
Context-Awareness in Task Automation Services
by Distributed Event Processing

Miguel Coronado1(B), Ralf Bruns2, Jürgen Dunkel2, and Sebastian Stipković2

1 Grupo de Sistemas Inteligentes, Universidad Politecnica de Madrid,
Calle Ramiro de Maeztu, 7, 28040 Madrid, Spain

miguelcb@dit.upm.es
2 Department of Computer Science, Hochschule Hannover -

University of Applied Siences and Arts, Ricklinger Stadtweg 120,
30459 Hannover, Germany

{Ralf.Bruns,Jurgen.Dunkel,Sebastian.Stipkovic}@hs-hannover.de

Abstract. Everybody has to coordinate several tasks everyday, usually
in a manual manner. Recently, the concept of Task Automation Services
has been introduced to automate and personalize the task coordination
problem. Several user centered platforms and applications have arisen in
the last years, that let their users configure their very own automations
based on third party services. In this paper, we propose a new system
architecture for Task Automation Services in a heterogeneous mobile,
smart devices, and cloud services environment. Our architecture is based
on the novel idea to employ distributed Complex Event Processing to
implement innovative mixed execution profiles. The major advantage of
the approach is its ability to incorporate context-awareness and real-time
coordination in Task Automation Services.

Keywords: Distributed Task Automation Services · Complex Event
Processing · Personalized services · Context-awareness · Mobile services

1 Introduction

Nowadays, most users of smartphones, smart devices, social platforms, and cloud
services use these emerging technologies to coordinate their private and business
tasks (and, of course, for other purposes). However, the numerous coordination
tasks are still performed manually to provide different technical platforms and
human participants with new information or to trigger appropriate actions. To
overcome with this cumbersome and time-consuming procedure, Task Automa-
tion Services (TAS) platforms have been introduced recently.

Task Automation Services allow the users to automate their tasks by defining
simple rules instead of performing manually all the required steps of a task. If
these automation rules are matched by events that are emitted by smartphones
or by services (such as Twitter or Dropbox), they trigger a desired reaction.
For instance, some users may want to “post in Twitter their Facebook status as

c© Springer International Publishing Switzerland 2015
B. Benatallah et al. (Eds.): WISE 2014, LNCS 9051, pp. 190–203, 2015.
DOI: 10.1007/978-3-319-20370-6 15

Context-Awareness in TAS by Distributed Event Processing 191

soon as they publish it”. Others may also need to “update their Twitter profile
picture any time they change their Facebook’s”.

Currently, several TAS platforms are available to provide this type of func-
tionalities. We can distinguish two types of TAS’s depending on the platform
they are running on:

– Web-based TAS’s such as Ifttt1, Zapier2 and Elastic.io3 are deployed as cloud
services. They collect personal events by accessing appropriate web services
on behalf of the user and provide a simple rule editor.

– Smartphone-based TAS’s such as AutomateIt4 and Tasker5 run on a smart-
device and have access not only to data via web services, but also to the local
resources of the device, e.g. the embedded smartphone sensors.

Task Automation Services rules may be executed according to different execution
profiles that define where rule execution takes place. According to the above
mentioned TAS types, we may distinguish:

1. A web-driven execution profile centralizes the rule execution on a server, allow-
ing lightweight clients at the cost of requiring Internet connection. Typically,
clients setup and manage the rules by a web page. Alternatively, smartphone
apps could provide the same functionality. Web-driven execution profiles may
have to cope with a huge amount of incoming events; they may have access
to a large set of channels and may coordinate events from different users.

2. A device-driven execution profile executes all rules on the device itself, allow-
ing offline rule execution (when only local resources are involved). Usually,
when we talk about device-driven TAS, we refer to smartphone apps, although
the definition is not restricted to smartphone devices. Rules in a device-driven
execution profile can exploit the device-specific data, e.g. provided by the
smartphone sensors. Therefore, some rules could derive the users’ local con-
text or current situation.

3. A mixed execution profile benefits from the advantages of both previous pro-
files. It distributes the execution of automation rules between clients (smart
devices) and servers. However, mixed execution profiles require a distributed
and, therefore, more complex system architecture and more complex rules.

Note that current TAS systems are still rather restricted: they allow only the
definition of very simple rules. Furthermore, they cannot combine web-driven
and device-driven execution profiles, i.e. mixed execution profiles are yet not
available.

In the following, we will present an innovative architecture for Distributed
Task Automation Services supporting mixed execution profiles. Our approach
1 http://ifttt.com.
2 http://zapier.com.
3 http://www.elastic.io/.
4 http://automateitapp.com/.
5 http://tasker.dinglisch.net.

http://ifttt.com
http://zapier.com
http://www.elastic.io/
http://automateitapp.com/
http://tasker.dinglisch.net

192 M. Coronado et al.

is based on the employment of Complex Event Processing (CEP). CEP is a
novel software technology for processing continuous streams of data in near real-
time [9]. The basic concept of CEP is in-memory pattern matching, which means
to identify in data streams those patterns of data that represent a meaning-full
situation in the application domain.

In our approach, we use CEP to build a Distributed TAS system that is
capable of coordinating peoples’ tasks in real-time. The approach provides the
following features:

– Context-awareness: The current activities, contexts and situations of the partic-
ipating users can be concluded by correlating sensor data of their smartphones
(e.g. accelerometer, GPS) and further domain-specific context information. The
corresponding rules are realized in a device-driven execution profile.

– Coordination: Appropriate TAS rules coordinate various participants by taking
into account their current context and situation information. They are realized
according to a web-driven execution profile, which is implemented on a central
server.

The paper is structured as follows. In the following section, we present a TAS
coordination scenario that motivates our approach, and which is used to explain
our approach in the subsequent sections. Then in Sect. 3, we present the basic
concepts of Complex Event Processing. In Sect. 4, we describe our general archi-
tecture of a Distributed TAS system. In the subsequent sections, we evaluate our
approach and present some implementation issues. The related work is discussed
in Sect. 7. Finally, we summarize the most significant features of our approach
and give a brief outlook on future lines of research.

2 TAS Coordination Scenario

Task Automation Service’s (TAS’s) are highly flexible platforms that users can
use to orchestrate task automation addressing many different situations. The
scenario we describe in this section presents a complex use case, where various
smart devices determine the current situations of their owners, which are then
broadcasted to a central Task Automation Service that performs appropriate
coordination tasks. Note that each smart device is capable to orchestrate sim-
ple automations on their own, but that a centralized TAS platform is used for
coordination purposes.

Consider the following use case: Patricia and Thomas live together. They
share the housework, which also includes outside tasks such as shopping, sharing
the car, or picking up their children from the kindergarten. Since they work in
different parts of the city, they cannot devise a fixed schedule beforehand. In
the past, it required a high coordination effort for them to organize these things
manually by phone calls or text messages. Sometimes it happened that they
didn’t notify each other, causing that both of them went shopping at the same
time (buying the needed groceries twice) or forgetting to tell that they have
already picked up the kids.

Context-Awareness in TAS by Distributed Event Processing 193

Because they both use TAS for their personal automations, they decided to
share several rules that help them in coordinating these tasks. They set up rules
to automatically inform each other, when they are in a certain situation or doing
a certain activity. Using the GPS sensors of Patricia and Thomas’ smartphones,
the TAS can deduce the concrete situation, in which the two of them are, causing
an appropriate action. In the usual TAS terminology, one rule could be read as
“When I am at the supermarket, then text my mate that I’m shopping”. Then,
if Thomas goes to the supermarket after work, Patricia will know he is doing
the shopping, so she does not need to go there.

The task “picking up the children” requires that one of them is at the kinder-
garten shortly before the children are dismissed. Therefore, it requires the TAS
to coordinate ahead, taking journey times from their current position to the
kindergarten into account. The task could be expressed as “Everyday, either
Patricia or Thomas must be at the kindergarten at 17 o’clock. Usual rules for
coordinating this task could be “When I’m at home and my mate is still at
work, remind me I should pick up the children” and “If my mate was at the
kindergarten, inform me that I don’t have to pick up the children”.

In particular, automatic task coordination avoids manually triggered notifica-
tions, which are error-prone and awkward. Furthermore, corresponding messages
can take the current situation of the recipient into account, i.e. they are only
delivered, when the recipient is in a ready-to-receive mood.

3 Complex Event Processing

Complex Event Processing is an innovative software technology for processing
continuous streams of events in near real-time [9,10]. Everything that happens
inside or outside of a system is considered as an event. CEP analyses streams of
incoming events to detect the presence of event patterns.

An event pattern is a particular sequence of events with a special meaning
for the application domain. A pattern match signifies a meaningful situation or
state of the environment and causes either the generation of a new complex event
or triggers a domain-specific action. Complex events correlate between simple
events and provide the real power of CEP.

Event stream processing systems manage the most recent set of events in-
memory and employ sliding windows and temporal operators to specify temporal
relations between the events in the stream. The core concept of CEP is a declara-
tive event processing language (EPL) to express event processing rules. An event
processing rule contains two parts: a condition part describing the requirements
for firing the rule and an action part that is performed if the condition matches.
The condition is defined by an event pattern using several operators and further
constraints [3].

In the following, we use a simplified pseudo language for expressing event
processing rules, which is easier to understand than an EPL of a productive
CEP system. This pseudo language supports the following operators:

194 M. Coronado et al.

Operators
AND, OR Boolean operator for events or constraints

NOT Negation of a constraint
-> Sequence of events

Timer Timer(time) defines a time to wait.
Timer.at(daytime) is a specific (optionally periodic) point of time

.within defines a time window in which the event has to occur

An event processing engine analyses the stream of incoming events and executes
the matching rules. Event processing rules transform low level simple events
into more complex events in order to gain insight into the current state of the
environment.

Luckham introduced the concept of event processing agents (EPA) [10]. An
EPA is an individual CEP component with its own rule engine and rule base.
Several EPAs can be connected to an event processing network (EPN) that
constitutes a software architecture for event processing. Event processing agents
communicate with each other by exchanging events.

4 Architecture

In this section, we present an architecture for Distributed TAS supporting mixed
execution profiles. In particular, our architecture exploits the sensor data of the
smart devices for achieving situation awareness.

4.1 Architecture Overview

An overview of the overall system architecture is given in Fig. 1. The distrib-
uted architecture shows the different TAS rule engines according to the mixed
execution profile definition. We can distinguish the following components:

Smart devices: The system consists of numerous smart devices, which have the
following responsibilities in the system. First, they collect all events emitted
by its sensors and other local resources (the so-called content providers). The
streams of events are processed on each smart device by its own CEP rule
engine, which contains appropriate rules for providing semantic inference. In
particular, the CEP rules filter, process and enhance the observed data events
to produce richer situation events that reflect the current users’ context. All
the situation events are sent to the server to allow cross-user coordination.
Furthermore, smart devices can perform conventional task automation rules.
These rules can react on responses of the coordination server, or they are
either server-independent and can be processed locally.

Coordination Server: The central Coordination Server is deployed to the cloud
and responsible for coordinating the smart devices and their users. For this
purpose, it also has its own CEP engine with appropriate coordination rules
that manage the smart devices taking the users’ current context into account.

Context-Awareness in TAS by Distributed Event Processing 195

Fig. 1. Architecture overview of a distributed TAS system with coordination

Furthermore, the server provides support for conventional task automation
rules, that orchestrate automations between web channels.6

Channels: Additionally, both the smart devices as well as the coordination server
have access to web services (the so-called channels), using specific connec-
tors.7 These web services can provide the system with more necessary context
information, e.g. weather or traffic data.

In our architecture we distinguish CEP rules from Task Automation rules:
Because CEP rules allow temporal reasoning, all rules that involve movement,
or GPS positioning will be defined as CEP rules. Note that CEP rules provide
some form of semantic inference: they shift simple events (e.g. sensor events)
to complex events (e.g. situation events) that assign the occurred events a new
non-obvious and semantically richer meaning.

4.2 CEP for TAS

In this section, we will explain in some more detail, how Complex Event Pocess-
ing(CEP) in our TAS architecture works (see Fig. 1). In our approach, CEP is
based on a multi-staged Event Processing Network (EPN) in order to logically
structure and modularize the event processing rules.
6 This is the case for rules like “Whenever I receive an email with attachment save

that attachment on my Dropbox”, those are out of the scope of our scenario, but
they are still supported by our system.

7 In most cases, they are implemented by API connectors (because most third party
web service developers offer it); however, webhooks or pub-sub are even more con-
venient approaches to work with events on the cloud.

196 M. Coronado et al.

To make the explanation of our approach concrete, we will use our application
scenario presented in Sect. 2. The following Fig. 2 shows a set-up with two dif-
ferent smartphones8 and the central Coordination Server. The Event Processing
Network contains various Event Processing Agents (EPAs) that are distributed
on the different devices.

Fig. 2. Event Processing Network for distributed TAS

The EPN defines the archetypal processing stages and the related EPAs,
which are common to most TAS systems. However, the particular event process-
ing rules must be adapted to a specific application scenario. In the following we
describe the responsibilities of each EPA.

Cleaning/Filtering Agent

The Cleaning/Filtering Agent is deployed to the smartphones and collects all
sensor events, such as the GPS events. Sensor data is often inconsistent or has
redundant information, because sensors are noisy and have a fixed sampling rate.
Therefore, in a first step, all technical sensor events have to be pre-processed to
overcome inconsistencies or to filter out irrelevant events.

For instance, GPS sensor data is generated with a fixed sampling rate. Thus,
many subsequent GPS events are logically identical. But the TAS system is
only interested in situation changes, and not in the repetition of events carrying
similar measured values. Therefore, the Filtering Agent filters out those GPS
events that are related to the same geographical position. The following event
processing rule has the task to find out, if the phone has been moved to a new
position.
8 Other types of smart devices like smart home devices are possible, which would have

their own domain-specific EPN.

Context-Awareness in TAS by Distributed Event Processing 197

rule:"new phone/user position"
CONDITION GPS-Event AS g1 ->

GPS-Event AS g2
AND (Geo.isDifferent(g1,g2))

ACTION new PositionEvent(g2.x, g2.y)

The rule “new phone/user position” expresses a temporal sequence of GPS events
(by the following operator “->”) and assigns the alias names g1 and g2 to them.
The newer event g2 represent the current position of the user and is only relevant
if the GPS position has significantly changed, which is checked by the service
Geo.isDifferent(...). In the action part of the rule, a new Position event
with the information of the current position is triggered.

Behavior Agent

The incoming Position events are correlated with further sensor events (e.g.,
Acceleration sensor events) to determine the particular behavior of the user.
New (more complex) Motion events are created that characterize the current
behavior of the smartphone user. Here we consider the different types of motion
such as “walking”, “driving”, “staying”. The following rule derives that the user
is staying for a longer time a certain position.

rule: "staying"
CONDITION PositionEvent AS pos ->

NOT (PositionEvent).within(5 min)
ACTION new StayingEvent(pos)

The above rule assumes that the user is staying at a certain position, if a Position
event is not followed by a new Position event within a time interval of 5 min. The
operator .within defines a time window, in which a certain event has to occur.

The next rule derives a corresponding Driving event. The average velocity of a
moving user can be calculated by aggregating all Position events within the last
five minutes and determining the average of the measured speed values. The speed
is determined by a method getSpeed(..) that is provided by the GPS sensors. If
the speed is faster than 15 km/h, it is concluded that the user is driving.

rule: "driving"
CONDITION PositionEvent.avg(getSpeed())

.within:batch(5 min)
AS avgVelocity
AND avgVelocity > 15 km/h

ACTION new DrivingEvent(avgVelocity)

In summary, the Behavior Agent processes a correlation step to synthesize Motion
events. All Motion events are subsequently propagated to the Situation Agent.

198 M. Coronado et al.

Situation Agent

In the next processing stage, the Situation Agent is determining the current situa-
tion of the smartphone user. The situations of interest depend on the concrete use
case scenario. For instance, in our example scenario ‘picking up the children from
kindergarten’, we want to know, where each family member is and if the children
have already been picked up.

The incoming Location and Motion events are carrying only GPS coordinates
that have no specific meaning in the TAS domain, and are not sufficient for further
processing. Therefore, the GPS data should be transformed to domain locations.
A first enrichment step relates GPS coordinates to a real address, which can be
done by a reverse geocoding API, e.g. provided by GoogleMaps. Then the address
can be mapped to a relevant location of the user, such as “kindergarten”, “home”
or “work”. An example gives the following simple rule that derives a “working”
situation:

rule: "In Working situation"
CONDITION (StayingEvent AS stay

-> NOT PositionEvent)
AND LocationFinder.getLocation(stay.position) == "work"

ACTION new WorkingEvent(user)

If the system has created a Staying event, which is not followed by a new Position
event (i.e. no significant movement has occurred afterwards), then the GPS posi-
tion is checked in a utility class LocationFinder.getLocation(..). If the posi-
tions corresponds to the users’ workplace, a new Working event will be created.

All Situation events are sent to the TAS server in order to allow task coordi-
nation based on the current situations of the users.9 Therefore, the Working event
will carry information for identifying the smartphone user.

Coordination Agent

The Coordination Agent is deployed to a central cloud server and responsible for
coordination tasks. All smart devices send their Situation events to the Coordina-
tion Agent that coordinates common tasks and conflicts centrally. In the kinder-
garten example, the following simplified rule could determine that the person,
which is not working, has to pick up the children.

rule: "picking up children"
CONDITION

(WorkingEvent(u1) -> NOT SituationEvent(u1)) AND
(HomeEvent(u2) -> NOT SituationEvent(u2))
-> Timer.at(17 o’clock)

ACTION new PickUpChildrenEvent(u2)

9 Detected situations can also generate Action events which are sent to an app on the
smartphone in order to trigger an appropriate app action.

Context-Awareness in TAS by Distributed Event Processing 199

The rule matches, if for user u1 a Working event and for user u2 a Home event
has occurred. To make sure that their situations haven’t changed, no subsequent
Situation events may have occurred. Furthermore, the current time must be 17
o‘clock. If all this holds, then a PickUpChildrenEvent is created for the user u2,
who is already at home. Additionally, the SituationAgent triggers an Action event,
which prompts or signals the user u2 to pick up the children from the kindergarten.

Note that this a simplified example. For a realistic coordination mechanism
more sophisticated rules are necessary.

4.3 TAS Event Model

The event model of our TAS application is depicted in Fig. 3 showing the different
types of events that are used by the event processing rules presented above. Note
that the grey boxes represent the generic event types common to most classes of
TAS coordinating systems. The various subtypes are more specific, here to our use
case described in Sect. 2.

Fig. 3. Event model

The TAS system makes use of the following types of events:

– Sensor events are explicit events that are emitted by explicit event sources, here
the sensors of the mobile devices. In particular, we can distinguish GPS events,
Acceleration events and Position events, which are filtered GPS events.

– Motion events describe the current motion of a user and are produced by
CEP rules that correlate various Sensor events. In our example, we distinguish
Driving, Walking and Staying events.

– Situation events describe the current situation of a user, which is application
specific (in our case we consider Working, Home and Kindergarten events).

– Coordination events are a result of a coordination rule that correlates vari-
ous Situation events from different users/devices. Coordination events are sent
back to the related mobile devices. They inform the user about task they are
obliged to.

200 M. Coronado et al.

5 Evaluation

The presented architecture distributes TAS coordination on different components:
the smartphones provide local situation-awareness for each user. The central web
server is aware of the global situation and is responsible for coordinating the tasks
of all participating users. Our architecture offers the following advantages:

– Reduced network traffic: Sensor data is processed directly on the mobile device
and not send to the central server. Because the sensors of potentially many users
may produce a high volumes of data, the overall network traffic is reduced sig-
nificantly.

– Exploiting local processing power: Processing data on the smart devices also
exploits the processing power of mobile devices, which nowadays is reasonable.
The central coordination server doesn’t have to track each movement of each
device.

– Privacy: All participants get only the information that is relevant and necessary
for them to know: In our scenario, users are not able to track GPS coordinates
of other users, which would violate privacy. They only receive messages about
what they are obliged to do. Furthermore, private and sensible user data such
as working places, kindergarten or home addresses must not be revealed to a
central server.

6 Implementation Issues

The Distributed TAS architecture shown in Fig. 1 has been implemented prototyp-
ically in order to prove the feasibility of our approach. As smart devices we used
smartphones with the Android operating system. The smartphones are the mobile
clients of the central coordination server.

The client application (= app) has been developed with the Android applica-
tion framework that provides access to the local device resources like hardware
sensors of the device and the data of all installed applications. So far, commercial
CEP engines have not been developed for mobile operating systems. However, the
popular open source CEP engine Esper10 (in version 3.2) has recently been ported
to the Android platform: the open source CEP engine Asper11 is based on Esper
4.9.0. Asper provides the most important features of powerful CEP systems for the
Android platform, so that we could use it with minor problems as the code base
for our Distributed TAS system.

We identity three different types of communication between actors in out archi-
tecture. The mobile devices send their events to the HTTP interface of the central
coordination server. On the coordination server the incoming events are processed
by the open-source CEP engine Esper.

The coordination server pushes notifications to smarphone devices (e.i.
Android applications) using Google Cloud Messaging for Android (GCM)12. GCM
10 http://esper.codehaus.org/.
11 https://github.com/plingpling/asper.
12 http://developer.android.com/google/gcm/index.html.

http://esper.codehaus.org/
https://github.com/plingpling/asper
http://developer.android.com/google/gcm/index.html

Context-Awareness in TAS by Distributed Event Processing 201

enables asynchronous and resource-saving communication from the TAS server to
the mobile CEP application. As illustrated in Fig. 1, both the Android application
and the central server have access to cloud services by means of so-called channels,
which are implemented as web services. By specific connectors, those web services
provide further context information like weather and traffic data.

As our implementation responds to a prototype and its objetive it to proof the
viability of our architecture and its benefits, we have not considered necessary to
include security mechanisns to guarante personal data may not be leaked out from
the server. However, it is obvious that the alternative scenario where all GPS infor-
mation is shared p2p shows more privacy risks. For similar reasons, a rule editor
has not been developed. Thus, all user rules are coded according to the pseudo
language described in Sect. 3 and stored in-memory.

7 RelatedWork

The employment of Complex Event Processing for Task Automation Services
is a novel field of application, where only very first approaches have been pub-
lished [5]. In general, related work shows task automation approaches conceived
to solved particular problems, that lack of the flexibility and personalization capa-
bilities that characterize Task Automation Service’s. Automating business rules
correlating events coming from different processes is a good showcase with lots of
researches behind [6]. Smarthome automations constitute a renewed usecase where
smartdevices can coordinate to work in a desired way e.g. for energy saving [7].

On the other hand, commercial TAS like Ifttt or Zapier lack of CEP i.e. they
process incoming events as soon as they arrive, so rules are always triggered by a
single event. This is not the case of automations on the IoT field. Several authors
propose systems where built-in rules are triggered by correlated events coming
from different sensors [2,4,8]. SPITFIRE platform [5] is close to Task Automation
Service’s vision, since it provides a user interface to set up rules (called queries).
However, they only consider connecting sensors and actuators, not cloud services.
They do not address task coordination either. CASAS [13] constitutes a different
approach, it uses a Machine Learning algorithm to learn from the resident’s daily
activities and generate automation polices that mimic these patterns.

In general, CEP engines have been primarily developed for the emerging mar-
ket of business information systems. The engines are deployed on powerful server
systems and process high level events from backend business processes. Commer-
cial vendors of CEP engines have focused on this profitable enterprise market seg-
ment [15]. Until a few years ago, mobile operating systems were rather inefficient
and the computing resources ofmobile deviceswere very limited.As a consequence,
vendors have not been interested to develop a CEP engine for this area of use.
Along with the rise of computing power of mobile devices, recently, first propos-
als demonstrate the applicability of CEP for processing data streams emitted by
mobile devices, in particular by the embedded sensors. However, either the mobile
devices serve merely as special event sources [1,12] or the sensor data are only
preprocessed on the mobile device in order to achieve context-aware event filter-
ing [11]. The real event processing of mobile data sources is usually still executed

202 M. Coronado et al.

on powerful backend servers. The execution of sophisticated event processing rules
directly on the mobile device is still a rather new approach [14]. Consequently,
mixed execution profiles for distributed event processing have not been proposed
so far.

8 Conclusion

Task Automation Services is an emerging area with multiple application domains
and challenging technical implications. In this paper, we presented an innovative
system architecture for context-aware and personalized TAS. Applying Complex
Event Processing and mixed execution profiles are novel concepts for TAS. The
proposed TAS architecture possess the following properties.

– Situation- andContext-Awareness: The built-in sensors of smartphones or other
smart devices provide the TAS system with a continuous stream of context data.
Event processing rules are used to aggregate and correlate the sensor data to
more abstract and more meaningful situation data.

– Coordination: We introduced a TAS cloud server that provides cross-user coor-
dination exploiting the context data of each participant.

– Real-time Processing: The real-time capabilities of CEP are exploited on the
cloud-based TAS as well as on the device-based TAS.

– Distributed Processing: by mixed execution profiles combine the advantages of
formerly separated web-driven as well as device-driven execution profiles.

In summary, our approach leads to a new quality of TAS: Distributed Task
Automation Services.

In future work, we intend to investigate more complex task coordination sce-
narios with advanced mixed execution profiles. In particular, the incorporation of
diverse smart devices, such as smart home automation devices or smart vehicles,
seems to be very promising.

Acknowledgement. This work was partly funded by the Spanish Ministry of Economy
and Competitiveness through the project Calista (TEC2012-32457).

References

1. Amade, D.: Joining oracle complex event processing and J2ME to react to loca-
tion and positioning events (2010). http://www.oracle.com/technetwork/articles/
amadei-cep-090595.html

2. Arcelus, A., Jones, M.H., Goubran, R., Knoefel, F.: Integration of smart home tech-
nologies in a health monitoring system for the elderly. In: 21st International Confer-
ence on Advanced Information Networking and Applications Workshops (AINAW
2007), vol. 2, pp. 820–825. IEEE (2007)

3. Bruns, R., Dunkel, J.: Event-Driven Architecture: Softwarearchitektur für ereignis-
gesteuerte Geschäftsprozesse. Springer, Heidelberg (2010)

http://www.oracle.com/technetwork/articles/amadei-cep-090595.html
http://www.oracle.com/technetwork/articles/amadei-cep-090595.html

Context-Awareness in TAS by Distributed Event Processing 203

4. Byun, J., Jeon, B., Noh, J., Kim, Y., Park, S.: An intelligent self-adjusting sensor
for smart home services based on ZigBee communications. IEEE Trans. Consum.
Electron. 58(3), 794–802 (2012)

5. Chatzigiannakis, I., Hasemann, H., Karnstedt, M., Kleine, O., Kroller, A., Leggieri,
M., Pfisterer, D., Romer, K., Truong, C.: True self-configuration for the IoT. In:
2012 3rd IEEE International Conference on the Internet of Things, pp. 9–15. IEEE,
October 2012

6. Daum, M., Götz, M., Domaschka, J.: Integrating CEP and BPM. In: Proceedings of
the 6th ACM International Conference on Distributed Event-Based Systems - DEBS
2012, pp. 157–166. ACM Press, New York, July 2012

7. Di Giorgio, A., Pimpinella, L.: An event driven smart home controller enabling con-
sumer economic saving and automated demand side management. Appl. Energy 96,
92–103 (2012)

8. Domonte, E.P.: An integrated and low cost home automation system with flexible
task scheduling. In: XV Workshop of Physical Agents, Leon, pp. 1–10 (2014)

9. Etzion, O., Niblett, P.: Event Processing in Action. Manning (2010)
10. Luckham, D.: The Power of Events: An Introduction to Complex Event Processingin

Distributed Enterprise Systems. Addison-Wesley, Boston (2002)
11. Mohomed, I., Misra, A., Ebling, M., Jerome, W.F.: Harmoni: Context-aware filtering

of sensor data for continuous remote health monitoring. In: Proceedings of Pervasive
Computing and Communications (PerCom), pp. 248–251. IEEE Computer Society
(2008)

12. Mouttham, A., Peyton, L., Eze, B., Saddik, A.E.: Event-driven data integration for
personal health monitoring. J. Emerg. Technol. Web Intell. 45, 144–148 (2009)

13. Rashidi, P., Cook, D.: Keeping the resident in the loop: adapting the smart home to
the user. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 39(5), 949–959 (2009)

14. Stipkovic, S., Bruns, R., Dunkel, J.: Event-based smartphone sensor processing
for ambient assisted living. In: 2013 IEEE Eleventh International Symposium on
Autonomous Decentralized Systems (ISADS), pp. 221–227 (2013)

15. Vidačković, K., Renner, T., Rex, S., Fraunhofer IAO, S.: Marktübersicht Real-Time-
Monitoring-Software: Event-Processing-Tools im Überblick. Fraunhofer-Verlag
(2010). http://books.google.de/books?id=rvbUXwAACAAJ

http://books.google.de/books?id=rvbUXwAACAAJ

	Context-Awareness in Task Automation Services by Distributed Event Processing
	1 Introduction
	2 TAS Coordination Scenario
	3 Complex Event Processing
	4 Architecture
	4.1 Architecture Overview
	4.2 CEP for TAS
	4.3 TAS Event Model

	5 Evaluation
	6 Implementation Issues
	7 Related Work
	8 Conclusion
	References

