number seems to have little effect on Rpv. The
last and most complex one is the Rpw correlation. For homogeneity reasons, this
correlation is zero in the z/δ = 0 plane and antisymmetric with respect to this plane.
Around the fixed point, it is mostly positive on the positive z side. The correlation
has a spanwise extension larger than the field of view (which is 0.4δ) and is strongly
inclined to the wall along z (20◦ to 25◦). It is quite extensive in the wall-normal
direction (up to y/δ = 0.6), and also in time, on both positive and negative Δt sides.
Weak negative correlation regions exist both downstream of the fixed point (positive
Δt) close to the wall and upstream (negative Δt) further away from the wall. This
leads globally to motions involved in the wall pressure fluctuations.

To facilitate understanding the physics of the pressure–velocity correlation, the
wall pressure fluctuations are split into two parts: the positive ones which can be
associated to either a decrease of the wall parallel (streamwise or spanwise) velocity
component (Bernoulli static pressure effect) or an increase of the wall-normal com-
ponent (stagnation point effect) with respect to the mean. The conditional averaging
by the sign of the pressure fluctuation is introduced, and conditionally averaged Rpu ,
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Fig. 3 3D structures of Rpu , Rpv and Rpw conditionally averaged based on the sign of the wall
pressure signal. Box size of each plot is 5δ/Ue × 1.1δ × 0.8δ (the distribution in negative z is
synthesized with symmetry)

Rpv and Rpw at Reθ= 10000 are presented in Fig. 3. It is clear that both positive
and negative pressure fluctuations at the wall are strongly correlated with coherent
structures above them. These structures appearing at large scales are very different
for the two signs of p. It is located predominantly upstream (negativeΔt) for pw > 0,
while it is more on the downstream side for pw < 0. These two signs are clearly
associated to sweep, and the positive pressure fluctuations at the wall appear more
as a consequence of the interaction of these large-scale motions with the wall.

3.2 3D Structure of the Field Pressure–Velocity Correlations

Having looked at the wall pressure–velocity correlations, the correlations of the
pressure in the field and the velocity are discussed in this section. Figure4 presents
3D structures of Rpu at Reθ= 7300, 10000, and 18000. The pressure probe position
is closest to the wall (yp = 3.8mm) corresponding to the wall units of 28+, 48+,
and 85+. A Reynolds number effect on Rpu is visible on its size while the overall
characteristics of the correlation are similar for the three different Reynolds numbers.
As a difference to the pressure point at the wall, Rpu exhibits an inclined elongated
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Fig. 4 3D structures of Rpu at Reθ= 7300, 10000, and 18000 and at yp = 3.8 mm (from top
to bottom). Box size of each plot is 14δ/Ue in time and the whole measurement area in y and z
directions

shape in positiveΔt .At Reθ=10000, it extends approximately down toΔtUe/δ = 6,
which is similar to the observation in the velocity–velocity correlations [8]. Beside
this dominant positive region, a second elongated region of correlation also appears
clearly downstream of the previous one (largerΔt), but this time with a negative sign
and closer to the wall. Both of these positive and negative correlation regions are
inclined at a small angle (5◦ at Reθ= 10000) with respect to the Δt axis. Another
negative correlation region is visible on the spanwise side of the field, between
ΔtUe/δ � 1 to 3. In Fig. 5, the distributions of Rpu at Reθ= 10000 for different
pressuremeasurement positions y+

p = 477, 959, 1921, and 2883 are presented.As yp

increases, the two positive correlation regions merge and form one large correlation
pattern extending on both positive and negative Δt . This inclined structure shifts
then progressively toward negative Δt when moving the pressure point away from
the wall. The shape of this large positive correlation region changes significantly at
y+

p = 1921, where it is detached from the wall.
Figure6 illustrates the 3D distributions of Rpv and Rpw at the pressure measure-

ment positions y+
p = 48, 477, 959, 1921, and 2883. In the distributions of Rpv,

the correlation is much weaker than Rpu (isocontour value is approximately half of
Rpu). This is not surprising as wall-normal velocity fluctuations are known to be
smaller than streamwise ones. For the pressure reference position close to the wall
(y+

p = 48), the Rpv correlation has a shapewhich is very similar to that of the pressure
point at the wall. Unlike the wall point, an elongated region of negative correlation
develops close to the wall on the positive Δt side. In the outer part, the positive
correlation fades rapidly away with increasing yp. The negative lobe becomes more
isotropic and separates from the wall; the intensity decreases toward the edge of
the boundary layer, and finally it disappears. The last correlation to be analyzed is



Three-Dimensional Structure of Pressure–Velocity … 111

Fig. 5 3D structures of Rpu at Reθ= 10000 and at different pressure measurement positions, y+
p =

477, 959, 1921, and 2883 (from bottom to top). Box size of each plot is 14δ/Ue × 1.1δ × 0.4δ

Fig. 6 3D structures of Rpv (left) and Rpw (right) at Reθ= 10000 and at different pressure mea-
surement positions, y+

p = 48, 477, 959, 1921, and 2883 (from bottom to top). Box sizes of Rpv
and Rpw in time are 6Ue/δ and 14Ue/δ, respectively
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Rpw. Based on the previous analysis of Rpu and Rpv, it is possible to distinguish
two regions in the correlation in the inner part. Close to the origin, there is a posi-
tive correlation region which is similar to the correlation with the fixed point at the
wall although less converged due to the lower sampling. In addition, a group of two
elongated structures, one positive and one negative, appear on the downstream side
of the fixed point (Δt > 0). They obviously work together and are not independent
from the elongated structures observed in the other correlations. In the outer part, the
wall structure disappears first at y+

p = 477. The elongated structures are still visible
in these wall-normal positions but become very weak. A new structure starts to be
visible at y+

p = 477 with an elongated negative correlation region extending toward
negative Δt and a positive correlation around the fixed point, which is obviously
coupled to the negative one and laying below it. These two regions grow in wall-
normal size and shrink in time when moving the fixed point further from the wall. It
is strongly evoking an elongated streamwise-oriented large-scale vortical structure
with a size of the order of the boundary layer thickness.

4 Conclusion

The 3D structures of pressure–velocity correlations, Rpu , Rpv and Rpw, have been
visualized in a turbulent boundary layer at Reθ = 7300, 10000, and 18000.

The shape of the correlations indicates that the wall pressure fluctuations are
strongly coupled with coherent structures which occupy a large region of the bound-
ary layer. All correlations have their maximum close to the fixed point and decrease
progressively away from it in a nonisotropic way. Wall pressure fluctuations are
strongly linked to interfaces of sweep and ejection.

Field pressure–velocity correlations, Rpu and Rpw exhibit very elongated struc-
tures which are Reynolds number dependent. The correlations are found to be self-
similar for the positions of the fixed pressure point in the inner layer, and they change
in shape significantly in the outer layer. The shape of correlation Rpu is quite similar
to those evidenced by velocity-velocity correlations.
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Computation of Complex Terrain Turbulent
Flows Using Hybrid Algebraic
Structure-Based Models (ASBM) and LES

C. Panagiotou, S.C. Kassinos and D. Grigoriadis

Abstract In this work, we revisit the coupling of the Algebraic Structure-Based
Model with popular two-equation eddy viscosity models (EVM). We consider both
the v2 − f model and variants of the κ-ω model. Our aim is to explore the role of the
EVM in these couplings. Computations of turbulent boundary layer over a flat plate
and a fully developed channel flow are initially performed for validation purposes.
Then, the case of a 2D steep, smooth hill is considered, for which additional LES
computations were performed in order to ascertain the validity of the experimental
data. The coupling of the ASBM with the κ-ω-BSL model (hereafter called ASBM-
BSL) showed superior robustness when compared to the ASBM-v2- f hybrid model.
Moreover, ASBM-BSL captures the size of the recirculation bubble more accurately,
andoverall yields a noticeable improvement in the predictionof the turbulent statistics
in the recirculation region. All models fail to capture the correct shear stress profile at
the top of the hill, exhibiting positive, non-realizable values near thewall. The present
comparisons reveal a sensitivity of the hybrid closures to the choice of carrier model.

1 Introduction

In engineering practice, CFD computations rely heavily on two-equation eddy vis-
cosity models (EVM). Undeniably, EVMoffer certain computational advantages rel-
ative to more complex approaches, such as Reynolds Stress Transport (RST) models.
Nevertheless, EVMwould stand to benefit if a consistent method could be devised to
augment the physics contained in them. Along this direction, a number of attempts
have been made, such as nonlinear stress-strain relationships, etc.

Traditional stress models take as input the mean deformation field, the turbulence
scales, and information about the componentality of the turbulence in order to predict
the Reynolds stresses. Componentality is information about the relative strength
of the fluctuating velocity components. It enters the model through the Reynolds
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stress tensor itself, or at least the representation of the tensor available in the model.
Structure-Based Models (SBM) depart from this approach in that they additionally
use information about the structure of the turbulence in order to predict the Reynolds
stresses [5, 7]. This information is derived, directly or indirectly, from a set of exact
transport equations for the one-point turbulence structure tensors. Themodel that is at
the focus of the present work, i.e., the Algebraic Structure-BasedModel (ASBM) [6,
8, 12], is an engineering simplification within the SBM family of models.

In recent years, there has been some interest in exploring couplings of ASBM
with various two-equation EVM [1, 2, 6]. In such hybrid models, the turbulence
scales are provided by solving the transport equations of the chosen EVM, which
are then passed, along with the mean deformation field, to the ASBM. The ASBM
in turn uses an algebraic procedure to compute the structure state of the turbulence,
including the full Reynolds stress tensor. Such couplings are attractive since they
can be easily included in many existing RANS codes, providing a shortcut to the
additional information in the ASBM.

In evaluating such couplings, we have noticed differences in terms of both perfor-
mance and numerical stability of the hybrid models. The motivation of the present
study is to compare the couplings of ASBM with a series of popular two-equation
EVM. The main test case chosen is the flow over the ‘Witch of Agnesi’ bump, a steep
hill that is often used as a model of complex terrain. The validation of all RANS com-
putations is done against the experiments of Loureiro [9], and also against results
from a Large Eddy Simulation (LES), which we have carried out specifically for this
purpose.

2 Validation

All computations were performed using an unstructured nodal-based finite-volume
code, called CDP. The code uses collocated grids and the Rhie and Chewmomentum
interpolation technique to evaluate the cell face velocities. The diffusion term is
discretized using an Adam-Bashforth scheme, including an upwind differencing.
The convective term uses the divergence theorem and the sub-edge concept. For
the time-advancement, a Crank-Nickolson scheme is used for diffusion/convective
terms. A time-splitting approach is used to solve the mass and momentum equations.
Details of the code can be found in [3, 11].

2.1 Channel Flow

First, computations are carried out for fully developed turbulent channel flow at a
Reynolds number Reτ = 300, based on the channel half-height δ and friction velocity
uτ . The profiles are compared to DNS data [4]. A uniform mean pressure gradient is
imposed along streamwise direction (x), whereas nonslip boundary conditions are
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Fig. 1 Model predictions for a streamwise mean velocity and b rms and shear correlations for BSL
and ASBM-BSL closures. Comparison is made to DNS values [4], shown as symbols

applied at the top and bottomwalls and periodic conditions along the other directions.
The computations involve a 1×200×1 nonuniform grid. In order to avoid resolution
issues in the viscous sublayer, the first cells are placed at a distance of y+ ≈ 0.25 form
the wall. Results are reported in dimensionless form using the friction velocity uτ ,
for example U+

x = Ux/uτ , urms = √
Rxx/uτ , vrms = √

Ryy/uτ , wrms = √
Rzz/uτ

and uv = Rxy/u2
τ . The normal direction is expressed in the formy+ = yuτ /ν in

order to better highlight the near-wall behavior.
Figure1a shows that, when compared to the standard BSL model, the ASBM-

BSL closure captures more accurately the streamwise mean velocity in the buffer
layer. Yet, the coupled closure over-predicts mean velocity values near the channel
centerline. Themaximumdiscrepancy between themodel predictions and theDNS in
the centerline region is estimated to be around 3%. As shown in Fig. 1b, ASBM-BSL
produces fair predictions for the turbulence correlations.

2.2 Flat-Plate Boundary Layer

Next, we consider the case of a zero pressure gradient boundary layer flow, for
which many experimental datasets are available. Here, we have chosen to validate
the model against the experiments of Loureiro [9], since these are related to the
inlet conditions used later for the ‘Witch of Agnesi’ case. The Reynolds number
is Reδ = 4772, based on free stream velocity uδ and the boundary thickness δ.
The corresponding value of the Reynolds number based on the friction velocity is
Reτ = 277. The mesh involves a 99× 59× 1 nonuniform grid, stretched along the
transverse direction, whereas uniform spacing is chosen at the streamwise one. In
order to ensure adequate resolution, the maximum height of the cells adjacent to the
wall was maintained at y+ < 0.9. In contrast to the channel case, here we observe
that the correct magnitude of the freestream mean velocity is predicted by both
models (Fig. 1a). Figure1b shows that the ASBM-BSL closure accurately predicts
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Fig. 2 Model predictions for a streamwise mean velocity and b rms and shear correlations for BSL
and ASBM-BSL closures. Comparison is made to the experiments of Loureiro et al. [9], shown as
symbols

both the peak magnitude of the streamwise turbulence intensity and its freestream
value, while a fair shear stress profile is obtained. The peak magnitude of the wall-
normal turbulence intensity is accurately captured, nevertheless with a displacement
of its location closer to the wall (Fig. 2).

3 Witch of Agnesi 2D Bump

3.1 Flow Configuration

Next, we consider the ‘Witch of Agnesi’ hill that has been studied experimentally
by Loureiro et al. [9]. As shown in Fig. 3, the geometry consists of a hill of height
H and width 10H, placed at a distance of 7.5H downstream from the inlet and
12.5H upstream from the outlet of the computational domain. The hill shape is
given by yh(x) = H1[1 + (x/L H )2]−1 − H2 ,where H1 = 75mm, H2 = 15mm,
and L H = 150mm, yielding a hill height of H = H1 − H2 = 60mm. The origin of
the coordinates axes is placed at the middle of the hill. The height and width of the
entire computational domain are set to 4H , and 30H , respectively.

Fig. 3 Geometry for computations of turbulent flow over the ‘Witch of Agnesi’ hill
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3.2 LES Results

A set of LES were motivated by questions raised about the relatively shallow level
of the water in the channel, which in turn raised questions about the appropriateness
of the free-surface boundary conditions assumed in the RANS simulations. The
methodology of inflow generation used in the present work, is a modification of
the inflow method of Lund et al. [10]. This method consists of obtaining turbulent
data from a plane in a location downstream of the inlet (but not at the outlet of the
domain), rescaling the data, and reintroducing them at the inlet. The mesh involves
a 220 × 96 × 128 nonuniform grid, sufficiently stretched around the hill region.
Profiles of the streamwise component of the mean velocity at different streamwise
stations are shown in Fig. 4a–b, for which very good agreement against experimental
results is achieved. The agreement is also very good when measuring the size of the
recirculation region formed behind the hill and the point where the flow reattaches,
as shown in Table1. Figure4c–d shows the profiles of the rms values of velocity.
This time agreement is also acceptable especially in the near-wall region. Closer to
the free surface, higher values of fluctuations were reported experimentally mainly
due to the relatively low water depth and the deformation of the free surface, which
is not accounted for in the present simulations.
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Fig. 4 LES predictions of rms streamwise velocity fluctuations at stations a x/H = 1.25 and
b x/H = 2.50. Comparison is made to experiments of Loureiro et al. [9]. c x/H = 1.25. d
x/H = 2.50
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RANS Simulations and Results

Based on the good agreement between the LES and experiments, we now proceed
to evaluate the model performance in the same flow configuration. The inlet profile
is extracted from a flat-plate boundary layer simulation at Reδ = 4772, where the
Reynolds number is based on the freestream velocity Uo and the boundary layer
thickness δ. An outflow penalty condition was used at the outlet, a no-slip condition
at the bottomwall, a slip condition at the top free surface, andperiodic conditionswere
imposed in the spanwise direction.The mesh involves a 307× 119× 1 nonuniform
grid, sufficiently stretched around the hill region along both the streamwise and
transverse directions. In the figures that follow, all quantities are normalized using
the hill height H and the reference inlet freestream velocity Uo. At the inlet, the first
cell adjacent to the wall is placed at y+ ≈ 0.25.

Stability Issue for the ASBM-v2- f Closure

When the ASBM closure is coupled to v2 − f as the carrier model, spurious streaks
emerge on leeward side of the hill, as shown in the contour plots of Fig. 5a. For this
case, predictions of additionalmodels from the κ-ω family are obtained, both coupled
and uncoupled with the ASBM closure. Figure5b shows the predictions of the hybrid
ASBM-BSL model. Clearly, the streaks are absent and smooth converged solutions
are obtained. Smooth solutions are obtained for all remaining couplings shown in
Table1, suggesting that the instabilities are caused by the particular coupling in the
case of the v2- f model.

Recirculation Size

Table1 highlights the predictions related to the recirculation bubble using different
models. As shown, the BSL model gives the best results, in both the coupled and the
uncoupled case. The essence of this comparison among the models is that the size
of the recirculation zone is strongly affected by the choice of the carrier model.

Fig. 5 Contour levels of the streamwise mean velocity for a the ASBM—v2 − f and b the ASBM-
BSL models on the leeward side of the hill
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Table 1 Recirculation zone data

Turbulence closure Xs(H) Xr (H) Ls(H)

v2 − f 0.26 9.18 8.92

k-ω-BSL 0.33 6.67 6.34

k-ω-SST 0.27 8.08 7.81

k-ω-Wilcox 0.27 9.67 9.40

ASBM—v2 − f 0.23 9.70 9.47

ASBM-k-ω-BSL 0.27 7.80 7.53

ASBM-k-ω-SST 0.27 9.1 8.83

ASBM-k-ω-Wilcox 0.27 10.1 9.83

LES 0.50 6.60 6.10

Experiments 0.50 6.67 6.17
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Fig. 6 Model predictions for the streamwise mean velocity Ux at various x-stations for BSL and
ASBM-BSL. Comparison is made to experimental values and the predictions of the v2 − f -ASBM
model. a x/H = 1.25. b x/H = 2.5. c x/H = 3.75. d x/H = 6.67

Streamwise Predictions

Figure6a–d show results for the mean streamwise velocity Ux . In all cases, model
predictions are compared to the experimental database. The BSL and ASBM-BSL
results are in much better agreement with experiments than ASBM-v2- f , and this
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Fig. 7 Same as Fig. 6, but for the streamwise intensity Rxx/U2
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attributed to the fact that these models are able to capture more accurate the recircu-
lation region.

Figure7a–d show results for the streamwise intensity Rxx/U 2
o . The ASBM-BSL

closure exhibits a noticeable improvement relative to ASBM-v2- f , being able to
capture the near-wall peak over the entire range of the recirculation zone, which is
consistently under-predicted by ASBM-v2- f .

Shear Stress Predictions

Figure8a–d show a comparison of the shear stress predictions of the ASBM-BSL
model with the corresponding experimental database and the predictions of ASBM-
v2- f . The ASBM-BSL model again exhibits better agreement with the experiments,
especially in the near-wall region where it captures the peak magnitudes. However,
at the top of the hill (not shown), we have noticed positive magnitudes for the shear
stresses. This deficiency is present for any choice ofEVMas a carriermodel, implying
that this issue is mostly related to the coupling with ASBM.

4 Conclusions

The algebraic structure prediction procedure ofASBMhas been successfully coupled
with the popular two-equation eddy viscosity models. All hybrid models are able to
return fair values for the Reynolds stress tensor. Nevertheless, significant differences
are noted in terms both the performance and the stability of the hybrid closures.
Based on the results of the current evaluation, the ASBM-BSL hybrid closure seems
to be the most promising.
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Computation of High Reynolds Number
Equilibrium and Nonequilibrium
Turbulent Wall-Bounded Flows
Using a Nested LES Approach

Yifeng Tang and Rayhaneh Akhavan

Abstract A new nested LES approach for computing high Reynolds number, wall-
bounded turbulent flows is presented. The method is based on nested LES of the
full-domain at coarse resolution, coupled with well-resolved LES of a minimal flow
unit. The coupling between the two domains is achieved by renormalizing the kinetic
energies of components of the mean velocity and the turbulent velocity fluctuations
in both domains to that of the minimal flow unit in the near-wall region, and to
that of the full-size domain in the outer region, at each time-step. The method can
be implemented with a fixed number of grid points, independent of Reynolds num-
ber, in any given geometry, and is applicable to both equilibrium and nonequilib-
rium flows. The proposed method has been applied to LES of equilibrium turbulent
channel flow at 1000 ≤ Reτ ≤ 10,000 and LES of nonequilibrium, shear-driven,
three-dimensional turbulent channel flow at Reτ � 2000. All computations were
performed using a spectral patching collocation method, and employed resolutions
of 64 × 64 × 17/33/17 in the full-size domain (Lx × L y = 2π × π ), and res-
olutions of 32 × 64 × 17/33/17 and 64 × 64 × 17/33/17 the minimal flow units
(l+x × l+y ≈ 3200×1600) of equilibrium and non-equilibrium channel flows, respec-
tively. The dynamic Smagorinsky model with spectral cutoff filter was used as the
SGS model in all the simulations. The results show that the proposed nested LES
approach can predict the friction coefficient to within 5% of Dean’s correlation in
equilibrium turbulent channel flow, and the one-point turbulence statistics in good
agreement with DNS and experimental data in turbulent channel flow and in shear-
driven, three-dimensional turbulent boundary layer.
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1 Introduction

Large Eddy Simulation (LES) is an approach to computing turbulent flows based
on directly computing the large, energy-containing scales of motion and modeling
the small scales. Despite numerous advances in LES over the recent years [29],
computation of high Reynolds number, complex, nonequilibrium, wall-bounded tur-
bulent flows continues to remain a challenge for LES. The difficulty arises from
the stringent resolution requirements of LES in the near-wall region, where the size
of energy-containing eddies becomes proportional to their distance from the wall.
Resolving these eddies requires O(Re1.8x ) grid points in LES of turbulent boundary
layers [4] or O(Re2τ ) grid points in LES of general wall-bounded flows [19]. This is

not much different from O(Re9/4τ ) grid points required for DNS and makes LES of
high Reynolds number turbulent flows prohibitively expensive.

A number ofwall-modeling approaches have been proposed in recent years to alle-
viate these stringent resolution requirements. Thesemethods canbebroadly classified
into two categories: approaches based on formulating off-wall boundary conditions,
and approaches based on solving alternative, simplified dynamical equations in the
near-wall region. In the first category, a set of approximate boundary conditions are
formulated for the first grid point away from the wall. These approximate boundary
conditions are either derived from the law of the wall [8, 30], or from integration
of simplified momentum equations in the vicinity of the wall [5, 13]. In the second
category, the flow in the near-wall region is computed using a set of simplified and
less expensive dynamical equations, and matched to the LES solution away from the
wall. Commonly used alternative equations include the Reynolds-Averaged Navier-
Stokes (RANS) equations [25, 26, 32], and thin boundary layer equations [1, 2].
Approximate off-wall boundary conditions have been shown to provide reasonably
accurate predictions in simple, equilibriumwall-bounded flows, but they fail in more
complex flows, such as flows with mean three-dimensionality or separation [27].
Methods based on alternative dynamical equations in the near-wall region often face
the difficulty of exchanging information between two solutions with disparate spec-
tral content, such as RANS and LES [29]. One well-known manifestation of this
difficulty is the “logarithmic law mismatch” observed with most RANS/LES based
models in turbulent channel flows [26].

In this study, we present a new LES wall-modeling approach based on nested
LES. In this approach, two simultaneous, nested LES are performed at each time-
step, one in the full-size domain using a coarse resolution, and the other in a minimal
flow unit using a well-resolved grid. Two domains are coupled by renormalizing the
kinetic energies of the components of the mean velocity and the turbulent velocity
fluctuations in both domains to match those of the minimal flow unit in the near-wall
region and those of the full-size domain in the outer region, at each time-step in each
wall-normal location. The method can be implemented with a fixed number of grid
points, independent of Reynolds number, in any given geometry, and is applicable
to both equilibrium and nonequilibrium flows.
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The organization of the paper is as follows. In Sect. 2, the nested LES approach is
described. In Sect. 3, the results of application of nested LES to equilibrium turbulent
channel flow at Reτ ≈ 1000, 2000, 5000, and 10000, and to nonequilibrium, shear-
driven, three-dimensional turbulent channel flow at Reτ ≈ 2000 are presented. A
summary and conclusion are given in Sect. 4.

2 The Nested LES Approach

It has been recognized, since the pioneering work of Townsend [34, 35], that two
classes of structures are involved in the dynamics of wall turbulence: near-wall struc-
tures of size proportional to their distance from the wall, and larger, outer-layer
structures with size on the order of several boundary layer thicknesses. While earlier
studies considered the outer-layer structures to have little influence on the dynamics
of wall turbulence [28], more recent studies have shown that these structures have an
impact on every aspect of wall turbulence, including the turbulent velocity fluctua-
tions, Reynolds shear stresses, and pressure field in the near-wall region [14, 15, 20,
24], as well as the wall-shear stress [22]. Furthermore, it has been shown that these
influences become more pronounced as the Reynolds number increases [23, 31].
More recently, it has been suggested that the influence of the large-scale structures
on the near-wall eddies is in the form of an amplitude modulation [24].

From an LES standpoint, the dynamics of the large, outer-layer structures can be
computed with a coarse-resolution LES in the full-size domain. However, accurate
prediction of these dynamics requires prescription of accurate off-wall boundary
conditions, which in turn requires accurate computation of the wall-shear stress and
the near-wall turbulence dynamics. Developing such off-wall boundary conditions
for general nonequilibrium flows can be extremely difficult. One possible solution
may be acquiring this information from a well-resolved LES in a minimal flow unit.
However, in the absence of proper large-scale structures, a well-resolved LES in a
minimal flow unit cannot predict the correct wall-shear stress [16], even though it
can predict the correct normalized turbulence statistics in the near-wall region [11,
17, 18]. Thus, a two-way coupling between the coarse-resolution full-domain LES
and the well-resolved LES in the minimal flow unit is required.

The nested LES approach addresses the need for this two-way coupling by per-
forming two coupled, simultaneous LES, one at coarse resolution in the full-size
domain, and the other a well-resolved LES in a minimal flow unit. The two-way cou-
pling between the two domains is established by renormalizing the kinetic energies
of the components of the mean velocity and turbulent velocity fluctuations in both
domains, at each wall-normal location and each time-step, to have a magnitude equal
to those in the full-size domain in the outer region, and to those in the minimal flow
unit in the near-wall region. In this process, the spectral content and phase informa-
tion of the rescaled quantities are retained in each domain, and only the magnitudes
of the quantities are rescaled.
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The application of the proposed nested LES method to homogeneous flows is
straightforward. For weakly inhomogeneous flows, onemay employ several minimal
flowunits to provide thenear-wall solution in different subdomains,while for strongly
inhomogeneous flows, the minimal flow unit may need to be extended along the full
length of the direction of inhomogeneity, while still remaining minimal in the nearly
homogeneous lateral direction. In either case, the total number of required grid points
remains only a weak function of the Reynolds number, thus allowing application of
the nested LES approach to high Reynolds number flows.

3 Application to Equilibrium and Nonequilibrium
Turbulent Channel Flow

The nested LES approach was applied to LES of equilibrium turbulent channel flow
at Reτ ≈ 1000, 2000, 5000, and 10000, and nonequilibrium, shear-driven, three-
dimensional turbulent channel flow at Reτ ≈ 2000.

A schematic of the channel and the nested LES geometry is shown in Fig. 1a. In
all the simulations, a full-domain channel of size Lx × L y × Lz = 2πh × πh × 2h
and a minimal flow unit of size l+x × l+y × l+z ≈ 3200× 1600× 2h+ wall units were
employed, where h denotes the channel half-height. The Dynamic Smagorinsky
Model [12, 21] with spectral cutoff filter was used as the sub-grid scale (SGS) model
in all the simulations. For the purpose of the renormalization procedure in the nested
LES approach, the near-wall and outer regions were defined as z/h ≤ 0.05 and
z/h > 0.05, respectively, in all the simulations.

3.1 Numerical Methods

In both domains, the LES equations were solved using a patching collocation spectral
domain-decomposition method [3], employing Fourier series in the streamwise (x)
and spanwise (y) directions, and mapped Chebyshev polynomials in the wall-normal
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Fig. 1 a The full-size domain and the minimal flow unit in the nested LES approach and b the
domain partition in the patching collocation spectral domain-decomposition method
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(z) direction. In the wall-normal direction, the computational domain was partitioned
into three nonoverlapping subdomains, Ωs (s = 1, 2, 3), as shown in Fig. 1b. The
same grid distribution was used in both the full-size domain and the minimal flow
unit in the wall-normal direction, with the interface between the Ω1/Ω2 or Ω3/Ω2
domains placed at z+ ≈ 200 − 250 wall units from the walls in all the simulations.
LES computations of equilibrium turbulent channel flow were performed with reso-
lutions of 64×64×17/33/17 in the full-size domain and 32×64×17/33/17 in the
minimal flow unit at all Reynolds numbers. For the shear-driven turbulent channel
flow, resolutions of 64× 64× 17/33/17 were used in both the full-size domain and
the minimal flow unit.

3.2 Results in Equilibrium Turbulent Channel Flow

Table1 summarizes the skin-friction coefficients predicted by the nested LES
approach compared to Dean’s correlation [7]. The predicted skin-friction coeffi-
cients were all within 5% of Dean’s correlation. To show the impact of the nested
LES approach, the simulations at Reτ ≈ 2000 were repeated in the full-size domain
and in the minimal flow unit as uncoupled simulations, at the same resolutions used
in the nested LES. The skin-friction coefficients predicted in these two cases had
much larger errors than that from the nested LES approach, with the uncoupled
coarse-resolution full-domain LES giving errors of 32% and the uncoupled resolved
LES in the minimal flow unit giving errors of 26% in the skin-friction coefficient
compared to Dean’s correlation, as shown in Table1.

Figure2 shows the comparison of the one-point turbulence statistics predicted by
the nested LES approach with available DNS [9, 14], and experimental data [6]. The
mean velocity profiles predicted by the nested LES approach are in good agreement
with DNS and experimental data, and exhibit the correct behavior in both the log-
arithmic layer and the wake region. Good agreement is also observed for the rms
velocity fluctuations and the Reynolds shear stress. All turbulent stresses reported

Table 1 Predicted skin-friction coefficients using the nested LES approach in comparison with
Dean’s correlation [7]

Reτ, nominal Reb C f (present study) C f (Dean’s) Error (%)

1,000 40,000 4.904 × 10−3 5.162 × 10−3 −5.0

2,000 85,333 4.092 × 10−3 4.271 × 10−3 −4.2

5,000 266,667 3.308 × 10−3 3.212 × 10−3 +2.9

10,000 533,333 2.688 × 10−3 2.701 × 10−3 −0.5

2,000C 85,333 2.887 × 10−3 4.271 × 10−3 −32.4

2,000M 85,333 3.162 × 10−3 4.271 × 10−3 −26.0
Cuncoupled coarse-resolution LES in the full-size domain
Muncoupled resolved LES in the minimal flow unit
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in this study represent the true Reynolds-averaged stresses and were reconstructed
by extending the one-dimensional (1D) energy spectra computed in LES using a
theoretical form of the 1D energy spectra for wall flows, integrating the area under
the extended spectra to recover the SGS kinetic energy [33], and recovering the
individual components of Reynolds stresses using the formulation of Winckelmans
et al. [36]. Unlike most existing wall-modeling approaches, in which only the sta-
tistics in the outer layer are available, the nested LES approach provides accurate
statistics in both the near-wall region and the outer layer. Both the magnitudes and
locations of the peaks of turbulent stresses are all well-predicted by nested LES. In
contrast, LES performed in the two uncoupled full-size and minimal flow domains
at Reτ ≈ 2000 yield one-point statistics in poor agreement with the DNS data.

Analysis of the energy spectra shows that the two-way coupling procedure in the
nested LES approach results in correction of the spectral energy distribution in both
domains and this is responsible for accurate predictions of the turbulence statistics
by the nested LES approach in both the near-wall and outer regions.

3.3 Results in Shear-Driven Three-Dimensional Turbulent
Channel Flow

To investigate the performance of the nested LES approach in nonequilibrium flows,
the method was applied to a shear-driven, three-dimensional turbulent channel flow
subjected to transverse strain produced by impulsive motion of the bottom wall.
The LES was set up to reproduce the experimental conditions of Driver and Hebbar
[10], shown in Fig. 3, in which an initially two-dimensional turbulent boundary layer
(TBL) is sheared by sudden spanwise motion of the wall at speed Vs = U∞, where
U∞ denotes the free-stream velocity in the original TBL. After the three-dimensional
flow travels approximately 40.5 boundary layer thickness downstream, the spanwise
shear is removed and the flow reverts back to a two-dimensional flow.

In the present study, the expensive simulation of the long boundary layer was
avoided by performing the simulations in a turbulent channel flow at comparable

L ≈ 40.5 δ

Spinning
section

Stationary
section

Stationary
section

x’
x’=0

x
x=0

U∞

measurement stations

U∞U∞

Vs

Vs

x
yz

U
_

Vs

(a) (b)

Fig. 3 Configurations of the shear-driven three-dimensional boundary layer in a experimental setup
with spinning cylinder [10] and b present simulation as a shear-driven, three-dimensional channel
flow
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Fig. 4 Evolution of the mean velocities and Reynolds stresses at (a) the end of the sheared region,
(b) the early recovery region, and (c) the final recovery region. x/δ denotes the downstream distance
measured from the leading edge of the sheared section, and x ′/δ denotes the downstream distance
measured from the leading edge of the stationary recovery section (see Fig. 3). In plotting the LES
results, δ and U∞ were replaced with h and Uc, respectively. —, nested LES method; – –, coarse-
resolution LES in the full-size domain; – · –, resolved LES in the minimal flow unit; �, experimental
data of Ref. [10]
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Reτ � 2000 of the boundary layer flow at the end of the sheared region. The lower
wall of the channel was impulsively moved in the spanwise direction at a speed of
Vs = Uc, whereUc denotes the centerline velocity of the base turbulent channel flow.
This spanwise motion was later stopped at t = 63.5, corresponding to x/δ ≈ 40.5
based on Taylor’s hypothesis. The spatial development of the flow in the boundary
layer was therefore simulated as temporal evolution of the flow in the channel, and
downstream distances in the experiments were converted to time in LES of the
channel flow. The turbulence statistics in LES were obtained by averaging over the
wall-parallel planes and over five independent realizations of the flow.

Figure4 shows the comparison between the LES predictions and experimental
data for the evolution of thewall-parallelmeanvelocity profiles andReynolds stresses
at the end of the sheared region (x/δ � 40.4), at the beginning of the recovery region
(x ′/δ � 0.22), and in the final stage of the recovery region (x ′/δ � 10.3), where
x/δ denotes the downstream distance measured from the leading edge of the sheared
section, and x ′/δ denotes the downstreamdistancemeasured from the leading edge of
the stationary recovery section (see Fig. 3). At the end of the sheared region (Fig. 4a),
the mean velocities and Reynolds stresses have reached a new equilibrium, in which
vv and uv have become highly pronounced due to the spanwise wall-shear. These
features were accurately predicted by nested LES, as shown in Fig. 4a. In the early
stages of recovery (Fig. 4b), uu, vv, and uv quickly drop in the near-wall region.
These features were again accurately predicted by nested LES, as shown in Fig. 4b.
Toward the end of the recovery region (Fig. 4c), V and uv have damped out to zero,
while the other components of Reynolds stresses relaxed to their equilibrium states
in the non-sheared, two-dimensional base flow. Nested LES approach successfully
captures all these flow features of the shear-driven boundary layer and provides
excellent agreement with the experimental data throughout the sheared, and recov-
ery regions. In contrast, LES performed in the two uncoupled full-size and minimal
flow domains predicts Reynolds stresses in poor agreement with the experimental
data. These results show that the nested LES approach offers the same advantages in
nonequilibrium flows as in the equilibrium flows, and provides a method for comput-
ing high Reynolds number nonequilibrium turbulent wall flows at low computational
cost.

4 Summary and Conclusions

A nested LES wall-modeling approach for computing high Reynolds number, wall-
bounded turbulent flows was presented. This approach keeps the required number
of grid point manageable by performing nested LES of the full-domain at coarse
resolution, coupled with well-resolved LES of a minimal flow unit in the course of
the simulation. At each time-step, the coupling procedure renormalizes the kinetic
energies of components of themean velocity and the turbulent velocity fluctuations in
the two domains to that of the minimal flow unit in the near-wall region, and to that of
the full-size domain in the outer region. Themethod is applicable to both equilibrium
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and nonequilibriumflows and can be implementedwith a fixed number of grid points,
independent of Reynolds number, in any given geometry. The proposed nested LES
approach has been applied to LES of high Reynolds number equilibrium turbulent
channel flow and nonequilibrium, shear-driven, three-dimensional turbulent channel
flow. The results show excellent agreement with available DNS and experimental
data in both equilibrium turbulent channel flow and nonequilibrium, shear-driven,
three-dimensional boundary layer. In addition, the presentmethod accurately predicts
the statistics in both the near-wall region and the outer layer, and therefore provides
a unique advantage in application where detailed near-wall information may be cru-
cial. In conclusion, the proposed nested LES approach provides an accurate and
affordable wall-modeling approach for LES of high Reynolds number equilibrium
and nonequilibrium wall-bounded turbulent flows.
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An Attempt to Describe Reynolds Stresses
of Turbulent Boundary Layer Subjected
to Pressure Gradient

Artur Dróżdż and Witold Elsner

Abstract The paper is concerned with the issue of scaling of Reynolds stresses and
the phenomenon of the outer peak of velocity fluctuations, which appears in adverse
pressure gradient conditions. For this purpose, experimental data from favorable and
adverse pressure gradient turbulent boundary layers, for Reynolds number varying
from Reθ ≈ 2300÷ 6200, have been analyzed. At pressure gradient conditions, the
self-similarity cannot be obtained using the scale, which is constant across the bound-
ary layer thickness. In this paper, we also propose a modification of the Alfredsson
et al. (Eur J Mech B/Fluids 36, 167–175, 2012, [1]) expression, which is dedicated to
ZPG flows. The new formulation, utilizing the shape factor H and pressure gradient
parameter Λ, allows an extension of the validity of Alfredsson et al. proposal for
pressure gradient flows.

1 Introduction

Recent studies deal with the scaling problem of Reynolds stresses for zero pressure
gradient flows and for high Reynolds number. Particular attention is also given to
the appearance of a second, so-called outer maximum of the uu for sufficiently
high Reynolds numbers. The physical basis of the outer peak appearance is still not
well understood. Marusic et al. [13] and Alfredsson et al. [1] state that the outer peak
appears for high Reynolds number and for high enough Re even overcomes the inner
one. Mathis et al. [14], using velocity signal-scale decomposition, demonstrated that
the appearance and growth of the outer peak is due to the rise of energy of large-scale
motion. Later, Monty et al. [15] showed the similar phenomena for APG turbulent
boundary layers proving also that it was mainly a result of large-scale motions.
Marusic et al. [13] observed that the intensity of the outer peak grows much more
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rapidly than the inner peak and at sufficiently highReynolds number it may overcome
the inner peak. Turbulent boundary layers subjected to adverse pressure gradient
(referred hereinafter to as APG) or those subjected to nonzero pressure gradient
(favorable—FPG, zero—ZPG and APG) often with surface curvature are considered
themost difficult to describe. Performing bursting process analysisDróżdż andElsner
[4] showed that the reason for the appearance of the outer peak in the APG could
also be traced to the continuous growth of the trajectory inclination of vortices. The
systematic increase of inclination of the trajectory of the vortex with the pressure
gradient may cause, at a certain streamwise location, clustering of hairpin vortex
packets in the outer layer, and intensification of large-scale motion. It appears also
that rms distribution is dependent on the Reynolds number [12], whichmakes it more
difficult to find the proper scaling.

Recently, Alfredsson et al. [1] proposed a scaling method for streamwise turbu-
lence intensity forZPGflows (AOSscaling)which takes into account this dependency
assuming that the streamwise turbulence intensity u′/U in the outer region appears
to collapse on a straight line with a functional dependence on U/U∞. They showed
that linear distribution is invariant with Reynolds number at least for cases analyzed
by the author. The parameters of that line for turbulent boundary layers are described
by the following equation:

u′

U
= 0.286 − 0.255

U

U∞
. (1)

To obtain the collapse of data in the nearwall regionAlfredsson et al. [1] proposed the
difference function, where U/U∞ was replaced by U+ in order to obtain complete
u′ fluctuation velocity profile.

�(U+) = u′

U
−

(
0.286 − 0.255

U

U∞

)
. (2)

The resulting new composite profile for the streamwise turbulence intensity is valid
for canonical wall-bounded turbulent flows, when it is combined with any composite
velocity profile for the mean streamwise velocity component. When this model is
extrapolated toward higher Reynolds numbers, it exhibits properly the outer peak in
the streamwise turbulence intensity profile.

The aim of the study was devoted to scaling of the streamwise Reynolds stresses.
Finding the proper length and velocity scales for Reynolds stresses is very difficult,
especially for nonequlibrium flows. The paper presents an attempt to propose a new
approach for pressure gradient flows and its verification based on experimental data.
The data used in the analysis comes from the experiment performed for Reynolds
number varying from Reθ = 2300÷ 6200 and the pressure gradient conditions rep-
resentative for practical turbomachinery flows, where sudden change from favorable
(FPG) to APG occurs [8].
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2 Experimental Set up

The experiment was performed in an open-circuit wind tunnel, where the turbulent
boundary layer developed along the flat plate, which was 2807mm long and 250mm
wide. The test section is located in the rear part of the wind tunnel. The upper
wall of the test section was shaped according to the assumed distribution of the
pressure gradient corresponding to the conditions encountered on axial compressor
blades. The facility was equipped with a computer-controlled 2D traversing system
(in streamwise and wall-normal direction). The traverse carriage was driven over a
maximum displacement of 180mm by a servo-motor. The uncertainty on the driver
step was 0.001mm with the smallest step equal to 0.01mm.

Static pressuremeasurementswere done using 70 pressure holes of 0.5mmdiame-
ter, drilled along the streamwise direction, from 2067 to 2767mmof the x coordinate.
The spacing of pressure taps was equal to 10mm. Distributions of static pressure and
pressure gradient are presented in Fig. 1. The pressure distribution is typical of a
turbomachinery case, where after a short region of zero pressure gradient the flow
accelerates (from xs = 197mm) and then (from xs = 427mm) decelerates. It is seen
that pressure gradient values are within the range of −0.27 ÷ 0.28Pa/mm. To have
reference friction velocity along the flow, the fringe skin friction (FSF) technique
was also applied [7].

Velocity profiles were measured with a single hot-wire anemometry probe of
diameter d = 3µm and length l = 0.4mm (Dantec Dynamics 55P31). The probes
were combined with the DISA 55M hot-wire bridge connected to a 14 bit PC card.
Acquisition was maintained at frequency 50kHz with 10 s sampling records. For
the assumed sampling frequency the non-dimensional inner scale representation was
f + ≈ 1. It is consistent with the assumption of Hutchins et al. [10], stating that
for the proper anemometer/probe response cutoff must be in the range of f + >

1/3(t+ < 3). The l/d value does not fulfill the recommendation of Ligrani and
Bradshaw [11], however Dróżdż and Elsner [6] showed that the magnitude of the
inner peak (y+ ≈ 15) increased by 10% for a miniature probe in comparison with a
standard wire probe of l = 1.25mm and d = 5µm.

The closest wall position of the hot-wire probe was determined using the mirrored
image. As the flat plate was made of plexiglass it can be treated as a nonconduct-
ing wall and wall correction was not used. The positions of 24 measuring traverses
are shown in Fig. 1. The distances of traverses from the inlet plane, the correspond-
ing dimensionless distances Sg = xs/L , where L is the length of the test section
(L = 1067mm). The favorable pressure gradient covers 8 locations and the adverse
pressure gradient 16 locations (dot lines in Fig. 1).

Flowparameters determined at the inlet plane, located in the zero pressure gradient
area are the mean velocity in core flow U∞ ≈ 15m/s and turbulence intensity
T u = 0.4%. It may be noticed that tripping boundary layer at the leading edge of
the flat plate allowed us to obtain a relatively high value of the characteristic Reynolds
number equal Reθ ≈ 2500 at the inlet plane (Sg = 0).
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Fig. 1 The shape of the channel upper wall with corresponding static pressure and pressure gradient
distributions

3 Scaling of Streamwise Reynolds Stresses

Before analyzing the Reynolds stress scaling, the major parameters of the boundary
layer are presented. Figure2 shows the downstream evolution of friction velocity
uτ and shape factor H . Distributions are typical for a turbulent boundary layer with
nonzero pressure gradient conditions, the values of uτ and H show that the turbulent
boundary layer has not yet separated.

Fig. 2 Distribution of the
friction velocity uτ and
shape factor H
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(a) (b)

Fig. 3 Developement of themean streamwise velocityU in the FPG (a) andAPG (b) andfluctuating
velocity u′ in the FPG (c) and APG (d)

Fig. 4 Streamwise
turbulence intensity profiles
scaled on uτ

The distributions of mean velocity profiles for the FPG and APG regions in semi-
logarithmic coordinates are shown in Fig. 3a–b. In both figures the same profile
Sg = 0.400 (bold black line) is shown as a reference, for which dpS /dx ≈ 0. It
is worth noting that in the APG between the inner and outer layers the build-up of
dU /dy gradient is observed, and is accompanied by a larger drop of velocity in the
inner layer in comparison with the outer one.

Figure4 shows the streamwise turbulence intensity scaled on uτ for selected cross-
sections characterized by different values of Clauser pressure gradient parameter β.
As can be seen for β > 5 the outer peak (y+ ≈ 200) overcomes the inner one
(y+ ≈ 15) which is in agreement with the data of Nagano et al. [16] and Monty
et al. [15]. It can also be concluded that the inner peak is no longer present for the
strong APG. Summing up, it seems that an analyzed turbulent boundary layer reacts
differently under FPG and APG conditions. Analysis of the mean flow field shows
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that the APG causes a strong reaction of velocity fluctuation generally by damping
and enhancing of the inner and outer peaks respectively, which coincides well with
changes of dU/dy gradient.

Dróżdż and Elsner [5], among others, confirmed the role of large-scale motion, in
that case, by calculating the energy spectra E scaled on uτ , as a function of the y+
for ZPG and APG conditions for the analyzed boundary layer. Despite the relatively
small-scale separation of the inner and outer peak, the latter one clearly appears at
y+ = 120. The outer peak is formed for the large scales (λx ≈ 3δ), which indicates
similar phenomenon to that observed recently by Harun et al. [9] but for higher
Reynolds number. It can be concluded that in the presence of APG, the second peak
of turbulent velocity fluctuations appears due to the energy increase of large-scale
vortices present in theouter region,which indicates themorepronounced contribution
of the outer region to the downstream development of the turbulent boundary layer.

As has been already stated, the scaling of Reynolds stresses has been attempted
by many authors and for the present analysis the modified scaling for streamwise
Reynolds stress uu, based on the AOS approach is proposed. As per the analysis
performed in [8], original AOS scaling could not be treated as universal, especially
for pressure gradient flows. To improve its universality, we consider applying the
shape factor H = δ∗/θ . The scaling by the shape factor seems to be beneficial for
boundary layers with a pressure gradient because H depends weakly on Reynolds
number and strongly upon the pressure gradient. Furthermore, for the APG case
velocity decreases at the given distance for the wall, while the shape factor increases.

The profiles of (uu/(U 2H))1/2 for the present experiment are presented in Fig. 5.
It is seen that the data converge, although this convergence takes place for three lines
of different slope. It is suggested [8] that these differences are due to the sequence of
ZPG, FPG and APG, present in the experiment. The boundaries among these states
are defined by locations of distinct minimum or maximum pressure gradient (see
Fig. 1).

Fig. 5 Square root of
streamwise Reynolds stress
(uu/U2H)1/2 scaled with
modified AOS scaling
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Following Alfredsson et al. [1] argument, it was decided to propose the modified
version of the difference function (Eq.2) for streamwise Reynolds stresses uu written
in the following form:

�H (U+H) = uu

U 2H
−

(
A + B

U

U∞

)2

(3)

where A and B where derived for three regions (for comparison see Eq.2). As result
from Table1 the values of A and B depend upon the sequence of upstream pressure
gradient conditions.

Application of the new difference function for our experimental data is shown in
Fig. 6, where similar behavior to the one obtained by Alfredsson et al. [1] may be
observed. All profiles correspond to the three flow states included in Table1. The
shape of the complete difference function varies for flows with sudden changes of
pressure gradient. Case 3 is divided into three groups of different shapes. What is
interesting is that in each group the constant pressure gradient parameter Λ, intro-
duced by Castillo and George [2] defined as:

Λ = δ

ρU 2∞dδ/dx

dp∞
dx

, (4)

is preserved.

Fig. 6 Complete difference
function �H (U+ H) for FPG
and APG regions

Table 1 Parameters of the difference function

Case Conditions of PG B A

1 FPG following ZPG, d2P/dx2 < 0 −0.205 0.24

2 APG following FPG, d2P/dx2 > 0 −0.22 0.24

3 APG following FPG, d2P/dx2 < 0 −0.27 0.30
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Fig. 7 Pressure gradient
parameter Λ: distribution of
log(U∞/U∞i ) versus
log(δ/θi ) b)

Finally, one can see that the profiles are grouped in five bundles, where each
corresponds to a different local equilibrium state, i.e., local equilibrium, defined by
constant pressure gradient parameter Λ (see Fig. 7). In each local equilibrium, the
profiles collapse well across boundary layer thickness.

Itmay be assumed that the collapse occurs because in these regions the self-similar
profiles of velocity deficit were obtained when they were scaled by Zagarola-Smits
scaling [3]. While looking at the lines in Fig. 6, it can be seen that the maxima of
difference function decreases with the increasing of pressure gradient parameter Λ.
Taking into account this behavior the further modification of the relation (Eq. 2) is
proposed:

�H (U+H)Λn/2 = uu

U 2H
−

(
A + B

U

U∞

)2

(5)

where n is the sign of Λ.
As can be noticed (Fig. 8), a very good convergence of all profiles has been

achieved. The differences are visible only very close to the wall, in the viscous
sub-layer, which may be due to the thermal effect of the wall on the hot-wire probe.

To be consistent, the following formula describing the streamwise Reynolds
stresses of analyzed turbulent boundary layer in pressure gradient conditions could
be proposed:

uu =
(

�H (U+H)Λn1/2 +
(

A + B
U

U∞

)2)
U 2H (6)
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Fig. 8 Self-similar complete
difference function
�H (U+ H)Λn/2 for FPG
and APG regions

4 Conclusions

The substantial change of fluctuation distributions, which may be attributed to a
complexity of the analyzed case, is the reason for the lack of the self-similarity of
Reynolds stress profiles. At given conditions the self-similarity cannot be obtained
using the scale, which is constant across the boundary layer thickness. The ana-
lyzed flow is characterized by a strong APG region which is preceded by a strong
FPG region. It results in few local equilibrium regions defined by constant pressure
gradient parameter Λ. The new proposal of streamwise Reynolds stresses scaling
completed with difference function, which is based on [1] concept, was introduced.
It extends the applicability of theAOS scaling to pressure gradient turbulent boundary
layers by means of an additional scaling factor, which is the product ofU 2 and shape
factor H . This expression takes into account the change of the mean velocity profile
and corrects the streamwise Reynolds stress in the outer region, which is especially
important for APG conditions. Pressure gradient parameter Λ further corrects the
complete difference profiles especially close the wall. Finally, the profiles collapse
across turbulent boundary layer thickness both in favorable and adverse pressure
gradients.

Acknowledgments The investigation was supported by National Science Centre under Grant no.
DEC-2012/07/B/ST8/03791.

References

1. P.H. Alfredsson, R. Örlü, A. Segalini, A new formulation for the streamwise turbulence
intensity distribution in wall-bounded turbulent flows. Eur. J. Mech. B/Fluids 36, 167–
175 (2012). doi:10.1016/j.euromechflu.2012.03.015. http://linkinghub.elsevier.com/retrieve/
pii/S0997754612000490

2. L. Castillo, W.K. George, Similarity analysis for turbulent boundary layer with pressure gra-
dient: outer flow. AIAA J. 39(1), 41–47 (2001)

http://dx.doi.org/10.1016/j.euromechflu.2012.03.015
http://linkinghub.elsevier.com/retrieve/pii/S0997754612000490
http://linkinghub.elsevier.com/retrieve/pii/S0997754612000490
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The Temporal Coherence of Prograde
and Retrograde Spanwise Vortices
in Zero-Pressure Gradient Turbulent
Boundary Layers

Callum Atkinson, Vassili Kitsios and Soria

Abstract Spatial and temporal statistics associated with spanwise aligned vortical
structures are extracted from high repetition rate particle image velocimetry (HR-
PIV) experimental measurements of a zero-pressure gradient turbulent boundary
layer. Measurements were performed in the LTRAC water tunnel with a momentum
thickness-based Reynolds number of Reθ = 2,250. Streamwise wall-normal planes
of the field were recorded at rate of Δt = 0.008δ/U∞, spanning a streamwise domain
of 3.2δ. This enables a single structure to be sampled approximately 400 times for a
duration of 3.2δ/U∞ as it convects downstream. A model Oseen vortex is fit to each
local peak in swirling strength, in order to detect and classify the radius, centroid
velocity, circulation, and centroid location of each spanwise vortex. Attempts to track
the evolution of these vortices show that on average these Oseen vortices only appear
to remain temporally coherent for a time of 0.02δ/U∞.

1 Introduction

Vortical structures and their stretching and interaction form a fundamental part of
all turbulent flows and play a significant role in the transfer of energy between
different scales. The lifetime and rate at which these structures propagate is therefore
highly relevant to the study of the dynamics of wall-bounded turbulence. Analysis of
the mean and scale-dependent convection velocities of streamwise and wall-normal
velocity fluctuations, in both channel [1] and boundary layer flows [2], have shown
that both fluctuations convect at different velocities with respect to the local mean
velocity and with respect to each other. These convection velocities are not only
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functions of streamwise and spanwise scale but may also vary for streaks, sweeps,
ejections, and individual vortices.

Spatially and temporally coherent streamwise and spanwise vortical structures
play an important role in the conceptual models of the organization of wall-bounded
turbulence. These models are generally divided into those that assume that stream-
wise vortices form the basis for self-sustaining turbulence [3, 4] and those that
propose that the dominant feature is the hairpin vortex or a packet of hairpin vortices
[5, 6]. Understanding the potential role of these models therefore depends on an
understanding of the nature and dynamics of these vortices.

Considerable work has been done to statistically classify the distribution, size, and
strength of individual vortices. This work has typically involved the use of 2D particle
image velocimetry (PIV) or stereo-PIV (SPIV) measurements in either, streamwise
wall-normal (x–y), spanwise wall-normal (y–z), or dual planes at various angles to
the flow [7–9]. Similar studies have been performed for turbulent channel flows using
data from Direct Numerical Simulations (DNS) [10, 11]. Results have shown that the
PDFs of the radii and peak vorticity of these vortices show only weak dependence on
Reynolds number and wall-normal position when scaled by the local Kolmogorov
length η and time-scales τ .

Less is understood about the dynamics and evolution of individual vortices. Using
time-series DNS of a turbulent channel flow (Reτ ≈ 800), Kag et al. [12] were able
to track clusters of fine-scale vortices from their generation at the base of the log
layer to their growth in scale as they convected downstream; however, no statistics
are given about the change in radius of individual vortices, their convection velocity
or their time-scale. Using a similar time-series channel flow, DNS Lozano-Durán
and Jimenéz [13] identified and tracked individual vortex clusters (or volumes) of
positive discriminant. Described as “sponges of strings” these clusters consist of
interconnected tubes with a radius of 7η, corresponding to the mean vortex radius
reported by [14] for both spanwise and streamwise 2D vortices. The growth and decay
of these clusters is investigated with and without taking into account the merging and
splitting of individual clusters. Clusters appeared to be advected by the local mean
velocity with only a slight bias toward moving away from the wall.

Recently LeHew et al. [15] used HR-PIV measurements of wall-parallel planes
(x–z) to investigate the convection and evolution of predominately wall-normal vor-
tical structures at Reτ = 410. Vortices were detected by thresholding regions of
wall-normal swirling strength λi , then classified by area, swirling strength weighted
centroid, and average velocity. The average trajectory velocities showed a greater
tendency toward velocities lower than the local mean U (y), when compared with
the average velocity in the vortex core. The majority of these structures were found
to exist for less than one eddy turnover time δ/U∞, where δ is the boundary layer
thickness and U∞ the freestream velocity. A small number of structures persisted
for more than 5δ/U∞. LeHew et al. [15] state that this time of 5δ/U∞ is similar to
the mean time spent in stable focus stretching, as predicted by the periodic nonlo-
cal mean topological flow evolution cycle [16]. However, that comparison fails to
account for the additional 5δ/U∞ time spent in unstable focus contraction, during
which time the swirling strength should remain nonnegligible. Using boundary layer
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DNS data Atkinson et al. [17] showed that this periodic mean topological evolution
is only associated with relatively weak flow gradients and large scale bulk motions.
For the stronger gradients associated with intense vortex structures, Atkinson et al.
[17] showed mean focal time-scales between 2 to 4δ/U∞, much closer to the longer
time-scales observed by LeHew et al. [15].

In the present paper, the analysis methodology of Herpin et al. [14] is applied
to time-resolved measurements of a turbulent boundary layer, performed in a large
water tunnel facility using HR-PIV. Statistics of individual prograde and retrograde
spanwise vortices are calculated from instantaneous fields and compared with exist-
ing databases. The centroid velocities are calculated based on the velocity relative
to the frame of reference of each vortex. Vortices are tracked in time at a resolution
of Δt = 0.008δ/U∞. The spatial coherence and lifetime of the detected vortices are
then explored.

2 Experimental Database

Analysis of the evolution of individual spanwise vortices is performed using velocity
fields obtained from HR-PIV measurements that were performed in a streamwise,
wall-normal plane (x–y) at a station approximately 4 m downstream of the con-
traction in the Laboratory for Turbulence Research in Aerospace and Combustion’s
(LTRAC) large horizontal water tunnel at Monash University. Flow was tripped at
the outlet of the contraction, after which a turbulent boundary layer develops along
the tunnel floor. The properties of the boundary layer at the measurement domain
are given in Table 1. Further details of the experiment can be found in Atkinson et al.
[2]. Velocity fields were computed with interrogation window size of 32 × 32 pixels
(or 23+ ×23+) with a light sheet thickness corresponding to 23+ wall units and with
a 50 % window overlap resulting in a grid spacing of Δx,y = 11.6+.

Table 1 Parameters of the HR-PIV boundary layer measurements

Boundary layer thickness δ+ = 840

Reynolds number Reθ = 2,250

Friction velocity uτ = 0.018 ms−1

Kinematic viscosity ν = 0.84 × 10−6 m2/s

Field-of-view (Lx , L y) 3.2δ, 1.7δ

2680+, 1424+

Spatial resolution (Wx ,Wy ,Wz) 0.03δ, 0.03δ, 0.03δ

23+, 23+, 23+

Vector spacing Δx,y = 11.6+

Temporal resolution Δt = 0.008δ/U∞
Δt = 0.3+
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Fig. 1 (a) Longitudinal velocity power spectra at y+ = 100 for unfiltered and filtered HR-PIV data,
compared with full resolution boundary layer DNS [19] and DNS filtered at the spatial resolution
of the HR-PIV; (b) Mean velocity profile; (c) Reynolds stresses

In order to reduce the influence of measurement noise, the PIV velocity data was
Gaussian filtered in both space and time with temporal and spatial cut-offs selected
to match the frequencies beyond which the velocity power spectra indicated that the
measurement noise was greater than the energy of the turbulence [2]. As detailed
in Atkinson et al. [18], it is important to compare the spectra and statistics obtained
from the measurement with the quantities obtained from lower noise measurements
or DNS data at the same spatial resolution. The spatial averaging inherent in PIV
measurements can otherwise mask the presence of measurement noise and produce
one-point statistics that appear to be in better agreement with higher spatial resolu-
tion data than they should. Figure 1 shows the longitudinal velocity power spectra
estimated from the PIV data before and after filtering, compared with DNS data sam-
pled at the full resolution and at the same spatial resolution as the HR-PIV. Filtered
HR-PIV profiles are shown to be in good agreement with DNS at the same resolution.

3 Vortex Detection and Classification

For planar data, where only the 2D velocity gradient tensor (VGT) is available ∂ui
∂x j

,
i = 1, 2, the majority of methods used to detect vortices are equivalent. In this
case, the imaginary part of the complex eigenvalues of the VGT, termed the swirling
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strength λi , is used to indicate regions of swirling flow. To account for the higher
swirling strength near the wall and to enable a thresholding operation to be performed
to identify locally significant vortices, the swirling strength is first normalized by the
standard deviation of the swirling strength σλi for each wall-normal height, such that

λ̂i (x, y) = λi (x, y)

σλi (y)
. (1)

A 3×3 point sliding average was applied to the normalized swirling strength field
to reduce the influence of measurement noise, before the detection of local extrema
with a minimum normalized value greater than 1.5 following [8, 14]. An Oseen vortex
was then fitted to each extrema using a Levenberg–Marquardt minimization over a
domain corresponding to the radius of the vortex, with the vortex model defined in
polar coordinates (r, θ ) as:

u(r, θ) = uc + Γ

2πr

(
1 − e

−
(

r
r0

)2
)

. (2)

where r0 is the vortex radius, Γ is the circulation and uc is the centroid velocity,
or the velocity relative to the vortex frame of reference. The fit was performed in
two passes with an assumed initial vortex radius of three points or ≈35+ wall units,
with the estimated radius from the first pass used to determine the fitting domain of
the second. To ensure that the region corresponds to a spanwise vortex, only regions
where the correlation between the model and the instantaneous vector field is greater
than 75 % are accepted as detected vortices.

In practice, approximate 80–90 % of the local swirling strength peaks show a
correlation with the Oseen model above 75 % with approximately 70 vortices detected
in each field. Figure 2 shows the mean velocity field conditioned on a local peak
in swirling strength at (x+, y+) = (0,175) and positive or negative vorticity. The

Fig. 2 Fluctuating velocity field conditioned on a local peak in swirling strength at (x+, y+) =
(0,175) for: (a) Γ < 0 (prograde vortex); and (b) Γ > 0 (retrograde vortex). Black arrows represent
the conditional mean field; gray arrows represents the Oseen vortex field
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conditional fields indicate the presence of what appear to be a spanwise vortex at their
center. Fitting the Oseen model to these conditional fields returns spanwise vortices
with radii of ro ≈ 25.2+ and ro ≈ 39.9+ for the negative vorticity (prograde vortex)
and the positive vorticity (retrograde vortex), respectively. The term prograde vortex
is used to describe a vortex with a negative spanwise vorticity ωz < 0 and circulation
(Γ < 0), which has a rotation in the same direction as the mean shear. In both
cases, the correlation between the model and the conditional field is approximately
99 %, over the radius of the vortex. Naturally, the flow field further away from the
vortex starts to differ from that of the Oseen model; however, the large percentage of
successful fits and the strong agreement between the conditional field and the vortex
model, suggest that the Oseen vortex is a good representation of the flow field in the
vicinity of local peaks in the swirling strength.

4 Vortex Statistics and Instantaneous Distribution

PDFs for the wall-normal position, radius and circulation of detected vortices, as
well as the mean radius of prograde and retrograde vortices detected at each wall-
normal height are shown in Fig. 3. Statistics are accumulated over 25,220 time-
steps or approximately 200 eddy turnover times. Figure 3a shows a lower number
of retrograde vortices near the wall with a peak at around y+ = 300, with a local
minimum at y+ = 600. In contrast, the number of prograde vortices is almost an
order of magnitude higher near the wall where the influence of the mean shear is
strongest. The number of prograde vortices decreases with wall-normal position,
with an equal likelihood of finding a prograde or a retrograde vortex for y+ ≥ δ+,
where δ+ ≈ 840. Figure 3c shows a similar trend for the distribution of circulation
magnitude, with retrograde vortices tending to have a weaker circulation, distributed
over a much narrower range.

The difference between the radii of the two vortex types is less significant. The
PDFs of both prograde and retrograde vortices (Fig. 3b) peak at r+ ≈ 25 before
decreasing logarithmically. In Fig. 3d, both vortices show an increase in mean radius
with wall-normal position up to a maximum of r+ ≈ 50 at y+ = δ+. Prograde
vortices are shown to be larger on average for y+ < δ+. For y+ ≥ δ+ both the
prograde and retrograde vortices are of the same size. These results are in good
agreement with those of Herpin et al. [14], with the exception of a slightly larger
mean radii in the present results. This is likely due to the lower spatial resolution of
the present measurement and it is inability to capture vortices with a radius less than
11+.

JPDFs of the velocity at the core of each vortex are shown in Fig. 4 as a function
of wall-normal position. For comparison, the local mean velocity is illustrated by the
overlaid black line. The core velocity represents the convection velocity relative to
the frame of reference of the vortex (or Oseen model). Core velocities are influenced
by the presence of local velocity fluctuations and also by the swirl generated by
surrounding vortices. Streamwise core velocities tend to be close to the local mean
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Fig. 3 PDFs of detected prograde (Γ < 0) and retrograde (Γ > 0) spanwise Oseen vortices: (a)
wall-normal vortex position; (b) vortex radius; (c) circulation; and (d) mean radius
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Fig. 4 JPDFs of instantaneous streamwise vortex centroid velocity with wall-normal position y+
for both: (a) prograde (Γ < 0); and (b) retrograde (Γ > 0) spanwise Oseen vortices. Dashed black
line represents the local mean velocity U (y)

velocity; however, the JPDFs show a greater skew toward lower velocities for the
prograde vortices. This results in a slightly lower average centroid velocity for the
prograde vortices at y+ < 200. Negligible differences were observed for the wall-
normal velocities.

The instantaneous distribution of these detected vortices is shown in Fig. 5. Con-
sistent with the hairpin packet model, the prograde vortices show a tendency to align
along the top surface of regions of low streamwise velocity. In contrast, the retro-
grade vortices are most frequently found on the lower surface of these low speed
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Fig. 5 Iso-contours of streamwise velocity fluctuations u′ with overlaid circles representing the
radii and location of the detected prograde (black) and retrograde (white) vortices

regions. Figure 5 also highlights the tight clustering of many of the detected vortices.
During detection, any two vortices whose centroids were less than one grid spacing
(Δx = 11.6+) away were merged, with their centroids and radii averaged and their
circulation combined. This merging was performed to prevent the fitting to multiple
swirling strength peaks from returning multiple copies of the same vortex. No further
restriction was place on the overlapping of these vortices. However, the presence of
overlapping vortices does reduce the correlation between the model and the instan-
taneous velocity field. This will subsequently limit the detection to regions where
overlapping vortices still show a strong correlation with the Oseen vortex model over
their radius.

5 Temporal Tracking and Coherence of Spanwise Vortices

To investigate the evolution of these spanwise vortices and determine their con-
vection velocity, it is first necessary to track their position through each time-step.
In the present work, vortices were detected in each time-step based on peaks in the
instantaneous swirling strength field (see Sect. 3), independent of any other time-step
information. For each vortex at time to, their approximate position at time to + Δt

is calculated based on the local mean velocity. The two vortices that are closest to
the expected location of the original vortex are then identified as potential candi-
date trajectories. These potential vortex locations are then validated, assuming the
displacement of the vortex centroid from the previous vortex location is within 0 to
2U (y)Δt in the x-direction and within ±2U (y)Δt for the y-direction, where U (y) is
local mean streamwise velocity. If both nearest vortices are deemed to be valid then
the original vortex is assumed to correspond to the one with the circulation closest
to that at the previous time-step.

Table 2 shows the mean, standard deviation, and maximum percentage of time that
a vortex is successfully located, relative to the number of time-steps where it should
remain in the experimental field-of-view (3.2δ), assuming no significant out-of-plane
motion. Statistics are also given for the number of consecutive time-steps over which
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a vortex is tracked, along with the vortex duration or predicted lifetime. The vortex
duration is longer than the consecutive tracking length as it allows for a single vortex
to be missed for a maximum of two consecutive time-steps. The results show that
for local peaks is swirling strength above a threshold of λ̂i > 1.5 and a correlation
between the Oseen vortex model and the instantaneous field of Rmodel > 0.75, a
successful track is only recorded for 8 % of the time when averaged over all the
vortices with the mean vortex trace only lasting for 0.02δ/U∞. The longest vortex
track lasts for the duration of the 100 time-steps considered; however, only 0.4 % of
the vortex traces last for more than 25 steps or 0.2δ/U∞. This suggests the lifetime of
spanwise vortices is considerably shorter than the 5δ/U∞ observed in the conditional
mean evolution of the flow topology [17].

To test if the minimal temporal coherence predicted by these results is the con-
sequence of either the threshold or the required model correlation, tracking was
performed using a range of parameters. As shown in Table 2, reducing the swirling
strength threshold and relaxing the model correlation did not increase the time
over which the detected vortices were tracked. Examination of consecutive fields of
detected vortices shows a tendency for some detected vortices to show rapid variation
in size, which subsequently results in large jumps in the detected vortex centroid and
occasional rearward movement. This is often the result of vortices moving toward or
away from others, resulting in a superposition of the swirl from both vortices which
can drastically influence the field around each. Tracking of local peaks in swirling
strength without fitting the vortex model results in a higher percentage of successful
traces and mean lifetimes approximately three times longer than that of the model.
At this stage, it is not clear whether most spanwise vortices only remain predomi-
nantly spanwise for less than one eddy turnover time and only resemble streamwise
aligned Oseen vortices for a very short time, or whether the results are limited by
our inability to extract an individual vortex from 2D slices of 3D fields that consist
of the superposition of many in plane and out-of-plane vortices.

6 Conclusions

Streamwise wall-normal velocity fields from HR-PIV measurements of a zero-
pressure gradient turbulent boundary layer flow are analyzed to detect and track
spanwise vortices at a temporal resolution of 0.008δ/U∞. To classify the centroid
position, velocity, radius, and circulation of prograde and retrograde spanwise vor-
tices, an Oseen vortex model is fitted to each local peak in swirling strength. Results
show good agreement with previously published vortex statistics; however, temporal
tracking shows that the mean lifetime of the spanwise Oseen vortices is only on the
order of 0.02δ/U∞. Comparison of the convection times for swirling strength peaks
show that the short lifetimes are at least partially due to restricting the detection to
an assumed vortex shape, which appears to be only weakly coherent in time.
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Boundary Layer Vorticity and the Rise
of “Hairpins”

Peter S. Bernard

Abstract The downstream evolution of the vorticity field in the vicinity of
hairpin-shaped regions of rotational motion appearing in the transitioning bound-
ary layer is examined. It is shown that the dynamics of hairpins is inseparable from
that of the nonrotational vorticity out of which they develop in a self-reinforcing
process of ejection and reorientation. Widening the concept of structure to include
the complete localized vorticity that produces hairpins, allows for a more complete
and self-contained explanation of the boundary layer physics.

1 Introduction

By their nature, boundary layers in high-speed flow contain prodigious amounts of
vorticity produced at the solid bounding surface by the action of viscosity. A vari-
ety of measurement techniques applied to either physical experiments or numerical
computations of boundary layers suggest the presence of “coherent” objects within
the vorticity field that make essential contributions to the dynamical behavior of the
flow. The possibility of arriving at a precise understanding of the boundary layer
structure depends on what is meant by “coherency,” a concept that is intrinsically
difficult to define. In recent times, this has come to mean distinctive “regions of
rotational motion” and the coherent objects discovered by this criterion are generally
hairpin-shaped [1], meaning a flow volume with one or two streamwise oriented
“legs” attached to a spanwise “arch.”

Since much of the vorticity in the boundary layer does not lie in regions where
rotational flow is occurring, the assertion that rotational regions are structures begs
the question as to what role the remaining, nonrotational, vorticity has both in the
dynamics of the boundary layer in general, and the rotational regions in particular.
The importance of this vorticity has been recognized previously, for example in [5]
where isosurfaces of spanwise vorticity reveal structural details that conform to the
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rotational field in the form of hairpins. In addition, several recent studies [2–4] using
a vortex filament scheme visualized vortex structure in the boundary layer without
the a priori decision that the structures must occupy regions of rotational motion.
This showed that hairpin-like regions of rotation have a natural association with
uplifting furrow-like folds in the surface vorticity layer that develop downstream
into mushroom-like shapes prior to descending into chaotic forms. It is evident from
results such as these that there is much to be gained by examining the vorticity
environment surrounding individual hairpinswith the goal of exposing the role played
by all of the vorticity that acts coherently to create the hairpins and that is essential
to the physics of the boundary layer. This is the focus of this study.

2 Vortex Filament Scheme

A vortex filament simulation of a spatially growing boundary provides the numerical
data for this study. Past work [3, 4] has described the numerical algorithm in detail.
It suffices for the present to mention that this is a hybrid approach in the sense that
vorticity determined from a finite volume solution to the viscous flow equations on
a thin wall mesh is converted to vortex filaments that represent the flow outside
the near-wall region. The mesh calculation is both more efficient and accurate at
resolving the largely 2D regions of intense vorticity diffusing out of the wall surface
than can be achieved using filaments. Within the filament field, hairpin removal
provides spatial and temporal intermittent dissipation at inertial range scales as well
as limiting growth in the number of vortices. The velocity is calculated using the
Biot–Savart law that takes into account the contributions from the vorticity in the
mesh and filaments. A velocity potential on the surface triangularization is used to
enforce the nonpenetration boundary condition.

The simulation considered here occupies a larger spatial region and higher
Reynolds number than in the previous work [4]. The boundary layer is computed
on the top and bottom surfaces of a flat plate with rounded edges of dimensionless
length 4 in the streamwise direction, 2.5 in the spanwise direction, and 0.05 thick.
The region from the front of the plate until x = 1 is kept as an inviscid surface so
that the boundary layer starts at x = 1. Thin regions on the sides and rear of the
plate are also taken to be inviscid. The advantage of setting up the flow this way is
that it successfully stabilizes the boundary layer against the large-scale spanwise and
wall-normal flow asymmetries that may appear in the unfettered viscous motion past
a finite plate.

The Reynolds number at the end of the boundary layer is Re = 225,000. Just after
the start of the viscous computation at x = 1, the boundary layer is smooth and is in
excellent agreement with the Blasius boundary layer as shown in Fig. 1 comparing
the computed velocity field with the Blasius result. Filaments produced in this region
are exactly aligned in the spanwise direction. Transition is induced by the response
of the many filaments and vortex elements in the mesh to slight perturbations that are
inherent in the discretization of the Biot–Savart law. Though the perturbations are
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Fig. 1 Velocity in the
Blasius region at x = 1.3. −,
similarity solution; •,
computed. The similarity
variable
η = y

√
Re/(x − 0.95)

includes a slight adjustment
to the virtual origin

very small initially, and originate entirely within the near-wall mesh, once provoked
they grow quickly due to the mutual interactions between vortices. The end result
is transition to turbulence, though at Reynolds numbers they are somewhat more
typical of a heavily forced flow. For the present simulation, this means that the fully
turbulent state is achieved at Re ≈ 100,000. With finer discretization this trend can
be reversed, though at significant increase in the cost of the simulation and without
qualitative change in the observed vortex structure.

To obtain information about the vorticity field for this study, the velocity was
computed on a fine mesh covering the flow domain and then substituted into second-
order accurate finite difference formulas to get the derivatives needed to compute
vorticity. The same dataset was used to compute λ2 whose isosurfaces mark the
presence of rotational regions in the flow field including the hairpins.

3 Vorticity and Structure

The filament calculation produces a Klebanoff-type transition bridging the gap
between the Blasius boundary layer and a fully turbulent flow. This transition mode
is marked by the presence of low-speed streaks and rotational structures as revealed
by λ2 in the form of hairpins. Figure2 gives an overhead view of the computed
λ2 = −30 isosurfaces from x = 1.4 until the onset of the fully developed turbulent
field. Apart from some noise at the upstream end caused by the locally low amplitude
of λ2 as well as the coarse discretization used in its computation, the visualization of
λ2 reveals Λ-like vortices preceding the formation of rotational regions in the shape
of hairpins spaced approximately Δz+ = 350 that are not unlike those seen in more
traditional grid-based simulations.
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Fig. 2 Overview of λ2 = −30 isosurfaces

To make sense of the vorticity field associated with the appearance of hairpins,
it is useful to consider the streamwise behavior of the maximum amplitudes of the
vorticity components at fixed distances above the wall. Such data is shown in Fig. 3
at a point inside (y+ = 24.3) and a point outside (y+ = 51.3) the near-wall viscous
region. In these plots, the maxima are restricted to the local spanwise region of
a particular Klebanoff streak, in this case the one located between 0.15 ≤ z ≤
0.25. Other streaks give qualitatively the same result with some small shifting in the
streamwise direction. For each figure, the appropriate Blasius spanwise vorticity ω3
is plotted as a dashed line that shows how the boundary layer would behave in the
same location if it had remained laminar. In all cases, the turbulent solution departs
smoothly from the Blasius values as the flow transitions.

Vertical lines in Fig. 3 indicate three relatively distinct zones in the evolution of
the vorticity as it impacts the hairpins. The first region, between x = 1.4 and 1.7, is
characterized by a steady increase in the streamwise (ω1) and wall-normal (ω2) vor-
ticity components near the wall. This is significant if for no other reason than the fact
that such nonspanwise vorticity is absent in the Blasius boundary layer. Downstream
of the first zone there commences a number of significant changes to the vorticity
amplitudes including a dramatic drop in the magnitude of ω3 that effectively ends
any remaining connection it has to the laminar form. The region 1.7 ≤ x ≤ 1.9 is
singled out as being distinctive because of the structural transformation accompany-
ing the vorticity behavior in Fig. 3. The end result of the developments in the second
zone is to enable the appearance of the fully formed hairpin-like rotational regions
located downstream of x > 1.9 that characterize transition until the breakdown to
fully turbulent flow.

To give more context to the ensuing discussion, the trends in the vorticity magni-
tude both closer and further from the wall than is considered in Fig. 3 are displayed
in Fig. 4. Figure4a shows that after transition there is a very large increase in the
spanwise vorticity at y+ = 8.1 to values much higher than in the equivalent lami-
nar boundary layer. This state persists indefinitely downstream and underlies all the
activity that produces turbulent structure. In particular, this reservoir of very high vor-
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Fig. 3 Streamwise dependence of the maximum vorticity amplitude 0.15 ≤ z ≤ 0.25. a at y+ =
24.3; b y+ = 51.3. ω1, (· · · , blue); ω2, (− · −, cyan); ω3, (—, red). Dashed line is the equivalent
ω3 for the Blasius boundary layer

Fig. 4 Streamwise dependence of the maximum vorticity amplitude 0.15 ≤ z ≤ 0.25. a at y+ ≈
8.1; b y+ = 89.1. Definitions of curves are the same as in Fig. 3
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ticity is undoubtedly the source of all “new” vorticity that enters into the creation of
downstream structures after transition. The vorticity trends in Fig. 4b at y+ = 89.1—
a region well beyond the direct reach of the viscous boundary layer—shows the last
stages in the creation of structure during transition.

Zone 1.The onset of the streamwise structure in Fig. 2 is in the same location as the
steady growth in streamwise vorticity near the wall in Fig. 3a. Upstream of x = 1.4
the magnitude of ω1 is a very slight fraction of the ambient spanwise vorticity, but
after x = 1.4 it grows significantly becoming more than one third of the magnitude
of ω3 by x = 1.7. There is also a somewhat smaller, but non-negligible, rise in
wall-normal vorticity accompanying that of ω1. The location where these vorticity
components grow is very close to the boundary, entirely within the viscous region
of large spanwise vorticity out of which ω1 and ω2 develop by reorientation. The
physical boundary no doubt has an influence on suppressing ω2 in this region.

An idea of the structural form taken byω1 as it appears in the flow is given in Fig. 5a
showing its isosurfaces at four locations in zone 1. The streamwise vorticity has
formed into oppositely signed concentrated pairs consistent with the λ2 isosurfaces in
Fig. 2, and is strengthening with downstream distance. Overlying the ω1 isosurfaces,
though not shown, is the smaller wall-normal vorticity.

It can be anticipated that there is some loss of ω3 as ω1 and ω2 develop from its
reorientation. On the other hand, the counterrotating velocity created by ω1 causes
significant convection of ω3 away from the wall. This effect is apparent in Fig. 5b
giving a visualization of the ω3 contours at locations in zone 1. Spanwise vorticity
decreases near the wall accompanied by its simultaneous rise away from the wall.
As the spanwise vorticity is propelled upward, its place is filled by low-speed fluid
forming a streak.

The trends in zone 1 of Fig. 3 are consistent with the outward ejection process.
For example, in the region just beyond x = 1.55 the loss of spanwise vorticity shows
up at y+ = 24.3, while at y+ = 51.3 there is a gain. Note, as well, that there is little

Fig. 5 Isosurfaces of vorticity at several locations in zone 1. a Green, yellow, and red correspond to
ω1 = −10,−20, and −30, blue, cyan, and magenta are ω1 = 10, 20, and 30 (increasing inwards);
b green, blue, cyan, and red correspond to ω3 = −25,−50,−75, and −100 (increasing towards
wall)
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nonspanwise vorticity at y+ = 51.3 suggesting that the reorientation process that
produces such vorticity has yet to rise up to this level above the wall.

Zone 2. Now consider the vorticity trends in Fig. 3 for 1.7 ≤ x ≤ 1.9 that is
taken to be the second development zone of the structures. A prominent feature is a
precipitous drop—to one-fifth of its maximum value—of the spanwise vorticity at
y+ = 24.3. A significant decrease in ω3 also occurs at y+ = 51.3, though delayed
until x = 1.8. Near the wall the streamwise vorticity increases and levels off, while
there is a sudden and substantial growth in the wall-normal vorticity at y+ = 51.3
until it exceeds the local amplitude ofω3. Thepicture that emerges from these trends is
that near the wall the reorientation process by which streamwise vorticity develops
from ω3 has run its course. At the same time, the prodigious amount of ejected
spanwise vorticity, nowoutside the near-wall domination of viscous diffusion, rapidly
reorients to establish a significant presence of wall-normal vorticity that reaches a
good distance from the wall. The latter process is also visible in Fig. 4b at points even
further downstream where a sudden and significant growth in spanwise vorticity is
followed immediately by the production of wall-normal and streamwise vorticity.
With its rapid conversion to ω1 and ω2, the local dominance of spanwise vorticity
ends at these distances from the wall.

Some of the trends in zone 2 are illustrated in the isosurfaces of ω2 and ω3 shown
in Fig. 6. ω2 grows to prominence as an oppositely signed pair with a concentration
at its upper end coinciding with the λ2 isosurfaces at the same location. Though not
shown, there is a growing presence of ω1 in this region as well. Figure6b shows
that the continued ejection of spanwise vorticity results in its collection in the region

Fig. 6 Isosurfaces of vorticity at several locations in zone 2. a green, yellow, and red correspond to
ω2 = −10,−20, and − 30, blue, cyan, and magenta are ω2 = 10, 20, and 30 (toward the center);
b green, blue, cyan, and red correspond to ω3 = −20,−45,−70, and − 95 (toward the wall)
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Fig. 7 Isosurfaces of vorticity at the end of zone 2: ω1 = ±30, blue and green; ω2 = ±20, yellow
and cyan; and ω3 = -40, red and magenta

between the counterrotatingmotions. Near thewall,ω3 continues to fall inmagnitude
even though it strengthens in the fluid sublayer closest to the boundary as seen in
Fig. 4a.

A summary of the state of affairs at the end of zone 2 is given in Fig. 7 that shows,
in one plot, isosurfaces of the three vorticity components. Prominent features include
the strong streamwise vorticity near the wall that forms a counterrotating pair, the
wall-normal vorticity that has developed outside of the near-wall flow, and finally, the
significant spanwise vorticity that collects within the region between the emerging
“legs” of the hairpin.

Zone 3. Coincident with x ≈ 1.9 in Fig. 2 rotational regions with the character
of hairpin “legs” emerge out of the λ2 isosurfaces. Further downstream, arch-like
structures can be found that cross between the streamwise structures.With increasing
x , the isosurfaces reveal a breakdown of the rotational regions into a wide range of
more complicated rotational forms. A notable aspect of the vorticity maxima in this
region, seen in Figs. 3b and 4b, is the development of relatively large sustained peaks
in the streamwise vorticity that now dominate the other components. Evidently, this
is the vorticity that is responsible for the presence of hairpin “legs,” and it appears
as the final phase of the conversion of the spanwise vorticity that has been ejecting
outwards from the wall.

Previous work that concentrated on examining the vortex filament field in tran-
sition [4] showed a direct connection between hairpin “legs” and the lobes of
mushroom-shaped structures in the vortex filaments that emerged out of the sur-
face vorticity layer. Such patterns are present among the developing hairpin regions
in the current simulation as well, and an example of this is shown in Fig. 8b. Accom-
panying this image, in Fig. 8a, is a view of the isosurfaces of the three vorticity
components at the same location. The streamwise vorticity occupies the “legs”
that are coincident with the lobes of the filament structure, while the wall-normal
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Fig. 8 Comparison of vorticity isosurfaces in a hairpin with the local vortex filament field. a
Isosurfaces: ω1 = ±30, blue and green; ω2 = ±15, yellow and cyan; ω3 = −15, red; b vortex
filaments intersecting 2.18 ≤ x ≤ 2.2, red and blue filaments are close to the streamwise direction

Fig. 9 Isosurfaces of vorticity associated with a hairpin as they develop in zone 3: isosurfaces have
the same interpretation as in Fig. 8

vorticity extends upwards through the boundary layer encompassing the stem of the
mushroom. Finally, some streamwise vorticity persists at the top of the structure.

An extended streamwise view of the vorticity isosurfaces for this structure is
given in Fig. 9 that may be taken as a summary statement of what is entailed in a
complete view of the vorticity field associated with hairpins. Spanwise and wall-
normal vorticity accompany the prominent counterrotating streamwise vorticity as a
legacy of the mechanisms by which the hairpin-like region developed. It should be
emphasized that because the mushroom-like form is unstable, it often falls to one
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side or the other producing single-legged hairpins [4]. For this common occurrence,
elements of the vorticity arrangement in Fig. 9 are present even if they do not fully
resemble the somewhat idealized case depicted here.

Locations above the hairpin “legs” where the spanwise vorticity is concentrated
are where the λ2 signal is likely to indicate the presence of an arch vortex. This
agrees with the observation in previous work [2, 4] that the filament field forms
concentrated spanwise structure at the locations of arches.

4 Summary and Conclusions

Some essential aspects of the development of the vorticity field in a transitional
boundary layer have been examined as it relates to the presence of hairpin-like
structures. It is seen that by considering the complete local vorticity field surrounding
hairpins, and not focusing exclusively on the rotational motion by which they are
defined, the dynamics of the hairpins as well as those of the boundary layer itself
can be more clearly understood.

It is found that counterrotating regions of streamwise vorticity develop in the
viscous sublayer via a self-reinforcing process in which they are strengthened by the
spanwise vorticity that they cause to eject. Thus they fuel their own development. As
the spanwise vorticity extends beyond the viscous sublayer, it shears to create wall-
normal vorticity that concentrates away from the boundary. Out of this vorticity,
streamwise vorticity appears and accumulates to form the hairpins. The ejection
process near the wall proceeds until the available spanwise vorticity is depleted.
Remnants of the ejected spanwise vorticity, perhaps aided by a roll-up process,
persists in the outward flowing regions to produce isosurfaces of rotation that give
the impression of arch-type vortices connecting the “legs” of the structures.

A main conclusion is that while it is tempting to view the streamwise isosurfaces
of λ2 as forming hairpin “structure,” without also taking into account the active role
of the surrounding nonrotational vorticity, the analysis of hairpins misses essential
clues to the physics of the boundary layer. For example, the initial appearance of
streamwise rotation near the wall is only as a perturbation upon the dominant and
“invisible” spanwise vorticity field. Downstream, largelymissed by λ2 isosurfaces, is
ejecting spanwise vorticity that provides the “fuel” out of which the hairpins appear.
Shearing of nonrotationalwall-normal and spanwise vorticity explains the emergence
of hairpin-shaped rotational regions that constitute just one aspect of a much more
intricate vortical structure than is visible as a “hairpin.”

After the ejection process depletes spanwise vorticity, it regenerates from the very
high vorticity that persists at all times at the wall surface. It is likely that low-speed
streaks in the fully turbulent region pinpoint locations where some variants of the
ejection mechanism described here act to produce additional vortical structures that
work their way to the outer flow. Vortical structures and their remnants accumulate
away from the wall and fill out the growing turbulent boundary layer.
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and Tensor Investigation
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Abstract In the presentwork, direct numerical simulations of turbulent channel flow
of a viscoelastic FENE-P fluid, at zero-shear friction Reynolds number equal to 180,
are used to analyze the polymer extensionmechanism.As a primary focus, the relative
polymer stretch and the probability distribution function of the alignment between
the conformation tensor and other relevant entities are investigated. In near-wall
regions, polymers present a strong tendency to orient along the streamwise direction
of the flow. Furthermore, the polymer extension seems to be strongly correlated
to the alignment between both conformation tensor and the velocity fluctuations
product tensor, τ ′ (defined as u′

i u′
j ). Joint probability density functions show that

large positive polymer work fluctuations, E ′
x , are closely related to the positive

growth rate of the product of streamwise velocity fluctuations, ∂t u′2
x . In contrast,

small negative fluctuations of polymer work are observed in the regions of negative

rate of u′2
x . However, in both cases, polymers are predominantly oriented along the

principal direction of τ ′, which indicates the relevance of this tensor for the polymer-
turbulence interaction mechanism.
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1 Introduction

The addition of a small amount of high molecular weight polymers can lead to a
pressure drop decrease in turbulent flows. Since this first observation [1–3] numer-
ous experimental studies have been conducted in attempts to make practical use of
polymer-induced drag reduction including long-distance transportation of liquids,
oil well operations, firefighting, transport of suspensions and slurries, and biomed-
ical applications [4]. In a remarkable and pioneering work, Virk et al. [5] performed
careful analyses with an experimental turbulent pipe flow apparatus and showed that
whether the friction drag for pipe flows is plotted in Prandtl-Kármán coordinates,
polymer-induced drag reduction (DR) departs from Prandtl-Kármán law (onset of
DR) to its bound, so-called maximum drag reduction (MDR) or Virk asymptote, as
a result of Reynolds number, polymer concentration or polymer molecular weight
increases. Over the years, researchers have successfully analyzed relevant aspects of
this phenomenon [6]. However, up to now, there has been no definitive consensus
concerning the interactions between the turbulent energy and polymer deformations.

Phenomenological polymer drag reduction explanations gravitate around two
major theories. According to the viscous theory independently proposed by Lumley
[7] and Seyer and Metzner [8], and supported by Ryskin [9], polymer stretching in
a turbulent flow produces an increase in the effective viscosity in the region outside
of the viscous sublayer and in the buffer layer which suppress turbulent fluctuations,
increasing the buffer layer thickness and reducing the wall friction. The elastic the-
ory postulated by Tabor and de Gennes [10] assumes that the elastic energy stored
by the polymer becomes comparable to the kinetic energy in the buffer layer. Since
the corresponding viscoelastic length scale is larger than the Kolmogorov scale, the
usual energy cascade is inhibited, which thickens the buffer layer and reduces the
drag.

In an attempt to quantify the viscous scenario, L’vov et al. [11] used conservation
principles to show that an additional effective viscosity growing linearly with the
distance from the wall in the buffer layer has similar effects to those observed by
the addition of flexible polymers in turbulent flows. This theoretical prediction was
later confirmed by De Angelis et al. [12], who performed DNS of Newtonian turbu-
lent flows with an added viscosity profile obtaining results previously observed in
viscoelastic FENE-P simulations. Additionally, the authors showed that, using this
simple linear viscosity model, they were capable to predict the maximum drag reduc-
tion asymptote, a point discussed in detail by Benzi et al. [13]. It is also important
to note that the elastic theory has been actively explored. Min et al. [14] conducted
DNS of turbulent drag reducing channel flows in which the dilute polymer solution
is simulated using the Oldroyd-B model. Their results showed good agreement with
previous theoretical and experimental predictions of the onset of DR at specific fric-
tion Weissenberg numbers, which is interpreted based on elastic theory. Min et al.
[14], as well as Dallas et al. [15], describe an elastic scenario in which the elastic
energy stored in the near-wall region due to the uncoiling of polymer chains is trans-
ported to and, in some portion, released in the buffer and log layers. This storage of
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energy around near-wall vortices was confirmed byDubief et al. [16], who performed
DNS of turbulent polymer solutions in a channel using the FENE-Pmodel, although,
in contrast with Min et al. [14] and Dallas et al. [15], they proposed an autonomous
regeneration cycle of polymer wall turbulence in which coherent release of energy
occurs in the very near-wall region, just above the viscous layer.

Despite the discrepancies between the two most prominent theories, what seems
to be in accordance with both scenarios is the relevance of the coil–stretch polymer
process, which further imposes a transient behavior on drag reduction as well as
subsequent polymer degradation as a consequence of high polymer elongation. In
the present work, we investigate the process of polymer coil–stretch with the aid
of direct numerical simulations of turbulent channel flow of a viscoelastic FENE-P
fluid, at zero-shear friction Reynolds number equal to 180. Tensor and statistical
analyses are developed. The relative polymer stretch and the alignment between
the conformation tensor and other relevant entities are studied. Additionally, joint
probability density functions are used in order to correlate the polymer–turbulence
exchanges of energy and polymer orientations.

2 Methodology

A turbulent channel flow of an incompressible dilute polymer solution is considered.
The channel streamwise direction is x1=x , the wall-normal direction is x2 = y,
and the spanwise direction is x3 = z. The instantaneous velocity field in the respec-
tive directions is (u1, u2, u3) = (u, v, w). The governing equations are scaled with
the channel half-gap h, the bulk velocity Ub, and the fluid density ρ. The scaled
momentum equations get the form

∂ui

∂t
+ u j

∂ui

∂x j
= ∂p

∂xi
+ β0

Reb

∂2ui

∂x2j
+ (1 − β0)

Reb

∂Ξij

∂x j
+ eiδi1. (1)

In Eq.1, β0 is the ratio of the Newtonian solvent viscosity (νN ) to the total
zero-shear viscosity (ν0 = νN + νp0), and the bulk Reynolds number is Reb =
ρUbh/ν0.The extra-stress tensor is denoted by Ξij and the quantity eiδi1 represents
the non-periodic pressure gradient driving the flow in the streamwise direction. The
formalism of Eq.1 includes the assumption of a uniform polymer concentration
which is governed by the viscosity ratio β0 where β0 = 1 yields the limiting behav-
ior of the Newtonian case.

The extra-stress tensor (Ξij) in Eq.1 holds the polymer contribution to the solution
tension. Such contribution is accounted for with a single spring-dumbbell model.
We consider here the kinetic theory Finitely Extensible Non-linear Elastic in the
Peterlin approximation (FENE-P) model. The FENE-P model is mostly preferred
due to its physically realistic finite extensibility of the polymer molecules and to
its relatively simple second-order closure. This model considers the phase-averaged
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conformation tensor cij = 〈qi q j 〉, where qi are the components of the end-to-end
vector of each individual polymer molecule. The extra-stress tensor is then Ξij =
{ f (tr (C)) cij − δij}/Web in which Web = λUb/h is the bulk Weissenberg number
(λ being the relaxation time scale), δij is the Kronecker delta operator and f (tr (C))

is given by the Peterlin approximation f (tr (C)) = (
L2 − 3

)
/
(
L2 − tr (C)

)
, where

L is the maximum polymer molecule extensibility and tr(.) represents the trace
operator. The governing equation for the conformation tensor is

∂Cij

∂t
+ uk

∂Cij

∂xk
− ∂ui

∂xk
Ckj − ∂u j

∂xk
Cki + f (tr (C)) cij − δij

Web
=

(
1

PrcReb

)
∂2Cij

∂x2k
.

(2)

in which Prc = ν0/ρκc is a stress Prandtl number defined as the ratio of the total
kinematic zero-shear rate viscosity (ν0/ρ) to an artificial stress diffusivity κc. This
explicit elliptic diffusion term included in 2 is necessary to remove non-physical high
wave-number instabilities typically induced by the chaotic nature of viscoelastic tur-
bulent flows.This dissipative termwasfirst introduced in this context bySureshkumar
and Beris [17], and the methodology subsequently validated under a variety of flow
and material parameter values [18]. The numerical scheme for DNS used here was
carefully detailed by Thais et al. [19].

3 Results and Discussion

A viscoelastic fluid can have significantly different mean and turbulent statistical
behavior than a Newtonian fluid. For a given turbulence level as parameterized by
the zero-shear friction Reynolds number, Reτ (being Reτ = ρuτ h/ν0, where uτ is
the friction velocity), this effect can vary with the frictionWeissenberg number, W eτ

and maximum polymer extension length, L . In this work, one Newtonian flow and
four viscoelastic FENE-Pflows are examinedkeeping Reτ = 180fixed andusing two
different values of Weτ (being W eτ = λρuτ

2/ν0), and L (Weτ = 50; Weτ = 115;
L = 30; L = 100). Our main results are separated into two parts. In Sect. 3.1,
we analyze the evolution of polymer stretch along the wall distance, y+, of which
the effects on near-wall vortices and dependence on L and Weτ are investigated as
well. Tensor and statistical investigations, and polymer–turbulence energy exchange
analysis are conducted in Sect. 3.2 in an attempt to verify the alignment between the
conformation tensor and other relevant entities and its effects on turbulent energy
transfers.
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Fig. 1 The three-dimensional structures represent isosurfaces of vortical regions defined as the
positive second invariant of velocity gradient tensor, ∇u. The colors in figures indicate the polymer

stretch, tr
(

C
L2

)

3.1 Polymer Stretch

The three-dimensional structures showed in Fig. 1 represent isosurfaces of vortical
regions defined as the positive second invariant of velocity gradient tensor, ∇u, in
Newtonian (a) and viscoelastic (b) flows. For incompressible flows, the second invari-
ant of ∇u, the so-called Q-criterion [20], is simplified Q = 1/2

(||W||2 − ||D||2),
which indicates spatial regions where the Euclidean norm of the rate of rotation ten-
sor, ||W||, dominates that of the rate of strain, ||D||. Both D and W are defined as
1
2

(∇u + ∇uT
)
and 1

2

(∇u − ∇uT
)
, respectively.

Comparing Fig. 1a, b it is observed that the number of vortices with a value of Q
criterion equal to 0.7 decreaseswith increasing of elasticity (Weτ and L). In viscoelas-
tic flows the vortical structures are significantly weaker than in the Newtonian flow,
which is considered a fundamental evidence of the polymer–turbulence interactions
and the consequently drag reduction [6, 21, 22]. As the elasticity increases, some
vortices characteristic change. Their thicknesses and streamwise lengths increase,
while their strengths weaken. Furthermore, vortices become more parallels to the
wall. It has been experimentally and numerically shown that, in drag reducing flows,
the streamwise component of the Reynolds normal stresses increase relative to the
Newtonian case, while the other components of the Reynolds stress tensors decrease
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Fig. 2 Evolution of xz-plane
average polymer stretch,

〈tr
(

C
L2

)
〉

xz
, along the wall

distance, y+, normalized
with the local friction
velocity, uτ

[23, 24]. These variations seem to be closely connected with the coil–stretch poly-
mer transition and the following vortex structural changes [25]. The colors in Fig. 2b

indicate the relative polymer stretch, tr
(

C
L2

)
. The yz-planes show that polymers are

more stretched close to the wall (yellow and red regions). In contrast, polymer exten-
sions are less pronounced in the middle of channel (blue regions). The isosurface
colors and those of the intersections between vortical structures and yz-planes show
that polymers present a more significant extension around the near-wall vortices.

The polymer stretch can be seen more clearly in Fig. 2, where the evolution
of xz-plane average normalized trace of the instantaneous conformation tensor,

〈tr
(

C
L2

)
〉

xz
, along the wall distance, y+, is displayed (solid lines) together with the

normalized streamwise normal component of the conformation tensor, 〈
(

Cxx
L2

)
〉

xz

(open symbols). The polymer extension percentage, 〈tr
(

C
L2

)
〉

xz
, is relatively high at

the wall, achieving a peak in the near-wall region, of which the exact location varies
with L and Weτ . This peak is commonly associated with the streamwise vortices

[15, 16, 25]. After this point, 〈tr
(

C
L2

)
〉

xz
starts to decrease until reaches a minimum

value at the channel center.
In comparing both gray and red solid lines in Fig. 2, it is clearly observed that

〈tr
(

C
L2

)
〉

xz
decreases with increasing L , keeping fixed Reτ andWeτ , which suggests

that large polymer molecules could be less susceptible to chain scission degradation
[26, 27]. A further comparison of red and green solid lines reveals that the relative
polymer extension becomes greater as the friction Weissenberg number increases,
since higher values of polymer time scale are influenced from a wider spectrum of
flow time scales [15]. Figure2 also shows that the dominant contribution in confor-
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mation tensor trace comes from Cxx , i.e., 〈tr
(

C
L2

)
〉

xz
≈ 〈

(
Cxx
L2

)
〉

xz
(especially near

the wall). This distribution suggests a significant stretching of the polymeric chain
in the streamwise direction. The analysis of the conformation tensor trace reveals

two locations of interest: y+ = 8.2, the approximate position where 〈tr
(

C
L2

)
〉

xz
is

maximum; y+ = 180, where the conformation tensor trace reaches its minimum
value.

3.2 Tensor and Statistical Analysis of Polymer Orientation
and Polymer–Turbulence Exchanges of Energy

Figure3 shows the evolution of xz-plane average cosine of the angle Φ between
the principal direction of relevant entities, e1 (the eigenvector related to the largest
eigenvalue) and the streamwise direction, ex , along y+. These relevant entities corre-
spond to the conformation tensor, C, the velocity fluctuations product tensor, τ ′, the
rate of strain tensor, D, and the vorticity vector, ω, which is defined as the non-null
components of W.

For all viscoelastic fluids investigated here, the conformation tensor (open gray
balls) exhibits an important alignment along the streamwise direction, which is more
pronounced at the wall, achieving a minimum value in the middle of channel (a).
This minimum value grows with increasing of both Weτ and L . Consequently, in the
most viscoelastic case (b), 〈cos (

eC
1 , ex

)〉xz ≈ 1 for any wall distance.

(a) (b)

Fig. 3 Xz-plane average cosines of the angles between the principal direction of a given tensor and
the unit vector ex along the normalized wall distance, y+
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The rate of strain tensor (red diamonds) presents a similar behavior of that
described for C. The average angle between D and e1 is maximum and equal to
45o within the viscous sublayer (0 < y+ < 5) since the main component of the
strain rate in this flow region comes from the wall-normal shear ∂u

∂y . As the wall dis-

tance increases, ∂u
∂y becomes less important and 〈cos (

eD
1 , ex

)〉xz decreases smoothly

from the buffer layer (5 < y+ < 30) to the outer layer (y+ > 50). However, as Weτ

and L rise, this 45 degrees angle is maintained, even at y+ far from the wall (see
Fig. 3b), a fact linked whit the extension of the buffer layer region into the channel
caused by the polymers [24].

The orientation of τ ′ along the streamwise direction is relatively accentuated at the
wall, achieving a peak in the near-wall region, of which the exact location vary with

L and Weτ as well as 〈tr
(

C
L2

)
〉

xz
. After this point, 〈cos

(
eτ ′
1 , ex

)
〉

xz
stars to decrease

until reaching a minimum value at the channel center. Comparing Fig. 1a, b, it is

clearly observed that 〈cos
(

eτ ′
1 , ex

)
〉

xz
increases when the elasticity is incremented.

Looking at the relative orientation between the vorticity vector and the stream-
wise direction (green squares), it can be concluded that the peak magnitude of
〈cos (

eω
1 , ex

)〉xz is smaller than that for the other curves in Fig. 1, presenting a zero
wall value and growing with increasing wall distance. This peakmagnitude falls with
increasing elasticity sinceω becomesmore aligned along the spanwise directionwith
increasing Weτ and L (not shown here).

It is worth noting that the preferential orientation of both C and τ ′ along the
x direction reveals a strong coaxiality between these two tensors. This alignment
seems to play an important role in both coil–stretch process and polymer–turbulence
exchanges of energy, which is clarify in Fig. 4. For this figure, let us consider the
Reynods stress equation,

1

2

∂u′
x
2

∂t︸ ︷︷ ︸
T ′

x

= −u′ ∂
(

u′
x u′

j

)
∂x j︸ ︷︷ ︸

A′
x

− u′
x
∂p′

∂x︸ ︷︷ ︸
P ′

x

+ β0

Reb
u′

x
∂u′

x
2

∂2x j︸ ︷︷ ︸
V ′

x

+ (1 − β0)

Reb
u′

x

∂Ξ ′
x j

∂x j︸ ︷︷ ︸
E ′

x

, (3)

where the instantaneous amount of energy which is stored (E ′
x < 0) or released

(E ′
x > 0) by polymers from the streamwise velocity fluctuation, u′

x , is represented
by Ex . The complementary work terms denote de advection A′

x , the pressure redis-
tribution P ′

x , and the viscous stress V ′
x , all of them in the streamwise direction. The

sum A′
x + P ′

x + V ′
x is referred here as to Newtonian work, N ′

x [16].
Figure4 shows three different joint probability density functions (JPF) considering

the xz-plane located close to the wall, at y+ = 8.2 (approximately where the relative
polymer extension is maximum), for the less viscoelastic case analyzed here (Weτ =
50, L = 30). The black solid line refers to the JPF of E ′

x versus T ′
x , whereas the

dashed line indicates the JPF linking E ′
x and N ′

x . Lastly, the dot-dash line represents
the JPF which considers the polymer work fluctuation and the cosine of the angle
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Fig. 4 Joint probability
density functions of polymer
work versus other relevant
quantities at y+ = 8.2. For
each work term, fluctuations
are normalized by the
respective standard global
deviation

between the principal directions C and τ ′. The work terms were normalized by their
respective spatial root mean square (rms, which considers the whole channel).

First, with regard to Fig. 4, it is important to observe that polymers are allowed
to coil within this region due to the reduction of turbulent kinetic energy (T ′

x ) by
viscous dissipation (V ′

x ), as exposed by Dubief et al. [16]. In comparing Newtonian
work to polymer work, it is apparent that large positive polymer work fluctuations
occur in regions where the Newtonian turbulent work is negative. In contrast, E ′

x

is closely related to the positive growth rate of the product of streamwise velocity
fluctuations, ∂t u′2

x , indicating an important injection of energy into the flow. Quite
surprisingly, in these both opposite scenarios, polymers are predominantly oriented

along the principal direction of τ ′ (cos
(

eC
1 , eτ ′

1

)
≈ 1), which reveals the relevance of

this tensor for the polymer–turbulence interactions. These observations are equally
valid for the other viscoelastic cases (not shown here).

4 Final Remarks

We investigated the process of polymer coil–stretch with the aid of direct numerical
simulations of turbulent channel flows. One Newtonian flow and four viscoelastic
FENE-P flows were examined keeping Reτ = 180 fixed and using two different
values of Weτ and L (Weτ = 50; Weτ = 115; L = 30; L = 100). Polymers present
a strong tendency to orient along the streamwise direction of the flow in near-wall
regions (where their extension are accentuated), as well as the velocity fluctuations
product tensor, τ ′. Joint probability density functions show that large positive polymer
work fluctuations, E ′

x , are closely related to the positive growth rate of the product
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of streamwise velocity fluctuations, ∂t u′2
x . In contrast, small negative fluctuations of

polymer work are observed in regions of negative rate of u′2
x . However, in both cases,

polymers are predominantly oriented along the principal direction of τ ′.
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Velocity of Line Plumes on the Hot Plate
in Turbulent Natural Convection

Vipin Koothur and Baburaj A. Puthenveettil

Abstract We measure the velocity field in a horizontal field near the hot plate in
turbulent convection using stereo PIV for 106 < Raw < 109 and 5.2 < Pr < 4. We
then extract the line plumes from this velocity field using a divergence criterion using
the PIV technique on the obtained plume structures, which gives us the velocity field
of the plume motion. The statistical analysis of this velocity field of the plume motion
shows the coexistence of two different kinds of motion of the plumes, lateral merging
and motion along the plumes.

1 Introduction

Natural convection over a heated horizontal plate, where a fluid layer of height H
is heated from the bottom is extensively studied as a simple system of buoyancy
generated turbulence in laboratories. Such flows are characterized by the Rayleigh
number and Prandtl numbers, given by

Ra = gβΔTw H3/να, Pr = ν/α (1)

and a geometric parameter AR = L/H. The nondimensional flux Nusselt number
Nu = q/(αΔTw/H), depends on the above parameters. Here, g is the acceleration
due to gravity, β is the coefficient of thermal expansion, ΔTw is the temperature
difference between the hot plate and the bulk fluid, ν is the kinematic viscosity, α

is the thermal diffusivity, L is horizontal dimension of the fluid layer, and q is the
kinematic heat flux. The flow near the hot plate is characterized by rising sheets of
fluids called line plumes which are separated by the surrounding bulk fluids which
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entrain into them. Dynamics of these line plumes on the wall is important since they
play a major role in the transport of heat from the hot plate to the bulk.

Spangenberg and Rowland [10] were the first to study these structures experimen-
tally at the free surface in evaporative convection, they found the transient nature of
forming, random motion, and plunging down of line plumes. Sparrow, Husar, and
Goldstein [5] also studied the patterns of line plumes on a horizontal plate with no
sidewalls. Theerthan and Arakeri [11] visualized these structures using liquid crystal
sheet and found that these line plumes move about randomly and the adjacent plumes
merge with each other most of the time. Zocchi et al. [13] used encapsulated liquid
crystal particles to visualize and measure the horizontal velocities of these plumes.
Puthenveettil and Arakeri [8] captured the planform of near wall structures in con-
centration driven convection and found that the PDF of the spacing between these
plumes showed a common log-normal form at different Ra and Pr. The mean plume
spacing at any Ra and Pr was shown to be proportional to the near wall length scale
in turbulent convection

Zw = (να/gβΔTw)1/3 = H/Ra1/3
w (2)

(Puthenveettil and Arakeri, Theertan and Arakeri [8, 11]). Puthenveettil et al. [9]
gave the relation for the total length of the plume in any given area A at any Raw and
Pr as

L p = A/C1 Prn1 Zw (3)

where C1 = 47.5 n1 = 0.1.

Gunasegarane and Puthenveettil [4] have studied the dynamics of the near plate
and showed plume merging motion along plumes and initiation of plumes to be the
dominant dynamics. There were other minor motions too, with all these motions
being dependent on Raw and Pr. They showed that the merging velocities Vm at
all the Raw had a common log-normal distribution and were an order lower than
shear velocity Vsh . The Reynolds number ReH based on this merging velocity was
found to scale as Ra1/3

w . In the present work we study the coexistence of these two
dominant dynamics near the hot plate. We obtain the velocity field of the motion of
these plume structures using PIV. We then study the probability distribution of these
motions and their dependence on the flow parameters and compare our results with
that given by [4].

2 Experimental Setup

The measurements were carried out in an open tank of size 300 × 300 × 250 mm
with four glass sidewalls [7]. The bottom hot plate was 10 mm thick and was made
of copper. The heat was supplied from resistance heating of a Ni–Cr wire placed
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below an aluminum plate. The Al plate was separated from the Cu plate by a glass
plate. The temperature difference measured across the glass plate gives the heat flux
supplied to the copper plate. The temperature difference ΔTw between the bottom
plate and bulk fluid was measured by T-type thermocouples with precision limit of
0.02◦.

2.1 Stereo PIV System

The velocity field in a horizontal plane close to the bottom plate, for Raw ranging
from 106–109 and Pr ranging from 5.2–4 were obtained using Stereo PIV technique
[1] with forward scattering as shown in Fig. 1. The horizontal laser sheet (532 nm
Nd:YAG laser at 100 mJ/pulse) was passed above the hot plate parallel to it in such a
way that it was inside the velocity boundary layer thickness δv ≈ √

νL/uc as given
by Puthenveettil et al. [8] for a natural convection boundary layer. Since δvb � δv for
all Raw and Pr , the laser sheet was also within the Blasius boundary layer thickness
given by Ahlers et al. [2] as δvb = 0.482H/Re1/2

L . The seeding particles used were
polyamide spheres with mean diameter of ∼55µm and density of 1.023 g/cm3. The

Fig. 1 Top view of the experimental setup
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particle images were captured by two Imager ProHS CCD cameras (1280×1024)px
which were kept at 25◦ to a plane perpendicular to the laser sheet. Scheimpflug
adapters were used to focus the camera lenses on the laser plane. The magnification
and resolution were changed by changing the focal length of the lens attached to
the cameras keeping the distance between the object and camera to be fixed. The
depth of field was set to be 2 mm larger than the laser sheet thickness with the lens
aperture set at f = 3.5. The stereo PIV was calibrated using a two-level calibration
plate provided by LaVision. In a plane parallel to the hot plate, the highest velocity
would be the centerline out-of-plane rise velocity of the plume, we set the separation
between the laser pulses so that the displacement due to this velocity is at least half
the laser sheet thickness. The imaging area was chosen in the center of the plate.
The Stereo PIV images were processed by ‘DaVis 7.2’ software using a multipass
cross-correlation method with a fixed window size of 32 × 32 px with 50 % overlap
to get the velocity vector maps.

3 Identification of Line Plumes

The velocity field of the near plate regions in turbulent convection is complex as
shown in Fig. 2. It has rising line plumes accompanied by flow in the boundary layer
on either sides of it at any instant. Along with this, the effect of spatially varying
external shear due to the large-scale flow is also seen in the velocity field, which
becomes predominant at higher Rayleigh numbers. Due to this complex nature, not
all plumes can be identified from a qualitative observation of the velocity field. In
order to extract the line plumes from the velocity field, we tried to use some of the
criteria used in near-wall shear turbulence to extract coherent structures, such as
the swirling strength method [12] and λ2 method [6]. However, these methods were
found to fail since the total length of the structures obtained from these did not match
the values obtained from (3).
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Fig. 2 The 2D vector field in a plane overlaid over the vertical component of velocity for
a Raw = 3.89 × 106 and Pr = 5.2, b Raw = 1.37 × 109 and Pr = 4
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Fig. 3 The 2D divergence field of the velocity fields in Fig. 2; a Raw = 3.89 × 106 and Pr = 5.2,
b Raw = 1.37 × 109 and Pr = 4

We hence propose a new technique to extract line plumes from the velocity field in
horizontal plane close to the plate. Figure 3 shows the 2D divergence field obtained
from the velocity field in Fig. 2. The divergence field separates into regions with
negative and positive divergences. Since the divergence field shows the distribution
of du/dx + dv/dy = −dw/dz, where z is the direction perpendicular to plane of
measurement and w is the velocity component in that direction, the negative diver-
gence regions are regions where fluid has a positive vertical spatial acceleration. We
expect such regions to be plumes since it is known that vertical velocity increases
with height inside the plumes [3]. As could be seen from Fig. 3a, b, these regions with
negative divergence also look like lines. The total length of the negative divergence
regions measured from the divergence field in Fig. 3a was 1134 mm and was close to
the plume length obtained from the expression (3) which was 1066 mm. Comparing
Figs. 2 and 3 it is clear that the downflow regions in between the plumes that have
positive divergence show a velocity field that is usually directed toward the plume
lines that bound these regions. Hence, these regions show the velocity field within
the boundary layers that become unstable to give rise to the line plumes.

3.1 Velocity of Line Plumes

The horizontal velocity field of the line plumes in the plane of laser, as against the
complete velocity field in the plane is obtained by subjecting the divergence field to
a PIV analysis. We apply a threshold on the images of the divergence field by setting
the positive divergence values to zero. The plume structures are turned to white pixels
and we find the velocity field of these structures using PIVlab algorithm in MATLAB.
An adaptive multipass cross-correlation method is used to obtain the vector field. The
largest window gives the mean velocity of the largest structure in that window. The
window size is reduced in the next steps with their position determined based on the
displacement vector obtained in the previous step. This is continued until velocity
vectors of small groups of structures are obtained with higher spatial resolution. The
time difference between each frames were chosen as twice the time difference of the
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(a) (b)

(c)

Fig. 4 The 2D vector field of the plume motion overlaid over the plume structures which are
obtained as the negative regions of the divergence field at a Raw = 3.84 × 106 and Pr = 5.2,
b Raw = 7.29 × 107 and Pr = 4.75, and c Raw = 1.43 × 109 and Pr = 4. The image sizes are
of the same as in Fig. 2

original particle images from which the divergence field were obtained. In the post-
processing step, we remove spurious vectors by excluding the range of velocities
that are questionable from the scatter plot of the velocity field. Figure 4 shows the
velocity field obtained due to the motion of plume structures near the wall.

4 Results

As seen in Fig. 5, the velocity field for the lower Raw has large number of smaller
vectors as compared to the higher Raw cases. The smaller vectors are more along
the edges of the plumes as compared to the larger vectors. We analyze the horizontal
velocity field of the structures by taking the histogram of the magnitudes of velocity
U = √

u2 + v2, where u and v are the velocity components in the horizontal plane,
at each Raw. Figure 5 shows the respective histograms for the velocity fields in Fig. 4.
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Fig. 5 Histogram of velocities obtained from the 2D vector field of the plume motions at a Raw =
3.84 × 106 and Pr = 5.2, b Raw = 7.29 × 107 and Pr = 4.75, and c Raw = 1.43 × 109 and
Pr = 4

It is clear from the histograms that velocity field of plumes at the lower Raw flow
has a normal distribution with a single peak. As the Raw increases, the histogram of
the velocity distribution becomes bimodal due to the rise of a second peak and the
relative strength of this second peak with respect to the first peak increases with Raw.
Such an evolution of the histogram with Raw shows that the plumes predominantly
have a single type of motion at the lower Raw but with increase in Raw, a second
type of motion becomes more dominant. The single peak at the lower Raw could
be because there is hardly any large-scale flow present at this Raw. The rise of the
second peak at higher Raw could be due to the increasing effect of the large-scale
flow on the plumes.

We now separate the two modes from the bimodal histogram shown in Fig. 5 and
study the nature of PDF associated with these modes. The velocities under each of
these modes are normalized with their median Ū and the PDF is plotted for the
nondimensional parameter χ where

χ = (log(U/Ū ) − (logU/Ū ))/σ log(U/Ū ) (4)
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Fig. 6 The probability density function φ of χ , the logarithm of the dimensionless velocities from
the first peak of the histograms in Fig. 5, in their standardised forms at a Raw = 3.84 × 106 and
Pr = 5.2, b Raw = 7.29 × 107 and Pr = 4.75, and c Raw = 1.43 × 109 and Pr = 4. The solid
lines indicate the standard Gaussian curve

At all Raw, a normal distribution curve fits the PDFs obtained from both the modes
in Fig. 5, as shown in Figs. 6 and 7. Thus the velocities of the dominant dynamics in
a plane near the plate in turbulent convection have a log-normal distribution at all
Raw.

The mean peak values obtained from these curves were used to find the Reynolds
number ReH and Resh in terms of the merging velocity Vm and shear velocity Vsh

respectively. Gunasegarane and Puthenveettil [4] had given the relation for these
Reynolds numbers in terms of Raw and Pr as

ReH = Vm H/ν = 0.55Ra1/3
w Pr−3/4 (5)

and

Resh = Vsh H/ν = 0.55Ra4/9
w Pr−2/3 (6)

We used the velocity corresponding to the first peak as Vm and that corresponding
to the second peak as Vsh to calculate ReH and Resh from our measurements. The
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Fig. 8 Variations of : o,
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variation of these ReH and Resh with Raw are shown in Fig. 8 along with the curves
corresponding to (5) and (6). The excellent match obtained between the experimental
ReH and Resh and the relations (5) and (6) in Fig. 8 shows that the first mode in Fig. 5
is due to the merging motion of the plumes, while the second mode is due to the
longitudinal motion of the plumes.

5 Conclusion

Stereo PIV technique was used to obtain the velocity field in a horizontal plane very
close to the hot plate in turbulent natural convection. We showed that 2D divergence
criterion extracts the line plumes from these velocity fields satisfactorily. A spatial
cross-correlation of the divergence field gave the velocity field of the motion of



190 V. Koothur and B.A. Puthenveettil

plumes. The histograms of the velocity of line plumes have bimodal distributions
with each of modes being distributed log-normally. The dependence of Reynolds
number obtained from these modes with Raw agree well with the theoritical relations
of in [4].
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LES of a Converging–Diverging Channel
Performed with the Immersed Boundary
Method and a High-Order Compact
Discretization

Mariusz Ksiezyk and Artur Tyliszczak

Abstract The paper presents the results of numerical simulations of an incompress-
ible flow in a converging–diverging channel performed with Large Eddy Simulation
(LES) combined with the immersed boundary (IB) method. The computations are
carried out using a high-order code with the spatial discretization based on the com-
pact difference method for half-staggered meshes. IB method is implemented in the
so-called direct forcing approach with a second-order interpolation near the bound-
aries. Two relatively new subgrid models are used in the simulations, i.e. the model
proposed by Vreman, Phys Fluids 16:3670–3681, 2004, [1] and the model proposed
by Nicoud et al., Phys Fluids 23:193–202, 2011, [2]. It is demonstrated that both of
them perform well and there is no evident advantage for either of them. The mean
and r.m.s velocity profiles agree with exemplary DNS data.

1 Introduction

Undoubtedly, from the point of view of a solution accuracy none of the discretization
methods may compete with the spectral and pseudo-spectral methods which are
regarded as the most accurate [3]. The weak point of these approaches is that they can
only be applied in rather simple computational domains and with nodes distribution
and boundary conditions enforced by the type of the method. The high-order compact
difference methods [4] seem to give more possibilities regarding non-uniformity
of the computational meshes, selection of the boundary conditions or shapes of
computational domains. They are successfully applied on non-uniform meshes and
in irregular domains [5–7]. However, such applications require domain division,
normalisation, coordinate transformations, etc., which are not trivial tasks. Possibly
the easiest solution allowing to use the compact methods in complicated domains is
to combine them with the so-called Immersed Boundary (IB) method. Application of
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this approach seems to be relatively easy and very efficient [8]. The Navier–Stokes
equations are solved on Cartesian regular grids with arbitrary boundaries or arbitrary
objects embedded directly on the grid points. The influence of such objects on the
flow field is enforced by body force terms added to the Navier–Stokes equations
[8, 9]. The present work focuses on application of the high-order compact method
with IB approach for LES of incompressible flows. The computations are performed
using two well-known and relatively new subgrid models proposed by Vreman [1]
and Nicoud et al. [2] and the obtained solutions agree very well with DNS data.

2 Mathematical Model and Numerical Algorithm

Flow of an incompressible fluid is governed by the continuity equation and Navier–
Stokes equations which in the framework of LES combined with the IB method are
given as:

∂ ūi

∂xi
= 0 (1)

∂ ūi

∂t
+ ū j

∂ ūi

∂x j
= − 1

ρ

∂ p̄

∂xi
+ ∂

∂x j

(
(ν + νt )

(
∂ ūi

∂x j
+ ∂ ūi

∂x j

))
+ fIB (2)

where the bar symbol denotes spatial filtering [10], ui are velocity components, ρ is
constant density, p—pressure, ν, νt —kinematic and eddy viscosity and fIB denotes
source terms which will be used to force zero values of velocity at the domain
boundaries or inside the bodies embedded on the computational nodes.

2.1 Subgrid Modelling

In this paper we compare the results obtained using the models proposed by Vreman
[1] and Nicoud et al. [2]. These models belong to the family of the so-called eddy
viscosity models and hence their implementation relies on calculation of the νt which
is then added to the kinematic viscosity as in Eq. (2). In the case of the model proposed
by Vreman [1] νt is computed as:

νt = C

√
Bβ

αi jαi j
(3)

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 (4)

αi j = ∂u j

∂xi
, βkl = Δ2αmkαml (5)
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where the constant in (3) is taken as C = 2.5 × 10−2 [1]. The LES filter width is
computed as Δ = (ΔxΔyΔz)1/3 where Δx, Δy, Δz are the mesh spacings.

The model proposed by Nicoud et al. [2] is commonly known as σ -model. In the
case we compute νt as follows:

νt = (Cσ Δ)2 Dσ (6)

Dσ = σ3(σ1 − σ2)(σ2 − σ3)

σ 2
1

(7)

where the model constant is Cσ = 1.35 [2] and σ1 ≥ σ2 ≥ σ3 ≥ 0 are the singular
values of the matrix

G = gt g with gi j = ∂ui

∂x j
(8)

Above models share features desirable in modelling of turbulent flows, i.e. they yield
zero eddy viscosity close to a solid wall, in laminar flows or in pure shear regions.

2.2 Description of the Flow Solver

The set of Eqs. (1)–(2) is solved using the numerical code (SAILOR) which is an
academic high-order flow solver based on the low Mach number approximation. The
solution algorithm in the SAILOR code is based on the projection method in which
the pressure is computed from the Poisson equation. The time advancement of Eq. (2)
is performed with a predictor–corrector method with the help of the second-order
Adams–Bashforth and Adams–Moulton methods. The spatial discretization is based
on sixth-order compact differencing developed for half-staggered meshes (see Fig. 1)
in the Cartesian coordinate system. In the present paper, the SAILOR code is used
together with the IB method which is briefly presented in the next subsection.

- Pressure nodes

- Velocity nodes

- Internal body nodes

- Interpolated nodes

Fig. 1 Linear velocity interpolation method
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2.3 Immersed Boundary (IB) Method

In general, there are two options of the IB method called feedback forcing method
[11] and direct forcing method [8]. They differ in the evaluation of the forcing term.
In this work the latter approach is implemented which seems to be simpler and more
efficient. Interested reader is referred to [12] where all details and variants of IB
methods may be found. Here, we limit the description to the definition of the forcing
term used in the predictor step together with the second-order Adams–Bashforth
method. In this case the term fIB is defined as:

fIB = uWALL − ūn
i

Δt
−

[
3

2
Res(ūn) − 1

2
Res(ūn−1)

]
+ 1

ρ

∂ p̄n

∂xi
(9)

where Res(ūn), Res(ūn−1) represent the convection and diffusion terms in (2) dis-
cretized on the time levels n and n − 1. The symbol uWALL stands for the velocity at
the wall which is a part of the computational domain as shown in Fig. 1 by black bold
line. The velocity on that boundary is known and this allows to estimate the values
of velocity in its closest vicinity, i.e. in the computational nodes shown in Fig. 1 by
black squares. In the present approach the velocity in these nodes is obtained from a
second-order linear interpolation based on the velocity values from the second node
line from the boundary (shown by high arrow in Fig. 1) and the desired boundary
values. Inside the immersed body, i.e. in the nodes with crosses, the velocity is set
equal to zero.

3 Results

The accuracy of the SAILOR-IB code has been validated by computations of laminar
flows in a lid-driven skewed cavity and over a backward facing step [13]. The obtained
results were in very good agreement with the literature data obtained using the
classical body fitted meshes. Most likely, in the present implementation the errors
due to the approximate treatment of the walls are compensated by the high-order
approximation far from the boundaries.

In this paper we deal with the turbulent flow in the converging–diverging channel
in which the solution accuracy in near wall regions is of crucial importance. The
computational domain for this test case is shown in Fig. 2. The dotted lines indicate
the locations in which we will compare our results with DNS data obtained from
Laboratoire de Mécanique de Lille (LML). The length of the domain (dimension-
alised by a half domain height) is L = 4π , its height is equal to H = 2 and width
is W = 2π . The computations are performed for Reτ = ut h/ν = 395 where uτ is
the friction velocity and h = H/2. At the inlet the fully developed turbulent flow is
prescribed using the solution obtained from the simulations of periodic channel flow
for the same Reτ .
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Fig. 2 Computational domain. The vertical dotted lines indicate the locations at which the solutions
are compared with DNS data
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Fig. 3 Three types of the meshes used in the computations, every fourth grid lines are shown

The computational meshes used in the simulations consist of 192 × 160 × 64
nodes and 384 × 320 × 64 nodes. The denser mesh is additionally used with two
different grid refinements. This is shown in Fig. 3 where additionally in a zoomed
region of the bump the bold line shows location of the wall of the bump. The dense
meshes will be denoted as (a) and (b). In all the cases, near the upper wall the grid
nodes are distributed such that the first node is at y+ = 0.95. On the bump side, the
meshes are uniform and y+ on the top of the bump is equal to 3.2 for the coarse mesh
and 1.76 and 1.23 for the dense meshes (a) and (b), respectively.

3.1 Mesh Sensitivity Study

In this subsection, we analyse the influence of the mesh density based on the results
obtained using the subgrid model proposed by Vreman. The reference DNS data
were obtained on the mesh with 1536 × 257 × 384 nodes which is approximately
77 and 20 times more nodes than in our coarse and dense meshes, respectively.
Sample results obtained using the coarse mesh are presented in Fig. 4 showing an
isosurface of the Q-parameter. It can be seen that the large turbulent scales vanish on
the left-hand side of the bump and they reappear again on the falling side of the bump.
This behaviour coincides with the regions where the flow accelerates and decelerates.
These regions can be easily found in Fig. 5 showing instantaneous and time-averaged
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Fig. 4 Isosurface of Q-parameter (Q = 2000(uτ /h)2) coloured by vorticity magnitude

instantaneous streamwise velocity

time averaged streamwise velocity

(a)

(b)

Fig. 5 Contours of the streamwise velocity normalised by uτ : a mean values and b time-averaged
values

contours of the streamwise velocity. We remind that in the IB method the velocity
near the boundary of the bump is computed from the interpolation whereas in the
nodes located inside the bump the velocity is explicitly set to zero every time step.
Careful analysis of instantaneous velocity field near the wall of the bump shows small
unphysical wrinkles. They are limited to the first two layers of the nodes, however
they are not seen at all in the time-averaged solutions.

Detailed comparison and verification of the results are performed based on the
velocity profiles at different locations in the channel. In all the cases the present
solutions are very close to DNS data. In general, it cannot be said that the denser
meshes provide significantly better results than using the coarse mesh. A sample
comparison is presented in Fig. 6 showing the profiles of the mean and fluctuating
components of the streamwise and the wall normal velocity along the line ‘a’ from
Fig. 2. At this particular location it seems that the best solution is obtained using the
dense mesh (a), though the results on the coarse mesh are also correct.
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Fig. 6 Profiles of the streamwise and wall normal velocity components along line ‘a’

3.2 Comparison of the SGS Models

The comparison of the subgrid models is performed using the mesh 384×320×64(a).
Figure 7 shows the contours of the total turbulent kinetic energy and the subgrid

kinetic energy defined as ksgs = ν2
t

(CvΔ)2 with Cv = 0.1 [14]. These results were
obtained using the σ -model but we note that the solution obtained using the Vreman
model is very similar and practically indistinguishable by visual inspection. The
maxima of kinetic energy are located in the regions of separation existing near the
wall of the bump and close the upper wall. The ratio of ksgs to the total kinetic energy
is maximally 0.15. Hence, according to Pope’s criterion [15] the mesh used in these
simulations ensure the proper resolution. Detailed comparison of the solutions is
presented in Figs. 8 and 9. It can be seen that both subgrid models provide accurate
and similar solutions and it cannot be said which one performs better. In the centre
of the channel both the mean and fluctuating velocity profiles match the DNS results
almost exactly. Only closer to the walls some discrepancies are observed. This can
be caused by the IB method as well as by the errors due to the subgrid modelling.
Nevertheless, it can be seen that the location of the velocity extrema in separation
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Fig. 7 Contours of the time-averaged subgrid and total kinetic energy. a Total turbulent kinetic
energy. b Subgrid turbulent kinetic energy
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Fig. 8 Profiles of the streamwise and wall normal velocity components along the line ‘a’ obtained
using two subgrid models

zones (the regions where the mean streamwise velocity near the walls is negative) is
predicted relatively well by both models. The velocity fluctuations are also computed
with good accuracy. Both the shapes of their profiles and their maximum values are
close to DNS data.
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Fig. 9 Profiles of the streamwise and wall normal velocity components along the line ‘b’ obtained
using two subgrid models

4 Conclusions

This paper shows results of flow modelling in a converging–diverging channel using
LES combined with the Immersed Boundary (IB) method. With respect to exemplary
literature DNS computations the application of LES allows significant reduction of
the computational costs by using relatively coarse computational meshes. The use of
the IB method allows to use the high-order code in the non-Cartesian computational
domain without significant modifications of the solution algorithm. The LES com-
putations were performed with the help of two subgrid models, proposed by Vreman
[1] and Nicoud et al. [2] and in both the cases the obtained results were accurate.
It could be seen that the better or worse agreement with DNS data was dependent
on which quantity was compared and at which location in the channel. Hence, we
conclude that both models are suitable for LES computations using IB method.
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On Minimum Aspect Ratio
for Experimental Duct Flow Facilities

Ricardo Vinuesa, Eduard Bartrons, Daniel Chiu, Jean-Daniel Rüedi,
Philipp Schlatter, Aleksandr Obabko and Hassan M. Nagib

Abstract To the surprise of some of our colleagues, we recently recommended
aspect ratios of at least 24 (instead of accepted values over last few decades ranging
from 5 to 12) to minimize effects of sidewalls in turbulent duct flow experiments,
in order to approximate the two-dimensional channel flow. Here we compile avail-
able results from hydraulics and civil engineering literature, where this was already
documented in the 1980s. This is of great importance due to the large amount of
computational studies (mainly Direct Numerical Simulations) for spanwise-periodic
turbulent channel flows, and the extreme complexity of constructing a fully developed
duct flow facility with aspect ratio of 24 for high Reynolds number with adequate
probe resolution. Results from this nontraditional literature for the turbulence com-
munity are compared to our recent database of DNS of turbulent duct flows with
aspect ratios ranging from 1 to 18 and Reτ,c � 180 and 330, leading to very good
agreement between their experimental and our computational results.

1 Introduction and Literature Survey

Direct Numerical Simulation (DNS) studies of canonical turbulent channel flows
have provided the turbulence community with insight on the understanding of wall-
bounded turbulence, and the wide range of mechanisms it involves. A good review
of the contributions from DNS to the community by using the simplified geometry
of pressure-driven flow between two infinite flat plates was provided by Jiménez [1].
However, recent experimental (Vinuesa et al. [2]) and computational (Vinuesa et al.
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[3]) studies carried out by our group demonstrate that the flow in an experimental
facility of a particular aspect ratio AR (where AR is defined as the total width of the
duct W divided by its total height H ) cannot be reproduced by DNSs of spanwise-
periodic channel flows. The role of the sidewalls, which includes three-dimensional
effects through secondary vortices, and sidewall boundary layers, leads to a more
complicated configuration, which differs from the simplified model considered in
the DNS approach. Therefore, we reserve the term “channel” for spanwise-periodic
DNSs, and denote the experimental flow by the term “duct”.

The wall-bounded turbulence community witnessed how the reported minimum
aspect ratio required for an experimental duct flow facility to approach “nominaly
two-dimensional conditions” has increased from a value of 5 in the 60s (Bradshaw
and Hellens [4]), to 7 one decade later (Dean [5]), and to approximately 12 in two
studies from 2003 (Zanoun et al. [6]) and 2005 (Monty [7]). Our recent experiments
[2], in a Reynolds number range representative of the one spanned by a significant
number of currently available DNS studies of turbulent channel flow, show that an
aspect ratio of at least 24 is required for the conditions at the centerplane of the duct to
become independent of the aspect ratio.We carried out Oil Film Interferometry (OFI)
and static pressure measurements in an adjustable-geometry duct flow facility. The
conditions at the centerplane of the duct were characterized through the local skin
friction from the OFI and the centerline velocity at four different streamwise loca-
tions, and through the wall shear based on the streamwise global pressure gradient.
The inner-scaled centerline velocity U+

c = Uc/uτ measured in that study is shown
here in Fig. 1 as a function of the friction Reynolds number Reτ (defined in terms of
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AR = 32
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Fig. 1 Fully developed Oil Film Interferometry measurements at the centerplane for duct aspect
ratios from 12.8 to 48. This figure corresponds to Fig. 10 in Vinuesa et al. [2]
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the friction velocity uτ and the duct half-height h). The skin friction obtained from
the pressure gradient overestimated the local shear measurements obtained from the
OFI, and did not reproduce the same AR dependence observed with OFI. Also note
that the flow features measured in duct flows with aspect ratios larger than 24 do not
exactly match the ones exhibited by spanwise-periodic computations.

Interestingly, the impact of the sidewalls in duct flows and the three-dimensional
mechanisms introduced by them have receivedmore attention in other research areas,
such as hydraulic engineering (Knight and Patel [8], Rhodes and Knight [9]), civil
engineering (Yang [10]) and even appliedmathematics (Kotsovinos [11]). The depen-
dency of mean flow features such as wall shear stress with aspect ratio well beyond
the previously reported values ranging from 5 to 12 is evident from these studies,
with some of them from the 1980s. Here we will highlight some of their most rel-
evant findings, and connect them with the recent experimental and computational
results obtained by us. In their 1985 paper, Knight and Patel [8] discuss the relation
between aspect ratio and boundary shear from a practical point of view, since their
aim was to obtain empirical relations for engineering purposes. In order to do that,
they carried out experimental measurements of wall shear distributions along the
four walls of a 9.25-m long duct with variable aspect ratio, which was modified from
1 to 10. They used Preston tubes for the measurements, which are commonly used
to obtain such boundary shear distributions. Although Preston tubes are not capable
of accurately capturing the spanwise distribution of wall shear stress, due to spatial
averaging effects on their pressure readings (especially in the tubes used for this
study, with diameters ranging from 3.15 to 5mm), they provide a good qualitative
representation of this distribution and values averaged over the whole perimeter of
the duct are generally accurate. Their experimental database was extended to higher
aspect ratios ranging from 10 to 50 by Rhodes and Knight [9] in 1994, using the
same measurement technique (this time using smaller Preston tubes with diameters
of 2.05mm) in a water flow duct which was 13.1m long. Their wall shear mea-
surements were recently compiled by Yang [10], who developed empirical relations
describing the average wall shear stress over the duct sidewalls τw and over the bed
τ b (which in civil engineering notation refers to the upper and lower walls of the
duct). His results are reproduced here in Fig. 2, where b/h corresponds to the duct
aspect ratio AR = W/H , ρ is the fluid density, g is the acceleration of gravity, h is
the duct half-height, and S is the energy slope (this is another term more often used
in civil engineering applications than in wall-bounded turbulence). Also note that
the term ρghS corresponds to the wall shear stress τw,PG defined as:

τw,PG = −h
dP

dx
, (1)

where dP/dx is the streamwise pressure gradient. As discussed by Monty [7] and
Vinuesa et al. [2], this expression is obtained by assuming an infinitely wide channel,
without any sidewalls, and with a homogeneous spanwise distribution of wall shear
throughout its span (which are also the hypotheses considered in spanwise-periodic
simulations of turbulent channel flows). The result (1) follows from a control vol-
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Fig. 2 Normalized average
wall shear stress along the
duct sidewalls τw and upper
and lower walls τ b (also
denoted by duct bed). This
figure corresponds to Fig. 3
in Yang [10]

ume analysis carried out at the centerplane of the channel. The fact that the ratio
τ b/(ρghS) ≡ τ b/τw,PG is lower than 1 even for aspect ratios as large as 20 or 25
indicates that the flow is in fact nonhomogeneous in the spanwise direction well
beyond classically reported values, and supports our recent findings. Also note that,
although asymptotically τ b/τw,PG → 1, our experiments show that the conditions
at the centerplane of the duct do not exactly match the ones exhibited by a spanwise-
periodic channel.

Another parameter analyzed by Rhodes and Knight [9] as a function of aspect
ratio is the proportion of total shear force acting on the sidewalls %SFw. Note that
the absolute shear force on one sidewall is SFw = τw H , the shear force acting on
the upper or lower wall is SFb = τ bW , and the total shear force acting on the duct
boundarywould be SFT = 2SFw+2SFb. As a consequence,%SFw = 200SFw/SFT .
Figure3 shows that the evolution of %SFw as a function of aspect ratio obtained by
Rhodes and Knight [9] is consistent with the results shown in Fig. 2, since only at
aspect ratios larger than around 30 the sidewall shear force represents less than 1%
of the total. However, another result is remarkable in this figure, since the shear force
measurements are compared with the geometric line. This line essentially predicts
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Fig. 3 Proportion of total shear force acting on the sidewalls as a function of the duct aspect ratio.
This figure corresponds to Fig. 4 in Rhodes and Knight [9]

the expected %SFw from the geometric configuration of the duct, i.e., by taking into
account the relation between the length of both sidewalls and the total perimeter.
Although at very low aspect ratios these trends seem to collapse, aspect ratios larger
than 3 show differences between both trends, with the experimental %SFw curve
lying below the expected trend from the geometry up until very large aspect ratios
beyond 30. This is again a consequence of the inhomogeneity throughout the span of
the duct, and since the τb(z) distribution is not a constant, the geometrical relations
do not apply exactly.

The inhomogeneities in wall shear distribution along the perimeter of the duct,
which impact integrated quantities asmanifested in Figs. 2 and 3, are further explored
by Knight and Patel [8] by performing Preston tube measurements of shear stress at
a number of locations on the upper, lower, and sidewalls. These results are shown
in Fig. 4 in the forms of normalized wall and bed shear stress distributions (τw/τw

and τb/τ b) for a number of aspect ratios ranging from the square duct case up to
AR = 10. It is interesting to observe how in their measurements they obtain several
local maxima and minima in the shear distributions along the walls, so the increase
in friction from the sidewall to the centerplane is not monotonous and therefore there
must be additional physical mechanisms leading to this particular trend. Knight and
Patel argue that the streamwise secondary vortices produced by the spanwise inho-
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Fig. 4 Normalized distributions of sidewall shear τw/τw, bed shear τb/τ b and proposed interactions
between secondary flow and shear stress distributions; Figs. 2–4 in Knight and Patel [8]

mogeneity of the Reynolds stress tensor are responsible for this, and even propose a
model to predict the number of secondary flow cells that appear in a duct as a function
of aspect ratio, as well as their interaction with the bed shear stress distribution as
shown here in Fig. 4. According to Knight and Patel [8], the number of secondary
vortices n exhibited by a turbulent duct flow of aspect ratio AR = W/H is given by:

n =
(
2W

H
+ 1

)
± 1, (2)

where the lower value given by (2) accounts for the vortices located on the duct bed,
and the larger value also accounts for the ones on the sidewall at the duct corners.

2 Comparison with DNS of Turbulent Duct Flows

After reviewing some key results showing that, in fact, aspect ratio values much
larger than previously recommended in the turbulence literature are required to obtain
AR-independent conditions in turbulent duct flows, here we use the computational
database generated by Vinuesa et al. [3] to reproduce some of the trends observed in
the experiments by Knight and Patel [8] and Rhodes and Knight [9]. In this database,
turbulent duct flows are computed by means of Direct Numerical Simulation (DNS),
using the spectral element code Nek5000 [12]. All the ducts are computed assuming
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Fig. 5 Average bed and wall shear stress from the DNS database normalized with the shear stress
computed using (1). Empirical relations proposed by Yang [10] and Knight and Patel [8], together
with new forms proposed in the present study, are shown for comparison

periodicity in the streamwise direction, and number of aspect ratios ranging from 1
to 18 are considered at two Reynolds numbers based on centerplane friction velocity:
Reτ,c � 180 and 330.

Figure5 shows average bed andwall shear stresses normalized by the stress calcu-
lated from the streamwise pressure gradient as defined in (1) from our computations.
Although the aspect ratio range under investigation is narrower than the one shown
in Fig. 2, it is interesting to note that the trend observed in τ b/τw,PG agrees very well
with the empirical correlations proposed by both Yang [10] and Knight and Patel
[8], therefore supporting the observations made in relation to Fig. 2. Note also that in
the case of the sidewall shear distribution, qualitative agreement is obtained with the
correlation proposed by Yang [10] (which is based on the whole aspect ratio range
up to 50), and the different behavior obtained from the equation by Knight and Patel
[8] is attributed to the fact that their correlation is based on a narrower range of aspect
ratios only up to 10. Quantitative differences between our computational results and
the relation by Yang [10] may arise from the fact that it is more complicated to
measure accurately sidewall shear distributions using Preston tubes. Based on these
results, we propose the following empirical relations describing both trends:

τ b

τw,PG
= −0.5125 AR−0.7808 + 1, (3)
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τw

τw,PG
= −0.1623 AR−3.166 + 0.6621, (4)

where also here τ b/τw,PG → 1 for infinite aspect ratios. Following this analysis,
in Fig. 6 we show the percentage of shear force acting on the sidewalls in all our
computations compared with the empirical formulas by Knight and Patel [8] and
Rhodes and Knight [9], and also with the geometric line as in Fig. 3. In this case both
empirical trends represent our data very well, and the same deviation with respect
to the geometrical trend is observed. The empirical relation reported by Rhodes and
Knight [9], which is based on the full dataset with aspect ratios ranging from 1 to 50
is given by:

%SFw = 100

1 +
(
1+1.345/AR
1+1.345 AR

)−1.057
. (5)

Finally, we compare some of the results shown in Fig. 3 with our numerical sim-
ulations in Figs. 7 and 8. Spanwise distributions of bed wall shear normalized by
the integrated value, as well as wall-normal variations of sidewall shear stress show
similar trends, and differences around the local maxima andminima can be attributed
to two main factors. First, the effect of the spanwise averaging experienced by Pre-
ston tube measurements, especially the ones of higher diameter. Second, differences
in the Reynolds number between the two sets of results: the range of our DNSs



On Minimum Aspect Ratio for Experimental Duct Flow Facilities 209

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

AR = 18, ReDH = 19, 900

AR = 10, ReDH = 9, 400

AR = 7, ReDH = 9, 000

AR = 5, ReDH = 8, 600

AR = 3, ReDH = 7, 700

AR = 1, ReDH = 5, 000

ReDH = 15, 000

ReDH = 10, 200

τ b
/
τ b

z/w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

τ w
/
τ w

y/h

Fig. 7 Spanwise distribution of bed shear stress normalized by the average value (top) and wall-
normal variation of wall shear divided by integrated value along sidewall (bottom). Aspect ratio and
Reynolds number based on bulk velocity Ub and hydraulic diameter DH are listed. For the cases
with more than one Reynolds number, the ReDH values closer to the left correspond to dashed lines.
Data obtained from DNS results, and profiles shifted up vertically one unit for clarity



210 R. Vinuesa et al.

Fig. 8 Streamlines corresponding to the aspect ratio 7 duct computed with Reτ,c � 180 after aver-
aging times of 2,200 (top) and 9,000 (bottom) convective time units. Note that the two symmetries
in the flow were also applied on the bottom figure

in ReDH (based on bulk velocity Ub and hydraulic diameter DH ) is from 5,000 to
20,000, whereas in the experiment the minimum Reynolds number is 50,000 and the
maximum is 105. It is also important to note that in the experimental dataset lower
Reynolds numbers correspond to higher aspect ratios (due to physical limitations
of the facility the Ub is reduced as the cross-sectional area increases), whereas in
our simulations the Reynolds number increases with aspect ratio (since Ub is held
constant as the hydraulic diameter increases). In any case, the experimental database
shows interesting trends, especially in terms of interactions with secondary motions.
The models proposed by Knight and Patel [8] in Fig. 4 and in Eq. (2) for the number
of secondary cells are checked in Fig. 8 with our aspect ratio 7 duct computed with
Reτ,c � 180. In this figure we show the streamlines obtained in the inplane section
of the duct after averaging in the homogeneous streamwise direction, and in time.
Two averaging periods were considered: first a shorter one of 2,000 convective time
units (note that nondimensionalization is done in terms of bulk velocity Ub and duct
half-height h), then a much longer one of 9,000 (where also the two symmetries
in the flow were applied). A number of secondary cells are noticeable in the case
with shorter averaging period, and although the number of individual cells is lower
than the values predicted by Eq. (2), it is interesting to observe that this equation
is based on the hypothesis that all these vortices are of size h × h. This is roughly
the size of some of vortices located close to the duct centerplane. If one considers
Fig. 8 (bottom), it can be inferred that after long averaging times only the vortical
structures at the corners remain in the main flow, with the ones on the horizontal
walls being significantly stretched in the spanwise direction. But what is remarkable
is that all the other secondary vortices exist instantaneously in the flow, and either
move or live for a certain period before eventually dissipating through viscosity. It
is also important to note that the effect of the secondary vortices in the mean flow is
significant, leading to the modification of the mean velocity profile by transporting
momentum from the duct core toward its bisectors.
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3 Conclusion

The need of aspect ratios of at least 25–30 in experimental duct flow facilities in
order to minimize aspect ratio effects in the flow is a well documented fact since the
80s in the hydraulics and civil engineering literature, as can be observed in studies
like the one by Knight and Patel [8]. The wall-bounded turbulence community has
not been aware of this until very recently, in the experimental study by Vinuesa et al.
[2] where a minimum aspect ratio of 24 is recommended, well beyond traditionally
reported values from 5 to 12. In this study we compile some of the classic and more
recent results in areas of hydraulics and civil engineering, and compare them to our
recent DNSs of turbulent duct flows with aspect ratios ranging from 1 to 18 [3].
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Riblets Induced Drag Reduction
on a Spatially Developing Turbulent
Boundary Layer

Amaury Bannier, Eric Garnier and Pierre Sagaut

Abstract Large eddy simulations have been conducted to gain further insight into
the drag-reducingmechanisms of riblets in zero-pressure gradient turbulent boundary
layer. The retained groove geometry achieves 9.8% drag reduction on the controlled
zone developing from Reθ = 670 to 975. It is shown that the turbulent contribution
to the drag—as defined by Fukagata et al. Phys. Fluids, 14(11):L73, 2002 [7]—is the
most affected. In the light of the obtained results, energy and enstrophy budgets will
finally conduct to isolate a key mechanism involved in the riblets drag reduction.

1 Introduction

Making grooves on a surface increases the wetted area and, counter-intuitively, may
reduce the drag for turbulent flows [22]. For the last three decades, those so-called
“riblets” have remained under active consideration. They have been studied through
experiments [2, 22], numerical simulations [4, 9], and also flight tests [5]. In their
oil channel facility, Bechert et al. [2] achieve 8.2% friction reduction with a tech-
nologically feasible design. However, a lack of understanding persists regarding the
underlying mechanisms.

Based on viscous analyses, Luchini et al. [14] observed that, above both clean
and ribbed surfaces, the Stokes flows converge asymptotically to the same far-field
solution, providing the appropriate relative position of the two walls. For a given
riblet geometry, one can thus compute the “virtual origin” h at which a flat plate
should be located to produce asymptotically the same Stokes flow. The length h‖
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can be defined for a longitudinal flow over the grooves (see Fig. 3 for illustration)
and, similarly, h⊥ for the transverse Stokes flow above the same riblets. Luchini’s
“protrusion height” is defined as the difference between the two obtained virtual
origins: Δh = h⊥ − h‖. They describe this quantity as a measure of “how much the
corrugated wall impedes the cross-flow more than it does the longitudinal flow.”

García-Mayoral and Jiménez [8] identified drag reduction regimes that incorpo-
rated previously proposed theories [4, 9, 10, 14]. For low Reynolds number or small
riblets, effects arewell characterized byΔh.When size or Reynolds increases, break-
down mechanisms, based on Kelvin–Helmotz instabilities, cancel out the beneficial
viscous effect. In their analysis, García-Mayoral and Jiménez provide a scaling law
for designing riblets within the appropriate regime.

Although the drag reduction is well characterized by a Stokes flow analogy in the
first regime, the mechanism itself remains turbulent per se: riblets always increase
drag in laminar flows [3].

To further understand the drag reduction engendered by riblets, the present work
will focus at identifying its cause. Fukagata, Iwamoto, andKasagi (FIK) [7] presented
a decomposition of the skin friction. In their formulation, they split the contribution
to the drag into different terms according to their physical origin. The drag-producing
mechanisms can be isolated and their intensities spatially observed along the bound-
ary layer.

After having described the retained riblets’ geometry and computational parame-
ters in the next section, the FIK decomposition will constitute the starting point of
the present analysis Sect. 3. Each of the “bulk” and the turbulent contributions to the
drag will be analyzed in Sects. 4 and 5. The observation of turbulent energy Sect. 6
and enstrophy Sect. 7 budgets will point out mechanisms responsible for the drag
reduction.

2 Flow Configuration and Riblets Geometry

Throughout this paper, the longitudinal, normal, and spanwise directions will be,
respectively, denoted as x , y, and z.U0, ρ, and ν stand for the reference fluid velocity,
density, and kinematic viscosity. The superscript + denotes quantity scaled with
the friction velocity uτ = √

τw/ρ and with ν, where τw is the wall shear stress.
The overbar is used for time-averaged variables and Reynolds decomposition yields
f = f + f ′.
Under the constraint of realizable grooves, the most efficient riblets so far are

the trapezoidal ones studied by Bechert et al. [2]. They have been shown to achieve
up to 8.2% drag reduction. The rib angle is α = 30◦ and the height-over-width
ratio is fixed to hrib/srib = 0.5. This riblets design leads to a “protrusion height”
of Δh ≈ 0.10srib = 0.20hrib, a value which can be compared to the optimal limit
Δhmax ≈ 0.13srib computed analytically byLuchni et al. [14]. Further increasing our
Δh requires us to sharpen the riblets even more and would lead to a technologically
unfeasible design. The retained geometry is depicted in Fig. 1.
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Fig. 1 Riblets geometry and
mesh representation

Regarding the sizing of the groove, García-Mayoral and Jiménez [8] provide a
simplified stability model aimed at estimating the optimal riblet dimension for a
given geometry. With our design, hrib has to be close to approximately 8 wall-units.

The bottom surface of the computational domain is not entirely covered by riblets.
Smooth surfaces are placed up and downstream of the controlled zone. The question
of the relative vertical position of the riblets with respect to the one of the flat plates
has to be addressed. We set the ordinate origin y = 0 at the flat wall location
and define Δy0 the (likely negative) vertical position of the riblet valley (cf Fig. 3
right-hand side axis). Among other possibilities, ribets can be set such as either
the valleys or the tips are located at the flat plate level, corresponding, respectively,
to Δy0 = 0 and Δy0 = −hrib. Alternatively, the use of the previously defined
virtual origin h‖ is a consistent choice with respect to viscous effects. Here, the
decision is made to cancel, or at least restrict, the net pressure force acting at the
emergence and at the disappearance of the grooves. The riblets’ relative position is
set to Δy0 = − h2

s tan(α
2 ) ≈ −0.13 hrib so as to preserve the same cross-sectional

area.
The simulation is conducted in a zero-pressure gradient turbulent boundary layer

(ZPGTBL). The Reynolds number based on the momentum thickness develops from
Reθ = 670, at the beginning of the grooved area, to Reθ = 925. The corre-
sponding friction Reynolds number ranges from Reτ = 260 to Reτ = 350. The
Synthetic eddy method (SEM) [16] is used to generate the turbulent inflow. Flow
properties just upstream the work area are successfully compared to reference DNS
[19, 20].

The ONERA in-house flow solver FUNk which has been used, for which details
and validations can be found in [11, 15], resolves the Direct Navier–Stokes (DNS)
and the Large Eddy Simulations (LES) equations for compressible flows on multi-
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block structured grids. The simulation Mach number is set to 0.2. In this condition,
density and viscosity fluctuations are negligible and the flow will be considered
incompressible. The explicit selective mixed-scale model [13] is used to compute
the subgrid viscosity for LES simulations.

The tiny size of the riblets strongly constrains the cells’ dimensions. In order to
accurately reproduce their shape,Δy+ andΔz+ are maintained around 1 close to the
wall. Δx+ is set to 25. Such a resolution goes beyond state-of-the-art DNS baseline
refinements in the normal and spanwise directions. The longitudinal resolution jus-
tifies the qualification of LES and the use of a subgrid-scale model. The size of the
computational domain is 38δ0 × 10δ0 × 3.3δ0, where δ0 denotes the inflow bound-
ary layer thickness. Two-point correlations have been computed to ensure that the
domain is wide enough. The computational domain counts a total of 413×143×673
cells.

3 Analysis of the Wall Friction

The time- and spatial-averaged wall friction coefficient in Fig. 2 is defined by c f =
1

Lz

∫
z

(
τw/ 1

2ρU 2
0

)
dz. Over the ribbedplate, the spanwise averaging has to be changed

into 1
Lz

∫
L̃ z

· dl, where L̃ z denotes the wetted span at the riblets’ surface and Lz the
corresponding span of the flat plate.

Upstream the ribbed zone, the brief transitory burst of c f is due to the sudden
geometric outbreak of riblets out the planes. The performance loss caused by the
riblets’ appearance is approximately overcome by the afterward persistent benefit.
Taking into account these up and downstream effects, the global drag reduction adds
up to 9.8% of the baseline drag on the controlled domain. The pressure drag, due to

Fig. 2 Skin friction
coefficient and FIK
decomposition: c f from
numerical flux (black); c f,1
(green); c f,2 (red); c f,3
(blue); c f,1 + c f,2 + c f,3
(symbols)
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the three-dimensional shape of the riblet leading and trailing edges, is found to be
negligible, justifying the previously discussed choice of riblets-versus-plate relative
vertical position.

The FIK decomposition is applied here. Using the notation of Deck et al. [6], the
friction coefficient is split as c f = c f,1 + c f,2 + c f,3. Because of the geometric com-
plexity of our flow, the original FIK formulation cannot be applied as is. Following
Peet and Sagaut [17] who derived the equivalent of FIK’s channel flow decomposi-
tion for a three-dimensional complex wall shape, a similar formula can be obtained
from FIK’s boundary layer formulation:

c f,1(x) = 4

αReδ

∫∫
Σ(x)

ux

U0

dΣ

Lzδ
(1)

c f,2(x) = 4

α

∫∫
Σ(x)

(
1 − y

δ

) −u′v′

U 2
0

dΣ

Lzδ
(2)

c f,3(x) = − 4

α

∫∫
Σ(x)

1

2

(
1 − y

δ

)2 δ

ρU 2
0

(
∂ρux

∂t
+ Ix + ∂p

∂x

)
dΣ

Lzδ
(3)

α(x) =
∫

L̃ z(x)

(
1 − y

δ

)2 √
1 − n2

x
μ ∂ux/∂n

Fw

dl

Lz
(4)

Ix (x) = ρui
∂ux

∂xi
− μ

∂2ux

∂x2
+ ρ

∂u′
x u′

x

∂x
(5)

where Σ(x) stands for the transverse plane at constant x between the wall and
the boundary layer height and nx is the x-component of the wall-normal local unit
vector. The coefficient α, which takes into account the wall stress distribution along
the normal direction, is close to unity as soon as h+

rib/Reτ is negligible. For the
present simulation, 1 − α is of the order of 3%.

In Fig. 2, the “bulk” term c f,1 is largely unaffected by the riblets. This term is
related to the mean velocity ux which is examined in the following section. The
second term, c f,2, accounting for the turbulent contribution to the drag, is the most
affected by the riblets presence. However, ratios c f,2/c f for both the flat and the
ribbed cases perfectly collapse, supporting a scaling in wall-units of the turbulence
mechanisms. Turbulence quantities will be investigated Sect. 5. Finally, term c f,3
is associated with the streamwise growth of the boundary layer. In the presence of
riblets, both the term itself and its relative contribution in c f are reduced.Although the
evolutionof this last term is notwell understoodyet, it has to satisfy (c f,1+c f,3)/c f =
1 − (c f,2/c f ) to fulfill previous requirements on c f,1 and c f,2.
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Fig. 3 Transverse view of
mean streamwise velocity
iso-contours over riblets:
LES turbulent flow at
Reθ = 750 (solid); Stokes
flow (dashed). Right-sided
dotted iso-contours denote
the Stokes flow over a flat
plate located h‖ above riblets
valleys

4 Mean Velocity Field

The “bulk” term c f,1 is directly linked to the mean streamwise velocity and is pro-
portional to the mean flow rate within the boundary layer.

Before depicting the mean velocity profile, the question of the vertical ordinate
origin must be clarified. The vertical origin y = 0 in figures still corresponds to the
smooth wall location. However, for the ribbed wall, at what location Δy should the
riblets’ valley be located?The choice ofΔy0 has alreadybeenmade, Sect. 2, to answer
this question regarding the geometrical setup. However, to ease the comparison with
the smooth wall flow, another ordinate origin Δy(u) may be more relevant to plot the
mean flow profile ux . Among the different options listed in Sect. 2, the choice based
on the longitudinal Stokes flow, leading to Δy(u) = −h‖ ≈ −0.63 hrib, appears to
be the most pertinent. Indeed, since riblets are quasi-immersed in a viscous sublayer,
the mean flow field is expected to be very similar to the Stokes flow solution. Figure3
illustrates this point. From the riblets floor up to some few wall-units above the tips,
the turbulent and the Stokes viscous profile closely fit.

Since the mean velocity depends on z nearby the riblets, spanwise averaging of
the velocity is performed to allow an intelligible comparison. Two different scalings
are used for the nondimensionalization in Fig. 4. The first one is based upon the
actual wall friction velocity uτ = √

c f /ρ. This scaling is used to compare terms
in usual wall-units and highlight variables whose magnitude is proportional to the
wall shear stress. Alternatively, to assess the absolute evolution with respect to the
uncontrolled—smooth wall—case, another scaling is used, based on the friction
velocity unominal

τ of the baseline clean plate.
Above the flat surface, the velocity profile is fitted by the log-lawwith coefficients

κ = 0.39 and C+ = 5.1. Riblets cause a thickening of the viscous layer and a

significant upward shift of the log-law [1]: Δu+ =
√
2/crib

f −
√
2/cclean

f ≈ 1.14.

The nominal friction velocity scaling highlights the minor impact of the riblets
on ux outside the viscous sublayer: the two velocity profiles neatly collapse above
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Fig. 4 Mean
spanwise-averaged
streamwise velocity profile
at Reθ = 750 over flat plate
(dash) and riblets in actual
(solid) and nominal
(symbols) wall-units. Linear
(u+ = y+) and logarithmic
(u+ = log(y+)/0.39 + 5.1)
profiles (dotted). The arrow
indicates the riblets tip
location

y+ ≈ 10. This very spatially limited modification of the mean velocity explains why
riblets do not significantly impact the “bulk” coefficient c f,1. Nevertheless, since the
global c f is reduced in the presence of riblets, the relative contribution of c f,1 is
increased.

Conversely to c f,1, the relative turbulent contribution to the drag c f,2/c f remains
unchanged by the riblets, while the absolute value for c f,2 decreases. The impact of
riblets on the turbulence properties is investigated in the following sections.

5 Turbulent Statistics

The root-mean-square turbulent velocity fluctuations and the normal Reynolds stress
u′v′ are displayed in Fig. 5. On the whole, all intensities are reduced in absolute
terms (i.e., scaled using nominal wall friction velocity), whereas, modifications are
much limited in (actual) wall-unit scaling. More specifically, the urms profile is only
affected by the riblets below y+ = 17. This results in a slight lowering and upward
shift of its maximum peak. The profiles for vrms and u′v′ above the ribbed and
smooth walls collapse almost perfectly, consistently with their close role with the
wall friction generation. Finally, wrms is somewhat increased above y+ = 10.

Note that only the spanwise component wrms is damped in the riblets’ vicinity,
in agreement with Luchini’s vision of riblets as a device selectively impeding the
transverse over the longitudinal flow [14].

Because c f = 2(U+
0 )−2, the ratio c f,2/c f explicitly reveals a weighted integral

of u′v′+, scaled in wall-units. Owing to the negligible impact of riblets on the wall-
unit-scaled profile for the Reynolds normal shear stress, the turbulent contribution
c f,2 and the drag coefficient c f are de facto proportional.
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Fig. 5 Rms turbulent
intensities u+

rms (red), v+
rms

(orange), w+
rms (blue), and

Reynolds normal stress u′v′+

(black), at Reθ = 750, over
flat plate (dash) and riblets in
actual (solid) and nominal
(symbols) wall-units. The
arrow indicates the riblets tip
location

6 Budget of Turbulent Kinetic Energy

The impact of riblets on turbulence is now investigated. It has been shown in Sect. 5
that, overall, fluctuation intensities scale in wall-units.

The same scaling will be adapted for energy budget, and beyond that, most term
intensities are essentially unchanged by riblets, assuming that the appropriate vertical
origin ordinate is chosen. The previously used Stokes virtual origin Δy(u) = −h‖
does not lead, here, to a meaningful collapse of the curves. However, a striking
superimposition is observed if one shifts the riblets further approximately one wall-
unit downward. This coordinate shift can be related to the velocity shift of the log
layer (Δu+ ≈ 1) computed in Sect. 4. The ordinate origin Δy+

(K ) = Δy+
(u) −Δu+ ≈

−0.75 h+
rib allows us to make the log-law region of both flows start at the same

location. This positioning will be used for the following energy budgets of this
article.

The transport equation for the turbulent kinetic energy k = 1
2u′

i u
′
i reads:

∂k

∂t
= −ui

∂k

∂xi︸ ︷︷ ︸
1

− 2νsi j
∂u′

i

∂x j︸ ︷︷ ︸
2

− u′
i u

′
j
∂u j

∂xi︸ ︷︷ ︸
3

− ∂

∂xi

(
1

ρ
p′u′

i︸ ︷︷ ︸
4

− 2νsi j u′
j︸ ︷︷ ︸

5

+ u′
i u

′
j u

′
j︸ ︷︷ ︸

6

)
(6)

where Einstein implicit summation is used. The wall-normal distributions of those
terms are shown in Fig. 6.

Terms 1 and 4, standing for the transport work done by the total dynamic pressure,
have little impact on the budget. The production term 3 and the turbulent diffusion
term 6 exhibit profiles almost identical between flat and ribbed plates. The main
difference between flows is an enhancement of the dissipation (term 2) in the y+ ∈
[6, 12] layer. To balance the budget, a tiny downward shift of the production level
(term 3) in the viscous sublayer (y+ < 6) provides the additional energy. The viscous
diffusion term 5 ensures the appropriate energy transport between those two zones.
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Fig. 6 Profiles for the
turbulent kinetic energy
budget terms, at Reθ = 750,
over flat plate (dash) and
riblets in actual (solid) and
nominal (symbols)
wall-units. The arrow
indicates the riblets tip
location

Compared to the smooth wall case in wall-units, more energy is pumped from the
mean flow to be dissipated into heat. In absolute scaling however, dissipation levels
are greatly reduced. Thus, the key role in the riblets’ drag-reducing mechanisms
seems to be played by the dissipation term 2. It can be rewritten into:

2νsi j
∂
∂x j

u′
i = ν ω′

iω
′
i + 2ν ∂2

∂xi ∂x j
u′

i u
′
j , (7)

with ωi the flow vorticity components. The first term, called turbulent enstrophy,
is observed to be the predominant one [21]. The turbulent dissipation is therefore
directly related to the turbulent enstrophy. Its budget is now broken up.

7 Budget of Turbulent Enstrophy

The detailed equation for the enstrophy budget of an incompressible flow can be
found in [21], Eq. (3.3.38). Labels in Fig. 7 correspond to the following terms: Term
1 accounts for the convection by the mean flow. Terms 2 through 5 are production
terms. Term 2 represents the gradient production and is the enstrophy analog for
the kinetic energy budget term 3 in Eq. (6). Terms 3 and 4 denote the production (or
removal) caused by the stretching of vorticity fluctuations by the turbulent and the
mean strain rate. Term 5 is a mixed production term also appearing in the budget for
1
2ωiωi . Terms 6 and 7 represent the turbulent and the viscous diffusion. Finally, term
8 expresses the enstrophy dissipation. Terms 7 and 8, both accounting for viscous
effects, have been gathered for clarity’s sake in Fig. 7.

The riblets’ main effect is an enhancement of most of the terms in the enstrophy
budget. More specifically, a striking alteration occurs with production term 2, whose
expression is : u′

jω
′
i (∂ωi/∂x j ). It accounts for the transfer between the mean and
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Fig. 7 Profiles for the
turbulent enstrophy budget
terms. For line legend, refer
to Fig. 6 above

the turbulent squared vorticity. Term 2 acts as a sink term below y+ = 9 for the
smooth wall, but becomes a production term for the ribbed wall. This change is due
to the creation, by the riblets, of mean vorticity in the normal direction ωy in order to
satisfy the nonslip condition on the grooves’ quasi-vertical sides. By producingmean
normal vorticity, riblets induce extra production in the enstrophy budget—production
which is counter-balanced by viscous effect—and enhance the enstrophy level. Since
enstrophy translates into turbulent kinetic energy dissipation, the turbulent activity
drops because of the increased dissipative nature of the flow. This drop explains the
absolute reduction of all turbulence intensities, Fig. 5. A new equilibrium establishes
with weakened turbulence levels. All levels of the turbulent budget (6) are dumped in
absolute terms, including the dissipation which has been initially enhanced. As long
as the riblets maintain an important level of enstrophy production, the flow budget
remains balanced with small turbulence levels.

The reduced level of turbulence intensities, and especially for the normalReynolds
shear stress, involves a drop of the momentum diffusion toward the wall and a fall
of the wall friction. Similar drag mechanisms are observed as well for other drag-
reducing devices, such as transverse wall oscillation [18] and suboptimal control
theory [12].

8 Outlook

Skin friction has been decomposed and the turbulent contribution was shown to
be the most affected by the riblets. The modification of turbulence properties was
investigated through a dissection of the budgets of the turbulent kinetic energy first,
and of the main part of its dissipation—the enstrophy—thereafter. The mean normal
vorticy created on the riblets’ lateral sides turns out to be the cause of an extra
dissipation of the turbulence intensities, which eventually reduce the drag.
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Further investigations of the energetic exchanges involved in the turbulence above
riblets, and, more especially, within the transient area downstream of the forefront
of the ribbed wall, may bring further details and help clarify the drag reduction
mechanisms.
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Characterization of Pipe-Flow Turbulence
and Mass Transfer in a Curved Swirling
Flow Behind an Orifice

N. Fujisawa, R. Watanabe, T. Yamagata and N. Kanatani

Abstract This paper deals with the extraction of turbulent structure correlated with
the wall mass transfer in a curved swirling pipe flow behind an orifice. The cross-
sectional velocity field behind the orifice is measured by the Stereo Particle Image
Velocimetry (SPIV) and the results are analyzed by the proper orthogonal decompo-
sition (POD). The instantaneous velocity field shows the asymmetric vortex structure
in the cross section due to the combined effect of the swirling flow and the secondary
flow generated at the upstream elbow. The POD analysis indicates that the highly
turbulent flow is generated on the upper left-hand side of the pipe in the lower POD
modes suggesting the occurrence of high wall-thinning rate due to the mass transfer
enhancement, while that of the higher modes do not show such asymmetry. This
result suggests that the lower POD modes of the velocity field contribute to the
non-axisymmetric pipe-wall thinning behind an orifice in a curved swirling flow.

1 Introduction

Pipe-wall thinning due to the flow accelerated corrosion (FAC) is one of the important
issues in the safetymanagement of the steel pipeline in the nuclear/fossil power plant.
The mechanism of FAC is the corrosion of the wall materials of the pipeline, which
is accelerated by the turbulence in the flow field, while it is also influenced by the
chemical aspect of the fluid, such as temperature, pH, oxygen concentration, and so
on [4]. Such complex phenomenon of FAC often occurs in the pipe wall behind the
orifice, T-junction, and in the elbow, where the turbulence is highly generated by the
flow separation and the related flow phenomenon [10].
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Fig. 1 Illustration of
pipeline geometry

Non-axisymmetric pipe-wall thinning due to FAC is a topic of interest, since the
pipeline break accident in theMihama nuclear power plant in 2004 [14]. The pipeline
layout consists of an elbow, a straight pipe, and an orifice, as shown in Fig. 1. The
pipeline break happened at one diameter downstream of the orifice. It should be
mentioned that the swirling flow was observed in the scaled model experiment [14].
The resulting wall thinning rate was not uniform in the circumferential direction,
which accelerated the pipeline accident. Since then, several studies have been carried
out to elucidate the mechanism of the non-axisymmetric pipe-wall thinning due to
FAC.Ohkubo et al. [15] and Fujisawa et al. [6] indicate the influence of orifice bias on
the non-axisymmetric pipe-wall thinning and Takano et al. [20] suggest the influence
of the elbow, but themain cause of the non-axisymmetry has not been fully understood
yet due to the complexity of the flow field and the related mechanism of FAC in
the actual pipelines. To understand the flow mechanism of non-axisymmetric pipe-
wall thinning, the velocity field behind the orifice has been measured by the stereo
PIV, which allows the three components of instantaneous velocity field in the two-
dimensional cross section of interest [7]. The results indicate that the mean velocity
field and the turbulent energy distribution become non-axisymmetric, suggesting the
correlation of the flow field and the mass transfer. In the past, the flow parameters,
such as the vertical velocity [10], turbulent energy [19, 22, 23], and wall shear stress
[21] are considered as major parameters contributing to the wall mass transfer [17,
20], but the structure of turbulence has not been identified yet in literature.

Proper orthogonal decomposition (POD) is one of the statistical methods for
analyzing the low-dimensional representation of the multidimensional flow field of
interest. The snapshot POD is very useful for recognizing the coherent structure
of turbulent flow [2]. There are several successful examples of the snapshot POD
analysis applied to the turbulent flow in the literature, such as the jet in counter flow
[3], channel flow [13], backward-facing step flow [12], complex unsteady flow [1,
9], and so on. By introducing the POD analysis, the most energetic structure of the
flow has been extracted from the planar PIV data by decomposing the fluctuating
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properties of the turbulent velocities into the linear sum of orthogonal eigenfunctions
of temporal and spatial correlations.

The purpose of this paper is to introduce the snapshot POD analysis into the
velocity field measured by stereo PIV to localize the high mass transfer rate in the
pipe wall behind an orifice under the influence of swirling flow combined with the
elbow.

2 Experimental Method

2.1 Experimental Setup

The experiment on the velocity field behind an orifice in a curved swirling flow
has been carried out in a closed-circuit water tunnel [6]. The water tunnel used in
this experiment consists of a pump, settling chamber, honeycomb, flow-developing
section, and test section of the pipeline, which have been described in [6]. The
measurements of velocity field and mass transfer rate are carried out by using the
stereo PIV and benzoic acid dissolution methods, respectively. Figure2 shows the
details of the test section, which consists of a swirl generator, elbow, straight pipe,
orifice, and downstream pipe. It should be mentioned that the length of the straight
pipe between the elbow and the orifice is set to 10d to meet with the Mihama case
[14], where d is a pipe diameter. The diameter of the pipe is d = 56mm and the
radius to diameter ratio of the elbow is 1.4. The test section is made of an acrylic
resin material for flow visualization. The swirling flow was generated by a swirl
generator, which is made of 6 plane vanes having an angle of 45◦ to the flow axis [6].
The swirl generator was placed 13d downstream of the honeycomb and 3d upstream
of the elbow. It should be mentioned that the swirl generator produces a swirl flow

Fig. 2 Details of
experimental test section
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having a swirl intensity S defined by the circumferential momentum to axial one
S = 0.35 at 3 diameters upstream of the orifice [5], while it is estimated as S = 0.26
in the Mihama case from the velocity measurement in the scaled model experiment
[14]. In the downstream of the elbow, the straight pipe section of 10d and the circular
orifice having a diameter ratio 0.6 are placed before entering into the downstream
pipe. Note that the diameter ratio of the orifice agrees with that of the Mihama case
[14]. The working fluid of water is kept at 298K during the experiment. Therefore,
the Reynolds number of the flow was set to Re(=Ud/ν) = 3 × 104, while that of
the Mihama case was Re = 5.8× 106 [14], where U is the bulk velocity and ν is the
kinematic viscosity of water.

2.2 Measurement of Velocity Field

The velocity field behind the orifice in the pipeline under the influence of curved
swirling flow was measured by the stereo PIV system, which can measure the three-
dimensional velocity field in the cross section of interest using the two oblique
observations through the water jackets on both sides of the pipe. Figure3 shows an
illustration of the experimental test section and the stereo PIV system for the three-
dimensional velocity measurement. The stereo PIV system consists of two CCD
cameras with the frame straddling function (1018 × 1008 pixels with 8 bits in gray
level), double pulsed Nd:YAG lasers (maximum output power 50mJ/pulse), and a
pulse controller. The light sheet illumination for flow visualization was provided
from the top of the test section normal to the pipe axis. The thickness of the light
sheet was about 2mm. The flow visualization was carried out using nylon tracer
particles 40µm in diameter having a specific gravity of 1.02, which was supplied to
the flow in the tank located upstream of the pump. The two CCD cameras are located
on both sides of the pipe in a Scheimpflug configuration.

Fig. 3 Stereo PIV system
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The stereo PIV analysis of the two sequential images requires the calibration in
a three-dimensional thin volume of interest in the light sheet plane. The calibration
plate was traversed axially using the mechanical traversing gear driven manually
and allowed the out-of-plane displacement of 0.5mm in interval with an accuracy
of 5µm. Then, a total of 5 images are captured in an axial distance of 2mm. These
calibration images were used for the three-dimensional reconstruction for stereo PIV
[8, 18]. The interrogation between the sequential two imageswas carried out using the
direct cross-correlation algorithm with the sub-pixel interpolation technique. Then,
the particle displacements from each camera were combined to produce the three-
dimensional velocity vectors by solving the system equations for stereo cameras with
a least square method. It should be mentioned that the interrogation window size was
set to 31× 31 pixels with 50% overlap in the analysis [11]. The details of the stereo
PIV analysis can be found in Raffel et al. [16].

2.3 Proper Orthogonal Decomposition Analysis

The snapshot POD analysis is introduced into the statistical analysis of 1000 instan-
taneous velocity fields in the curved swirling flow, which is measured by stereo PIV
at one diameter downstream of the orifice. The basic idea of snapshot POD is that
it yields a set of orthogonal eigenfunctions that are optimal in energy representing
temporal and spatial correlations of instantaneous velocities. It is assumed that the
instantaneous velocity vector U (x, tk) is acquired at time tk , where k = 1, 2,−, M .
The POD analysis allows the evaluation of the mean velocity field (0th POD mode)
and the fluctuating velocity field (1st, 2nd, — ). In the POD analysis, three velocity
components u, v, w are arranged in the velocity matrix U and the two-point correla-
tion matrix Cjk is expressed by the velocity matrix U as follows:

Cjk = 1

M

∫
U (x, t j )U (x, tk)dx ( j, k = 1, 2,−, M) (1)

The POD mode Φk is obtained by solving the following eigenvalue problem of the
two-point correlation matrix Cjk,

Cjka = λk (2)

where a is the eigenvector and λk is the eigenvalue of Cjk. The eigenvectors and
eigenvalues can be obtained by solving these equations numerically.

The PODmodeΦk can be expressed by the linear combination of the eigenvector
a and the instantaneous velocity vector U, as follows:

Φk(x) =
N∑

k=1

ak
nU (x, tk) (3)
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The fluctuating energy Ek of the corresponding POD mode is expressed by the
eigenvalue λk divided by the total fluctuating energy Et , which is written as follows:

Ek = λk

Et
(4)

where

Et =
N∑

k=1

λk =
∫

U (x, tk)
2dx (5)

The reconstructed velocity field can be expressed by using the eigenfunction and
eigenvector as follows:

Ũ (x, tk) =
NPOD∑
n=1

an
k Φk(x) (6)

where NPOD is the number of POD mode. The details of the snapshot POD analysis
have been described in the literature [1–3, 12, 13]. It should be mentioned that
sufficiency of the number of PIV data for the analysis was confirmed by the analysis
with a small number of PIV data of 500.

3 Results and Discussions

Figure4 shows the first three POD modes of the flow behind the orifice in a curved
flow without swirl. The 0th mode (a) corresponds to the mean flow, while the 1st
mode (b) and 2nd mode (c) show the fluctuating velocity fields. The 0th mode of the
analysis agrees with that of the mean velocity field, which suggests the validity of the
present analysis. On the other hand, the periodic pattern appears in circumferential
direction in the fluctuating velocity modes. The energy levels of the 1st and 2nd POD
modes are 3.8 and 3.6%, respectively. The 1st PODmode shows the periodic pattern
on the left-hand side and the 2nd POD mode shows the similar pattern on the lower
side. These results indicate that the total energy of the periodic pattern is distributing
almost uniformly in energy in the cross section of the pipe, suggesting the presence
of axisymmetric flow structure in the pipe flow behind the curved flow.

Figure5 indicates the corresponding three PODmodes of the flow behind a curved
swirling flow. The 0th PODmode shows the high axial velocity on the left-hand side
of the pipe center and the high circumferential velocity on the left-hand pipe wall,
suggesting the occurrence of non-axisymmetric flow behind the orifice. This flow
pattern suggests the presence of a secondary flow in the pipe. On the other hand, 1st
and 2nd POD modes show the presence of positive and negative sign in the cross-
sectional distribution of fluctuating velocities, while the magnitude of the PODmode
decreases with an increase in the mode number. The energy levels of the 1st and 2nd
POD modes are 13 and 7.4%, respectively. It should be mentioned that the presence
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Fig. 4 Cross-sectional distributions of POD analysis without swirl. a Mean velocity. b 1st mode.
c 2nd mode

of positive and negative sign in the neighborhood of the pipe center indicates the
formation of vortex structure in the pipe. These results show the complexity of the
mean and fluctuating velocity field downstream of the orifice under the influence of
curved swirling flow.

Figure6 shows the cross-sectional turbulent energy contours downstream of the
orifice, which are reconstructed from the velocity field from the first 19 POD modes
(a) and that from the rest of the POD modes (b). Note that the first 19 modes occupy
50% of the total energy and the rest of the POD modes the other 50%. The results
indicate that the reconstructed turbulent energy by the first 19 modes shows non-
axisymmetric distribution along the pipe wall and the magnitude of turbulent energy
is high on the upper side and is low on the right-hand side, while the reconstructed
turbulent energy contour in the rest of POD modes shows almost uniform along the
wall. This result suggests that the non-axisymmetric feature of the turbulent energy
in the pipe comes from the lower POD modes, which contains the high turbulent
energy.
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Fig. 5 Cross-sectional distributions of POD analysis with swirl. a Mean velocity. b 1st mode.
c 2nd mode

Fig. 6 Reconstruction of turbulent energy with swirl. a Lower POD modes. b Higher POD modes
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Fig. 7 Distributions of wall
mass transfer rate and
turbulent energy

Figure7 compares the distributions of turbulent energy k reconstructed from the
velocity in lower POD modes and the mass transfer rate Sh along the pipe wall in
the curved swirling flow, which is measured by the benzoic acid dissolution method
[20]. They are normalized bymaximum value. The result indicates that the highmass
transfer rate is found on the top left side of the pipe and both results are consistent
with each other. This result suggests that the turbulent energy distribution in the
lower POD modes is highly correlated with that of the mass transfer rate.

4 Conclusions

The cross-sectional velocity field behind an orifice under the influence of curved
swirling flow was measured by Stereo Particle Image Velocimetry, and the results
were analyzed by the proper orthogonal decomposition to extract the turbulent struc-
ture correlated with the wall mass transfer. The instantaneous velocity field showed
the vortical structure due to the swirling flow combined with the secondary flow
caused by the upstream elbow, which is generated by non-axisymmetric flow field
behind the orifice. The POD analysis showed the variation of turbulent structure in
the lower PODmodes due to the influence of the curved swirling flow. The turbulent
energy reconstructed from the lower PODmodes indicates the similar distribution to
that of the mass transfer rate. This result suggests the correlation of turbulent energy
in the lower POD modes with the mass transfer rate.
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Turbulent Structure of a Concentric
Annular Flow

Sina Ghaemi, Majid Bizhani and Ergun Kuru

Abstract Turbulent flow in the annular gap between two concentric tubes of 38
and 95 mm diameter at Reynolds number of 79’000 is experimentally investigated.
Measurements are conducted using planar particle image velocimetry (PIV) with
spatial resolution of 23µm/pix and interrogation windows of 0.74 × 0.74 mm2. The
experiments are aimed at scrutinizing the location of the extremums of the asym-
metric profiles of velocity and turbulent statistics along with the relevant turbulent
structures. The location of maximum average streamwise velocity <U>max and zero
Reynolds shear stress <uv> are observed to be apart. Local minimum of <u2> and
<v2> is also observed to coincide with <uv>= 0 and different from <U>max. The
experiments also demonstrate that the ejection events originating from the inner and
outer walls play a dominant role in transport of turbulence toward the midsection of
the annulus.

Keywords Turbulent annular flow · Reynolds stress · Particle image velocimetry

1 Introduction

Turbulent flow in the annular gap between two concentric tubes has been frequently
investigated in the literature due to several engineering applications. For example,
the removal of cutting material from the annular passage between the drill shaft
and the well casing is dominated by the transport mechanisms of turbulent flow
(Nouri et al. [15]). The convective heat transfer in a double-pipe heat exchanger
is another widespread application of turbulent annular flow (Crookston et al. [7]).
The asymmetric velocity profile of turbulent annular flow and its’ deviations from
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Fig. 1 Turbulent flow in a concentric annulus and schematics profiles of average velocity (<U>)
and Reynolds shear stress (<uv>)

turbulent pipe flow are also of interest to fundamental turbulence research. Flow
in an annulus presents a transitional configuration from channel flow to pipe flow.
As the ratio of the radius of the inner pipe (r1) to the radius of the outer pipe (r2)

approaches one, the annular flow would resemble a channel flow. On the other hand,
when r1/r2 approaches zero, the flow tends toward pipe flow. In spite of several past
investigations, there are still major deficiencies in our understanding of turbulent
annular flow.

The asymmetry of the average flow field relative to the midpoint (rm = 1/2 ×
(r1 + r2)) of the annulus has been associated with unique turbulence characteristics.
It has been confirmed since the early investigation of Brighton and Jones [2] that the
locations of maximum average velocity <U>max and zero shear stress (<uv>= 0)
are both at r < rm as shown in Fig. 1. However, whether these two locations overlap
in a turbulent annular flow is still under debate. This is in contrary to fully developed
pipe flow and symmetric channel flow in which ru (location of <U>max) and r0
(location of <uv>= 0) overlap. Asymmetric channel flows with a rough wall on
one side have also shown similar asymmetric behavior and possible separate ru and
r0 locations (Maubach and Rehme [13]).

The noncoincidence of ru and r0 appears contradictory with respect to our pre-
sumption of negative <uv> in a positive d<U>/dy shear flow. As explained by
Kundu et al. [10] in an one-dimensional shear flow with d<U>/dy> 0, a fluid ele-
ment at location y0 would carry on average a negative streamwise fluctuation (u < 0)
upon traveling to y0 + dy through a positive wall normal fluctuation (v > 0). In the
opposite direction, if the fluid element at location y0 travels to y0 − dy, the negative
wall normal fluctuation (v < 0) would carry on average a positive streamwise fluc-
tuation (u > 0). In both cases, <uv> is negative while dUm /dy is positive. However,
if ru and r0 do not coincide in a turbulent annular flow, in the small region between
ru and r0, there would be a contradictory region of positive <uv> and positive



Turbulent Structure of a Concentric Annular Flow 239

d<U>/dy. The possible shortcoming of this conceptual model would preclude both
the eddy viscosity model and the Prandtl’s mixing length theory. The eddy viscosity
(ε) is defined in analogy with molecular transport in gases (Tennekes and Lumley
1972) according to

− ρ 〈uv〉 = ε
∂ 〈u〉
∂y

. (1)

In this equation, positive <uv> and positive dUm /dy would result in a negative which
lacks any physical meaning. In addition, the Prandtl’s mixing length (l) cannot be
estimated in this region following

− ρ 〈uv〉 = ρl2 ∂Um

∂y

∣∣∣∣∂Um

∂y

∣∣∣∣ . (2)

Although the success of these models in accurate modeling of turbulent flows has
always been limited to only a number of simple flows, the fundamental concept used
to develop these models is expected to be valid as it is frequently discussed in our
classical fluid mechanics literature.

The early investigation of Brighton and Jones [2] obtained ru from measurement
of radial velocity gradient using two adjacent Pitot tubes spaced 5.08 mm apart and
compared it with r0 measured using a hot-wire probe. They reported that the devia-
tion of the two points is within the measurement uncertainty. Lawn and Elliott [11]
also used a combination of double Pitot tube (tubes 6.3 mm apart) and an X-wire
probe and observed a distance of about 1–2 mm between rm and r0 in annular gaps of
87.2–131.6 mm at Re number range of 3 × 104–3 × 105. The deviation is observed
to increase as the asymmetry of the profile increases with reduction of r1/r2. No sig-
nificant variation was observed with Reynolds number at a fixed r1/r2. Rehme [18]
carried out an experimental investigation to identify the location of ru and r0 using
double Pitot tube and hot-wire anemometry demonstrating their noncoincidence at
Re = 2 × 104–2 × 105 and r1/r2 = 0.02–0.1. Nouri et al. [15] observed that the
deviation of ru and r0 is within the measurement precision of the Laser Doppler
velocimetry conducted at Reynolds numbers of 8’900 and 26’600. The recent exper-
iment of Rodriguez–Corredor et al. [6] shows noncoincidence of the two points using
PIV measurement in Re of 17’700 up to 66’900. The consensus of the experimental
investigations is toward noncoincidence of ru and r0. However, uncertainty sources
such as the spatial resolution of the measurement technique, intrusion of the spacers
holding the inner tube, and vibration of the inner tube have been debated.

Numerical simulations have also shown contradictory results on the relative loca-
tion of ru and r0. Chung et al. [4] carried out a direct numerical simulation (DNS) at
the same condition as the experiment of Nouri et al. [15] and observed noncoincidence
of ru and r0. However, Boersma and Breugem [1] recently observed coincidence of
the two positions based on a DNS of fully developed turbulent flow in an annuli flow
with r1/r2 of 0.1. Boersma and Breugem [1] associated the noncoincidence observed
by Chun et al. (2002) to poor radial resolution.
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The location of ru and r0 is related to the turbulent mechanisms at the midsection
of the annulus. To the authors’ knowledge, the only physical explanation for the
noncoincidence is provided by Rehme [19] who proposed turbulence diffusion as
the cause of the noncoincidence. He conjectures that diffusion of turbulence plays a
stronger role in an asymmetric turbulent channel flows relative to tubes and paral-
lel plates. It is interesting to also mention that all the investigations which reported
noncoincidence of the two points, r0 is smaller than ru , suggest a systematic mech-
anism. Brighton and Jones [2] investigated the profiles of normal Reynolds stress
and observed that the location of minimum <u2>, <v2>, and <w2> is within the
measurement uncertainty of ru . Chung et al. [4] studied the turbulent structure of
annuli flow and budget of Reynolds stress using DNS. However, there is still no clear
understanding on the possibility and the cause of noncoincidence of rm and r0 in a
turbulent annular flow.

The present investigation is carried out to investigate the structure of the turbulent
flow at the midsection of an annulus. The experiments are conducted in a high
Reynolds facility using particle image velocimetry (PIV) measurement to scrutinize
the relative location of <U>m and <uv>= 0 along with the structure of turbulent
fluctuations.

2 Experimental Setup

The experiments are conducted in a flow loop with approximately 20 m of pipe flow
driven by a centrifugal pump equipped with a variable frequency drive (VFD). The
pump inlet is fed from a 600-liters mixing tank and the outlet is connected to a
2-inch pipe. The annular test section is 9 m long and is located on the return route
of the loop after a short vertical section as shown in Fig. 2. The annular section has
two concentric glass tubes and is constructed from 6 sections each 1.5 m long. The
smaller tube has an outer diameter of d1 = 38 mm and the larger tube has an inner
diameter of d2 = 95 mm giving a ratio of d1/d2 = 0.4. The corresponding hydraulic
diameter is dh = 57 mm. The six annular sections are connected by stainless steel
joints ensuring a smooth connection. The wall thickness of the inner tube is selected
to provide a buoyant inner tube in water and minimize deflection and vibration

Fig. 2 Schematic of the flow loop and the annulus section formed by two concentric tubes
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Fig. 3 The PIV setup
consisting of a camera
imaging perpendicular to the
laser sheet. The test section
of the flow loop is contained
with a glycerol box
minimizing distortion effects
caused by the round glass
pipe

effects. The inner tube is held in place at the joints using three threaded rods spaced
120◦ apart. Measurements are conducted at an average velocity of Uavg = 1.11 m/s
corresponding to Reynolds number (Re = Uavg dh / ν) of 79’000 at a flow rate of
323 L/min. The reference point of the radial coordinate r∗ is defined at the outer
surface of the inner tube (see Fig. 1) and is normalized based on the annulus gap
according to

r∗ = r − r1

r2 − r1
. (3)

The PIV measurements are conducted at 5.5 m downstream of the start of the
annulus section and one meter downstream of the closest joint holding the threaded
rods. As it is shown in Fig. 3, the test section is submerged in a rectangular box made
of cast acrylic and filled with glycerol to reduce image distortion due to the curved
pipe surface. Streamwise and radial velocities are denoted by U and V while their
fluctuations by u and v, respectively.

The PIV setup consists of a double cavity Nd-YAG laser (SoloPIV III, New
Wave Research) and a CCD camera (Imager Intense, LaVision). The laser produces
50 mJ/pulse and is equipped with a combination of spherical and cylindrical lenses
forming a 1 mm thick laser sheet. The camera views the laser sheet at 90◦ angle
through a 105 objective lens (Sigma) at f /8 aperture setting. The magnification of
the imaging system is M = 0.277 resulting in a spatial resolution of 23µm/pix.
The CCD sensor has a pixel pitch of 6.45µm and is cropped to 1376 × 608 pixels
corresponding to a field-of-view of 32.092 × 14.180 mm. A set of 12,000 double-
frame recordings with pulse separation of 270µs is acquired at an approximate
acquisition frequency of 10 Hz (cropped sensor). The recorded images are processed
in Davis 8.0 (LaVision) with final interrogation areas of 32 × 32 pixels (0.736 ×
0.736 mm) with 75 % overlap yielding a vector spacing of 184µm.
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3 Asymmetric Boundary Layer and the Extremums

The average streamwise velocity of turbulent annular flow shows an asymmetric
profile with <U>max closer to the inner wall as shown in Fig. 4a. The asymmetry is
caused by the smaller surface area of the inner wall producing smaller net friction
force. As a result, the flow is faster in the vicinity of the inner wall shifting <U>max
toward the inner wall. The measurements also show a small radial velocity toward
the outer wall and therefore a slight deviation from fully developed channel flow
(d<V >/dy �= 0).

The asymmetry is also present in the profiles of Reynolds stresses shown in Fig. 4b.
As expected the local maxima of <u2> and <v2> are in the vicinity of the walls. The
local maxima of the <v2> is at r∗ = 0.09 and 0.83 while the exact location of local
maxima of <u2> is not visible due to lack of spatial resolution in the vicinity of the
walls. Both normal stresses have a higher intensity peak at the inner wall side (r∗ <

0.46) while their local minimum is also closer to the inner wall. This trend is also
accompanied by larger spatial gradient of normal stresses at the inner wall side of the
annular gap. The location of <uv>= 0 is at the inner wall side of the midsection.
The Reynolds shear stress does not follow a linear distribution in contrary to fully
developed channel flow with slightly larger intensities at the inner wall side of the
annulus.

The locations of <U>max, <uv>= 0, <u2>min, and <v2>min at the midsection
of the annular gap are scrutinized in the magnified views of Fig. 5. As it is observed,
the maximum streamwise velocity <U>max is at r∗ = 0.456 while the <uv>= 0
is at r∗ = 0.438. Figure 5 also shows that the noncoincidence is not only limited to
<uv>= 0 and <U>max. The location of <u2>min and <v2>min also overlaps with
<uv>= 0 and it does not coincide with <U>max.
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Fig. 4 a Average streamwise and radial velocities and b Reynolds stresses across the annular gap
at Re = 79’000. One every three data points is shown for clarity
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Fig. 5 Profiles of a <U>, b <uv>, c <u2>, and d <v2> at the center region of the annular gap

4 Transport of Turbulence

The transport direction of <u2> is characterized by investigating the triple products
of <u3> and <vu2> in Fig. 6. Figure 6a shows that <u3> is negative across the
annuli while <vu2> changes from positive to negative with increase of r∗. This
observation is valid except very close to the walls where there is a lack of spatial
resolution. The magnified view of Fig. 6b shows that the local minimum of <u3>

in the centerline region of the annulus is located at r∗ = 0.425 and the sign change
of <vu2> occurs at r∗ = 0.431. As a result, the dominant turbulent fluctuation on
average is (u < 0 and v > 0) at r∗ < 0.431 and (u < 0 and v < 0) at r∗ > 0.431.
These fluctuations are both ejection events originating from the inner wall for r∗ <

0.431 and from the outer wall for r∗ > 0.431. Figure 7 demonstrates that dominant
transport of <v2> is by negative u across the channel. The radial fluctuation v changes
from positive to negative at r∗ = 0.438. The trend also shows that <v2> is mainly
transported by ejection events of the inner and outer walls.
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Fig. 6 Turbulent transport by <u3> and <vu2> a across the annulus and b magnified view of the
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Fig. 7 Turbulent transport by <v3> and <uv2> a across the annulus and b magnified view at the
centerline

5 Error Analysis

In order to further assure the accuracy of PIV measurements in determining the
location of <Umax>, <uv>= 0, <u2>min, and <v2>min, the cumulative averages
of points A (r∗ = 0.4187), B (r∗ = 0.4375), C (r∗ = 0.4562), and D (r∗ = 0.4688)
as indicated in Fig. 5a are plotted versus the number of samples in Fig. 8. The plots
demonstrate both low and high frequency variation of averages with the number
of samples. The low frequency variations relative to the absolute values within the
sample range of Fig. 8 are about 0.3 % for <U>, 7 % for <uv> and less than 2 % for
<u2> and <v2>. The error is mainly associated with both statistical convergence
and unsteadiness of the pump during the PIV acquisition (approximately 20 min).
The fluctuations of the average flow cause slight deviation from stationary flow
assumption. The high frequency fluctuations of the average values are smaller than
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Fig. 8 The convergence of a <U>, b <uv>, c <u2>, and d <v2> versus number of samples for
radial positions A, B, C, D located at r∗ = 0.4187, 0.4375, 0.4562, and 0.4688, respectively

the low frequency fluctuations and are due to random error of the PIV measurement.
Although the averages vary with the number of samples, it is observed that the
relative magnitude of the values stay in the same order for the considered neighboring
locations of A, B, C, and D. For example, in Fig. 8a, point C remains as the maximum
velocity while point B as <uv>= 0 for the range of samples.

6 Conclusion

The measurements using PIV technique in the annulus at Re = 79’000 shows the
location of maximum average streamwise velocity <U>max and zero Reynolds shear
stress <uv> do not overlap. In addition, the local minima of <u2> and <v2> are
also observed to coincide with <uv>= 0 and different from <U>max location. Error
analysis shows that the difference of the locations is larger than the uncertainty of
the measurement system. The experiments also demonstrate that the ejection events
originating from the inner and outer walls play the dominant role in transport of
turbulence toward the midsection of the annulus.
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Reconstruction of Wall Shear-Stress
Fluctuations in a Shallow Tidal River

Romain Mathis, Ivan Marusic, Olivier Cabrit, Nicole L. Jones
and Gregory N. Ivey

Abstract In this paper, we investigate the applicability of the predictive wall shear-
stress model, recently developed by Mathis et al. J. Fluid Mech. 715, 163–180, 2013,
[17], to environmental flows where near-wall information is typically inaccessible.
This wall-model, which embeds the scale interaction mechanisms of superposition
and modulation, is able to reconstruct the instantaneous wall (bed) shear-stress fluc-
tuations in turbulent boundary layers. The database considered here comes from
field measurements using acoustic Doppler velocimeters carried out in a shallow
tidal channel (Suisun Slough in North San Francisco Bay). The model is first applied
to a selected subset of data sharing common properties with the canonical turbulent
boundary layer. Statistics and energy content of these predictions are found to be
consistent with laboratory predictions and DNS results. The model is then used on
the whole dataset, whose some of them having properties far from the canonical case.
Even for these situations, the model is able to preserve the overall Reynolds trend.
This study shows the great capability of the model for environmental applications,
which is the only one able to predict both the correct energetic content and probability
density function.

R. Mathis (B)
Laboratoire de Mécanique de Lille, CNRS UMR 8107, Université Lille Nord de France,
59655 Villeneuve d’Ascq, France
e-mail: romain.mathis@univ-lille1.fr

I. Marusic · O. Cabrit
Department of Mechanical Engineering, University of Melbourne, Melbourne, VIC 3010,
Australia
e-mail: imarusic@unimelb.edu.au

O. Cabrit
e-mail: o.cabrit@unimelb.edu.au

N.L. Jones · G.N. Ivey
School Civil, Environmental and Mining Engineering and UWA Oceans Institute,
University of Western Australia, Crawley, WA, Australia
e-mail: nicole.jones@uwa.edu.au

G.N. Ivey
e-mail: greg.ivey@uwa.edu.au

© Springer International Publishing Switzerland 2016
M. Stanislas et al. (eds.), Progress in Wall Turbulence 2,
ERCOFTAC Series 23, DOI 10.1007/978-3-319-20388-1_22

247



248 R. Mathis et al.

1 Introduction

In wall-bounded turbulent flows the wall shear stress τw constitutes a key parameter
for accurate prediction of the flow behaviour. Over the years, many studies have been
devoted toward understanding and modelling the Reynolds number dependency of the
mean, time-averaged, value τ̄w, which is used in boundary layer inner scaling via the
friction velocity Uτ = √

τ̄w/ρ, where ρ is the fluid density [18, 21]. However, little
is known about the fluctuating component, τ ′

w, which can be responsible for extreme
and destructive events, such as wind gusts in atmospheric flows or scouring and
mechanical damage on an aircraft [19]. In environmental flows, the wall shear stress is
of great ecological importance where it is linked to erosion, bed formation, sediment
and nutrient transportation, etc. [6, 20]. Unfortunately, the wall shear stress is largely
inaccessible in field measurements, which prompts the need for predictive models to
reconstruct the missing information. Here, the fluctuating component is defined as
τ ′

w(x, t) = τw(x, t) − τ̄w(x), where τw(x, t) and τ̄w(x) are the total and mean values
of the wall shear stress, respectively, and x = (x, y) denotes the position vector in the
plane of the wall. The coordinates x , y and z refer to the streamwise, spanwise and
wall-normal directions. The respective fluctuating velocity components are denoted
by u, v and w. Overbars indicate time-averaged values, and the superscript “+” is
used to denote viscous scaling of length z+ = zUτ /ν and velocities u+ = u/Uτ ,
where ν is the kinematic viscosity of the fluid.

Recently, Mathis et al. [17] (hereafter denoted M13) proposed a novel conceptual
approach to build up a predictive model able to reconstruct the fluctuating wall shear
stress based on a single point measurement taken in the log-layer away from the
wall. The model is based on many years of empirical observations, both experimen-
tal and numerical, that have clearly established that strong interactions exist between
the near-wall region and motions in the outer region. Namely, the Reynolds number
effects are closely related to the increasingly energetic content of the large-scale
structures associated with the log-layer [1, 7, 11], through superposition and modu-
lation effects [2, 8, 14]. The wall shear-stress model was originally derived from the
streamwise velocity model developed by Marusic et al. [12] and Mathis et al. [15],
where an algebraic relationship between the streamwise velocity component and the
wall shear stress is known, and is of the form:

τ ′+
w p(t

+) = τ ′∗
w (t+)

[
1 + α u′+

O L(t+)
] + α u′+

O L(t+), (1)

where τ ′+
w p is the predicted time series normalised by wall variables, τ ′+

w p =
τ ′

w p/(ρU 2
τ ) and t+ = tU 2

τ /ν. The time series τ ′∗
w , which is normalised in wall units,

represents the statistically “universal” wall shear-stress signal that would exist in the
absence of any inner–outer interactions. The parameters τ ′∗

w and α are determined
from a once-off calibration experiment at an arbitrarily chosen Reynolds number, and
are hypothesised to be Reynolds number independent. The only user input required
for the model is a characteristic signal of the large scales from the log-region, u′+

O L ,
taken nominally at the geometric centre of the log-layer, z+

O = √
15Reτ [14, 15],
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where Reτ = Uτ δ/ν is the friction Reynolds number and δ the boundary layer
thickness. The M13 model consists of two parts. The first part in Eq. 1 models the
amplitude modulation of the small scales, here τ ′∗

w , by the large-scale log-region
motions, u′+

O L . The second term, αu′+
O L , models the superposition of the large-scale

motions felt at the wall. The underlying idea is that the near-wall small-scale motions
are universal (i.e. they do not change with Reynolds number), and therefore are only
influenced by large-scale log-region events (the intensity of the influence increas-
ing with increasing Reynolds number). Therefore, the Reynolds number effects are
confined to the large-scale log-region input signal, u′+

O L .
In this paper, we test and apply the M13 model on a tidal channel flow in order

to assess its applicability to environmental flows, where it is known that external
parameters such as roughness or stratification may also play an important role. The
objective of this work is to demonstrate the potential application and benefits in
environmental conditions. It should be emphasised that M13 model was originally
developed and calibrated for the flat-plate smooth-wall turbulent boundary layer, and
therefore its applicability in environmental flows is then not straightforward. Results,
including statistical properties and spectral content, are analysed and compared with
flat-plate smooth-wall turbulent boundary layer data from the literature, as well as
with previous predictions using laboratory measurements.

2 Experimental Dataset

The dataset used here comes from the field experiments of [10] carried out in Suisun
Slough in North San Francisco Bay from 30 August to 15 September 2005. The
measurement location was relatively shallow, with the water depth at the measure-
ment site ranging from 2.5 to 4.0 m with the semidiurnal tide. Measurements of the
three velocity components and pressure were made using Nortek acoustic Doppler
velocimeters (ADV) at four different heights, 0.15 m, 0.30 m, 0.45 m and 1.45 m,
above the seabed (ASB). The dataset consists of 330 records, or bursts, sampling
for 20 minutes every half-hour at 16 Hz. Throughout the remainder of the paper we
simply refer to these segments of data as bursts. A full description of the experiment
and measurement procedure is available in [10].

3 Data Analysis and Selection

The tidal channel environment is subjected to natural variability, in the mean flow
direction that in a long-term trend have to be taken into account for the data analysis.
We determine for each burst the mean flow angle θ to return the true streamwise
and spanwise velocity fluctuations. Then, a filtering process is applied to separate
the long-term trend related to the tidal channel environment (non-turbulence related)
from the original signal. For each velocity component and on each burst, the velocity
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Fig. 1 Mean flow angle θ (grey solid line) and depth of water (dashed line) (Figure adapted from
Mathis et al. [16])

signals from the four bed-normal locations are first averaged together. The resulting
averaged signal is then low-pass filtered at a cut-off wavelength of 20δ to extract
the long-term trend, which is then removed from the original signal. The cut-off
wavelength has been chosen based on our knowledge that the largest scale motions
developing in turbulent boundary layers are typically about 10δ − 15δ in length [5].
A complete description of the procedure to determine the mean flow angle and the
filtering process are available in [16].

As shown in Fig. 1, the site’s hydrodynamics are dominated by tidal flow, produc-
ing a cyclic change in the mean flow direction and water depth. The depth of water is
calculated as the median value of the pressure sensor data from the four bed-normal
locations, and it is used as the boundary layer thickness δ. The tide produces a wide
range of flow conditions with a corresponding high variability in Reynolds numbers,
as reported in Sect. 3.

The objective of our study is to use the M13 model of Mathis et al. [17] to
predict bed shear-stress information in the tidal channel, and to show its poten-
tial applicability to environmental flows where accessing such information remains
highly challenging. The model was originally developed for a smooth-wall zero-
pressure-gradient turbulent boundary layer and it is noted that the model’s parame-
ters might not be fully adequate for the present flow conditions (due to roughness
effects, for example). However, if there was variability of these “universal para-
meters” between different types of wall-bounded flows this should only affect the
accuracy of the model, and not the overall Reynolds number trends [15, 17].

Our first approach in the present study is to select the subset of burst sharing
common properties with the canonical turbulent boundary layer. To do so, data are
first normalised in wall unit using the boundary layer thickness δ given in Fig. 1,
and the mean friction velocity Uτ , which is determined using the Reynolds stress
peak, i.e. Uτ = max(

√−uw(z)). It is acknowledged that this estimation is somewhat
inaccurate [4], particularly due to the limited range and number of points in the wall-
normal direction, but it is justified in the present case by the fact that the first ADV
measurement is very close to the Reynolds shear-stress peak (see Mathis et al. [16] for
further discussion). The variation of friction Reynolds number Reτ during the whole
experimental campaign is presented in Fig. 2a. The average Reτ is around 30,000
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Fig. 2 a Reynolds number Reτ of each burst (red dots denotes the selected cases); b Mean velocity
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turbulence intensity profiles of the selected cases compared to laboratory hot-wire anemometer
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profile with A1 = 1.19 and B1 = 1.71 (Figure adapted from Mathis et al. [16])

but there is a wide range of Reynolds numbers produced by the tidal flow conditions,
which provides the opportunity to investigate the Reynolds number dependency of
the bed shear-stress fluctuations. To extract the “canonical” segments of data, we
then apply the following selection criteria:

1. the vertical profile of the mean streamwise velocity, u, monotonically increases
away from the bed (Fig. 2b);

2. the vertical profile of the turbulent shear stress, −u′w′, monotonically decreases
away from the bed;

3. the vertical profile of the streamwise turbulence intensity, u′2, monotonically
decreases away from the bed (Fig. 2c);

4. the variability of the points in the mean velocity profile is within 5 % of the mean
fitted logarithmic slope (to avoid seesaw trend).

The first three criteria reflect the intrinsic nature of the turbulent boundary layer and
the fact that the first wall-normal point is located beyond the Reynolds shear stress
and outer peaks (see Sect. 4 for the discussion related to the outer-peak). The last
criterion ensures that the data do not deviate excessively from the classical log-law
u+ = 1

κ
ln z++ A. Applying all four selection criteria yields 28 usable cases amongst

the 330 original bursts, covering a range of Reynolds numbers from Reτ � 20,000 to
50,000. The streamwise mean and turbulence intensity profiles of the selected cases
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are shown in Fig. 2b, c, in which the monotonic behaviour of criteria 1 en 3 are clearly
visible. The mean velocity profiles are consistently below the smooth-wall log-law,
as expected for flows with bed roughness, but they do not collapse on one another as
might be expected since they were acquired at the same location. This could indicate
a change in the bed roughness, perhaps caused by modifications in the behaviour
of the benthic community, which includes clams, and/or changing bedforms in the
mud. The overall trend of the turbulence intensity profile (Fig. 2c) agree remarkably

well with logarithmic behaviour u′2+ = B1 − A1 ln(z/δ) [13] and the laboratory
hot-wire measurement of Hutchins et al. [9].

In summary, Fig. 2 shows clear evidence that the retained bursts behave similarly
to a canonical turbulent boundary layer, with clear roughness effects being the only
significant difference compared to smooth-wall boundary layer flow.

4 Large-Scale Input Signal

To apply the M13 model, given in Eq. 1, the requirement for input is a large-scale
velocity signal from the logarithmic centre of the log-layer, z+

O = √
15Reτ [14]. This

location was originally chosen as it corresponds to most energetic signature point
of the large scales, i.e. to the outer-spectral-peak location, as well as to the peak of

the large-scale streamwise turbulence intensity profile u′2
L

+
. In environmental flows,

this optimal wall-normal location to capture the necessary large-scale information is
not always easily accessible, particularly as Uτ and δ are also subject to variation.
The present dataset is collected at a fixed bed-normal location, where the lowest
measurement point (z = 0.15 m) is located 2.2 − 2.5 times above the optimal bed-
normal location z+

O = √
15Reτ . Cabrit et al. [3] demonstrated that variations in

the predicted wall shear stress might occur if the location of the input large-scale
information deviates excessively from the middle of the log-layer (any variation
from the optimal wall-normal location induces a reduction in the energy of the large-
scale signal). We have shown, however, that the large-scale turbulence intensity
variation in the range z+

O ≤ z+ ≤ 2.5z+
O is less than 5 %, which should not influence

significantly the predicted bed shear stress (the error will be within the measurement
uncertainty). Hence, we use here the first off-bed measurement point (z1 = 0.15
m, i.e. z+

1 ∼ 2.2 − 2.5 × z+
O ) to determine the input large-scale velocity, u′+

O L .
The velocity signal at z+

1 is first low-pass filtered at the non-dimensional frequency
f + = 2.65×10−3 to retain only the large-scale component. Then, the filtered signal
is shifted forward in the streamwise direction to account for the large-scale structure
angle (see Mathis et al. [17] for full details of the procedure).

Figure 3 shows the streamwise turbulence intensity and energy spectra of the
raw and filtered (large-scale) signal for the selected canonical cases, along with
laboratory and atmospheric measurements. Overall, both the unfiltered and filtered
signals show an energy deficit (about 35 %) compared to smooth wall results, but
they do follow the same Reynolds number trend. This deficit is unlikely related to
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Fig. 3 (Left) Reynolds number dependency of the streamwise turbulence intensity of the log-region
unfiltered signal u′+

O (filled symbols), and the filtered large-scale component u′+
O L (opened symbols).

(Right) Pre-multiplied energy spectra of the input streamwise velocity signals for the laboratory [17]
and for a single burst of the present measurements (first bed-normal point); The vertical dashed
line shows the location of the cut-off frequency f + = 2.65 × 10−3 (Figure adapted from Mathis
et al. [16])

the miss-matched optimal location (which should account only for about 5 %). The
discrepancy between the laboratory and field measurements is more likely due to
the changing environment conditions due to the dynamics of the tidal channel rather
than measurement uncertainty, as differences are seen across all frequencies.

Overall, despite some differences in the large-scale input information between
laboratory and field measurements, the first off-bed measurements point in the tidal
channel located within the log-region allows us to apply the bed shear-stress model.

5 Bed Shear-Stress Prediction

In this section, we present bed shear-stress predictions τ ′+
w p, using Eq. 1 and input

large-scale information u′+
O L constituted from the first off-bed location z1. Two cases

are considered. First, the M13 model is applied to the selected canonical cases in order
to assess if the model applied in environmental flows comply with characteristics of
a canonical turbulent boundary layer. Second, the M13 model is applied to the whole
database in order to assess if, even in cases far from canonical, the relevance of the
bed shear-stress predictions are more generally applicable.

The left-hand side of Fig. 4 shows statistics of the reconstructed bed shear-stress

signal. The fluctuations magnitude τ ′+2
w p agree well with available DNS data and

predictions made using laboratory and atmospheric measurements. Overall, a slight
underestimation is observed, which is not surprising, considering the aforementioned
lower trend of the energy content of the input large-scale streamwise velocity (Fig. 3).
Similar observation is made on the spectral energy content (not shown here) where
the overall spectral range is well captured. Comparisons of higher order statistics
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Fig. 4 Fluctuation magnitude τ ′+2
w p , Skewness and Kurtosis of the predicted bed shear-stress signal

versus the Reynolds number Reτ , compared to available data for DNS of zero-pressure-gradient
turbulent boundary layer and former predictions using laboratory measurements. (Left) For the
selected canonical cases. (Right) For the whole dataset (330 bursts. Note that the solid line corre-
sponds to the trend obtained from previous work [17], and the dashed line is a fit of the canonical
cases’ predictions (Figure adapted from Mathis et al. [16])

(skewness and kurtosis factors in Fig. 4, left) show an increasing Reynolds number
trend consistent with previous laboratory predictions. However, the rate of increase
with Re of the M13 model is generally lower that DNS results, which remains an
open question and the subject of ongoing study. Despite some incertitude in the
dataset, either due to the measurement uncertainty (e.g. inadequate convergence of
the large-scale, ...) and/or the tidal channel environment (e.g. roughness effect, ...),
our analysis shows the potential applicability of the M13 model to environmental
flows.

To generalise the ability of the M13 model to environmental flows, independently
of canonical properties, predictions for the whole dataset are given in the right-hand
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side of Fig. 4. Despite a noticeable scatter, the overall trend of the statistics remains
similar. By analysis the residual of the predicted energy intensity, compared to the
overall trend (dashed line in the figure) it is found that 60 % of the overall predictions
lay between ±10 % of the expected trend. This result confirms the good behaviour of
the model, even when the input information does not fully comply with a canonical
turbulent boundary layer.

Finally, an example of a reconstructed instantaneous wall shear-stress signal, along
with the input outer large-scale component, is depicted in Fig. 5. It is interesting to
note long and intense periods of positive and negative excursions, characteristic
of very long large-scale motions developing within the log-region [7]. The highly
skewed and amplitude modulated character of τ ′+

w p is also obvious.

6 Conclusions

In this paper, the wall shear-stress model developed by Mathis et al. [17] is tested
and applied to environmental flows, here, a shallow tidal channel. It is shown that
a significant portion of the data behaves like a canonical turbulent boundary layer,
at least in the logarithmic layer. Predictions based on the selected canonical cases
show a good agreement with results obtained from laboratory experiments and DNS.
The model is well behaved even for the other “non-canonical” cases, in the sense
that the overall Reynolds number trend remains consistent with laboratory and DNS.
The relative discrepancy observed on the canonical predictions is attributed to exter-
nal conditions such as roughness effects, rather than measurement uncertainty. It
is however noted that for the less than optimal sampling to converge properly the
large-scale input information necessary for the model remains an important question
when considering environmental applications. Finally, significant improvements to
the model could be achieved by considering the external environment parameters,
such as roughness effects due to changing bed form or vegetation, stratification,
unsteadiness and pressure gradient, to name only a few. Nevertheless, the present
results show that the lack of near-wall or near-bed information in field measurements,
yet crucial for understanding ecosystem dynamics, can be overcome by this model.
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20. P. Rowiński, J. Aberle, A. Mazurczyk, Shear velocity estimation in hydraulic research. Acta
Geophys. Pol. 53(4), 567–583 (2005)

21. H. Schlichting, K. Gersten, Boundary Layer Theory, eighth revised and enlarged edition edn.
(Springer, 2000)



Analysis of Vortices Generation Process
in Turbulent Boundary Subjected
to Pressure Gradient

Artur Dróżdż and Witold Elsner

Abstract The paper is concerned with the experimental study of bursting process in
turbulent boundary layer. For this purpose the novel identification process, developed
by Dróżdż and Elsner, J Phys: Conf Ser 318(6):062007, 2011, [3] based on VITA
technique combined with quadrant analysis was applied. By the detection of four
possible combinations of instantaneous gradients of u and v phase-averaged velocity
traces this method allows to demonstrate such properties of vortices motion as:
swirling direction, ascending or descending direction, the trajectory inclination. The
analysis gives an evidence of four types of vortical structures present in the TBL
which are responsible for the production of Q-type events, namely prograde and
retrograde vortices, with the ascending and descending direction of motion. It was
found that detected coherent structures have dominant share of the overall energy of
velocity fluctuations.

1 Introduction

It is already known that the near-wall region is characterized by the presence of
low-speed streaks and hairpin vortices that used to be assembled into large-scale
coherent groups termed as vortex packets. In the vortex packet the bursting process
occurs which induces high gradients of velocity in time and in space. Kim et al. [6]
revealed that the bursting process, which produces roughly 70% of total turbulence,
is a result of break-up of shear layer in the buffer layer caused mainly by ejection
event in a buffer layer followed by sweep event. The effect of those phenomena
is the appearance of fine-scale structures in the flow. Study of bursting process in
pressure gradient flows and especially adverse pressure gradient is important from
the viewpoint of complexity of the physical phenomenon as well as practical appli-
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cations. The structure of turbulent boundary layer (TBL) developed on a flat plate in
the presence of favourable (FPG) and/or adverse pressure gradients (APG) were the
subject of many studies. Especially interesting is the formation of the outer peak of
fluctuation under the adverse pressure gradient condition. The reason of such phe-
nomenon is poorly understood and cause problems in the CFD modeling. Harun et
al. [5] show that turbulence of the outer layer, for both FPG and APG conditions, is
mainly the result of the large-scale motion. In the paper the attention is drawn to the
role of the small-scale structures.

The paper aims to apply the novel approach of bursting structure identification
process, developed byDróżdż and Elsner [3] based onVITA technique and combined
with quadrant analysis for TBL subjected to APG conditions. By the detection of
four possible combinations of instantaneous gradients of u and v phase-averaged
velocity traces method allows to demonstrate such properties of vortices motion as:
swirling direction, ascending or descending direction, the angle of the motion, as
well as the relative speed of vortex propagation in the flow.

2 Experimental Apparatus and Conditions

The experiment was performed in an open-circuit wind tunnel, where the turbulent
boundary layer developed along the flat plate, which was 2807mm long and 250mm
wide. The test section is located in the rear part of the wind tunnel. The upper wall of
test sectionwas shaped according to the assumed distribution of the pressure gradient
corresponding to the conditions encountered in axial compressor blading.

The facility was equipped with a computer-controlled, 2D traversing system (in
streamwise and wall-normal direction). The traverse carriage was driven over a max-
imum displacement of 180mm by a servomotor. The uncertainty of the driver step
was 0.001mm with the smallest step equal to 0.01mm.

Static pressure measurements were done using 70 pressure holes and the results
of measurements are shown in Fig. 1. The pressure distribution is typical of a turbo-
machinery case, where after short region of zero pressure gradient flow accelerates
(from xs = 197mm) and then (from xs = 427mm) decelerates. It is seen that
pressure gradient values varies within the range of −0.27 ÷ 0.28Pa/mm.

Velocity profiles were measured with single hot-wire anemometry probe of a
diameter d = 3µm and length l = 0.4mm (Dantec Dynamics 55P31). Those
measurements were supplemented with X-wire probe of wire diameter d = 5µm
and length l = 1.25mm (Dantec Dynamics 55P61). The probes were combined
with the DISA 55M hot-wire bridge connected to a 14 bit PC card. Acquisition
was maintained at frequency 50kHz with 10 s sampling records. For the assumed
sampling frequency the nondimensional inner scale representation was f + ≈ 1.
During the measurements ambient conditions were carefully controlled. The scatter
of ambient temperature at the end of the test section did not exceed 0.2◦. At the same
time the free-stream velocity was monitored by means of a Prandtl tube. The scatter
of free-stream velocity was found to be around 0.2% of the mean value.
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Fig. 1 The shape of the channel upper wall and the corresponding static pressure and pressure
gradient distributions along the flat plate

Table 1 Location and parameters of the analyzed profiles

PG Traverse
number

xs (mm) Sg (−) Single
wire

X-wire U∞
(m/s)

uτ (m/s) τw (Pa)

ZPG 8 427 0.4 x x 17.48 0.776 0.686

APG 10 487 0.456 x x 16.97 0.718 0.587

APG 13 577 0.541 x x 15.64 0.582 0.388

APG 16 667 0.625 x x 14.45 0.473 0.258

APG 20 787 0.738 x x 13.21 0.370 0.155

The position at the wall closest point of the hot-wire probe was determined using
the mirrored image. The positions of five measuring traverses, marked by dotted
lines, are shown in Fig. 1. The distances of traverses from the inlet plane, the cor-
responding dimensionless distances Sg = xs/L , where L is the length of the test
section (L = 1067mm) and the most important flow parameters are given in Table1.
The conditions determined in inlet plane (Sg = 0), located in zero pressure gradient
area are the mean velocity in core flow U∞ ≈ 15m/s and the turbulent intensity
Tu = 0.4%.
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3 Modified VITA Scheme and Optimization
of Detection Parameters

One of the most widely used method to detect bursting process is a VITA (Variable
Interval Time Averaging) method (Blackwelder and Kaplan [2]). This method was
improved by [3], who extended the procedure by the quadrant decomposition using
additional condition which segregate detections with respect to time derivative of u
and v velocity components of the signal. The quadrant decomposition is commonly
used to describe a relation of u and v velocity components in four quadrants of
streamwise—wall-normal plane, where four events commonly named as Q1 (u >

0, v > 0), Q2 (u < 0, v > 0), Q3 (u < 0, v < 0), and Q4 (u > 0, v < 0) exist. It
means that quadrant analysis allows to identify the bursting process, i.e., sweep (Q4)
and ejection (Q2) events. The VITA detection scheme is based on the analysis of a
running variance var(t, T ) of a velocity signal a(t) given by equation:

var(t, T ) = 1

T

∫ t+T/2

t−T/2
a(t ′)2dt ′ + 1

T

(∫ t+T/2

t−T/2
a(t ′)dt ′

)2

(1)

where t is a time of a signal and T is a time-averaging window of running variance.
In case of X-wire measurement the running variance was calculated for both u(t)
and v(t) velocity signals and in both signals the detection process was applied. The
reason for that is the fact that bursting vortical structures induce the events in both
signals because of the mean shear created by the wall.

Parameters of the detection process were properly tuned in order to obtain the
best possible efficiency of the procedure. One of the most important parameter is
time-averaging window T , which should be related to the scale of dominant struc-
ture. In order to select the appropriate T , the maximum number of positive du/dt
detection N (+) was used. The number of these structures was significantly larger in
comparisonwith negative N (−). Constant T + value in thewhole boundary layer was
kept. The second important parameter is the detection threshold value k of detection
function D(t). For both signal components the detection level applied on running
variance was equal to k(u′)2 because of the higher value of (u′)2 than (v′)2 for all
positions across boundary layer. The detection function D(t) is used to detect struc-
tures in var(t, T ) calculated separately for u and v velocity signals. To determine the
signs of the gradients of u and v velocity traces a slope detection function D(t) was
used which takes following values: {−2,−1, 1, 2}. Sign of the detection function
describes the slope of gradients of u velocity component during detection, values 1
and 2 correspond to ascending and descending vortices respectively. Finally, for each
type of the four possible structures the phase-averaging procedure of u and v signals
was applied. During the preliminary analysis it was found that the original VITA
method does not give the accurate time location of the structure center, especially
when two structures are very close to each other. To improve structure alignment
the calculation of center point between maximum and minimum of smoothed veloc-
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ity time traces was introduced. This additional procedure substantially improves the
phase-averaging process. The sample results of the procedure is shown in Fig. 2,
where the detection with negative slope is significantly stronger.

Fig. 2 The effect of
centering procedure on
phase-averaged signal

Fig. 3 Comparison of VITA
detection numbers for
detection based on one
component (u) and both
components (u and v)

Presented above detection technique is different to those,which can be found in the
available literature. In most of the study the detection is preformed usually on single
streamwise component,which is insensitive to detect vortices in casewhen the dU/dy
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is minor. In order to obtain more precise results, there is a need to apply detections
algorithms on both u and v components separately. Figure3 shows the difference
in number of detections obtained using only u and both u and v components. The
significant increase of number of detected structures is observed especially close to
the wall and at the edge of boundary layer. The reason for this is that in those regions
the predominant direction of vortex motion is the streamwise direction and therefore
only v signal is sufficiently strong to reach the detection level.

4 Interpretation of Bursting Process Based
on VITA Structures

The physical interpretation of bursting phenomena is possible based on the analysis
of VITA events. Four different pairs of quadrant events can be identified according to
four combination of u and v gradients, namely: Q2/Q4, Q4/Q2, Q1/Q3, and Q3/Q1
[3]. It is assumed that those pairs are the result of spanwise vortex passing through the
sensor. For particular quadrant events pair the trajectory of the vortex and swirling
direction can be identified. Those vortices which move outward the wall (ascending
direction) produce negative uv correlations (even quadrant pairs) and those which
move toward the wall (descending direction) produce positive uv correlations (odd
quadrant pairs). Based on above assumptions the vortical structures can be identified
using single-point measurement of u and v components. The types of detected struc-
tures and the resulting phase-averaged u and v velocity components of four types
of VITA structures for y+ = 22.6 of the first cross-sections are presented in Fig. 4.

Fig. 4 Distributions of < u > and < v > of four VITA structures types for y+ = 22.6: retrograde
in left column, prograde in right column, ascending in upper row, descending in lower row (N—
number of detection for particular structures)
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The bursting process is a result of break-up of shear layer caused mainly by ejection
event Q2, which is followed by sweep event Q4. The most typical burst-like structure
characterized by the positive gradient (+) of u and the negative gradient (−) of v
velocity components, which is marked as (+−) on the figure, can be a footprint
of so-called retrograde (positive vorticity) vortex passing through the sensor in the
ascending direction. The VITA method also detects the negative gradients (−) of
u and the positive gradient (+) of v velocity components, marked as (−+), which
are the effect of prograde vortex (negative vorticity) passes through the sensor. For
both vortical structures two convection directions exist: ascending (moving away
from the wall) and descending (moving toward the wall). For the letter case the both
gradients u and v are positive for prograde (++) and negative for retrograde (−−).
The rotation direction in the schemes indicates type of vortex, while the black arrow
shows the vortex passage direction through the sensor.

It can be observed that for the ascending vortices their velocity components are in
opposite phase and give Q2 and Q4 events. Particularly, while retrograde ascending
vortex passing through the measuring point then it gives Q2 event before and Q4
event after the vortex center. For the prograde ascending vortex the order of the
events is inversed. While descending vortices passing through the measuring point
the velocity components are in phase and give less common Q1 and Q3 events. It is
widely accepted that majority of vortices move outward the wall, e.g., Adrian [1],
what is confirmed by the number of particular structures marked as N in the legend
in Fig. 4.

The signs of ascending or descending direction of motion are revealed also by
asymmetry of the signal. It can be observed (Fig. 4) that for ascending vortices the dis-
tributions of < u > velocity component are slightly shifted toward negative values,
while< v > distributions are shifted toward positive values. If zero level corresponds
to the mean values of U and V velocity components then any shift determine the
direction of motion. Ascending structure arrives from a lower momentum zone, thus
should have a lower convection velocity (negative shift) than the mean velocity U at
the measuring point. The opposite situation is visible for descending structures.

5 Statistical Analysis of the Bursting Process

Valuable information about the bursting process is provided by mean bursting inter-
val (MBI). The MBI is a measure of average time between detections. It means that
if MBI decreases the level of burst energy contribution increases. If the process is
influenced by generation of phenomena that occur in the inner or outer layer zone,
then the appropriate timescale adoption should normalize MBI values in such a way,
that the result will be independent of other conditions. Normalisation by the inner
viscous scale was adopted and the resulting parameter wasmarked asMBI+. Figure5
presents MBI+ as a function of y+ determined for single-wire measurement cross-
sections shown in Fig. 1 and described in Table1. It is seen that along the flow the
viscous scaled MBI+ is almost constant in the inner region of turbulent boundary
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layer, while decrease of this parameter in outer zone is noticed. It suggests that in
the outer region of pressure gradient flows the bursting process is driven by different
mechanism than in the ZPG. For X-wire probe instead ofMBI the number of detected
vortical structures is analyzed. X-wire measurements make it possible to detect four
types of vorices, i.e., retrograde ascending (N (+−)), prograde ascending (N (−+)),
retrograde descending (N (−−)), and prograde descending (N (++)) vortices num-
ber. The results presented in Fig. 6 are reduced by total number of detected vortices
N from X-wire probe.

Fig. 5 Influence of APG on viscous scaled mean bursting interval MBI+

It is seen that number of detections is different for the each type of structures. The
dominant type of the structure is retrograde ascending one, which fraction is almost
two times higher the fraction for prograde ascending. Significantly smaller fraction
is of prograde descending structures.

It can be noticed that the percentage share of detections for each type of vor-
tices varies across y+. The percentage share of the dominant N (+−)/N structures
strongly decrease toward the edge of boundary layer, whereas the trend is reversed
for outer structures. However, the increase in the wake region is observed for both
prograde vortices. It is worth to note that at the edge of boundary layer ascending
and descending structures are more or less equally frequent. It supports observation
of Adrian [1] that at the edge of boundary layer the direction of prograde vortices
trajectory is changing from ascending to descending due to bulge structures related
to the large-scale motions. In turn, the impact of the pressure gradient is minor. Some
changes are observedmainly close to the wall, where fraction of ascending structures
decrease while descending structures increase along the flow. It means that under the
influence of APG the change of the vortex motion from ascending to descending
occurs. The drop of the inner scaled bursting process in the near-wall region (see
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Fig. 6 Influence of APG on number of particular vortical structures

MBI+ distribution in Fig. 5) could be due to the increased fraction of descending
vortices (Fig. 6) coming from outer zone. The increased energy of small scales in the
near-wall region was also observed by Harun et al. [5] for higher Reynolds number
with APG conditions.

Interesting conclusions can be drawn from analysis of phase-averaged fluctuation
components < u′ > and < v′ >. Analysis of the < u′ > and < v′ > distributions
(Fig. 7b) reveals substantial reduction of < v′ > value in the inner layer (below
y+ ≈ 100), while in the outer region the strong increase of < u′ > value (above
y+ ≈ 100). So strong separation of u and v components suggests that the trajectory
of vortices is more inclined under the APG conditions. The increased population of
descending structures as well as with more inclined descending trajectory supports
the idea of Dróżdż and Elsner [4], where it was shown that large-scale structures
sweeps the bursts toward the wall. It can be also concluded that those distributions
are similar to distribution of u′ and v′ presented in Fig. 7a. Another confirmation of
this conclusion are results shown in Fig. 8, where contribution of coherent structures
to overall energy of velocity fluctuations are presented. Figure8 shows that the ratio
< u′ > /u′ has almost constant value at the level about 45% except the near-wall
region and the boundary layer edge, where it takes higher values. This picture does
not change along the flow from the first to the last cross-section, which means that
bursting process governs the production of turbulence not only near the wall but also
as high as to the end of logarithmic zone.

The presented analysis confirms that the turbulent kinetic energy production is
closely related to the presence of coherent structures and that APG conditions have
a distinct impact upon the intensity of bursting process. In particular one may con-
clude that the bursting process is damped near the wall (where the first maximum of
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(b)(a)

Fig. 7 Influence of APG on u′ and v′ (a) and phase-averaged < u′ > and < v′ > (b) fluctuations

Fig. 8 Influence of FPG and
APG on phase-averaged
< u′ >+ single-wire
fluctuations (a) and ratio
< u′ > /u′ (b). Arrows
indicate changes under FPG
and APG conditions

fluctuations occurs) and enhanced in the logarithmic zone of boundary layer where
the second maximum of fluctuations is located.

6 Conclusions

The novel approach of bursting structure identification process, developed byDrozdz
and Elsner [3] based on VITA technique combined with quadrant analysis was pre-
sented. By the detection of four possible combinations of instantaneous gradients of
u and v phase-averaged velocity traces, this method allows to demonstrate such prop-
erties of vortices motion as: swirling direction, ascending or descending direction,
and the trajectory inclination. The analysis gives an evidence of four types of vortical
structures present in the TBL, which are responsible for the production of Q-type
events, namely prograde and retrograde vortices, with ascending and descending
direction of motion. The analysis shows that mean bursting interval scaled on wall
friction velocity decreases downstream the flow, especially in the outer region, where
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outer maximum of velocity fluctuations is observed. The analysis of four types of
vortices confirms that in the adverse pressure gradient the fraction of descending
vortices is increasing, while at the same time the ascending vortices decreases, what
explains the change in distributions of mean velocity fluctuations and confirms a
less pronounced contribution of near-wall region to the downstream development of
TBL. The presented analysis confirms additionally that the turbulent kinetic energy
production is closely related to the presence of coherent structures and that APG
condition has a distinct impact upon the intensity of bursting process.
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Experimental Investigation of a Turbulent
Boundary Layer Subject to an Adverse
Pressure Gradient at Reθ up to 10000 Using
Large-Scale and Long-Range Microscopic
Particle Imaging

Tobias Knopp, Nicolas A. Buchmann, Daniel Schanz, Christian Cierpka,
Rainer Hain, Andreas Schröder and Christian J. Kähler

Abstract We present an experimental investigation and data analysis of a turbu-
lent boundary layer flow at a significant adverse pressure gradient for two Reynolds
numbers Reθ = 6200 and Reθ = 8000. We perform detailed multi-resolution mea-
surements by combining large-scale and long-range microscopic particle imaging.
We investigate scaling laws for the mean velocity and for the total shear stress in
the inner layer. In the inner part of the inner layer the mean velocity can be fitted by
a log-law. In the outer part a modified log-law provides a good fit, which depends
on the pressure gradient parameter and on a parameter for the mean inertial effects.
Emphasis is on the Reynolds number effects on the mean velocity and shear stress.

1 Introduction

The mean behaviour of a turbulent boundary layer subject to a significant adverse
pressure gradient (APG) is still an open question [1, 8]. In the present work we
consider the inner part of the boundary layer y < 0.15δ99 called the inner layer. As
described in [1], several authors report that in case of a positive pressure gradient still
a region of a log-linear mean velocity law u+ = log(y+)/Ki + Bi can be observed
when plotted in viscous units u+ = U/uτ and y+ = yuτ /ν, where uτ is the friction
velocity and ν is the kinematic viscosity. It is open in the literature if Ki and Bi have
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the same value as in the log-law for zero-pressure gradient (ZPG) flows. Some recent
publications propose a functional dependence of Ki and Bi on the so-called pressure
gradient parameter Δp+

x = ν/(ρu3
τ )dp/dx , see [6, 16]. Additionally, some authors

[2] propose that, beyond the log-layer, a linear stress region forms, where the mean
velocity follows a half-power law [2] or a modified log-law [13, 18].

In order to investigate these questions, a database of high-quality experiments and
direct numerical simulation (DNS) is needed. A test case is suitable for such a data
base if effects of surface curvature, strong non-equilibrium and flowhistory are small,
and if the Reynolds number is sufficiently large. In order to increase the database
available from the literature,we designed a newflowexperimentwhichmatches these
requirements. We performed detailed multi-resolution measurements by combining
large-scale and long-range microscopic particle imaging [5, 9, 11, 12].

2 Classical Theory

Weassume a two-dimensional, incompressible turbulent boundary layer flowwithout
external forces throughout thiswork. The equation for thewall-parallelmean velocity
component U integrated from the wall to the wall-distance y becomes

τ+(y+) ≡ u−2
τ

(
ν
∂U

∂y
− u′v′

)
= 1 + Δp+

x y+ + I +
cu(y+) + I +

cv(y+) (1)

where the contribution of the Reynolds normal stresses has been neglected. Therein
τ+(y+) is the total shear stress, and I +

cu(y+) = u−2
τ Icu and I +

cv(y+) = u−2
τ Icv are

the mean inertial terms in viscous units, where Icu and Icv are defined by

Icu(y) =
∫ y

y′=0
U

∂U

∂x
dy′ , Icv(y) =

∫ y

y′=0
V

∂U

∂y′ dy′ .

Awall law for u+ can be derived and assessed by scaling the mean velocity gradient
using τ+ and y+, leading to the mean velocity slope diagnostic function [7]

Ξ = y+√
τ+(y+)

du+

dy+ . (2)

The diagnostic function (2) should show a plateau in case that the underlying wall
law for u+ is satisfied. In this argument τ+ is often approximated using a linear
stress model τ+(y+) ≈ 1+ λΔp+

x y+, see e.g. [13]. Therein, [13] approximates the
effects of the mean inertial term using λ = 0.7 for flows at mild pressure gradient
near equilibrium. The integral of (2) then gives a modified log-law, see e.g. [13],
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u+ = 1

Ko
log(y+) + 2

Ko

[√
1 + λΔp+

x y+ − 1 + log

(
2√

1 + λΔp+
x y+ + 1

)]
+ Bo.

(3)

The theoretical mean velocity gradient is 1/(κy+) for the classical log-law and√
1 + λΔp+

x y+(Koy+)−1 for the modified log-law (3).

3 Experimental Setup

We designed a new flow experiment of a turbulent boundary layer over a flat plate
followed by an s-shaped deflection for producing an adverse pressure gradient, see
Fig. 1. The aim was to enable PIV measurements in the inner part of the boundary
layer at high Reynolds numbers. The contour geometry was designed using RANS
simulations with the DLR TAU code. The experiment has been carried out in the
Eiffel type atmospheric wind tunnel of the Universität der Bundeswehr in Munich
which has a 22m-long test section with a rectangular cross-section of 2× 2m2. The
freestream velocities are U∞ = 9ms−1 and U∞ = 12ms−1. The flow passes along
both the upper side (u) and the lower side (l), but only the upper side flow is of
interest. Downstream of the nose (a) at x = 0m the flow is tripped and develops
to a fully turbulent flow over a long-flat plate of 6m length (b). At the end of the
ZPG inlet section, we obtain Reτ = 2400 and Reθ = 6200 resp. Reτ = 3030
and Reθ = 8000. The flow is then deflected (c) from x = 6.38m to x = 7.88m
at low curvature. Then, the flow passes an inclined flat plate (d) of length 0.8m
from x = 7.88m to x = 8.66m at an opening angle of 13◦. In the middle of this
focus region we reach Reθ = 18000 for U∞ = 12ms−1. Downstream of a second
deflection (e) and a second flat plate (f), a flap (g) is attached. This flap controls the
circulation around the model. The streamwise distribution of uτ and Δp+

x is shown
in Fig. 2 to illustrate the flow.

Fig. 1 Sketch of the flow
experiment and the PIV
systems used (top view)
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Fig. 2 Left Comparison of uτ between SST k − ω RANS and experiment for U = 12ms−1. Right
Distribution of Δp+

x on the inclined flat plate (d) in Fig. 1 for U∞ = 9ms−1 and U = 12ms−1

4 Measuring Technique

For particle imaging we applied a multi-resolution approach [5, 9]. We used large-
scale PIV for 60 < y+ < 0.9δ+

99 (planar and stereo PIV), and long-rangemicroscopic
PIVwith a particle tracking velocimetry (PTV) algorithm (LR-μPTV) for y+ < 200,
see [4, 10]. LR-μPTV was applied at three distinct locations on the inclined flat
plate, see (d) in Fig. 1, where 3000 instantaneous image pairs were evaluated. The

Table 1 Summary of the experimental parameters for the PIV and PTV measurements

Planar PIV Stereo PIV (lower
res.)

Stereo PIV
(higher res.)

LR-μPTV

Centre of field of
view xref

7.61m 8.28m 8.28m 8.28m

Field of view 0.60m × 0.20m 0.55m × 0.21m 0.16m × 0.21m 11mm × 17mm

Resolution 6 pxobj/mm 8.5 pxobj/mm 18 pxobj/mm 45.6 pxobj/mm

Interrogation
window size

16 × 16 px 24 × 24 px 24 × 24 px –

Interrogation step
size

6 px 8 px 8 px –

ν/uτ for
U∞ = 12ms−1

47µm 89µm 89µm 89µm

Interrogation
window size (l+)

30 39 18 –

Wall normal
extent (y+

max)
3770 = δ+

99 2300 ≈ 0.9δ+
99 2300 ≈ 0.9δ+

99 200

Wall-normal
resolution (Δy+)

10 13 6 0.3

The flow was seeded with DEHS droplets with a diameter of approx. 1µm. The flow parameters
are for the streamwise reference position xref and correspond to U∞ = 12ms−1
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instantaneous velocity fields were averaged in streamwise direction over an extent
of Δx = 10.5mm (Δx+ = 120) and sorted into bins of 2 pixel with 50% overlap in
wall-normal direction. The number of velocity samples per bin ranges between 5000
and 8000. For LR-μPTV, the first accurate data point above the wall is at y+ = 1.5
for U∞ = 12ms−1. The experimental parameters are summarized in Table1.

The wall-shear stress τw was determined directly from the mean velocity profiles
in the viscous sublayer using the LR-μPTV data. For the planar and stereo PIV data
we used different indirect methods based on the Clauser chart. The indirect method
was assessed by reference with the direct method for the LR-μPTV data in [11].

5 Results

The mean velocity profiles in the inner layer y < 0.15δ99 can be described by a
composite velocity profile similar to the proposal in [2], see [11, 12]. The inner part
can be described by a log-linear fit and the outer part can be described using the
modified log-law (3). This is shown in Fig. 3 for the two Reynolds numbers.

5.1 Scaling of the Inner Part of the Inner Layer

In the inner part, the mean velocity profiles can be fitted using a log-linear relation

u+ = 1

Ki
log(y+) + Bi (4)

Fig. 3 Composite structure of the mean velocity profile subject to an adverse pressure gradient
from stereo PIV (for the higher resolution) and from LR-μPTV. Left Profile for U∞ = 9ms−1 at
x = 8.28m withΔp+

x = 0.054.Right Profile forU∞ = 12ms−1 at x = 8.28m withΔp+
x = 0.044
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Fig. 4 Mean velocity profiles at x = 8.28m in the viscous sublayer and in the log-law fit region
at Δp+

x = 0.054 for U = 9ms−1 (left) and at Δp+
x = 0.044 for U = 12ms−1 (right)

in a thin region y+
log,min < y+ < y+

log,max, see Figs. 3 and 4. From Fig. 4 we find

y+
log,min ≈ 60 and y+

log,max ≈ 130 by visual inspection. This region is called the log-
law fit region. We study the influence of Re on its extent, as suggested by [14]. For
this purpose, we consider the mean velocity slope diagnostic function for the log-law
Ξlog = y+du+/dy+. Figure5 shows Ξ−1 for the LR-μPTV data after smoothing
and for the stereo PIV data (higher res.). We can observe a first inflection point of
Ξ−1 at y+ ≈ 80 and a second inflection point at y+ ≈ 115 for U = 9ms−1 resp.
at y+ ≈ 120 for U = 12ms−1. As we do not have a clear plateau in Ξ the log-law
is not an exact description for this region. It is worthwhile to study if the second
inflection point shifts toward larger y+-values for higher Re. In Fig. 4 we can see
an overshoot of u+ over the log-law for y+ around 38. This can be also seen in the
corresponding plot for Ξ−1 in Fig. 5. Such an overshoot is found also for ZPG flows
as described by [3]. We point out that these findings need to be studied for additional
test cases, in particular at higher Reynolds numbers. Regarding the measurement

Fig. 5 Log-law diagnostic function Ξlog = y+du+/dy+ at x = 7.895m with Δp+
x = 0.052 for

U = 9ms−1 (left) and at x = 8.28m with Δp+
x = 0.044 for U = 12ms−1 (right)
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Fig. 6 Left Variation of Ki versus. Δp+
x in the log-law fit region for the present experiment and

correlation (5) by Nickels [16] (denoted by Nickels (2004) in the legend). Right Variation of KiBi
vs Bi and correlation (6) by Nagib and Chauhan [15] (denoted by Nagib and Chauhan (2008) in the
legend)

technique, a larger number of samples could help to avoid smoothing of the LR-
μPTV data. We finally remark that the log-law fit region occupies a y+-range, which
for zero-pressure gradient flows could be influenced by low-Re effects, see [19].

Then, we consider Ki and Bi in (4). We study the idea that Ki and Bi could change
w.r.t.Δp+

x . Nickels [16] examined data for−0.02 < Δp+
x < 0.06 and proposed that

Ki = κ0√
1 + Δp+

x y+
c

, with Δp+
x

(
y+

c

)3 + (
y+

c

)2 − Re2c = 0 (5)

with κ0 = 0.39, Rec = 12, and yc being the smallest positive root of the second
equation. A variation of Bi in conjunction with Ki is proposed byNagib and Chauhan
in [15] for positive and negative pressure gradients

KiBi = 1.6 (exp(0.1663Bi) − 1) . (6)

For the present data, the variation of Ki w.r.t. Δp+
x is shown in Fig. 6 (left) and the

variation of KiBi versus Bi is plotted in Fig. 6 (right). The values for Ki and Bi are
obtained by a least-squares fit of (4) to the experimental mean velocity profiles. The
correlation (5) shows a good agreement with the experimental results. This supports
the results shown in [16]. The correlation (6) almost collapses with the experimental
results, which supports the results in [15] for adverse pressure gradients.

5.2 Scaling of the Outer Part of the Inner Layer

Then, we consider the outer part of the inner layer. The scaling law argument (2)
involves the total shear stress τ+(y+), which is shown in Fig. 7. The total shear
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Fig. 7 Total shear stress at x = 8.19m with Δp+
x = 0.050 for U∞ = 9ms−1 (left) and at

x = 8.21m with Δp+
x = 0.046 for U∞ = 12ms−1 (right)

stress is computed from the stereo PIV data (higher res.) as the right hand side of
(1) where Icu and Icv are determined by numerical integration. The total shear stress
is approximated using the linear stress model for y+ < 220 for U∞ = 9ms−1

resp. for y+ < 330 for U∞ = 12ms−1. We determine λ by a least-square fit and
obtain λ = 0.8 for U∞ = 9ms−1 and λ = 0.6 for U∞ = 12ms−1 with a relative
uncertainty of 10%.

Then, we consider the mean velocity slope diagnostic function (2). For τ+ we
substitute the measured total shear stress and alternatively the linear stress model.
Note that we compute Ξ for the spatially filtered mean velocity field by applying a
Gaussian filter in wall-normal and in wall-parallel direction to reduce the wiggles in
the gradients compared to the unfiltered data.We seek a plateau inΞ−1 whose extent
gives the region of the modified log-law. As we are interested in the inner layer, we
consider the region y+ < 0.2δ+

99, corresponding to y+ < 450 for U∞ = 9ms−1 and
y+ < 500 for U∞ = 12ms−1. The results are shown in Fig. 8 (left).

The behaviour for Ξ−1 is similar for both choices for τ+ for 150 < y+ < 300,
where we find that Ξ−1 is clearly decreasing with increasing y+ for both Reynolds
numbers. For y+ > 300 the behaviour of Ξ−1 becomes little different depending
on the choice for τ+. Substitution of the linear stress model gives a slower decrease
in Ξ−1 than for the measured τ+. Albeit the slope of Ξ−1 is becoming smaller for
y+ > 300, a clear plateau in Ξ−1 cannot be observed. Moreover, we cannot find
a region where both the linear stress model and the modified log-law (3) hold. One
point could be that the Reynolds number is too small. Albeit we reach Reθ ≈ 18000,
the requirements for a sufficiently large Reynolds number are probably even larger
for APG turbulent boundary layers than for ZPG flows.

Then, we determine Ko and Bo by a least squares fit of (3) to the data in the region
of themodified log-law (ylog,mod,min, ylog,mod,max). The result for Ko is sensitivew.r.t.
uτ and depends on the value for λ and on the lower and upper bound of the modified
log-law region. The sensitivity of Ko w.r.t. uτ is found to be small for the present
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Fig. 8 Left Diagnostic function at x = 8.19m with Δp+
x = 0.050 for U∞ = 9ms−1 and at

x = 8.21m with Δp+
x = 0.046 for U∞ = 12ms−1. Right Slope coefficient Ko of the modified

log-law (3)

stereo PIV (higher res.) data. To understand this, we recall that Δp+
x > 0.04 and

hence Δp+
x y+ � 1 for y+ > 300. Then the dominant term on the right-hand side of

(3) is (1+ λΔp+
x y+)1/2 which behaves like 1/uτ (λy/νdp/dx)1/2 and has the same

dependence on uτ as u+. We estimate that the relative uncertainty for Ko is 15%,
using a relative uncertainty of 10% for λ and a relative uncertainty of 5% due to a
variation of ylog,mod,max. We note that Ko is decreasing with increasing ylog,mod,max
and that Ko is decreasing with decreasing λ.

Finally, it is of interest to describe Ko and Bo quantitatively, either as a constant
value or using a functional dependence like (5). The behaviour of Ko versus Δp+

x is
shown in Fig. 8 (right) as a first attempt. The values for Ko at the two Reynolds num-
bers and for the different values of Δp+

x are of a similar magnitude. This is obtained
thanks to the flow dependent choice for λ instead of using a constant value. The value
of Ko for the equilibrium boundary layer [17] atΔp+

x = 0.013 is significantly larger,
where we use λ = 0.9 found in [11]. From this observation we cannot expect that
Ko has a constant value. Interestingly, the values for Ko are close to the correlation
(5) for Ki within the estimated error range for the present flow experiment. How-
ever, this needs to be studied for additional data sets including different streamwise
distributions of the pressure gradient and higher Reynolds numbers.

6 Conclusions

We applied particle imaging with multi-resolution [5, 9] in a turbulent boundary
layer at a strong adverse pressure gradient (APG) by combining large-scale PIV and
long-range microscopic particle tracking velocimetry (LR-μPTV) for resolving the
near-wall region [4, 10]. The mean velocity profiles in the inner layer y < 0.15δ99
can be described by a composite structure [2]. The inner part can be described as
a “log-law fit” region. The slope 1/Ki and the intercept Bi of the log-linear fit are
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found to change under the effect of the pressure gradient, supporting the proposal by
[15, 16]. The outer part of the inner layer can be fitted using the modified log-law
(3) by [13, 18]. Its main parameters are the pressure gradient parameter Δp+

x and
the shear stress gradient parameter λ, which describes the effect of the mean inertial
terms on the wall-normal gradient of the total shear stress. The classical scaling law
argument (2) is based on the existence of a region where both the linear stress model
and the modified log-law (3) can be observed. For the present experiment, such a
region cannot be found for the Reynolds numbers achieved. Regarding the composite
structure of the mean velocity profile, the present experimental data are seen only as
a very first step toward a law-of-the-wall for the inner part of the boundary layer for
APG flows. The extent of the log-law fit region and of the modified log-law region
need to be characterized in terms of suitable flow parameters [14]. Additionally the
modified log-law itself needs to be assessed for other data sets and its coefficients Ko
and Bo need to be studied. We admit and emphasize that the findings for the present
flow could depend on the special distribution of the streamwise pressure gradient
and on the Reynolds number.
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The Structure of APG Turbulent
Boundary Layers

Ayse G. Gungor, Yvan Maciel and Mark P. Simens

Abstract The characteristics of three-dimensional intense uv-structures (Qs) in a
strongly decelerated large-velocity-defect boundary layer are analyzed. The Q2 and
Q4 structures are found to be different from those of turbulent channel flows studied
by Lozano-Durán et al. (J FluidMech 694:100–130, 2012). They are less streamwise
elongated, less present near thewall andwall-detached structures aremore numerous.
Moreover, contrary to channel flows, wall-detached Q2, and Q4 structures contribute
significantly to the Reynolds shear stress.

1 Introduction

In canonical wall-bounded flows, a production peak of turbulent kinetic energy is
found near the wall and can be related to a large extent to the coherent streaky near-
wall structures and a largemean shear [12]. In contrast, the near-wall production peak
is absent or very small when the boundary layer has a large mean velocity defect
due to a strong or prolonged adverse pressure gradient (APG) [15]. This absence or
attenuation has been related to the lack of strong streaky structures and a lower mean
shear than in canonical wall-bounded flows [9]. Themain production peak is found in
the outer region of the flow,which affirms that the pressure gradient causes a change in
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the distribution of energy in a turbulent boundary layer (TBL). By analyzing several
large-velocity-defect TBLs, Gungor et al. [2] have concluded that these boundary
layers are globally less efficient in extracting turbulent energy from the mean flow
than the zero-pressure gradient (ZPG)TBL.TheReynolds stresses and the production
of turbulent kinetic energy were found to be weaker in the lower half of the large-
velocity-defect boundary layers than in the ZPG TBL. Furthermore, the outer-region
turbulent statistics of TBLs close to detachment were found to resemble those of
single-stream mixing layers. These various observations suggest that the physical
mechanisms and coherent structures responsible for the production and transport of
turbulence might be different.

Unfortunately, detailed analyses of the coherent structures found in APG TBLs
are rare. By analyzing the DNS data of a turbulent separation bubble of Na and
Moin [8], Chong et al. [1] suggested that in the APG zone prior to detachment more
of the eddies which contribute to the Reynolds shear stress are eddies which are
not connected to the wall. In the case of an equilibrium APG TBL, Krogstad and
Skare [4] found that the lower part of the boundary layer is strongly dominated by
Q4 motions which are more frequent and last longer than other quadrant motions,
while in a ZPG TBL second and fourth quadrant events are equally important. The
streamwise correlation length of u was also found to be considerably shorter in the
APG case throughout the boundary layer, a result also obtained later by [2, 11]. In the
outer region of a large-velocity- defect TBL that eventually separates, Rahgozar and
Maciel [10] observed that the predominance of streaky u-structures is less than in the
ZPG case and that this predominance even disappears near detachment. Although
the pressure gradient reduced the frequency of appearance of the u-structures, it did
not significantly affect their dimensions and arrangement in the upper half of the
boundary layer. By analyzing the same flow, Rahgozar and Maciel [11] found that
large-scale u-structures are less elongated than those of ZPG TBLs, especially in the
lower part of the boundary layer.

Lozano-Durán et al. [7] (hereafter referred to as LFJ) recently generalized the
quadrant analysis of Reynolds shear stress events to three-dimensional structures
that they called Qs. They showed that intense Q structures are important since they
are responsible for most of the wall-normal flux of momentum and production of
turbulent energy. In the case of turbulent channel flows, LFJ found that wall-detached
Qs are background stress fluctuations while wall-attached Qs are bigger and carry
most of the mean Reynolds shear stress. The number of wall-attached Qs decreases
away from the wall, but the fraction of Reynolds shear stress that they carry is
independent of their size and location.

In the present work, the characteristics and temporal evolution of Q structures in
a strongly decelerated boundary layer is investigated to advance our knowledge and
understanding of theAPG boundary layer flows. The focus is onQ structures because
of their dominant role in terms ofmomentum flux and production of turbulent energy.
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1.1 Database and Structure Identification Method

The database of an APG TBL obtained via direct numerical simulation (DNS) by [2]
is used in the present study. The parameters of the DNS are summarized in Table1.
The desired constant streamwise velocity gradient is controlled by imposing a con-
stant uniform suction at the top simulation boundary. The streamwise and spanwise
velocities at the top boundary satisfy free-slip conditions. The laminar Hiemenz pro-
file is prescribed at the inflow, and the velocities at the outflow are estimated by a
convective boundary condition, with small corrections to enforce global mass con-
servation [13]. The turbulent transition is triggered by a disturbance strip located
close to the inflow and modeled using the immersed boundary method [14]. The
presence of a small transitional separation bubble near the inflow helps achieve the
fully turbulent regime within a shorter distance than what would be obtained with
attached transition through Tollmien-Schlichting waves. The Reynolds number close
to the exit of the numerical domain is Reθ = 2175 and the shape factor H = 2.5.

Profiles of the Reynolds shear stress at two streamwise locations, corresponding
to H = 2, Reθ = 1755 and H = 2.5, Reθ = 2175 are shown in Fig. 1a. They are
also compared to a profile of the ZPG TBL of Simens et al. [13] at a comparable
Reynolds number (Reθ = 1975). The Reynolds shear stress is normalized with the

Table 1 Parameters of the simulation

(Lx , L y, Lz)/θ0 Δx+,Δy+
min,Δz+ Nx , Ny, Nz (Bx , By, Bz)/δa NQ NQ−

2380 × 450 ×
1100

2.2 × 0.2 × 2.0 1537×201×768 4.5 × 2 × 8.0 1106735 676657

Lx , L y and Lz are the box dimensions along the three axes. Nx , Ny, and Nz are the corresponding
grid sizes, and the Δ values are the resolutions in wall units at Reθ = 2175. The momentum
thickness, θ0, is measured at the inflow. Bx , By , and Bz are the dimensions of the box used for the
detection of the Qs. NQ and NQ− are the number of Qs and Q−s extracted
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Fig. 1 a Reynolds shear stress. b Production of turbulent kinetic energy normalized with Uo and δ.
Present flow: H = 2, blue line; H = 2.5, red line. ZPG TBL [13], black line
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outer velocity scale Uo introduced by Gungor et al. [2], who have shown that it
can properly scale the mean velocity defect profiles and various one-point velocity
statistics of turbulence in the high velocity region of a wide range of flows: ZPG
TBLs, small and large-defect APG TBLs, and mixing layers. Uo is defined as twice
the velocity defect at the middle of the shear layer: Uo = 2(Ue − U (y = 0.5δ)).
It is similar to free-shear-layer velocity scales and approximately equivalent to the
Zagarola-Smits velocity scale in the sense that both velocity scales are proportional
to the mean velocity deficit of the outer flow. Figure1a shows that in the present
large-defect TBL the maximum of the Reynolds shear stress is not near the wall like
in canonical wall flows, but rather in the middle of the boundary layer. The Reynolds
shear stress decreases in the lower half of the boundary layer as the velocity defect
increases. All these characteristics are commonly found in large-defect TBLs [2].

The difference between ZPG and large-defect APG TBLs is even more pro-
nounced for the production of turbulent kinetic energy, as shown in Fig. 1b. In large-
defect APG TBLs, the maximum production is in the outer region and production
in the upper half of the boundary layer is comparable to that of ZPG TBLs when
scaled properly [2]. A near-wall production peak exists in the present flow even at
the position corresponding to H = 2.5 but it is two orders of magnitude smaller than
in the ZPG TBL and four times smaller than the outer peak.

As was detailed in [2] the influence of the upstream bubble shear layer instability
only becomes small beyond x/θ0 ≈ 1800, corresponding toReθ ≈ 1700, where θ0 is
the momentum thickness measured at the inflow. Since we would like to consider Q
structures in an APG boundary layer in the absence of large-scale perturbations and
at a sufficiently high Reynolds number, the region of the flow used for the extraction
of the Qs starts at Reθ = 1314 and ends at Reθ = 2207. In this region, the boundary
layer is in strong nonequilibrium state and possesses a large mean velocity defect
(H = 1.72 − 2.56). The box covers δ0.995/θ0 ≈ 97 − 184, with an average of
δa/θ0 = 140.7. The box dimensions are given in Table1.

The procedure adopted to identify the Qs follows the method used by [7] with
some small changes to make the method applicable to boundary layers. The Qs
are defined as regions of connected points that satisfy |τ | > Hu′v′ + 10−6, where
τ(x) = u(x)v(x), is the pointwise instantaneous Reynolds shear stress, u′ and v′
are, respectively, the streamwise and wall-normal root-mean-squared intensities of
fluctuations and H is the threshold constant, also called hyperbolic-hole size. The
value 10−6 is added to filter out the freestream to prevent spurious clusters to be
detected. Following, the notation of LFJ, the Q2 events (ejections) and Q4 events
(sweeps) will be referred as Q−, and the Q1 events (outward interactions) and the
Q3 events (inward interactions) as Q+, hereafter.

As in [7] a percolation analysis has been performed to determine what would
be the value for H that gives an equilibrium between detecting only a few very big
objects and detecting only a few small and very intense Qs. Figure2a shows the ratio
of the number of detected Qs to the maximum number of detected Qs as a function
of the H. This ratio, together with the ratio of the volume of the largest identified
structure to the total volume (not shown), shows that an hyperbolic-hole size in the
approximate range 0.5 ≤ H ≤ 3 is acceptable. The value H = 1.75 has been chosen
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Fig. 2 a Ratio of the number of detected Qs to the maximum number of detected Qs as a function
of the threshold. b Joint pdf of ymin/δa and ymax/δa for Q−s. Contour levels are 0.1, 1 and 10

because it is the same value as used in [7] and it is in the middle of the acceptable
range. TheQs are characterized by the volume Vc of a rectangular box circumscribing
them, the sides of this box being denoted as Δxc, Δyc and Δzc and the mid-height
position of the box yc. Structures that have Δxc/δa = 4.5 and Vc < (Δx)3, where
Δx is the streamwise grid resolution, are disregarded because either the length of
these structures is undetermined or their sizes are not well resolved on the numerical
grid. Furthermore, only Qs whose center is below the boundary layer thickness,
yc/δa ≤ 1, are considered to facilitate a comparison with channel flow. It has been
checked that if yc/δa ≤ 1 only detached clusters are disregarded.

2 Results and Discussion

With the above procedure, 1106735 Qs are identified in 460 statistically independent
velocity fields in the extraction zone defined in the previous section. Of those, 62%
are Q− structures. Figure2b shows the joint probability density function (pdf) of
the minimum and maximum wall distances for the Q−s. The structures separate into
two groups: wall-attached andwall-detached structures. The wall-attached Q−s form
the narrow vertical band with ymin < 0.05δa of the joint pdf, while wall-detached
structures form the wide diagonal band. Figure2b shows that the height of wall-
attached Q−s can exceed the boundary layer thickness. Wall-attached Q−s as tall as
approximately 2δa are found. When comparing with similar joint pdfs of the Q−s of
LFJ for channel flows, it is found that in the present APG flow the probabilities are
higher everywhere, except near the origin. This implies that, in proportion, there are
definitely less small Q−s close to the wall in the APG TBL than in channel flows.
Such a result is expected since turbulence activity is significantly reduced near the
wall in a large-defect boundary layer.
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Table 2 Number fraction with respect to total number of Qs, and volume fraction with respect to
extraction zone volume (Bx ×By ×Bz) for the four different types of Qs. Channel atReτ = 2003 [7]

Case N1 N2 N3 N4 V1 V2 V3 V4

Present (all) 0.20 0.31 0.19 0.30 0.002 0.026 0.003 0.013

Present
(attached)

0.03 0.09 0.02 0.10 0.001 0.018 0.001 0.009

Channel (all) 0.19 0.33 0.21 0.28 0.004 0.059 0.008 0.022

Channel
(attached)

0.02 0.14 0.007 0.11 0.000 0.053 0.000 0.014

Table2 summarizes the number and volume fractions for the various types of Qs.
Like in channel flow, Q+s are less frequent than Q−s, and they occupy a very small
fraction of the space, 0.5% against 4% forQ−s. Although the number fraction of Q2s
and Q4s is comparable between the channel flow and the present flow, the volume
occupied by these structures is much less for the large-defect TBL. In particular, Q2s
in the TBL occupy less than half the space of Q2s in channel flow. In both flows Q4s
occupy less space than Q2s, but the difference is less pronounced for the large-defect
TBL.

Wall-attached Q2s and Q4s represent 32% of the total number of Q−s and 69%
of their volume. In channel flow, these percentages are respectively, about 40 and
80%. The number and size proportions of attached Q−s are therefore reduced in
a large-velocity-defect boundary layer. Q structures whose center is in the range
0.2 < yc/δa < 0.6 were also analyzed separately. They are important because 0.2 <

y/δ < 0.6 corresponds to the region of maximum turbulence intensity, Reynolds
shear stress and turbulent kinetic energy production (see Fig. 1). In that range, 94%
of the Q−s are actually detached structures.

Figure3 presents joint pdfs of the logarithms of the sizes, normalized with δa , of
the boxes circumscribing Q2s and Q4s for attached (c) and detached structures (a,b),
and for detached structures whose center is in the range 0.2 < yc/δa < 0.6 (d).
Like in LFJ for turbulent channel flows, the Q2 and the Q4 structures have similar
sizes, with Q2s slightly bigger. The structures are approximately as long as they are
tall and wide, Δx ≈ Δy ≈ Δz , except for attached Q−s which tend to be more
elongated in the streamwise direction, by a factor of almost 2. This elongation is
however, not as pronounced as in channel flows, where LFJ found the attached Q−s
to be three times longer than tall and wide for all sizes. In [4, 5, 11], it was also found
that above a certain height the length of the u-velocity structures becomes shorter
in an APG flow in comparison with a ZPG flow. For both attached and detached
structures, the Q2s reach bigger dimensions than the Q4 structures. This is similar to
what is found in channel flow. The largest structures are attached Q2s that can reach
Δx ≈ 3δa and Δy ≈ Δz ≈ 2δa . For channel flows, LFJ found very long attached
Q2s reaching Δx ≈ 20h and Δy ≈ Δz ≈ 2h. The rapid streamwise variations and
strong nonequilibrium state of the present APG TBL probably prohibit the existence
of such long motions. The detached Q−s are found to be globally smaller than their
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Fig. 3 Joint pdfs of the logarithms of the sizes of the boxes circumscribing Q−s. Q2s in black
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for wall-attached Q−s. d p(Δx/δa,Δy/δa) for wall-detached Q−s whose center is in the range
0.2 < yc/δa < 0.6. The straight dashed lines are Δy = Δx or Δy = Δz

attached counterparts, but not significantly. The detached Q−s whose center is in the
range 0.2 < yc/δa < 0.6 are found to have a distribution of dimensions similar to
that of the ensemble of all detached Q−s.

Figure4 shows joint pdfs of the logarithm of Δy/δa and τm/U 2
oa for Q2s and

Q4s, where τm is the volumetric average of −uv computed over the volume of the Q
structure. The joint pdfs are separated in four plots depending if the Q−s are attached
(a, b) or detached (c, d), and depending on the position yc of the center of the structure:
yc/δa < 0.2 for a and c, 0.2 < yc/δa < 0.6 for b and d. Wall-attached Q−s are
definitely different in terms of both size and intensity between the wall region and
the middle of the boundary layer. In the latter region, wall-attached Q−s are more
intense and Q2s and Q4s are relatively similar in terms of size and intensity. For
yc/δa < 0.2, the attached Q2s are bigger and more intense than attached Q4s. In
contrast, wall-detached Q−s are fairly similar in both regions and between Q2s and
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Fig. 5 a Instantaneous
visualization of an attached
structure. The box is
1δ × 1δ × 1δ. The flow is
from left to right. b The
averaged shear parameter as
a function of the wall
distance
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Q4s. Because the detached Q−s are numerous in the middle region (94% of the total
number of Q−s) and because their values of τm are of the same order as those of
attached Q−s, these joint pdfs suggest that their contribution to the Reynolds shear
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Fig. 6 Temporal evolution of a tall-attached structure. Left column Q4; right column Q2, with the
axes scaled with δa . The structure is colored with the distance to the wall. Flow is from left to right.
Time is from top to bottom
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stress is more important than that of attached Q−s, contrary to what was found by
LFJ for channel flows.

It is recently becoming possible to study the multiscale character of turbulence
through space and time-resolved evolution of turbulent flows [6]. The spatiotemporal
evolution of an attached structure is studied using DNS sequences. The temporal
separation among fields, t∗ = tUea/δa ≈ 0.15 is short enough for individual objects
to be tracked. There are few tall wall-attached structures that penetrate in the outer
region and carry significant amount of tangential Reynolds stress, −uv, as shown in
Fig. 5a. Figure5b displays the average shear parameter, S∗ = Sq2/ε, whichmeasures
the ratio between the energy decay time and the shear deformation time, acting on
this turbulent structure. The mean shear dominates, and controls the evolution of the
turbulent scales if S∗ � 1 [3].

The attached structure starts as side-by-side Q2 and Q4 structures as shown in
Fig. 6. These initially wall-attached structures stay next to each other in the cross-
stream direction in their lifetime. Note how different those structures look. The
temporal evolution of the Q4 is shown in the left column. The Q4 structure detaches
from the wall and splits into two. These new Q4s move toward the wall. The large
coherent Q2 (shown in the right column) convects with the local mean streamwise
velocity, is elongated in the streamwise direction and inclined with the wall. As seen
from the temporal evolution, the Q2 merges with smaller detached objects in front of
it, looses structures from behind, and moves upward from the wall. The split occurs
at the end of the life of the structure. The lifetime of the Q2 is roughly equal to the
mean flow deformation time.

3 Conclusions

Wall-attached and wall-detached Q− structures are found everywhere in the present
large-defect boundary layer. Wall-attached Q−s are encountered less frequently, are
smaller and are much less streamwise elongated that those found in turbulent channel
flows by LFJ. Again in contrast to turbulent channel flows, detached Q− structures
are comparable in size and aspect ratio to attached Q−s, and they carry a significant
amount of the Reynolds shear stress. In the zone of maximum turbulence intensity,
Reynolds shear stress and turbulent kinetic energy production of the present flow,
approximately 0.2 < y/δ < 0.6, 94% of the Q−s are detached Q−s. Moreover,
in that region the detached Q−s are as intense as the attached ones. The type of Q
structures that contribute mostly to turbulence in the present large-defect boundary
layer are therefore very different from those of canonical wall flows.
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Adverse Pressure Gradients and Curvature
Effects in Turbulent Channel Flows

A.B. de Jesus, L.A.C.A. Schiavo, J.L. Azevedo and J.-P. Laval

Abstract LES results are presented for theflowover different bumpprofiles installed
on the bottom wall of a channel. Three bump geometries are considered in order to
investigate the effects of adverse pressure gradients and changes in curvature on the
mean flow and Reynolds stresses. The first bump geometry corresponds to a profile
for which DNS results are available at a Reynolds number Reτ = 617 based on the
channel inlet friction velocity. The other two geometries are generated by modifying
the rear portion of the initial profile to produce a longer APG region and promote
smoother curvature changes as compared to the original profile. LES computations
are performed at the same Reynolds numbers than previous DNS, which is also
used to validate LES results in the original bump. Finally, RANS results are also
presented for the three bump profiles. RANS computations are performed using a
two-equation eddy-viscosity Shear Stress Transport (SST) model and one Reynolds
stresses transport model.

1 Introduction

Modeling of nearwall turbulence in the presence of adverse pressure gradients (APG)
is of crucial importance for many practical problems in aerodynamics. Direct numer-
ical simulations (DNS) of turbulent flows around a two-dimensional bump located
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in the bottom wall of a channel were performed at Laboratoire Mécanique de Lille
(LML) during the recent WALLTURB European project [8]. Those DNS were exe-
cuted using the MFLOPS3D semi-spectral code for two Reynolds numbers, Reτ =
395 and 617, based on the friction velocity at the channel inlet. The results obtained
showed a mild separation of the mean flow over the APG region at the rear portion
of the bump. Strong peaks of turbulent kinetic energy which caused a sharp recovery
of the friction coefficient and, consequently, flow re-attachment was identified in the
separated flow region. A similar peak was found at the top wall in the APG region,
although flow separation has not been observed. These peaks in turbulent kinetic
energy at both walls, were found to be linked to instability of the near wall streaks
which seemed to be promoted by adverse pressure gradients [6].

Large Eddy Simulations (LES) on the WALLTURB bump profile were also
performed, with the same MFLOPS3D code, for Reynolds numbers starting at
Reτ = 617, for which DNS results are available, and including also computations
at Reτ = 950 and Reτ = 2000 [2–4]. LES results at Reτ = 617 are very consis-
tent with DNS in terms of separation and reattachment locations, overall skin-friction
coefficient distribution along the bump andReynolds stresses evolution near the wall.
Particularly, it was found that the strong peaks of turbulent kinetic energy identified
in the APG region of the original DNS are also present in LES computations. Com-
putations at Reτ = 950 also presented a mild separated flow region at the bottom
wall, although shorter than in the previous Reτ = 617 simulation, while at Reτ =
2000 no mean flow separation was identified. Similar Reynolds stresses evolution is
observed in both Reτ = 950 and 2000 simulations as compared with the Reτ = 617
calculations, including similar strongs peaks of turbulent kinetic energy in the APG
region. These results show that the streaks instability modes found in the original
DNS at Reτ = 617 are also present at higher Reynolds numbers and even in fully
attached flow conditions (Reτ = 2000).

RANS computations on the original WALLTURB bump profile were also per-
formed for the same range of Reynolds numbers, Reτ = 617, 950 and 2000 [2, 3].
A commercial CFD code (Ansys Fluent) was used with two-equation eddy-viscosity
turbulence models, namely a realizable k-ε model [10] and the SST model [9], and
one Reynolds stresses transport model [5]. Overall it was found that none of the
RANS models considered were able to reproduce the friction coefficient along the
rear portion of the bump neither the peaks of turbulent kinetic energy in the APG
region as observed in DNS and LES results. It was noticed that RANSmodels formu-
lation did not include the streaks instability mechanisms in their original formulation
and therefore could not reproduce the results from DNS or LES.

Current work aims at continuing the previous investigations based on LES compu-
tations using the MFLOPS3D code. In the present study, the effects of modifications
applied to the geometry of the rear portion of the bump on the velocity profiles and
Reynolds stresses evolution are investigated. Two new bump profiles are consid-
ered based on modifications of the original WALLTURB bump geometry. The rear
portion of the original bump is elongated to produce a longer APG region and pro-
mote smoother curvature changes as compared to the original profile. LES results
from theMFLOPS3D code are presented for the original and the two modified bump
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Fig. 1 Computational domain with the three bump profiles (inset: zoom of the divergent part)

geometries in order to investigate the resulting effects in the velocity profiles over the
bump and the evolution of the Reynolds stresses in the APG region. RANS results
for one eddy-viscosity model and one Reynolds stresses transport model are also
presented.

2 Geometric and Physical Models

The different bump geometries used in this work are presented in Fig. 1. As it can be
noticed three bump profiles are identical up to the summit. The first modified bump,
named as B01, consists in elongating the rear portion of the Wallturb bump, B00,
maintaining curvature continuity in both ends. The secondmodified profile, B02, also
has an elongated rear portion, as compared to B00, but in that case only tangency
continuity is maintained at the summit. In B02 the point of curvature changes to
accommodate the flat surface is moved downstream.

3 Large Eddy Simulations

Large Eddy Simulations are performed using the MFLOPS3D semi-spectral code.
The Navier-Stokes equations for an incompressible flow are discretized using fourth-
order finite differences in the streamwise direction,while Chebyshev polynomials are
employed in the normal direction. A Fourier transform is performed in the spanwise
direction. Time integration is performed using an implicit second-order backward
Euler method for the terms containing the Cartesian components of the Laplacian
operator, while an explicit second-order Adams-Bashforth method is used for all
other terms, including the sub-filter stresses.
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Table 1 Mesh Parameters for LES as compared to the original DNS computations

... Reτ Nx Ny Nz Δx+ Δy+ Δz+

LES 617 512 129 128 21.8 [0.17–
123.5]

21.8

DNS 617 2304 385 576 5.7 [0.01–3.8] 3.8

Note: Values of Δx+, Δy+ and Δz+ are computed at the summit of the bumps

Further details of the transformed equations and numerical methodology can be
found in previous work which uses the MFLOPS3D code [7]. Boundary conditions
for the inlet flow are obtained from a precursory periodic channel flow computation.
No-slip conditions are imposed at the top and bottom walls, and the spanwise direc-
tion is assumed to be 2π periodic with a symmetry at π . The outflow boundary of
the computational domain is treated as a convective boundary with uniform velocity.
The Wall Adapting Local Eddy viscosity (WALE) subgrid scale model is used in all
computations [2].

Computations are performed for a Reτ = 617 Reynolds number based on the fric-
tion velocity at the channel inlet. Table1 brings the mesh parameters used, including
the number of points in each direction and the grid spacing in wall-units at the top
of the bumps. The same mesh resolution is used in all LES computations.

3.1 Wallturb Bump—LES and DNS Results

Figure2 brings comparisons between DNS [8] and LES results for B00 profile in
terms of friction coefficient and pressure coefficient along the bump. A very good
agreement between LES and DNS is observed, particularly in capturing separation
and reattachment locations. Figure3, present the evolution of the tangential Reynolds
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Fig. 3 Wallturb bump—tangential reynolds dtress—DNS versus LES

stress in the adverse pressure gradient region. The Reynolds stress values are pre-
sented along lines normal to the bump profile as a function of a normalized distance
to thewall. BothDNS andLES results clearly show that the initial near wall Reynolds
stress peak tends to move away from the wall and strongly increases in magnitude
in the APG region (see stations x = 1.0 and x = 1.2) and turns to a two peaks
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profile further downstream, as observed in stations x = 1.4, x = 1.6, and x = 1.8.
As already noticed in previous reference [2–4], LES results are very similar to the
DNS ones.

3.2 Modified Bumps—LES Results

Pressure gradient and friction coefficient obtained from LES with three bump con-
figurations are shown in Fig. 4. The favorable pressure gradient in the converging
part are very similar for the three configurations. In the adverse pressure gradient
region, B00 shows one initial peak followed by a steep increase and a second peak
which decreases until the flat surface region. B01 shows an adverse pressure gradi-
ent distribution with an initial peak similar to the one with B00 but with a smaller
and shorter second peak and a slower decrease to zero-pressure gradient. This is a
consequence of the elongation of the rear portion of the original bump maintaining
curvature continuity at the top. The APG region of B02 shows a similar initial peak
but slightly displaced upstream when compared to the two other cases. The rear
portion of B02 is longer than in the other two bumps and tangent continuity is main-
tained a the top of the bump. As a consequence, the second peak of adverse pressure
gradient is much smaller than in the other configurations with a relatively higher
APG level compared to B01 when moving toward the flat wall region. The friction
coefficient for the three bumps can be directly correlated to the pressure gradients
being very similar in the favorable pressure gradient region and in the beginning of
the APG region up to station x = 0.6. Further downstream, both the B00 and B01
show flow separation followed by a strong recovery of the friction coefficient. Due
to the smaller and shorter APG second peak in B01, the separated flow region is
smaller than in B00 and the recovery value of the friction coefficient is higher. The
evolution of its level toward the flat region is, of course, slower in B01 due to the
longer rear portion. In B02 the second APG peak is delayed and much smaller than
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Fig. 5 Wallturb bump—tangential reynolds stress—LES—wallturb bump, Bump B01 and Bump
B02

in the other two bumps. Therefore, flow does not separate and the recovery of the
friction coefficient takes longer than for the other cases. As the pressure gradient is
higher in the back region of B02, the friction coefficient evolves to a relatively lower
values than for B02 before reaching the flat plate.
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The wall-normal evolution of the tangential Reynolds stresses in the APG region
of the three bumps are presented in Fig. 5. Similar behaviors are observed in all three
configurations. A near wall peak is noticed at the top of the three bumps. This peak
strongly increases in magnitude and is displaced away from the wall when moving
downstream in the APG region. Further downstream, the single peak evolves to a
double peak profile. Themagnitude of the first peak and the extension along the bump
until the development of the double peak are related to the adverse pressure gradient.
The B01 case shows a similar evolution of the Reynolds stresses as compared to
B00 but with a smaller increase of the first peak which also remains closer to the
wall. This seems to be related to the smaller pressure gradient peak observed in B01.
The formation and evolution of the second peak is very similar in both bumps up to
station x = 1.8. Further downstream, the second peak is larger and closer to the
wall in B01 than in B00. This can be associated to the fact that in B01 the adverse
pressure gradient is sustained in a longer regionwhen compared to the original bump.
In B02, as the APG values are much lower than in the other bumps, the increase of
the first tangential Reynolds stress peak is smaller and the formation of the second
peak occurs earlier.

Overall it can be seen that the three bump configurations show very similar pat-
terns. It is concluded that the streaks instability mechanism which was identified in
the DNS results is also present in these new bumps with different intensities depend-
ing on the APG levels of each case. Particularly, it is observed that in both separated
or mildly separated flows, as in B00 and B01, or in fully attached flows, as in B02,
the same behavior is identified.

4 RANS Simulations

RANS calculations are performed using the Ansys Fluent v.14.0 commercial CFD
package. A 2-equation Shear Stress Transport (SST) [9] turbulence model and one
Reynolds stress transport model (RSM) [5] are compared. The steady-state, two-
dimensional, incompressible pressure-based SIMPLE solver is used with the default
settings of the Fluent package. At the walls, the RSM calculations use the so-called
enhanced wall treatment option, which employs a two-layer formulation for the near
wall region. Hence, in this region, the length scales used to compute the turbulent vis-
cosity and the turbulent dissipation (ε) are adjusted to take into account the effects of
the wall proximity [1]. In addition, the RSMmodel specifies values for the Reynolds
stresses, in the first cell off thewall, through the use of the log-law and the assumption
of equilibrium [1].

Similarly to the LES computations, a precursory periodic channel flow is run to
generate inlet conditions that are used for the calculations with the bump in the chan-
nel. No-slip conditions are imposed at the walls and a constant pressure is assumed at
the outlet. A two-dimensional mesh with 400× 100 quadrilaterals in the streamwise
and wall-normal directions, respectively, is used for the RANS calculations over the
bump under study. The centroid of the first off-the-wall cell is placed at 0.25mm
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Fig. 6 Wallturb bump—friction coefficient and pressure gradient—RANS, DNS/LES—B00 and
B01

from the wall, which approximately corresponds to a maximum y+ = 0.3 for the
present calculations.

Figure6 brings comparisons between DNS or LES and RANS computations of
the friction coefficient along the bottom wall of B00 and B01 profiles. Up to the
summit it can be argued that both RANS models under study present similar results
with good comparison to reference DNS or LES. Further downstream in the APG
region a different picture is observed. None of the RANS models reproduces the
sharp decrease followed by a rapid increase of the skin-friction coefficient in the
APG region. In B00, both models predict flow separation although the separation
point is located more downstream than what is predicted by DNS and no model
predicts the lower peak of skin friction. The SST model shows a large separation
region with a constant negative Cf which starts recovering only downstream of the
bump, at the flat surface. The RSM model shows a smaller separation region, when
compared to SST, but still much larger than DNS prediction. The recovery of C f is
more rapid than with SST model and just downstream of the bump the RSM model
predicts a skin friction level similar to the DNS one. In B01 none of the RANS
models predict flow separation but an overall behavior similar to B00 is observed.
SST leads to a constant low, but positive, skin friction in the rear portion of the bump
followed by a small increase downstream. RSM model shows a faster response of
the skin friction in the rear portion of the bump, with a better comparison to LES
than the SST model. Overall it can be concluded that, although none of the RANS
models correctly predicts the skin-friction evolution in APG region, the RSMmodel
presents a better performance when compared to SST.

Figure7 brings a comparison of DNS and RSM evolution of the tangential com-
ponent of the Reynolds stresses along the APG region for B00. It is noticed that
initially, in the APG region, the RSM model is able to capture the evolution of the
first Reynolds stress peak at stations x= 0.0 and x= 1.0. Further downstream, how-
ever, the RSM model does not predict the formation of the second near wall peak,
associated to the instability of near wall streaks and which can be associated with the
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Fig. 7 Wallturb bump—tangential reynolds stress—DNS, RANS—wallturb bump

slower recovery of skin friction observed in RSM results when compared to DNS
(see Fig. 6). It can be concluded that the streaks instability mechanism and the for-
mation of a second near wall peak of tangential Reynolds stresses which is not taken
into account in the formulation neither of standard two-equation RANS models nor
the more sophisticate RSM model maybe responsible of the low performance of the
models in the APG region.
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5 Conclusions

Large eddy simulations were performed to study the effects of modifications applied
to the geometry of the rear portion of two-dimensional bumps on the velocity profiles
and Reynolds stresses evolution along the adverse pressure gradient region. Simu-
lations performed for a bump corresponding to available DNS results were comple-
mented by simulations with two modified bump geometries. LES results with initial
geometry were found to produce accurate predictions when compared to DNS, par-
ticularly, the formation of a second near wall peak in the tangential component of
Reynolds stresses which had been associated with instability of the near wall streaks
and caused a sharp increase of friction coefficient in the APG region. Simulations
of the modified bump profiles presented similar results to the original bump even
though the modified configurations provided smoother profiles, with lower pressure
gradients and either mild or no flow separation. These results indicate that the streaks
instability mechanism is present in a broader class of APG flows. Then, RANS sim-
ulations were also performed for the three cases using both standard two-equation
model (SST) and RSM models. It is found that none of these models are able to
predict the flow characteristics in the near wall APG region. This lack of perfor-
mance may be associated to the disability of the models to take into account in their
formulation the physics associated to the streaks instability.
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On the Response of a Separating Turbulent
Boundary Layer to High Amplitude
Excitation

Vitali Palei and Avi Seifert

Abstract Experimental results of turbulent separating boundary layer, subjected
to nominally 2D pulsed excitation, are presented and discussed. The effect of the
adverse pressure gradient on the vortices circulation and convection speed has been
documented. A search for instability mechanism did not result in any that were
amplified. Therefore, pulsed excitation that intermittently enhances the skin friction
with optimal time lag should be explored.

1 Introduction

Separation of turbulent boundary layers is an important engineering subject due to its
mostly negative effect on fluid related system and a lasting scientific challenge [1, 2].
Control of turbulent boundary layers is, therefore, of great practical importance and
is extensively studied on airfoils and generic configurations [3, 4]. While turbulent,
free-shear flows were found to possess unstable modes [5], turbulent wall-bounded
flows are known to be stable [6]. The current study was initiated with an attempt to
identify flow instability in search of an efficient AFC methodology, assuming that
instability would amplify the introduced excitation modes. However, not unexpect-
edly, no such instabilitymechanismwas identified, so the question remains:What are
the appropriate time scales for efficient excitation in such situations? In this paper,
evaluation of temporal and spatial scales are presented and discussed. Following
excitation of the boundary layer, subjected to local adverse pressure gradient, with
high frequency and amplitude modulated excitation were used.

Many similar experiments were performed on airfoils and on generic configu-
rations, dealing with the response to excitation [7–9] and more. However, no study
known to us linked the change in global response to the local boundary layer features
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and the excitation parameters, especially, the actuator created vorticity and circula-
tion. Moreover, most studies where performed in deep stall, where a free-shear layer
was naturally present and controlled. In our case, a rather short region of incipi-
ently separated flow was controlled and detailed PIV study was performed on the
interaction of the excitation with the turbulent boundary layer. Detailed data analysis
was performed to quantify effects. The structure of the paper is as follows. Next we
present the experimental details. It is followed by presentation of the experimental
results and modeling effort. Finally a discussion and conclusions are offered.

2 Experiment Setup

The experiments were conducted in a small size, open-loop wind tunnel [10]. The
test section was 50 (mm) high at the entrance and 150 (mm) wide throughout. Its total
length is about 1 (m). See Fig. 1.

The measurements were conducted near the flat, lower surface of the test section.
To eliminate pressure gradient due to boundary layer growth, the test section height
was increased from 50 (mm) at the entrance to 78 (mm) at the outlet over a distance
of about 970 (mm) (See Fig. 1).

To regulate transition the boundary layer was tripped at X = 140 − 175 (mm)
from the entrance to the test section. Velocity profiles were measured by a hot-
wire mounted on a 3D traverse system. The sensor was placed on a long holder
that penetrated from the outlet. Velocity profiles measured along the test section
centerline enabled the calculation of the displacement of momentum thicknesses as
well as the shape factor, as shown in Fig. 2a.

At the entrance to the test section the shape factor is about 2.4, corresponding
to laminar boundary layer with a slight acceleration. At X close to 600 (mm), both
natural and tripped boundary layers reach H = 1.4, corresponding to low Reynolds
number turbulent state. Roughness accelerates and regulates transition such that
turbulent state prevails for X > 400 (mm). Turbulent velocity profiles are plotted
in wall coordinates in Fig. 2b. A clear logarithmic region can be seen. Even the
viscous sublayer could be identified at the proximity of the wall. In order to impose
adverse pressure gradient without curvature, suctionwas applied (see Fig. 1) opposite
to the test wall. A porous section was positioned between 540 < X < 580 (mm),

Fig. 1 Test section dimensions, width is 150 (mm), X p = 530 or 560 (mm)
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(a) (b)

Fig. 2 a Velocity profiles shape factor along the test plate. Roughness placed at X = 140 −
175 (mm), U∞ = 7 (m/s), Us = 0. b Turbulent velocity profiles plotted in wall coordinates, with
roughness, U∞ = 7 (m/s), Us = 0

Fig. 3 Suction velocity as measured by a hot-wire placed 1[mm] below the suction panel, U∞ =
0 (m/s), Us = 4 (m/s). Suction velocity increased to reduce measurement uncertainty

and an ejector created various degrees of suction in the cavity. Currently, we only
consider suction level ofUs = 1.9 (m/s),with a free-streamvelocity of U∞ = 7 (m/s)
and the no suction case. Figure3a presents the Z and X dependence of the suction
velocity measured with a hot-wire 1mm below the porous plate with U∞ = 0 and
Us = 4 (m/s). It can be seen that the suction velocity is Z independent, and is clearly
localized in terms of X . Figure4a present the static pressure and its gradient along the
test section (X). It can be seen that the open suction panel has an effect on the pressure
gradient even without the ejector operating, but a weak one. With Us = 1.9 (m/s)
(Fig. 4b), a positive pressure gradient with a peak of 60 (Pa/m) is created around
X = 560 (mm). Note that the stagnation pressure at 7 (m/s) is only 30 (pa).

Mean and turbulence velocity profiles and Preston tubes data (referenced to the
wall static pressure) can be seen in Figs. 5 and 6. A conventional velocity profiles can
be seen for theUs = 0 case, with a clear turbulent activity peak at Y < 1 (mm) along
the entire test section (X of each profile is indicated below each profile. Above the
profile, we plotted the difference between the Preston and the static pressure tubes
measured at the same X for each pair. For the Us = 0 case we can see about 2 (Pa)
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Fig. 4 The static pressure along the test section with increasing opposite wall suction velocity
(left), and the pressure gradient along the test section for Us = 0 and 1.9 (m/s). U∞ = 7 (m/s). The
Gray regions indicate 540 < X < 580 (mm) range

Fig. 5 Pressure difference between Preston and Static pressure ports along the test wall, mean,
and fluctuating velocity profiles versus X , Us = 0. Suction region marked by the lightly colored
rectangle

higher Preston tube pressure, than static pressure, indicating attached flow. Figure6
presents similar data as Fig. 5, only forUs = 1.9 (m/s) test condition. It is evident that
the near wall velocity gradient decreased, the turbulence peak moved away from the
wall, and a secondary peak develops at Y 10 (mm). The pressure difference between
the Preston and static pressure ports decreased to below 1(Pa) from the suction panel
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Fig. 6 Pressure difference between Preston and Static pressure ports along the test wall, mean and
fluctuating velocity profiles versus X , Us = 1.9 (m/s). Suction region marked by the lightly colored
rectangle

and downstream, indicating separating boundary layer. It should be mentioned that
no mean reverse flow was measured by the PIV for this Us magnitude.

In Fig. 7a we present velocity spectra at one X station with and without opposite
wall suction. Both spectra were measured at Y corresponding to the peak turbulent
activity close to the wall. Both spectra contain a region with −5/3 slope and well-
behaved turbulent activities at all scales with no dominant peaks.

Actuation was imparted on the turbulent boundary layer by a Piezo-fluidic zero-
mass-flux actuator, spanning the entire 150 (mm). The slot of the test section width
was 1.0 (mm) and it ejected the periodic excitation at an angle of 30◦ with respect
to the test plate, pointing downstream. The actuator is identical to the one used in
Refs. [10] and [11]. A uniform cavity pressure oscillation was achieved by 6 Piezo
actuators. An unsteady pressure sensor was installed inside the cavity, on its floor
opposite the slot. A calibration of the peak exit velocity versus the cavity fluctuating
pressures Fig. 7b was performed using a single calibrated hot-wire, positioned at
the slot exit at three span locations. Figure7b shows the peak exit velocity versus
the cavity pressure RMS. Clearly, the excitation is quite 2D and shows the typical
non-linearity of the slot [12].
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Fig. 7 a Turbulent boundary layer velocity spectra at Y of peak velocity, X = 665 (mm), U∞ =
7 (m/s), Us = 0, and 1.9 (m/s). b Actuator calibration, slot peak velocity versus cavity pressure
fluctuations level

Two types of excitation signals were used during the current study. A pure sine
excitation created a steady-state high frequency actuation at the actuator’s Helmholtz
frequency, 1060 (Hz). In order to create low excitation frequency amplitude modu-
lation (AM discussed later) actuations were used.

3 Discussion of Results

The effect of the pure sine excitation of the separating TBL can clearly be seen
in Fig. 8a. The chart presents phase-locked velocity vectors and vorticity contours.
The mean boundary layer vorticity is negative and it is significantly enhanced by
the periodic excitation. The “positive” vortices, with rotation opposite to the mean
boundary layer shear direction, extend well outside the boundary layer. It should be
noted that the interrogation region extends from about 4 boundary layer displacement

Fig. 8 a Velocity vectors and vorticity contours for PS excitation, U∞ = 7 (m/s), Us = 0, PS
excitation, Up = 20 (m/s). b A comparison of mean velocity profiles measured by either hot-wire
(HW) or by 2D-PIV (PIV). Three conditions as indicated in the legend, Active: Up = 15.9 (m/s)
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Fig. 9 Vorticity contours of four PS excitation cases, Up indicated on charts. Xact = 530 (mm),
U∞ = 7 (m/s), Us = 1.9 (m/s), f = 1060 (Hz)

thicknesses downstream of the slot, to a distance of about 14 boundary layer dis-
placement thicknesses.

In Fig. 8b we compare hot-wire and PIV data taken at the same flow conditions.
It could be seen that the opposite wall suction significantly reduces the skin friction
and the PS excitation “fills” the near wall velocity deficit. The agreement between
the PIV and HW data is very good, slightly deteriorating at the first 1 (mm) from
the wall. The effect of increasing the magnitude of the PS excitation can be seen in
Fig. 9. The Up is indicated on each plot. It can clearly be seen that as the excitation
magnitude decreases, the phase-locked vorticity increases and stronger “positive”
vortices form away from the wall.

Further analysis of the vortices’ featureswas conducted. Vortices’ centers and bor-
ders were identified, its streetwise location identified, from which convection speeds
and circulation were calculated. Figure10 presents the “positive” vortices’ circula-
tion from the entrance to the exit from the interrogation region. Data is presented
for four amplitude of PS excitation and the two pressure gradient conditions tested,
i.e., Us = 0 and Us = 1.9 (m/s). The data for X < 14 (mm), indicating increase in
circulation results from entering of the vortices into the interrogation region and can
be discarded. It is evident that the vortices accumulatemore circulation in the adverse
pressure gradient TBL, for all excitation levels. It is also evident that the circulation
decays faster in the ZPG case, especially at the highest excitation magnitude. This
is hypothesized to be linked to the nonlinear interaction with the TBL.
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Fig. 10 The circulation of the PS generated vortices, with magnitude and Us as indicated in the
legend. Xact = 530 (mm), Us = 1.9 (m/s), U∞ = 7 (m/s)

The time evolution of the vortices’ X locations was also performed. Following
the entry stage, the vortices locations create a straight line, indicating a constant
convection speed. Vortices convection speeds were calculated by the slope of a liner
fit to the data of the X locations of the vortex centers versus X . Figure11 presents the
normalized, by the free-stream velocity of 7 (m/s) throughout, convection speeds for
the PS created vortices in the two boundary layers. It is evident that the convection
speeds increase with Up and decrease with the adverse dP/dX. This must be a result
of the nonlinear interaction with the finite magnitude vortices and the TBL and the
changing near wall velocity gradient, where the excitation has its strongest effect. For
reference and stability considerations, an Amplitude modulated excitation was also

Fig. 11 Vortex convection
speed for PS and AM
excitation versus excitation
magnitude for Us as
indicated in legend.
U∞ = 7 (m/s),
f AM = 18 (Hz)
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Fig. 12 Amplitude
Modulated (AM) excitation

used. With this excitation (Fig. 12), the envelope of the PS excitation is harmonically
time varying at low frequency. In Fig. 12 we present the excitation signal (A) the
resulting cavity pressure oscillations (B) and the resulting slot exit velocity (C)
(when U∞ = 0). These vortices also created harmonic boundary layer velocity
fluctuations from which convection speed can be calculated. The convection speed
for Up = 15 (m/s) and AM frequency of 18 (Hz) is also presented in Fig. 11. It is
evident that this type of excitation generated vortices are convected significantly
slower that the PS excitation, resulting from the significant lower momentum and
vorticity imparted by the vortices on the separating TBL. The main purpose of using
AM excitation was to identify an unstable2D excitation that will be amplified by the
separating TBL. Effective low amplitude excitation is creating by the AM excitation
resulting from the sum and difference of the side lobes created by such excitation
around the carrier frequency [13, 14].

Finally, Fig. 13 presents the velocity spectra resulting from AM excitation effects
on the separating TBL at two X stations. The 1st X station is positioned 25 (mm)
(∼9δ∗) downstream of the slot, while the second X station is positioned 30 (mm)
(∼12δ∗) downstream. It is clear that the AM excitation is capable of creating low
frequency excitation at Xs = 25 (mm). It is also evident that all frequencies tested

Fig. 13 Velocity spectra with AM excitation at two X stations, a X = 555 (mm), Xs = 25 (mm),
b X = 685 (mm), Xs = 55 (mm)
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(10− 100 (Hz)) decay further downstream. These results are expected since there is
no inflexion point in the TBL velocity profiles, at least not in the mean sense (Figs. 5
and 6). The next stage of the investigation, to be reported elsewhere, would describe
the effect of pulsed excitation aimed at identifying optimal repetition rates based on
the natural TBL recovery times.
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Statistical and Temporal Characterization
of Turbulent Rayleigh-Bénard Convection
Boundary Layers Using Time-Resolved PIV
Measurements

Christian E. Willert, Ronald du Puits and Christian Resagk

Abstract This contribution reports on near-wall flow field measurements in turbu-
lent Rayleigh-Bénard convection (RBC) in air at a fixed Prandtl number Pr = 0.7
and Rayleigh number Ra = 1.45 × 1010. For the experiment, the large-scale con-
vection (LSC) was confined to a rectangular box of 2.5 × 2.5 × 0.65m3 made of
transparent acrylic sheets. Prior video-graphic visualizations of the bottom boundary
layer flow by means of laser light sheet illumination of small particles indicated the
presence of highly dynamic flow behaviour at flow conditions that classical stability
analysis predicts to still be in the laminar regime. While theory predicts a transition
to turbulence at Reynolds numbers Reδ ≈ 420, the present investigation exhibits
highly unsteady flow at a much lower Reynolds number of Reδ ≈ 260 based on
boundary layer thickness. With the help of the PIV data, it can be demonstrated that
the entrainment of turbulent structures from the mean wind into the boundary layer
acts, alongside with the destabilization due to inner shear, as a second mechanism
on its path to turbulence. Both contributions must be considered when predicting the
critical bound towards the ultimate regime of thermal convection. The measurements
rely on the acquisition of long, continuous sequences of particle image velocimetry
(PIV) data from which both statistical and spectral information can be retrieved.
Contrary to conventional implementation of the PIV technique the field of view is
restricted to a narrow strip, generally extending in wall-normal direction. In this
way, both the acquisition frequency and the total number images of the employed
high-speed camera are proportionally increased. The temporally oversampled data
allows the use of multi-frame PIV processing algorithms which reduce measurement
uncertainties with respect to standard dual-frame analysis.
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1 Introduction

Many natural or technical flows are associated with a heat transfer from hot or
cold surfaces to the surrounding fluid. Because of its rather controllable boundary
conditions—a confined fluid cooled from above and heated from below—Rayleigh-
Bénard convection (RBC) has been the subject of numerous studies in the past
decades, both numerically and experimentally (for a comprehensive review, see
Ahlers et al. [1]). However, particularly in the case of turbulent RBC, the knowl-
edge about the temperature and velocity field inside the convective boundary layer
is still rather limited, which in turn affects the predictability of the local heat transfer
coefficient. This process can be investigated experimentally in the “Barrel of Ilme-
nau” [5], a large facility which offers both high Rayleigh numbers and large flow
scales with boundary layer thicknesses in the tens of millimetre range. Especially,
the latter property permits a maximum of spatial resolution for established optical
and probe-based measurement techniques.

Previousmeasurements in the facility recovered both the temperature and velocity
profiles on the top and bottom walls using glass-encapsulated microthermistors [2]
and laser Doppler anemometry (LDA) [3, 10]. While these single-point measure-
ments provide valuable flow statistics, they only give limited insight to the topology
of the flow. In this regard, planar techniques such as particle image velocimetry (PIV)
are methods of choice yet so far have found little application in high-Ra Rayleigh-
Bénard convection in air (Pr = 0.7), and to our knowledge have not been applied for
the detailed investigation of the transitional boundary layers.

Extensive PIVmeasurements of both the global flow field as well as the boundary
layer structure have been performed Zhou and Xia [16] and Sun et al. [12] in smaller
scale facilities for similar Ra numberswithwater asworking fluid (Pr = 4.3). In these
works, continuous PIV sequences in excess of 4h were recorded at sample rates of
2.2Hz. Among the findings was that the intermittent emissions of coherent structures
caused by thermal plumes do not modify the Blasius-type laminar velocity profile
which indicates that heat transfer across the thermal boundary layer is mainly by
conduction.Modification of this heat transfer is expectedwith the onset of turbulence.
Based on the Prandtl-Blasius theory of a flat-plate boundary layer and the stability
criterion Re = U δ/ν = 420 derived by Tollmien [13], the transition in heat transfer
in turbulent RBC was firstly predicted by Kraichnan [9] and later on defined more
precisely byGrossmann andLohse [8]. The latter authors predict a critical Ra number
of Rac ≈ 1013 . . . 1014 as the stability criterion in turbulent RBC at Pr = 0.7.

Video-graphic visualizations of the bottom boundary layer in the “Barrel of Ilme-
nau” facility bymeans of laser light sheet illumination of small particles indicated the
presence of highly dynamic flow behaviour at flow conditions that classical stability
analysis predict to still be in the laminar regime [4, 6]. The Reynolds number of the
present investigation is Reδ ≈ 260 which is considerably lower than the predicted
transition Reynolds number of Reδ ≈ 420. Also the corresponding Rayleigh number
of Ra = 1.45× 1010 is well below the extrapolated value of Ra ≈ 2× 1013 reported
by Sun et al. [12]. In their measurements, they observed a clear departure of the
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time-averaged data from the Prandtl-Blasius laminar boundary layer profile which
would be indicative of a transitional behaviour. However, Zhou and Xia [16] pointed
out that a normalization of the velocity profile by the instantaneous viscous bound-
ary layer thickness δν results in a good agreement with the predicted Prandtl-Blasius
profile.

In an effort to elucidate the transient behaviour of the boundary layer and to aug-
ment existing time-averaged data [10], the following article presents results obtained
with long, time-resolved sequences of the bottom boundary layer in the “Barrel of
Ilmenau” large-scale RBC facility. The first part of this contribution describes the
experimental methods using time-resolved PIV for investigation of turbulent flows.
These methods form the basis for the characterization of the boundary layer of tur-
bulent Rayleigh-Bénard convection provided in the second and main part of the
article.

2 Time-Resolved PIV for Near-Wall Flow Measurement

The investigation of turbulent flows in general strongly depends on gain information
on the statistics of the flow. For the experimental investigation of wall bounded
flow, this requirement is fulfilled by hot wire anemometry (HWA) and laser Doppler
anemometry (LDA) as these are capable of providing measurement data with both
high temporal and spatial resolution. On the other hand, particle image velocimetry
(PIV) captures snapshots of the flow field—even volumetric—and thereby provides
valuable information on the topology of the flow. PIV has been used extensively
for the investigation of turbulent flows essentially ever since the time it has been
developed. Due to the spatial averaging nature and rather low sampling rate (typ <

1 kHz), PIV generally has significant limitations in providing statistical information
comparable to HWAand LDA.Nonetheless, current technology allows the technique
to be pushed to higher sampling rates by reducing the spatial resolution of the sensor
and focussing on a particular area of interest with increased magnification. Rather
than capturing 2-D or 3-D maps of the flow field, the implementation of PIV utilized
for the present investigation is aimed at obtaining measurement data along a narrow
strip with a high number of samples at acquisition rates matching the time scales
of the flow. In effect, this approach has the potential of bridging the gap between
single-point measurement techniques (e.g. HWA, LDA) and conventional PIV, and
shall be the main subject of this contribution.

2.1 Near-Wall Measurement of Turbulent Wall Flow

Reliable near-wall measurements with high frame rate PIV become feasible when
the magnification of imaging system exceeds resolutions in the range of one pixel
per wall unit (z+) and the frame-to-frame displacements are limited to a few tens of
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pixels. While this becomes increasingly challenging with higher Reynolds number,
the measurements presented here have viscous sublayer thicknesses in the millimetre
range such that conventional imaging optics (macro lenses) can be used. At the same
time, the outer velocities typically are below 1m/s which requires camera frame rates
of 100–200Hz to keep frame-to-frame displacements within bounds.

From a hardware point of view, the measurement setup is rather straightforward
as it can be reduced to a medium-speed camera and a continuous wave laser of 2–5W
radiant power. The laser light is formed into a narrow, thin light sheet and is directed
into the facility at a wall-normal direction, ideally through a clean glass surface.
This narrow strip is then imaged by the high-speed camera, whose electronic shutter
prevents excessive particle streaking on the sensor.

The technique was first applied for the investigation of the developing turbulent
boundary layer of the air flow inside a square rectangular duct with ReD = 20, 000
and Reδ = 4, 900 using image sequences with lengths up to N ≈ 180, 000 at frame
rates of 10–50kHz [15].While the high sample count ensures statistical convergence,
the time-resolved nature of the data allows the estimation of both velocity spectra
and space-time correlations.

2.2 Estimation of the Wall Shear Rate

Wall shear stress is directly linked to the wall shear rate, that is, the velocity gradient
γ̇ = du/dz at the wall:

τw = μ
du

dz

∣∣∣
y=0

. (1)

To recover estimates of the wall, shear stress using particle-based imaging methods
requires that the linear portion of the sublayer is sufficiently well resolved such that
the gradient can be obtained through finite differing of velocity estimates. Within the
linear region, the fluid motion and along with it the motion of the particles is wall
parallel. Therefore, it is possible to limit the frame-to-frame displacement estimation
to recover only the wall-parallel motion. With the camera properly aligned, this can
be achieved by cross-correlating single rows of wall-parallel pixels.

Figure1 shows the mean wall-parallel velocity of particles within 30 pixels from
the wall. Aside from deviations really close to the wall, caused by stationary particles
or dust on the wall, the profile is linear throughout owing to the nearly 5-mm-thick
viscous sublayer of the RBC boundary layer. The slope of a linear fit to this linear
portion provides an estimate of thewall shear rate γ̇w = du/dz and can be used for the
straightforward calculation of the friction velocity uτ and associated normalization
factors. For a value of γ̇w ≈ 17.95 s−1 deduced from Fig. 1, this yields
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Fig. 1 Mean near-wall
particle velocity obtained by
single-line image
cross-correlation. The wall is
approximately located at
29pixel and magnification is
45.7µm/pixel
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While Fig. 1 provides mean values, the single-line cross-correlation technique can
also be used to estimate the instantaneous wall shear rate and with it the time varying
wall shear stress τw [15].

3 Near-Wall Measurements of Rayleigh-Bénard Convection

Turbulent Rayleigh-Bénard convection (RBC) is initiated in a confined fluid in the
presence of a sufficiently strong temperature difference between a cooler top sur-
face and a warmer bottom surface. The present measurements are aimed at gaining
further insight on the transient behaviour of the boundary layer on the bottom wall
previously observed through visualization by du Puits et al. [6]. The acquisition of
long PIV image sequences of up to N ≈ 59,000 samples are motivated by achiev-
ing both statistical convergence as well as providing continuous time records of the
transient flow.

3.1 Experimental Facility and Operating Conditions

For the experiment, the large-scale convection is confined to a rectangular box of
2.5 × 2.5 × 0.65m3 made of transparent acrylic sheets Fig. 2. The temperature
difference between the bottom and top wall is ΔT = 10K. With air as the working
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Fig. 2 PIV imaging setup for the investigation of RBCwithin a confined rectangular cell inside the
Barrel of Ilmenau.Right schematic of the global flow patternwithin the RBC cell, PIVmeasurement
setup and coordinate system

fluid (Pr = 0.7) the Rayleigh number amounts to Ra = 1.45× 1010. Further details
of the facility itself are given in [5].

3.2 Data Acquisition in the RBC Facility

To obtain more detailed information on the statistics and the temporal evolution
of the boundary layer flow, long PIV image sequences were recorded at various
positions near the centerline of the heated bottom plate (Fig. 2). Laser light sheet
illumination was realized with a 2W continuous wave laser. The light sheet thickness
was approximately 1–2mmwith a uniform height of approximately 70mmacross the
horizontal length of 2.5-m-wide cell. A smoke generator, based on an evaporation–
condensation principle, was used to seed the flow with 1–2µm oil droplets whose
life time exceeded 1h.

Images of the illuminated particles were acquired with a high-speed camera (PCO
GmbH, Dimax-S4) at a frame rate of 200Hz and a spatial resolution of 2016 ×
600pixels.With the camera positioned upright, a 90◦ mirror in front of themacrolens
(Zeiss Macro-Planar 100/2) aligned the optical axiswith the normal to the light sheet.
Aside from its high light sensitivity, the main benefits of this camera are its large
dynamic range of 12 bits and large internal storage to capture long sequences of
more than 20,000 frames at the chosen resolution. Particle streaking by the CW
illumination could be reduced by limiting the sensor exposure to 2ms.

As indicated in Table1, various image sequences at two magnifications were
captured, one to obtain the global features of the boundary layer and a second, higher
resolution to retrieve selected profiles with improved statistical convergence. A high
magnification of up to 22.1pixel/mm was chosen in order to resolve the viscous
sublayer (a wall unit corresponds to roughly z+/z = 1 mm, see Table2). To increase
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Table 1 Imaging parameters for the acquired PIV sequences of near-wall RBC

Symbol Overview Detailed view
A, B, C, D

Unit

Magnification m 9.1 22.1 pixel/mm

Field of view [W × H ] 220 × 65 13 × 68 mm2

[W × H ] 2016 × 600 288 × 1500 pixel

Camera frame
rate

facq 200 100/200 Hz

Camera exposure texp 2.0 2.0 ms

Duration tseq 106 592/296 s

Number of
frames

N 21161 59235

Table 2 Boundary layer data obtained for measurement positions A through D

A B C D Unit

Position x/L 0.09 0.48 0.64 0.92 –

Boundary
layer thickness

δ 22.8 32.8 35.8 62.9 (mm)

Boundary
layer thickness

δ99% 18.7 25.3 27.7 51.3 (mm)

Kinematic
boundary
layer thickness

δν 8.05 9.82 10.9 21.6 (mm)

Displacement
thickness

δ∗ 5.32 6.78 7.54 14.3 (mm)

Momentum
thickness

θ 2.49 3.06 3.45 6.13 (mm)

Shape factor S = δ∗/θ 2.14 2.22 2.18 2.34 –

Maximum
velocity

Umax −37.8 169 155 83.2 (mm s−1)

Wall shear rate γ̇w = du
dy 3.83 16.7 13.7 2.85 (s−1)

Friction
velocity

uτ 7.88 16.4 14.9 6.79 (mm s−1)

Wall unit z+/z 0.486 1.015 0.920 0.419 (mm−1)

Reynolds
number

Reδ (53.2) 343 343 323 –

Reynolds
number

Reδ99 (43.8) 264 265 263 –

Reynolds
number

Reδν (18.8) 103 104 111 –
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the duration of the acquisition, one sequence was acquired at 100Hz which also
doubled the particle displacements to a level comparable to the light sheet thickness.
As a consequence, the loss of signal due to out-of-plane particle motion increased
and required careful adjustment of PIV processing parameters.

3.3 PIV Analysis and Data Post Processing

The acquired image sequences were processed pair-wise with conventional PIV
processing software (PIVTEC GmbH, PIVview2C, v3.5) using sample sizes of
24 × 16 pixels (W × H ) and 64 × 8 pixels at 50% overlap, where the latter sam-
ple size was chosen to improve the resolution in the presence of strong, near-wall
shearing motions. The recovered velocity data was additionally temporally filtered
using a Gaussian weighted averaging kernel to reduce noise in the individual velocity
estimates. The chosen kernel width of 6 frames (e−2) corresponds to a temporal filter
width of 30ms, which is well below the smallest time scales present in this flow. For
example, at Ra = 1.45 × 1010, the Kolmogorov length scale is η ≈ 4.4mm with a
time scale τ ≈ 1.2 s.

Figure3 provides an overview of the acquired measurement domains. The four
narrow (red) stripes indicate positions that were imaged with higher resolution and
an increased number of samples (nearly 60,000 images each). Each of the twelve
sampling areas were acquired with a pause of about 30min in between, which to
a large extent is due to the time required to download images from the camera
as well as camera repositioning and length calibration. Figure4 provides the mean
velocity distribution at three relevant positions, namely the impingement area of the
downwelling flow near the right corner (A), a position near the middle where the
boundary layer is considered to be well established (C), and finally an area near the
right corner where the mean flow is directed upward (D).

X [mm]

Z
 [

m
m

]

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
0

100 A DCB

Fig. 3 Schematic of flow field (top) and overview of PIV measurement areas. The narrow vertical
strips labelled A,B,C and D indicate areas used for profile measurements. Flow fields for the yellow
areas are provided in Fig. 4
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Fig. 4 Overview of mean velocity field at three positions along centerline: downwelling region
(a), middle area (b), and upwelling region (c); vectors desampled 16× horizontally, 2× vertically

The flow near the left corner (Fig. 4) is clearly dominated by downward motion
and even reverses with a clearly visible stagnation point at x ≈ 330mm. The flow
then accelerates with increasing horizontal distance establishing a boundary layer
with a maximum velocity of Umax ≈ 160–170mm/s at a wall distances of z = 30–
35mm. Towards the right corner, the mean streamlines indicate the deflection of the
horizontal shear flow towards the upper plate by the vertical sidewall.

In order to estimate the mean wall shear rate γ̇w, a modified PIV processing
scheme is used that employs cross-correlation on single line of pixels (wall par-
allel). The procedure is described in Sect. 2.2 and provides velocity estimates at
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Fig. 5 Temporal evolution (12,000 samples) and probability density function (right) of the wall
shear rate γ̇w = du/dz at x/L = 0.64 (mean: 13.7 s−1, σ : 6.8 s−1, skew: 0.51)

single-pixel increments with a wall-normal resolution of one pixel (45.2µm). A
linear least squares fit over these estimates provides the near-wall velocity gradient
in units of [pixel/pixel], and hence is dimensionless. Division by the time differ-
ence between image recordings provides the wall shear rate. This gradient can be
obtained for each image pair such that the statistics and temporal evolution can be
further analysed. A two-minute portion of the highly fluctuating wall shear rate is
shown in Fig. 5, left. The probability density function for the entire record is given
in Fig. 5, right. A positive skew is indicative of the intermittent behaviour as shown
by the high-amplitude bursts in the time trace.

4 Results and discussion

The characteristic values for the four detailed boundary layer measurement areas are
summarized in Table2. Profiles of the normalized mean velocity profile at two posi-
tions are provided in Fig. 6. At position x/L = 0.48, the maximum velocity Umax =
169mm/s is reached at a wall distance of δ = 32.8mm. At greater wall distances, the
mean velocity slowly decays. Further downstream (x/L = 0.64, x/L = 0.92) the
boundary layer thickens, while the maximum velocity reduces; the Reynolds number
stays approximately constant. This indicates that the boundary layer does not receive
additional momentum from the outer flow aside from the momentum added in the
downwelling region at x/L � 0.3. At x/L = 0.92, themean velocity profile exhibits
a reduced velocity gradient at the wall which is caused by the separating flow in this
area (Fig. 8).

The velocity profiles also clearly deviate from the laminar Prandtl-Blasius profile
which corresponds to results reported for DNS [11, 14] as well as previous LDA
measurements [2, 10, 16]. In Fig. 6, the viscous sublayer is present where the profile
follows the Prandtl-Blasius profile and begins to depart at z/δ � 0.1 corresponding
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to z+ ≈ 4. However, a fully developed logarithmic region does not exist in the mean
velocity profile (Fig. 6, right) due to the transitional character of the boundary layer.

The wall-normal distribution of the time-averaged fluctuating velocity compo-
nents <u′

i u
′
j> is shown in Fig. 7. While the horizontal fluctuations u′ reach a max-

imum at a normalized wall distance z/δ ≈ 0.5 corresponding roughly to 16 z+
and decay after that, the vertical fluctuations w′ continue to increase asymptoti-
cally approaching the value of the horizontal fluctuations. This indicates increas-
ing isotropy of the fluid motion (or turbulence) with increased wall distance. The
combined quantity—the square root of their sum—reaches at constant value near
z/δ ≈ 0.5 and only slightly decays thereafter which suggests near constant turbulent
kinetic energy in the outer regions of the boundary layer.

The planar nature of PIV data allows the retrieval of differential quantities that are
difficult to obtain with single-point techniques such as laser Doppler anemometry
(LDA) and hotwire anemometry (HWA). As an example, Fig. 9 shows the wall-
normal distribution of mean and fluctuating values of the out-of-plane vorticity
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0.48 (�) and x/L = 0.64

component ωy . Normalized by the wall shear rate, its value peaks near the wall
at about ω/γ̇w = 0.4. Closer to the wall, the measurement uncertainty increases
due to light scattering at the surface, which “locks” the displacement to zero. Corre-
spondingly, the RMS value of vorticity decays in the immediate vicinity of the wall
for z/δ < 0.1, which is not representative. Compared to the velocity fluctuations
(Fig. 6, right), the strongest vorticity fluctuations occur much closer to the wall and
have nearly decayed to levels close of the outer flow.

While the previous results focussed on the statistics of the boundary layer flow,
we will now highlight some of temporal characteristics of the flow. Figure11 shows
a good example of the intermittent behaviour of the flow by exhibiting two very
different flow states at position x/L ≈ 0.45 separated in time by only 1.7 s. A highly
dynamic flow, most likely associated with a previously occurred thermal pluming
event (Fig. 10), is carried downstream with the convection velocity of the boundary
layer returning the boundary layer flow to a quieter state that closely resembles that
of a laminar boundary layer.
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Fig. 11 Two flow conditions at position x/L = 0.5 separated by 1.7 s in time. Vectors are down-
sampled 8× horizontally and 2× vertically

The intermittent behaviour of the boundary layer flow is clearly visible in the
time trace of normalized velocity u/Umax and vorticity ω/γ̇w provided in Fig. 12.
The time trace was obtained at a wall distance of z/δ = 1 at sampling position B,
x/L = 0.48. The red and green vertical lines in Fig. 12, right, correspond to the time
instances for the flow maps presented in Fig. 11. In particular, the vorticity z/δ = 1
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exhibits a period of strong bursts with amplitudes reaching that of the mean wall
shear rate.

The temporal correlation of selected flow components at selected locations pro-
vides some information on the time scales within the boundary layer and the interac-
tion between different quantities. The autocorrelation of both velocity components
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u and w, the out-of-plane vorticity ωy and the wall shear rate γ̇w are shown in
Fig. 13. Among these, the vorticity has the shortest time scale, which is due to their
convection with the mean flow. The horizontal velocity component has the highest
self-correlation of several seconds which is related to the rather steady horizontal
motion of the flow. The self-correlation of thewall shear rate has a duration of roughly
1 s. The cross-correlations of velocity and vorticity with wall shear are depicted in
Fig. 14.Here, the vortex structures convectedwith the bulk of the boundary layer have
limited influence on the wall shear rate. On the other hand, both velocity components
of the bulk flow have a pronounced influence on the wall shear. While the correlation
with horizontal velocity component shows temporal lag of 1–2s, the response of the
wall shear to vertical motions is essentially without delay. This interaction seems
independent of the velocity sampling position from the wall, which suggests that the
wall shear rate is forced from the outside by the bulk flow of the RBC (e.g. falling
plumes, impinging jets).

4.1 Statistical Convergence of the Data

When plotted side-by-side, the time-averaged data domains exhibit discontinuities at
the borders. This indicates that the mean flow is not stationary between the acquisi-
tions of the individual sequences (30min between individual sequences). Variations
in the fluctuations further indicate that the statistics are not fully converged, in spite
of the rather considerable length of the sequences. For the given operating conditions
and geometry of the RB cell, a free-fall velocity U f = (g α ΔT H)0.5 can be esti-
mated atU f ≈ 68.3mm/swith a corresponding free-fall timeof T f = H/U f ≈ 36s.
The mean data for the local overviews covers about 3 T f . On the other hand, Emran
and Schumacher [7] estimate the average loop time of Lagrangian tracers at 20 T f ,
corresponding to a duration of 12min. This is nearly achieved for the high-resolution
profile PIVmeasurements at position B (x/L = 0.48). Laser Doppler measurements
for similar configurations reported by du Puits et al. [2] and Li et al. [10] sampled
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each point for up to 1h and longer.1 A comparable PIV measurement using the
imaging configuration reported herein would require 360,000 images if sampled at
100Hz corresponding to 400GB of 8bit raw image data, if temporal coherence is to
be preserved.

5 Summary and Conclusions

The velocity field close to the bottom horizontal plate in turbulent Rayleigh Bénard
convection in air has been studied experimentally using long sequences of time-
resolved PIV data. To the knowledge of the authors, these are the first PIV boundary
layer measurements of RBC in air.

Whether the RBC boundary layer flow is turbulent or not cannot be answered
conclusively. On the one hand, the Reynolds number of Re = 265 is below the
critical threshold of Re = 420. The lack of a log-law region in the velocity profile
is another indication that the boundary layer is not turbulent. Furthermore, a shape
factor of S = 2.2–2.35 is closer to that of the laminar Prandtl-Blasius solution with
S ≈ 2.5 rather than that of a turbulent boundary layer or wall jet with S = 1.3–1.4.
On the other hand, the flow is highly intermittent with significant velocity variations
(>30% at half the mean kinematic boundary layer thickness).

As shown in Fig. 6, right, the peak horizontal fluctuations are observed at ≈16 z+
(z/δ = 0.5) which is significantly more than for RBC measurements in water at
similar Rayleigh number [12] and is closer to the value of 12 z+ for classical flat-
plate boundary layers. The difference to the measurements in water can be related to
the much thicker thermal boundary layer in air, which is of similar magnitude as the
kinematic boundary layer [11] while it is confined to the viscous sublayer in water
[12]. Therefore, the interaction of turbulent structures from the mean wind with the
boundary layer will not only destabilize the inner shear of the kinematic boundary
layer, but will also destabilize the thermal boundary layer. This is substantiated
by the cross-correlation functions between wall shear rate and outer flow (Fig. 14)
which show that in particular, vertical motions of the outer flow directly act all
the way into the viscous sublayer. This is in agreement with similar conjectures
reported in the literature that the wall-normal forcing is more dominant than wall-
parallel direction forcing [14]. This vertical forcing results from buoyancy effects
that manifest themselves in the form of plume impingement and detachment. In
essence, both contributions, inner shear and external forcing of the boundary layer,
must be considered when predicting the critical bound towards the “ultimate regime”
of thermal convection [9].

1du Puits et al. [2] reported on 48h hot-film measurements in the RB cell and observed a 30%
variation of the typical mean velocity over a duration of about 5h.
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Large-Scale Organization of a Near-Wall
Turbulent Boundary Layer

R. Dekou, J.-M. Foucaut, S. Roux and M. Stanislas

Abstract Large-scale streaky structures play an important role in the turbulence
production process of a boundary layer. Adrian has proposed a model at very large
scales which could explain the organization of the boundary layer, but at high
Reynolds number, their main characteristics (size, intensity and life time) and the
way they interact with the near-wall structures is still not fully understood. To tackle
these points, an experimental database at a Reynolds number based on momentum
thickness Reθ close to 9800 was recorded in the Laboratoire de Mécanique de Lille
wind tunnel with stereo-PIV (SPIV) and hot-wire anemometry (HWA).With a Linear
Stochastic Estimation (LSE) procedure based on correlations computation, a three-
component velocity field was reconstructed at high frequency from stereo-PIV at
4Hz and hot-wire data at 30kHz. To extract large streaky structures, a threshold is
applied to normalized streamwise velocity fluctuations from the reconstructed PIV
field, and then 3D morphological operations (erosion and dilatation) are combined
with a volume-size-based cleaning procedure to remove the noise and smooth the
object boundaries. Some statistical characteristics of the large streaks are obtained.
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1 Introduction

Investigation on superstructures in the log and outer regions of a turbulent boundary
layer is an active field of research in turbulence. Because they play an important
role in turbulence production across the boundary layer [6–10] and are thought
to be responsible for small-scale amplitude modulation near the wall [15], many
authors have investigated them in turbulentwall layers for various flowconfigurations
(zero pressure-gradient turbulent boundary layer [12, 16], pipe flows [6] and channel
flows [18]). From these studies, general conclusions can be drawn. First, streamwise
elongated regions of alternatively high- and low-speed fluid populate the logarith-
mic region [1, 6, 7, 12, 14], and their streamwise length scale on δ increases with
the wall-normal distance in the log region and decreases beyond [6, 8]. Together
with a detailed analysis of large-scale vortices, a very Large-Scale Motion Model
(VLSM) was provided by Adrian. This model suggests that hairpin-type vortices are
bounding regions of low-speed fluid with ejections between their legs and sweeps
outside [6–10, 12]. Investigation of the energetic contribution of hairpins packets
within the flow at moderate Reynolds number Reτ = 1060 shows that the Reynolds
shear stress mean value inside low uniform momentum zones is 20U2

τ , Q2 and Q4
events’ maximum contribution are 35U2

τ and 20U2
τ , respectively, [8]. Finally, it is

thought that the meandering behaviour of streaks can generate a swirling activity
[12]. When we switch from low and moderate Reynolds numbers to higher ones, the
structures size increases. Studies at Reynolds Reτ ≈ 1100 reveal that their stream-
wise extent is 2δ [8, 12], and further studies at Mach 2 [6] and at Reτ = 6.6 × 105

[12] reveal structures which can go up to 8δ and 20δ, respectively. This long stream-
wise extent, combined with the three-dimensional aspect of the structures, and their
meandering behaviour complexify their extraction and analysis. Thus, experiments
and DNS need to be performed at high Reynolds number to complete the existing
model. It is for this purpose that an experimental database at high Reynolds number
(Reτ = 3610) was built in the frame of WALLTURB project. Measurements were
made in a zero pressure-gradient turbulent boundary layer over a flat plate using
Stereo PIV at 4Hz and hot-wire anemometry at 30kHz. At high Reynolds number,
the PIV sampling rate is not sufficient to follow superstructures evolution in time and
the field of view is strongly limited by the available laser power. In contrast, HWA
allows time-resolved measurements but limited to one velocity component. Another
option is to combine experimental tools and use recent mathematical methods such
as LSE in order to reconstruct a fully time-resolved field with three components. The
first part of this paper describes the experimental setup, and then the LSE procedure
used for reconstruction is described and a statistical validation is performed on the
reconstructed field. Then, a streaks extraction algorithm is described. The last part
is dedicated to the characterization of the structures: a statistical analysis of rele-
vant quantities (diameter, life time and Reynolds stress) is carried out on coherent
structures and conclusions provided.
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2 Experimental Setup

The experiment was carried out in the LML wind tunnel during a WALLTURB test
campaign. The test section of the wind tunnel is 20m long with a cross section of
2× 1m2. The free stream velocity is 10m/s, and the turbulence level is 0.3%. A full
description of this wind tunned can be found in [3], and the programme is described
in [21].

The present experiment was carried out with a free stream velocity U∞ = 5m/s
and a Reynolds number based on momentum thickness Reθ = 9830. A Clauser
chart fit was used to estimate the friction velocity uτ = 0.188 corresponding to
a Reynolds number based on friction velocity Reτ = 3610. Table 1 summarizes
the main characteristics of the boundary layer. The hot-wire rake (HWR) displayed
in Fig. 1a was positioned streamwise at x = 18m from the boundary layer starting
point. This hot-wire rake is made of 143 single hot-wire probes grouped in 13 vertical
combs along the spanwise direction z with 11 probes on each of them. The probes are
logarithmically distributed as shown in Fig. 1b. The two extreme rows of probes are
located at 0.4 ± 0.2mm and 306.9mm, respectively, from the wall (corresponding
to 7 ± 3 and 7365 wall units, respectively). The first two rows are below the PIV
measurement plane and were not used in the present study. The sensing wires are
0.5mm long and 2.5µm in diameter (l+ = 11.8 and d+ = 0.006, respectively). The

Table 1 Main flow properties with δ the boundary layer thickness, uτ the friction velocity and θ
the momentum thickness

Facility U∞ (m/s) T (K) δ (m) uτ (m/s) Reδ Reθ Reτ

LML 5 288 0.28 0.188 96020 9830 3610

The Reynolds numbers are Reδ = U∞·δ
ν , Reτ = Uτ ·δ

ν and Reθ = U∞·θ
ν

Fig. 1 a View of the 143 hot-wire rake built by Institut PPRIME installed in the LMLwind tunnel.
b Position of the rake relative to the SPIVmeasurement plane, probes on the rake are logarithmically
distributed in wall-normal direction
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acquisition time of the hot-wire signal is 6 s, the sampling frequency is 30KHz and
measurements are repeated over 534 blocks to ensure convergence.

Becausehot-wiremeasurements are limited toonedimension, a stereo-PIVsystem
described in [4] allows measurements at 4Hz, and the resulting velocity field has
3 components with a spatial resolution of 2mm in the spanwise and wall-normal
directions. The PIV laser is parallel to the hot-wire rake and positioned 1cmupstream
of it as shown in Fig. 1b, and it covers the entire log region over an area of 30×30cm2.
Note that the PIV measurements were used to calibrate hot-wire probes, and details
on the calibration procedure can be found in [20]. The anemometry system used in
this experiment is described in [4].

3 Linear Stochastic Estimation

The LSE (see e.g. [11]) is used to reconstruct from the hot wire and PIV measure-
ments of a fully time-resolved three-component velocity field with the same spatial
resolution as the PIV. Given a set of observables located in space at x′ and in time at t′,
the LSE allows the linear approximation of the conditional estimate of some quantity
at a position x and time t. In our case, the conditional variables to reconstruct at high
frequency are the three components of velocity field in u′(x, t) = (u′

1, u′
2, u′

3)(x, t)
in the PIV y-z plane. x = (x1, . . . , xNp) and Np is the number of PIV points.
The set of observables includes the streamwise velocity u′

1(x
′, t′) measured at the

Nh hot-wire probes on the two-dimensional rake whose coordinates are given by
x′ = (x′

1, . . . , x′
Nh

). A single-time formulation for the linear approximation of the
velocity component ûi(x, t) is implemented, such as used in [5]:

ûi(x, t′) =
Nh∑

k=1

ai,k(x)u′
1(x

′
k, t′ + τ (x′

k)) i = 1, 2, 3, (1)

where ai,k(x) are coefficients relating the conditional field to the observers, and τ (x′
k)

is the time delay evaluated between a point xi,i=1−Np in the PIVplane and the observer
x′

k,k=1−Nh
. The ai,k(x) coefficients are solution of a linear system of equations of the

form Ayi = bi (i = 1, 2, 3), where A ∈ R
Nh×Nh , bi ∈ R

Nh , yi ∈ R
Nh :

A =

⎡
⎢⎢⎣

ρu′
1u′

1
(x′

1, x′
1; 0) · · · ρu′

1u′
1
(x′
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1; τ1 − τNh )

.
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⎢⎢⎣

ρu′
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.

.

.

ρu′
iu

′
1
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Nh
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⎤
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yi =
⎡
⎢⎣

ai,1(x)
...

ai,Nh(x)

⎤
⎥⎦ and ρq1q2(x, x′; τ ) = 1

T

∫ T/2

−T/2
q1(x, t)q2(x

′, t − τ )dt. (3)
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The time delay τk = τ (x′
k) is the one that maximizes the correlation between

streamwise velocity fluctuations at a PIV point xi,i=1−Np and HWA sensor xk,k=1−Nh.
Note that the same time delay was used here for the streamwise, spanwise and wall-
normal velocity components. To obtain yi, the system Ayi = bi is solved with a
Tikhonov regularization procedure as in [13].

4 Statistical Analysis of the Velocity Field

In order to characterize the quality of the reconstructed data, a statistical analysis
was performed on the PIV, HWR and reconstructed data and compared to those
of [3].

In a previous analysis of the present PIV and HWR data, [22] did show that the
HWR generates an obstruction which is maximum in the plane of symmetry and
affects mostly the mean velocity field. For this reason, the side rows of the HWR
are used here for comparison to minimize the influence of the obstruction. Figure2
displays profiles of mean U+ and root mean square (RMS) u+ velocities. For the
mean velocity, a good agreement is observed between the results of the side row of
the HWR, the PIV, the results of [3] and the logarithmic law with κ = 0.41 and

Fig. 2 Mean & RMS velocity profiles obtained here compared with those obtained by [3] using
single hot-wire probes (l+ = 11). The vertical dashed lines indicate the region of the boundary layer
in wall-normal direction covered in the present paper, and the (×) denote the location of hot-wire
probes along a given comb
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Fig. 3 Premultiplied
frequency spectra of the LSE
reconstructed streamwise
velocity fluctuations (circle)
compared with hot-wire
measurements (dashed lines)
at y+ = 959

C = 4.9. The central row is also plotted to illustrate the blockage effect. Concerning
the RMS, a good agreement is observed between all rows of the HWR and the PIV
data. A slight underestimation is visible compared to the data of [3]. The RMS
reconstructed by LSE at 0.2KHz displays an underestimation and wavy patterns.
Each crest corresponds to a hot-wire probe position highlighted by the crosses on
the top part of the figure. Because the LSE is based on spatio-temporal correlations
between the hot-wire signal and the original PIV field, points in the PIV domain
which are between two hot-wire probes are less correlated and thus lead to lower
amplitudes. The RMS of the reconstructed field follows the same trend as the one
obtained by [3], but its amplitude is lower denoting a loss of energy. Part of it is also
due to the filtering of the small scales by LSE reconstruction. Also the PIV plane and
the HWA are separated streamwise by �x = 1cm (�x+ = 125), and therefore the
correlation between the PIV and hot-wire measurements reaches values closed to 0.8
and not 1 as might be expected. Using Taylor hypothesis, the premultiplied spectrum
of the streamwise velocity reconstructed by LSE can be plotted at different wall-
normal positions and compared to the HWR data. Figure3, for y+ = 959, illustrates
that the amplitude of the LSE reconstructed field is underestimated at wavelengths
below 2.104 which correspond to about 5δ down to 3.103 (about δ). This loss of
energy should be viewed as a broadband filtering by LSE affecting most scales but
keeping the large scales of interest in the present study.

5 Detection of Streaks

5.1 Detection Algorithm

To detect streaks, a suitably chosen threshold is applied directly on the fluctuating
part of the velocity field. In order to ensure normalization of the fluctuations, the
fluctuating part was divided here by its standard deviation (averaged in time and
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Fig. 4 Energetic

contribution of u
′

σ
u
′ at

y+ = 237, the dashed lines
provide the threshold values
chosen for low- and
high-speed streaks

in the spanwise direction as the flow is homogenous in these two directions). The
detection function is

Fdu = u
′
(t, y, z)

σu′ (y)
. (4)

The threshold was chosen to keep the most energetic structures and to minimize
the noise. The probability density function of the detection function times the energy

P( u
′

σ
u
′ ).(

u
′

σ
u
′ )

2 is displayed in Fig. 4. For low-speed streaks, a threshold value of −1

was used as it is the standard value in the literature and applied in previous stud-
ies of the group [3]. Similarly, a threshold of +1 was used for high-speed streaks.
The thresholding of low-speed streaks and high-speed streaks, respectively, can be
summarized with the following two formulas:

Fi =
{
1 if Fdx < Ct

0 if Fdx ≥ Ct
and Fi =

{
1 if Fdx > Ct

0 if Fdx ≤ Ct
. (5)

Erosion and dilatation are classical morphological operations (Serra [19]). The
dilatation (respectively erosion) of a setX by a structuring elementB is theMinkowski
addition (respectively substraction) of X and the transposed set B̂ of B. The resulting
set δB(X) (respectively εB) is given by

δB(X) = X ⊕ B̂ =
⋃
x∈X
y∈B̂

{x + y}

⎛
⎜⎜⎜⎝εB(X) = X 	 B̂ =

⋃
x−y∈X

y∈B̂

{x}

⎞
⎟⎟⎟⎠ . (6)
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These two operations are generally combined together in closing and opening oper-
ations. An opening operation of a set X by a structuring element B is an erosion
followed by a dilatation, the resulting set XB is written as

XB = (X 	 B̂) ⊕ B. (7)

A closing operation of a set X by B is a dilatation followed by an erosion, and the
resulting set XB is written as

XB = (X ⊕ B̂) 	 B. (8)

These mathematical morphology tools were used in an interactive way on the recon-
structed data in order to smooth the noise existing in the data generated by the above
thresholding procedure.

A cleaning procedure is generally used to remove high-frequency noise left by
morphological operations.Given a thresholdC1, the cleaning step can be summarized
as follows (Lin et al. [17]):

Fi =
{
1 if volume > C1
0 if volume ≤ C1

. (9)

The threshold is selected in order to keep only the elongated streaky structures both
low and high speed.

5.2 Results

The main objective of using morphological operations and a cleaning algorithm is
to remove the noise from the original data in order to have a processable field as an
output. The constraint is that these operations should not alter the size and shape of
the original objects, which contain the physical information. While a rough erosion
can create big holes in the field which can be hard to recover, a rough dilatation can
increase the size of small objects thus increasing the noise. This is the reason why
erosions, dilatations and the volume-based cleaning procedure were combined all
together and tested step by step in an interactive way with caution on the size of the
structuring elements and the threshold used for the cleaning. Therefore, the method
used here is certainly not universal but follows the previous constraints in such a way
to stay close to the raw field. In Fig. 5, an example of low-speed streaks is displayed
and compared with the raw field. Values in z and y are scaled by δ. And the time is
scaled with the free stream velocity Ue = 5m/s and the boundary layer thickness δ
so that t∗ = t·Ue

δ . All the small objects are eliminated, and the main features from the
raw field are smoothed. This was evident in all our reconstructed 3D fields of size
1000 × 163 × 141 grid points. The same algorithm with the same parameters (but
Ct = +1) was used to also extract the high-speed streaks. An example of cleaned
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Fig. 5 Comparison between the raw field (left) and the cleaned velocity fluctuations (right)

Fig. 6 Indicative functions of the low-speed streaks (black) and high-speed streaks (grey)

low- and high-speed streaks in the same field is displayed in Fig. 6 for a time interval
t∗ = [33.33, 41.50]. Alternate regions of low and high speed are evident. Based on
this careful validation, this filtering procedure was applied in the whole fields where
t∗ range is [0, 83.25], y/δ ranges [0, 1] and z/δ ranges [−0.5, 0.5] giving results
similar to Fig. 6.

6 Characterization of Streaks

Once the streaks are extracted, it is possible to characterize themwith their hydraulic
diameter dh in the (y,z) plane, their life time tl and the <u

′
u

′
> and <u

′
v

′
> Reynolds

stresses computed inside the streaks. Figure7a, b, respectively, displays the histogram
of the mean hydraulic diameter dh/δ of low- and high-speed streaks (dashed lines
and plain lines, respectively) normalized with the boundary layer thickness and the
histogram of their life time t∗l . From these plots, it is obvious that the averaged mean
hydraulic diameters and life times of low- and high-speed streaks follow the same
trend with a peak at d̄h = 0.06δ and t∗ = 1.16 for both. Figure7c, d displays the
streamwise and shear Reynolds stresses contribution to the flow from low-speed
streaks (dashed lines) and high-speed streaks (plain lines) compared with the total
stresses (empty circles), and the same contribution from low- and high-speed streaks
together is also plotted (filled circle). The contributions from both types of streaks
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Fig. 7 a Histogram of the mean hydraulic diameter of streaks normalized with the boundary
layer thickness, b Histogram of the normalized life time of streaks, c Streamwise Reynolds stress
contribution of low- and high-speed streaks, compared with the total stress and d Reynolds shear
stress contribution of low- and high-speed streaks compared with the total stress

are comparable for both types of stresses. Globally, the contribution from low- and
high-speed streaks to <u

′
u

′
> is of order of 40 and 30%, respectively, which means

that most of this Reynolds stress is generated inside these two types of structures. For
<u

′
v

′
>, the contribution from low-speed streaks remains 40%, and the one from

high-speed streaks is a bit less (25%), especially close to the wall with a higher
contribution of high-speed streaks indicating that a significant part of this shear is
generated between the streaks. Thepercentageof contribution from low-speed streaks
peak at y/δ ≈ 0.86 and in high-speed streaks, this percentage is always decreasing
as we move away from the wall.

7 Conclusion

Time-resolved hot-wire rake measurements at 30KHz were combined with SPIV
measurements at 4Hz to reconstruct via LSE a 3 component velocity field resolved
in space and time. A statistical analysis performed on the outcoming field shows that
LSE leads to a loss of energy affecting most scales but keeping the large scales of
interest. Streaks extraction reveals the existence of altering zone of low-speed fluid
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and high-speed fluid throughout the log region. Low-speed regions are found to be
slightly more energetic than their high-speed twins but in average, their cross section
and life span are nearly equal. It is also found that Reynolds stress contributions of
streaks to the total stresses are important, about 40% for low speed and between 25%
and 30% for high speed. The perspective of this study is to extract and characterize
vortical structures in order to provide a complete picture of the log region of a
turbulent boundary layer.
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Near-Wall Study of a Turbulent Boundary
Layer Using High-Speed Tomo-PIV

Fabio J.W.A. Martins, Jean-Marc Foucaut, Luis F.A. Azevedo
and Michel Stanislas

Abstract The fundamental study of the near-wall structure organization in turbulent
flows is crucial to understand the self-generation process of turbulence. To investi-
gate such phenomena, an experiment of high-repetition, 6-camera tomo-PIV in a
boundary layer was performed. Vector fields generated from BIMART high-quality
reconstructed volumes resulted in low measurement uncertainties. The comparison
of turbulence statistics from tomographic PIV and hot-wire anemometer data shows
an excellent agreement. Preliminary vortex detection from Q-criterion is presented
and allows the identification of dispersed vortices around the low-speed streaks in
the boundary layer. Nevertheless an accurate identification of turbulent structures is
not yet achieved. The postprocessing is being reviewed and the discussion of the
interaction and evolution of turbulent structures will be addressed in a future paper.

1 Introduction

The turbulence structure near the wall in a boundary layer has challenged researchers
over the last six decades due to its importance as a driver in innumerous practical
engineering applications. In this turbulent flow, kinetic energy from the free flow is
converted into turbulent fluctuations and then dissipated into internal energy by the
viscosity. A population of many eddies of different scales interact with each other
in a complex phenomenon of a continuous self-sustaining process. The presence of
quasi-periodic patterns of coherent motion in the flow seems to be responsible for
the maintenance of turbulence in a boundary layer [1, 5, 23, 27]. Nonetheless, the
near-wall turbulence structures, their evolution, and their interplay are still not fully
understood [9, 28].
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Turbulence measurements achieved a notorious improvement with the recent
advances in Particle Image Velocimery (PIV). Nowadays, variations of this nonin-
trusive technique are able to capture the full three-dimensionality of unsteady flows
by means of multi-plane PIV [15], three-dimensional particle tracking velocime-
try (3D PTV) [16], defocusing PIV [21], holographic and digital holographic PIV
(HPIV and DHPIV) [26], scanning-PIV [13], and tomo-PIV [8]. This work explores
the latter, which has a high potential of 3D-3C velocity measurement [24].

The tomographic PIV approach is based on the reconstruction of the particle
distribution inside an illuminated volume of a seeded flow. The light scattered by
the particles is recorded by multiple, simultaneous camera views, from which the
images are used to reconstruct the volume. The instantaneous flow is estimated by the
particle displacement between two light pulses, through a 3D cross-correlation over
a pair of reconstructed volumes calculated from these views [8]. The reconstruction
of the particles from a limited number of views is an indeterminated system solved
by algebraic techniques, which are very time consuming [2, 29, 33]. Fortunately,
alternative methods for optimizing the reconstruction process were created in order
to improve the quality and to decrease the computational time [7, 20, 22, 33].

Recently, Thomas and co-workers [29] proposed the block-iterative multiplica-
tive algebraic reconstruction technique (BIMART) [4], which, in their synthetic data,
obtained an equivalent accuracy as the classicMART [8] spending half of its process-
ing time.

In the present study, a 6-camera high-repetition tomo-PIV was used to study
the unsteady character of the near-wall boundary layer flow over a flat plate using a
spanwise-wall-normal thin volume. The final purpose of the work is to access the full
velocity gradient tensor and to reconstruct the time history of the turbulent structures.

2 Experimental Setup

The turbulent boundary layer tomo-PIV experiment took place in the Laboratoire de
Mécanique de Lille (LML) large-sized wind tunnel, whose boundary layer can reach
up to 300mm thickness for a Reynolds number based on the momentum thickness,
Rθ , of 8000. The tunnel test section is 1m high, 2m wide and 20m long to allow for
the development of the boundary layer [5]. The closed-loop wind tunnel is able to
maintain the air temperature towithin±0.2K and presents a free streamwise velocity
stabilization of ±0.5%.

The tomographic PIV arrangement was composed of six high-speed CMOS cam-
eras: three Phantom V9, one Phantom V10, and two Photron Fastcam APX [11].
All of them recorded a spanwise-wall-normal volume produced by a Quantronix
laser (2× 30mJ@1kHz) as can be seen in Fig. 1. The cameras 1–6 were mounted
on Scheimpflug adapters positioned under the wind tunnel in a forward scatter-
ing configuration with θz angles of about −35◦, −145◦, −145◦, −35◦, −135◦ and
−45◦, subsequently, and θy of 35◦, 145◦, −145◦, −35◦, 180◦ and 0◦ as depicted in
Fig. 2. The Phantom cameras (1600× 1200pixels@1kHz and pixel size of 11.5µm)
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Fig. 1 Cameras imaging an illuminated volume (upper-center position in the picture) assembled
in a tomo-PIV arrangement under the wind tunnel
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Fig. 2 Sketch of the cameras arrangement in the boundary layer experimental setup

were equipped with micro Nikkor 200mm lenses at f# 5.6, while the Photron cam-
eras (1024× 1024pixels@2kHz and pixel size of 17µm) were equipped with micro
Nikkor 105mm lens at f# 5.6 combined with a doubler. The laser volume thickness
was carefully limited to 5mm by a knife-edge filter to create an investigation volume
of 5× 45× 45mm3 (i.e. 40× 360× 360 wall units). This thin-volume was chosen
in order to overcome some difficulties with low light energy [24] and to improve the
measurement accuracy [3].

The whole flow was seeded with polyethylene glycol smoke, which generates
particles with sizes of about 1µm. The PIV images were recorded at 1kHz with
a time delay between pulses of 300µs. The maximum gray level, not including
reflections at the wall, was 155 in 8-bit images and the particle-image size was about
1 to 2 pixels. A total of 5 runs of 1725 tomo-PIV fields from an average particle per
pixel of 0.05ppp were recorded.

The cameras were calibrated using a pinhole model [32]. The calibration target
was transparent in order to allow the visualization of the markers from both sides.
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It was made by printing a crosses pattern on a transparent plastic sheet, which was
sandwiched between two 2mm-thick glass plates. The yz-target plane was scanned
in seven equally spaced, out-of-plane positions from x = −3 to x = 3mm. A
micrometer with 5µm precision was used as a translation stage. The crosses pattern
presented a distance of 5mm between two consecutive markers in both y and z
directions.

Due to the form that the target wasmanufactured, the refraction through the 2mm-
thick glass plates created significant triangulation errors. After the removal of the
target, the error between the position of the markers along x from the cameras placed
downstream and the ones upstream were greater than 2mm. So, a large number of
spurious particle matchings appeared and spread the disparity peak, making the cor-
rection of the mapping function by the standard self-calibration method [31] very
difficult. To circumvent this problem, the target planes along x were artificially trans-
lated by 1.1mm for the downstream cameras and −1.1mm for the upstream ones.
These values were computed taking into account the refraction properties. An initial
self-calibration was applied using the pinhole model with a longitudinal translation
on low particle density images followed by three more self-calibration steps for each
experimental run. The final pinhole mapping functions had projection errors of about
0.01 pixel and maximum triangulation errors lower than 0.18 pixel, which is enough
to produce good quality reconstruction volumes [8, 31]. It is noteworthy that this
problem is not faced in the stereoscopic PIV [9].

3 Volume Reconstruction and PIV Processing

The reconstruction was performed using the BIMART [29], given by the equation

E(x j , y j , z j )
n+1 = E(x j , y j , z j )

n
∏

i,k∈BQ∩N j

⎛
⎜⎝ Ik(xi , yi )∑

l∈Li,k

wi,l,k E(xl , yl , zl)n

⎞
⎟⎠

μwi, j,k

,

(1)

where I (x, y) are the image pixel intensity distribution, E(x, y, z) are the voxel
intensity distribution inside the reconstructed volume, Li,k represents the voxels
intercepted by the line of sight (LOS) of the i th pixel in the kth camera, wi, j,k is
a weight function related to the contribution of the j th voxel (x j , y j , z j ) in these
pixels, N j represents the pixels that have a LOS crossing a given voxel j, BQ contains
the pixels inside the block Q, n indicates the iteration andμ is a relaxation parameter.

In order to improve the volume reconstruction quality and to reduce the time
requirements, a meticulous analysis was performed. The optimization of the tomo-
PIV parameters together with several image preprocessing methods were studied
on synthetic and experimental data [17, 29]. As a result, a conservative 8-iteration
BIMART with a block size equal to four, with an initialization based on the min-
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imum line of sight (MinLOS) [18] and with 2-iteration volume filter of 0.004 was
applied to reconstruct the volumes with a voxel size of 71µm. The 6-camera images
were preprocessed using a time-average background subtraction followed by a 3× 3
Gaussian filtering before the reconstruction procedure [17].

From a pair of volumes comprising the particle distribution, the velocity fields
were computed by means of a 3D multipass cross-correlation with subpixel shift.
Two initial steps with an interrogation window size of 36× 72× 72 voxels were
performed followed by three final steps with a window size of 36× 36× 36 voxels
and 75% overlap. The resulting 8625 vector fields of 5× 67× 67 grid were validated
by a normalized median filtering [30] and the spurious vectors, amounting to about
1.5%, were successfully replaced by the interpolation of their adjacent neighbors.

The tomo-PIV software was developed in C++ as a result of the partnership
between Pprime (Poitiers), Coria (Rouen), and LML (Lille) laboratories. The post-
processing is based on the Matlab platform.

4 Results and Discussion

The comparison of the velocity statistics of tomographic PIV against the standard
hot-wire anemometer data (HWA) [5] are presented in the Fig. 3. From Fig. 3a, b,
it can be verified that the tomo-PIV and HWA velocity profiles virtually collapse
and that they perfectly follow the theoretical curves. Figure3c shows an excellent
agreement between the turbulent–velocity fluctuation profiles from tomo-PIV and
HWA.However, the tomo-PIVdata is slightly under theHWAcurve,which insinuates
that the size of interrogation window is filtering the data. A small difference is
observed at points near the wall where the reflections of the laser light were stronger.
It is also important to mention that the

√
<v′2>/uτw near the wall for the hot-wire

anemometer is overestimated due to the size of the probe. From Fig. 3d, a perfect
concordance with the Van Driest model is observed. Finally, the agreement between
the tomo-PIV and HWA is an indication that the record time of 8.62 s is sufficient to
reach converged statistics.

Figure4 compares the probability densities of the three velocity components cal-
culated at 50 wall units by tomo-PIV and HWA. A small discrepancy is observed
for v′/

√
<v′2> and w′/

√
<w′2> measured by the two techniques probably due to

a slight difference in the HWA and tomo-PIV experimental conditions as the data
were collected at distinct moments. In Fig. 4c, a marginal asymmetry is observed in
the tomo-PIV that is seemingly caused by a little reminiscence of the peak-locking
effect, since the deformation method was not applied to the interrogation window
during the correlation process [24].

From the 3C-3D velocity field, the velocity gradients in x , y and z directions
were computed by a second-order central difference scheme [10] to access both the
velocity gradient tensor and the divergence of the fluctuating velocity.
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The analysis of the local velocity-fluctuation divergence allows us to estimate the
uncertainty on the velocity field [3, 19]. Since, for an incompressible flow without
error measurements, the divergence of the velocity must be zero, the uncertainty in
the gradient δ(∂u′

i /∂xi ) can be computed as the root-mean-square of the divergence.
Assuming that the vector spacing and the uncertainty δ(u) in each direction are
uniform, the uncertainty on the velocity can be given as

δ(u) =
√
2Δ2

3
δ

(
∂u′

i

∂xi

)
, (2)
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Fig. 5 Comparison between an instantaneous a velocity field and its correspondent b vorticity. The
color represent the third component and the black isolines are the Q-criterion for both plots

where Δ is the physical spacing between velocity vectors, in this work equal to
635µm (i.e. 6.5 wall units).

The root-mean-square of the divergence through the volume was 49.3 s−1, which
corresponds to a velocity uncertainty of 0.0256m/s (equivalent to 0.12 voxels). This
good value for a tomo-PIV air experiment was probably achieved due to the mea-
surement in a thin volume and the use of six cameras. The uncertainty level obtained
is comparable to the literature [3, 25].

Preliminary results for the detection of turbulent structures are presented in Fig. 5.
The middle plane of an instantaneous 3D-velocity field from tomographic PIV is
plotted together with the corresponding 3D-vorticity field. The vortical detection
was made by the Q-criterion, whose isolines are embedded in the plots. To enhance
the visualization, only one over two vectors are displayed. As can be seen in the
Fig. 5b, the isolines appear in the expected regions of high vorticity magnitude.

TheQ-criterion [14] identifies vortices as flow regionswith positive second invari-
ant of the velocity gradient tensor, i.e., Q > 0, with the requirement of pressure in
the eddy region to be lower than the ambient pressure. In this work, the additional
pressure condition was not used as it is done by other researchers [6]. The Q-criterion
for an incompressible flow is defined as

Q = − 1

2

∂ui

∂x j

∂u j

∂xi
. (3)

Since the tomo-PIV data from the present experiment are time resolved, 3D plots,
with the third dimension being time, complement the 2D analysis, helping in the
inference of turbulent structure dynamics and evolution. In favor of the vortical-
structure clarification, the elimination of noise in the vortex detection was made by
a robust discrete-cosine-transform filter [12] followed by a volume filtering in the
labelized field. The visualization of low-speed streaks together with vortical struc-
tures, before and after filtering, are displayed in the Fig. 6. From the sample results
presented from this ongoing work, it is possible to identify vortices neighboring the
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Fig. 6 Interaction between low-speed streaks (in green) and turbulent vortical structures (in blue)
inside a turbulent boundary layer from a raw and b filtered data

low-speed streaks. The results, however, still do not present sufficient resolution to
allow the distinction of boundary layer turbulence structures.

The preliminary results exposed in the present paper clearly indicate the potential
of the experiment to allow a comprehensive analysis of boundary layer turbulence
structures.

5 Conclusions

A tomo-PIV techniquewith six high-speed cameraswas applied to study the unsteady
character of the near-wall flow in a wind tunnel boundary layer for a momentum-
thickness Reynolds number of 8000.

The cameras were carefully calibrated using a pinhole model and a modified
self-calibration procedure. Due to refraction in the target, a procedure of artificial
translation of target planes was necessary to minimize the errors.

The optimization of the image preprocessing and the volume reconstruction was
successfully performed. The vector fields generated from BIMART reconstructed
volumes resulted in low measurement errors, which were estimated by the velocity-
fluctuation divergence.

Turbulence statistics from over 8600 vector fields were presented. An excellent
agreement between tomographic PIV and hot-wire anemometer data is observed
in terms of velocity profiles and turbulent fluctuations. Also, the experimental data
match theoretical curves, which reveals that the recording time was sufficient to
obtain converged statistics.

The probability density functions of the velocity fluctuations from the tomo-PIV
method were also compared against the hot-wire anemometer showing good agree-
ment.

Preliminary vortex detection results were demonstrated in terms of vorticity and
Q-criterion, which allow the identification of some vortices interacting with low-
speed streaks in the wall boundary layer. Nevertheless, an accurate identification of
turbulent structures was not yet achieved and is an ongoing work.
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The Effects of Superhydrophobic Surfaces
on Skin Friction Drag

Hyunwook Park and John Kim

Abstract Direct numerical simulation of a turbulent boundary layer developing
over a superhydrophobic surface (SHS) was performed in order to investigate the
effects of SHS on skin friction drag. Significantmodifications of near-wall turbulence
structures were observed, which resulted in large skin friction drag reduction. For
the considered Reynolds number ranges and SHS geometries, it was found that the
effective slip length normalized by viscous wall units was a key parameter. It was
shown that the effective slip length should be on the order of the buffer layer in order
to have the maximum benefit of drag reduction. It was also found that the width
of SHS, relative to the spanwise width of near-wall turbulence structures, was also
a key parameter to the total amount of drag reduction. Similarities and differences
between the present turbulent boundary layer over SHS and our earlier work of
turbulent channel flows with SHS are also discussed.

1 Introduction

Recently, achieving substantial skin friction drag reduction by using superhydropho-
bic surfaces (SHSs) in high Reynolds number turbulent flows has received much
attention. An SHS, a combination of hydrophobicity and surface roughness in micro-
and/or nano-scales, can lower the free energy of an air–water interface. In certain
situations, air pockets are stably entrapped between the surface features, thereby
creating a significant effective slip length on the surface fully submerged in moving
water [1, 2]. It is noteworthy that SHSs with an effective slip length on the order
of 200–400µm have been reported [3, 4]. The prospect of reducing skin friction
drag without additional energy input, in contrast to other active control schemes
(e.g., blowing and suction on the surface and air lubrication through air bubbles), has
been the main reason for interest in SHSs. The UCLA group has demonstrated that
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superhydrophobic state under water in the presence of adverse conditions could be
maintained through an electrolysis [5]. Samaha et al. [6] reported that the stability of
underwater superhydrophobic states was improved by considering the distribution
of SHS geometries.

Although some key aspects of SHSs relevant to skin friction drag reduction have
been investigated, experimental observations of noticeable drag reduction on SHSs
have been elusive and largely limited to laminar flows [2]. In turbulent flows, from
a noticeable amount of drag reduction [7–10] to large drag reduction [11] have been
reported. Meanwhile, some researchers [12, 13] reported that the effects of SHSs on
drag reductionwere negligible. In numerical studies, where superhydrophobicitywas
assumed to prevail and SHSs were modeled through a boundary condition, several
investigators have reported significant drag reduction in both laminar and turbulent
channel flows. The drag reduction in laminar flows is a direct consequence of the
effective slip on SHS [14], whereas the mechanism by which drag reduction was
achieved in turbulent flows is not well understood [15–17]. Recently, Busse and
Sandham [18] found that the changes in streamwise velocity and wall shear–stress
fluctuations were bounded together to the variation of turbulent skin friction drag on
SHS. Park et al. [19] reported the effects of SHSs on turbulence structures and the
resulting skin friction drag reduction in turbulent channel flows. They also showed
that the effective slip length normalized by viscous wall units was the key parameter
to characterize the performance of SHSs in turbulent channel flows.

All numerical studies to date were conducted in a turbulent channel flow, whereas
most experiments were conducted in a turbulent boundary layer, thus preventing
direct comparisons. In the present study, direct numerical simulations (DNS) of a
turbulent boundary layer (TBL) developing over SHS were carried out in order to
gain further insights into the mechanism by which skin friction drag in a TBL was
affected by SHS. In Sect. 2, details of numerical experiments are described. The
effects of SHS on turbulence structures and skin friction drag in a TBL are presented
in Sect. 3, followed by a summary and concluding remarks in Sect. 4.

In this paper, u, v, w denote, respectively, streamwise (x), wall-normal (y) and
spanwise (z) velocity, δ∗ and uτ denote the displacement thickness and a wall shear
velocity, and superscipt + denotes a variable normalized by the kinematic viscosity,
ν and the wall shear velocity. Subscript in denotes a flow property at the inflow
generated through a rescaling process, thus Reynolds numbers (Re) of the inflow are
defined as Reδ∗

in
= U∞δ∗

in/ν and Reτ,in = uτ,inδin/ν using the inlet boundary layer
displacement thickness (δ∗

in), the inlet boundary layer thickness (δin), the free stream
velocity (U∞), and the inlet wall-shear velocity (uτ,in).

2 Numerical Details

The effects of SHS, consisting of microgrates aligned with the mean-flow direction,
on skin friction drag were investigated through DNS of a TBL. A semi-implicit,
modified fraction step method [20, 21] was used. The wall-normal viscous terms
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were treated implicitly using the Crank–Nicolson method, while all other terms were
treated explicitly using a low-storage third-order Runge–Kutta method (RK3). All
spatial derivatives were computed using the second-order central difference method
on staggered grids, which, in the absence of viscous terms, numerically conserved
the kinetic energy. The original channel code for SHS flows [19] was validated by
comparing the present results with those byMartell et al. [16] andMin and Kim [15].
Except for the Poisson solver for pressure and the inflow and outflow boundary
conditions, other features of the present TBL code were essentially the same as those
of the established turbulent channel code. This TBL codewas validated by comparing
present results with previous TBL results [22, 23].

In order to perform DNS of a spatially developing TBL, an inflow boundary con-
dition is also required. We incorporated the rescale-and-recycle technique developed
by Lund et al. [22]. The incoming turbulent boundary layer first developed over a
regular smooth wall, followed by an SHS downstream, as shown in Fig. 1. The recy-
cling station was located within a regular smooth wall region, and it was located at
40δ∗

in ahead of the SHS so that the flow field at the recycling station was not affected
by the upstream influence of the SHS. A convective boundary condition, satisfying
the global mass conservation, was used at the exit.

SHSs were modeled through a shear-free boundary condition on the air–water
interface and no-slip boundary condition on the top surface of microridges, aligned
in the direction of flow [16, 17, 19]. That is,

∂u

∂y

∣∣∣∣
wall

= 0,
∂w

∂y

∣∣∣∣
wall

= 0, (1)

Flow

no slip

(not drawn to scale)

shear free

watercomputational
domain

microgrates SHS

P W

air
pockets

Recycling 
Station

SHS

y/

x/

Flow

Fig. 1 A schematic of a TBL over SHS with microgrates aligned along the mean-flow direction
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on shear-free interfaces and no-slip boundary conditions on solid surfaces since this
is more convenient for investigating the effects of SHS geometries than Navier’s
slip model with a prescribed slip length used by Min and Kim [15]. Assuming flat
and nondeformable air–water (i.e., shear-free) interfaces, the shear-free boundary
condition was imposed implicitly using the staggered grids, i.e., without a finite-
difference approximation for the boundary condition. The effective slip length (b) is
defined and nondimensionalized as follows:

Uslip = b
∂u

∂y

∣∣∣∣
wall

, b+ = buτ

ν
. (2)

In order to investigate the effects of Reynolds number and SHSgeometry variables
such as gas fraction ratio (GF) and the pitch (P), parametric studies were performed.
Considered Reynolds numbers were relatively low as Reτ,in = 140 (Reδ∗

in
= 500)

and 200 (Reδ∗
in

= 720). These Reynolds numbers were chosen such that they roughly
match with those of the water tunnel experiment at UCLA [11]. GF is defined as
G F = (P − W )/P = d/P , where P , W , and d are, respectively, the pitch of
microgrates, the width of the no-slip top surface of the micrograte and the air–water
interface (see Fig. 1). Three different GF cases were considered as 0.5, 0.75, and
0.917 for Reτ,in = 140 and 0.5, 0.75, and 0.875 for Reτ,in = 200. P/δ∗

in varied as
35, 17.5, 8.75, 4.375, 2.1875, and 1.09375. Thus, a total of 36 (2× 3× 6) cases was
considered.

3 Results and Discussions

3.1 Turbulence Structures

In all TBL simulations, a TBL first develops over a regular wall followed by an
SHS. Figure2 shows contours of iso-surface of λ2, which is commonly used to
depict organized vortical structures in TBLs [24], and contours of streamwise slip
velocity (note that only a partial computational domain including SHS is shown in the
figure). As expected, significant modification of near-wall turbulence structures was
observed over the SHS, which in turn led to significant skin fraction drag reduction. It
is evident that the significant reduction of drag was accompanied by the suppression
of near-wall turbulence structures, which supports the mechanism of drag reduction
proposed previously by Min and Kim [15] and Park et al. [19]. This is in contrast to
the observation by Martell et al. [17], who reported that turbulence structures were
simply shifted toward SHS.

In general, organized near-wall turbulence structures, such as streamwise vor-
tices, increase skin friction drag in TBLs. However, as shown in Fig. 2b–d, SHSs
reduced the strength of the organized near-wall turbulence structures. Compared to a
TBL flow over a smooth surface, near-wall turbulence structures over SHSs became
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Fig. 2 Isosurface of λ2 = −0.4 and contours of streamwise slip velocity over SHS (Reτ,in = 200):
a smooth surface, GF = 0, b SHS, GF = 0.5, c SHS, GF = 0.75, d SHS, GF = 0.875. Contour
levels of slip velocities are shown in the figure

significantly modified with increasing gas fraction ratio, G F . Also, the growth of
slip velocities on the air–water interfaces, especially near the front of SHSs, can be
observed in Fig. 2b–d from the gray scale of the slip velocity shown on the surface.
Compared to the no-slip surface (i.e., smooth surface) shown in Fig. 2a, slip veloci-
ties increase as GF and the streamwise location increase. This trend is shown more
clearly in Fig. 3a. In order to quantify this trend, proper parameters characterizing
this phenomenon need to be introduced and these are discussed in the following
subsections.

3.2 The Effective Slip Length

In contrast to fully developed channel flows, where the streamwise direction is homo-
geneous and SHSs are placed in the entire computational domain in the streamwise
(i.e.,mean-flow)direction, the streamwisedirection inTBLs is inhomogeneous, espe-
cially near the beginning and the end of an SHS. As shown in Fig. 3, we observed
that the effective slip velocity and hence the effective slip length on an SHS was not
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Fig. 3 Growth of a slip velocity and b the effective slip length in viscous wall units (b+) in the
streamwise direction (Reτ,in = 200, P/δ∗

in = 4.375). Solid, dashed, and dashed dot lines denote
GF = 0.5, 0.75, and 0.875, respectively

uniform in the streamwise direction, suggesting that total reduction may depend on
the streamwise length of a given SHS.

Similar to the results of turbulent channel flows [19], within the considered
Reynolds number range and SHS geometries, it was found that the drag reduction
in turbulent boundary layer flows was well-correlated with the effective slip length
normalized by viscous wall units, b+, as shown in Fig. 4. All data were collected at
x/δ∗

in = 240, which was shown as nearly converged in Fig. 3. It is apparent that there
is a strong correlation between skin friction drag and the effective slip length. It is
worth mentioning that the effective surface slip length can be interpreted as a depth
of influence into which SHSs affect the flow in the wall-normal direction. As b+
increases, drag drops rapidly as near-wall turbulence structures are modified. When
b+ becomes larger than 40–50, drag reduction is almost saturated. This implies that
the depth of influence must include the buffer layer of wall-bounded turbulent flows,
i.e., the effective slip length must be comparable to the buffer layer thickness for
maximum drag reduction. It should be noted that turbulence structures responsible
for high skin friction drag in turbulent boundary layers are mainly present within the
buffer layer.
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Fig. 4 Variation of
normalized drag with the
effective slip length in
viscous wall units (b+):
Open symbols of circles,
squares, and diamonds
denote GF = 0.5, 0.75, and
0.917 of Reτ,in = 140 flows,
respectively. Closed symbols
of circles, squares, and
diamonds denote GF = 0.5,
0.75, and 0.875 of
Reτ,in = 200 flows,
respectively
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The present results from TBL over SHS were essentially the same as those in the
turbulent channel with SHS. However, unlike channel flows, it was observed that the
effective slip length varied in the streamwise direction, and consequently the drag
reduction varied in the streamwise direction. This spatial-variation effect requires
further investigation, and it is currently underway.

3.3 The Interface Width

It was also found that the relative size between near-wall turbulence structures and
the SHS geometry was a key parameter to the amount of drag reduction. The results
shown in Fig. 4, the saturation of drag reduction for b+ � 40–50 in particular,
supports the notion that the interaction between an SHS and near-wall turbulence
structures is the key to drag reduction by an SHS. More evidence supporting this
notion is shown in Fig. 5. A normalized drag is shown as a function of d+, the
width of the shear-free interface, i.e., the width of air–water interface. Note that the
maximum drag is limited by 1 − GF from the geometric consideration.

What is remarkable is that the normalized drag approaches its limit value when
d+ ∼ 100, which is the mean spacing of the near-wall streamwise streaky structures.
These streamwise streaks are known to be created by near-wall streamwise vortices
or vortical structures. When d+ > 100, streamwise vortices cannot be sustained due
to the lack of the shear required to sustain those structures. However, when d+ <

100, SHSs can affect these structures partially, thus diminishing its effectiveness
in reducing drag. These results indicate that the relative size between near-wall
turbulence structures and the SHS geometry also plays an important role for drag
reduction. The same trend was observed in turbulent channel flows [19].
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Fig. 5 Variation of
normalized drag with the
width of shear-free interface
in viscous wall units (d+):
Open symbols of circles,
squares, and diamonds
denote GF = 0.5, 0.75, and
0.917 of Reτ,in = 140 flows,
respectively. Closed symbols
of circles, squares, and
diamonds denote GF = 0.5,
0.75, and 0.875 of
Reτ,in = 200 flows,
respectively
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4 Summary and Concluding Remarks

DNS of a turbulent boundary layer developing over SHS were performed. The SHS
was modeled through a shear-free boundary condition, assuming that the air–water
interfaces were flat and it would remain superhydrophobic as Park et al. [19]. It was
found that SHS led to substantial drag reduction by weakening near-wall turbulence
structures, which were not sustained due to the lack of the shear over SHS. It was
also shown that a proper length scale to characterize the flow over SHSs was the
effective slip length normalized by viscous wall units, which should be large enough
to affect the buffer layer for the maximum drag reduction. Most effects of SHSs
can be achieved when its influence depth reaches the buffer layer, indicating that
turbulence structures within the buffer region were primarily responsible for high
skin friction in wall-bounded turbulent shear flows. Examinations of the effect of
SHS geometries (i.e., the pitch and GF) revealed that once the width of the air–
water region (i.e., shear-free region) became on the order of the width of near-wall
streaky structures, a minimum drag state was reached, suggesting that the relative
size between near-wall turbulence structures and SHS geometries is also important
to the amount of drag reduction. Similarities and differences compared to turbulent
channel flows with SHSs were observed.

We plan to continue to conduct the DNS of TBLs, extending to higher Reynolds
numbers and a larger set of SHS geometries. This will allow us to compare directly
with experimental results, and we will be able to explain similarities and differences
observed in numerical and laboratory experiments. In particular, some fundamental
differences seem to exist between our results and those observed by Park et al. [11] as
to the effect of SHS geometries and resulting drag reduction, andwe hope that we can
address the origin of these differences. In addition,wewill investigate the effect of the
streamwise variation of the effective slip length, especially near the beginning and the
end of an SHS, on the total drag reduction. These new investigations will ultimately
lead to an improved design of SHSs for optimal skin friction drag reduction.
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Structure and Dynamics of Turbulence
in Super-Hydrophobic Channel Flow

Amirreza Rastegari and Rayhaneh Akhavan

Abstract The structure and dynamics of turbulence in turbulent channel flow
with super-hydrophobic (SH) walls has been investigated using DNS with Lat-
tice Boltzmann methods. The channel walls consisted of longitudinal arrays of SH
microgrooves of width g, separated by distances of w. The liquid/gas interfaces in
the SH walls were modeled as idealized, flat, shear-free surfaces. Simulations were
performed at a bulk Reynolds number of Reb = Ubulkh/ν = 3600, corresponding to
Reτ0 = uτ0h/ν ≈ 223. Drag reductions (DR) of 5–47% and 51–83%were obtained
with g/w = 1, and g/w = 7 and g/w = 15, respectively. DR was found to be
primarily due to surface slip. Mathematical analysis shows that the magnitude of DR
in both laminar and turbulent flow is given by DR = Uslip/Ubulk + O(ε). In laminar
flow, where DR is purely due to surface slip, ε is zero. In turbulent flow, ε attains
a small nonzero value at high DR, reflecting additional DR effects resulting from
modification of the turbulence dynamics in the interior of the flow due to the presence
of the SH surface. Analysis of the turbulence statistics and kinetic energy budgets in
the drag-reduced flow reveals that the influence of the SH surface remains confined
to a surface layer of thickness on the order of the SHmicrogrooves width, g. Outside
of this layer, the ‘normalized’ turbulence dynamics proceeds as in regular turbulent
channel flow. Within the surface layer, the presence of the pattern of longitudinal
microgrooves on the SH surfaces gives rise to spanwise variations in all Reynolds-
averaged turbulence quantities, leading to development of a mean secondary flow
and additional turbulence production and Reynolds shear stresses within the surface
layer of the SH channel.
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1 Introduction

Super-hydrophobic (SH) surfaces are micro-textured surfaces covered with a hydro-
phobic coating [14]. In the flow of liquids over these surfaces, nano-bubbles form
in between the surface micro-textures [14, 17], resulting in slip over the gas/liquid
menisci and a concomitant reduction in the friction drag [14, 17]. The magnitude of
the slippage is generally quantified by an average slip velocity Us on the wall, and
a corresponding average slip length, ls , defined as Us = ls∂U/∂n, where n denotes
the unit normal to the wall [17].

In laminar flow, drag reductions (DR) of up to 40% have been reported for SH
surfaces with a variety of surface patterns [14]. Flow visualization studies have ver-
ified that while the no-slip condition remains valid on the solid/liquid contact areas
of these surfaces, an apparent slip velocity develops on the gas/liquid interfaces [9,
16]. For purposes of analytical and computational studies, the SH surface is gener-
ally modeled as a pattern of shear-free regions interspersed among no-slip surfaces.
Analytical solutions of Stokes flow over these modeled surfaces, with various pat-
terns of no-slip and shear-free boundaries [3, 5, 11, 12], show good agreement with
experimental results in laminar channel flow with SH walls [3, 6, 9], justifying the
use of flat shear-free boundaries in modeling the gas/liquid interfaces.

In turbulent flow, experiments on DR by SH surfaces have been contradictory. In
micro-channels with arrays of longitudinal SH microgrooves on one or both walls,
Daniello et al. [2] report DRs of up to 50%, at 1000 ≤ Reb ≤ 4750 for 0.7 ≤
g+0 = w+0 ≤ 4.8, where g and w denote the widths of the microgrooves and
the spacings in between them, respectively, and +0 denotes nondimensionalization
with respect to the wall friction velocity of a channel with no-slip walls at the same
Reb of the SH channel. Other groups have reported much lower DRs of only up to
11% at 1350 ≤ Reb ≤ 2800 with 1.3 ≤ g+0 = 4w+0 ≤ 2.5 [19], or no DR
at all at Reb = 3000 with g+0 = w+0 ≈ 0.2 [10] in micro-channels with SH
walls. Experiments in pipe flow with SH random texture on the walls have shown no
noticeable DR in turbulent flow, while showing 14% DR in the same geometry in
laminar flow [18].

Furthermore, it is not clear how turbulent DR over SH surfaces scales with the
SH geometric properties. Some studies have suggested that DR scales with the slip
length in wall units and the Reτ of the base flow [4, 8], while others have suggested
that thewidth of the SH surface elements inwall units and the fraction of shear-free to
no-slip surface area are the proper scaling parameters [7]. It is also not clear whether
DR is purely a surface phenomenon, resulting from surface slip, or if additional
modifications to the turbulence dynamics are at work. The objective of the present
study is to address some of these questions using results from DNS with Lattice
Boltzmann Methods (LBM) [15] of turbulent flow in a channel with SH walls.
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2 Simulation Parameters and Numerical Methods

All simulationswere performed in channels of size Lx ×L y×Lz =4.6h×2.3h×2h in
the streamwise (x), spanwise (y) andwall-normal (z) directions, respectively, where h
denotes the channel half-height. A schematic of the channel is shown in Fig. 1a. Both
channel walls were covered with a pattern of SH longitudinal microgrooves of width
g, separated by distances ofw. The gas/liquid interfaces on the SHmicrogrooveswere
modeled as flat and shear-free interfaces. StandardD3Q19 single relaxation time Lat-
tice BoltzmannBGKMethods [15]were used for all the simulations. The simulations
all were performed at constant flow rate and maintained a bulk Reynolds number of
Reb = Ubh/ν = 3600 in the channel, corresponding to a friction Reynolds number
of Reτ0 = uτ0h/ν ≈ 223 in the base flow. All simulations were performed with a
resolution of 512×256×221, corresponding to grid spacings ofΔ+0 ≈ 2 in all three
directions, where the superscript +0 denotes nondimensionalization with respect to
the viscosity and friction velocity, uτ0 , of the base flow. A total of 9 cases were
studied, of which six had a fraction of shear-free to no-slip surface area of g/w = 1,
corresponding to g+0 = w+0 = 4, 8, 16, 32, 64 and 128, respectively. Three addi-
tional cases investigated the effect of changing the ratio of g/w, and corresponded
to g/w = 7 with g+0 = 28, w+0 = 4 and g+0 = 56, w+0 = 8, and g/w = 15 with
g+0 = 120, w+0 = 8. Furthermore, for comparison, all these cases were repeated in
the laminar flow regime at Reb = 50.

All SH channel simulationswere initialized from fully developed turbulent flow in
a base channel with no-slip walls at tUb/h = 400. Figure1b shows the time histories
of the skin-friction coefficient, C f , in the SH channel. The maximum nominal DR
that can be obtained in any SH channel geometry is g/(g + w). This nominal DR is
obtained only when the slip velocity on the slip surfaces approachesUb. For all other

Fig. 1 a Schematic of the channel and the coordinate system; b Time history of the skin-friction
coefficient in DNS of turbulent channel flow with SH walls: · · · · , no-slip channel; – ·· –, g+0 =
w+0 ≈ 4, 5.0%DR; – · –, g+0 = w+0 ≈ 8, 10.9%DR; –––, g+0 = w+0 ≈ 16, 18.2%DR;
—– ··—–, g+0 = w+0 ≈ 32, 22.6%DR; —– ·—–, g+0 = w+0 ≈ 64, 38.2%DR; —– —–,
g+0 = w+0 ≈ 128, 47.3%DR; ——, g+0 ≈ 28, w+0 ≈ 4, 51.6%DR; —�—, g+0 ≈ 56, w+0 ≈ 8,
63.5%DR; —◦—, g+0 ≈ 120, w+0 ≈ 8, 83.2%DR
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cases, DR is lower. In the simulations with g/w = 1, DRs of 5, 10.9, 18.2, 22.6, 32.8,
and 47.3% were obtained with g+0 = w+0 = 4, 8, 16, 32, 64, and 128, respectively.
At higher ratios of g/w, DRs of 51.6, 63.5, and 83.2%were obtained with g+0 = 28,
w+0 = 4 (g/w = 7), g+0 = 56, w+0 = 8 (g/w = 7), and g+0 = 120, w+0 = 8
(g/w = 15), respectively.

3 Scaling of Drag Reduction

Three different scalings of DR with SH surface properties have been proposed in
the literature. For laminar flow, the analytical solution of Philip [11, 12] suggests
that DR scales with the geometric parameters g/w and (g + w)/2H , where H = 2h
denotes the full height of the channel. Martel et al. [7] proposed that in turbulent
flow, DR scales with g+0 instead of (g + w)/2H , while Fukugata et al. [4] have
proposed a scaling of DR in terms of L+0

s and Reτ0 for cases of uniform streamwise
slip, uniform spanwise slip, and uniform combined slip, based on the assumption of
a logarithmic mean velocity profile throughout the cross-section of the channel.

Figure2 shows the comparison of the present DNS results with these three scal-
ings. For reference, the experimental data of Daniello et al. [2] in turbulent channel
flow with longitudinal microgrooves of width 1 ≤ g+0 = w+0 ≤ 4 are also shown.
When plotted in Philip’s [11, 12] scaling (Fig. 2a), the LBDNS results follow parallel
trends in laminar and turbulent flow, both showing an increase in DR with increas-
ing ratios of (g + w)/2H and g/w. However, the DRs in turbulent flow are always
higher than in laminar flow. Experiments in turbulent flow, however, show signif-
icantly higher DR than both DNS and even theoretical limits for g/w = 1. These
discrepancies between experiments, DNS, and theoretical limits are not resolved
when the results are plotted as a function of g+0, as shown in Fig. 2b. Figure2c
shows the comparison of the DNS results and experimental data [2], with the analyt-
ical expressions of Fukagata et al. [4]. The DNS results in turbulent flow, fall within
the analytical curves corresponding to uniform streamwise slip and uniform com-
bined slip at the corresponding Reτ0 . The experimental data also show reasonable
agreement with the analytical curves, given the scatter of the data. However, the DNS
results in laminar flow are not properly described by Fukagata et al.’s expression,
which is to be expected, since the expression assumes a logarithmic mean velocity
profile.

The trends in experimental data observed in Fig. 2a–c lead us to believe that in
the experiments, the surface micro-bubbles may have spread beyond the surface
microgrooves, resulting in a larger g/w ratio than the nominal value of g/w = 1
reported. A higher g/w ratio can dramatically increase the DR, as observed in both
the DNS results and the theoretical limit. Indeed, Cottin-Bizonne et al. [1], have sug-
gested that contamination of the SH surface can act as nucleation sites for formation
of nano-bubbles, thus increasing the fraction of shear-free to no-slip surface area,
g/w, from its nominal values, and leading to larger slip lengths.
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Fig. 2 Scaling of DR with SH surface properties: a DR as a function of nondimensional
microgroove size in outer scaling; b DR as a function of nondimensional microgroove size in
inner scaling; c DR as a function of nondimensional slip length in inner scaling; d DR as a func-
tion of nondimensional slip velocity; •, LB DNS at Reb = 3600 (Reτ0 ≈ 223) with g/w = 1,
4 ≤ g+0 = w+0 ≤ 128; �, LB DNS at Reb = 3600 (Reτ0 ≈ 223) with g/w = 7, g+0 ≈ 28,
w+0 ≈ 4 or g+0 ≈ 56, w+0 ≈ 8; �, LB DNS at Reb = 3600 (Reτ0 ≈ 223) with g/w = 15,
g+0 ≈ 120, w+0 ≈ 8; ©, LB DNS of laminar flow at Reb = 50 with g = w; �, LB DNS of lami-
nar flowat Reb = 50with g/w = 7;♦, LBDNSof laminar flowat Reb = 50with g/w = 15;—�—,
experiments of Daniello et al. [2] at 2450 ≤ Reb ≤ 4000 with g = w = 30µm microgrooves on
one wall; —�—, experiments of Daniello et al. [2] at 1100 ≤ Reb ≤ 2900 with g = w = 30µm
microgrooves on both walls; —�—, experiments of Daniello et al. [2] at 1500 ≤ Reb ≤ 4000 with
g = w = 60µm microgrooves on both walls; –––, DR = Us/Ub = L+0

s /[1 + (Reb/Reτ0 )];
, analytical prediction of Fukagata et al. [4] for uniform streamwise slip on both walls; ,

analytical prediction of Fukagata et al. [4] for combined slip on both walls

A more general scaling for DR in channels with SH walls, which remains valid
in both laminar and turbulent flow regimes, can be obtained from analysis of the
Navier–Stokes equations [13]. It can be shown that for both laminar and turbulent
flow in a SH channel,

DR = Us

Ub
+ O(ε). (1)

WhereUs is the average slip velocity on the channel walls, andUb is the bulk velocity
in the channel. When DR is purely due to surface slip, as in laminar flow, ε = 0 and
DR = Us/Ub. In turbulent flow, there is an additional contribution to DR beyond
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surface slip, arising from modification of the turbulence dynamics, in the interior
flow due to the presence of the SH surface. In this case, the magnitude of DR is
given by DR = Us/Ub + O(ε). As such, ε is a measure of any drag reducing
effects of the SH surface in turbulent flow beyond surface slip. Figure2d shows the
comparison of the LB DNS results in laminar and turbulent channel flow, along with
the experimental results of Daniello et al. [2], in turbulent channel flow, with the
line DR = Us/Ub. The DRs observed in DNS of laminar flow are in agreement
with the line DR = Us/Ub for all magnitudes of DR and all ratios of g/w and
(g + w)/2H . In turbulent flow, the deviations between the line DR = Us/Ub and
the DRs observed in DNS remain negligibly small in the LowDrag Reduction (LDR)
regime (DR < 35%). In this regime, DR is mainly due to surface slip, ε remains
negligible, and the structure and dynamics of turbulence is not significantly affected
beyond the viscous sublayer and the buffer layer. In the High Drag Reduction (HDR)
regime (DR > 35%), the deviations of the DNS data from the line DR = Us/Ub

become more noticeable (see Fig. 2d). However, even in these cases, the deviations
remain small and to the first order, DR is still given by DR ≈ Us/Ub. Figure2d also
shows the experimental data of Daniello et al. [2] for which the slip velocity was
reported. To within the scatter of the experimental data, these results also show good
agreement with the scaling DR = Us/Ub + O(ε).

Using the relation between the slip velocity and slip length, Eq. (1) can be rewritten
in terms of the slip length, L+0

s , as [13]

DR = L+0
s

L+0
s + Reb

Reτ0

+ O(ε). (2)

Because no assumption regarding the shape of the velocity profile were made in the
derivation of Eqs. (1) and (2), these equations remain equally valid in both laminar
and turbulent flow. Figure2c shows the comparison of Eq. (2) and the LB DNS data
in both laminar and turbulent flow, verifying the good agreement of Eq. (2) with the
DR obtained in DNS in both laminar and turbulent flow regimes.

4 Turbulence Statistics

The presence of the longitudinal SH microgrooves on the channel walls give rise
to Reynolds-averaged turbulence statistics, f , which are functions of both the span-
wise (y) and wall-normal (z) directions. Failure to account for these spanwise vari-
ations results in inaccurate turbulence statistics. To compare these statistics with
the corresponding quantities in regular turbulent channel flow, here we report the
Reynolds-averaged turbulence statistics after averaging these statistics in the span-
wise direction. These spanwise-averaged statistics are denoted by 〈 f̄ 〉.

Figure3a–c show the spanwise variations of the mean streamwise velocity for
cases of g+0 = w+0 = 16, g+0 = w+0 = 64 and g+0 = 120, w+0 = 8. In each
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Fig. 3 a, b, c Spanwise variation of the mean streamwise velocity and d, e, f vector plots of the
mean secondary flow in turbulent channel flowwith SH surfaces: a, d g+0 = w+0 ≈ 16, 18.2%DR;
b, e g+0 = w+0 ≈ 64, 38.2%DR; c, f g+0 ≈ 120, w+0 ≈ 8, 83.2%DR; ——, z/h ≈ 0.01; —–
—–, z/h ≈ 0.01; —– ·—–, z/h ≈ 0.03; –––, z/h ≈ 0.07; – · –, z/h ≈ 0.19; – ·· –, z/h ≈ 0.37;
· · · · , z/h ≈ 0.58; (blue), location of the no-slip stripes

case, the spanwise variations are seen to extend to a distance of z ∼ g from the SH
walls. Beyond this distance, no differences can be observed between the Reynolds
averaged turbulence statistics on the slip and no-slip surfaces. Similar spanwise
variations are observed in all the Reynolds-averaged turbulence statistics, including
Reynolds stresses. The latter gives rise to the development of a mean secondary flow
in the channel [13], in the form of pairs of counter-rotating vortices which extend
to a distance of z ∼ g into the channel, as shown in Fig. 3d–f. Furthermore, the
presence of a spanwise gradient in the mean streamwise velocity, ∂Ū/∂y, gives rise
to the development of an additional Reynolds stress, uv, at z � g [13], and additional
production of turbulence kinetic energy over the slip surfaces, through uv∂Ū/∂y.

Figure4 shows the profiles of the normalized spanwise averaged turbulence sta-
tistics in the SH channel compared to the base flow. The profiles of the spanwise-
averaged mean streamwise velocity display increasing slip velocity with increasing
DR, as seen in Fig. 4a. When the slip velocity is subtracted, the velocity profiles dis-
play a narrowing of the buffer layer, along with a downward shift of the logarithmic
layer compared to the base flow, as shown in Fig. 4b. These features stand in con-
trast with other examples of drag-reduced wall-bounded turbulence, for which DR is
generally associated with a thickening of the buffer layer and an upward shift of the
logarithmic layer. The different behavior arises from the fact that in the present flow
DR is primarily due to surface slip, not modification of the turbulence dynamics in
the interior flow.

The profiles of the normalized spanwise-averaged turbulence intensities are shown
in Fig. 4d–f. There is enhanced production of turbulence in all three components of
the velocity fluctuations within a distance of z � g from the walls. This enhanced
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production arises fromadditional production of streamwise turbulent stresses through
theuv∂U/∂y term, at the boundarybetween the slip andno-slip stripes (see Fig. 3a–c),
which is transferred to the other components through the pressure strain terms.
Beyond z � g, however, the profiles of normalized turbulence intensities approach
those in the base flow, indicating that the dynamics of turbulence has reverted back
to that in regular wall-bounded flow and the effect of the SH surface is no longer felt.

The profiles of the normalized spanwise-averaged Reynolds shear stress, 〈τR,xz〉+
= −〈uw〉+, display a small drop in their peak magnitudes, compared to the base
flow, as shown in Fig. 4c. The magnitude of this drop, however, is nowhere as large
as the drops observed with other means of DR in wall-bounded flows and is more
commensurate with the lower Reτ of the drag-reduced flow compared to the base
flow, once again emphasizing that the main mechanism of DR with SH surfaces
is surface slip and not a modification of the turbulence dynamics in the interior of
the flow. In the total balance of shear stresses, in addition to contributions from
the Reynolds shear stress, 〈τR,xz〉, and the viscous stress, 〈τv,xz〉, there is also a
small contribution from the convective stress, 〈τc,xz〉+ = −〈U W 〉+, arising from
the mean secondary flow in the channel, such that 〈τt 〉+ = 〈τR,xz〉+ +〈τv,xz〉+
+〈τc,xz〉+ = (1 − z/h), as shown in Fig. 4c.
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5 Turbulence Kinetic Energy Dynamics

The balance of the spanwise-averaged Turbulence Kinetic Energy (TKE) in the SH
channel is given by

D

Dt
〈k2〉 = 〈Pii 〉 + 〈t (

∑
)

i i 〉 − 〈εi i 〉, (3)

where 〈Pii 〉 = −〈ui u j
∂Ūi
∂x j

〉 is the rate of TKE production per unit mass, 〈εi i 〉 =
2ν〈si j

∂ui
∂x j

〉 is the rate of viscous dissipation and 〈t (
∑

)

i i 〉 = ∂
∂x j

〈k2u j 〉 + 1
ρ
〈u j

∂p
∂x j

〉 +
2ν ∂

∂x j
〈ui si j 〉 is the total rate of TKE transport. Furthermore, si j = 1

2 (
∂ui
∂x j

+ ∂u j
∂xi

) is
the fluctuating strain-rate tensor.

Figure5 show the profiles of the normalized spanwise-averaged terms in the TKE
equation. As with the turbulence statistics, the presence of the SH surfaces affects the
dynamics of TKE only within a distance of z � g from the walls, as shown in Fig. 5a.
In addition to the usual production of streamwise TKE due to −〈uw∂Ū/∂z〉, in the
SH channel, there is additional production of streamwise TKE due to −〈uv∂Ū/∂y〉,
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as shown in Fig. 5c, d. The normalized TKE production through−〈uw∂Ū/∂z〉 is not
that different from that in the base flow, as shown in Fig. 5c, while the normalized
TKE production due to−〈uv∂Ū/∂y〉 is concentrated within a distance of z � g from
the walls, as shown in Fig. 5d. Examination of the components of TKE equation,
shows that this production of TKE in the streamwise component is transferred to the
other components through the pressure-strain terms. In the LDR regime, the balance
between production, dissipation and transport terms are not that different from that
in the base flow, as shown in Fig. 5a, b. In the HDR regime, however, the additional
production due to the −〈uv∂Ū/∂y〉 term is excessive at z � g and cannot be fully
dissipated locally. In this case, the transport terms act to transfer this production away
from the walls to the interior of the flow where it can be dissipated, resulting in a
reversal of the sign of the transport terms compared to the base flow at z � g.

6 Summary and Conclusions

Drag reduction in laminar and turbulent channel flow with SH longitudinal micro-
grooves on both walls has been studied using DNS with Lattice Boltzmann Meth-
ods. In both laminar and turbulent flow, mathematical analysis of the Navier–Stokes
equations shows that DR in the channel scales as DR = Us/Ub + O(ε), where
the first term (Us/Ub) represents the effects of surface slip and the second term
(O(ε)) represents additional DR due to modification of the turbulence dynamics in
the interior of the flow. In laminar flow, ε is zero and DR is purely due to the sur-
face slip. In turbulent flow, ε is negligible and DR is primarily due to surface slip
at LDR. At HDR, ε becomes nonnegligible, but DR is still primarily due to surface
slip. The effect of the SH wall is confined to a surface layer of size of the order of
the width, g, of the SH stripes. Inside this layer, the presence of the SH longitudinal
microgrooves, gives rise to spanwise variations in all Reynolds-averaged turbulence
statistics, and development of a secondary flow and additional Reynolds stresses,
which lead to additional turbulence production within the surface layer. Outside of
this surface layer, the normalized structure and dynamics of turbulence is unaffected.
These features are consistent with the observation that the bulk of DR in turbulent
flow is due to surface slip.
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Spectral Assessment of the Turbulent
Convection Velocity in a Spatially Developing
Flat Plate Turbulent Boundary Layer
at Reynolds Number Reθ = 13 000

Nicolas Renard, Sébastien Deck and Pierre Sagaut

Abstract A method inspired by del Álamo and Jiménez, J Fluid Mech 640:5–26,
2009, [7] is derived to assess the wavelength-dependent convection velocity in a
zero pressure gradient spatially developing flat plate turbulent boundary layer at
Reθ = 13 000 for all wavelengths and all wall distances, using only estimates of the
time power spectral density of the streamwise velocity and of its local spatial deriva-
tive. The resulting global convection velocity has a least-squares interpretation and is
easily related to the wavelength-dependent convection velocity. The method intrin-
sically provides an estimation of the validity of Taylor’s hypothesis by a correlation
coefficient identical to the one from del Álamo and Jiménez, J FluidMech 640:5–26,
2009, [7]. The results reveal some similarities between the convection of the super-
structures, the hairpin packets, and the near-wall structures. The convection velocity
of the superstructures is isolated by restricting the global convection velocity to the
largest wavelengths. The spatial spectrum is estimated from the temporal spectrum
using the frequency-dependent convection velocity. The results are consistent with
a classical correlation-based evaluation.

1 Introduction

High Reynolds number wall-bounded turbulence involves complex physics, see e.g.
[11, 22], the experimental or numerical study of which is made difficult by the scale
separation. At high Reynolds numbers, there appear very large scale motions, also
called superstructures, which are much longer than the outer scale unit (see e.g. [10])
and contribute significantly to quantities such as turbulent skin friction (see e. g. [6]).
The spatially developing zero pressure gradient flat plate turbulent boundary layer is
especially relevant to applications. Because of the differences between the canonical
wall-bounded turbulent flows (see e.g. [12]), we focus here on the boundary layer.
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One first insight into the dynamics of turbulent coherent motions is given by their
convection velocity. The assumption that the convection term is dominating leads to
Taylor’s frozen turbulence hypothesis (see [21]). The time and streamwise derivatives
are then related by the convection velocity, which is classically set equal to the
Reynolds-averaged velocity. Reference [9] emphasize it is not a good approximation
in shear flows, unlike homogeneous isotropic turbulence. Mean shear drives time
evolution of the turbulent structures, and it is felt differently depending on the size of
the coherent motions. This motivates the study of wavelength-dependent convection
velocity. The validity of the frozen turbulence hypothesis is all the more marginal as
the wavelength is large, as derived theoretically by [17], but it may still be used for
the superstructures, see [8].

The assessment of the convection velocity in shear flows was treated in details in
[9, 23], and a wealth of slightly varying methods may be found in the literature. A
widely used method relies on the space—time correlation. For a given small stream-
wise separation, the time delay that leads to amaximum correlation ismeasured. This
has been done with a very small spatial separation in [5], and is also used here as a
reference, referred to as the correlation-based method. Seeking a maximum correla-
tion for a given time delay (varying the spatial separation), as well as using a spatial
separation that is large instead of very small, provide different results. The depen-
dency on the spatial separation is a consequence of the dependency on the length
scale of the fluctuation, showing the limitations of a global convection velocity.

In order to describe the dependency on the length scale, time and space sig-
nals may be simultaneously used. The convective process is identified in the spatial
separation—time delay space, or in the wavenumber—frequency space, as done in
an energy-preserving manner by [2]. This finds its limits in a flow that is not homo-
geneous in the streamwise direction, motivating the use of only time spectra while
the spatial information is obtained from the local space derivative only. Using data in
only one direction of the space—time plane in order to assess the convection velocity
has been successfully done in a channel flow by [7]. When Taylor’s hypothesis is
not strictly valid, the method of [7] is more easily interpreted than similar methods
by [3, 13].

The present study is devoted to the assessment of the length-scale-dependent
convection velocity of the streamwise velocity fluctuations in a boundary layer at
Reθ = 13 000. To the authors’ knowledge, this has not been assessed in a boundary
layer at such a high Reynolds number from a numerical simulation before, and the
available experimental data do not cover the whole boundary layer thickness and
suffer from measurement uncertainty or Reynolds number limitations, see e.g. [1,
13–16].

A new method is presented for the estimation of the wavelength-dependent con-
vection velocity, using estimates of the time power spectral density of the streamwise
velocity and its local streamwise derivative. It is directly inspired by [7], who make
use of the spatial Fourier modes of velocity and its instantaneous time derivative. The
suggestion by [7] to deal with the dual problem to theirs (in a time—space mean-
ing) makes the method suitable for a spatially developing flow, because only data
very close to the considered streamwise location is needed. Unlike [7] who use the
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exact Fourier modes available in their spectral channel flowDNS, the present method
resorts, with mathematical justification, to statistical estimates of the power spectral
densities. The global convection velocity, taking into account all wavelengths, may
be recovered in a dual way to [7].

The numerical simulation using the third mode of Zonal Detached Eddy Simu-
lation (ZDES) as a Wall-Resolved LES is first described and visualized, focusing
on packets of hairpins and superstructures. The wavelength-dependent convection
velocity is then derived, leading to the estimation of the spatial streamwise veloc-
ity spectrum from its temporal counterpart and to the assessment of the validity of
Taylor’s hypothesis. Finally a global convection velocity representing all or only the
largest scales of motions is derived and compared to other characteristic velocities.

2 Wall-Resolved Large Eddy Simulation (WRLES)
of a High Reynolds Number Boundary Layer

A wall-resolved LES of a zero pressure gradient turbulent boundary layer has been
performed up to Reθ = 13 000 using the third mode of Zonal Detached Eddy Simu-
lation (ZDES, see [4]), with thorough description and validation in [6], emphasizing
that the subgrid scales carry a negligible turbulent kinetic energy in the outer layer.
The mesh resolution is Δx+ = 50 and Δz+ = 12 in the streamwise and spanwise
directions. The Onera compressible flow solver FLU3M is used. The low freestream
Mach number M∞ = 0.21 entails negligible differences with the incompressible
boundary layer. The spatial scheme is a modified low-dissipative AUSM+(P) scheme
[19] and the implicit time integration is second-order accurate. A quick overview of
the coherent motions near Reθ = 13 000 is provided by the numerical Schlieren
shown in Fig. 1, and by the streamwise velocity isosurface in Fig. 2. The Schlieren
strongly suggests resolved hairpins organizing within packets up to several bound-
ary layer thickness long. At a larger streamwise length scale, one may see in Fig. 2
elongated and meandering areas of low streamwise velocity, of very large scale
(exceeding 5δ, clearly longer than the hairpin packets), which are believed to be
resolved superstructures.

The time power spectral density of the streamwise velocity is estimated byWelch’s
method from the time signal stored during a total duration of 1155δ0/U∞ (δ0 being

Fig. 1 Numerical Schlieren
(magnitude of density
gradient in a streamwise-wall
normal plane) near the
Reθ = 13 000 station
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Fig. 2 u+ = 20 isosurface
colored by the outer-scaled
wall distance near the
Reθ = 13 000 station

the initial boundary layer thickness and U∞ the freestream velocity). The frequency
is then related to the streamwise wavenumber using Taylor’s hypothesis, with the
correlation-based convection velocity mentioned in the introduction, so that the
streamwise spectrum is estimated. The outer layer spectra in Fig. 3 feature an outer
site located near λx/δ = 2− 3 at both Reθ = 5 200 and Reθ = 13 000, attributed to
the hairpin packets. A second outer site appears at Reθ = 13 000 near λx/δ = 10.
It is thought to correspond to the superstructures seen in Fig. 2. This is compared
with experimental data from [18, 20] in Fig. 4, using the mean velocity as convection
velocity for consistency with the experimental spectra. A fair agreement is found in
the outer layer, which suggests that the second outer site does correspond to super-
structures. This adds to the validation of the present simulation documented in [6].

Fig. 3 Reynolds number impact on the premultiplied power spectral density of the streamwise
velocity kx Guu/u2

τ (colors and isolines). Left Reθ = 5 200. Right Reθ = 13 000. Dispersion
relation given by Uc = Ucorr (correlation-based convection velocity)
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Fig. 4 Premultiplied
streamwise power spectral
density of streamwise
velocity kx Guu/u2

τ

(dispersion relation Uc =
〈U 〉(y)) at Reθ = 13 000
(Reτ = 3 600), compared
with experimental data from
[20] (solid isolines, Reτ =
2 800) and from [18] (dashed
isolines, Reτ = 3 900)

3 Spectral Assessment of the Convection Velocity

The convection velocity of the streamwise velocity fluctuations u(x, t) = U (x, t)−
〈U (x, t)〉, where 〈·〉 is the Reynolds average, is assessed in the dual manner to
[7], as suggested in this reference. Assuming Taylor’s hypothesis, the fluctuations
are driven by the relation 1

Uc
∂t u + ∂x u = 0, where Uc is the convection velocity.

Since the hypothesis is not exactly verified in shear flows, we choose to minimize the

quantityD =
E

((
1
C ∂t u+∂x u

)2)

E
(
(∂x u)2

) , where E(·) represents the mathematical expectation.

The value of C that leads to the minimum value ofD(C) is defined as the convection
velocity Cu , leading to the following least-squares assessment of the convection
velocity:

Cu = − E
(
(∂t u)2

)
E (∂t u ∂x u)

(1)

Only local signals are used, at the streamwise location x . The spatial growth of the
boundary layer is better ignored than in amethod using data from various streamwise
positions. The ultimate goal is indeed to recover a fictitious spatial spectrum at the
chosen Reynolds number station. The smallerD(Cu), the higher the level of validity
of Taylor’s hypothesis. Consistently with [7], a correlation coefficient is defined by
1 − γ 2

u = D(Cu):

γu = |E (∂t u ∂x u)|√
E

(
(∂x u)2

)
E

(
(∂t u)2

) (2)

γu varies between 1 (perfect convection process) and 0. It is identical to the one of
the dual case by [7], unlike the convection velocity.
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The mathematical expectations are assessed using the estimated power spectral
density of the streamwise velocity and of its local space derivative. The time cross
power spectral density St

ab of signals a(t) and b(t) is defined as the Fourier transform
of their correlation function Rt

ab(x, τ ) = E (a(x, t)b(x, t + τ)), so that St
ab(x, f ) =∫ ∞

−∞ Rt
ab(x, τ ) exp(−2iπ f τ)dτ . Equation (1) then becomes

Cu = −
∫ ∞
0 (2π f )2St

uu( f )d f∫ ∞
0 2π f I

(
St

u ∂x u( f )
)

d f
, (3)

where I (·) stands for the imaginary part. The correlation coefficient becomes

γu =
∣∣∣∫ ∞

−∞ −2iπ f St
u ∂x u( f )d f

∣∣∣√∫ ∞
−∞ St

∂x u ∂x u( f )d f
√∫ ∞

−∞(2π f )2St
uu( f )d f

. (4)

If the velocity is narrowly band-pass-filtered around the frequency f , so is its
streamwise derivative (because space differentiation and time Fourier transform are
commutative). This way, the frequency-dependent convection velocity and the asso-
ciated correlation coefficient are derived from Eqs. (3)–(4):

Uc(x, f ) = − 2π f · St
uu(x, f )

I
(

St
u ∂x u(x, f )

) (5)

γu( f ) =
∣∣∣I (

St
u ∂x u(x, f )

)∣∣∣
√

St
uu(x, f )

√
St
∂x u ∂x u(x, f )

. (6)

The spatial derivative ∂x is evaluated using a 4th-order accurate centered finite
difference scheme, using the time signal at five successive nodes of the mesh. The
resulting convection velocity and the correlation coefficient are plotted in Fig. 5, using
the dispersion relation 2π f = −kx Uc( f ) to recover the streamwisewavelength from
Taylor’s hypothesis. Consistently with the predictions of [17], the validity of Taylor’s
hypothesis appears to be all the better as smaller structures are considered further
away from the wall. However, even for the footprint of the largest length scales, the
correlation coefficient remains reasonably high when compared with values reported
by [7]. Of interest, the convection velocity of the superstructures does not vary much
through the boundary layer: their footprint is faster and their top is slower than
the other structures. In Fig. 6, the convection velocity is divided by the local mean
velocity. The convection velocity is globally close to the mean velocity, except near
the wall where it is greater than the mean. A consistent pattern may be identified
among the inner site, the hairpin packet outer site and the superstructure outer site.
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Fig. 5 Convection velocity Uc/U∞ (colored contours, left) and correlation coefficient γu (colored
contours, right) at Reθ = 13 000 as a function of the wavelength and the wall distance. Isolines of
kx Guu/u2

τ in solid lines

Fig. 6 Convection velocity
divided by the mean
streamwise velocity Uc/〈U 〉
(colored contours) at
Reθ = 13 000 as a function
of the wavelength and the
wall distance. Isolines of
kx Guu/u2

τ in solid lines

Indeed, all sites feature a convection velocity higher than the mean velocity near the
foot of the site, and lower than the mean near the top of the site.

4 Estimation of the Spatial Spectrum
from the Temporal Spectrum

The spatial spectrummay be estimated from the time spectrum, using the frequency-
dependent convection velocity. The dispersion relation 2π f = −kx Uc( f ) is used to
link the frequency to a streamwise wavelength. The spectra should be matched such
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Fig. 7 Dilatation factor (left, colored contours) andpremultiplied streamwise power spectral density
kx Guu/u2

τ estimated from the temporal spectrum at Reθ = 13 000 as a function of the wavelength
and the wall distance. Isolines of kx Guu/u2

τ in solid lines

that
∫ ∞
−∞ St

uu( f )d f = E(u2) = ∫ ∞
−∞ Sx

uu(kx )dkx , leading to a dilatation factor (see
[7]):

kx Gx
uu

(
kx = 2π f

Uc( f )

)
= f Gt

uu( f ) · 1∣∣∣1 − f
Uc( f )

dUc( f )
d f

∣∣∣︸ ︷︷ ︸
dilatation factor

, (7)

where Gt
uu is the one-sided power spectral density, defined as twice St

uu for positive
frequencies so that

∫ ∞
0 Gt

uu( f )d f = ∫ ∞
−∞ St

uu( f )d f .
The dilatation factor is shown in Fig. 7. The site of values lower than 1 located

in between the inner site and the footprint of the superstructures is a direct conse-
quence of the foot of the superstructures being advected faster than the surrounding
structures. The values near the very largest and smallest wavelengths are not signif-
icant, because the noise tends to dominate the signal in these low-energy regions.
The resulting streamwise spectrum is shown in Fig. 7 and may be compared with the
spectrum made using the correlation-based convection velocity shown in Fig. 3.

5 Defining a Global Convection Velocity

The global convection velocity of Eqs. (3) and (1) may be written as a function of
the local (frequency-dependent) convection velocity of Eq. (5):

Cu =
∫ ∞
−∞(2π f )2St

uu( f )d f∫ ∞
−∞

1
Uc(x, f )

(2π f )2St
uu( f )d f

(8)
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Fig. 8 Outer-scaled
streamwise velocities U/U∞
at Reθ = 13 000: mean
velocity 〈U 〉,
correlation-based convection
velocity Ucorr, global
convection velocity Cu , and
partially integrated global
convection velocity
(Cu(λx > 4δ) and
Cu(λx < 4δ)). The
associated correlation
coefficients γu are plotted on
the right-hand axis

and the associated global correlation coefficient of Eq. (2) is

γu = 1

|Cu |

√√√√
∫ ∞
−∞(2π f )2St

uu( f )d f∫ ∞
−∞ St

∂x u ∂x u( f )d f
. (9)

The resulting convection velocity profile is shown in Fig. 8. It is close to the mean
velocity, except in the inner layer where it is higher. It is also very close to the
correlation-based convection velocity at all wall distances. The global correlation
coefficient is satisfyingly high, even though it decreases near the wall. The integrals
of Eqs. (8) and (9)may be restricted to the largest wavelengths only, namely λx/δ ≥ 4
in Fig. 8. The largest length scales are convected faster than the other scales near the
wall, a result that should be taken with caution because of the relatively low value of
the associated correlation coefficient.

6 Outlook

The method of [7] has been successfully adapted to a spatially developing flow for
which only statistical estimates of the time power spectral densities are available.
This enables the assessment of the wavelength-dependent convection velocity in a
flat plate turbulent boundary layer at Reθ = 13000, for which accurate experimental
data through the whole boundary layer are missing. The present method enables the
intrinsic assessment of the validity of Taylor’s hypothesis, the easy interpretation of
the least-square-based convection velocity, and the natural definition of a global con-
vection velocity. Some common features of the convection of near-wall structures,
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hairpin packets, and superstructures are found. The high convection velocity asso-
ciated to the near-wall footprint of the superstructures is also clearly visible. The
evaluation of the streamwise spectrum using the time spectrum and a dilatation fac-
tor computed from the frequency-dependent convection velocity provides results that
are close to those obtained with the correlation-based convection velocity.

The studyof convection velocitymaybe seen as an additional approach to coherent
motions at high Reynolds numbers, which would be enhanced by simulations at even
higher Reynolds numbers with clearer scale separation. Using this method to assess
the physical validity of resolvedmotions in wall-modeled LES (WMLES)might also
be of interest.
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Statistics of Single Self-sustaining Attached
Eddy in a Turbulent Channel

Yongyun Hwang

Abstract A Numerical experiment that isolates the motions at a given spanwise
length scale is performed based on previous observation on the self-sustaining nature
of the eddies in the logarithmic and the wake outer regions [7, 8]. It is shown that
the statistics of the isolated self-sustaining motions at a given spanwise length scale
are strikingly similar to those of the single attached eddy postulated by Townsend
and Perry [1, 2, 5, 6], demonstrating the existence of the attached eddies in turbulent
channel flow. Inspecting one-dimensional spectra also leads to build a complete form
of the self-similarity of the streamwise length scale and the wall-normal location
of all the coherent structures known, including near-wall streaks, quasi-streamwise
vortices, very-large-scale motions, and large-scale motions.

1 Introduction

The foundation of the logarithmic dependence in the mean-velocity profile has been
understood as a landmark inwall-bounded turbulence research.Apart from the debate
on the log versus power law, the only relevant length scale in this region is the distance
from the wall ‘y’ (the wall-normal direction) which fills the gap caused by separation
between the inner and the outer length scales at high Reynolds numbers. Townsend
[1, 2] pointed out that emergence of this feature would be unimaginable unless the
size (or the diameter) of the energy-containing motions (i.e. coherent structures) in
this region is proportional to distance of their centres from the wall. Based on this
insightful observation, he developed a self-consistent theory which describes the
second-order statistics in the logarithmic region by superposing many hypothetical
self-similar ‘attached eddies’ with a probability density distribution yielding constant
Reynolds stress, predicting
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Fig. 1 A sketch of the second-order statistical moments of a single attached eddy according to
Townsend [2]: a streamwise and spanwise velocities; b wall-normal velocity; c Reynolds stress.
Here, ya is the location where the single attached eddy shows themaximum intensity, characterising
its size

u2 = A1 + B1 log L0/y,

v2 = A2,

w2 = A3 + B1 log L0/y, (1)

where Ai (i = 1, 2, 3) and B j ( j = 1, 2) are constants and L0 is the upper boundary
of the logarithmic region. The key of the attached eddy hypothesis is essentially in
the assumption of the second-order statistical moments of a ‘single’ attached eddy
(see also Fig. 1). The presence of the wall allows the streamwise and the spanwise
components of the single attached eddy to carry non-negligible amounts of energy
near the wall (Fig. 1a) whereas it forces the wall-normal velocity component and the
Reynolds stress to be very small (Fig. 1b, c). This feature is essential to obtain (1): i.e.
the logarithmic dependence in (1) mathematically originates from the non-negligible
contribution of the streamwise and the spanwise components to the near-wall region.

Owing to rapid development of advanced experimental techniques and modern
computational power, numerical [3] and laboratory experiments [4] have recently
confirmed the prediction (1), suggesting that it is very likely that wall-bounded tur-
bulence is composed of the attached eddies. Despite the emerging evidence, the core
of the theory addressing the question, ‘what really is the single attached eddy?’, has
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not been well addressed for a long time, given the difficulty caused by the presence
of coherent structures at scales varying from the inner to the outer unit. In fact,
Townsend himself proposed that the single attached eddy might be in the form of
a double conical eddy [2], whereas the follow-up studies by Perry and coworkers
modelled it as a hairpin or ‘Λ’ vortex [5, 6].

The purpose of the present study is to address this issue by taking a minimal
action to online simulation to isolate the attached eddies at a given length scale.
The numerical experiment is designed upon the author’s recent observation of the
self-sustaining nature of a single attached eddy [7, 8], and calculates the statistics of
a single attached eddy. We report, for the first time, the statistics of a single attached
eddy given in the form of solution of the Navier-Stokes equation, which will also be
shown to be strikingly similar to those given in [1, 2, 5, 6].

2 Numerical Experiment

The key idea for designing the present numerical experiment is from the recent
observation on the linear spanwise length-scale growth in the logarithmic region, as
also in Fig. 2 where the premultiplied spanwise spectra of the streamwise velocity
are shown from DNS at Reτ = 2000 [9]. This feature directly supports the attached
eddy hypothesis as the spanwise length scale of a given eddy would characterise the
size of the attached eddy. Based on this observation, in the author’s recent study,
the near-wall motions at λ+

z ≤ 100 have been studied [10]. In the present study, we
extend this approach to the region of 100δν < λz < 1.5h where the linear growth of
the spanwise length scale with the distance from the wall appears.

Let us start by choosing a spanwise length scale, λz . Given the scope of the present
study aimed to isolate themotion at given λz , it is not necessary to resolve themotions
wider than λz . Therefore, we set the spanwise computational domain to be Lz = λz

Fig. 2 One-dimensional
premultiplied spanwise
spectra of the streamwise
velocity (from [9])
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Fig. 3 One-dimensional spanwise spectra of the streamwise velocity (L1800b): a Cs = 0.05;
b Cs = 0.20

Table 1 Parameters of the numerical experiment in the present study

Case Rem Reτ Lx/h Lz/h L+
x L+

z Nx ×
Ny × Nz

Cs

F950 38133 955 12π 6.0 36003 5730 384 ×
81 × 128

0.05

O950 38133 1051 12π 6.0 39622 6306 384 ×
81 × 128

0.30

L950a 38133 949 12π 0.75 35776 712 384 ×
81 × 16

0.20

L950b 38133 1016 12π 1.0 38302 1016 384 ×
81 × 21

0.25

L1800a 73333 1519 8π 0.375 38177 570 512 ×
129 × 16

0.10

L1800b 73333 1745 8π 0.5 43857 872 512 ×
129 × 21

0.20

L1800c 73333 2022 8π 0.75 50818 1517 512 ×
129 × 32

0.25

while we consider a very long computational domain in the streamwise direction
(Lx ≥ 8πh). As discussed in [10], the spanwise confined computational domain
yields spanwise uniform non-physical motions. A filtering approach to remove such
motions has been proposed in [10], and we also adopt this approach here. This then
enables us to remove the motions wider than λz . An example of this is given in
Fig. 3a where the motions wider than λz > 0.5h are removed by this technique.
The removal of the motions smaller than the given spanwise length scale is then
performed using the technique described in [7, 8] where a large-eddy simulationwith
the static Smagorinsky model is used to damp out the smaller motions by increasing
the Smagorinsky constantCs . Using this approach, themotions at the given spanwise
length scale can be successfully isolated, as in Fig. 3b where its spanwise spectra are
shown. The designed numerical experiment is repeated for different λz and Re, and
its details are summarised as in Table1.
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3 Results and Discussion

Figure4 shows the second-order statistics of the isolated motions at a given spanwise
length scale. The appearance of non-trivial statistical moments clearly suggests that
the motions at a given spanwise length scale are able to be sustained in the absence
of the ones at the other length scales. When the length scale and the velocity are
respectively normalised by the given spanwise length and the maximum value of
the velocity, all the second-order statistical moments are found to be self-similar
(Fig. 4). For the statistics of the streamwise velocity and the Reynolds stress, to which
the streamwise velocity contributes, the self-similar nature appears for y < 0.3Lz ,
whereas the wall-normal and the spanwise velocities show the self-similarity for
y � 0.5Lz . It should be mentioned that the statistical moments above those locations
are found not to be self-similar, and this is probably because the self-similar motions
induce non-negligible fluctuations (for further details on this issue, see also [10]).

Themost important findingof the present study is that the second-order statistics of
the self-similar part of themotions at a given length scale is strikingly similar to those
given in Fig. 1, suggesting that the energy-carryingmotion at a given spanwise length
scale is the ‘attached’ eddy that Townsend postulated. The only difference between
the original theory given in Fig. 1 and the self-similar part in Fig. 2 appears in the
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streamwise velocity, which shows the maximum closer to the wall compared to the
wall-normal and the spanwise velocities, but thiswill be further explained (see Fig. 5).
This numerical result provides direct evidence of the existence of the ‘attached’
eddies defined strictly in the sense of Townsend and Perry, and demonstrates that the
individual attached eddy can be represented by the energy-carryingmotions at a given
spanwise length scale between λ+

z = 100 and λz = 1.5. It should also be emphasised
that the fact that the attached eddies are isolated by the present numerical experiment
indicates their self-sustaining nature, providing direct counter evidence to the visual-
inspection-based argument by Adrian [11] that the motions in the logarithmic region
are formed by themerger and/or growth of hairpin vortices from the near-wall region.

Figure5 shows one-dimensional streamwise spectra of the isolated motions at
the given spanwise length scale. The self-similarity with respect to the spanwise
length scale is also seen. It is interesting to note that the streamwise component of
each motion shows the largest energy at y � 0.1Lz and λx � 10Lz whereas the
wall-normal and the spanwise components of the motion contain the largest energy
at y � 0.5Lz and λx = 2 ∼ 3Lz where the streamwise velocity component of the
spectra also shows a non-negligible amount of energy. This suggests that a single
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attached eddy is composed of two different types of motions, one of which is a long
and streamwise velocity dominant motion and the other is short and tall and is rather
isotropic in the sense that it carries all the velocity components.

This one-dimensional spectra of the motions at a given spanwise length scale
suggest that the energy-carrying motions in the logarithmic region should appear
along the two ridges:

y � 0.1λz and λx � 10λz, (2)

y � 0.5λz and λx � 2 ∼ 3λz . (3)

It is very helpful to seekwhat kind of features are expected by (2) and (3) at the bottom
and the top ends of the ridges. At the bottom end, the relevant λz is the well-known
spanwise spacing of the near-wall motions λ+

z = 100. Then, (2) yields y+ � 10
and λ+

x � 1000 while (3) gives y+ � 50 and λ+
x � 200 ∼ 300, indicating that

the former represents the well-known near-wall streaks whereas the latter represents
the near-wall quasi-streamwise vortices. At the top end where the spanwise spacing
can be set to be λz = 1.5h, (2) leads to y = 0.2h and λx = 15h, retrieving the
wall-normal location and the streamwise length of the VLSMs, whereas (3) gives
y = 0.75h and λx = 3 ∼ 4h, yielding those of the LSMs. Therefore, the scaling
given by (2) and (3) establishes a complete form of the self-similarity spanning from
the inner (streaks and quasi-streamwise vortices) to the outer coherent structures
(VLSMs and LSMs).

The one-dimensional spectra also allow us to identify the so-called ‘inactive’
component of a single attached eddy, the part which does not carry Reynolds stress.
Figure5a suggests that the inactive component in the streamwise velocity appears
as the long motions (i.e. the motion given by (2)), the part of which penetrates the
region close to the wall. The inactive component in the spanwise velocity appears
from the short and tall motions (i.e. themotion given by (3)), and its spanwise compo-
nent clearly penetrates to the near-wall region without carrying the Reynolds stress.
The appearance of such inactive components in the streamwise and the spanwise
velocities is essential to explain the logarithmic dependence given in (1), and is also
consistent with the recent measurements by [3, 4].

4 Concluding Remarks

So far, the present study has provided direct evidence on the attached eddy hypothesis
by extracting the statistics of a single attached eddy. Most of the present results have
been found to be consistent with the original theory given by Townsend [2], and
complete the self-similarity of all the coherent structures known. More results with
a compete discussion are currently in preparation with hope to provide a complete
form of statistical description on all the coherent structures in wall-bounded flows.
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Scaling the Internal Boundary Layer

Fanxiao Meng, Donald J. Bergstrom and Bing-Chen Wang

Abstract The internal boundary layer (IBL) is an important phenomenon in
atmospheric flows which is associated with a step change in the surface roughness.
This phenomenon also relates to industrial flows, where a wall may exhibit abrupt
changes in surface roughness, perhaps related to corrosion. The present study reports
new wind tunnel measurements which consider a Smooth–Rough–Smooth (SRS)
configuration. The rough surfaces were created using 40-grit sandpaper glued onto
the ground plane of a wind tunnel, and mean velocity measurements were collected
using a boundary layer Pitot tube. The development of the IBL is clearly evident
in the streamwise evolution of the mean velocity profiles. The results indicate that
once the flow encounters the step change in roughness, the flow immediately next to
the wall is decelerated due to the enhanced skin friction associated with the surface
roughness. The roughness effects propagate further into flow as the IBL grows in the
streamwise direction. However, when the surface condition changes back to smooth,
the flow begins to accelerate, but does not recover to the initially smooth profile. This
implies that some regions of the velocity profile preserve a “memory” of the previous
surface condition, and therefore are not in equilibrium with the local surface.
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1 Introduction

The flow over a step change in surface roughness has both meteorological and indus-
trial applications. For example, in the field of meteorology, the wind flowing over
ocean-to-land and land-to-lake boundaries is often modeled as smooth-to-rough and
rough-to-smooth transitions, respectively. In industrial duct systems, surface rough-
ness step-changes may occur in localized regions of the wall, due to such effects
as corrosion. Therefore, improved knowledge of the behavior of a turbulent bound-
ary layer as it experiences a step change in roughness remains a relevant research
topic.

One of the major characteristics of turbulent flow over a step change in surface
roughness is the generation of a so-called Internal Boundary Layer (IBL). It is com-
monly considered that an IBL is the near-wall region where the flow is influenced
by the new surface condition. This layer is generated at the beginning of the step
change in roughness, and it grows in thickness in the streamwise direction. When
a flow encounters a new surface, the fluid close to the surface first experiences the
impact of any change in roughness, and then the effect propagates upwards into the
surrounding fluid. However, Garratt [5] noted that the definition of the IBL is not
always clear, and the criteria used to define the IBL have typically been determined
based on practical rather than theoretical considerations.

Over several decades, numerous studies have investigated the characteristics of
the IBL. Elliott [4] proposed an empirical formula for describing the growth rate
of the IBL thickness, δi , which is proportional to the streamwise distance, x , raised
to the power n = 0.8. Panofsky and Townsend [7] modified this theory to avoid an
abrupt change in the surface shear stress at the top of the IBL. Since these pioneering
works, the subject has been studied using analytical, experimental, and numerical
methods [3, 6, 8].

The mean velocity and turbulent stress profiles are often used to determine the
thickness of an IBL. Shir [9] found that the thickness of an IBL based on a stress
criterion was smaller than that based on a velocity criterion since the fluid stress
profiles adjust more rapidly than the velocity profiles. Most studies have focused
on only a single step change in roughness, either from smooth-to-rough or from
rough-to-smooth transition. In contrast, there were only a few investigations on flows
subjected to two or more changes in roughness [2]. However, a flow subjected to
multiple step changes in roughness has important applications for flowsover localized
roughness in industrial duct systems.

In this study, the flow over a smooth–rough–smooth transition was investigated
experimentally in a wind tunnel based on measurements of the mean velocity field.
Mean velocity profiles at different streamwise sections were used to investigate the
characteristics of a turbulent boundary layer subjected to consecutive step-changes
in roughness. The results show that the flow in the inner layer responds immediately
to the change in surface roughness and skin friction. The roughness effects propagate
vertically towards the outer edge of the IBL as the flow develops in the streamwise
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direction. One observation of the consecutive changes in roughness is that some
regions of the flow preserve a “memory” of the previous surface condition, and
therefore are not in equilibrium with the local surface condition.

2 Experimental Set-Up

The experiments were performed in a subsonic wind tunnel; a detailed description of
the experimental facility is available in Akinlade et al. [1]. A trip strip consisting of a
metal rod of square cross section (6mm× 6mm) was placed across the ground plane
100mm downstream of the leading edge. The trip strip ensured that the turbulence
was fully developed before the flow encounters the rough surface, and was used in all
the experiments to ensure a consistent development of the turbulent boundary layer.

A two-dimensional smooth–rough–smooth transition was created by gluing a
row of 40-d grit sandpaper to the ground plane in the wind tunnel. The length of the
sandpaper section was 230mm, and the leading edge of the sandpaper was located
1100mm downstream of the trip strip to ensure the development of a canonical zero-
pressure gradient turbulent boundary layer prior to the rough surface. Figure1 shows
a schematic of the experiment. Two origins (x1 and x2) were defined based on the
two transition locations. Mean velocity profiles were measured using a boundary
layer Pitot tube at different streamwise locations within the boundary layer. For each
location, the mean streamwise velocity (U ) was measured at positions ranging from
the wall to the outer edge of the boundary layer. Initially, the study only considered
mean velocity profiles. For scaling purposes, the value of the skin friction velocity,
uτ , for the last velocity profile on the smooth surface upstream of the roughness was
estimated by profile fitting to the Log Law. For the results presented in the present
paper, the free stream velocity was set to Ue = 30m/s. The corresponding Reynolds
number based on momentum thickness, Reθ , ranged from 10,550 to 12,050.

Fig. 1 Schematic of the
experimental set-up
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3 Results and Discussion

Figure2a, b shows the mean velocity profiles at different streamwise locations for
the smooth–rough and rough–smooth transitions, respectively, when the free-stream
wind speed is fixed at Ue = 30m/s. The results clearly illustrate the development
of the flow over each step-change in roughness. Note that at the first measurement
positions, a small change in the vertical position z can result in a significant change
to the mean velocity. The irregular behavior of some data points in Fig. 2a, b is partly
attributed to the uncertainty in the z measurement.

Figure2a indicates that when the flow encounters the rough surface, the inner
layer is immediately decelerated due to the enhanced skin friction associated with
the surface roughness. However, the flow in the outer layer (approximately z =
3 − 10mm) is initially not affected by the roughness, so that the mean velocity
profiles in this region and above are almost the same as those on the smooth surface.

Fig. 2 a Mean velocity
profiles over smooth–rough
transition for U e = 30m/s, b
Mean velocity profiles over
rough–smooth transition for
U e = 30m/s
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With increasing distance in the x-direction, the roughness effects propagate further
into flow, and the profiles in both the inner and outer layers gradually depart from
the velocity profile obtained on the smooth surface. When the flow reaches the last
section measured on the rough surface (x1 = 200mm), the profile is very close to
that at the previous location (x1 = 160mm). This demonstrates that the flow has
almost completely adjusted to the new condition created by the rough surface.

Figure2b illustrates how the flow develops when the surface condition changes
back to smooth. In many ways, the process is the reverse of the phenomenon created
by the smooth–rough transition. The flow in the inner layer is the first to respond to
the new surface condition, and begins to accelerate due to the reduced skin friction at
the surface. This effect gradually propagates upwards into the flow. However, unlike
the case of the smooth–rough transition, at the last two measurement locations (x2 =
120 and 160mm) there is no collapse of the two velocity profiles. This implies that
the influence of the smooth surface will penetrate further into the flow and the growth
rate of the IBL over the rough–smooth transition is lower than that over the smooth–
rough transition. This can be physically explained by the fact that the smooth surface
creates a smaller skin friction drag than the rough surface.

Figure3 compares some select data over the entire test section using inner coor-
dinates, i.e. u+ = U

uτ
and z+ = zuτ

v
. The friction velocity, uτ , was obtained by

fitting the mean velocity profile on the initial smooth surface to the Log Law. The
results indicate the same flow development as shown in Fig. 2a, b. Note that the pro-
file at the last measured location on the second smooth surface exhibits a different
behavior from that on the first smooth surface; it seems that the velocity profile does
not recover to the original log law profile. This implies that parts of the velocity
profile preserve a “memory” of the previous surface condition, and therefore are not
in equilibrium with the local surface.

Fig. 3 Mean velocity
profiles for the
smooth–rough–smooth
transition using inner
coordinates for Ue = 30m/s
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4 Conclusions

In this study, the development of a turbulent boundary layer flow over a smooth–
rough–smooth transitionwas investigated experimentally in a wind tunnel. Themean
velocity profiles clearly respond to each step-change in roughness, first by decelerat-
ing, and then by accelerating. However, the combination of two different transitions
results in a part of the flow responding to the previous surface condition. As such, the
entire velocity profile is not in equilibrium with the local surface. Further analysis
of the turbulent velocity field in terms of the higher-order statistics will be pursued
by future studies.
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3D Spatial Correlation Tensor
from an L-Shaped SPIV Experiment
in the Near Wall Region

Jean-Marc Foucaut, Christophe Cuvier, Sebastien Coudert
and Michel Stanislas

Abstract Understanding the turbulence organization near a wall is necessary to help
improving turbulencemodels. From the experimental point of view,many researchers
have worked on this subject since the fifties. Recently, Foucaut et al. (Exp. Fluids
50(4, Sp. Iss. SI):839–846, 2011) [16] have proposed a new idea to compute the
3D correlation tensor from two normal velocity fields when there are two homo-
geneous directions in the flow. The idea of the present contribution is to propose a
specific SPIV experiment which allows the computation of the full 3D spatial corre-
lation tensor in the near wall region of the TBL. This experiment composed of two
Stereoscopic PIV planes normal to the wall which were simultaneously recorded was
performed in the LML wind tunnel. The 3D correlation is then computed from the
two velocity planes in order to give some information about the near wall turbulence
organization. Conditioning the average by specific events allows us to improve the
analysis of the organisation. It can evidence the link between the events.

1 Introduction

Because of its particular importance, near wall turbulence has been examined exten-
sively in the last 50years [1–3]. The study of its organization is fundamental for the
improvement of the physics understanding and for the development of turbulence
models. From the experimental point of view, many researchers have worked on this
subject since the fifties [4]. A possible approach consists in computing the spatial
and/or temporal two-point velocity correlation tensor to investigate the dynamic of
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the dominant structures. This approach has been applied with both hot wire rakes
data [5] for space-time correlations, and PIV, mainly for the spatial correlations [6].
Favre et al. [7, 8] studied the spatio-temporal structure of the streamwise velocity
component by using a pair of spatially separated hot-wire probes. Stanislas et al.
[6] showed that double spatial correlations, computed from PIV fields, can help to
improve the understanding of the turbulent flow organization. They demonstrated
the richness of such a tool when it is coupled with conditional sampling. Kähler [3]
characterized the structure size and organization of the buffer region of a turbulent
boundary layer using such an approach, based also on PIV data.

Stereoscopic PIV is now a reliable method to study turbulence [9, 10] and in
particular the organization of near wall flows [11]. The possibilities of the technique
can be enlarged by the use of the light polarization to record velocity fields in two
different planes simultaneously. When the planes are parallel, this method is called
dual plane stereoscopic PIV [12]. The dual plane technique allows the measure-
ment of 2 velocity fields with an adjustable time delay or spatial separation between
them. By varying this delay, the space-time correlation of the velocity field can be
computed. By varying the separation, the 3D spatial correlation can be obtained.
Ganapathisubramani et al. [13] used the dual plane technique to get the full gradient
tensor and to study the near wall flow structures.

If both planes are perpendicular, it can give some information about the spatial
properties of the flow [14, 15]. Recently, Foucaut et al. [16] proposed an original
method to compute the 3D velocity correlation tensor in a turbulent boundary layer
from 2 normal planes. This idea is also proposed here with a specific experiment to
study the near wall flow. This experiment is first described. Then the resulting two
point correlations in the near wall region are presented.

2 Experimental Setup

The experiment was carried out in the LML turbulent boundary layer wind tunnel.
The test section is 1m high, 2 m wide and 20m long to allow the development
of the boundary layer. The boundary layer thickness can reach 30cm. The present
experiment was carried out at a Reynolds numbers Rθ of 7500 (Reτ of 2300) which
corresponds to a free stream velocity of 3 m/s.

Figure1 shows a top view of the set-up. The field of view was imaged with two
Stereoscopic PIV systems in two normal planes (Fig. 1). Each system is based on
Hamamatsu 2k × 2k pixel cameras and micro Nikkor 105mm lenses at f# 8. The
field of view of each system is about 8× 12 cm2 (corresponding to about 640× 960
wall units). Both systems were adjusted so that the two PIV planes share a common
wall normal line. In each plane, the grid spacing is 0.5mm which corresponds to 3.8
wall units. Moreover each SPIV systemwas adjusted with respect to the Scheimpflug
conditions [9]. The seeding was Poly-Ethylene Glycol micron particles. The particle
size was of the order of 1 µm. In this configuration, the Airy disk diameter is of the
order of 12.3 µm. It gives a particle image size of the order of 1.8 pixel [17]. On
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Fig. 1 Top view of the experimental setup

the images, the particle image size appears to be effectively of the order of 1.8 pixel.
Following [18], such a size should lead to weak peak-locking effect.

The x and z axes are in the streamwise and spanwise direction, respectively. The
y axis is normal to the wall. The laser used was a BMI YAG system with 4 cavities,
which can deliver 4 beams two by two recombined and orthogonally polarized.
Each camera lens was suited with a polarizing filter. Consequently, for each camera,
only the corresponding light sheet is recorded on the images as for the dual plane
technique. A total of 12000 velocity fields were recorded. Figure2 gives an example
of the instantaneous streamwise velocity component u in the two planes.

The images from both cameras were processed with a standard multi-grid and
multi-pass algorithm with image deformation [19]. The analysis was made by the
classical FFT-based cross-correlation method with symmetrical integer shift of both

Fig. 2 Example of an instantaneous streamwise component velocity fields
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windows. Before the final pass, image deformation was applied according to the dis-
placements estimated from the three previous passes to improve the accuracy [20].
A 1-DGaussian peak fitting algorithmwas used for the sub-pixel displacement deter-
mination. The final interrogationwindow sizewas 24×32 pixels for each plane. Such
a size corresponds to a squarewindow in the physical space of 1.4×1.4mm2 (3.8×3.8
wall units). It was optimized close to the wall where the signal is maximum. A mean
overlapping of about 66% was used. The Soloff method using 7 calibration planes
was used to reconstruct the three velocity components in the plane of measurement.
The analyses were performed using the MatPIV software modified and developed
at LML. The calibration was done with different targets using crosses. From the
set of recorded calibration planes and SPIV images, the misalignment between the
light sheet and the calibration plane was corrected (Coudert and Schön [21]) with a
self-calibration method similar to the one proposed by Wieneke [22].
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Figures3 and 4 show themean streamwise velocity and the turbulent intensity pro-
files from the two planes, respectively, compared with hot wire anemometry. These
results are in good agreement above 15 wall units, except for the spanwise intensity
component in Fig. 4 which presents a difference below 40 wall units probably due to
the mean velocity gradient at the scale of the X-wire probe which cannot be taken
into account during the calibration. Figure5 presents the streamwise and spanwise
spectra computed from the streamwise SPIV plane at a distance of 200 wall units
and compared to the HWA ones using a local Taylor hypothesis. The agreement is
perfect below k = 900 rad/m. By comparing the PIV spectrum with the model of
Foucaut et al. [23], the noise level of the streamwise component σu can be quanti-
fied. From this noise level, the uncertainty of each component in the XY plane can
be estimated [23]. These values are given in Table1. In this table, the noise level
Enoise is deduced by a fit of the model of Foucaut et al. [23] on the PIV spectrum,
WS is the interrogation window size in physical units used in the model. Thanks to
the similarity of the setup for both planes, the uncertainties in the YZ plane can also

Fig. 5 Comparison of the streamwise and spanwise velocity spectra from PIV and HWA
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Table 1 Noise level and uncertainties of the SPIVmeasurement, Enoise is the noise level (see [23]),
WS is the PIV window size and σu is the PIV measurement uncertainties

Plane XY Enoise(m3/s2) WS (mm) σu (m/s) σu (pix) Plane YZ

u 1.3 × 10−7 1.4 0.023 0.068 w

v 2.5 × 10−7 1.4 0.032 0.095 v

w 2.5 × 10−7 1.4 0.032 0.095 u
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Fig. 6 Estimation of the measurement errors at the intersection line of the two planes

be estimated by a comparison of the different components in the stereoscopic setup.
The uncertainties on the components stretched and not stretched by the stereoscopic
angle and on the out of plane component are considered respectively the same for
the two planes. At the intersection of the two planes, the velocity is estimated by two
independent SPIV systems. Along this line the uncertainties can also be estimated
by computing the RMS value of the difference between the velocity components
given by the two planes (see [24]). Figure6 shows the profiles of these estimations
of the order of the values of Table1. The errors on the components u and w are a
little smaller than v because they are not stretched in one of the two planes. The
measurement error is finally of the order of 0.1 pixel which is classical for a good
quality SPIV measurement.

Figures7 show the probability density function of the three fluctuating velocity
components from both planes at 250wall units and compared with hot wire anemom-
etry. They show a very good agreement between the two SPIV systems and the hot
wire results. Also they show no filtering of the velocity due to a saturation of the
dynamics in the plane normal to the flow.
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3 Spatial Correlation

Aswas detailed in [16], the computation of the 3D correlation tensor needs a volumic
measurement as can be obtained for example from Tomographic PIV [25]. However,
if the flow is homogeneous along two directions (i.e. x and z), the 3D spatial corre-
lation can be computed from the present experiment using the velocity data of the
two perpendicular SPIV planes. As the experiment is L-shaped the correlation is
computed in quarters of the final volume. In the first quarter, the fixed point is taken
along a line of the XY plane at fixed y and the moving points are in the YZ plane
following Eq.1.

Ri j (y, δx, δy, δz) = u1
i (x0 − δx, y, 0)u2

j (x0, y + δy, δz)√
u1

i u1
i

√
u2

j u
2
j

(1)

In the second quarter, the fixed point is taken along a line of the YZ plane at the same
y and the moving points in the XY plane following Eq.2.
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Fig. 8 Maps of the R11 correlation with the fixed point at y+ = 18 in planes δx = 0 (top left),
δy = 0 (bottom left) and δz = 0 (bottom right) and 3D iso-value at 0.5

Ri j (y, δx, δy, δz) = u2
i (x0, y,−δz)u1

j (x0 + δx, y + δy, 0)√
u1

i u1
i

√
u2

j u
2
j

(2)

In Eqs. 1 and 2, x = x0 and z = 0 are the equations of the two planes intersection, u1
i

and u2
i are the fluctuating components in planes z = 0 and x = x0 respectively and

the over-bar corresponds to an average over the number of independent realizations
which is about 12000 in the present study.

In the present case, as the flow is exactly homogeneous in span, the symmetry can
be enforced in order to fill up the two missing quarters and then obtain the full 3D
correlation. The correlation Ri j must be symmetrical for i = j and also for i �= j
with i �= 3 or j �= 3. In the other cases the correlation must be anti-symmetrical.

Figure8 shows a 3D isovalue of R11 correlation corresponding to a level of 50%
and 3 cuts in the streamwise (δz = 0) and spanwise (δx = 0) planes and in a plane
parallel to the wall (δy = 0) with the fixed point at 18 wall units. R11 shows a very
elongated region of correlation due to the streaky organisation of the streamwise
velocity fluctuations. This correlation has a long ovoid shape of about 360 wall units
in length with a diameter of about 55 wall units. It is inclined at about 3◦ to the x
axis. Two minima can be observed on each side of the main peak, located at about
60 wall units from this peak. These minima are not negative probably because of
the meandering behavior of the streaks. They indicate that the streaks (low or high
speed) should be separated by about 120 wall units in span as in Lin et al. [26]. The
same correlation computed at different wall distances (not presented here) shows
that the size of the ovoid increases with wall distance.
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Fig. 9 Maps of the R11 correlation with the fixed point at y+ = 18 in XY plane at δz = 0 (top)
and XZ plane at δy = 0 (bottom) conditioned by high (left) and low (right) speed streaks

Figure9 shows two cuts through R11 in the steamwise plane (δz = 0) and in a
plane parallel to the wall (δy = 0), at the same wall distance as in Fig. 8. In this
case, the correlation is conditioned by positive and negative velocity fluctuations,
corresponding to high (left) and low (right) speed streaks. Thewidth of the correlation
increases to 60 wall units for a high speed streaks and decreases to 50 wall units
for the low speed one. However the correlation seems more contrasted when it is
conditioned by a low speed steaks. It also extends to longer δx . This corresponds
to higher coherence on long distance of this structure. Low speed streaks are longer
and thinner than high speed ones.

Figure10 shows the same results as Fig. 8 for the R12 cross-correlation at y+ = 18.
The 3D plot corresponds to a correlation level of −0.25 (50% of the minimal value)

of
√

u′2
√

v′2. The 3D plot evidences a long region of negative correlation around the
plane of symmetry which probably corresponds to a region of negative shear stress.
It is about 330 wall units long, 60 wall units large and 90 wall units height based
on the chosen threshold. On each side of this negative region, probably linked with
the streaks organisation, two positive ones appear almost parallel to it and separated
by δz+ = 90. The shape of the positive regions is more affected by convergence
and by the limited accuracy close to the wall. Although shorter streamwise, the R12
correlation has some similarity with R11 in Fig. 8.

Figure11 shows two cuts of R12 conditioned by positive and negative streamwise
velocity fluctuations, respectively. The negative region conditioned by a high speed
streaks shifts clearly toward the negative displacements. High speed streaks seems
to appear closer to the leading edge of what can be a sweeping motion (u > 0 and
v < 0) [1]. Low speed streaks appear on their side more centred with respect to what
can be an ejection (u < 0 and v > 0) [1]. It is also interesting to note that the negative
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Fig. 10 Maps of the R12 correlation with the fixed point at y+ = 18 in planes δx = 0 (top left),
δy = 0 (bottom left) and δz = 0 (bottom right) and 3D iso-value at −0.25

Fig. 11 Maps of the R12 correlation with the fixed point at y+ = 18 in XY plane at δz = 0 (top)
and XZ plane at δy = 0 (bottom) conditioned by high (left) and low (right) speed streaks

correlation region is spreading far above the fixed point and is tilted with respect to
the x axis, which is probably linked with large ejections and sweeps.

Figure12 presents R12 in a plane δz = 0 with the fixed point at y+ = 18, 35,
100 and 160. The shape of this correlation varies with the fixed point wall distance.
At distances of 100 and 160 wall units, the negative region is inclined upwind with
an angle of about 50◦ to the y axis. It is elongated with a size of about 240 and 350
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Fig. 12 Maps of the R12 correlation with the fixed point at y+ = 18 (top left), y+ = 35 (top right),
y+ = 100 (bottom left) and y+ = 160 (bottom right) in the plane δz = 0

wall units respectively, along the 50◦ direction. This negative correlation can also
be associated to the sweep and ejection motions [1]. The change in shape appears in
the buffer layer at a distance of about 35 wall units. At this distance the downwind
part of the negative peak disappears. Below this distance the near wall cycle based
on streaks and streamwise vortices as proposed by Schoppa and Hussain [27] should
dominate. The correlations presented here show that the flow in this region is also
strongly influenced by large scale sweeping and ejection motions. Further from the
wall (y+ > 35), the upwind part of the negative peak increases. The ejection are
more compact and closer to the wall while the sweeps extend more further outside
(Figures are not schown here).

4 Conclusion

Amethod tomeasure the 3D spatial correlation tensor from a specific PIV experiment
in a turbulent boundary layer is detailed. It is based on the fact that there are two
homogeneous directions in the flow (one exact and one approximate in the present
case). The method is based on two stereoscopic PIV fields recorded in perpendicular
planes at the same time. At a given wall distance, the method makes use of all the
possible product of velocity in order to fill part of a 3D correlationwhich is completed
by symmetry. The 3D correlations, obtained with the proposed method, allow the
study of the turbulence organization of the nearwall region. Thismethod needs a large
number of samples to obtain converged correlations. Here, a total of 12 000 samples
were used. This number is enough close to the fixed point and has to be increased far



416 J.-M. Foucaut et al.

from this pointwere the correlation level decreases. From the correlation R11 and R12,
the size and shape of coherent regions linked to turbulent structures were measured.
To complete this study a conditioning of the averaging gives more details about the
organization. Close to the wall, for y+ < 35 an organisation with streaks, sweeps
and ejections is inferred, in agreement with the model of Schoppa and Hussain [27].
Further from the wall, for y+ > 35, large ejections and sweeps inclined upstream
seem to dominate.
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On Objective and Non-objective Kinematic
Flow Classification Criteria

Ramon S. Martins, Anselmo S. Pereira, Gilmar Mompean,
Laurent Thais and Roney L. Thompson

Abstract Turbulent flows present several compact and spatially coherent regions
generically known as coherent structures. The understanding of these structures is
closely related to the concept of vortex, whose definition is still a subject of con-
troversy within the scientific community. In particular, the role of objectivity in the
definition of vortex remains a largely open question. The three most usual criteria
for vortex identification (Q,Δ and λ2) are non-objective since they all depend on the
fluid’s rate-of-rotation, which is not invariant to the reference frame. In the present
work, we propose an objective definition of these criteria by using the concept of
relative rate-of-rotation with respect to the principal directions of the strain rate ten-
sor. We also explore two novel naturally objective flow classification criteria. All
the criteria are applied to instantaneous velocity fields obtained by DNS of both
Newtonian and viscoelastic turbulent channel flows. The analysis is carried out here
for four friction Reynolds numbers from 180 to 1000, emphasizing the difference
between objective and non-objective and classification criteria, as well as between
Newtonian and non-Newtonian flows. Moreover, we try to obtain from the results
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of flow classification criteria information related to the polymer drag reduction phe-
nomenon.

1 Introduction

Vortices are present in many practical flows and their dynamics dictates several
phenomena, such as heat transfer, mixing, combustion, noise generation and hydro-
dynamic drag. Hence, a solid understanding of vortex dynamics may lead to a better
comprehension of these phenomena.

1.1 Previous Work

In fact there is not, among researches, a consensus for the definition of a vortex.
Instead, there are several criteria available in the literature. Nevertheless, themajority
of these definitions is based on the rate-of-rotation (or vorticity) tensor, W. Such
tensor is not invariant under general transformations of the reference frame. In other
words, tensor W does not enjoy the objectivity property. Thus, all criteria which
depend on the rate-of-rotation tensor are not objective as well. For instance, the
classic Q-criterion by Hunt et al. [10], Δ-criterion by Chong et al. [3], and λ2-
criterion by Jeong and Hussian [11], largely employed in the literature, all depend
on the tensor W and, therefore, are not objective criteria.

Akeyconcept relevant to thediscussiononobjectivity is the concept of persistence-
of-straining, introduced by Lumley [14], and applied by several authors [2, 7, 17, 22,
23]. In brief, this concept is associated to the capacity of theflow to persistently stretch
amaterial filament. This leads to a physically consistent perspective of themotion of a
fluid element, and, consequently, to a new point of view regarding flow classification.
In this connection, rigid body motion opposes to maximum persistence-of-straining.
In this context, Astarita [2] argued that, because flow classification is mostly used
to verify the behavior of constitutive equations, a solid criteria should enjoy (among
others) the same invariance properties as those required for the constitutive equa-
tions. Besides that, a legitimate flow classification should be an intrinsic character
of the flow, and not something that changes depending on the observer. The author
proposed a criterion based on the relative rate-of-rotation (W), a quantity known to
be objective ([5, 6]). The tensor W represents the rate-of-rotation with respect to the
principal directions of the strain rate tensor (D).

Despite the remarkable work carried out by Astarita, the criterion proposed by
him has been proven to present some flaws for certain classes of 3D flows, see [9].
By analyzing these inconsistencies, Thompson andMendes [23] proposed a criterion
based on the concept of persistence-of-straining.

By examining stretching and alignment of material filaments, Tabor and Klapper
[20] verified the importance of the use of the relative rate-of-rotationwithout invoking
objectivity. Their analysis reinforces Astarita’s criterion which is equivalent to an
objective version of the Q-criterion mentioned above.
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Haller [8] conducted a remarkable work which defends the importance of objec-
tivity on identifying a vortex and presents a criterion based on the stability analysis
of the trajectory of particles immersed in the flow. His criterion uses the covariant
strain acceleration tensor, obtained from the covariant convected derivative of the
strain rate tensor, in order to quantify the ability of the flow to defy the stretching
tendency imposed by the strain rate tensor. The author also presents a simple elu-
cidating example regarding the role played by objectivity. In a subsequent work,
Thompson [22] adds more consistent physical meaning to the role played by the
covariant strain acceleration tensor, proposing a persistence-of-straining criterion
based on this entity.

The present work aims to analyze the behavior of objective and non-objective
kinematic flow classification criteria applied to the instantaneous velocity fields of
both Newtonian and viscoelastic channel flows obtained by direct numerical simu-
lation (DNS). The interaction between polymer and turbulence, especially near the
wall, is also aimed due to its relation to the drag reduction phenomenon.

2 Objective Versions for Classic Flow Classification Criteria

The relative rate-of-rotation, presented by Astarita [2], is the rate-of-rotation “of the
fluid”with respect to the principal directions of the strain rate tensor.Mathematically,
it takes the following form given by Eq. (1),

W = W − Ω D, (1)

where Ω D is the tensor that gives the rate of rotation of the eigenvectors of D.
Although both W and Ω D are non-objective tensors, Drouot and Lucius [5, 6] have
proven that W is objective. If W vanishes, the filaments that are aligned to the
eigenvectors of D have the tendency to continue aligned. In this sense, the stretch is
persistent.

An objective redefinition for the Q-criterion is now proposed by replacing the
non-objective rate-of-rotation tensor, W, by the objective relative rate-of-rotation
tensor, W, in its respective original formulation, yielding .

Qs = 1

2

(
‖W‖2 − ‖D‖2

)
> 0. (2)

Applying the same methodology to the Δ and λ2-criteria, their objective versions
take the form of Eqs. (3) and (4), respectively.

Δs =
(

Qs

3

)3

+
(

det (D + W)

2

)2

> 0 (3)

λD2+W
2

2 < 0 (4)
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3 Novel Naturally Objective Criteria

We adopt here a decomposition of the covariant strain acceleration tensor, M ≡ �
D

(where the triangle indicates the covariant convected time derivative) with respect to
the strain rate tensor, D, as discussed in [22]. This decomposition splits tensor M into
two additive parts: a part that is in-phase with D, φD

M , and a part that is out-of-phase
with D, φ̃D

M . These tensors are defined as

φD
M = I

DD : M ; φ̃D
M =

(
I
δδ − I

DD
)

: M, (5)

where the symbol “:” accounts for the double dot product and I
DD is a fourth order

tensor given by

I
DD =

3∑
i=1

= eD
i eD

i eD
i eD

i , (6)

where eD
i is an eigenvector of D and I

δδ is the fourth order identity tensor.
Aligned to the concepts presented by Haller [8], we can define a ratio, IR, that

can be interpreted as a measure of how tensor M corroborates the tendency dictated
by D as

IR = 1 − 2

π
cos−1

(∣∣∣∣φD
M

∣∣∣∣
||M||

)
. (7)

It can be shown that this quantity is the complement with respect to unity to the
quantity we would find if we replace φD

M by φ̃D
M . In this other case this quantity

would be a measurer of how tensor M defies the tendency dictated by D.
Because the flow character is, most of the times, anisotropic, we found the neces-

sity to come up with anisotropic ratios that could better represent the competition
between the parts that corroborates and defies the D-tendency. Hence, we can define
anisotropic ratios depending on the eigendirection of D, as

AR(k) = 1 − 2

π
cos−1

(√
[M]kk [M]kk
[MM]kk

)
, (8)

where [M]kk is an element of the principal diagonal of tensorM (terms ofMwhich are
in-phase with D), and [MM]kk is an element of the principal diagonal of tensor M2.

The anisotropic ratios are reorganized so that AR1 > AR2 > AR3. The
anisotropic ratios are better interpreted together. While the other criteria aim to give
an overall verdict, the anisotropic ratios provide a directional information.
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4 Results and Discussions

We discuss here the results obtained with all criteria applied to the instantaneous
velocity fields of both Newtonian and viscoelastic channel flows obtained by DNS
with the massively parallel algorithm presented by Thais et al. [21]. Viscoelastic
effects are taken into account bymeans of the FENE-Pmodelwithmaximumpolymer
chain extensibility L equal to 100 and a friction Weissenberg number W eτ (being
W eτ = λu2

τ /ν, where λ is the relaxation time scale, uτ is the friction velocity and ν

is the kinematic viscosity of the solution) equal to 115, which leads to a percentage
of drag reduction of 62.3%.

It is possible to identify the so called hairpin vortices in turbulent boundary layers
by the application of classic flow classification criteria (such as Q,Δ and λ2 criteria).
The dynamic evolution of these hairpin vortices have been largely explored in the
literature (see, for example, Ref. [1] for a remarkable literature review). Regarding
non-Newtonian fluids, one of the first analyses of the effects of elastic on such
coherent structures was carried out by Kim et al. [12]. In drag-reducing flows, the
authors noted that hairpin vortices get larger and weaker due to rotations imposed
by the polymer work, which are in opposition to that of the vortices.

Figure1 shows the iso-contours of the Q-criterion for both Newtonian (left
column) and viscoelastic (right column) fluids at four friction Reynolds numbers
(Reτ = 180, 395, 590 and 1000 (being Reτ = uτ h/ν, where h is the channel
half-gap). Using the Q-criterion, the classic hairpin vortices are recovered for the
Newtonian fluid and very similar structures are identified for the viscoelastic cases.
Moreover, regardless of the fluid, the quantity of hairpin vortices increases with the
friction Reynolds number. The same qualitative results are found for the two other
classic criteria cited above (Δ and λ2) and thus such results are not shown.

The elastic effect observed in Fig. 1 is also remarkable. Taking the same friction
Reynolds number, the number and the size of hairpin vortices change reasonably. The
results show that, for the same value of the Q-criterion (i.e., for the same intensity of
rotation) there are less hairpin vortices in the viscoelastic cases than in theNewtonian,
which suggests that the intensity of hairpin vortices is reduced, as already observed
by Kim et al. [12]. Furthermore, hairpin vortices seem to be bigger in the viscoelastic
cases.

On the other hand, from the perspective of the objective versions, classic hairpin
vortices are no longer observed, as shown in Fig. 2. In fact, the objective criteria iden-
tify swirling-like regions, but their ensemble does not present anywell-defined shape.

4.1 Thickening Buffer Layer in Viscoelastic Flows

Since we could not identify any well-defined shape with the objective criteria, a
wall-normal plane placed in the middle of the channel and measuring the half-gap
height is investigated bellow.
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Fig. 1 Iso-contours of Q-criterion (Q = 1.5) for Newtonian (left column) and viscoelastic (right
column) fluids at Reτ = 180, 395, 590 and 1000

Fig. 2 Iso-contour for non-objective (a) and objective (d) versions of Q-criterion, and IR (b) and
AR (c, e and f) criteria for Newtonian fluid at Reτ = 180



On Objective and Non-objective Kinematic Flow Classification Criteria 425

Fig. 3 Contours of non-objective and objective criteria for Newtonian fluid at Reτ = 180. The
xy-plane is located in the middle of the channel

Aiming to better understand the differences observed between objective and
non-objective approaches, the criteria are normalized so that the results are always
between 0 and 1. The low values (from 0 to 0.5) represent swirling-like regions,
whereas the high values (from 0.5 to 1) represent non-swirling-like regions. If the
normalized criteria is equal to 0.5, than, in that point, the intensities of extension and
rotation are equivalent. Normalized criteria are marked with a superscript asterisk,
except for I R and AR, which are already normalized.

The analysis of the contours of the normalized criteria in wall-normal (xy-) planes
enables the observation of an interesting behavior that seems to be related to the drag
reduction phenomenon, as depicted in Figs. 3 and 4. Firstly, it is important to notice
that from the perspective of the classic Q-criterion, the Newtonian flow (Fig. 3a) is
globally dominated by regions where the intensity of the rate-of-rotation is similar to
the intensity of the rate-of-strain (Q∗ = 0.5). Nevertheless, there are some swirling-
like (Q∗ < 0.5, or darker) and non-swirling-like (Q∗ > 0.5, or lighter) regions
dispersed in the plane.

On the other hand, when analyzing the same snapshot from the perspective of the
normalized objective version of the Q-criterion (Fig. 3d), the flow seems to be swirl
dominated (Q∗

s < 0.5), except for a thin layer where Q∗
s ≈ 0.5. However, the other

objective criteria (Fig. 3b, c, e, f) present more homogeneous results qualitatively
closer to the those of the Q∗-criterion.

At a first impression, the results for the viscoelastic case depicted in Fig. 4 present,
in general, more elongated structures when compared to the Newtonian case (Fig. 3).

Interestingly, comparing the Newtonian and the viscoelastic results for the Q∗
s -

criterion (respectively, Figs. 3d and 4d), it is noteworthy that the thickness of the
layer where Q∗

s ≈ 0.5 increases in the latter case. We believe that this is due to the
thickening of the buffer layer caused by the presence of flexible polymers, leading to
drag reduction. Such physical effect has been already observed by many authors by
both experiments [13] and numerical simulations [4, 15, 16, 18], and has been pre-
dicted by the two most important theories on drag reduction phenomenon (Lumley’s
viscous theory [14], and Tabor and De Genne’s elastic theory [19]).
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Fig. 4 Contours of non-objective and objective criteria for viscoelastic fluid with L = 100 and
W eτ = 115 at Reτ = 180. The xy-plane is located in the middle of the channel

(a) (b)

Fig. 5 xz-plane averaged values of non-objective (left) and objective (right) criteria for Newtonian
fluid at Reτ = 180

The effect that seems to represent the thickening of the buffer layer is even more
evident in Figs. 5 and 6, which contain the values of all criteria evaluated in the
present work averaged at wall-parallel (xz) planes for Newtonian and viscoelastic
fluids, respectively, at Reτ = 180.

All non-objective criteria depicted in Figs. 5a and 6a present similar behavior.
Extensional and swirlingmotions have the same intensity within the near-wall region
and values tend to be slightly extensional near the center of the channel, whereas a
very weak rotational tendency is found for the Δ∗-criterion. The major difference is
that, for the viscoelastic case, the criteria are equal to 0.5 even near the center of the
channel, which is probably related to the thickening of the buffer layer.

Regarding objective criteria in Figs. 5b and 6b, as predicted by Figs. 3 and 4, the
I R criterion present a behavior which is similar to those of non-objective criteria.
It can be noticed that AR1 ≥ 0.5 and AR3 ≤ 0.5 in the whole domain. This fact
suggests that there is no perfect extension, where extension acceleration overcomes
rotation acceleration in the three directions, nor perfect swirling structure where
the opposite happens. What we have, instead, is a situation where at every point of
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(a) (b)

Fig. 6 xz-plane averaged values of non-objective (left) and objective (right) criteria for viscoelastic
fluid with L = 100 and W eτ = 115 at Reτ = 180

the domain there are directions where extension overcomes rotation and vice-versa.
The quantity AR2 shows that near the wall, the swirling structure has one direction
extensional-dominant, another swirling-dominant, and a neutral direction. Near the
centerline there are two directions where rotation dominates.

The objective versions of the classic criteria present behaviors which are qual-
itatively the same. In the near-wall region, they follow the tendency of their non-
objective counterpart, with a first layer around 0.5. However, near the center of the
channel, these criteria tend to identify swirl-dominated regions, opposing the modest
tendency of identifying extensional motion presented by the corresponding classic
non-objective criterion (except for Δ∗) in this region. Moreover, because the swirl
motion identified by such criteria is reasonably more intense, the deviation gets more
evident, enabling an estimation of the thickening, due to the presence of polymers,
of the layer related to the buffer layer. Comparing the results of the objective version
of the classic criteria in Figs. 5b and 6b, the thickness of the near-wall layer where
the value of the criteria is around 0.5 increases from y+ ≈ 8 in the Newtonian case
to y+ ≈ 40 in the viscoelastic case.

It is important to remark that the same analysis have been carried out for Reτ =
395, 590 and 1000. Nevertheless, the thickness of the buffer layer seems to depend
more on the percentage of drag reduction than on the Reynolds number. The results at
higher friction Reynolds are qualitatively similar to the case at Reτ = 180 differing
basically by the possibility to go further on the y+ scale.
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Quantification of the Full Dissipation Tensor
from an L-Shaped SPIV Experiment
in the Near Wall Region

Jean-Marc Foucaut, Christophe Cuvier, Michel Stanislas
and William K. George

Abstract An experiment was performed in the LML boundary layer facility to
determine all of the derivative moments needed to estimate the dissipation. The
Reynolds number was Reθ = 7500 or Reτ = 2300. A detailed analysis of the
errors in derivative measurements was carried out, as well as applying and using
consistency checks derived from the continuity equation and a local homogeneity
hypothesis. Local homogeneity estimates of the dissipation are accurate everywhere
within a few percent. Both local axisymmetry and local isotropy work almost as well
outside of y+ = 100, but only local axisymmetry provides a reasonable estimate
close to the wall.

1 Introduction

Stereoscopic PIV is now a recognized method to measure turbulent flow. Many
researchers also use this method to compute statistics of the flow such as mean
velocity, Reynolds stress tensor, probability density function or spectra [1–3]. SPIV
allows the measurement of the three components of the velocity in a plane with
an accuracy of about 1–2% (0.1 pixel). For a turbulent flow, it opens the unique
capability of studying the organization of the turbulence. Generally, due to the limited
spatial resolution of PIV, the smallest scales of the flow cannot be investigated. One
difficulty in the data processing comes from the noise amplification when derivatives
have to be computed [4]. However, the velocity gradient is necessary to determine
the vorticity, the shear, and specific criteria allowing the detection of vortices such
as the Q criterion or the swirling strength which are using tools to study the flow
organization. In the present paper, the idea is to propose a method to determine the
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dissipation rate of the turbulent kinetic energy ε as given by Eq.1, which combines
derivatives and statistical computations from a dedicated SPIV experiment.

ε = ν

[〈
∂ui

∂x j

∂ui

∂x j

〉
+

〈
∂ui

∂x j

∂u j

∂xi

〉]
(1)

This dissipation rate is strongly linked to the small scales of turbulence. It is a key
parameter of turbulence modelling. To obtain this full dissipation, it is necessary to
compute all the components of the instantaneous gradient tensor and to compute the
variance of each term together with a few covariances. This corresponds to a total of
twelve terms which can be organized in three groups:
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All of them are difficult to measure accurately. George and Hussain [5] propose to
simplify this computation by using different hypotheses in order to reduce the number
of terms. These hypotheses are respectively local homogeneity, axisymmetry and
isotropy of the small scales. Antonia et al. [6] have studied these different hypotheses
on DNS results from a channel flow at low Reynolds number. Balint et al. [7] and
Honkan and Andreopoulos [8] published some experimental results of dissipation
rate obtained by hotwire anemometry (HWA) in a turbulent boundary layer. A special
multiwire probe was specially designed for these measurements. These results are
globally of the same order as the DNS but, except for the derivative of the streamwise
component, the HWA results are different from the DNS ones. This is why, in the
present paper, benefit is taken of Stereoscopic PIV in two normal planes to compute
all the derivatives of the three velocity components in a turbulent boundary layer. The
limitation of this approach is that PIV resolves a range of scales which is between
the size of the field of view for the largest scales and that of the interrogation window
for the smallest ones [9]. Emphasis is put particularly here on the derivative filter
choice and on the measurement noise management.

2 Experimental Setup

The experiment was performed in the turbulent boundary layer wind tunnel of the
Laboratoire deMécanique de Lille. It is described in detail in Foucaut et al. [10]. The
Reynolds number is Reθ = 7500. The friction velocity is 0.115 m/s (deduced from
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Fig. 1 Top view of the
experimental setup

the log law with κ = 0.41) and the boundary layer thickness δ is about 30cm which
give Reτ = δ+ = 2300. Two SPIV planes were used in order to measure the three
components of the velocity and the instantaneous derivatives of these components.
As shown in Fig. 1, the two planes are normal to thewall and extend in the streamwise
and the spanwise directions, respectively. The field size is 8cm (620 wall units) both
in the streamwise and spanwise directions and 12cm (950 wall units) in the wall
normal direction. The final interrogation window size is 24×32 pixel corresponding
to 1.4 × 1.4 mm2 (12 × 12 wall units) in both planes. The grid spacing is 0.5mm
(3.8 wall units), which corresponds to a mean overlapping of 66%. Figure2 gives an
example of the instantaneous field of the streamwise component in both planes. A
total of 12000 fields was recorded. At the intersection of the two fields, Foucaut et al.
[10] computed an estimation of themeasurement uncertainty of the order of 0.1 pixel,
which is standard for a good SPIV measurement.

Figure3 shows the turbulence intensity profiles in the two planes compared with
hot wire anemometry (HWA). These results are in good agreement above 20 wall
units, except for the spanwise component which presents a difference below 40 wall

Fig. 2 Example of the instantaneous streamwise component velocity fields
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Fig. 3 Turbulent intensity profiles in the two planes compared to HWA by [11]

Fig. 4 Comparison at y+ = 200 of the streamwise velocity spectra from PIV with HWA data from
[11] using a local Taylor hypothesis

units probably due to the mean velocity gradient at the scale of the X-wire probe.
Figure4 presents the E11 spectrum computed from the streamwise SPIV plane at a
distance of 200 wall units compared to the HWA spectrum based on a local Taylor
hypothesis and the model of Foucaut et al. [9]. The agreement is perfect below
k = 900 rad/m. This figure shows also that the spectrum follows a slope of −3.5
for the highest wave numbers. This has no theoretical basis but will be used for the
derivative optimization in Sect. 3.

3 Derivative Computation

The derivatives are computed using a second-order centred difference scheme as
proposed by Foucaut and Stanislas [4]. As the signal to noise ratio and thus the
PIV cut off frequency vary with wall distance, the derivative filter is optimized as a
function of this distance. The basic scheme is
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∂ui

∂x j
= u p+n
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+ σ ∂ui
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, (3)

where Δx j is the grid spacing along x j . The first term on the right-hand side corre-
sponds to a second-order derivative scheme. The second term on the right-hand side
corresponds to the truncation error. Increasing the value of n decreases the cut off
frequency of the scheme. The term σ ∂ui

∂x j

is the noise error on the derivative propor-

tional to the quadratic sum of the coefficients used to compute the derivative and the
randommeasurement error on the velocity [4]. It is also inversely proportional to the
spacing [4]. This term gives an idea of the noise amplification. The higher the n, the
lower the noise is. Table1 gives the values of the cut off frequency and noise level
for 1 < n < 4. For n = 3, the cut off frequency is 925 rad/s, which is of the order of
the PIV cut off frequency at y+ = 200 as shown in Fig. 4.

The measurement noise is relatively constant but the signal decreases when the
wall distance increases. The cut off frequency of the derivative scheme has also to
decrease. For this reason, the derivative is computed from

∂ui

∂x j
=

∑
n=1,4

an
u p+n

i − u p−n
i

2nΔx j
, (4)

where the an coefficients are optimized as a function of the wall distance to obtain the
good cut off frequency. The optimization of this frequency is based on the spectrum
model of Foucaut et al. [9] whose signal to noise ratio is one at the cut-off wave
number:

E11PIV = (E11turb + Enoise)
sin(kcW S/2)

kcW S/2
= 2E11turb, (5)

where E11turb is the turbulence spectrum measured by HWA, Enoise is deduced
from the model of [9] plotted in Fig. 3 (see [10]) and W S is the interrogation window
size. For the estimation of kc versus the wall distance, E11turb is approximated by
B(ηkc)

−α where η is the Kolmogorov length scale given by η+ ≈ y+1/4 in a ZPG
boundary layer. In this approximation, B is the energy level at k = 1/η of the order of
10−10 and α is of the order of 3.5. These two parameters are deduced from a fit on the
HWA spectrum as shown in Fig. 4 and are kept constant for all the wall distances.

Table 1 Characteristics of
the derivative schemes

No. kc (rad/m) σ ∂ui
∂x j

1 2800 45.44

2 1350 22.72

3 925 15.15

4 700 11.36
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Fig. 5 Evolution of the
coefficients an versus the
wall distance

Fig. 6 Spectrum of the term〈
∂u1
∂x1

∂u1
∂x1

〉
compared with

DNS at 200 wall units

The values of kc are not very sensitive to the parameter α. A fit with α = 3, 3.5
and 4 leads to the same order of kc. The values of an are selected to reproduce
the kc computed from Eq.5 and are plotted in Fig. 5. The value of kc decreases
monotonously from about 3000 to 800 rad/s when y+ increases from 20 to 900.

Figure6 shows a comparison of the spectrum of ∂u1
∂x1

obtain here by SPIV at
Reτ = 2300with theDNSof Jimenez [12] at y+ = 200 for aReynolds number Reτ =
2000. Both spectra are in relatively good agreement. The PIV slightly underestimates
the energy for kxη smaller than 0.4 and overestimates it when kxη is higher, but
globally the integral of both give the same value.

As two normal planes were measured here, the term
〈
∂ui
∂x2

∂ui
∂x2

〉
can be computed in

the streamwise or in the spanwise plane or by the product of derivative in each plane.
The last possibility gives a variance computed by two different SPIV system. The
result is then free from noise as the noises from the two systems are uncorrelated.
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By comparison of the three different estimations, the noise can be deduced for
each component and each system. As an example, it is found that σ ∂u1

∂x2

∣∣∣
XY

≈ 10 s−1

and σ ∂u1
∂x2

∣∣∣
Y Z

≈ 15 s−1 for the present configuration. Following Foucaut and Stanislas

[4], from these estimations, the measurement noise of the velocity can be deduced.
For each plane and each velocity, it is of the order of 0.1 pixel, which corresponds
to the value estimated at the intersection of the two planes [10].
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4 Dissipation Rate

4.1 Isotropic Turbulence

The hypothesis of local isotropy allows the reduction of the number of terms down
to one:

ε = 15ν

〈
∂u1

∂x1

∂u1

∂x1

〉
(7)

This is often assumed coupled with a local Taylor hypothesis when a single hot wire
is used to estimate the dissipation. It is based on the following relations between the
12 terms of Eq.2:
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As can be seen from Fig. 7, which gives the profiles of different terms of Eq.8,
the corresponding relations are well validated for y+ > 100. In Fig. 7 and in the
following figure the derivative will be noted < ui, j uk, l > to lighten the legends.
Below y+ = 100, differences grow when approaching the wall, reaching two and
even three orders of magnitude.

4.2 Homogeneous Turbulence

When the hypothesis of local homogeneity is applied, the second term of Eq.1 is
cancelled. This hypothesis allows the ε computation without any crossed term and
the dissipation rate is reduced to the sum of 9 derivative terms:

ε = ν

〈
∂ui

∂x j

∂ui

∂x j

〉
. (9)

Fig. 7 Terms of ε to
evidence their relation in the
case of the local isotropy
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Fig. 8 Covariances of the
velocity gradient to evidence
their relation in the case of
homogeneous turbulence

Coupled with the continuity, this hypothesis is validated if the following relations
are verified (see [5]):
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Figure8 presents the profiles of the different terms of Eq. 10. These relations are
well validated except for i = 1 and j = 2 for which it is true above y+ = 25. As
shown in Fig. 3, the accuracy on the velocity decreases below y+ = 20. Due to the
use of a centred scheme, it is difficult to conclude because of the uncertainties on the
derivative estimation so close to the wall.

4.3 Axisymmetric Turbulence

The hypothesis of axisymmetric turbulence allows computing ε with only four
terms [5]:
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This hypothesis is assumed if the following relations are validated:
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Fig. 9 Terms of ε to
evidence their relation in the
case of the axisymmetric
turbulence

Figure9 show the profiles of the different terms corresponding to Eq.12. The corre-
sponding relations are validated for y+ > 25. As for the homogeneity hypothesis,
below this value, it is difficult to conclude because of the measurement uncertainties.

4.4 Results

A comparison of the results obtained with the different hypotheses is presented in
Fig. 10. They are also comparedwith theDNS results from Jimenez [12] at aReynolds
number of Reτ = 2000. The experimental results are in relatively good agreement
with the DNS but the slight under estimation is probably due to the filtering of
small-scale structures by the SPIV. Figure11 gives the error on ε computed with
each hypothesis using the full dissipation of Eq.2 as a reference. Apart from some
fluctuations due to a lack of convergence of some terms, the dissipation rate computed
with the three hypotheses is close above 100wall units. Below this value the isotropic
method underestimates ε significantly. Below 25 wall units it is difficult to conclude
on the reliability of the other hypothesis because of the measurement uncertainties.
The good agreement between the axisymmetric and full approaches down to the
closest wall point can nevertheless be noted.
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Fig. 10 Comparison of the
dissipation rate ε computed
with different hypotheses

Fig. 11 Errors on the
dissipation rate computed
with different hypotheses,
the full computation is used
as a reference

5 Conclusion

For turbulence modelling, it is of prime importance to characterize the dissipation
rate. This key parameter is difficult to access in practice as it involves all the terms
of the velocity gradient tensor and implies a very good spatial resolution. With this
objective, a specific SPIV experiment allowing the derivative computation along
the three directions of space was carried out. The measurement noise and the cut off
frequency of the derivative schemeswere optimized in order to select the best second-
order centred scheme depending on the wall distance. The noise characterization
was done by a comparison of the variance of derivatives along y obtained from
two measurement planes. With the present two planes approach all the terms of the
dissipation rate of the turbulent kinetic energy can be computed. As inmany cases the
full velocity gradient tensor is not available; different hypotheses have been proposed
for a long time in the literature to try to assess the dissipation. The comparison of
these hypotheses is performed here, thanks to the specificity of the experimental
data available. The isotropic turbulence hypothesis is biased below 100 wall units.
Both hypotheses of homogeneous and axisymmetric turbulence give results close
to the full expression of ε (from Eq.1) above 25 wall units. At this wall distance,
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we are very close to the spatial resolution and noise limit of the present experiment,
so it is then difficult to conclude about the origin of the differences observed. The
experiment could be repeated with a higher spatial resolution in order to obtain more
valid points closer to the wall. Nevertheless, in most of the boundary layer, it appears
that the axisymmetric hypothesis, which allows us to assess epsilon with a simple
SPIV set-up, gives a good estimation of the full turbulent kinetic energy dissipation.
Compared to DNS, a small underestimation is observed, which can be attributed to
the filtering of the smallest scales. This bias could probably be estimated from a
spectral analysis.
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