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Traité d’Acoustique

Translated by
Robert T. Beyer



E.F.F. Chladni
Wittenberg, Germany
Paris, France

ISBN 978-3-319-20360-7 ISBN 978-3-319-20361-4 (eBook)
DOI 10.1007/978-3-319-20361-4

Library of Congress Control Number: 2015945948

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Translated by
Robert T. Beyer (1920–2008)
Brown University
Providence, RI, USA



Note on the Translation

This work was translated by Robert T. Beyer, Ph.D. (1920–2008), noted acoustician,

Professor of Physics at Brown University, and Gold Medal recipient of the Acous-

tical Society of America. Along with other projects, Dr. Beyer worked on this

translation over the last 10 years of his life. As a labor of love, this project was

prepared for publication by his children and grandchildren.

The original text includes eight fold-out plates of all of the figures referenced in

the text. Since Chladni does not reference the figures in strict numerical order, we

have followed the original, and included them at the end of the text, for reference, in

16 standard pages.

Footnotes from the original manuscript have been retained. Additional footnotes

have been added to clarify the translation for the modern reader. The key for

authorship of the newly added footnotes is as follows:

RTB — Robert T. Beyer, Ph.D.

MAB — Margaret Anne Beyer
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GB — Guillaume Bouchoux, Ph.D.
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Translator’s Introduction: Chladni
and the State of Acoustics in 1800

[This introduction is adapted and has been modified from the material on Chladni

found in the introductory chapters of Sounds of Our Times: Two Hundred Years
of Acoustics by Robert Beyer. ISBN 978-0-387-98435-3. Reproduced with

permission]

In 1802, Ernst F.F. Chladni (1756–1827) published, in German, Die Akustik.1

Chladni himself translated the book into French, a book “in which I have abridged,

changed and added a great deal.” He published this volume in 1809 as Traité
d’Acoustique, dedicating it to Napoleon (a wise choice, no doubt, during that

“sun of Austerlitz,” especially since the French government contributed funds to

support the translation and revision). It is the translation of this French language

volume that is presented here.2

By just glancing through Traité d’Acoustique, we can see several features that

distinguish the book from a modern one. The first is the almost complete absence of

mathematics. Acoustics, as it was studied at the time, at least, in the mind of

Chladni, and aside from music and vibrating structures, was largely a science of

observations and descriptions. Magnificent mathematics had been developed by

Euler, d’Alembert, and Lagrange in the eighteenth century and applied by them to

acoustical problems, but Chladni clearly passed over the details of this mathematics

in writing his treatise.

1 E.F.F. Chladni, Die Akustik, Breitkopf & Hartel, Leipzig, 1802.
2 E.F.F. Chladni, Traité d’Acoustique, Courcier, Paris, 1809.



Ernst F.F. Chladni (1756–1827) (From D. Miller.3)

A second difference is the emphasis on vibrations. If one had any doubt that

vibrations have long been recognized as an integral part of acoustics, a reading of

Chladni would eliminate that misconception. Of the four sections of Chladni’s

book, the one devoted to vibrations comprises more than 60 % of the text.

Propagation of sound through air and other gases covers about 15 %, while the

remaining 25 % of the volume is divided among propagation in liquids and solids,

musical scales, speech, and hearing. (Parenthetically we might note that, even

though the period around 1800 was far from a quiet time in the world, there is

virtually nothing in the book on noise).

In this book, Chladni divides the subject of acoustics into sources of sound, the

passage of sound through matter, and its reception. Perhaps the first problem of

sound propagation was the question of whether or not air (or other material) was

necessary for sustaining its propagation. By 1800, this was thought to have been

long settled. One of the oldest and most frequently repeated experiments in acous-

tics is the use of a bell or other mechanical source of sound in a chamber that had

been evacuated to some extent. This experiment was first carried out by Sagredo in

1615, and repeated a number of times over the next 200 years, with the conclusion,

as of 1800, that it had been proven that sound could not travel through a vacuum.

The next question was that of the velocity of propagation in air. By 1800,

accurate measurements of the velocity of sound in air had existed for more than

150 years. However, the theoretical basis for calculation of the sound velocity in

gases still remained a puzzle. For its calculation, the scientists of the day went back

to Newton. Chladni, using Newton’s method, cites velocities for a number of gases,

3 D.C. Miller, Anecdotal History of the Science of Sound, Macmillan, New York, NY, 1935,

opposite pp. 24, 51.
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such as oxygen and carbon dioxide, that come close to currently accepted values,

but was far off in his estimate of the value in hydrogen—680–810 m/sec as against

today’s accepted value of 1240 m/sec. This problem was still not entirely settled in

1800. It must be remembered that much of our understanding of the behavior of

gases, and of thermodynamics, stems from work done in the first quarter of the

nineteenth century. Further progress in our knowledge of the velocity of sound had

to wait for such a development.

The effect of the temperature on the velocity of propagation of sound was known

qualitatively in 1800, but the precise connection had to await a better knowledge of

the thermal properties of gases.

In 1800, there was virtually no knowledge of sound transmission in liquids. The

velocity of sound in water had not yet been measured. However, a rather good

theoretical value for this velocity is given by Young, who noted that the elasticity

(we would call this the bulk modulus) of water had been measured by Canton in

1762 and found to be 22,000 times that of air. Using the elasticity data of Canton,

Chladni is able to determine the sound velocity in a number of liquids with accuracy

similar to that obtained for water.

A measurement of the velocity of sound in solids did exist in 1800, and is

described by Chladni in this book. He compares the musical pitch emanating from a

struck solid bar (undergoing longitudinal oscillations) with the pitch of the (stand-

ing) wave in a closed, air-filled pipe of the same length. Arguing that the difference

is due to the difference in the two sound velocities, he comes up with values of the

sound velocity. Chladni’s wording is a bit obscure, and his values are too low by

nearly 15 %. Nevertheless, he did demonstrate that sound velocity is considerably

higher in solids than in gases or liquids.

In his discussion of echo, Chladni notes that it is possible (by having two

reflecting surfaces facing one another) to have multiple echoes. He remarks that

the ear is capable of distinguishing eight or nine different sounds in a single second.

Therefore, when these repeated echoes take place more rapidly than eight or nine

per second, he states that the phenomenon is known as resonance. We would define

resonance somewhat differently today.

In considering sound intensity, Chladni notes that it depends on: the size of

the sonorous body, the intensity of the vibrations of that body, the frequency of the

vibrations, the distance at which the sound is heard, the density of the air, the

direction in which the sound is heard, and the direction of the wind. We would

recognize today that these dependences are a mixture of what we call the intrinsic

intensity (1
2
ρcv02, where ρ is the local gas density, c the speed of sound, and v0 the

amplitude of the displacement velocity), and such related quantities as the strength

of the source, the directionality of the source, and the attenuation due to geometric

spreading and sound absorption. All these quantities were not well sorted out

in 1800.

In 1800, the available means for the production of sound were the human voice,

musical instruments, cannons and other explosive devices, and natural phenomena

such as animal sounds and thunder. It is not surprising, therefore, that Chladni (and
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others of the time) used music as the basis on which to build almost all of acoustics.

When dealing with vibrating strings, they were concerned with stringed musical

instruments. Vibrating air columns were of interest because of organ pipes, and also

various musical horns, while stretched membranes were related to drums. Almost

every subject in Chladni’s text is studied from the point of view of music. The great

advances of theoretical acoustics in the eighteenth century were perhaps due to the

common interests of music patrons, researchers, and the listening audiences.

Well before 1800, the understanding of music led to two great contributions to

the science of sound. First, it emphasized the importance of ratios for different

tones. The simple ratios appropriate for all the notes on the diatonic scale were

known, and musicians with trained ears could easily identify the pitches of the

various notes, starting from some accepted standard, such as middle C or, more

commonly, the A above middle C. At the same time, it was also known that the

pitch of a musical note was measured by its frequency of oscillation.

Because of earlier observations by Mersenne and Sauveur, Chladni is able to

base his discussion of musical scales on the grounds of a knowledge of the

frequencies involved in the tones of the scale, even though there remained some

uncertainty as to what was the appropriate standard for middle C. One must note,

however, that Chladni devotes most of his attention, in musical matters, to

discussing ratios of frequencies of the different tones, where the quantities are far

more accurate, rather than the absolute values of these frequencies. Chladni was

aware that the human ear could hear tones as low as 30 Hz and up to

8000–12,000 Hz—which goes considerably beyond the range of frequencies

achieved by most musical instruments.

Somewhere between the production and detection of sound is Chladni’s own

work on vibrating plates, since the study involved not only the production of sound

by the vibrating plates, but also the experimental technique of identifying the

vibrations. Chladni was well aware of the vibration of strings, and of the localiza-

tion of nodal points in a standing wave, and the theoretical work of Lagrange and

others gave a strong foundation to the subject. There was, however, no theory of

vibrating plates.

Chladni was drawn to a study of the vibrations of plates from work done by

Lichtenberg who scattered “electrified powder over an electrified resin-cake, the

arrangement of the powder revealing the electric condition of the surface.”4 In

Chladni’s first work, reported in 1787, he held fixed one or more points on a plate

and stroked the side of the plate with the bow of a violin. In order to render the

effect of the vibrations visible, he placed a little sand on the plate. The sand “was

thrown aside by the trembling of the vibrating parts (of the plate) and accumulated

on the nodal lines.” Chladni must have been fascinated by the patterns taken on by

the sand particles, a fascination that these “Chladni figures” continue to generate. In

those days before photography, he included hundreds of drawings of different

4 These “Lichtenberg figures” are what Chladni refers to as “electric figures” in the preface to

Traité d’Acoustique.—JPC
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modes of excitation for triangular, circular, square, and even elliptical plates, in

this book.

The only instrument available for sound reception in 1800 was the ear. By the

time of Chladni, the structures of the exterior and middle portions of the ear were

quite well understood. Chladni recognized that the impulses of sound received in

the outer ear were transmitted through the small bones (ossicles) of the middle ear,

more or less faithfully, to the cochlea. While the gross features of the cochlea were

well described by him, its role, so far as he was concerned, was very much that of a

“black box.” The sound impulses impinged on one end, and, somehow or other, the

sensations were picked up by the auditory nerve at the other and transmitted to the

brain. Chladni offered the (incorrect) opinion that the signals from the ossicles

affected the cochlea as a whole rather than locally. Further developments in this

area had to wait another century.

A phenomenon was observed in the eighteenth century that was later to have

important consequences in physical acoustics, although this did not occur until

much later. This is the phenomenon that was known as Tartini tones: When two

musical sounds of different pitch are sounded simultaneously and loudly, a tone is

heard with a pitch equal to the difference in the pitches of the two tones. Chladni

and others studied the problem and concluded that it was a form of beats. Under the

usual description of beats, when the difference in pitch is small (5–10 beats per

second), we can distinguish them clearly. When the number of beats per second

increases, we first distinguish the unpleasant sounds of dissonance, but as the

number gets very large, they argued, we ultimately hear the pure tone of the

difference frequency. While this interpretation was later proved to be incorrect, it

satisfied the acoustics community for the next half-century.

In looking back over the period before the publication of Traité d’Acoustique,
one is humbled by the accomplishments of acousticians who worked with an almost

complete lack of anything we would call apparatus. What they had were the human

voice and ear, musical instruments, bells and tuning forks, vibrating strings and

plates, the basic equations developed over the years, and a great deal of ingenuity

and resourcefulness. In a day when we can scarcely add numbers without a

calculator, or perform an experiment without vast arrays of electronic equipment,

we can only marvel at the success of their ingenuity and resourcefulness.

Robert T. Beyer

Translator’s Introduction: Chladni and the State of Acoustics in 1800 xxi
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Preface

While the other branches of physics have been moving forward, acoustics has

always lagged behind. The sounding vibrations of most elastic bodies were entirely

unknown, and, ordinarily, only the transverse vibrations of a string have been

considered. These have therefore been regarded as the basis of all harmony and

we have tried to extend its laws to all other sounding bodies. The results of the

research that many scholars such as Daniel Bernoulli, Euler, Lagrange, Giordano

Riccati, and others conducted on various acoustical subjects were not introduced

into the mass of knowledge that is expounded in treatises on physics. This is what

caused me to undertake the development of this vast uncultivated field, and to

uncover the laws of vibrations and their different modifications in all sorts of

sounding bodies, according to the research of the principal geometricians and

physicists, and according to numerous experiments. My aim was to give the results

of both theory and experiment in a sufficiently clear and precise manner, so that at

least the greatest part would be within the range of those who had only a slight

acquaintance with physics and mathematics. Those who are more advanced will

lose nothing because they will find sufficient data for further research and because I

have always cited the principal works and dissertations which will serve for their

further instruction.

Among the experiments whose results I have related here, there are none that I

have not performed myself, and that I cannot repeat. I respect nature too much to

want to attribute anything to it that would perhaps be only a play of my imagination.

Everything that is printed at the end of several paragraphs by way of the strictest

justification contains notes or additions to the text of the paragraph, marked in such

a way that the connection of the materials should suffer the least interruption.5

In publishing this Treatise on Acoustics, I am responding to the desires of several

persons whose commendations and kindnesses provide a powerful motive for me to

attempt to merit them by such useful work in science. I am especially honored by

5 In this edition, these notes appear in a greyed-in box.—MAB
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the fact that I have been brought to this purpose by the illustrious author of Celestial
Mechanics, who is also respected for his benevolence and his zeal in encouraging

those who work in the sciences, as well as by what he has done for the increase in

human knowledge. My German work could not be translated into another language

without some appropriate changes; another translator would perhaps have problems

of his own, and he might have had me saying something that I did not say.6

Therefore, I have undertaken this work myself. It must therefore be excused if a

stranger who has not spent a long time in France does not always express himself

with sufficient clarity. Friends who have had the kindness to preview my work have

corrected some of the mistakes; I do not know if outside critics will be as indulgent

as my friends; however, if they wish to be fair, they will spend more time on the

subject than on the language. It has often been asked, by what chance did I happen

to make certain discoveries. But chance has never favored me; to be successful I

had, nearly always, to employ opinionated perseverance. Following the advice of

several estimable persons, I must add here some remarks concerning the story of my

discoveries, these being the result of individual circumstances. I believe that these

circumstances should interest a number of readers.

My father (First Professor of Law at Wittenberg in Saxony, one of the most

esteemed judicial consultants in this county because of his activity, his talent, and

his probity) had provided a good instruction for me, but it was at home, and then in

the provincial school of Grimme; my education therefore allowed me little liberty,

so that, whereas others may recall their youth as the happiest period of their lives, I

cannot say the same about mine. This continual constraint, which was not at all

necessary, because I was not disposed to abuse my freedom, produced a completely

contrary effect on me, imprinting an almost irresistible desire to choose my

occupations myself, to travel, to struggle against adverse circumstances, and so

on. Returning to Wittenberg, it was necessary, following the will of my father, for

me to apply myself to jurisprudence.

After having studies at Wittenberg and at Leipzig, and having satisfied the

requirements, I obtained the degree of Doctor in Philosophy and in Law at Leipzig.

Fate seemed to have destined me to remain always at Wittenberg and for me to

obtain employment as a Professor of Law. But, after the death of my father, I quit

jurisprudence, because it conformed too little to my tastes, and applied myself

principally to the study of nature, which had always been my secondary occupation,

and that dearest to me. As an amateur musician, of which I had begun to learn the

basic elements (a little late), in my nineteenth year, I noted that the theory of sound

was the most neglected part of physics, which gave birth in me the desire of

remedying this defect and of being of use to this part of physics by making a

number of discoveries. In performing numerous very imperfect experiments in

1785, I had observed that a plate of glass or of metal gave off different tones

when it was clamped and struck in different places, but I did not find any instruction

6 These rules have been violated in the present translation, but then Chladni never undertook the

translation into English. Sorry Ernst!—RTB
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as to the nature of these types of vibrations. At that time, journals had given some

publicity to a musical instrument, made in Italy by the Abbé Mazzochi.

This instrument consisted of glass bells to which he had applied one or two

bowings of a violin; from this I conceived the idea of using the bow of a violin to

examine the vibrations of different vibrating bodies. When I applied the bow to a

round brass plate, stationary at its center, the plate made different sounds which,

when compared with one another, were proportional to the squares of 2, 3, 4, 5, etc.;

but the nature of the movements to which these tones correspond, and the means of

producing each of these movements at will were still unknown to me. Experiments

on the electric figures that are formed on a plate of dusted resin, discovered and

published by Lichtenberg (in the Memoirs of the Royal Society of G€ottingen), led
me to presume that the different motions of a vibrating point ought also to show

different appearances if one were to put a little sand or other similar material on its

surface.7 In making use of such means, the first figure that I observed, on the round

plate of which I spoke, resembled a star with 10 or 12 rays, a little like Fig. 102a,

and the most acute sound was, in the series cited, the one which corresponded to the

square of the number of diametral lines. One can judge my astonishment in viewing

this phenomenon, which no one had previously seen. After having reflected on the

nature of these motions, I did not find it difficult to vary and to multiply these

experiments, from which results followed rather rapidly. My first dissertation,

which contained some research on the vibrations of a round plate, of a square

plate, of a ring, of a bell, etc., came out in Leipzig in 1787. The results of the

research that I have carried out since that time on longitudinal vibrations and on

other subjects of acoustics have appeared in several German journals and in the

papers of various Societies.

Finally, after having made still more experiments and after having consulted

further the research that others have performed, I joined the results together, so far

as it was possible, in my Treatise on Acoustics, which came out in Leipzig in

German [Die Akustik]. The present work is a translation of that book, a work that I

have abridged, changed, and expanded a great deal, according to what seemed to

me to be most appropriate.

It was Lichtenberg, whose ingenious ideas in physics I found most interesting,

who gave a second impulse to the advance of my ideas. Being in G€ottingen in 1792,
I asked his opinion on the nature of fiery meteors (which are called bolides or

fireballs), whose phenomena, such as a flame, smoke, and explosions, were little in

conformity with the electrical phenomena with which they are identified. He

responded that the best way of explaining these phenomena would be to attribute

to these meteors an origin that is cosmic rather than terrestrial, that is to say, to

suppose that it was something foreign that had arrived from the outside into our

atmosphere, a little as Seneca had well explained the nature of comets, which,

7 In 1777 Lichtenberg obtained what are now called Lichtenberg figures by discharging a high

voltage point to the surface of an insulator and recording the resulting radial patterns by sprinkling

various powdered materials onto the surface.—JPC
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nevertheless, had a long time after been regarded as atmospheric meteors until the

Saxon pastor, D€orfel, had shown that Seneca was correct. Struck by this observation
of Lichtenberg, I consulted works and dissertations that contained reports of similar

meteors, and of stones or masses of iron that one had seen fall at one time or another

as the result of a similar meteor, and I finally published my research in a dissertation

that came out in Leipzig in 1794, the French translation of which, made by Eugène

Coquebert-Mombret, is to be found in Vol. V of the Journal des Mines. I demon-

strated the following observations in this paper (before the fall of rocks [meteorites]

that took place at Siena on June 15, 1794).8 First, that the reports that had been

given concerning rocks and masses of iron that had fallen with great impact as the

result of a meteor fireball were not fictions or illusions, but observations of a real

phenomenon; second, that these masses and these meteors were something foreign

to our globe, and had arrived from the outside. In the beginning, no one agreed with

me; several German critics even supposed that I had not advanced this idea

seriously, but with a somewhat evil intent of seeing what fraction of physicists

accepted them and how far the credulity of these individuals might extend.

In France, Mr. Pictet was the first to call to the attention of physicists as to what

my paper contained (Vol. 16 of the British Library); but no one believed in the

possibility of a fall of rocks until Howard’s dissertation in 1802. And in 1803, the

fall of rocks took place at L’Aigle, and it was established by Mr. Biot that I was not

given to fits of imagination; this finding has been further demonstrated by numerous

meteors which have been observed, and by the research that has been conducted. In

the Bulletin of the Philomatic Society of April, 1809, I published a catalogue of

sizeable meteors that have been observed to date, to which one could add still others

that have been found; including those which Soldani has cited in Vol. 9 of the

Memoirs of the Academy at Siena.

The invention of the euphone and the clavicylinder, and their execution under

less than favorable circumstances, cost me a great deal of time, more work, and

more expense than my research on the nature of sound, of which these two

instruments are practical applications. Those who have worked in a similar area,

as, for example, those who have tried to perfect the glass harmonica,9 know how

many unforeseen difficulties are encountered in such work. Too often, when one

wishes to put into practice those ideas which appear to conform to theory, nature,

being consulted by means of experiments and tests, denies our conjectures and

places insurmountable obstacles in front of us, obstacles that had not been foreseen.

Then, after having worked without success for a long period of time, it becomes

8 There was an eruption of Mt. Vesuvius on June 15, 1794 near Siena, Italy, followed by the fall of

a meteorite the following day, 200 km to the north.—RTB
9 There are two types of glass harmonica: glass harps, which consist of wineglasses rubbed by the

fingers, and the armonica, invented by Benjamin Franklin, in which glass bowls are mounted on a

shaft so that they rotate (partially in water) as the shaft rotates. The first type was probably most

familiar to Chladni. When the word “harmonica” is used throughout this text, it is understood to
mean “glass harmonica,” not the modern wind instrument.—TDR
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necessary to set aside everything that has been done and begin anew. But the least

success makes us forget all these tests of our patience.

The euphone, invented in 1789 and perfected in 1790, consists exteriorly of

small cylinders of glass that one rubs longitudinally with fingers moistened by

water. These cylinders, of the thickness of a writing pen, are all of equal length, and

the difference in the tone is produced by an interior mechanism. The tone resembles

more that of the harmonica than that of any other instrument. In several trips that I

have made to Germany, to St. Petersburg, and to Copenhagen, this instrument has

received widespread approval. The one that I had with me most recently has been

destroyed during the voyage by some accident, but the construction of another, on

which I am now working, is almost complete.

The clavicylinder, invented at the beginning of 1800 and perfected since that

time, consists of a keyboard, and behind this keyboard a glass cylinder, which is

turned by means of a pedal and a leaden wheel. This cylinder is not itself the

sounding body, as in the bells of the harmonica, but produces the tone by its rubbing

of the interior mechanism. The principal quality of this instrument is its ability to

prolong the sound at will with all the nuances of crescendo and diminuendo, as one

augments or diminishes the pressure on the touch. The instrument is never out of

tune. The reports of the Institut de France and of the Imperial Conservatory of

Music, which have given very favorable judgment on this instrument, relieve me of

the necessity of talking of it at length.

For some time, I have again been occupied with conducting research and

experiments on different methods of constructing a euphone or clavicylinder. As
the possible methods are very numerous, and as it is difficult to judge in advance the

preference for one or the other, this subject will continue to keep me busy. Each

invention being the property of its author, I do not merit reproach for the fact that I

have still not published the internal mechanism and the construction. I have still not

lost the hope that there will come a time when a compensation proportional to the

sacrifices I have made will allow me to publish everything concerning the theory

and construction of these instruments.

The great value that I attach to the approval of the Institut de France, and the

respect that I have toward that leader of scholarly societies, whose members I have

the honor of knowing personally, has encouraged me to have printed at the end of

this work the prize program that it has proposed on the mathematical theory of

vibrating plates and the reports that it has kindly wished to make on my research

and their applications to the arts.

E.F.F. Chladni
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Preliminary Observations

1. Explanation of the Words Sound and Noise

Every possible motion is either progressive, rotary, or vibratory. A sufficiently

rapid vibratory motion that is strong enough to affect the hearing organ is a sound.
If the vibrations of a sounding body are distinguishable, both in their frequency1

and in their change in shape, they are called distinct sound or sound properly called,
in order to distinguish them from noise, or indistinguishable vibrations.

Elasticity is the actuating force for sound. A sounding body can be elastic either

by tension, by compression, or by shear stiffness. To perceive a sound, it is

necessary that there exists a continuation of some kind of matter between the

sounding body and the organs of hearing. The air is the ordinary conductor of

sound, but all liquids and solid bodies propagate sound with greater speed and force

than does the air. It is therefore quite out of place, in treatises on physics, to assign

the theory of sound to the theory of gases; rather, one must make it a part of the

theory of motion and join it to the theory of pendulums.

1 Chladni uses the term vitesse here, which could also mean velocity. Since he is referring to the

rate at which the signal changes its shape, it is appropriately translated as frequency.—RTB
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2. Subjects of Acoustics

Acoustics is the theory of sound. The subjects of acoustics are:

1. The numerical ratios of the vibrations

2. The characteristic vibrations of sounding bodies

3. Transmitted vibrations, or the propagation of sound

4. The sensation of sound, or hearing

Number 1 forms the arithmetic part, numbers 2 and 3 the mechanical part, and

number 4 the physiological part of acoustics.

2 Preliminary Observations



Part I

Numerical Ratios of Vibrations



Section 1: Primary Ratios

3. Grave and Acute Tones

The French word son (sound), as used here, expresses the pitch of the vibrations.

An acute sound differs from a grave sound by the greater (acute) or smaller (grave)

number of vibrations that it executes in a given interval of time.

The word sound, therefore, has three very different meanings: it expresses

first, everything that can be heard (in German, Schall); second, regular or
perceptible vibrations (in German, Klang) as opposed to noise; third, the

frequency of the vibrations (in German, Ton). The word ton is not used in

French, as it is in other languages, to express the frequency of the vibrations

in each sound. This word has several other meanings; for example, it

expresses a major second. It also indicates the mode, the intensity with

which one executes the music, etc.

4. Explanation of the Words Interval, Melody, Chord,
Harmony, etc.

An interval is the ratio of the frequency of one sound to another. Usually, a very

deep or grave sound is regarded as the basis for comparison with a more acute

sound.

A melody is a sequence of tones.
A chord is the coexistence of several tones.

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
DOI 10.1007/978-3-319-20361-4_2
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Harmony is a sequence of chords, or the coexistence of several melodies.

Music makes use of materials, for which acoustics furnishes the theory, in order

to excite sensations.

5. Absolute Frequency of the Vibrations of Each Tone

(Note: Description of a tonometer.) In the deepest (gravest) sounds that are percep-
tible to the human ear, the vibrating body makes at least 30 vibrations per second;

but acute sounds can be sensed in which up to 8000 or 12,000 vibrations occur per

second. We do not go far from the truth if, to facilitate comparison of the absolute

number of vibrations to relative numbers, we regard each do1 as representing the

power of two, taking the fundamental do to be unity. We therefore attribute to

the lowest do on the piano or violoncello the value of 128 vibrations

(or simple oscillations per second), which is enough to find the absolute number

of vibrations of every other sound, by multiplying the relative numbers (Pars. 19

and 26) for the first lower octave by 128, for the second by 256, for the first octave

above by 512, etc.

The value that one has assigned to these instruments has not always been the

same in different countries and in different eras. Thus, Euler assigned a value

of 118 to do (in his Tentam. nov. theor. mus., ch. 1) and 125 in another

(in Nov. Comment. Acad. Petrop. vol. 16). Marpurg at Berlin found this same

latter result while Sarti (Nov. Act. Acad. Petrop. 1796) noted that the la of the
third string of a violin makes 436 double, or 872 single, vibrations per second,

in St. Petersburg.2 This gives a value of approximately 131 vibrations per

second for this same do. There has been a tendency to increase these values in
tuning instruments since the days of Euler and Marpurg, and, at present, in

several orchestras, they have gone somewhat beyond the number of vibra-

tions that result from using powers of two. However, one can still adopt some

power of two for the average value of do.3

(continued)

1 Chladni used the symbol ut for the first note in the musical scale, but we have replaced it by do
regularly used in modern texts. We have left the seventh note as si, since both si and ti are used

today in different countries.—RTB
2 In the early mathematical studies of music, a debate existed between those who used the number

of half oscillations (simple vibrations) per second, and those who used the number of full

oscillations (double vibrations). The latter school won out.—RTB
3 This “powers-of-two” scale is no longer used in music but is commonly employed in instruction

in physics, and is sometimes called the physicists’ scale.—RTB
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I have found a very simple method of determining, by the judgment of the

eyes and ears, the number of vibrations that corresponds to each sound. It is

necessary that a vibrating body be of a sufficient length (which can be

shortened if required) for one to see and count the vibrations that take place

in a certain interval of time, in order to compare the sounds and the lengths of

the parts with the number of vibrations counted, and also compare them to the

length of the entire body. I used very long strings for this effect; but I did not

succeed, because the vibrations of the different parts were added to vibrations

of the entire string, as well as many circular and lateral motions, which made

the accuracy of the observations difficult. It is therefore preferable to make

use of a thin sheet of iron or brass, of about a half-line of thickness and of a

half inch in width and of a length sufficient to vibrate very slowly. It was

necessary that the thickness be exactly uniform. A metal wire could have

been used, but the width of the sheet served to prevent lateral motions. The

frequency of vibrations of such a sheet is inversely proportional to the squares

of their lengths, when other conditions remain the same. The end of the sheet

was clamped in a fixed vise, making it project out, more or less, to the length

at which it makes, in each second of time, a certain number of vibrations

visible to the eye. These vibrations can be compared to the oscillations of a

second pendulum, which is understandable, as it is done in astronomical

observations. When one is a little used to it, it is not difficult to count up to

eight vibrations per second. I propose to use 4 vibrations per second to mark,

exactly, the length of the projection from the sheet and to divide it into two,

four, eight, and other numbers of parts. If one fixes the sheet in the vise in

such a way that one half is extended, it will make 16 vibrations per second.

These vibrations will be too slow to be heard and too rapid to be counted; but

one can hear a distinct sound by making the sheet vibrate in two unequal

portions, so as to establish a node of vibrations, at a distance from the free

end, slightly less than one third of its length. This sound, which I call the

second sound,4 because it corresponds to the second figure of the plate

(Fig. 21), will make 100 vibrations per second, like the stationary sound of

Sauveur. It will be sol#, approximately a major third below do, the lowest note
on the keyboard. If the part sticking out from the vise is shortened, so that it

equals one fourth of the thickness of the plate, it will make 64 vibrations, one

octave below the first octave on the keyboard. The second sound, which

makes 400 vibrations, will give the sol, two octaves higher than the one

which has 100 vibrations. Whatever may be the manner in which it partakes

(continued)

4What Chladni refers to is the second partial (often the second harmonic).—TDR
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of the motion of the plate, the results of these experiments conform very well

to the theory. The best manner of producing this sound will be to use the bow

of a violin. Before making the experiments, one should read what I have said

regarding the transverse vibrations of a straight rod, in Sect. 5 of Part II.

6. Difference of Consonant and Dissonant Intervals

The greater or lesser simplicity of the numerical ratios of the vibrations is the sole

basis of harmony. An interval is consonant when the ratio is very simple; when the

ratio is less simple, the interval is dissonant. The consonant intervals can be

expressed by the numbers 1, 2, 3, 4, 5, 6 or by 1, 3, 5 and the doubling of any of

these numbers; dissonance results from different combinations of the same num-

bers. A consonant interval is pleasing by itself, while dissonance is only pleasing

when it is returned and when it passes to another simpler ratio.

The ear, without counting the numbers themselves, perceives the effect of

the relationships of the concurrence of simultaneous vibrations when they

arrive together. It does for time what the eye does for space, when it is

affected in an agreeable manner by the fair relationship of forms, without

measuring and without calculating the ratios themselves.

Leibniz expressed himself very well on this subject (Epistolae ad diversos,
vol. 1, epist. 154):

Musica est exercitium arithmeticae occultem nescient is se numerare
animi; multa enim facit in perceptionibis confuies seu insensibilibus, quae
distincta aperceptione notare nequit. Errant enim, qui nihil in anim�a fieri
putant, ujus ipsa non sit conscia. Anima igitur etsi se nunerare non sentiat,
sentit tamen hujus numerationis insensibilis effectum, seu voluptatem in
consonantiis, molestiam in dissonantiis inde resultantem. Ex multis enim
congruentiis insensibilibus oritur voluptas, etc.5

Descartes also proposed the same principles (Tract de homine, p. 3, sect.
36, and Comp. mus.).

It does not conform to nature to want to derive, as several authors do, all

the harmony of vibrations, and in particular the coexistence of some with the

(continued)

5Unlike Chladni, we do not assume that the modern reader readily understands Latin. The first line

of this quote from Leibniz is a famous definition of music: “Music is a hidden arithmetic exercise

of a soul that does not know it is counting.” Leibniz says that the pleasure we obtain from music

comes from this unconscious counting.—CBH
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fundamental sound, from those of a string. A string is only one kind of

sounding body. In many other bodies, the general laws of vibrations, which

one had not known, are modified differently; consequently, one cannot apply

the laws of a sounding body to that which must be common to all. A

monochord cannot serve to establish the principles of harmony; but only to

give an idea of the effect of ratios.

7. Unison and the Octave

The simplest ratio is 1:1, in which two vibratory motions occur at the same time,

and is known as unison.
The interval 1:2, in which the frequency of one vibration is double that of the

other, is known as an octave. It is called thus because it is the eighth step in

the ordinary scale, as each other interval takes its name from the step of the scale

on which it is found. Experience shows that two sounds which are in the ratio of 1:2

have such a resemblance that we can regard one as the repetition of the other, from

whence it follows that:

1. The nature of an interval does not change if one takes the sound of which it is

composed one or two octaves lower or higher; that which returns to take double

or one half of the smallest number; except that in the case in which one of these

numbers becomes larger than the other; for one must regard this interval as an

inversion of the first. Thus, 2:3, 1:3, 1:6 are the same interval; but 3:4 or 4:3 will

be the inverse of that interval.

2. One can regard all the intervals as comprised in a single octave, so that one can

express all of them by fractions contained between 1 and 2.

The calculations of intervals are the same as those of fractions.

8. Other Consonant Intervals

All the consonant intervals that can be expressed by the numbers 1, 2, 3, 4, 5, 6, or

by doubling of these numbers, when one arranges them between 1 and 2 according

to their distance from unity, will be

6

5
,

5

4
,

4

3
,

3

2
,

8

5
,

5

3

of which the last three are also the inversions of the first three. Of all the intervals,

that of 3:2, of the fifth, is the simplest that the ear perceives as the most perfect
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consonant after the octave. The fourth 4
3
is an inversion of the fifth. It is consonant

by itself, but it is customary in practice to treat it as dissonance because the

combinations require a resolution in another interval.6 The interval 5
4
is the major

third, the interval 6
5
the minor third, the minor sixth 8

5
, and the major sixth 5

3
are their

inversions. Ordinarily, the unison, the octave, and the fifth are called the perfect
consonants, and the thirds and the sixths, the imperfect consonants.

9. Consonant Chords

According to these six consonant intervals, one can judge very easily how many

here will be of chords or of combinations of more than two consonant sounds.

Let m¼ 1, n ¼ 6
5
, p ¼ 5

4
, q ¼ 4

3
, r ¼ 3

2
, s ¼ 8

5
, t ¼ 5

3
. The possible combinations

will be:

mnp, mpq, mqr, mrs, mst
mnq, mpr, mqs, mrt
mnr, mps, mqt
mns, mpt
mnt

In many of these combinations, the last two intervals are not consonant with one

another. They are related in mnp as 1 : 25
24
, in mnq as 1 : 10

9
, in mnt as 1 : 15

18
, in mpq as

1 : 16
15
, in mps as 1 : 32

15
, in mqr as 1 : 9

8
, in mrs as 1 : 16

15
, in mrt as 1 : 10

9
, and in mst as

1 : 25
24
. All these combinations do not give a consonant chord. But mpr or 1 : 5

4
: 3
2

makes another, since 5
4
is to 3

2
as 1 : 6

5
and mnt where 1 : 6

5
: 3
2
gives another because 6

5

is as 3
2
to 1 : 5

4
. The combinations mns, mpt, mqt, and mqs reduce to these two

chords if one multiplies or divides the number by 2, and if one expresses them in the

smallest numbers. It will never be possible to add a fourth consonant interval to all

the others. There will therefore never be a consonant chord composed of more than

three tones, except if one wishes to add the octave of one of the three sounds. Such a

chord as 1 : 5
4
: 3
2
or 1 : 6

5
: 3
2
is a perfect chord; the first is the major perfect chord, the

other the minor perfect chord. The consonant combinations 1 : 5
4
: 5
3
and 1 : 6

5
: 8
5
(the

chord of the sixth) and 1 : 4
3
: 5
3
and 1 : 4

3
: 8
5
(the chord of the sixth fourth) are the

inversions of the major perfect chord and the minor perfect chord.

Experience shows that the two perfect chords have different effects. The major is

more suitable for expressing joy. It soothes the ear more than the minor. The cause

of this different effect is the greater simplicity of the major chord. In reducing these

ratios to their lowest terms, the vibrations of the major perfect chord will be as 4:5:6

6Most musicians now consider the perfect fourth to be consonant.—TDR
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and those of the minor as 10:12:15. Both are composed of a major third and a minor,

which together make a fifth; the only difference lies on the position of the thirds.

The manner in which I have shown here the formation of the perfect chords

is fundamentally the same as that used by Mr. Mercadier de Belesta (Système
de Musique, Paris 1776), who set forth several subjects pertaining to the

numerical theory of sound better than many others.

10. Dissonant Chords

A dissonant chord is one that contains one or more dissonant intervals. The

principal of these chords is the seventh chord, in which one adds a seventh to a

perfect chord. It is susceptible to three inversions, in which one must always regard

the sound, which by origin is a seventh, as the dissonance in the position it is found.

Several other dissonances result from the delay or anticipation of a sound.

11. Ordinary Scale

The major perfect chord, because of its simplicity, could serve better than the other

to find the ordinary scale of sound; that is, the series of the most agreeable and

suitable of sounds, by which one can pass from a fundamental tone to its octave, and

from one octave to another, without losing the sensation of the fundamental sound.

The perfect chord of a fundamental tone, joined to its octave, excites the most

perfect of the sounds, reinforced by the most suitable consonants. When we regard

do as the fundamental, we will have:

1 :
5

4
:

3

2
: 2

do mi sol do

But this is still not a scale because the distances are too great and too unequal. It is

therefore necessary to add the perfect chords of these tones, which approach the

fundamental more than the others, such as the fifth (3
2
) and the fourth (4

3
). The fifth 3

2

produces, by its perfect chord, the tones 3
2
� 5

4
or 15

8
¼ si and 3

2
� 3

2
or 9

8
¼ re:7 The

fourth 3
4
¼ fa, which is inserted by itself, produces its major third 4

3
� 5

4
or 5

3
¼ la.

7 Although 3
2
� 3

2
does not appear to equal 9

8
, this is the original text in both French and German

versions of this work.—MAB
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Its fifth is the same as the octave of the fundamental tone. We will therefore have

the scale:

1,
9

8
,

5

4
,

4

3
,

3

2
,

5

3
,

15

8
, 2

do, re, mi, f a, sol, la, si, do

This scale has seven intervals of different sizes. The interval of the third to the

fourth and that of the seventh to the eighth are approximately one half of the others.

One calls the greater intervals tones and the smaller ones, semi-tones. Each interval
draws its enumeration from the interval that it represents, so that the distance from

do to re is a second, from do to mi a third, from do to fa a fourth, from do to sol a
fifth, from do to la a sixth, from do to si a seventh, and from do to do an octave. If
one compares all these tones to the octave above, one will have intervals that must

be regarded as the inversions of the previous ones, and which do not differ much

from it, so far as the effect and the manner of treating them are concerned. Thus, the

distance from re to do will be a seventh, from mi to do a sixth, from fa to do a fifth,
from sol to do a fourth, from la to do a third, and from si to do a second.

12. Intervals

This scale will acquaint us with most of the dissonant intervals. The first interval is

to the second as 1 to 9
8
, or as 8:9 and the second to the third, as 9

8
to 5

4
or as 9:10. These

two intervals, which differ by 81
80
, we call a tone; the one a major tone, the other a

minor tone.

The major third 1 : 5
4
or 4:5 differs from the minor third 6

5
by the interval 25

24
,

which is the smallest interval one can make practical use of. If an interval is raised

or lowered (a sharp or a flat) to the same degree, the difference is always 25
24
. Each

smaller difference is a comma. The inversion of a minor semi-tone 25
24

is the

diminished octave 24
25
.

The difference between the third sound 5
4
and the fourth 4

3
is 16

15
; this interval is

called amajor semi-tone; it differs from the minor semi-tone by128
125

. Sound inversion

gives the major seventh 15
8
.

The fourth sound differs from the fifth by 9
8
, or a major tone; this one differs from

the sixth by 10
9
, or a minor tone. The difference of the major sixth and the minor is

that of the third 5
24
. The seventh differs from the octave by 16

15
, or a major semi-tone.

The ratio of these tones gives us still other intervals. The one from re to fa or
9
8
: 4
3
¼ 32

37
is a minor third, diminished by a comma 81

80
. That from fa to si 4

3
to 15

8
is

an augmented fourth, which is also called a tri-tone because it results from the

combination of three tones; its inversion is the diminished fifth 64
45
.
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13. Some Other Intervals

There are therefore major and minor seconds, thirds, sixths, and sevenths, but there

are no such fifths and fourths. If a fifth or a fourth, as also a major second third,

sixth, or seventh, is augmented by a minor semi-tone 25
24
, it is called augmented; if a

fifth or a fourth as also a minor second, third, sixth, or seventh is lowered by the

same interval, it is called diminished.
The inversion of a major interval gives a minor and that of a minor gives a major;

the inversion of a diminished interval yields an augmented one and the inversion of

an augmented one gives a diminished. The augmented and diminished intervals of

which we will make use of include:

The augmented second 9
8
� 25

24
¼ 75

64
or 10

9
� 25

24
¼ 125

108
, and its inversion, the diminished

seventh 16
9
� 24

25
¼ 128

75
or 9

5
� 24

25
¼ 216

125
.

The diminished third 6
5
� 24

25
¼ 144

125
and its inversion, the augmented sixth 5

3
� 25

24
¼ 125

72
.

The diminished fourth 4
3
� 24

25
¼ 32

25
and its inversion, the augmented fifth 3

2
� 25

24
¼ 25

16
.

The augmented fourth 4
3
� 25

24
¼ 25

18
and its inversion, the diminished fifth, which is

also called the false fifth 3
2
� 24

25
¼ 36

25
.

An augmented third 5
4
� 25

24
¼ 125

96
and its inversion, the diminished sixth 8

5
� 24

25
¼ 192

125

are not in use.

14. Diatonic, Chromatic, and Enharmonic Progressions

(Note: Names of tones in different languages.) The scale mentioned in Par. 11, as

also every other scale composed of major tones and semi-tones, is known as a

diatonic scale, and the progression from one of these sounds to another contained in

the same scale is known as a diatonic progression. Sometimes, the major semi-tone
16
15
is the smallest degree on such a scale, the diatonic semi-tone. If one augments one

of the sounds of the scale do, re, mi, fa, sol, la, si by the minor semi-tone 25
24
, this is

expressed by the sign #, which is called a sharp; but if we lower the sound by the

same interval 25
24
, it is expressed by the sign ♭, which is known as a flat. The sign of

restoration is the natural ♮. A progression from a raised or lowered sound to the

natural tone of the same denomination, or of the natural sound to the raised or

lowered one, for example, from do to do# or from mi to mi♭, is called a chromatic

progression. Sometimes the minor semi-tone 25
24
, by which the progression of a

raised sound to its neighboring lowered sound is made, is called the chromatic semi-
tone. For example, from do# to re♭ or from re♭ to do# is called an enharmonic
progression.
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The origin of the names do, re, mi, fa, sol, la, si is too well known to be

repeated here.8 In different countries, the names of these sounds are different.

In Italy, the syllables do, re, mi, fa, sol, la are used to express the degrees of

any scale. In place of si, one then sings mi because it expresses the advance
from the major semi-tone by i:fa; one then ordinarily changes the preceding

syllable into a re. At the present time, some people add the syllable si because
there are too many useless difficulties in wanting to express seven different

objects by six signs. To express the same sounds, one makes use of the letters

C, D, E, F, G, A, B, to which one adds the syllables that are suitable to the

degrees of the ancient hexachord, in which this sound is found. Thus, for

example, do is called C sol fa do, re is called D la sol re, etc. For elevation of
the sound, a sharp is added, and for the lowering, a flat. In Germany, the

sounds are called (beginning with do): c, d, e, f, g, a, h (which is pronounced

ha). To express the sharp semi-tone, the termination is is added, saying cis,
dis, eis, fis, gis, ais, his and to express the semi-tone flat, the termination es is
added: ces, des, es, fes, ges, as; but to express si♭, one makes an exception,

calling it b. One conforms more to the analogies of the other denominations

if, as some have proposed, one wants to express the si by b, the si# by bis, and
si♭ by bes. One sees that the Italian denominations are more wordy, the

German more precise.

The English and the Dutch call the sounds c, d, e, f, g, a, b. To express the
semi-tone sharp, the English use the word sharp and the Dutch kruis, and to

express the semi-tone flat, the English add flat and the Dutch mol.

15. Scales of Different Tones

All the sharp and flat intervals are necessary because, to avoid monotony, it is

necessary that one be able to regard each sound as a fundamental sound, and to

assign a fair scale to it. The series of sounds do, re, mi, fa, sol, la, and si does not
contain all the degrees of these scales. If we regard the sound sol, for example as the

fundamental, the sixth step to the seventh (mi to fa) will be only a semi-tone. It is

8 It is popularly believed that Guido of Arezzo took the opening syllable letters from each line of a

hymn to Saint John the Baptist to form the names of notes in the musical scale:

UTqueant laxis
REsonare fibris
MIra gestorum
FAmuli tuorum

SOLve polluti
LAbii reatum
Sancte Ioanne—RTB
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therefore necessary, in order that it be a tone, to use fa# in place of fa. In the same

way, to use re as the fundamental sound, we must change fa into fa# and do into do#.
For other fundamental sounds, we must flatten several sounds. For example, to have

the fair scale of fa, it would be necessary to change si into si♭ and to have the scale

of this si it would also be necessary to change mi into mi do♭♭. Proceeding by fifths,
it would always be necessary to sharpen one more sound, and in proceeding by

fourths, or inverse fifths, it is also necessary to have a higher sound or a flattened

one. One will therefore have the following diatonic scales:

do, re, mi, fa, sol, la, si, do

sol, la, si, do, re, mi, fa#, sol fa, sol, la, si♭, do, re, mi, fa
re, mi, fa#, sol, la, si, do#, re si♭, do, re, mi♭, fa, sol, la, si
la, si, do#, re, mi, fa#, sol#, la mi♭, fa, sol, la♭, si♭, do, re, mi♭

mi, fa#, sol#, la, si, do#, re#, mi la♭, si♭, do, re♭, mi♭, fa, sol, la♭

si, do#, re#, mi, fa#, sol#, la#, si re♭, mi♭, fa, sol♭, la♭, si♭, do, re♭

fa#, sol#, la#, si, do#, re#, mi#, fa# sol♭, la♭, si♭, do♭, re♭, mi♭, fa, sol♭

do#, re#, mi#, fa#, sol#, la#, si#, do# do♭, re♭, mi♭, fa♭, sol♭, la♭, si♭, do♭

These changes of the sounds in all the possible scales can be expressed by the

arithmetic progression.

n# .. . . . 3#, 2#, 1#, 0, 1♭, 2♭, 3♭ . . . . . n♭

If one wants to regard other sounds, for example, sol# or fa♭ as the fundamentals,

it is necessary to sharpen or flatten some sounds twice. When this becomes

necessary, we express the double sharp by the sign x and the double flat by ♭♭.
The fundamental sound series do, re, mi, fa, sol, la, si (c, d, e, f, g, a, b) is the

range, and the fundamental sound with the sounds that depend on it is the mode. If
the fundamental sound has a major third, as in the series mentioned, it forms a

major mode, if it has a minor third, it forms a minor mode.

16. Scale of the Minor Mode

To form the scale of the minor mode, we must give the perfect minor chords to the

fundamental sound and to the sounds that approach it closer than the others, such as

the fifth and the fourth. If we regard la as the fundamental sound, the perfect minor

chord of this sound is la, do, mi; that of the fifth mi, sol, si; and that of the fourth re,
fa, la. This will give the scale:

la, si, do, re, mi, fa, sol, la

But the ear requires that, in going up the scale, the step from the seventh to the

eighth note be only a major semi-tone, which is called the sensible note
(subsemitonium modi), because it determines every major or minor mode. It is

therefore necessary, in going up the scale, to give to the fifth mi the major third sol#.
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But, through this change, the step from the sixth note fa to the seventh sol#would be
too large; it is therefore often necessary to use fa# instead of fa, and to regard the

scale of the minor mode, in going up, as la, si, do, re, mi, fa#, sol#, la. This
augmentation of the sixth and seventh notes is regarded as accidental, and they

are pointed out every time they are used. In going down the scale, the scale remains

unchanged.

Each scale of a minor mode contains the same notes as the major mode of its

third minor; thus, for example, the scale of the minor mode of:

la is the same as that of the major mode: do

mi. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . sol

si. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. re

fa#. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ... la, etc.

17. Explanation of Several Words

When one mode contains more or less sharp or flat notes than the other, we say that

they differ by so many degrees. A major and a minor that contain the same notes are

relative modes. Sometimes we call the fundamental note the tonic, its fifth the

dominant, its fourth the subdominant, and its third the mediant.

18. Progressions from One Chord to Another

The most natural progressions from one chord to another are that of the fifth or

fourth, or to another which differs only by one degree. When one proceeds to more

distant modes, one ordinarily makes by an enharmonic substitution of an aug-

mented note to its neighboring diminished note, or from a diminished to its

neighboring augmented, or one forces the ear to neglect the comma 128
125

by which

the major semi-tone 16
15
differs from the minor 25

14
.

I will not develop any further the passages from one note to another or from one

chord to another chord, since there are sufficient treatises on harmony that can

provide instruction.
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19. Relative Frequencies of Sounds Contained in an Octave

To provide a more exact idea of the size of each interval, I have furnished in the

following Table the relative numbers of vibrations and the lengths of the

corresponding chords, in fractions and in decimals, for each interval, reduced to

the fundamental note do.

Number of vibrations Lengths of strings

Unison, do:do . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1

Minor semitone, do:do# . . . . . . . . . . . . . . . . . . . 25/24 1.0416 2/3 24/25 0.96

Minor second or the major semi-tone, do:re♭ . 16/15 1.066 2/3 15/16 0.9375

Major second, do:re . . . . . . . . . . . . . . . . . . . . . . 10/9 1.1111 1/9 9/10 0.9

(minor tone)

or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9/8 1.125 8/9 0.888 8/9

(major tone)

Diminished third, do:mi♭♭ . . . . . . . . . . . . . . . . . 144/125 1.152 125/144 0.8680 5/9

(or, rather, do#:mi♭)
Augmented second, do:re# . . . . . . . . . . . . . . . . 125/108 1.574 3/27 108/125 0.864

or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75/64 1.718 3/4 64/75 0.8533 1/3

Minor third, do:mi♭ . . . . . . . . . . . . . . . . . . . . . . . 6/5 1.2 5/6 0.8333 1/3

Major third, do:mi . . . . . . . . . . . . . . . . . . . . . . . . 5/4 1.25 4/5 0.8

Diminished fourth, do:fa♭ . . . . . . . . . . . . . . . . . 32/25 1.28 25/32 0.78125

Fourth, do:fa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/3 1.3333 1/3 3/4 0.75

Augmented fourth, do:fa# . . . . . . . . . . . . . . . . . 25/18 1.3888 8/9 18/25 0.72

Diminished fifth, do:sol♭ . . . . . . . . . . . . . . . . . . 36/25 1.44 25/36 0.6944 4/9

Fifth, do:sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/2 1.5 2/3 0.6666 2/3

Augmented fifth, do:sol# . . . . . . . . . . . . . . . . . . 25/16 1.5625 16/25 0.64

Minor sixth, do:la♭ . . . . . . . . . . . . . . . . . . . . . . . 8/5 1.6 5/8 0.625

Major sixth, do:la . . . . . . . . . . . . . . . . . . . . . . . . 5/3 1.6666 2/3 3/5 0.6

Diminished seventh, do:si♭♭ (or do#:si♭) . . . . 128/75 1.7066 2/3 75/128 0.5959 3/8

or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216/125 1.728 125/216 0.5787 1/27

Augmented sixth, do:la# . . . . . . . . . . . . . . . . . . 125/72 1.7361 1/9 72/125 0.576

Minor seventh, do:si♭ . . . . . . . . . . . . . . . . . . . . 16/9 1.7777 7/9 9/16 0.5625

or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9/5 1.8 8/9 0.5555 5/9

Major seventh, do:si . . . . . . . . . . . . . . . . . . . . . . 15/8 1.875 8/15 0.5333 1/3

Diminished octave, do:do♭ . . . . . . . . . . . . . . . . 48/25 1.92 24/48 0.5208 1/3

Octave, do:do . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1/2 0.5

Some people who are involved in practice have found fault with the theory in

that it yields a minor semi-tone 25
24
, for example, do to do#, that is smaller than

the major semi-tone 16
15
, do to re, although the minor sometimes has a better

effect if one makes it slightly more acute; however, the theory is fair, and the

reason why a minor semi-tone sometimes supports or requires slightly higher

value is that ordinarily an augmented note rises to its more acute neighbor,

and the ear likes to prepare and anticipate a little the tendency toward the

following note.
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20. Several Other Intervals Contained in the Natural Series
of Numbers

The natural series of numbers still gives intervals that are not received in the

ordinary system of sounds, and which, however, are produced by some musical

instruments, such as the horn and the trumpet, where one must make use of such

sounds for some others which they approach. The sound corresponding to the

number 7, of which the effect is intermediate between the consonances and the

dissonances, can be produced on these instruments, but they are not used. It would

be useless to want to introduce them, because one would have to multiply too much

the number of intervals which could scarcely be distinguished from those which

already exist. It can, however, be presumed that the reason why the seventh chord

(do,mi, sol, si) and the augmented sixth (do,mi, sol, la#) are also not disagreeable to
the ear, which one could believe from their complex number, is due to the fact that

the ear substitutes for these numbers the ratios 4:5:6:7, in which the interval 7
4

differs from the seventh 16
9
by the comma 64

63
, and from the augmented sixth 125

72
by

the still smaller comma 126
125

. In the same instruments, the sound corresponding to the

number 11 is replaced by fa, but the interval 11
8
is more acute by 33

32
than the fourth 4

3

or the true fa. Sometimes one makes it still more acute by employing more force

and then we use it in place of fa#. The sound that corresponds to the number 13 is

used for la, but the interval 13
8
is graver by 40

39
than the major sixth 5

3
. Sounds that

surpass the number 16 are not used with horn or trumpet.

If one wishes to continue the natural series of numbers, even to infinity, one

could never express certain intervals exactly, counting from the fundamental note;

because there does not exist an integer to which some power of two were to be as 3

to 4 or as 5 to 6. However, the interval 9
16

approaches the minor third 6
5
closely,

being no less than a comma 96
95
away. Perhaps, when one sometimes uses the chord

of the perfect minor chord in place of the major, or the major in place of the minor,

the ear is less injured, because it substitutes for the minor third 6
5
the interval 19

16
, thus

hearing a variety of ratios like 16:19:24 and 16:20:24.

I would express these intervals in decimals in order to compare them with those

numbers that were found in the previous paragraph.

Number of vibrations Length of strings

7/4 1.75 4/7 0.5714 2/7

11/8 1.375 8/11 0.7272 8/11

13/8 1.625 8/13 0.6153 11/13

19/16 1.1875 16/19 0.8157 17/19
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Section 2: Altered Ratios or Temperament

21. The Necessity of Temperament

To judge the qualities and effects of sound, it is necessary to attribute to them the

ratios mentioned above, but, for practical use, it is completely impossible always to

make use of such ratios. If one wanted each progression of a sound to another to be

fair, the ratio to the fundamental sound of the absolute pitch would not remain the

same; but by assigning to each tone the fair value for the fundamental tone, they are

not fair between them. A single example of a very simple succession of six tones:

sol, do, fa, re, sol, do would suffice to make this clear. By making the procession of

these sounds in the fair ratios and by expressing all these ratios by their least terms,

we have:

sol do f a re sol do

3:2ð Þ 3:4ð Þ 6:5ð Þ 3:4ð Þ 3:2ð Þ
243 : 162 : 216 : 180 : 250 : 160

The sol appears once as 243 and another time as 240, and do appears once as

162 and another time as 160; one will therefore have lowered it by the comma 81
80
. If

we wish to repeat this sequence of sounds, or if we want to execute any longer

melody with exact ratios, we will be even more in error. If there are several voices

that wish to continue their song with fair intervals, each will be incorrect in another

way and there will no longer be any harmony. In wishing to carry out the preceding

series of sounds in the exact ratios with the fundamental sound, we will have:

sol do f a re sol do

3

2
: 1 :

4

3
:

9

8
or

10

9

� �
:

3

2
: 1
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This process will also yield false ratios. If we take do:re as 9:10, the fourth re:sol

will not be 3:4, but 20:27, too small by the comma 81
80
. But if we take do:re as 8:9,

the minor third fa:re will not be 6:5, but 32:27, too small by the comma 81
80
. In trying

any melody whatsoever in this manner, or if there are other sounds than these that

belong to the perfect chord of the fundamental sound and to that of its fifth, we will

have false results.

22. The 12 Real Notes

As it is not always possible to use exact intervals, it is at least necessary that each

interval approach perfect exactitude as much as possible without deteriorating the

others. The small alterations of the sounds that are necessary for this effect are

called temperament. As each exact interval other than the octave is a little too large

or a little too small for practical use, thus each minor semi-tone 25
24

is a little too

small and each major semi-tone 16
15
is a little too large. It will therefore be necessary

to execute the semi-tones, whatever their origin, as the main term between the

minor 25
24
and the major 16

15
; we will therefore have the 12 real notes:

do, do#/re♭, re, re#/mi♭, mi, fa, fa#/sol♭, sol, sol#/la♭, la, la#/si♭, si, do

which comprise the set of tones generally adopted.

Some people are disposed to believe that temperament exists only for instru-

ments with fixed sounds; but what we have said in Par. 21 will suffice to show

that the bad results of too exact ratios are based on the nature of the ratios

themselves. Every good singer, every good player of any musical instrument

whatsoever tempers without knowing it.

23. The Results of Cycles of Fifths and Fourths

The most suitable intervals for determining the ratios of the 12 stops of this scale

will be:

1. The fifths and fourths, because their ratio is the simplest after the octave, and

because it is necessary that 12 fifths or fourths should yield an octave of the

original note

2. The major thirds

3. The minor thirds, because it is necessary that three major thirds or four minor

thirds should yield the octave of the fundamental sound
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But the cycle of 12 fifths, do, sol, re, la, mi, si, fa#, do#, sol#, re# (or mi♭), si♭, fa,

do, in the exact ratios of 3
2
or of 3

4
, in order to have the sound in the same octave,

gives, instead of the true octave 1:2, an interval of 218:312 which surpasses the

octave by the comma531441
524288

, which is called the Pythagorean comma. The product of

the 12 fourths, or 312:220 gives an octave lowered by the same comma.

The cycle of the three major thirds, do, mi, sol#, do, gives the product 43:53,

which is smaller than the true octave by the comma 128
125

. The product of the cycle of

four minor thirds, do, mi♭, fa#, la, do, or 56:64 is larger than the true octave by the

comma 648
625

.

24. Equal and Unequal Temperaments

It is necessary to start in some manner with a Pythagorean comma 531441
524288

among the

12 fifths, the comma 128
125

among the three major thirds, and the comma 648
625

among the

four minor thirds. All authors are in accord as to the necessity of this distribution,

but they differ in their opinions as to the first manner of correcting the defects of the

fifths and the other intervals. Some of us prefer an equal temperament, while others
prefer an unequal temperament.

25. Preference for an Equal Temperament

It is an uncontested experience that if we hear one interval that differs very little

from another that is expressible by simple numbers, we believe that we hear the

simpler set, and that this illusion is the more perfect the smaller the difference. This

illusion is very advantageous for us, since without it (Par. 21), there would be no

music. For the effect, it is the same whether the interval one hears can be expressed

by rational numbers or not. The end of each temperament being to distribute the

difference in the least sensible manner, and the present state of music requiring us to

be able to make use of each interval and each mode without hurting the ear; it

follows that the equal temperament is the most conforming to nature. From the

equal distribution of the difference over all the intervals, the octave excepted, the

inexactness of each interval is too small to affect the ear in a disagreeable manner.

All the homogeneous intervals are then of the same size, the 12 semi-tones that

comprise the octave make a geometric progression, each fifth is lowered by the

12 parts of the Pythagorean comma, each major third is raised by the third part of

the comma 128
125

, and each minor third is lowered by the fourth part of the comma 648
625

.

No interval is harmed by another, because, if a tone is fairly tempered like a fifth, it

has also the fair ratio as the major and minor thirds.
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26. Calculation for Equal Temperament

The calculation for equal temperament or for the geometric progression of the

numbers between 1 and 2 can be done in different ways. One of the simplest is

the following:

We divide the octave do:do into two equal intervals, taking the geometric mean

between 1 and 2, which yields the square root of 2, or 1.41411 for the tone fa# or
sol♭.We also divide it into three equal intervals, in order to have the major thirds do
: mi : sol# : do. The two geometric means between the two numbers, of which I

express the one by p and the other by q, are:

p :
ffiffiffiffiffiffiffiffi
p2q3

p
:

ffiffiffiffiffiffiffiffi
q2 p3

p
: q; or p here being ¼1, and q¼ 2, the cube root of 2 or

1.25992. . .gives the tone mi, and that of 4 or 1.58740. . .the tone sol# or la♭.
These numbers suffice to find all the others and for that we have only had to take

the square root of the product of the two numbers, between which we wish to find

the new tone. The square root of the product of:

do and fa# will give re# ¼ 1.18921

fa# and do . . . . . . . .la ¼ 1.68179

do and mi . . . . . . . .re ¼ 1.2246

sol# and do. . . . . . . . si♭ ¼ 1.78180

do and re . . . . . . . . do#¼ 1.05946

mi and fa#. . . . . . . . fa ¼ 1.33484

fa# and sol#. . . . . . . sol ¼ 1.49831

si♭ and do . . . . . . . .si ¼ 1.88775

One therefore has the following sequence of sounds, to which I have added the

lengths of the corresponding strings:

Number of vibrations Length of strings

do ¼ 1.00000 do ¼ 1.00000

do# or re♭ ¼ 1.05946 do# or re♭ ¼ 0.94387

re ¼ 1.12246 re ¼ 0.89090

re# or mi♭ ¼ 1.18921 re# or mi♭ ¼ 0.84090

mi ¼ 1.25992 mi ¼ 0.79370

fa ¼ 1.33484 fa ¼ 0.74915

fa# or sol♭ ¼ 1.41421 fa# or sol♭ ¼ 0.70710

sol ¼ 1.49831 sol ¼ 0.66742

sol# or la♭ ¼ 1.58740 sol# or la♭ ¼ 0.62996

la ¼ 1.68179 la ¼ 0.59461

la# or si♭ ¼ 1.78180 la# or si♭ ¼ 0.56123

si ¼ 1.88875 si ¼ 0.52973

do ¼ 2.00000 do ¼ 0.50000

Another method, which is essentially the same, and which gives the same results,

consists in multiplying 12 times in succession with the square root of 2, which can

be done better with algorithms than with the numbers themselves. We express this

geometric progression by:
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do : do# : re : re# : mi : f a : f a# : sol : sol# : la : si♭ : si# : do

1 : 2
1
12 : 2

2
12 : 2

3
12 : 2

4
12 : 2

5
12 : 2

6
12 : 2

7
12 : 28=12 : 2

9
12 : 2

10
12 : 2

11
12 : 2

Or by:

1 :
ffiffiffi
212

p
:

ffiffiffiffiffi
22

12
p

:
ffiffiffiffiffi
23

12
p

:
ffiffiffiffiffi
24

12
p

:
ffiffiffiffiffi
25

12
p

:
ffiffiffiffiffi
26

12
p

:
ffiffiffiffiffi
27

12
p

:
ffiffiffiffiffi
28

12
p

:
ffiffiffiffiffi
29

12
p

:
ffiffiffiffiffiffi
210

12
p

:
ffiffiffiffiffiffi
211

12
p

: 2

Thus each interval of our system, except the octave, cannot be rigorously expressed

in terms of irrational numbers which always represent other simpler ones, from

which they differ only in an almost imperceptible manner to our sense. Thus, the

fifth
ffiffiffiffiffi
27

12
p

differs from the true 3
2
only by the comma 149831

150000
and the major third

ffiffiffiffiffi
24

12
p

differs from the true 5
4
only by slightly less than the comma 125

126
. If one were to assign

more exactness to the interval, the other intervals would worsen.

27. Practical Application

In tuning instruments, it would suffice to lower each fifth and raise each major third

almost imperceptibly. We will therefore always have a better temperament than if

we execute it by a design of several intervals that are more exact than the others, or

if we wish to make several intervals in the opposite sense. The ear can still support

some fifths lowered by slightly more than a 12th part of the Pythagorean comma,

but 2
12
or 2

1
2

12
of the same comma will be the limit of the supportable fifths.

28. Rules for Judging Unequal Temperament

Just as there is only one truth and an infinity of errors, just so there is only one equal

temperament, but as many unequal temperaments as one can wish. Here are

principles for judging their relative value or, if one wishes to put it that way, their

defects.

1. The more exact the fifths, the poorer is the temperament, because then this small

number of fifths, among which the Pythagorean comma is distributed, become

less supportable.

2. The same results follow if the Pythagorean comma is more unequally

distributed.

3. The worst temperaments are those where there are raised fifths, because then

several other fifths support the excess of the raised fifths, besides the Pythago-

rean comma.
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The temperament of Kirnberger1 is one of the worst because it contains nine

exact fifths and the Pythagorean comma is distributed unequally over three

fifths. It must be noted here that, because of the authority of Kirnberger,

otherwise justly celebrated as a harmonist, this has resulted in several authors

adopting false principles.

L. Euler (Tentamen novae theoriae musicae; Nov. Comment. Acad Petrop.
vol. XVIII and Mém. de l’Acad. de Berlin, 1764) expresses the series of

12 tones contained in the octave 2m3352, multiplying all the divisors of 3352

sufficiently often by 2 in order to return to the same octave. One will have,

therefore, the series of sounds do¼ 384, do#¼ 400, re¼ 432, re#¼ 450,

mi¼ 480, fa¼ 512, fa#¼ 540, sol¼ 576, sol#¼ 600, la¼ 640, si♭¼ 675,

si¼ 720, do¼ 768. This sequence of tones approaches the true values more

closely than any other expressible by irrational numbers, but it is not appli-

cable in practice because the fifth si♭:fa is too sharp by the comma 2048
2025

or 10
12
of

the Pythagorean comma. The sum of the differences of the fifths will then be
22
12
of this comma which is distributed over the fifths re:la and fa#:do#, lowered

by 81
80
; four major thirds do#:fa, re#:sol, sol#:do, and si♭:re are too sharp by the

comma 128
125

, etc.

It would be superfluous to examine anything that is as useless and

disagreeable as unequal temperaments, proposed by several authors,

where each one pretends that this method of tempering is preferable to all

the others.

The best work on temperament that I know, and from which I have

borrowed several ideas, is that of Marpurg’s Versuch ber die musikalische
Temperatur (also called Treatise on Musical Temperament), Breslau, 1776.

Appendix to Part I

29. Signs for the Tones Contained in Different Octaves

It is necessary for me to have signs for the tones contained in different octaves
because, in Part II, I will give series and tables for the tones that the same elastic

body can produce in its different modes of vibration. I will therefore regard the

lowest do of the clavier or violoncello as the basis. I will express each tone of

this first lower octave by adding the number 1, for example, do 1, do# 1, re 1.

1 Johann Philipp Kirnberger (1721–1783), composer, musical theorist, and pupil of Johann

Sebastian Bach, created a tuning system based on equal temperament.—MAB
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The tones of the second lower octave will be expressed by adding the number 2. For

the tones of the following octave, which is the first above, we will add the number

3, for the second above, the number 4, and so on. When it is necessary to mention a

tone that is lower than the first do of the clavier or violoncello, I will express it by a
minus sign placed as a subscript. By adding the plus sign I will express that the

sound is slightly more acute than the tone mentioned.

As far as I know, no names or signs exist that are generally accepted for the

tones contained in different octaves, except in German, where one expresses

tones that are graver than the first do of the violoncello by a line placed under
the name; the tones contained in the first lower octave, beginning with the do,
by the initial letters; those of the following octave by the ordinary letters,

those of the first octave above by a line written above, those of the second

octave above by two lines, etc.
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Part II

Characteristic Vibrations of Sounding
Bodies



Section 1: General Remarks

30. Different Types of Sounding Bodies

The preceding part concerned the frequencies of vibrations in general; but here it

will be a question of the nature of the vibratory motions with regard to changes in

shape and corresponding frequencies in each kind of motion of any sounding body

whatsoever.

Elasticity being the moving force for sonorous vibrations, a sounding body can

be elastic, either under tension, or under compression, or under due to shear
(stress).

Flexible bodies that become elastic under tension can be either thread-like, when
changes in the shape can be expressed by curved lines as in strings, or membrane-
like, where the changes in shape can be expressed, not by curved lines, but by

curved surfaces, as in the membranes of drums (timbales) and other taut
membranes.

Examples of sounding bodies that are elastic under compression are the air and

the gas in wind instruments.

Bodies that are elastic by virtue of their internal stiffness are either thread-like or
membranous. The thread-like bodies can be either straight-line, like rods or sheets,

or curved, like rings, forks, etc. Rigid membranous bodies are also either rectilinear,

as in plates of any shape whatsoever, or curved, as in vessels and bells.

In this manner of regarding sounding bodies, there are none that cannot be

reduced to one of these types. The vibrations of most of these bodies were wholly

unknown; but I have made use of new means of making them sensible to the eye

and ear.

I will add some remarks on the coexistence of several motions in the same

sounding body.

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
DOI 10.1007/978-3-319-20361-4_4
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31. On Noise and on the Different Timbres of Sound

In distinct sound, the vibrations of a sounding body or of its parts are carried out at

the same time, and all the vibrations are of equal duration; but one cannot say the

same thing about noise, the nature of which is still not known. Sound, when the

mode of vibration, the frequency, and the force are the same, sometimes has a very

different character, which we call timbre. This seems to depend on the different

stiffness or tenacity of the bodies, and on the quality of the material that serves to set

them into motion. We do not know the real causes of these different effects, and

there are still no means of submitting them to calculation or experiment. This

difference of timbre seems to be caused by a little noise mixed with the perceptible

sound. For example, in song, one hears, in addition to the vibrations of the air, the

rubbing of the air on the organs of the voice. In the violin, in addition to

the vibrations of the strings, we hear the rubbing of the bow on the strings. Perhaps

the different types of noise and timbre consist of unequal motions of the smallest

parts of the body, as those by means of which Lahire, Carr, and Musschenbroek

wished to explain the nature of sound. But, instead of continuing to make conjec-

tures about the nature of the noise, and of the different timbre of these sounds, we

will explain the nature of perceptible sound.

32. General Laws of Sound Vibrations

Every sounding body can undergo vibrations of very different types, the character
of each of which has a certain ratio to the frequency of the others, depending on the
size of the vibrating parts.

When the sounding body is divided into a number of vibrating parts, these parts
(of which the oscillations are called the loops or antinodes of the vibrations and are
separate by fixed limits which are called the nodes) always make their motions
alternately in the opposing sense, in such a way that one is just above the rest
position, while the next is just below it.

The isochronism of the vibrations of all the parts produced by their relative
equilibrium being an indispensable condition for the sound, it must, like the division
of the sounding body into vibrating parts, be always as regular as the circumstances
permit. The size of a part situated at the free end is about half that of the part that is
located between the nodes.

In order to produce a certain sound, we can hold or touch one or more of the
nodes and rub or strike one vibrating part in the same direction as the vibrations
are made.

Several or all of the ways of vibrating can coexist in the same sounding body.
The body motions can also coexist with other forms of motion.
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This paragraph is distinguished from the others because it contains a précis of all

the laws of sound vibrations. All the rest of acoustics is only showing the ways in

which these same laws are differently modified in different elastic bodies.

33. The Vibrations Must Be Very Small

For the theory, it is assumed that the vibrations of a sounding body, like the

oscillations of a pendulum, are infinitesimally small, but, when they are really

only very small, the difference in the calculations of the vibrations that results

from that fact is not considerable. If it is a question of a taut string which makes

oscillations of one degree, the duration of one vibration is greater by 1
30000

, if the

oscillations were infinitely small. For an oscillation of two degrees, the difference is

approximately 1
12500

, etc.

I have represented much greater oscillations in the figures in order to distinguish

them more easily.

34. Different Directions of Vibration

The direction of the vibratory motion can be transverse, longitudinal, or torsional.
In transverse vibrations, the sounding body or the parts of this body make their

motions alternately toward one side or the other in such a way that the lines traveled

by each point of the body make a right angle with the axis. Figures 1–4, 20–27, and

38–40 serve to give an idea of similar motions.

Longitudinal vibrations consist of contractions and expansions of the sounding

body or of its parts in the direction of the axis, or along the length, as in Figs. 14–19

and 28–36. Bodies susceptible to such motions include:

1. The air contained in a wind instrument

2. Strings or rods of sufficient length

The laws of these two types of vibrations are very different.

Torsional vibrations, to which some rods or plates are susceptible, consist of

rotations which occur alternately in opposed senses. In cylindrical or prismatic

rods, the sound of these vibrations is always graver by a fifth than the longitudinal

sound of the same body, driven in the same manner.1

1We now know that the ratio of torsional wave velocity to compressional wave velocity depends

on the shear modulus, the Young’s modulus, and the Poisson ratio for the material. It is not clear

what Chladni intended by “driven in the same manner.”—TDR
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35. Intensity of Sound

The intensity of sound depends on the magnitude of the oscillations, on the size of

the sounding body, and on the frequency of its vibrations.
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Section 2: Vibrations of Strings

A. Transverse Vibrations

36. Modes of Vibration

A string can vibrate as a whole or divided into any number of equal segments,

separated from one another by nodes of the vibrations. The only difference between

these vibrations is that the unity which serves as a measure changes, because, when

the string is divided into aliquot parts, each half, each third, etc. makes its motions as

if it were a string by itself. The gravest sound is that made when the entire string

vibrates and alternately forms the loops represented in Fig. 1 by ACB and ADB. When

it is divided into two parts, one half is on one side of the rest position, while the other

is on the opposite side, and the loops are as in Fig. 2, ADCEB and AFCGB; the sound
is more acute by one octave than the fundamental. If the string is separated into three

segments, the loops are alternatively placed, as marked in Fig. 5, in two different

ways; the sound is more acute by a fifth than that of the second harmonic. If the string

is divided into four segments (Fig. 4), the pitch of the sound is increased by a fourth.

In general, all of the possible sounds are as the numbers of segments (or as the

reciprocals of their lengths); the series will therefore be as the numbers 1, 2, 3, 4, etc.

When the gravest is do, the series of possible sounds will be:

No. of segments 1 2 3 4 5 6 7 8

Sounds do 1 do 2 sol 2 do 3 mi 3 sol 3 si♭ 3� do 4

9 10 11 12 13 14 15 16 etc.

re 4 mi 4 fa 4+ sol 4 la 4� si 4� si♭ 4� do 5

In a string of unequal thickness, the vibrations are ordinarily very irregular,

except for several special cases; for example, if the lengths of the segments are in

inverse order to their diameters.

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
DOI 10.1007/978-3-319-20361-4_5
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37. On the Manner of Producing These Vibrations
and Making Them Visible

To produce sound where the string is divided into aliquot segments, one must place

a finger very lightly at a point where there is a node of vibration, and apply a violin

bow approximately in the middle of the vibrating part. It is not necessary to press

the node of vibration very hard, in order to prevent the transmission of the motion of

one segment to another; the pressure of the bow should also be much smaller than

that for the fundamental sound. The mode of division can be made visible by

placing small bits of paper on different points of the string; those which are on

the vibrating part will be struck by the vibrations and fall off; but those which are

placed on the node of vibrations will remain stationary.

We owe this experiment to Sauveur (Hist. et Mém. de l’Acad. de Paris,
1701). Wallis (in Algebra, vol. 2, p. 466) mentioned sounds of aliquot

segments as a discovery made by Noble and Pigot at Oxford, and communi-

cated to him in 1676 by Narcissus Marsh.

The sounds of aliquot parts of a string on the violoncello and on the violin

are sometimes used. These are known as fluted sounds or harmonic sounds.
Use is also made of it in the case of an instrument with a single string, which

is called a marine trumpet. The sounds of the Aeolian harp consist of similar

vibrations, produced by an air current that acts on the strings in different

ways. Ossian and the commentator on Homer, Eustathius, had already men-

tioned the sound of strings produced by the wind. A. Bale, in the house of a

Captain Haas, had very long and very strong strings, exposed to the air, that

yielded different sounds, especially during changes in intervals. In the Annali
di Chimica e storia natural, (Pavia), vol. 18, 1800, similar observations were

made by Gaetano Berrettari.

38. Coexistence of Several Vibrations

Several or all kinds of vibrations to which a string is susceptible can exist at the

same time. In order to have an idea of the loops of the string, it is not necessary to

apply a curve to a straight line, but to the curve which already exists at each moment

by other vibrations. Figs. 5–8 represent several examples of similar curves. Sect. 9

of this Part will contain more instruction on this subject.
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39. On the Curve Formed by a String in Its Transverse
Vibrations

The opinions of geometricians differ on the nature of the curves into which a string

can convert itself in transverse vibrations. Taylor, D. Bernoulli, and Giordano

Riccati have found that these curves have the shape of a very elongated trochoid

and that L signifies the length of the string, the ratio of the periphery of the circle to

its diameter. And if one expresses the greater order at the middle of a segment of

vibrations for the first kind of vibration by A, for the second by B, for the third by C,
and so on, any abscissa by x and the number ordered to this abscissa by y for the

fundamental type of vibrations, y is estimated to be ¼ A sin
πx

L
, for the second

y ¼ B sin
2πx

L
, for the third y ¼ C sin

3πx

L
, etc. But Euler presumed that the wave is

arbitrary and that it depends on the first impressions that are made on the string, in

the manner that there will not always be continuity of the different segments of the

curve, but that each vibrating part takes on the same curve as the other alternatively

in the opposite sense. Lagrange has proposed the same opinion as Euler.

D’Alembert also attributes still other curves to the strings, such as the trochoidal

curves of Taylor, but he did not agree that the string could take on curves which do

not conform to any law of continuity.

40. Laws of These Vibrations

If L expresses the length of the string, G the weight, P the tension (which can be

expressed by a suspended weight), n the number of segments into which the string is

divided and S the relative number of vibrations, or the sound of the string, Swill be¼
n

ffiffiffiffiffiffiffi
P

LG

r
. In strings that are made of the same material, if D expresses the diameter or

thickness,G is¼D2L and S ¼ n

ffiffiffiffiffiffiffiffiffiffi
P

L2D2

r
, or

ffiffiffi
P

p

LD
. Consequently, homogeneous sounds

(where n is the same) of strings of the same material will be:

1. When the thickness and the tension are the same, the sounds will be as the

reciprocal lengths of the strings; that is why we can use a monochord for

demonstration of the ratios of the sounds.

2. When the length and the tension are the same, m, the sounds will be as the

reciprocal of the diameters (or the square root of the weight); in such a way that

if, for example, the thickness of one string is to that of another as 1–2, the sound

of the thicker string will be lower by an octave.
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3. When the thickness and the length are the same, the sounds will be as the square
roots of the tension. If one wishes, for example, for the sound of a string to differ

from that of another by an octave, it is necessary that the tensions be as 1–4.

Differences in material have no affect on the determination of sound; a string of

catgut and a string of any metal whatever will give the same sound if the length, the

weight, and the tension are all the same. The duration of each vibration being

reciprocal to the number of vibrations, it will be
1

n

ffiffiffiffiffiffiffi
LG

P

r
. The absolute number of

vibrations that the string makes in a second of time can be found by comparing it to

a seconds pendulum, where the duration of a vibration is expressed by π (or the ratio
of the circumference of the circle to the diameter) multiplied by the square root of

the length. The length of a seconds pendulum being f; a second, or the duration of an
oscillation of the pendulum, will be at t, or to the duration of a vibration of the string

as π
ffiffiffi
f

p
is to

1

n

ffiffiffiffiffiffiffi
LG

P

r
; t will be equal to

1

πn

ffiffiffiffiffiffiffi
LG

f P

s
, and the number of vibrations that

are made in a second πn
ffiffiffiffiffi
f P
LG

q
.
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42. A Particular Case: Where the Tone from a String
Divided into Two Parts Is Lower than That of the Entire
String

I will now add a unique phenomenon, in which a string, divided into two parts,

produces a lower tone than that corresponding to the ordinary vibrations of the

entire string. Hellwag, physician to the reigning Duke of Oldenburg at Eutin,

having observed it, was kind enough to communicate it to me. If we place a support

under the string, so that it is not fixed but lightly touched, and if we pinch the string

in order that it strike vertically in the support, there will be some cases in which one

will hear the striking as a perceptible sound lower than its fundamental, but very

raucous and disagreeable because of the deformity of the vibrations. This sound can

be called the “snoring sound” of the string.1 If we apply the support to the middle of

the string, the snoring sound is graver by a fifth than the ordinary sounds of the

entire string. When the string, Fig. 9, is pulled from its rest position pnq toward

m and released, it strikes the support n after one half of a vibration; the two halves

continue their motions forming the curves pkn and nfq; then they return and, as soon
as they reach the axis pnq the entire string makes a half vibration toward pmq and
another toward pnq, and so on. One therefore hears the shocks on the support in

the sum of the following time intervals:

1. The half vibration of each half pn and nq toward pkn and nfq, one quarter of an
ordinary vibration

2. The return of each half to the axis pnq, one quarter of a vibration
3. The motion of the entire string toward pnq, half a vibration
4. The return of the entire string to the axis, where it strikes the support, one half a

vibration

The time interval, therefore, between two strikings of the support,
1

4
þ 1

4
þ 1

2
þ

1

2
¼ 3

2
; it must be that the snoring sound is a fifth lower than the ordinary sound,

confirming to the experiment. But, because of the motions of each half, there is

always a mixture of the higher sound that belongs to these halves, and finally,

when the shocks cease, the more acute sound continues for a bit. There are only

two cases which find this sound perceptible, but much less distinct. If the string is

divided in the same way into two parts, which are
2

5
and

3

5
, the snoring sound is a

semi-tone more acute than in the previous case. It seems to me that the ratio to

ordinary sound is
18

25
to 1. If the support divides the string into two parts that are 1

3

and 2
3
, the snoring sound is lower by a ninth than the ordinary sound. The ratio is

1 The “snoring sound” refers to the raucous and disagreeable sound caused by the string striking its

support.—GB
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therefore
2

9
to 1. The effect was almost the same if the end where one plucks the

string was different, or if the support was not placed exactly in the place

mentioned.

B. Longitudinal Vibrations of Strings

43. Different Types of Longitudinal Vibrations

A longitudinal vibration consists of the contraction and expansion of a string, or its

aliquot parts, moving alternately between fixed points or a vibrational node. In the

simplest longitudinal motion, the entire string moves alternately toward one fixed

point and then toward the other (Figs. 34a, b). The second kind of longitudinal

motion is that in which the string is divided into two equal parts, which alternate

between the vibrational node in the middle and the fixed points at the ends

(Figs. 35a, b). In the third type of longitudinal vibrations, the motions of the parts

are alternately as Figs. 36a, b, etc. The sounds together have the ratios as those of

transverse vibrations, being as the numbers 1, 2, 3, 4, etc.; but there is no fixed

relationship for the absolute pitch of the sound between these two types of motion

because the laws are very different.

44. Manner of Producing Them

To produce these sounds, we must rub a vibrating part of the string longitudinally

with a violin bow, which is held at a very acute angle, or with a finger, or with

another flexible body to which one has applied rosin powder. For division of the

string into aliquot parts, it is necessary to touch a node of the vibrations lightly at the

same time.

45. Laws of These Vibrations

The laws of longitudinal vibrations differ altogether from those of the transverse

vibrations. The only resemblance is that the sounds are in the inverse ratio to their

lengths; but in longitudinal vibrations, the sound does not depend on the thickness

of the string or on the tension, but only on the length and the type of material of

which it is made. For example, a brass string gives a more acute sound by about a
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sixth than that of a catgut string. And the sound of a steel string surpasses the one of

the brass string by about a fifth. To do the experiments, it is necessary to use strings

of a considerable length, since these sounds are very acute. I even used strings that

were 48 ft long. Sect. 5 of this Part will contain more information on longitudinal

vibrations.
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Section 3: Vibrations of a Stretched
Membrane

46. Explanations

A rectangular taut membrane, only stretched lengthwise, will be susceptible to the

same vibrations and the same sounds which vibrate crosswise. The nodes of

vibration will then be transverse immobile lines. But such a membrane, as a

membrane stretched in more directions, will also be able to vibrate in infinite

ways. The curvature cannot be expressed by lines, but by curved surfaces. For

these, the expressions and the means to calculate them are once again lacking.

The nodes of vibration will form nodal lines in the different directions. More

information on the vibrations of surfaces is located in Sect. 7.

If rectangular membranes vibrate as a string, it will be necessary (if the material

is the same) to change the expression (Par. 40)
ffiffiffi

P
p
LD, if B signifies the width, to n

L

ffiffiffiffiffi

P
DB

q

.

47. Modes of Vibration

According to the research of Giordano Riccati (Saggi scientifici e letterari dell’
Academia di Padova, vol. 1, 1786, p. 414ff) on the vibrations of a membrane of a

kettledrum stretched equally in all directions, some vibrations correspond to those

of strings, giving the same ratios of the sounds. A kettledrum of which the gravest

sound is si♭ 1, also gives the sound la 2, more acute by almost an octave. And the

sound mi 3, even more acute by a fifth. If L expresses the diameter, M the mass of

the membrane, P the tension, π the ratio of the circumference to the diameter,

ƒ the number of seconds, and n the number of the vibrations which accompany

each type of motion, the number of vibrations in one second of time will be,

according to Riccati, ¼ 3
4
πn

ffiffiffiffiffi

ƒ P
LM

q

.
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Riccati’s assumption, that in the vibrations of such a kettledrum membrane,

every diameter can bend itself to the curves of a vibrating string, is true for the

fundamental sound and for all the sections of a string divided into an odd number of

parts; but it is impossible for the sections of a string divided into an even number

of parts. To prove this, I will express every elevated section in the ordinary position

by + and every section lowered under this position by�, as one does for any type of

opposing quantities. When such a membrane gives the exclusive fundamental

sound, every diameter takes the curvature of a string in simpler vibrations

(Fig. 1). But if one wants to suppose that every diameter of the membrane can

move as a string divided into two parts (Fig. 2), it is necessary (Fig. 10) that at the

same time: am is + and bm�, cm is + and dm�, em + and fm�, gm + and hm�, bm
+ and am�, dm + and cm�, etc. It is necessary, therefore, that every semi-diameter

is at the same time above and below the ordinary position.

Consequently, such a supposed mode of vibration, where each diameter gives

the same motion as a string in Fig. 2, will not exist. But it will be represented by

another, where the membrane (Fig. 10) will be divided by a nodal line ef into two

half-round parts, eaf and fbe, of which one is +, while the other is�; and where only

the diameter amb vibrates exactly as a string in Fig. 2, and every other diameter in a

slightly different manner; and where the diameter ef doesn’t vibrate; these types of
vibrations will not be able to be described with a curved line.

The third mode of vibration of a string (Fig. 5) will apply to every diameter at the

same time; the nodal lines will then form a concentric circle (Fig. 11).

The fourth curvature of a string (Fig. 4) will not apply to every diameter at the

same time, for the same reason that excludes the second; but a single diameter

(Figs. 12a, b) will take this curvature, and the nodal lines will be a circular line and a

diametral. The curve of a string divided into five parts will apply to every diameter,

and the nodal lines will form two concentric circles (Fig. 13, etc.). Besides these

types of vibrations analogous to the vibrations of a string, the membrane will be

able to be divided in many other ways, where there is more of a nodal line in

diametral directions, etc.

Euler has published, in Vol X of the Nov. Comment. Acad. Petrop., some

research on the vibrations of a rectangular membrane. In the fourth volume of

Mémoires de Mathématiques et Physiques de l’Institut de France, Mr. Biot

calculated the possibilities for the division of a taut rectangular membrane

into aliquot parts. There are not yet experiments on this subject. It will be

necessary to find a new means to do them, because in similar membranes, the

edge is not free, and one cannot apply a violin bow.
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Section 4: Vibrations of the Air
in a Wind Instrument

48. The Air Here Is the Sounding Body

Here, it will be the question of the vibrations in the air, when it is itself the sounding

body. That which is transmitted in the air by another sounding body will be reserved

for Sect. 1 of Part III. It will be regarded as the continuation of this one, the laws

being the same.

49. A Simple Blow Is Enough to Produce Vibrations

Every strong simple blow, for example, the crack of a whip, or an explosion,

produces vibrations in the air. But they are ordinarily too irregular and with too

few isochrones to give a distinguishable sound.

50. Sound Produced by a Current of Air Through a Slit

The vibrations of the air produced by the passage of a current of air through an

opening or narrow slit are much more distinguishable. The frequency of these

vibrations is dependent on:

1. The speed of the air current: If the opening remains the same and the speed of the

air current increases, the sound is more acute.

2. The size of the opening: If the opening is smaller and the speed of the air current

remains the same, the sound is more acute.

If both the speed of the air current and size of the opening increase or decrease,

the sound will remain the same, but the intensity will be different. The whistling

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
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from the compression of the levers, and the sound that the wind produces

sometimes when it is passing through a narrow slit, will serve as examples. The

sounds that one can produce while blowing, for example, an oboe reed, follow the

same laws.

51. Reinforcement of the Sound of the Air by the Resonance
of a Membrane

If a current of air passes through an opening or a narrow slit, forcing a membranous

body to vibrate, the sound is greatly reinforced, but typically it becomes more

piercing or more breathy. This is what takes place, for example, if one stretches a

small piece of paper, a blade of grass, or a reed between the thumbs of both hands,

and blows air over both sides of the object. Such a reinforcement by a vibrating

membrane for a pipe with reeds also applies to pipe organs.

52. Voices of Humans and Animals

The voices of humans and animals are formed in the same way. Two roughly half-

round membranes are found in the larynx, which together form a circular surface.

The outer edges of the membranes, which are called the ligaments of the glottis, are
attached to the walls of the larynx, and their straight edges are able to fold along the

diameter of the circle to form a lens-like split that is called the glottis. If this

opening is too large, air passes without producing a sound, as with ordinary

respiration. But if it is drawn closer or narrowed, the air that is passed out of the

lungs through the larynx rubs against these two membranes and produces rapid

vibrations that are transmitted to the air going out. To this current of vibrating air,

that is called the voice, other organs of the mouth present different obstacles and

very differently shaped openings, each of which varies and articulates the voice in a

different way.

The more the glottis is narrowed by the tension of the ligaments, the more acute

the pitch. All of the possible varieties are produced by changes to the opening,

where the most extreme difference is only a tenth of an inch.

According to Dodart (Mém. de l’Acad. de Paris, 1700, 1706, and 1707), the

different sounds depend on the widening and narrowing of the glottis; but

Ferrein (Mém. de l’Acad. de Paris, 1741 and 1743), claims that it depends on

the differences in the tension of the ligaments. But the two assertions are not

contrary, because when the opening is narrowed, the ligaments are stretched.

(continued)
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The best information on the vocal organs of birds (where they are more

complex), mammals, and reptiles appears in the Leçons d’Anatomie comparé
e by Cuvier, vol. iv, lesson xxvii. One may also read Haller, de partium
corporis humani fabrica et fonctionibus, Book IX; Vicq d’Azyr, sur la voix,
in the Mem. de l’Acad. de Paris, 1779; Ballanti, Urtini, and Galvani

observationes de quorundam animalium organo vocis in Comment. Bonon.,
vol. VI, p. 50ff.

Von Kempelen of Vienna has published much interesting research in his

book, €Uber den Mechanismus der menschlichen Sprache (On the Mechanism
of Human Language), in Vienna, 1791, where an exact description of

the speaking machine is added. He was kind enough to show me his

machine—the left hand operating the bellows and the right hand operating

the pipes—imitating the various sounds of the human voice.

The research of Kratzenstein is found in the Observations sur la Physique
by Rozier, 1782 supplement, p. 758. He also built a machine imitating the

vowels, which consists of different ratios of the exterior and interior open-

ings. I take this occasion to note that there are ten possible vowels. The vowel

a is formed by leaving open all of the outside and the inside parts of the

mouth. There are three series of these vowels that can be counted:

1. If the outside stays open and the inside narrows a bit:

a
ò (open o, as in some English words, and aa in Danish and å in Swedish)

�o (ordinary o, which is also called a closed o)
ou (which is expressed in Italian, in Spanish, in German, etc. by u; in

Dutch by oe)

2. If the outside stays open and the inside narrows a bit1:

a
è (open e, which is expressed in French as ai, and in German by €a)
é (closed e)
i

3. Where the outside and the inside are narrowed at the same time:

a
e�u (open, as in the word bonheur, in between ò end è)

(continued)

1 In the original text, #1 and #2 are exactly the same, although, from the context, it appears that the

author intended to say: “If the inside stays open and the outside narrows a bit.”—MAB
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éu (closed, as in the word affreux, or as €o in German, Danish, and Swedish,

and as eu in Dutch, in between �o and é)
u (which is expressed in German as €u, in Danish and Swedish as y, and in

Dutch (as in French) by u; in between ou and i)

To view these all at one time, they can be arranged in the following way:

ò eú ò

ò eù ò

ou iu

a

The vowels are not pronounced immediately one after another, without

lightly touching the intermediates. There are as many diphthongs as there

are possible ways to pronounce two vowels in a syllable.

53. Differences in Pipes

In organ pipes and other wind instruments, the airstream is the sounding body

which makes longitudinal vibrations. One easily sees that the instrument itself is not

the sounding body because the sound is not changed by the material with which it is

constructed, the thickness of the walls, the diameter, the different ways in which

one squeezes it in any location, or however any sound is prolonged. If, for example,

pipes of the same shape are made of wood, metal, glass, etc. the differences in

timbre seem dependent on the differences in the air friction against the walls or on

weak resonance of the same walls. If one simply blows in a pipe, there is no focus to

the sound; for that would produce only a progressive motion of the air, which is not

a sound. It is necessary that the air enters through a narrow slit, or that it vibrates an

elastic blade, where the vibrations produced are similar to the vibrations in the

continuous airstream in the pipe. Or, at least, that a thin airstream is pressed with
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force, breaks itself against the splitting edge of an angular body, and passes almost

in the direction of the axis in front of the end of the airstream.

The tone is dependent on:

1. The manner in which the air is blown

2. The width of the airstream contained in the pipe

If one of these two causes is predominant, it is sufficient to determine the sound.

But if there is not such a preponderance, there is not an exact focus of the sound

unless both of the two operate at least close to the same effect, because each cause

tends to produce another sound.

54. Reed Stops

In the type of organ pipe called a reed stop, the sound depends principally on the

manner in which the air is blown. The entering air vibrates a thin blade of copper,

called a tongue, pressed toward the reed by a metal wire which is called the

regulating wire, the top end of which has a notch or a hook to tune the pipes by

pushing the regulating wire up or down by a tuning hammer. This increases or

diminishes the vibrating part of the tongue, and at the same time enlarges or

narrows the slit through which the air current enters.

The part of the pipe where the air vibrates longitudinally is longer for the graver

sounds than for the more acute sounds, but not as long as those in other organ pipes,

because the vibrations of the tongue force the contained air in the pipe to vibrate at

the same time, which is against its nature. For this reason, the sound of these organ

pipes is harsher than others; but in adding the other softer organ pipes, they serve to

increase the power, especially to the graver sounds.

55. Flue Pipes

In organ pipes that are called labial pipes or flue pipes, as also in other wind

instruments, the frequency of the vibrations is dependent mainly on the length of

the airstream, in a way that one cannot produce sounds other than these, which are

the inverse of the length of the vibrating parts of the air.

There is also always something that can be regarded as a reed, but it must be

more within reach of the pipe than the reed stops mentioned previously. The types

of organ pipes of which I speak have a transverse blade intersected in sloping

manner, known as a bevel, which the air strikes perpendicularly in the way that air

blown through the mouth can go out only through a narrow opening. This air going

out, in the shape of a thin blade, hits the edge of the upper lip of an opening or slit

called the lumière, and puts in motion the air contained in the pipe.
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The oboes, the bassoons, etc. also have a reed that consists of two blades

between which the air is forcefully pushed, shaking the sharp edge. In the trumpet
and the hunting horn, the levers that are squeezed more or less firmly function as a

reed; in the flute, the levers have the same function; the blade of air hits against the

angular edge of the opening. In the chalumeau2 there is a type of tongue, etc.
To produce the different sounds to which the same wind instrument under the

same circumstances is predisposed, it is necessary to squeeze the levers more or less

firmly and push the wind with more or less force. The small-diameter pipes,

because of their length, will return acute sounds more easily than those pipes

with larger diameters, where the airstream is divided into several vibrating parts.

If there are lateral holes, the vibrating airstream is shortened when they are open,

which raises the sound. The effects of these lateral openings still have not been

successfully calculated, but the better experiments are those of Lambert in theMém.
de l’Acad. de Berlin, 1775.

Giordano Riccati (delle corde ovvero fibre elastiche, schediasma vii, par. 13)

shows very well the passage of the vibrations in the air that depend on the

mouthpiece, or on the manner of blowing, as those that are mostly determined

by the length of the airstream. The reed of an oboe, inflated separately, produced

grave and acute sounds differing by a sixth of an octave or more. But if the

same reed was used in an oboe, and all of the holes were left open, the biggest

difference in the sounds was nearly a fourth, and the sound was less defined,

because the vibrations were in a longer airstream, lessening the effect of the

manner of blowing.

If all of the lateral holes were closed, the vibrating airstream was too long to

regulate its motion with ease by different ways of inflation; the biggest difference

was thus nearly a tone; the intonation was false and very disagreeable because the

sound of the mouthpiece was much too different from the one that suited the longer

airstream contained in the pipe.

One sees therefore that each of these two causes (inflation and the length of the

pipe) has its sphere of activity, where one seconds the effect of the other, as long as

they do not go out of the boundaries of this sphere. As they compete to produce the

same effect, their sphere of activity is extended; in both cases, the sound is formed

more easily.

56. Kinds of Pipes

The modes of vibration and the series sounds are different if an organ pipe is closed
on one side or if the two ends are open. It is always necessary to look at the end

where one blows as open, even if it is put directly in the mouth, as in the horn and

2A predecessor and close relative of the clarinet. The lower register of the modern clarinet is often

called the chalumeau register.—TDR
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the trumpet.3 The laws of vibrations are exactly the same as those of the longitu-

dinal vibrations of rods (Sect. 5B). If one of the ends of a pipe is closed, the air

vibrates as a rod with one end fixed; if the two ends are open, the air vibrates as a

rod with two free ends; and if there is a way to put the air in motion in a pipe with

the two ends closed (which would be done by blowing through a gap in the middle,

as with a flute), the vibrations of the air would be similar to those of a rod fixed at

both ends, or to the longitudinal vibrations of a string.

57. Explanation of the Manner in Which Vibrations
Are Made

In all modes of vibrations, the compressions and expansions of the air are formed

alternately, such that each portion of the air alternately approaches and recedes

from the nodes of vibration. These small compressions and expansions, as also the

longitudinal oscillations of the air molecules, are quite unequal in different places.

At the nodes of vibration, the compressions and expansions are maximum (because

the actions of all the other parts of the air contribute to this effect), but the

oscillations are zero; the further a part is removed from a node of vibration, the

more the compressions and expansions diminish, while the oscillations of the

molecules increase; and at the middle between two nodes, or at an open end, the

oscillations are maximum, but the compressions and expansions are zero, and the

air density always remains the same as that of the open air that surrounds the pipe.

58. The Difference Between Simple and Double Parts

If the airstream contained in a pipe separates into any number of vibrating parts, the

length of the part located at an open end is always one half that of the part contained

between two nodes of vibration, so that the latter can be regarded as composed of

two parts of half its length, which will be contiguous with the free end. I will

therefore, in order to facilitate the demonstrations, call the part between two fixed

limits, a double part, and the part located at an open end, or one half of a part

contained between two fixed limits, a simple part. In such a simple part, the

maximum compressions and expansions, without oscillations of the molecules,

take place at one of the ends, while at the other end maximum oscillations occur,

but with no compression or rarefaction.

3 The mouthpiece end of a horn or trumpet acts as a closed end of the pipe. The acoustical behavior

of the mouthpiece and the pipe are designed to make it play even as well as odd harmonics.—TDR
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59. Simplest Motion of Air in a Closed Pipe

The simplest motion of air contained in a pipe, one end of which is closed, is that in
which there is only one simple part. The air alternately approaches and recedes

from the closed end (Figs. 17a, b), which has the same function as a node of

vibration in other modes of vibration. This motion, which produces the deepest

sound of which a pipe of the same length is capable, should be regarded as unity;

both for the dimensions and number of vibrating parts, as well as for the number of

vibrations that can be executed in the same time interval.

60. Simplest Motion of Air in an Open Pipe

When the two ends of a pipe are open, a node of vibrations is formed in the middle

of the pipe for the simplest motion of the air. In this case, the two simple parts
mutually approach and recede (Figs. 14a, b).

One will therefore have, as it were, two equal and closed pipes, where the layer

of air in the middle, against which the other layers press from one side or the other,

serves the function of a fixed separation. The sound is therefore an octave higher

than the fundamental sound of a closed pipe of the same length, or the same as that

of a closed pipe of half the length, but, because there are two of them, the sound is

much stronger and more agreeable.

61. Other Motions of Air in Closed and Open Pipes

Aside from the simplest modes of vibration, still others can be formed if we change

the mouthpiece and the force of the air, and especially if the diameter of the pipe is

small in comparison with its length.

In the second sound of a closed pipe, a node of vibration is formed at a distance

of one third the length from the open end where the air is blown in, and two-thirds of

the length from the closed end, and the air is separated into a double part and a

simple part, whose air layers mutually approach and recede, as in Figs. 18a, b.

The airstreams should be regarded as divided into three simple parts. The ratio of

the frequency of vibration to that of the fundamental sound is as 3 to 1, the sound is

therefore more acute by a twelfth or a fifth plus an octave.

In the second sound of an open pipe, there are two nodes of vibration, removed

from the ends by a quarter of the length, and the airstream is divided into a double

part in the middle and two simple parts at the ends, which is equivalent to four

simple parts; the divisions and the reciprocal motions are represented in Figs. 15a, b.

The sound is to the first of the same pipe (Fig. 14) as 4 to 2, or more acute by an

octave.
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In the third sound of a closed pipe (Figs. 19a, b), there are two double parts and

one simple, which is equal to five simple parts; the sound is to the fundamental

sound (Fig. 17) as 5 to 1; it is therefore more acute by two octaves and a third and

differs from the second sound (Fig. 18) by a major sixth or 5 to 3.

In the third sound of an open pipe (Figs. 16a, b), two double parts are formed at

the middle and two simple parts at the ends, which is equivalent to six simple parts;

the sound is to the first sound (Fig. 14) as 6 to 2, or more acute by a twelfth, and to

the second sound (Fig. 15) as 6 to 4, or more acute by a fifth.

These explanations and Figs. 17, 14, 18, 15, 19, and 16, which represent the

alternate motions, suffice to develop the idea of other modes of vibration, where a

pipe, one end of which is closed, always divides into an odd number, and a pipe

whose two ends are closed, into an even number, of simple parts. One will see also

that the sounds are always in proportion to the numbers (or to the inverse lengths)

of these parts. Consequently, if we regard do as the lowest of the piano (which I

will express by do 1 in accord with Par. 29) as the fundamental, all the sounds that

can be produced on the same pipe, or on pipes of the same length, according to

whether the end opposite that where air is blown in is closed or open, will be as

shown in this chart:

Number of simple

vibrating parts

1 2 3 4 5 6 7 8 9 10

Sound of a closed pipe do 1 sol 2 mi 3 si♭ 3� re 4

Sound of an open pipe do 2 do 3 sol 3 do 4 mi 4

etc.

62. Ratios of Sounds Equal to the Natural Series of Numbers

The wind instruments normally used follow the same laws as those of an organ pipe

whose two ends are open. Now, if one considers their sounds separately, without

regard for the sounds of closed pipes, one would be able to change the series of

sounds 2, 4, 6, 8, etc. into 1, 2, 3, 4, etc. by dividing by 2, and go an octave lower;

one would therefore have the ordinary series of sound for the bugle, the trumpet,

etc. which is the same for the sounds of the aliquot parts of a string. Par. 20 contains

several remarks on the uses of these sounds.

63. The Shape of the Pipe Is Unimportant

It does not matter that a pipe of an organ or another instrument has an airstream that

is straight or that bends because the air exercises the same elasticity in all possible

directions. The series of sounds just mentioned is consistent within an instrument
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that is converging or diverging in any direction whatever. If a diverging pipe, a pipe

whose diameter is everywhere the same, and a converging pipe have the same

length, the sounds of the diverging one are slightly more acute, and those of the

converging one slightly graver than the sounds of the pipe whose diameter is

uniform. A pipe whose end is partially closed, as those that are called chimney
pipes, should be placed between the open ones, in its effect; in closing the opening

to a greater or lesser degree, one will have at one’s disposal all the sounds between
the deepest sound of the closed pipe and an octave higher than an open pipe. In this

way, horn players make the sounds deeper by thrusting the hand into the mouth-

piece, in order to produce sounds that are not included in the series mentioned, and

that the instrument fails to achieve naturally. But this lowering is more limited in

the horn because, by virtue of its shape, the opening can be closed only by thrusting

the hand far enough forward, which by shortening the extent of the vibrating air,

reduces the effect of closing, producing a contrary effect. Nevertheless, in order to

harmonize open organ pipes, one folds the edge back slightly outwards or inwards,

in order to raise or lower the sound. Thus, in all organ pipes, closed and open, the

end where they are blown into is only open through the slit called the lumièrewhich
makes the sound slightly graver than if it had been a full opening; but the difference

is less in long pipes than in those that are short.

64. Laws of Sound

The sound of pipes, if the mode of vibration is the same, is dependent on the length,

the density, and the elasticity of the fluid that fills them. If n is the number of

vibrations characteristic of each mode of motion, L the length of the vibrating

airstream,G the weight, P the elasticity, which is equal to the air pressure, and h the
height through which a body falls in 1 s, the number of vibrations that are made per

second will be S ¼ n
ffiffiffiffiffiffi

2hP
LG

q

. The atmospheric pressure can be determined by the

height of the mercury in a barometer. If the specific gravity of mercury is to that of

the air as m is to k, and if a expresses the height of the mercury in the barometer, PG

will be ¼ ma
KL, and we will have S ¼ n

ffiffiffiffiffiffiffiffi

2hma
KL2

q

or S ¼ n
L

ffiffiffiffiffiffiffiffi

2hma
K

q

.

It then follows that:

The sounds of the pipe are inverse to the length if the other circumstances are

the same.

The diameter of a pipe does not determine the sound, but in a pipe of large

dimensions, the sound can be produced with great intensity.

On mountains of great height, the sound of a pipe will be the same as on the surface

of the sea, because P and G increase or decrease together, always preserving this

same ratio.
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The frequency of the vibrations can only be changed by changing the ratio between

the elasticity of air and its density. If the air has another specific gravity due to a

mixture of other types of gas, or to variations in heat and cold, the pressure of the

atmosphere remaining the same, its ratio to the weight, or PG (which can be called

the specific elasticity) will be changed. Consequently, a pipe will give a more

acute sound when it is heated than when it is made cold: in the climates of

northern Europe, the extremes can amount to almost a tone. A wind instrument

will never remain in tune with a stringed instrument in variations of temperature

because the effect that the cold and heat have on the one is completely opposite

to what it has on the other.

Experiments only establish these determinations of sound approximately, since

the frequency of the vibrations found by experiment always exceeds what the

theory gives us. The laws for the vibrations of the air in the pipe being the same

as for the propagation of sound in open air, one will also find the number of

vibrations for the first sound of an open pipe (Par. 60) by dividing the actual

velocity of propagation by the length of the pipe. More information on this can

be found in Part III.

Experiments made by Sarti on 19 Oct 1796, and communicated to the Academy

at St. Petersburg, have shown that in a closed pipe, the length of which is 5 ft, there

are (100 double vibrations or) 200 simple vibrations per second, which is in accord

with the determinations of the number of vibrations given here.

65. Authors Consulted

The best research on the theory of wind instruments is found in the following

dissertations:

Daniel Bernoulli on the sound and tone of organ pipes, in theMém. de l’Acad. de
Paris, 1762.

Observations of flutes, by Lambert (Mém. de l’Acad. de Berlin, 1775).
Leonhard Euler, de motu aëris in tubis, Nov. Comment. Acad. Petrop., vol. XVI.
Research on the nature and the propagation of sound by Lagrange, in Mélanges

de Philosphie et de Mathématiques de la Société de Turin, Vols. 1 and 2.

Giordano Riccati, delle corde ovvero fibre elastiche, schediasma 5, 6, 7.

66. Sound Produced by the Combustion of Hydrogen
Gas in a Tube

The sound produced by hydrogen gas in a tube does not differ from the sound of

wind instruments. The tube is not the sounding body, for the same reasons that the

wind instrument is not one. In order to produce such a sound, one develops
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hydrogen gas by well-known means, in a closed bottle, from which the gas flows

out through the tube of a thermometer or of a barometer that penetrates the stopper.

The emerging gas is ignited (with the necessary precautions); a tube of glass or

metal is then held over this flame. This tube may be open or closed, of arbitrary

diameter and length, or a bottle, a horn, or other similar vessel. It is held over the

flame in such a way that the flame will be forced up a certain distance from the

opening; the sound is ordinarily very similar to that of a harmonica but sometimes

much stronger. The flame should be small and tranquil. It should be made smaller as

soon as the sound can be heard. In order that the flame be thus disposed, and to

avoid the result that the tube, through which the gas emerges, is not closed by

condensed water vapor, it is convenient to make use of a tube slightly larger than

that of a barometer, of which one has reduced the upper opening with a valve.

The laws of vibration are the same for these sounds as for those of the organ pipe.

The flow of hydrogen gas, the flame, and perhaps also the current of atmospheric air

entering from below, in order to fill the vacuum caused by the absorption of oxygen

gas, all contribute to produce vibrations in the air contained in the tube or vessel, in

the direction of its length. These vibrations make themselves heard very loud if a

finger is held under the lower opening of the tube.4 If the upper end of the tube is

closed, the sound is an octave lower than if the same tube is open at both ends: one

can therefore raise or lower the sound by closing (more or less) one of the openings

by one’s finger or in another way. The sound is the same even if one blows into the

opening, it is inversely proportional to the length of the tube, but it does not depend

on the diameter. I have succeeded sometimes in the production of a second sound

and even the third in a sufficiently long and narrow tube, by not thrusting the flame

as much; the possible series of sounds is then, as in organ pipes, an odd number in a

closed tube and an even number in an open one.

67. Sounds of Different Kinds of Gases

The frequency of vibration of different gaseous materials, when the elasticity

caused by the pressure of the atmosphere is the same, will, according to theory,

be as the square root of their specific gravity. Here are the results of several

experiments that I performed in Vienna, with Professor von Jacquin, on the sounds

of different types of gas, with which the same organ pipe was filled, surrounded, and

blown through.

An open steel organ pipe, where the length of the vibrating airstream was about

15 cm, was fixed in the neck of a glass bell, furnished with a stopcock and a bladder

attached from outside. After having emptied the bladder of air, and filled the bell

and the pipe with water, by plunging under the water, a quantity of gas soon entered

the bell and the bladder, so that the height of the water that closed the bell was the

4 The relative positions of the tube opening, the flame, and the finger are not clear from Chladni’s
description.—TDR
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same inside and out; the compression of the gas was, therefore, the same as that of

the open air.

The pipe was inflated, with a lot of care, by a very light compression of the

bladder, to avoid any change in the sound. The temperature remained the same for

the whole experiment, about 10–12� Reaumur.5

At first, to know if the frequency of the vibrations in a gaseous material was

changed by this closure, we filled up this apparatus with air from the atmosphere:

the sound was the same when the air was free, but weaker.

The sound from using oxygen gas was graver by a semi-tone or nearly a tone,

which is somewhat in accordance with the theory.

The use of nitrogen gas did not conform itself to the theory. It was presumed that

the oxygen gas, weighing more, should vibrate a little more slowly, and the nitrogen

gas, being lighter, would vibrate a little quicker than the atmospheric air. And, that

the sound of the atmospheric air should be an average between the sounds of the

two types of gas of which it is composed. However, the sound of the nitrogen gas

(produced in three different ways) was always slightly graver than the sound of the

atmospheric air, by almost a semi-tone.

To see if the gas used was lighter than the atmospheric air, we weighed one of

these three types. The quantity contained in a glass sphere weighed 17 grains, and

the same quantity of atmospheric air weighed 18 grains.

A mixture of nitrogen gas and oxygen gas produced a sound slightly more acute

than that of one of these fluids; it was equal to that of atmospheric air. But before the

mix of these two fluids became homogeneous, by repeated pressure on the bladder,

the sound was not perceptible, because the vibrations could not become isochronal.

The hydrogen gas produced much more acute sounds than the atmospheric air,

but not by as much as demanded by the theory. The sound of the gas produced by

iron and sulfuric acid was more acute by slightly more than an octave; by zinc and

muriatic acid by a ninth; by the vapors produced by passing through a heated iron

pipe, by slightly more than a minor tenth.

The sound of carbonic acid gas was more grave by about a major third than that

of the atmospheric air, which conforms to the theory.

The sound produced by the nitrous gas was hardly significant; as much as it was

possible to observe, it was slightly more grave by a semi-tone than that of the

atmospheric air.

These imperfect experiments, which it would be necessary to repeat with

more exactitude, show at least that the lighter gases vibrated faster than the

heavier gases, except where small differences were caused by chemical

attributes.

5 Reaumur temperature scale—equal to about 55–60 �F, and about 12–16 �C.—MAB
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Section 5: Vibrations of a Rod or a Straight
Strip

A. Transverse Vibrations

68. Different Cases

Transverse vibrations of a rod or a straight strip (that is to say a rigid body, straight,

thread-like, where the changes in shape can be expressed by bent lines) are

different, according to whether one or two ends are fixed (in a vise or in a wall),

or supported (by a motionless body), or free. Here are the possible cases in which

there is a difference in the changes in shape or the ratios of the sounds on which it

depends:

1. If one end is fixed, and the other free

2. If one end is supported, and the other free

3. If the two ends are free

4. If the two ends are supported

5. If the two ends are fixed

6. If one of the ends is fixed and the other supported

So as not to be misheard, it is necessary to notice that this is only a question of

vibrations of cylindrical rods or prisms and straight strips (or parallelepiped

rods), that are not susceptible to other transverse vibrations, and that can be

described by a curved line. Strips or wider blades pertain to rectangular

plates, the vibrations of which will be explained in Sect. 7.

To create experiments, one can use rods made of glass, iron, or other rigid

materials. If one uses straight blades, the vibration nodes will be visible by the

same means as that for the vibrations of the plates.

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
DOI 10.1007/978-3-319-20361-4_8
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69–74. Vibrations of a Rod, One or Both Ends of Which
Are Fixed, Supported, or Free

69. In the first case, where one of the ends is fixed and the other free, the simplest

way of vibrating is that where the entire rod vibrates (Fig. 20), alternately, first on

one side and then on the other, and the axis is not intersected by the curve, but only

touches the fixed end. It gives the gravest sound that can be produced on the same

rod. In the other ways of vibrating, the axis is intersected by the curve one, two,

three, or more times. The best means of producing these sounds as wished is to

touch lightly a node of vibration with a finger, and to stroke a vibrating part with a

violin bow. In the second sound (Fig. 21), the frequency is as that of the first, as the

square of 5 to the square of 2, or as 25 to 4; the difference between the two sounds is

therefore of two octaves and of an extreme fifth.

In separating the frequencies of the first sound from the frequencies of all the

others, counting twice (Fig. 21), they will be between them as the squares of the

numbers 3, 5, 7, 9, etc.; the third, or where there are two nodes, will therefore surpass

the second by an octave and an extreme fourth; in the fourth, the pitch will increase

by about an octave; in the fifth, by about a major sixth, etc. To decrease to the same

pitch, all the ratios of the sounds to which the rod or strip is susceptible, in the case

mentioned and in all others, I regard the sound, for the simplest motion (Fig. 20) as

the do one octave below that of the first do of the piano, or, following the expression
adopted in Par. 29 as do; thus, the possible ratios of such a rod will be:

Number of nodes 0 1 2 3 4 5

Tone do sol # 2 re 4 re 5� si♭ 5 fa 6þ
Numbers whose squares

correspond to these tones

(2) (5)

3 5 7 9 11

etc.

The possible series of sounds, therefore, regarding the fundamental as unity, is

1, 6 1
4
, 17 13

36
, 34 1

36
, 56 1

3
, etc., or expressed in whole numbers, 36, 225, 625, 1225,

2025, etc.

One uses the first tone of a similar rod on an iron violin. I used it myself for

the tonometer described in the note for Par. 5.

70. In the second case, where one of the ends is supported and the other free,
vibrations of the entire rod do not exist. In the modes of vibration in which there are

nodes, they are slightly farther from the free end than in the first case, and the shapes

into which the rod is bent are different, as are their corresponding tone ratios

because a part with a fixed end is more hindered in its vibration than if the same

end were supported. In the simplest vibration mode, a node of vibration is located

approximately one third of the way along the rod from the free end; in the second,
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there are two nodes of vibration, and the one closest to the free end is slightly farther

than one fifth of the length of the rod, etc. In order to produce these modes of

vibration at will, one must, by holding lightly with the finger a point where there is a

node, support the rod against a table or other stationary object and put it into motion

by a violin bow, the middle of a vibrating part of a free end. The possible series of

tones is equal to the squares of the numbers 5, 9, 13, 17, etc.; the gravest tone in this

case is that which occurs in the first case, as 624 is to 144. The same rod or strip,

which would have given the tone mentioned in the first case, will give the following

tones in this case:

Number of nodes 1 2 3 4 5 6

Tone re 2 si♭ 3 si 4� sol# 5 re# 6þ la 6

Numbers whose squares

correspond to these tones

5 9 13 17 21 25

etc.

71. If, in the third case, the two ends are free, there are two nodes in the simplest

mode of vibration (Fig. 24), in the second (Fig. 25) there are three, etc., and the

length of the arc between two nodes is approximately twice that of a part located at

one end. The deepest tone is that of the first case as 25 is to 4, the second case as

36 is to 25, and the series of tones is as the squares of 3, 5, 7, 9, etc. The same rod,

whose tones are mentioned for the first and second cases, will give the following

tone when the two ends are free:

Number of nodes 2 3 4 5 6 7

Tone sol# 2 re 4 re 5� si♭ 5 fa 6þ si 6�
Numbers whose squares

correspond to these tones

3 5 7 9 11 13

etc.

These tones are the same as in the first case (except for the first tone) although

the curves are quite different.

In order to perform experiments on this object, we could put the rod or strip in

two points where there are nodes, on stands of a material that is a little soft (for

example, of cork) and, while pressing lightly on the support with the fingers, we

strike or stroke a vibrating part with a violin bow.

We make use of the first mode of vibration (Fig. 24) for chimes, where one

strikes strips of glass, metal, or wood. A clavier is also used, for example, at

Stuttgart (where the instrument manufacturer Hauk makes them very well), at

Paris, London, etc.

72. If the two ends are supported, which is the fourth case, the rod bends along the

same curves as those of a vibrating string; but the ratios of the tones are very different
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because they are not equal to the natural series of numbers 1, 2, 3, 4, etc., but to the

squares of these numbers. In order to perform the experiments, we press plates or

other things against the two ends of the rod, so that they cannot be displaced, and we

stroke the piece of a vibrating part with a violin bow, touching, if necessary, a node

of vibration so as to produce the tones of the various parts of a string. In the simplest

motion (Fig. 1), which is equal to that of the fundamental tone of the string, the tone

is the deepest tone of the first case (Fig. 20) as 25 is to 9, to that of the second case

(Fig. 22) as 16 is to 25, and to that of the third case (Fig. 24) as 4 is to 9. The same rod

that gives the tones mentioned will in this case yield the following tones:

Number of nodes 0 1 2 3 4 5

Tone fa# 1 fa# 3 sol# 4 fa# 5 re 6 sol# 6

Numbers whose squares

correspond to these tones

1 2 3 4 5 6

etc.

73. In the fifth case, where the two ends are fixed, (for example, in two vises), the

rod vibrates either as a whole, or divided into two, three, four, or more parts. But the

curves, of which one can get an idea by comparing Fig. 26 with Fig. 1, and the ratios

of these sounds, differ from the preceding case. The sounds are the same as in the

third case, where the two ends are free, in spite of the diversity of the curves. The

same rod will therefore give the following tones:

Number of nodes 0 1 2 3 4 5

Tone sol# 2 re 4 re 5� si♭ 5 fa 6þ si 6�
Numbers whose squares

correspond to these tones

3 5 7 9 11 13

etc.

The results of the experiments will never be exact, for one will not be able to

squeeze the ends of a rod into two vises without shortening it slightly. If one

squeezes it too tightly, it is too hampered for the small expansions necessary

because of the different size of the curve and the straight line. But in squeezing it

less, the vibrations will sometimes conform to those described in Pars. 72 and 74.

74. In the sixth case, where one of the ends is fixed and the other supported, the rod
or strip also vibrates either as a whole, or divided into two, three, four, or more

parts. But the curves and the tones differ from those which take place in the two

previous cases. For the first tone, the curve, which is not symmetric at its two ends,

is represented in Fig. 27. The tones of all the modes of vibration are the same as in

the second case, where one of the ends is supported and the other free, in spite of the

diversity of the curves. The same rod will therefore give the following tones:

Number of nodes 0 1 2 3 4 5

Tone re 2 si♭ 3+ si 4� sol# 5� re 6þ l 6

Numbers whose squares

correspond to these tones

5 9 13 17 21 25

etc.
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To perform the experiments, we can set one end in a vise and have the other end

supported by another vise or a machine, a plate, or something else rather immobile.

We therefore reduce the tones by putting a vibrating part into motion as in the

previous cases.

75. Laws of These Vibrations

If n expresses the relative number that corresponds to each mode of vibration of a

rod, D its thickness, G the specific gravity, h the height through which a heavy body
falls in one second, and S the number of vibrations which are carried out per second,

then the frequency of the transverse vibrations of a rod or strip, as also the

vibrations of all rigid bodies whose shape is the same, will be: S ¼ n2D
L2

ffiffiffiffi

hR
G

2

q

. Now,

if the material of the rods and the mode of the vibrating is the same, S ¼ D
L2
, the

tones then will be the more acute the thicker the rod, and if the lengths are different,

the tones will be the inverse square of the lengths.

The size has no effect on the tone. If a rectangular sheet is large enough to be

regarded as a plate, the modes of vibration that correspond to those of a rod will

then give the same tones as if the size were only that of a narrow strip but the force

would be different.

The different sounds that can be produced on the same rod can be expressed by

n2, i.e., by the squares of certain numbers that mark the arithmetic progressions.

If the mode of vibration is the same, the stiffness of the material R will be

R ¼ S2L4G
D2 : We can therefore determine the sound by the stiffness of the material,

which, if the dimensions of the rigid body are the same, will be ¼ S2G, or as the
squares of the number of vibrations multiplied by the weight of the material.

If the mode and the shape are the same, but the width is different, so that all the

dimensions increase or diminish equally, the sounds, the mode of vibration being

the same, will be as the inverse cube roots of the weights of the sounding body.

If some authors (for example, Nicomachus Gerasenus, Iamblichus,

Gaudentius, Macrobius, Boethius) have claimed that Pythagoras had found

the sounds of hammers in a forge, corresponding to their weights, this does

not conform to nature; the sounds being rather as the inverse cubic roots of the

weights. The same authors also maintain that Pythagoras had found the sound

of strings in the ratios of the holding weight, which is not true at all; the

sounds being as the square roots of the tension.
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76. Authors Consulted

Daniel Bernoulli first successfully analyzed the transverse vibrations of rods and

strings in Vol. 13 of Nov. Comment. Academiae Petrop.
L. Euler, after having published some very imperfect research in his Methodus

inveniendi lineas curvas maximi minimique proprietate gaudentes, add. 1 de curvis
elasticis, par. 282ff, has given a complete theory in his dissertation: Investigatio
motuum quibus laminae et virgae elasticae contremiscunt, in Act. Acad. Petrop. pro
ann. 1779, pt. 1, p. 103ff. All the results in this dissertation conform to experiments

except what he has added on the vibrations of rings.

Giordano Riccati has also published very accurate research on the vibrations of a

rod, both ends ofwhich are free, in his dissertation:Delle vibrazioni sonore dei cilindri,
which appeared in Vol. 1 of theMemorie di matematica e fisica delle Societa Italiana.

B. Longitudinal Vibrations

77. Explanations

In addition to the vibrations that we have just discussed, a rod or strip of a sufficient

length is also susceptible to an infinity of other vibrations, in which the entire body,

or its parts, according to the way in which it is divided, contracts and expands in the

direction of its axis (or of its length) tending alternately toward one node of

vibration or another or toward a fixed point. At the nodes of vibration, the com-

pressions and expansions are the greatest but there are no oscillations of the

molecules; in the middle between the nodes, and at a free end, the oscillations of

the molecules are the greatest but there is no compression or expansion. The more

remote a point is from a node, the greater the oscillations and the smaller the

compressions and expansions. A vibrating part that is found at a free end is always

one half of the length of the part contained between two immobile limits, which

should be regarded as being composed of two parts contiguous to the free end. I will

therefore (as in Sect. 4) call a part located between two immobile limits a double
part; and half of such a part, or a part located at a free end, one of the ends of which
is immobile and the other mobile, I will call a simple part.

The laws of these vibrations are exactly the same as those for the longitudinal

vibrations of air in a pipe (Pars. 56–61); a rod, where one end is fixed and the other

end is free, vibrates as the air in a pipe where the end is closed; if the two ends of a

pipe are free, it vibrates as the air in a pipe where the two ends are closed; it makes

vibrations as the air could vibrate in a pipe where the two ends are closed.

I published the first research on these vibrations in the Act. Acad. Elect.
Mogunt, Erford, 1796.
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78. Manner of Making the Experiments

To facilitate the experiments, it is necessary to use long, straight rods of a diameter

that is not too big. It does not matter if the shape is cylindrical, prismatic, or

flattened. If the surface is polished, it will be easier to produce the sounds. If the

rod is metal or wood, it is necessary to rub a vibrating part in the direction of the

length with a small piece of cloth, on which one puts a little rosin powder. But if the

rod is made of glass, for example, if one is using the long tubes made for barometers

and thermometers, it is better to put a little very fine sand or pumice on this cloth,

moistened with water. In all cases when the rod is divided into vibrating parts, it is

held by the fingertips at a point where there is a vibration node. Since these sounds

are extremely acute, we must use very long rods.

79–81. Different Cases

79. If one of the ends is fixed (in a vise) and the other free, the entire rod can become

alternately longer and shorter (Figs. 31a, b), in such a way that every molecule

alternately approaches and moves away from the fixed end; there is therefore only a

single vibrating part (according to Pars. 58 and 77). One must regard this motion as

whole, both for the sound that is the deepest of all, as for the lengths and for the

number of vibrating parts in the other longitudinal motions. In order to produce this

sound, the rod may be rubbed along its entire length in the manner indicated in

Par. 78. In the second sound (Figs. 32a, b), there is a node at a distance of one third

of the length of the rod from its free end, which point the vibrating parts mutually

approach and recede from, as the air in Fig. 18. The rod is divided therefore into a

double part and a simple part, which is equivalent to three simple parts; the sound is

to the first as 3 to 1, i.e., more acute by a twelfth or a fifth of an octave. This sound is

produced by holding the node lightly with the fingertips, and rubbing the middle of

the double part of the free end. In the third sound, the rod is divided into two double

parts and one simple part, the motions of which are represented in Figs. 33a, b; the

number of simple parts and the sound correspond to the number 5; the sound is

therefore more acute than the second by a major sixth. In all the other longitudinal

motions of a similar rod, the number of simple parts and the sound will be as the

other odd numbers.

80. If the two ends are free, a node is formed in the middle in the simplest motion

(Figs. 28a, b) which the simple vibrating parts approach and recede from while

supporting one another. The sound conformable to the reciprocal of the length, or

to the number of vibrating parts, is to the first sound in the previous case (Par. 79)

as 2 to 1; it is therefore higher by an octave. To produce this sound, we must hold

the rod at the center with the fingertips and rub one of the two halves. The second
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mode of vibration is that in which two nodes are formed, distant from the end by a

quarter of the length of the rod; the rod is therefore divided into four simple parts,

the motions of which are shown in Figs. 29a, b. The sound conformable to the

number 4 is higher by an octave than the first sound. The third mode of vibration is

that in which the rod is divided into two double parts and two simple (Figs. 30a, b),

which is equal to six simple parts; the sound which is also conformable to number

6 surpasses the second by a fifth. All the other possible modes of vibration will

be conformable to the numbers of pairs for the division into simple parts and for

the sounds.

81. If the two ends are fixed, for example, in two vises, the entire rod in the first

mode of vibration (Figs. 34a, b) has a motion that alternates between toward one or

the other fixed point; in the second sound (Figs. 35a, b), it is divided into two double

parts, which are supported alternately at the fixed ends and at the node that is found

in the middle; in the third sound (Figs. 36a, b), it is divided into three double parts,

etc. The number of simple pairs and the corresponding sound will be the same as in

the preceding case (Par. 80) where the ends were free.

The longitudinal vibrations of a string (Pars. 43–45) can be regarded as the

vibrations analogous to those of a rod the two ends of which are fixed. The sound

does not depend on the tension because it is of too small an amount compared with

the internal stiffness, i.e., the resistance to compression or expansion of the

material.

82. Relative Frequencies of Vibrations of Different Materials

The sounds of rods, if their material and mode of vibration are the same, are

proportional to the reciprocal of their length: the thickness does not determine the

sound if it differs a great deal depending on the different materials. Having

performed experiments on the relative frequencies of longitudinal vibrations of

different material, I made use of rods where the strips were as long as possible; but I

reduced the results to a rod of two Rhine feet in length [0.6276 m] and to the first

motion, where the two ends are free (Fig. 28). The airstream in an open organ pipe

of the same length yields the first do below, or, according to the mode of expression

adopted here, do 3; but the sounds of all rigid bodies are much more acute. A rod of

the same length of:

whalebone yields la  5
tin si  5

silver re  6

green wood 
yew

 . . . . . . . . . . . . . . .

 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

fa 6. . . . . . . . . . . . . .
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If the fibers of these woods were to be absolutely straight, the sounds would be

slightly more acute.

brass
oak . . . . . . . . . . . . . . fa 6

plum tree
tubes of tobacco pipes mi 6…..sol 6

copper almost sol  6
pear tree

beech . . . . . . . . . . . . . .
maple

mahogany
ebony
ivory . . . . . . . . . . . . . . approximately sib 6
elm

alder
birch

linden almost si 6
cherry si 6 

willow . . . . . . . . . . . . . .
pine

. . . . . . . . . . . . . . . . . .

do 7

sol# 6…..la 6

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

If the fibers of these woods were not sufficiently straight, the sound would be

graver, sometimes by a third.

glass . . . . . . . . . . . . . .
iron or steel

fir tree do# 7 or almost re  7

do#  7

However, these ratios of frequencies cannot be completely exact because of the

internal differences of the same material, which can sometimes raise or lower the

sound. All these frequencies surpass by a great deal that of air; the frequencies of

glass, iron, and fir as much as 17–18 times as great. But if one excludes brass or tin,

the sounds of which are very imperfect because of the low stiffness, the sounds of

all the other rigid materials differ among themselves by almost an octave. It seems

to me that the sounds of the different materials depend on the different ratios of the

longitudinal stiffness, and on the specific density. If, for example, glass, iron, and fir

have given out almost the same sound, we can presume that one of these attributes is

compensated by another, in order to give almost the same result. It is reasonable

that if n expresses the relative velocity consistent with the mode of vibration, L the

length, C the stiffness, and G the specific gravity, the sound of a rod or strip will be

¼ n
L

ffiffiffi

C
G

q

.
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83. Laws of These Vibrations, Compared with Those
of Transverse Vibrations

In order to distinguish more clearly the attributes and the entirely different laws of

transverse and longitudinal vibrations of a rod or strip, I will put them next to one

another in the following table.

Qualities of transverse vibrations Qualities of longitudinal vibrations

Motion is produced in a transverse direction Motion is produced along the length of the rod

(or of its axis)

The rod forms different curved lines, while

executing transverse incursions

The rod contracts and dilates in different ways

along the axis

The sounds are in the ratios of the squares of

certain numbers that make up the arithmetic

progression

The sounds are in the ratios of a series of odd

or even numbers

The sounds are as the squares of the reciprocals

of the lengths

The sounds are as the reciprocals of their

lengths

The sounds are in the ratio of the thickness The thickness has no effect on the sound,

except if they are greatly different, which can

change the sound a little

They are as the square roots of the transverse

rigidity, i.e., of the resistance to flexures, and,

as the square roots of the reciprocals of the

specific density

It is reasonable that the sounds are as the

square roots of the longitudinal rigidity, i.e., of

the resistance to the compressions and dila-

tions, and, as the square roots of the recipro-

cals of the specific density

C. Torsional Vibrations of a Rod

84. Explanation of These Vibrations

A rod or strip is still susceptible to other forms of sonic vibrations, which I will call

torsional vibrations, because the rod or its parts (separated by the vibration nodes)

rotate around the rod, alternately in opposite directions, through extremely small

distances, in such a way that one part turns to the right, while the part beyond the

node turns to the left. At each point, these torsions are much smaller when this point

is closer to a node; to the same nodes there is no point of motion.

I published the first research on these vibrations in Vol. 2 of the NewMemoirs
of the Society of Friends of Natural Science in Berlin (Neue Schriften der
Berliner Gesellschaft natur-forschender Freunde) 1799.
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85. Manner of Their Production

These vibrations are most easily produced on glass cylinders, the surface of which

is polished, if one works in the same way as I have indicated for the longitudinal

vibrations in Par. 78, except that it is not necessary to rub longitudinally but around

the axis, in a circular direction, to the right or to the left. Sometimes, these can be

produced on prismatic or parallelepiped rods by rubbing very lightly with the

fingertips, or with a violin bow, in a diagonal direction, while taking the necessary

precautions to avoid transverse vibrations.

If we put a little sand on the surface of a prismatic or parallelepiped rod, it will

remain at rest on a narrow longitudinal line in the middle of each side, and

also at the nodes of vibration.

86. Laws

The divisions of a rod, either fixed at one end or fixed at both ends, and the series of
sounds that are consistent with these modes of division, follow the same laws as in

the longitudinal vibrations, except that the sound of a cylindrical or prismatic rod is
always lower by a fifth than that of a rod, divided in the same manner, vibrating
longitudinally.

87. Application of These Vibrations to Those of a Plate

These torsional vibrations seem to merit special attention because they may be able

to furnish a means for determining by theory the vibrations of plates that cannot be

expressed by linear curves. In these same torsional motions that are of concern here,

some nodal lines will be shown on a larger rectangular strip or sheet, as in Figs. 49,

50, 54, 55, 56, 59, 60, 61. All the motions of plates, where there is a nodal line in the

length direction, could be reduced to these torsional vibrations by regarding this

line as the axis, as, for example, in Figs. 63, 66a, 74a, 99–102, 183–187, and many

others where the same torsional motions are modified differently by the shape of the

sounding body.
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Section 6: Vibrations of a Bent Rod

88. Vibrations of Forks

The vibrations of a fork, that is, of a rod or strip bent in the middle in such a way that

the two branches are parallel, do not differ essentially from the transverse vibrations

of a straight rod whose two ends are free (Par. 71), and cannot be judged exactly

without comparing one with the others. If one bends a straight rod or strip of iron,

copper, glass, or other sufficiently sonorous material, so that it is folded approxi-

mately as is shown in Fig. 37 aa, bb, cc, dd, and ee, one can observe the passage of the
motions and the sounds from a straight rod to those of a fork. By the bend in the

middle, as in general for each flexure of a vibrating part, the nodes become closer and

closer together, as I have indicated in Fig. 37 by the small dotted lines. Each sound

becomes graver if there were the same number of nodes on a straight rod or strip; so

that the series of sounds which are consistent with the motion of a similar rod, and

which are equal to the squares of the numbers 3, 5, 7, 9, etc., pass into a different form.

In the simplest motion, the two branches approach and recede mutually from

each other, and the fork executes alternately the forms represented in Fig. 38, npgqf
and bphqm. In comparing Figs. 24 and 38, we find that they are not essentially

different, but that the axis is changed and two nodes are brought sufficiently close

together by the bending in the middle, in order to regard them, without particular

attention, as a single node.

The sound is graver by a minor sixth (or rather, as it seems to me, by a superfine

fifth, 16:25 or 42 to 52) than the first sound of the same rod if it were straight.

A fork is not susceptible to a mode of vibration where there would be three

vibrations, one in the middle and one on each branch, conforming to the second type

of vibration of a straight rod (Fig. 25). The more a rod is bent at its middle, as in

Fig. 37, the more difficult it is to produce this mode of vibration and finally it

becomes completely impossible.

The second type of vibration of a fork is that in which there are four vibration

nodes (Fig. 39) mnte, two very close to the middle and one on each branch; the fork
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bends alternately on the curves pdhgc and kfqzb, and the sound is more acute than

the first, by two octaves and a superior fifth; the first sound being to the second as

the square of 3 is to the square of 5, or as 4–25.

But the first sound must be regarded as isolated from the series of the others,

which is, to count from the second, as the squares of 3, 4, 5, 6, etc.

In the third sound (Fig. 40), there are five nodes, one in the middle and two on

each branch. The sound is more acute than the second by a minor seventh 9:16; in

the fourth sound (Fig. 41), where the pitch is increased by an augmented fifth 16:25,

there are six nodes; in the fifth (Fig. 42), there are seven and the pitch is increased

by a diminished fifth 25:36, etc.

Here is the series of sounds of a fork made by bending the same rod whose

transverse vibrations have given the sounds mentioned in the preceding section:

Number of nodes 2 3 4 5 6 7 8

Fig. 38 Fig. 39 Fig. 40 Fig. 41 Fig. 42

Tone do 2 missing sol# 4 fa# 5 re 6 sol# 6 re 7�
Numbers whose squares

correspond to these tones

(2) (5)

3 5 5 6 7

etc.

This series of sounds, counting from the second, etc., is the same as if the rod

were straight and supported at its two ends (Par. 72), counting from the third sound.

In the modes of vibration where there are two nodes in the middle very close

together (Figs. 38, 39, 41), the sounds are the same as those of a rod one end of

which is fixed and the other free (Par. 69), but it becomes more acute by two

octaves; because the equilibrium of the two branches, of which one rests against the

other, makes them vibrate as rods of which one end is fixed.

In order to perform the experiments, it will be convenient to make use of

parallelepiped rods or strips of several widths, where one rubs one end with a violin

bow, touching the vibration node with the fingertips. Each node could be made

visible by holding its point in a horizontal direction and applying a little sand.

Besides the transverse vibrations, a fork that is sufficiently long is also suscep-

tible to torsional vibrations and perhaps also longitudinal vibrations.

89. Vibrations of Rings

A ring, that is, a cylindrical (or prismatic) rod bent into a circle and welded at its

ends, is divided in its vibrations into 4, 6, 8, 10, or more equal parts, and the ratios of

the sounds which correspond to these modes of vibrations are as the squares of 3, 5,

7, 9, etc. In order to produce each mode of vibration, the ring is placed on a small

cork (or compressed paper or other material that is slightly soft) supported at three

points where there are nodes, and pressed lightly with the fingertips on these

supports, in order that the ring does not move; a vibrating part is then rubbed
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with the violin bow. The vibrations are more easily made visible if the rings are

placed horizontally and are rubbed in a vertical direction, because the shape arched

by the ring prevents its parts from vibrating with the same facility from inside and

out. To rub the ring vertically, one can put the supports on a table in such a way that

the vibrating part of the ring that one wishes to put in motion projects slightly

beyond the edge of the table. For example, to produce the simplest motion, where

the ring is divided into four vibrating parts, one places (Fig. 43) the ring near the

edge of the table ab so that the two nodes m and n and one other ( p or q) rest on the
supports, and so that the part mgn projects beyond the edge of the table: the points

m and n are then pressed a little against the supports with the fingertips; one then

rubs around g from low to high. One can produce the other modes of vibrations in

the same way if one changes the positions of the supports.

If the lowest sound from the ring is do 2, the following sounds can be heard:

Number of nodes 4 6 8 10 12 14

Tone do 2 fa# 3 fa# 4� re# 5� la 5 re 6

Numbers whose squares

correspond to these tones

3 5 7 9 11 13

etc.

A ring whose deepest sound is fa# 3, after having been disconnected and

stretched into a straight line, will give in its transverse vibrations, the sounds

mentioned in Pars. 69–74.

I published the first research on the vibrations of a ring in my first

acoustic dissertation: Entdeckungen €uber die Theorie des Klanges (Discov-
eries on the Theory of Sound), Leipzig, 1787. The assertions of Euler (de sono
campanarum, in Nov. Comment. Acad. Petrop., vol. X, and investigatio
motuum, etc. in the Act. Acad. Petrop., 1779), and Golovin (in Act. Acad.
Petrop., 1781, p. 2) are not supported by experiment and application of the

vibrations of a ring to those of a bell does not conform to nature.

If a ring is more extended in the diametral dimension, it should be regarded

as a plate, and if more extended in the other dimension, it must be regarded as

a pipe or cylindrical surface, and the theory of its vibrations would not be

suitable here, but in the following sections, where it will be a question of the

vibrations of a straight or curved surface.

90. Vibrations of Other Curved Rods

The vibrations of curved rods of other types, such as those of rods or strips of an

unequal thickness or size, could be the subject of much research.
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Section 7: Vibrations of Plates

A. General Remarks

91. Explanation

In most of the motions of a plate (as also in those of a bell and of a taut membrane),

the changes in shape cannot be expressed by linear curves, as in the transverse

vibrations of other sounding bodies, but by curved surfaces, differently in different

directions; and the nodes are not the motionless points but motionless lines, which

one can call nodal lines.

My first research on the vibrations of plates are found in Entdeckungen €uber
die Theorie des Klanges (Discoveries on the Theory of Sound), Leipzig, 1787.

92. Manner of Performing the Experiments

To produce every kind of vibratory motion of a plate, and to make visible the nodal

lines, one must hold one (or more than one) point immobile, and put into motion a

movable point, by means of a violin bow, after having spread a little sand on the

surface. The grains of sand are repelled by the vibrations of the vibrating parts and

accumulate on the nodal lines.

To this general rule, we must add several remarks in order to facilitate the

experiments.
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The plates can be of glass or of sufficiently sonorous metal, for example, pure

copper or brass. One could even use plates of wood, but the figures are not regular

because the elasticity is not the same in the different directions. Ordinarily, I used

glass plates because it is easier to have them at one’s disposal and because their

transparency allows us to view the points where we touch them underneath. Very

thin plates are preferable to thicker ones because they can be bent in different ways.

The size is arbitrary; for simple figures, a diameter of 3–6 in. will be sufficient; to

produce more complex figures, it is necessary to use plates that are much larger. In

order that the figures appear to be sufficiently regular, it is necessary that the

thickness be quite uniform. Mirror glass is not preferable to vitreous glass because

the surfaces are not always parallel. It is necessary to remove the edge with a file or

by rubbing with a piece of sandstone in order that the strands of the bow are not

damaged.

It is necessary to hold the plate at a point where the two nodal lines intersect (if

there are any), because if we wish to hold another point on a nodal line, it hinders

too much the vibrations of the neighboring parts. Since these nodal lines are only

mathematical lines, they have no thickness. For this reason, the figures in which

there are no nodal lines that intersect, for example, Figs. 67a, 104, and 109a, are the

most difficult to produce; those whose fingers are too thick, or who do not have

sufficient strength, never succeed in it. One must hold the plate with the ends of the

thumb and of another finger, and press with great force so that the plate does not

move when the bow is applied. Those who do not have sufficient strength, or whose

fingers are not capable of these experiments, can make use of the machine shown in

Fig. 44, of which the lower part is attached to the table by a screw and the upper part

serves to hold the plate at a suitable point, between the ends of a cylindrical piece of

wood and a screw plated by cork, leather, or felt. There are also some figures which

can rest on the edge of the point with the ends of the fingers against a fixed body as,

for example, in Figs. 109b and 115.

A good look will be much more useful than any measurement in determining

exactly the most suitable points where one should touch the plate in order to

produce each figure because the thickness, the shape, and the makeup of the plate

are almost never sufficiently exact for the figure to agree exactly with the measured

form. The production of most very complex figures will often depend on chance;

but to produce less complex figures, one must know in advance what one wants to

produce and imagine each figure as if it were already visible. If a suitable point has

not been touched with sufficient accuracy, so that the figure appears somewhat

imperfect, the position of the fingers must be changed somewhat, in order to hit the

correct point exactly. When an interesting figure has been produced by chance, and

one wishes to reproduce it, the production can be facilitated by marking the points

where the plate is held and where the bow is applied. Sometimes, the point where

the plate is held and the point where it is put in motion belong to more than one

figure. If one wants to produce a manner of vibration that is in motion with other

sorts of vibrations, it is necessary to exclude other movements, touching a point

with the extremity of another finger at a nodal line. If one presses a small piece of

cork or another soft material to a suitable point on the plate with a fingertip, and
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touches another nodal line with another fingertip, it is the same as if one had

clamped it in the manner that has just been described.

One must hold the bow firmly enough in a vertical direction and move it in a

manner that it always rubs the same point of the plate, so that it does not move to the

right or to the left. The bow must always be applied to the region of a vibrating part

that is not too far removed from the point where one holds the plate. In those cases

in which the same manner of treating the plate can produce several sounds, one

must be careful to move the bow without stopping, with the speed and pressure that

is most suitable for producing one of these sounds while excluding the other, for a

motion or a different sound destroys that figure which one wanted to produce. In

general, the simplest figures, where the sound is deepest, appear most easily if one

moves the bow with more pressure and less speed. To facilitate more complex

motions, where the sound is higher in pitch, it will be suitable to employ greater

speed and less pressure. The figures are formed more distinctly if (the sound and the

touch being the same) one uses the entire length of the bow and if finally, after

reinforcing slightly the motion of the bow, one withdraws it suddenly, in order to

allow the plate free resonance.

The sand that is sprinkled on the plate can be ordinary sand; any other similar

material, for example, iron filings or those of another metal, will have the same

effect. The figures are especially well expressed if the sand is not too fine because

the fine particles attach too strongly to the surface. However, if a little fine powder

is mixed with the sand, it can serve better to make us see also the centers of

vibrations, that is, the points where the vibrating parts make the largest oscillations:

the smallest particles of the powder accumulate at these points. A little sand must be

put on the surface, and spread out evenly; if too much sand is found at one point and

too little at another, one can make the sand go toward the place where it is lacking

by holding the plate for several seconds in a direction inclined toward that side.

Among the persons to whom I have shown these experiments, there are

almost always those who have formed wrong ideas that are difficult to correct.

They imagine that they can produce on a plate such sound that they wish

(as in shortening the string of a violin) and that each sound gives a certain

figure. One must not say that such a sound gives such a figure, but that each

figure has a certain ratio of sound to the others. One cannot produce such

sounds as one wishes, but only all the divisions imaginable, or there can exist

an equilibrium of the parts among themselves, and the sound of each figure

(or type of division) is so much more acute as the vibrating particles are

minute. Consequently, one cannot produce sounds with ratios very different

from those which are found in music on the same plate; here it is not a matter

of octaves, fifths, etc. The production of these sounds has no resemblance to

the shortening of the string of a violin, but rather to the production of sounds

where the string is divided into aliquot parts, and cannot give sounds other

(continued)
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than those that correspond to certain numbers. This remark is only designed

for those who have not understood the general laws of sounds given in

Par. 32.

93. Several General Attributes of These Vibrations

Two vibrating parts separated by a nodal line always make their motions in opposite

directions, such that one is above the rest position and the other below. The division

of the plate into vibrating parts is always as regular as the shape, the fabric, and the

more or less exact manner of producing the vibrations permit, because it is

necessary that the parts, in order that they may vibrate at the same time, be in

equilibrium with one another. A vibrating part, located at the edge of the point, is

always smaller than a part enclosed between two nodal lines. These lines can

traverse the plate in all sorts of directions, or return upon themselves, but they

can never terminate at the edge of the plate. The shape of the nodal lines can

resemble a hyperbola, a cycloid, an epicycloid, and many other curves, according to

circumstances. Ordinarily, the curves of the two lines are serpentine or of two

similar lines, separated by a straight line, mutually approaching and departing from

one another.

Toward the points where the nodal lines cross, they always enlarge, such that the

shape of the vibrating parts near these points is not angular but more or less

rounded, often in the shape of a hyperbola. I have represented this enlargement in

Figs. 63, 64, 66a, 69, 70, and 99–102. Those who wish to concern themselves with

the geometry of these vibrations should not neglect either the rounding of the

vibrating parts or the position of the centers of vibration, that is, those points

where the oscillations are the greatest, and where the finest parts of the powder

accumulate. These points are not found at the edge itself, but at a small distance

from the edge; their shape is either round or drawn out lengthwise, following the

figure of the vibrating parts.

The sounds of the figures where the interior of the plate is surrounded by

nodal lines (for example, in Figs. 65, 67c, 68a, 104, 105, etc.) are distin-

guished from the others by a different timbre, being louder and less disagree-

able. The effect is sometimes as if the sound were graver by an octave, which

is really not the case.
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94. Direction of the Nodal Lines

In all possible modes of vibrations of a plate, the figures of the nodal lines can be

reduced to a certain number of lines, which either traverse the breadth of the plate,

or which are parallel to the circumference or on parts of the circumference; for

example, on a rectangular plate to a certain number of parallel lines, to one or

another dimension; on a round plate, to a certain number of diametric and circular

lines; on an elliptical plate, or a semi-ellipse, everything is stretched out, etc. So far

as the size of the plate allows it, one can produce on each plate every manner of

division that conforms to its shape (or every member of the progression of numbers

on nodal lines). If several kinds of vibrations do not produce a regular figure, they

will however be represented by the distortions of the nodal lines which can be

reduced to the primary figure.

95. Distortions of the Figures

These distortions of the nodal lines do not change the tone because each vibrating

part preserves the same relative size. These are the first elements for assessing the

nature of these distortions. Even the most complex figures can be reduced to the

primary figure by imagining the same thing repeated more or less frequently.

Two lines or parts of straight lines that are intersected (Fig. 45c) can be separated

in two different ways to form two curves (Figs. 45b, d); these curves can also be

transformed into two parallel straight lines (Figs. 45a, e). Likewise, two lines or parts

of parallel straight lines in one direction can become curved and when the curvature

becomes stronger, pass by two straight lines that are cut, into some curves and finally

into straight lines in the other direction. There is therefore no essential difference

between the positions of the nodal lines represented in Figs. 45a–e. They must

therefore be regarded as variations of the same mode of vibration that one can often

produce at will by changing the location where the plate is touched.

Similarly, at the edge of a plate (Fig. 46 mn), both ends of lines that approach at

an obtuse angle (a), or as part of a curved line (b), or as part of a straight line (c), are

equivalent and interchangeable.

If the shape of a plate is not regular, or if the thickness is not the same

everywhere, the figures will always be distorted.

96. Affinities of the Figures Among Themselves

The figures, even the most complex ones, have more relationship and affinity

among themselves than one would have at first thought. If, after having produced

the same figure on several plates of the same shape and size, one puts one close to
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another in a suitable manner, the nodal lines of one plate continue of those of the

other, and the composition of several simple figures are composed from other more

complex ones, which one can also produce on the larger plates. The compositions of

four square planes, two semi-round, four triangular, etc. furnish examples.

97. General Laws of the Frequency of Vibrations

The sounds of plates, the shape, material, and mode of vibration being the same are

proportional to the thickness and inversely proportional to the squares of the

dimensions. If the materials are different, the sound will be directly proportional

to the square roots of the stiffness and inversely as the square roots of the specific

gravities.

98. Several Lessons for Those Who Wish to Be Concerned
with the Theory of Oscillations

The present state of the most sublime analysis does not allow us a means of

determining by theory the nature of these motions and to express them in terms

of equations, except those in which the diameter of the sounding body bends in the

same way and in which the nodal lines are like those in Figs. 47, 48, 51, 52, 55, 57,

59, 67a, 104, and 109a. We haven’t proceeded very far in this research since the

time of Euler, who expressed himself as follows (Nov. Comment. Acad. Petrop. vol.
xv, p. 582):

Quae adhuc de figura corporum flexibilium et elasticorum in medium sunt allata,
non latius, quam ad fila simplicia sunt extendenda. Quin etiam omnia, quae in hoc
genere sunt explorata, ad curvas tantum in eodem plano formatas sunt
restringenda: quare longissime adhuc sumus remoti a theoria completa, cujus
ope non solum superficierum, sed etiam corporum flexibilium figura definiri
queat; atque haec theoria etiam nunc tantopere abscondita videtur, ut ne prima
quidem ejus principia adhuc sint evoluta.1

The assumption, of looking at a similar rigid membranous body as a network

formed by curved lines steered in a direction that is applied or curved lines steered

in another direction, does not conform to nature and will never give either results

conforming to experiment or the appearance of explanation of several kinds of very

1 The substance of Euler’s statement, rendered in modern terms, is that the only vibrational

patterns of two-dimensional plates susceptible to mathematical analysis are those that are

mathematically equivalent to a one-dimensional rod or “thread” vibrating in a single plane.

Viewing the figures referred to by Chladni in the preceding paragraph may help clarify this for

the reader.—JPC
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simple vibrations. Jacob Bernoulli did not succeed in making use of such an

assumption in the Nov. Act. Acad. Petrop. 1787.
It seems to me that the only way to arrive at the theory of the motions will be a

thoroughgoing examination of the torsional motions of a rod (Pars. 84–87). We

must begin by giving a general formula for the torsional vibrations of a cylindrical

or prismatic rod (whose two ends are free), and which presents in the first sound a

node in the middle; in the second, two nodes extending one quarter of the length of

the rod from its ends; in the third, three nodes, one in the middle and the others

displaced by a sixth of the length from its ends, etc. In the extremely small motions

in which each molecule makes around the axis, alternately to the right and to the

left, and which are smaller as the molecule is less displaced from the node and from

the axis (that is, of the longitudinal fiber at the middle of the cylinder), the motion of

each longitudinal fiber, regarded separately, will be a curve which cannot be

described on a plane but on a cylindrical surface. The frequency in the different

types of motion will be as the reciprocals of the lengths of the vibrating parts. When

one has succeeded in forming an exact theory of these motions of a glass cylinder or

prism, it would be necessary to apply it to the same motions of a string, a band, or

the large rectangular plate, which will give the type of vibrations where the nodal

lines appear as in Figs. 49 and 50, or as in Figs. 63 and 66a, etc. More instruction on

this can be found in Subdivision C of this section, which contains the research on

the passage of vibrations of a square plate to those of a narrow strip. The second

series of sounds, in which there is a nodal line in the longitudinal direction, is no

different than the vibrations of a rotating rod. One can show:

c + - d

e - + ƒb

m g

a

n

cdef as a rectangular blade, or as a part of a similar longer blade, where the

lengthwise nodal line is intersected by the nodal line ab. Two vibrating sections

separated by a nodal line always vibrate in opposite directions, in the way that the

sections indicated here by + are above the ordinary position, while the sections

marked by – are under, and the opposite will occur in the following vibration.

Now, if the section angd vibrates over, it is the same thing as if section adfb
turned to the right. The same is true for the other half beyond the nodal line abec.
When the sections anmc and mnbe vibrate in opposite directions, it is the same as if

section abec turned to the left, supposing that the eye of the observer was at g. In the
ensuing vibration, adfb will turn to the left, and abec to the right, and so on.

During these alternating motions, the nodal line in the direction of the length mg
will replace the axis (or the longitudinal fiber in the middle) of a cylindrical or

prismatic rod that makes torsional vibrations; and the nodal line of the width, ab,
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will replace the node of the same rod. A similar blade can be longer and will also be

able to be similarly divided into several parts, resembling the preceding, where the

vibrations go in opposite directions. The distances of one sound or another in a very

narrow blade are as the natural series of numbers, larger if the blade is larger, in the

manner of those in a square plate, as 2, 5, 10, etc. instead of 1, 2, 3, etc. The speed of

the first sound will diminish as the width increases.

Perhaps, to determine the more complex vibrations, where there is more of a line

in both directions, for example, in Figs. 78a, 71a, 75, etc. we could consider the

plate as being composed of several similar contiguous sections on one side.

When the vibrations of a rectangular blade must be determined, the same

principles can be applied to plates of another form. Thus, Figs. 99–102 will be

the same for a round plate; Figs. 64 and 69 for a square plate regarded as a rhombus;

Figs. 183–187 for elliptical plates, etc.

The combination of all the possible discoveries of this kind gives general

expressions, by means of which one can predict the forms that the nodal lines

must take on a plate of a given shape, shaking in a known manner.

One will never be able to advance much in the theory of these vibrations, until

after determining exactly the nature of the distortions of the nodal lines (Par. 95),

where, for example, Figs. 45a–e, can be regarded as equivalents; as also, Figs. 66a,

b; Figs. 67a–c; Figs. 71a–c; Figs. 72a, b; Figs. 73a, b; etc. In these cases, the

torsional vibrations and the transverse vibrations pass into one another without

changing frequency.

It will be of some value to note that in a rod or very narrow band the sound of the

first type of torsional vibrations is lower by a fifth (2:3) than that of the first type of

longitudinal vibrations. But when the width is equal to the length (a square plate),

the first type of torsional vibrations with the same ratio (2:3), represented by

Fig. 63, is lower by a fifth than the first type of transversal vibrations, represented

by Fig. 64. If the dimensions of a rectangular plate are as 2:3, the two types of ratios

give the same sound.

B. Vibrations of Rectangular Plates in General

99. Different Cases

Rectangular plates are the first of which I set forth the vibrations because they can

serve better than plates of other shape to show the passage of the vibrations of a

narrow strip (Sect. 5A) to those of plates, which cannot be expressed by linear

curves.

A rectangular sheet or plate (of glass, of sufficiently sonorous metal, etc.), in

which the two dimensions are in any ratio, will be susceptible to different series of

vibrations of a sound in the following cases.
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1. If the ends are free

2. If one end is fixed and the other free

3. If both ends are fixed

We could also, as in the transverse vibrations of a rod, distinguish a fixed end,

and a supported end, but if one or two ends are supported, one could scarcely

produce any sufficiently regular vibrations and the figures would often

resemble those of distortions of the figures of a free sheet or plate.

100. Vibrations of a Rectangular Plate Whose Two Ends
Are Free

If the ends of a rectangular plate are free, the simplest series of vibrations is the

same as that of a free rod (Par. 71) when it makes transverse vibrations. In the first

kind of these vibrations, where the curvature of each fiber is as in Fig. 24, two nodal

lines are formed, at a distance from the ends of almost a quarter of the length; these

lines appear when one shakes sand upon the surface, as in Fig. 47. Figure 24 can be

regarded as the profile and Fig. 47 as the plane of the plate. In the second mode of

vibration, we must regard Fig. 25 as the profile, representing the curvature of each

fiber, and Fig. 48 as the plane of the plate, representing the three nodal lines on

which the scattered sand accumulates. The plate could also be divided into a rather

large number of parts, where four, five, or more nodal lines are formed whose ends

are removed from the ends by about half the length of a part contained between two

nodal lines. Whatever the width of the plate, the series of sounds will always remain

the same and will be equal to the squares of the numbers 3, 5, 7, 9, etc. To produce

all these types of vibrations, we must apply the violin bow to one of the narrow

edges, by clamping the node nearest this edge between the thumb and another

finger. If one moves the finger slightly closer to the ends of the sheet, one will be

able to produce all the series of these sounds. On a sufficiently wide plate, one could

also produce, so far as the width permits, but with a great deal of difficulty, two or

more nodal lines, according to the width, and the sounds would be between these

same ratios as if the nodal lines were formed according to the width. But they will

be more acute in proportion to the squares of the dimensions to which the position

of the lines are related. All these nodal lines can also be curved in different manners,

without changing the sound, as in all the other kinds of vibrations.

In addition to the modes of vibration, which are analogous to the transverse

vibrations of a rod, the plate is susceptible to many others, which are not expressible

in terms of linear curves. In these vibrations, nodal lines are shown at the same time

in one direction, and in another at a right angle, or may also change position without

changing the sound. In order to produce these vibrations, we must clamp a point

where two nodal lines intersect and apply the bow to one of the longer sides near the

end or in the middle of a vibrating part. The nodal line, according to its length, can

be intersected by a line according to the width (Fig. 49), or by two, or by several.
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One will be able to produce very easily all of this series by approaching the fingers

closer and closer from the end and by keeping them always on the longitudinal

line. The modes of vibration are the same as the torsional vibrations of a rod

(Pars. 84–87, and 98); if the width is very small, the sounds correspond to the

natural series of numbers; but, as the width increases, the distance of one sound

from another also increases. The first sound changes in inverse proportion to the

width; consequently, we cannot compare the first series of sounds made, because

these sounds also depend on the width, which should have no influence on the

sounds of the first series.

If the width of the plate permits it, we can also show two or more nodal lines,

according to the length, intersected by the lines in the other direction.

Subdivision C of this section will contain more information and can be regarded

as the continuation of this paragraph.

101. Vibrations of a Rectangular Plate with One End Fixed
and the Other Free

A rectangular plate, one end of which is fixed and the other free, makes the simplest

motions, like a rod in the transverse vibrations described in Par. 69. It can vibrate as

a whole, in such a way that each fiber is bent along the curve shown in Fig. 20, and

that there is no nodal line (Fig. 51); it can also form a node, separated from the free

end by slightly less than a third (Fig. 52) or two nodes (Fig. 53), etc. The bow must

be applied to the free end.

But, aside from these types of vibrations, which are similar to the transverse

vibrations of a rod, there also exist others, where there are nodal lines in two

directions. The first series, which presents a nodal line in the direction of the

length, either alone (Fig. 54) or intersected by a line in the direction of the width

(Fig. 55), or by two lines (Fig. 56), corresponds to the torsional vibrations of a rod,

one of whose ends is fixed and the other free. If the width is less considerable, the

sounds are like the odd numbers 1, 3, 5, 7, etc. The more the width increases, the

greater the distance from one sound to the next increases. The first sound (Fig. 54)

is lower by an octave than the first of the same sheet when the two ends are free

(Fig. 49). If we want to compare these vibrations to those of a preceding para-

graph; then the sheet, one side of which is fixed, will give those sounds that

correspond to the odd number. If both edges are free, it will give those which

correspond to the even numbers, and the sounds will be as the reciprocal of the

lengths of the vibrating parts, regarding one part contained between two lines in

the direction of the width, like the double of one part located at the free end. In

order to produce this series of sounds, we must apply the bow to a suitable point

on one of the longer sides and touch, for the first sound, the longitudinal line and

for the others, a point where two lines intersect.

If the width permits it, we can also show two or more lines in the direction of the

length, or one alone, or intersected by the lines in the direction of the width.
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102. Vibrations of a Rectangular Plate with Two Ends Fixed

If the two ends of a rectangular plate are fixed, the simplest motions are the same as

those of a pipe treated in the same manner. It can vibrate as a whole, or divided into

two, three, or more parts (Figs. 57 and 58).

It is difficult to produce these because there is not a free end on which to apply

the bow. However, one succeeds sometimes by a slow movement of the bow,

applied on the side with more pressure, than for the other modes of vibration.

Besides these vibrations expressible by curved lines, the plate can vibrate again

in many other ways (easier to produce), where there is a nodal line in the direction

of the length, or alone (Fig. 59), or intersected by a line in the direction of the width

(Fig. 60), or by two (Fig. 61), or by three (Fig. 62), etc. If the sheet is narrow, the

sounds of these vibrations resemble rotating vibrations on a pipe with two fixed

ends, corresponding to the natural series of numbers, and they are the same as if the

two ends were free. One may easily produce these vibrations with the blade of a

saw. I have represented the distortions of similar figures in Fig. 62b, c.

C. Vibrations of a Square Plate and Some Other Kinds
of Rectangular Plates

103. Explanation

The vibrations of square plates will be explained first because these plates have the

simplest ratios, the width being equal to the length. Then, by assuming one

dimension as constant and the other as variable, I will show, in these plates of a

gradually decreasing width, the passage to the vibrations of a narrow strip or rod

which were described in Pars. 84–87.

I sometimes use the word diameter to express a direction parallel to one side

because the word dimension would be too vague.

104. Nodal lines in One Direction or Another and Signs
for Expressing Them

In all the modes of vibration of a plate, rectangular or square, the figures are always

related to a certain number of nodal lines in one direction or another. Even if the

lines are diagonal or twisted, they can always be reduced to a certain number of

lines parallel to one side or the other.
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To be more precise, I will express the lines in one direction or another by some

numbers separated by a vertical line. Thus, for example, 3j0 will express the mode

of vibration in which there are three lines in one direction and none in the other; 5j2
expresses the mode in which there are five lines parallel to one of the sides and two

parallel to the other, etc.

105. Flexions of Nodal Lines

Nodal lines, which one can imagine as lines that are ordinarily straight, can be more

or less curved. This flexion of these lines that are next to one another, or separated

by a straight line, moves them closer together or farther apart (Par. 93). In some

modes of vibration, the nodal lines are never straight lines on a square plate and in

some other modes they are never straight on rectangular plates in some other ratios

of the dimensions. For square plates, I indicate in the following table the number of

flexions of nodal lines in one of the directions which often remain straight lines in

the other direction. What I call a flexion here is the deviation of such a line toward

one side, consisting of a departure and a return to the straight line which one can

imagine as the ordinary form. The horizontal series of numbers (top row of the

table) indicates the lines in one of the directions, and the vertical series to the left

the lines in another direction:

2 3 4 5 6 7

0 Figs. 64 and 65 Fig. 67 Figs. 72 and 73 Fig. 78 Fig. 85

1 flex 1 1/2 flex 2 2 1/2 3 3

1 Figs. 69 and 70 Fig. 74 Fig. 79 Fig. 86

1 flex 1 1/2 2 2 2

2 Figs. 76 and 77 Fig. 81 Figs. 87 and 88

1 1 1/2 2 2

3 Figs. 83 and 84 Fig. 89 Fig. 90

1 2 2

106. The Essential Difference When the Nodal Lines
Are Curved Inward and Outward

Several modes of vibrations, the number of nodal lines being the same, can appear in

two entirely different ways, according to whether the flexions or part of the flexions

of the exterior lines are going inward or outward. In the first case the sound is graver

than in the second, with little exception. This difference can be noted in the figures in

which there is an integral number of flexions, as in 2j0, 2j1, 4j0, 4j2, 5j3, 6j2, etc.,
but never in the case in which the number is 1 1

2
, or 2 1

2
, as in 3j0, 4j1, 5j0, 5j2, etc.
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107. Types of Vibrations of a Square Plate

Among the different nodes in which a square plate can vibrate, the figures of the

nodal lines are arranged in order, following the deepness or the elevation of the

sounds, and I will explain them here in the same order.

Of all the types of vibration, 1j1 (Fig. 63) is the one that yields the deepest sound.
We can produce it very easily by holding the plate in the middle and putting it into

motion around a corner. The figure can often be changed into two curved diagonals

ehd and cmn.
The mode of vibration that yields the next lowest tone is 2j0, where the two lines

are curved from within (Fig. 64). The plate must be struck in the middle and a violin

bow applied at one side. The sound is more acute by a fifth than the first. The figure

can sometimes appear as the two curves, cnd and emk.
2j0, where the two lines are bent outward, ordinarily appears as a square with

curved corners (Fig. 64) if, by gripping the plate near the edge, in the middle of a

side, we put it into motion at the nearest corner. If the plate is held in the middle

between two opposite sides between the tips of the thumb and another finger, the

figure is drawn out in length and appears as two curved lines. The sound is more

acute by aminor third than that of Fig. 64, and by almost a minor seventh than that of

Fig. 63.

2j1 (Fig. 66a), where the sound is more acute by an octave and a major third than

that of Fig. 63, appears very easily if, while holding the plate in a point where two

lines intersect, we set it into motion in the middle of the right or left side. It is also

sometimes possible, by small shifts of the fingers, to produce distortion into three

diagonal curves (Fig. 66b).

3j0 is the type of vibration that is most suitable for easy showing of the

distortions of the figures that are made without changing the sound. It can be

produced at will on each square plate that is not too irregular as Fig. 67a, b, or c.

One can also pass on three straight lines in one direction, through similar interme-

diate figures, to three straight lines in another direction, through similar intermedi-

ate figures, to three straight lines in another direction, by slight changes in the

positions of the fingers that grip the plate. If one holds the plate at the point marked

by m in Fig. 67a, and applies the violin bow at the point n in such a way that the

point of contact and the point of rubbing are in the same diameter, three parallel

lines will appear, and the motion of the plate will be exactly the same as that of a rod

(Par. 71) in the second transverse sound (Fig. 25). For this effect, the plate should

only be held by the tips of the fingers that are extended only a little, in order not to

hinder the vibrations in the neighboring parts; one must move the bow very slowly

and press more strongly than in producing the previous figures, or Fig. 67c. If the

figures are very little advanced along the same diameter, without changing the point

where motion has been produced, the lines curve as in Fig. 67b. If the fingers are

advanced still further in the same direction, the curving of the nodal lines becomes
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stronger, and finally, these lines intersect in Fig. 67c. In the same way, by moving

the fingers slightly toward the edge of the plate, one can convert Fig. 67c to Fig. 67b

in one direction or the other. The sound does not change with these changes of the

position of the lines, because each vibrating part always preserves the same

magnitude, in order to vibrate with the same frequency.

2j2 (Fig. 68a) is very easy to produce if the plate is held at one of the points where
two nodal lines intersect, and if motion is produced in the middle of one side, or at

the corner closer to the point that has been touched. Figure 68b is a distortion of the

same figure. I will not remark any further on the ratio of the sound for each figure

because everything will be mentioned in the following paragraphs.

In3j1, the exterior lines will never be straight on a square plate, but always curved
toward the interior or toward the exterior. This must be regarded as an essential

difference because the sound in the first case is graver than the other by slightly less

than a tone. Ordinarily, 3j1, when the lines are curved toward the interior, appears as
Fig. 69; the figure can also be similar to that of a round plate (Fig. 101b). To produce

this mode (Fig. 70), onemust hold the plate in themiddle, and at the same time, touch

the nodal line near the corner at which one applies the bow.

3j2 sometimes appears in the original form as in Fig. 71a, but more often as in

Fig. 71b. If, while holding one point where two lines intersect, one rests the corner d
or n on an immovable body, the zigzag dpmqhn (Fig. 71a), then transforms to the

right diagonal dn (Fig. 71b). The figure can also be changed into five diagonal

curves (Fig. 71c) if one changes slightly the position of touching; and for this

purpose it would be better to apply the bow near the closest corner.

4j0 can appear in two different modes, according to whether the exterior lines are

curved twice, inward or outward. In the first case, the nodal lines appear as in Fig.

72a or 72b, in the second case, where the sound is more acute, as in Fig. 73a or 73b.

I have never been able to produce four straight lines.

In 4j1, the lines can be straight, as in Fig. 74a, or be transformed into Fig. 74b,

depending on the different points where one touches the plate and where one

applies the bow. It is not difficult to produce these two different forms of the

same mode of vibration on each regular plate. Sometimes, I have noted the passage

of one to the other; the sound remains exactly the same.

3j3 ordinarily appears very regular, as in Fig. 75; but this figure can also be

transformed into six curved diagonal lines of the same type as 2j1, 2j2, and 3j2.
4j2 has never appeared on a square plate in primary form; but Fig. 76 is a

distortion of4j2, where the exterior lines are curved inward. Figure 77 is a distortion
of the same number of lines curved outward; the sound of Fig. 76 is slightly graver

than that of Fig. 77. It is very easy to produce Fig. 76 if, while holding the plate in

the middle, and touching at the same time (to avoid Fig. 64), with a fingertip, a

point located on one of the curved lines, one applies the bow to the middle of

one side. The best way to produce Fig. 77 is to grasp the plate in the middle of the

two opposite sides with the thumb and another finger, while touching one of

the little lines close to a corner with another fingertip, applying the bow to this

angle.
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5j1 rarely appears with straight lines; the commonest distortion is Fig. 79b;

sometimes, Fig. 79a appears.

4j3 can be produced on sufficiently regular plates in the primary form (Fig. 80a),

or changed into Fig. 80b or into seven diagonals (Fig. 80c).

5j2 appears regularly (Fig. 81a), or transformed into Fig. 81b.

4j4 appears sometimes regular as Fig. 82; it is also susceptible to the same

distortions as I have noted in regard to 2j1, 2j2, 3j2, 4j3. Likewise, on larger plates,

5j4, 5j5, 5j6, 6j6, 7j6, etc. may come close (more or less) to 9, 10, 11, and a very

large number of curves.

In 5j3, the lines were never straight. But Fig. 83 represents 5j3, where the lines
are curved inwards, and Fig. 84, the same number of lines curved outwards. The

sound of Fig. 84 is slightly more acute than that of Fig. 83.

6j0 has appeared very rarely regular, but is ordinarily transformed into Fig. 85.

In 6j0, the lines are very rarely straight; ordinarily this mode of vibration appears

as in Fig. 86.

6j2 exists in two different modes: when the exterior nodal lines are curved

inward and when they are curved outward; the difference of the sounds is almost a

semi-tone. In the first case, the nodal lines appear as in Fig. 87a or b, transformed in

other ways; in the second case, the nodal lines are as in Fig. 88a, or more often as in

Fig. 88b.

6j3 can appear as in Fig. 89a, but it is much easier to produce Fig. 89b, which is

only a distortion of the same figure. One must hold the plate at a point where two

lines intersect and (in order to exclude Fig. 67c) touch one of the small circles very

lightly with the fingertip while, at the same time, applying the bow to the middle of

this semicircle in such a way that the two points should touch and the point of

rubbing be on the same diameter. It seems to me that 6j3 could also appear in the

manner that the ends are curved twice outward, but I have not seen it.

If the size of the plate permits, one can also push much further the production of

different and more complex modes of vibration, of which Figs. 90–96 are examples.

Figure 90 is a distortion of 7j3, Figs. 91 and 92 of 6j4, Figs. 93 and 94 of 8j4, and
Figs. 95 and 96 of 8j6.

108. Ratios of the Sounds

The ratios of the sounds which are common among all modes of vibration of a

square plate are contained in the following Table, where I look at 1j1, the simplest

mode of vibration, which gives the gravest sound, as sol 1; the horizontal series of
numbers (top row of the table) indicates the parallel nodal lines on one side and the

vertical series to the left indicates parallel lines on the other side.

Each ratio, except 1j1, 2j2, 3j3, 4j4, etc. is found here two times, to best see the

series of sounds in one look, and to compare the sounds of a square plate
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(considered as a rectangle where the width is equal to the length, and where, as a

consequence, the direction of the lines does not make any difference) to those of a

rectangle (where the width is less than the length).

I have attributed here the sound sol 1, in the mode of vibration of 1j1, because
it seems to me to be a product of 2 and 3, in comparison to the other sounds,

and because I look at every do as some power of 2, according to Par. 5.

The series of sounds that are in agreement with the mode of vibration,

where there are nodal lines only in one direction, 2j0, 3j0, 4j0, 5j0, is the same

as that of a strip or a band where both ends are free (Par. 75) and is equal to the

squares of 3, 5, 7, 9, etc. In the cases where the same number of nodal lines are

shown in two different ways, for example, 2j0 and 3j0, the figures where the
nodal lines are curved inwards (Figs. 64 and 72) are more in accordance with

the exact ratio than those where the lines are curved to the outside (Figs. 65

and 73).

The relative numbers of vibrations for a number of nodal lines going in

only one direction, (2j0, 3j0, 4j0, etc.) being equal to 32, 52, 72, etc., it seems

that the sounds of the figures where there are also nodal lines in the other

directions will be products of 3, 5, 7, etc. and of another number. The sounds

of the series 1j1, 2j1, 3j1, etc. seem to be the products of 3 and the numbers 2,

5, 10, 17, where every second difference is 2; but this progression does not

extend to 4j1; the series 2j0, 2j1, 2j2, 2j3, etc. seems to be (by reasoning) the

products of 3 and the numbers 3, 5, 9, 15, 23, where every second difference

is 2; the sounds of the series 3j0, 3j1, 3j2, 3j3, etc. seem to be the products of 5

and the numbers 5, 6, 9, 13, 18, 24, where, in counting to 3j1, every second

difference is 1. The sounds of the figures, where there are the same number of

nodal lines in both directions (2j2, 3j3, 4j4, etc.), seem to be between (by

reasoning) the squares of 2, 3, 4, etc. except that of the first one, 1j1.
But it is only conjecture; perhaps the true numbers, which these numbers

approach, are much more complex. I guarantee only the results of the

experiments, explained in the Table (and continuing in this paragraph and

in the other Tables). The differences that one will be able to find by well-done

experiments are never greater than a semi-tone, more or less. If, therefore, the

results of any theory are not conforming to those of the experiments (as, for

example, the ratios of the sounds of a square plate that Jacob Bernoulli has

given in the Aeta Acad. Petrop. 1787); the proposed theory is not the true one.
It will be necessary, therefore, to look for another theory that is noted by

experiment. And in that case, where one does not succeed, it will be much

more advantageous to admit when it surpasses the means furnished by the

actual state of science, or the individual faculty who leads the readers astray

by a theory that does not conform very well to nature.
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109. Several Other Kinds of Vibrations in Which the Plate
is Not Free

In all of the types of motion mentioned here, the plate is regarded as being freely

vibrating; but there are other motions which are different than these, such as the

vibrations of a rod or strip where one or both ends are fixed, different from the same

rod or strip where both ends are free.

A complete examination of all these motions would have entailed too much

verbosity; this is the reason why I limit myself to mentioning the two I have

observed most often. One can only judge them inexactly, and not fit them into the

series of sounds of a freely moving square plate.

Figure 97 shows the plate being held tightly between the ends of the thumb and

of another finger near n, leaning the corner m on a stationary object, and the bow is

applied at the corner p. This manner of motion is the same thing for a square plate,

viewed in the diagonal direction as a rhombus, and for the first mode of vibration for

a rod where the end is supported (Fig. 22). The sound is graver by a minor seventh,

as that of 1j1 (Fig. 63).

This is also the kind of motion belonging to Fig. 98 that is produced, in effect, in

almost the same manner as that produced in Fig. 97, except that the point, where

one squeezes the plate, has to be closer to the corner where one applies the bow. The

sound is more acute by an octave that the one of 1j1 (Fig. 63).

110. Different Patterns That Are Formed When the Plate
is Not Free

Given what has been said (Par. 96) on the relationships of the figures in general, and

on the drawings that are formed by their combinations, a preference can be shown

for square plates. If one combines four plates of the same size, on which one has

produced the same simple figures; this combined figure will also be produced, more

or less, exactly the same on a single larger plate. And in combining several plates

(on which are located the same figures), it will form the following drawings:

1. If the lines (parallel or diagonal on the sides) that intersect under a right angle, in

Figs. 63, 64, 65, 66a, 67c, 68a, 71a, 72a, 73a, 75, 80a, 81a, 82, etc. are composed

of four times the same simple figure, to form a more complex figure, one will

have:

Figure 63 four times, while making Fig. 68a

Figure 64 . . . . . . . . . . . . . . . . . . . . . . . .72a

Figure 65 . . . . . . . . . . . . . . . . . . . . . . . .73a

Figure 68a . . . . . . . . . . . . . . . . . . . . . . .80a
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2. As in #1, and in each square a small circle, for example, Figs. 70, 76, 77, 88b,

89b, 93, and 94:

Figure 70 four times, while making Fig. 88b

Figure 76 . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 77 . . . . . . . . . . . . . . . . . . . . . . . . 94

3. As in #1, but within each square one finds a figure with four curves which

encloses a small square with rounded corners. This drawing is reproduced in

Figs. 71b, 91, and 92. The last two, when combined four times, also form Fig.

71b in two different ways.

4. As in #1, and within each square there is a figure of the same nature, as in #3, but

much more complex, as in Fig. 80b, which when combined four times, gives Fig.

95 or 96.

5. Almost as #3, but the figure contained within the square is another situation, and

every point where two lines intersect is nearby a circle (Figs. 74b and 84).

6. The parallel lines on the sides, and the diagonals which intersect at the same

point (Figs. 69 and 87b), are also formed when taking Fig. 69 four times.

7. As in #6, and each point where two lines intersect, is nearby a circle, or an

almost-square, with rounded corners (Fig. 79a).

8. As in #6, and within each square is found an ellipse, or a line, continuing within

the square (Fig. 83), passing by the small axis.

9. As in #6, each point where four lines intersect, it is near a circle, and within each

triangle is found a small circle (Fig. 90).

The combinations of some other figures will be able to produce more complex

drawings.

111. Symbols for Expressing the Vibrations of Rectangular
Plates

The sounds of rectangular plates, where the width is less than the length, have ratios

other than those of a square plate. The only exception is the series of vibrations

similar to the transverse vibrations of a rod or strip where the ends are free (Par. 71),

and where the sounds do not depend on the length. For determination of the sounds

of the rectangular plates according to different ratios of the width and the length, I

will look at one of these dimensions (the length) as constant, and the other (the

width) as variable.

The same plates, being square, having given the sounds mentioned (Par. 108),

will give the sounds contained in the following Tables (after one or the other

dimension is decreased). I will express the numbers of the nodal lines in the same

manner as the preceding, in separating them with a vertical line. The first number
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expressed is always the transverse line (or parallel to the smaller dimension) and

the second number always the longitudinal line (or parallel to the bigger

dimension).

For those that are not knowledgeable, it is necessary to note that if the plates give

other sounds that those that are contained in the Tables; it is necessary to transpose
all of them, for the ratios remain the same.

112. Passages of One Figure to Another, When the Sound
Is the Same

When the ratio of the dimensions of a rectangular plate is such that two modes of

vibrations give the same sound, these different modes of vibration will be able to be

represented by an intermediate twisting figure, where one would be able to make

small changes in the points where it is touched or rubbed, in one or the other ways of

making the vibrations more pronounced, without any change to the sound.

Sometimes, if the sounds of two types of vibrations are slightly different, one of

these figures will also be able to pass into the other, and the sound will be a little

more raised or lowered, according to whether the figure yields itself more or less to

one type of motion or the other.

113–123. Sounds of Rectangular Plates with Different Ratios
of Their Dimensions, Regarding the Length as Constant
and the Width as Variable

113. When the same square plate, of which the sounds are mentioned (Par. 108), is

shortened on a side, in a way that the width is to the length as 8–9, it gives the
following sounds:

Number of transversal lines

N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5 6

0 re# 2 la 3 la 4� fa 5+ do 6

1 la 1 do# 3+ do# 4 si 4 fa#. . .sol 5 do# 6

2 sol 2+ re 3+ do 4 sol# 4+ re# 5+ si♭ 5 mi 6

3 do# 4 mi 4 la 4+ re# 5+ sol#. . .la 5 do#. . .re 6 fa# 6

4 do# 5� re 5 fa 5 la 5+ do#. . .re 6 fa 6

5 la 5 si♭ 5 do 6 re# 6 fa# 6 si♭ 6
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The series of sounds of the most simple vibrations, where there are only nodal

lines lengthwise, which I express here as 2j0, 3j0, 4j0, etc. is, as on a square plate,

and on every rod or narrow strip, according to Par. 71, equal to the squares of 3, 5, 7,

9, etc. But the sounds re# 2, la 3, la 4�, fa 3+, and do 6 are more acute by nearly a

semi-tone, than those of a square plate (Par. 108), although, following the theory,

they do not depend on the width.

Nevertheless, the increase of the frequency of these sounds is insignificant. And

as to the mode of vibration, it shows two different modes of vibration on one square

plate, as 2j0 and 4j0. One will be able to look at this small change rather as an

average term between the sounds of the two different modes of vibration, when the

number of lines is the same.

The sounds of the modes of vibration, where there are no nodal lines lengthwise

and where 0j2, 0j3, 0j4, etc. are like the squares of 3, 5, 7, 9, etc., are more acute

than the ratio of the squares of the dimensions because they are dependent on the

smaller of the two dimensions; or close to 64:81.

In the same mode of vibration 1j1, the sound, which is always in the inverse ratio
of the larger of the surfaces, rose to 9:8. All the other sounds are also more acute

than those of a square plate; the difference is more considerable in the mode of

motion that presents more lines lengthwise than in the one that presents a larger

number widthwise.

114. When the width of the same plate is again smaller, in the manner that it has the

length as 5 to 6, the plate will give the following sounds:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 si♭ 1 re 3 do# 4+ si 4� sol 5�
2 la 2+ mi 3 do# 4+ la 4 mi 5 si♭ 5

3 re# 4+ fa# 4 si 4� mi 5 si♭ 5

4 re# 5 mi 5 sol 5 si♭ 5+

The series of sounds with the simpler vibrations 2j0, 3j0, 4j0, etc. equal to the

squares of 3, 5, 7, 9, etc. is almost the same as that in the preceding paragraph.

The one of 0j2, 0j3, 0j4, etc., being in the same ratios, is higher due to reversing the

squares of the dimensions, and 1j1 is higher than the simple inverse of the widths of

the surfaces. All the other sounds are also raised more or less. All that being the

same in the following cases, I will not repeat it each time.

4j1 and 2j3 can transform themselves into each other through Figs. 157a–e,

without any change to the sound, as I have noted in Par. 112. Also 4j2 and 1j4,
which give the same sound, can pass from one to the other.
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115. If the width is to the length, as 4 is to 5, the sounds of the same plates will be:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 si 1 re# 3� re 4+ si 4+ sol 5+

2 si 2+ fa 3+ re# 4� si♭ 4� fa 5 si 5

3 fa 4+ sol 4+ do 5+ fa 5+ si♭ 5+ re# 6

4 fa 5 fa 5+ sol#. . .la 5 do 6+ re# 6+ sol# 6

Here the figures 5j0 and 1j4, which give the same sound, can pass from one to the

other, through Figs. 158a–c. The outside lines of 5j0, which are curved inwards

twice in Fig. 158a, are also able to curve outwards twice, as in Fig. 159, with a

slightly significant raising of the sound. Figure 159 also can transform itself into

distortions of 1j4. The same figure also can pass into 3j3, where the sound is the

same. Figures 160 and 161 can represent 0j4 and 4j2, and pass into the more

pronounced shapes of these two modes of vibration.

116. In the ratio where the width is to the length as 5 is to 7, one could presume that

the mode of vibration 4j0 and 0j3 would give the same sound and could pass from one

to the other because the sounds of the series 2j0, 3j0, 4j0, etc. depend on the length,

and those of the series 0j2, 0j3, 0j4, etc. depend on the width, and because the sounds
of each series are among them as squares of 3, 5, 7, etc. The different frequencies that

belong to the same motions are made up by the difference of the dimensions

themselves and the motions of their ratios, so that both methods of vibration, 4j0
and 0j3, have to be equal to 52� 72; that which is noted by the experiment. These two

types of vibrations are represented most easily by the intermediate Fig. 163b, which

can be transformed, by small changes in the place of touching, into Fig. 163a or into

Fig. 163c, and sometimes also in three straight lines, according to the length, or four

according to the width, without any change to the sound.

Given that the ratio of the dimensions 5–7 is also very close to that of 1 to the

square root of 2, one could suppose that the sounds of the series 0j2, 0j3, 0j4, etc.
would be more acute by an octave than those of the series 2j0, 3j0, 4j0, etc., which
also conforms to experience. I used plates of which the ratio of the diameters is

between 5:7 and 1:
ffiffiffi

2
p

, which differ only by 1:4142...:
1:4 , which is not sensible to the ears

or the eyes. Here are the ratios of the sounds of these plates:
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Number of transversal lines
N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 do# 2 mi 3� re# 4 do 5 sol 5�
2 re 3+ sol# 3 mi 4+ do 5 fa# 5 do 6�
3 la 4+ si 4� re# 5 sol# 5� do 6� mi 6

4 la 5 la 5+ si 5� re# 6 fa 6+

The mode of vibration 1j2 is shown as standard, as in Fig. 164b, which, if the

ratio of the dimensions is altered slightly, can change into figures, or show the lines

as separate, curved, or straight. If the width is slightly diminished, it can pass into

3j0, as I have shown in Figs. 164a, c. Here 3j0 is shown as standard, as in Fig. 165a,
which, if the width is slightly diminished, can pass into 1j2 with straight lines, as in
Fig. 165b. When the ratio of the dimensions is slightly changed, 3j3, represented by
Fig. 166, can pass into 5j1, and 5j1, represented by Fig. 167, can pass into 3j3.

117. If the width and the length are as 2 to 3, or rather, if the width is again

diminished slightly, 2j0, which represents the first mode of transverse vibrations,

and 1j1, which represents the first mode of rotating vibrations, give the same sound

(Par. 98), and can pass from one to the other by the distortion of the nodal lines.

4j1 can pass into 0j3, as in Figs. 168a–c, and Figs. 169a–c.

118. If the ratio of the width to the length is as 3 is to 5, one could presume, for the

same reasons as for 4j0 and 3j0 in Par. 116, that 3j0 and 0j2, both equal at 32� 52,

should give the same sound, and be represented by the same intermediate figure;

which agrees with the experiment. These two types of motion are most easily

represented by Fig. 170b, that can be transformed, by small changes in the place

where it is touched, as in Figs. 170a or c, or that can pass into the shapes again more

pronounced of 0j2 or 3j0. The ratios of the sounds of a similar plate were:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 fa 2 fa# 3 mi 4+ do 5+ sol 5+

2 la 3+ do# 4+ sol# 4 re# 5 sol# 5 do# 6

3 re# 5 mi 5 sol 5 si 5 re# 6

4 re# 6� re# 6 mi 6+ sol 6 la 6

113–123. Sounds of Rectangular Plates with Different Ratios of Their. . . 95



119. If the ratio of the two dimensions is as 4 to 7, or rather, if the ratio is again

slightly altered, 4j0 and 2j2, which give the same sound, can pass from one to the

other through Figs. 171a–c, or through Figs. 172a–c; similarly 5j0 and 1j3 can pass
from one to the other in the middle of a transverse line, as they do in Figs. 163a–c.

120. The ratio of the two dimensions being as 1/2 to 1, the theory and the

experiment shows that the sounds 0j2, 0j3, 0j4, etc., which are dependent on the

width, are more acute by two octaves than those of 2j0, 3j0, 4j0, etc., which are

dependent on the length. The plates produced the ratios of the following sounds:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 sol 2+ la 3+ fa# 4 re 5 sol# 5+

2 re# 4 fa# 4 do 5 fa# 5 si 5 re# 6

3 la 5 si♭ 5 do 6 re# 6 fa# 6 si♭ 6

2j1 and 3j0 pass from one to the other through Figs. 173a–c; if the width is

slightly greater than 1
2
, 5j1 and 1j3 can be transformed from one to the other through

Figs. 174a–c and give the same sound.

121. The width being to the length as 3 to 7, following the theory (Par. 116), and the
experiment, 4j0 and 0j2, equal to 32� 72, produce the same sound, and can pass

from one to the other in two different ways, through Figs. 175a–c and through

Figs. 176a–c. The sound of Fig. 176 (Par. 106) is slightly more acute than that of

Fig. 175.

122. If the ratios of the diameters are as 1/3 to 1, the sounds of 5j0 and 0j2, equal to
32� 92, are the same, conforming to the theory (Par. 106). The two types of

vibrations are represented by Fig. 177b, which can pass through Figs. 177a and

177c, and sometimes has two straight lines according to the length, or four

according to the width. The ratios of the sounds were:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 re 3+ re# 4+ do 5� fa #5 do 6�
2 fa 5þ sol 5 si 5 re 6+ fa# 6 si♭ 6�
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123. The width being 1
4
of the length, the ratios of the sounds were:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5

0 re# 2+ la 3 la 4� fa 5+

1 sol 3+ sol# 4+ mi 5� si♭ 5 re# 6

2 re# 6+ mi 6 fa# 6 la 6

One sees that the sound of 0j2, conforming to the theory, is more acute by four

octaves than that of 2j0. Because of the greater decrease, it was very difficult to

produce types of vibrations that offered more than one nodal line according to the

length.

The width being again decreased to be 1
6

of the length, the ratios of the

sounds were:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 re 4 re 5+ la 5+ re# 6 sol 6+

If the width is only 1
8
of the length, the ratios of the sounds were:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5

0 re# 2+ la 3+ la 4 fa 5+

1 sol 4 sol 5 re 6 sol 6 si 6

When the width was again further diminished, the series of the sounds of the

transverse vibrations, 2j0, 3j0, 4j0, stayed the same, and those with rotating

vibrations, 1j1, 2j1, 3j1, etc., approached the natural series of numbers 1, 2, 3, 4,

etc., and their absolute frequency increased in the same ratio with which the width

was diminished.
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124. Summary of the Research on the Vibration
of Rectangular Plates

In comparing all of the ratios of the sounds of rectangular plates, where one

dimension is constant and the other variable, one will see:

1. That the modes of vibration 2j0, 3j0, 4j0, etc. similar to the transverse vibrations

of a rod or a blade where the ends are free (Par. 78), have always kept their ratios

as the squares of 3, 5, 7, 9, etc., and their absolute pitch, because they are

dependent only on the length. The change of nearly a semi-tone, that is noticed in

the passage of a square plate to a rectangular plate of unequal dimensions, is

more apparent than real. If one puts the average terms between the sounds of the

vibrations on a square plate where the number of the nodal lines are the same, the

lines are curved inwards or outwards.

2. That the modes of vibration where the nodal lines are only according to the

length, 0j2, 0j3, 0j4, etc., as much as the diminished width will allow them to be

produced, have also kept among them the ratios of the squares of 3, 5, 7, 9, etc.;

but the absolute pitch is augmented because of the inverse of the squares of the

width, conforming to the theory. These vibrations have the same ratio to the

width that 2j0, 3j0, 4j0, etc. have to the length.

3. For the mode of vibration where one longitudinal line is intersected by the

transversals, 1j1, 2j1, 3j1, etc., the sounds of a square plate are nearly in the

ratios of the numbers 6, 15, 30, etc. But if one of the dimensions is slightly

diminished, the sounds come closer and closer to the mode in which they finally

pass into the natural series of numbers 1, 2, 3, 4, etc. This agrees with the

torsional vibrations of a rod or blade, in which the motions are the same here as

in the modes of vibration 1j1, 2j1, 3j1, etc. The sound of 1j1 is in inverse ratio to
the surfaces; when the width is close to 1

3
of the length, it is equal to that of 2j0.

4. That in all of the other types of motion, where several nodal lines, in one of the

directions, are intersected by the lines of the other direction, the sounds are more

acute when the width is diminished, and that the difference is significant if there

are several longitudinal lines.

5. That in all cases where two different types of motion give the same or nearly the

same sound, the figures of the nodal lines are able to pass from one to the other

through the intermediate figures.
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D. Vibrations of a Round Plate

125. Nodal Lines in Diametral and Circular Directions,
and Symbols for Expressing Them

In all the possible kinds of vibration of a round (free) plate, the nodal lines are
either diametral or circular, which can be either regular, or distorted in different

ways, without alteration of the ratio of the sound which is suitable for the same

type of vibrations. I will express the number of nodal lines in almost the same

manner as for rectangular plates, by using a vertical line to separate two

numbers. Before the line is the number of nodal lines in the diametral directions

and after the line (written in Roman numerals) is the number of nodal lines

parallel at the periphery. Thus, for example, 2j0 will express the kind of vibra-

tions in which there are only two diametral lines; 0jI the case where there is only
a single circular line; 4jIII that in which there are four diametral and three

circular lines, etc.

126. Vibrations in Which There Are Only Diametral Lines

When there are only two nodal lines in the diametral directions, these lines can be

straight and intersect at the center of the plate. The figure will then be seen in the

shape of a star with 4, 6, 8, 10, or more rays; but when these lines intersect in a

different way, the number of lines, counting from one end to the other, and the ratio

of the sound, remain the same.

2j0 (Fig. 97), where two diametral lines intersect at the center is, of all possible

figures, the one that gives the deepest sound. If the plate is small, this figure, as the

simplest, will appear more easily when the plate is clamped at its center and the bow

is applied at any point; one will also produce it on any coin, if it is not too small. If

the plate is larger, one must, in order to exclude other movements, clamp the plate

slightly away from the center, or clamp it at the center and touch at the same time

another point at which one wishes that a nodal line pass, at 45� from the nodal line

determined by the touching. I repeat here the remark that, in order to produce

simple figures, which give the deepest sounds, we always use a greater pressure and

a softer motion of the bow than that used to produce complex figures that give

higher sounds.

The second mode of vibration, 3j0 (Fig. 100), where three diametral lines, which

intersect at the center, appear in the shape of a star, gives a more acute sound (by

one ninth) than the first. It is produced by touching the plate in the same manner as

for the first type of motion, and by applying the bow at a distance of about 90� from
the nodal line, determined by touching.
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In order to produce other modes of vibration, we can clamp the plate farther

away from the center, where there are more nodal lines, because the part in the

center of the plate is more stationary. The bow should always be applied in the

center of the vibrating part. When one has gotten used to it, one is more likely to

discover the most suitable places by a correct look and by trial and error, than by

measurement.

4j0 is shown in the shape of a star of eight rays (Fig. 101a) or disfigured, as

Fig. 101b. The sound is more acute by a minor seventh than that of 3j0, and by two
octaves than that of 2j0.

5j0 appears either as Fig. 102a, or more often distorted as in Fig. 102b. The pitch

of the sound increases by almost a minor sixth.

Of all the other figures, 6j0, 7j0, 8j0, etc., that can appear in the shape of a star, or
distorted, 8j0 is the most susceptible to regular distortions, of which those that I

have seen most often are represented in Figs. 103a, b.

The frequencies of the sounds of these modes of vibration are nearly in the ratios

of the squares of the numbers of nodal lines, but the measured ratios seem to be

slightly less than these exact ratios.2

127. Vibrations That Present a Circular Line

A circular line can be alone or can be intersected by 1, 2, 3, or more diametral lines.

0jI (Fig. 104) gives a sound that is more acute by a superfluous fifth, 42:52 than

2j0 (Fig. 99). It is necessary to clamp a point of the circular line between the

fingertips, and to apply the bow near the point of touching, employing more

pressure and less speed than for the other figures. The motion is the simplest of

all those to which a round plate is susceptible because the vibrations of each

diameter resemble those of a rod whose ends are free (Par. 71) and which bends

to the curvature represented in Fig. 24. The sound of this figure, and of those where

there are circular lines, is more sonorous and of a different timbre than that of the

figures where there is only one diametral line.

1jI (Fig. 105) is the easiest to produce of all possible figures, if the plate is

clamped close to the edge and the bow is applied at a distance of about one quarter

of the periphery. The diametral line passes through the touching point. Therefore,

by varying this point, we can change the position of this line at will. The sound is

more acute by a ninth than that of 0jI.

2 Chladni correctly observed that the frequencies for modes 3j0, 4j0, and 5j0 are roughly 9, 16, and
25 times the frequency of mode 2j0. The second part of Chladni’s observation is also correct. More

accurate values for these ratios are 8.4, 15.0, and 23.9.—JPC
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2 j I (Fig. 106) will appear if you shake the plate as to produce 1jI, and if the bow
is applied at a point as little as 45� from the touching point. The sound is more acute

by almost a seventh minor than 1jI and by two octaves than 0jI.
In order to produce 3jI (Fig. 107), 4jI (Fig. 108), and 5jI, we clamp a point near

the edge through which one wishes a diametral line to pass, and apply the bow as

closely as possible to the touching point, where the number of diametral lines that

can be produced is greater. To make the figure more pronounced, we can also touch

another diametral line below at the same time with a fingertip, where the circular

line is as far removed as possible, so that the number of diametral lines will be

greater. The position of the lines can also be fixed by lightly touching the edge at a

point where a diametral line terminates, where it is susceptible to yielding slightly

at this obstacle.

128. Vibrations in Which There Are Two or More
Circular Lines

Two or more circular lines can also be either alone or intersected by diametral lines.

The circular lines can appear as concentric circles; they can also take on a certain

number of flexures and resemble epicycloids. Flexures of two circular lines ordi-

narily approach and recede from one another; they are less pronounced in inner

circular figures than in the outer ones. The inner circle ordinarily takes an elliptical

shape. When the diametral figures are distorted, they often resemble hyperbolas.

0jII, if we wish that the circular lines be concentric (Fig. 109a), is a little difficult
to produce, as are all the figures where the lines do not intersect at any point,

because it is necessary to touch the single lines very exactly (and not too far

beyond) in order that the vibrations of the neighboring segments not be too

obstructed. However, one can produce this figure on each plate that is not too

small. One must clamp a point on an outer circle between the tips of the thumb and

another finger, at the same time touching the inner circle with the tip of another

finger, and applying the bow sufficiently strongly and slowly, close to the clamped

point, in such a manner that the points of touching and stroking are in the same

semi-diameter. This mode of vibration is the simplest after 0jI, because each

diameter makes its motions as a free rod (Par. 71), in the mode of vibrating

where there are four vibration nodes. The sound is more acute by two octaves

than that of 0jI; the ratios of the sounds therefore differ a great deal from those of a

rod when it vibrates in the same manner. One can produce much more easily, even

on smaller plates, the distortion of 0jII represented in Fig. 109b, where the outer

circle is bent five times and the inner circle is oval. We must support the plate with

two fingertips against some obstacle that is not too hard, so that these three
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supported points correspond to points where the flexures of the outer circle touch

the edge; one then applies the bow to the edge at a point where the line is bent

inwards. The sound of this distortion is ordinarily slightly more acute than that of

the regular form; the difference can be almost a semi-tone. When the circles are

concentric, one can always note a tendency of the outer circle to bend five times and

of the inner circle to take an elliptical oval shape. On a brass plate that was not very

exact, the outer circle was always curved six times and the inner was elliptical.

1jII, with concentric circles (Fig. 110a), can be produced by operating in almost

the same way as in the production of 1jI, but it is necessary to clamp the plate

slightly closer to the edge, and to touch (at the same time) one or two points of the

outer or inner circle. The same type of vibrations can also be slightly transformed in

such a way that the outer circle is bent six times, and the inner circle becomes

elliptical (Fig. 110b), if one operates it almost in the same way as to produce the

distortion of 0jII, of which I have spoken.

2jII can appear regular, as in Fig. 111a, if we operate it almost as in the

production of 1jII, but in applying the bow to a point that is closer to the clamping;

if we attach the plate in three points, the outer circle is bent six times, and the shape

is changed into that of Fig. 111b or c.

3jII appears occasionally regular, but ordinarily it is transformed into Fig. 112a

or b; 4|II regular, as in Fig. 113a or b; 5jII is represented in Fig. 114 such that the

diametral lines are intersected regularly in the middle; but in this mode of vibration,

and in the others, they can also take on other shapes.

0jIII appears very rarely as Fig. 115; 1jIII appears as Figs. 116a, b; 2jIII as
Figs. 117a, b; 3jIII as Figs. 118a, b; 4jIII as Figs. 119a, b, etc. The circular lines

were sometimes more concentric.

In Figs. 120 and 121a, I have represented the distortions of 0jIV and 1jIV, where
two considerable points are without motion, such that the sand remains at rest but

does not accumulate as on the nodal lines; 0jV, 1jV, 0jVI, 1jVI, 0jVII, etc. are
susceptible to similar more complex distortions; 1jIV also appears as Fig. 121b or c.

When there are circular lines, the diametral lines ordinarily take on the same

shapes as in the figures represented in the drawings.

One cannot always produce at will these complex figures. If, however, one

makes use of plates that are large enough, regular, and of slight thickness, and if

one varies the manner of operating by clamping or touching the plate, by supporting

it, or by placing it on small trestles of cork, and by applying the bow at different

points, etc. one will often succeed in producing sufficiently exact, rather complex

figures. But it should be observed that the bow does not move to the right or to the

left, and that the degree of pressure and the speed of motion of the bow remain the

same in order that the sound does not change and that the figure appears sufficiently

pronounced.
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129. The Bending of Circular Lines

In order to compare the number of flexions in the circular lines, I have put together

the following table:

Number of diametral lines

N
u
m
b
er

o
f
ci
rc
u
la
r
li
n
es 0 1 2 3 4 5 6 7 8

II 5 6 6 7 7 7 8 8 8

III 8 9 9 10 10 11 11 11 11

IV 12 12 13 13 13 14 14

V 15 15 15? 16

VI 18? 18 19 19

VII 21

It is seen that, ordinarily, the number of flexures of the circular lines does not

have such a ratio to the number of diametral lines that one can be divided by the

other or that there exists a common divisor. Consequently, there are no points of

perfect symmetry in these figures. It is this that makes the figures difficult to draw; if

one wished to give to the diametral lines the same position on both sides, the

flexures would become too unequal. But if one would wish to give to all the flexures

the same size, the position of the diametral lines would have too little symmetry. In

both of these cases, the figure would not be as nature gives it, where each vibrating

part has the size compatible for it to be in equilibrium with all the others. Conse-

quently, these figures seem to be more symmetric than they really are.

On the brass plate already cited, where the outer circular line in 0jII has six
flexions, there are nine in 0jIII and ten in 1jIII.

130. Ratio of Sounds of a Round Plate

The sounds of a round plate, if one assigns do 1 to the mode of vibration that gives

the deepest sound, 2j0 (Fig. 99), will be the following:
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Number of diametral lines
N
u
m
b
er

o
f
ci
rc
u
la
r
li
n
es

0 1 2 3 4 5 6 7 8

0 Fig. 99 Fig. 100 Fig. 101 Fig. 102 Fig. 103

do 1 re 2 do 3 sol. . .sol# 3 do# 4 fa# 4 si♭ 5

I Fig 104 Fig. 105 Fig. 106 Fig. 107 Fig. 108

sol# 1 si♭ 2 sol 3 re. . .re# 4 sol# 4 do# 5 mi. . .fa 5 sol 5

II Fig. 109 Fig. 110 Fig. 111 Fig. 112 Fig. 113 Fig. 114

sol# 3+ mi 4+ si♭ 4 re# 5 sol 5 si♭. . .si 5 do# 6 re# 6

III Fig. 115 Fig. 116 Fig. 117 Fig. 118 Fig. 119

si♭. . .si 4 mi 5+ sol#. . .la 5 do 6 re# 6 fa# 6 sol# 6+ si♭ 6

IV Fig. 120 Fig. 121

la 5 do# 6 fa 6� sol. . .sol# 6 si♭ 6 si 6. . .do 7 do# 7

V fa 6 sol# 6 si 6 do# 7

VI si 6 re 7 mi 7 fa 7+

VII mi 7

The ratios of these sounds correspond approximately to the squares of the

following numbers:

Number of diametral lines

N
u
m
b
er

o
f
ci
rc
u
la
r
li
n
es

0 1 2 3 4 5 6 7 8

0 (2) (3) (4) (5) (6) (7) (8)

IV 2 3 4� 5� 5� 7�� 8�� 9��
II 4+ 5+ 6 7� 8� 9�� 10�� 11��
III 6+ 7+ 8� 9 10� 11� 12� 13��
IV 8++ 9+ 10+ 11+ 12 13� 14�
V 10++ 11++ 12+ 13+

VII 12++ 13++ 14+ 15+

VII 14++

By adding +, I indicate that a sound is slightly more acute, and, by adding�, that

it is slightly graver. And when the number is the same but the sign is added twice, it

is even sharper or flatter than if the sign is added only once. When the number of the

diametral lines is the same, the number of circular lines increases and each interval

is slightly larger. When the number of circular lines is the same, the number of

diametral lines increases, and each interval is slightly smaller than the squares of

these numbers. The series of sounds where there are only diametral lines, 2j0, 3j0,
4j0, etc. corresponds to the squares of 2, 3, 4, etc.; but one must regard this as

separated from all the other series. For this reason, I have expressed them by the

squares of (2), (3), etc. In the other modes of vibration, if one wishes to neglect the

alteration of the intervals, due to the preponderance of circular or diametral lines,

one could then count a circular line for two diametrals. By expressing by D the

number of diametral lines, and by C the number of circular lines, the relative

frequency of the vibrations will be Dþ 2Cð Þ2.3

3 Lord Rayleigh refers to this formula as “Chladni’s Law.” In fact, we have found that it holds up

quite well for other structures with circular symmetry such as church bells.—TDR
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It should be noted that one cannot easily produce all these sounds on the same

plate. Small plates serve better for producing the modes of vibrations that are

simplest and large plates for producing those that are more complex. I make

use of plates whose diameter is from five decimeters down to a decimeter, and

I have transposed the different sounds in order to reduce them to the same

size.

131. Some Other Types of Vibrations in Which the Plate
Is Not Free

One can also produce several other modes of vibration which do not belong to the

series of vibrations of a round free plate. These (like those of a square plate of which I

spoke in Par. 109) differ just as the vibrations of a rod with one end attached (Par. 70)

differ from those where the ends are free (Par. 71). Several forms of nodal lines,

which correspond to this case, are represented in Figs. 122–126. The point where one

must attach the plate is marked by points on the edge, which represent the sand that

accumulated near this point, as on the nodal lines. The point where one holds the plate

is marked by n, and that where the bow must be applied by p. Figure 122 is, for a

round plate, the same thing as the first mode of Fig. 22; the sound is slightly graver by

a major sixth than that of Fig. 99. The sound of Fig. 123 is more acute than that of

Fig. 122 by almost an octave and a tone; that of Fig. 124, by almost two octaves and a

major third; that of Fig. 126 (which can pass into Fig. 105) by two octaves and a

minor sixth.

E. Vibrations of Elliptical Plates

132. General Remarks

The vibrations of elliptical plates will be treated here in the same fashion as those of

rectangular plates, assuming one of the axes as constant and the other as variable,

beginning with those of a round plate (as an ellipse whose axes are equal), and

passing through ellipses that are more and more elongated to the vibrations of a rod

or thin sheet.

If the two axes of an elliptical plate differ very little, the vibrations resemble a

great deal of those of a round plate; but if the difference of the two axes is quite

considerable, they resemble those of a rectangular plate. The possible figures of the

nodal lines consist of:
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1. Transverse lines; ordinarily, they are bent inwards, the outer ones more than the

inner ones, and resemble opposed hyperbolas

2. A longitudinal line in the major axis

3. Elliptical lines that are more elongated than the shape of the same plate

To rank in the most suitable manner all the modes of vibration of an elliptical

plate, one can regard each elliptical line as two longitudinal lines curved outward

because of the shape of the plate. I will express, for greater precision, the numbers

of the nodal lines in the same manner as for rectangular plates, separating them by a

small vertical line; the first number will express the transverse lines, and the second

the longitudinal, counting an ellipse as two lines. We will therefore have the

following series:

1. Modes of vibration where there are only transverse lines, 2j0, 3j0, 4j0, etc. (Figs.
179–182).

2. A longitudinal line in the major axis, intersected by one, two, three, or more

transverse lines, 1j1, 2j1, 3j1, etc. (Figs. 183–187).
3. One elliptical line which can be regarded as two longitudinal lines, or singles, or

intersected by the transverse lines, 0j2, 1j2, 2j2, 3j2, etc. (Figs. 188–193).
4. An elliptical line and a longitudinal line in the major axis, which is equivalent to

three longitudinal lines or singles or intersected by transverse lines, 0j3, 1j3, 2j3,
3j3, etc. (Figs. 194–199).

5. Two elliptical lines, which can be regarded as four longitudinal lines, or singles

(Fig. 200) or intersected by transverse lines, 0j4, 1j4, 2j4, 3j4, etc.
Likewise, one can show two elliptical lines and a line in the major axis, which is

equivalent to five longitudinal lines or three elliptical lines, etc., and in all these

cases they can be singles or intersected by transverse lines which appear under the

same shapes as if they were singles.

We must remark here the simplest manner of tracing the ellipses of all the

ratios of one axis to the other, for those who do not know it. Draw two lines

(Fig. 178) that intersect at a right angle; the first, pq, equal to the major axis,

and the second, cd, equal to the minor axis. Or, use a compass to find the

center of the long axis. Put one end of the compass at the end of the minor axis

and mark the points m and n (the foci of the ellipse) where a circle traced with
the other end of the compass intersects the major axis. Attach a string to these

points, taut, but long enough that a pencil that rests against the string can also

touch the ends of the axes; the curve that can be traced with the pencil in this

way produces the ellipse.
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133. Manner of Producing Different Kinds of Vibrations

To produce the first series of sounds, where there are only transverse lines, 2j0, 3j0,
4j0, etc. (Figs. 179–182), we must grasp the middle of the outer line with the

fingertips and apply the bow to the end of the major axis. The sound of these

motions is ordinarily harsh and without resonance, because one cannot grasp the

plate, on a line that is no more than a point in width, without generating the

vibrations of the neighboring segments.

If one wants to produce vibrations where a longitudinal line is intersected by

some transversals, 1j1, 2j1, 3j1, etc. (Figs. 183–187), one clamps a point where two

nodal lines intersect. The pressing is done for the first figure (Fig. 183) in the

middle, and, for the others, in those points on the major axis that are further and

further removed from the center; the bow must be applied between the ends of the

two lines. This series of figures resembles a great deal the figures of a rectangular

plate when the ellipse is strongly elongated.

The mode of vibration in which there is only a single elliptical line, 0j2, could be
produced if the point where this line is clamped, and that where one applies the

bow, are approximately on the minor axis. If the shape of the plate is a strongly

elongated ellipse, there is ordinarily at each end, where the two longitudinal lines

come together, a very considerable point, which remains fixed while the vibrations

are transmitted only to the transverse. In this case, it will be suitable to clamp the

plate at a point which is not too far from an end, to touch (at the same time) a point

of the outer nodal line, more distant from the end, with a fingertip, and to apply the

bow close to this touched point, not far from the middle of the long side. To produce

the modes of vibrations in which the longitudinal lines are intersected by the

transversals, it is necessary to clamp one of the outer points, where two lines

intersect, between the ends of the two lines. The more transverse lines that one

wishes to produce, the closer the clamped point must be to the edge of the plate.

The more longitudinal lines that one wishes to produce, the closer the clamped

point must be to where the outer longitudinal lines can be touched with a fingertip,

close to the edge. A quick fair look and a little experience make the rest understood.

134. Passages of the Figures of a Round Plate to Those
of an Elliptical Plate

It would be useful to show the passage of the figures of the nodal lines on a round

plate, where the axes are equal, to their transformations on elliptical plates where

the axes are unequal.

The first series of vibrations, where there are only transverse lines, and the

second, where one longitudinal line is intersected by some transversals, are the

same for an elliptical plate that vibrates, as for a round plate where there are only

diametral lines, with one exception. In a round plate, the position of these lines is

134. Passages of the Figures of a Round Plate to Those of an Elliptical Plate 107



indifferent, because each diameter is equal to all the others; but in an elliptical plate,

the number of lines being the same, the figures and the sound differ a great deal,

according to whether all three lines are transversals or whether one of these lines is

found on the major axis. When the axes differ very little, the difference of the

figures and of the sounds in these two cases will not be detectable. The figures will

not be sufficiently pronounced for us to determine the position of the line, which

can be changed by small changes in the point of touching without a sensible

alteration of the sound. The figures where there are several nodal lines then appear

slightly more like Fig. 202, in such a way that the lines are more pronounced than

near the edge, and a large part in the middle remains stationary. When the size of the

ellipse is reduced more and more, the figures of the simpler modes of vibration

begin to relate themselves to one axis or another and to be distinguished by different

sounds. When the difference of the axes increases still further, the more complex

figures also begin to relate more distinctly to one or the other dimension.

The types of vibrations of a round plate, where there are only circular lines, can

only appear on an elliptical plate in one way. But if the circular lines are intersected

by diametral lines, each of these types of vibrations can appear on an elliptical plate

in two different ways, according to which of these lines is found on the major axes

or whether all are transverse.

The transformations of the figures of a round plate would produce the following

figures on the elliptical plates:

2j0, produces Fig. 99 or 2j0, Fig. 179 or 1j1, Fig. 183
3j0, . . .. . .. . .. . . Fig. 100 or 3j0, Fig. 180 or 2j1, Fig. 184
4j0, . . .. . .. . .. . . Fig. 101a or 4j0, Fig. 181 or 3j1, Fig. 185

etc.

0jI, . . .. . .. . .. . . Fig. 104 0j2, Fig. 188
1jI, . . .. . .. . .. . . Fig. 105 or 1j2, Fig. 189 or 0j3, Fig. 194
2jI, . . .. . .. . .. . . Fig. 106 or 2j2, Fig. 190 or 1j3, Fig. 195
3jI, . . .. . .. . .. . . Fig. 107 or 3j2, Fig. 191 or 2j3, Fig. 196

etc.

0jII . . .. . .. . .. . . Fig. 109 0j4, Fig. 200
1jII . . .. . .. . .. . . Fig. 110a 1j4, or 0j5, etc.

135. Some Particularly Remarkable Ratios of Axes

The most remarkable ratios of one axis to another are those of 5:3, 8:3, 11:3, 14:3,

17:3, etc. In this series, the number before the vertical line can be expressed as

3n�1, where n is any integer beginning with 2. In the plates of these ratios of axes,

the sounds of the whole set of vibrations (except those where there are only

transverse lines, 2j0, 3j0, 4j0, etc.), join together in only one series. If T expresses

the number of transverse lines and L the number of longitudinal lines, all the modes

of vibration, where the number T+ nL is the same, give the same sound.
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136–146. Vibrations of Elliptical Plates in Different Ratios
of Axes, Regarding One Axis as a Constant and the Other
as a Variable

136. When the ratio of the axes is as 9 to 8, one can produce the following sounds

on the same plate which, being round, would have given the sounds in the ratios of

Par. 130:

Number of transversal lines

N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5 6

0 re 1 fa 2 re 3+ si♭ 3 mi 4�
1 re 1+ fa 2 re 3+ si♭ 3 mi 4�
2 si 1� do 3� si♭ 3 fa 4� si♭ 4

3 re 3 si♭ 3 fa 4� si♭ 4 re# 5

4 do# 4 sol 4� do 5+

5 sol# 4+ do# 5+ fa# 5

The first series, where there are only transverse lines, is still not separated from

the second, where there is one longitudinal line, since the position of the lines is still

indifferent and undetermined. In the first mode of vibration 0j2 or 1j1, one can

detect a slight rise in the sound if one of the lines is found on the major axis.

Several figures, such as 4j1, 2j2, and 1j3, which give the same or nearly the same

sound, can pass from one to the other by intermediate distortions.

137. When the size is diminished a little further, so that the ratio of the axes is as 5
to 4, the sounds that can be produced on the same plate will be:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5 6

0 re 1+ fa# 2� mi 3� si 3� mi 4+

1 mi 1 fa# 2 mi 3� si 3� mi 4+

2 do# 2+ do# 3 si♭ 3+ fa# 4� si 4 mi 5

3 fa 3 do# 4 sol 4 do 5+ fa 5

4 mi 4 la 4 re 5

5 do 5
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138. The sounds of the same plate, when one axis is to the other is as 4 is to 3will be:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5 6

0 re# 1� fa# 2 mi 3 si 3+ fa 4

1 fa 1� fa# 2� mi 3 si 3+ fa 4

2 re# 2+ re 3+ si 3� fa# 4� si 4+ mi 5+

3 sol 3� re 4+ sol# 4� do# 5� fa 5

4 fa# 4� si 4� re# 5+

5 re 5

The first two series, 2j0, 3j0, 4j0, etc. and 1j1, 2j1, 3j1, etc., are still not

completely separated; the difference is almost as perceptible as the first two sounds.

139. The ratio of the two axes being as 3 to 2, the sounds of the same plate will be:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5 6

0 re# 1� fa# 2+ fa 3� do 4 fa# 4+

1 fa# 1+ sol# 2 fa# 3� do# 4� sol 4

2 fa# 2+ fa 3� do 4 fa# 4+ do 5 fa 5

3 si♭ 3+ fa 4� si♭ 4+ re# 5 sol 5

4 la 4 do 5+

5 fa 5+

At present, the figures of the first two series are more pronounced and the sounds

are different.

In this ratio of the two axes, several figures that give the same sound can

pass from one to the other; as, for example, 3j0 and 0j2, which can be represented

by Fig. 203, which, by small changes of the points of touching and of rubbing, can

be transformed into three transverse lines or into two longitudinal lines to which an

elliptical line is equal, without changing the sound.

It should be noted that in this ratio of axes the figures, where there are two

longitudinal or elliptical lines, 0j2, 1j2, 2j2, 3j2, etc., give the same sound as the first

series where there are only transverse lines, counting from the second mode of

vibration, 3j0, and that the sound of 0j2 is more acute by an octave than that of 1j1.
140. The ratio of the axes as 5 to 3 is the first degree where the sounds of the figures
are reunited (Par. 135) in order to form a single series, except in the case where

there are only transverse lines. The same plate, which would have given the sound

mentioned, will give the following sounds in this ratio of the axes:
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Number of transversal lines
N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5 6 7 8 9

0 re# 1 sol 2 fa 3 do# 4 sol 4

1 sol# 1+ la 2+ sol 3� re 4� sol# 4� do# 5� fa 5+ la 5� do 6

2 la 2+ sol 3� re 4� sol# 4� do# 5� fa 5+ la 5� do 6

3 re 4� sol# 4� do# 5 fa 5+ la 5� do 6

4 do# 5� fa 5+ la 5� do 6

5 la 5� do 6

By using T to express the number of transverse lines, and L the number of

longitudinal lines, and by supposing n¼ 2, all the modes of vibration in which the

quantity T+ 2L is the same give the same sound. In the following Table, I will

arrange vertically the modes of vibration whose sound is the same.

1j1 2j1 3j1 4j1 5j1 6j1 7j1 8j1 9j1
0j2 1j2 2j2 3j2 4j2 5j2 6j2 7j2

0j3 1j3 2j3 3j3 4j3 5j3
0j4 1j4 2j4 3j4

0j5 1j5
Sum of T+ 2L 3 4 5 6 7 8 9 10 11

Sounds sol# 1+ la 2+ sol 3� re 4� sol# 4� do# 5� fa 5+ la 5� do 6

etc.

The sounds do not correspond to the squares of these sums, as one would

presume. Since each interval is greater, we must rather regard them as an enlarge-

ment of the natural series of numbers 1, 2, 3, 4, etc. to which they conform when the

size is very small.

The figures which give the same sound are ordinarily represented by the distor-

tions which can pass, more pronounced, from one figure to another. Those where

several transverse lines are intersected by longitudinal lines appear often in such a

way that the ends of the transverse lines are more converging at one side and more

diverging at the other. The same attributes of the figures are also noted in the ratios

of the axes as 8:3, 11:3, etc.
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141. When the ratios of the axes are as 2 to 1, the sounds of the same plate will be:

Number of transversal lines

N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5

0 re# 1+ sol 2+ fa# 4 re# 4

1 si 1+ do 3 la 3+ mi 4 la 4

2 re# 3+ do 4� fa# 4� si 4� mi 5� sol# 5

3 sol 4+ do 5+ fa 5� sol# 5

4 fa# 5 si♭ 5� do 6+

5 re 6

Here, the series of sounds which conform to the vibrations in which there are

only longitudinal lines, 0j2, 0j3, 0j4, etc., is the same as that of the sounds in which

there are only transverse lines 2j0, 3j0, 4j0, etc. But the sounds are more acute by

two octaves; consequently, they are in this case as the inverse squares of those

dimensions to which they relate; in other cases, the ratios are not the same.

142. In the second case, in which the sounds of all the figures (except those where

there are no longitudinal lines) contribute to the formation of a single series (Par.

135), and the one where the ratio of one axis to the other is as 8 to 3; this

coincidence always takes place a degree later than in the ratio of axes as 5 to 3

(Par. 140). It should be supposed that n¼ 3; each longitudinal line will therefore be

equivalent to three transversals, and all the figures in which the sum of T+ 3L is the

same will give the same sound. Here are the sounds of the same plate:

Number of transversal lines

N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5 6 7 8 9

0 re# 1+ sol 2+ fa# 3 re 4+ sol 4

1 re 2 re 3+ si 3� fa 4 si♭ 4+ re# 5 sol 5 si 5� re 6

2 si 3� fa 4 si♭ 4+ re# 5 sol 5 si 5� re 6

3 re# 5 sol 5 si 5� re 6

4 re 6
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The figures arranged here vertically give the same sound:

1j1 2j1 3j1 4j1 5j1 6j1 7j1 8j1 9j1
0j2 1j2 2j2 3j2 4j2 5j2 6j2

0j3 1j3 2j3 3j3
0j4

Sum of T+ 3L: 4 5 6 7 8 9 10 11 12

Sounds: re 2 re 3+ si 3� fa 4 si♭ 4+ re# 5 sol 5 si 5� re 6

etc.

The more the plate is reduced in size, the more these sounds approach those of

the natural series of numbers 1, 2, 3, 4, etc.

143. The sounds of the same plate, in the ratios of one axis to another as 1 is to 1
3
,

were:

Number of transversal lines

N
u
m
b
er

o
f

lo
n
g
it
u
d
in
al

li
n
es

0 1 2 3 4 5

0 re# 1+ sol 2+ fa# 3 re# 4�
1 fa# 2 fa# 3 re 4� sol# 4 do# 5+

2 mi 4 si♭ 4� re 5� fa# 5+ si♭ 5

3 sol# 5 si 5� do# + mi 6�
4 sol 6

It should be noted here that the sounds of the vibrations in which there are only

transverse lines are about three octaves more acute than those in which there are

only longitudinal lines.

144. When the ratio of the major axis to the minor is as 11 to 3, the sounds of all the
modes of vibration, where there are longitudinal lines, form a single series (Par.

135); but the coincidence is carried out at a degree later than in the ratio of 8:3 (Par.

142), and by two degrees later in the ratio 5:3 (Par. 140). It must be supposed here

that n¼ 4, and the effect of each longitudinal line is the quadruple of a transverse

line. All the figures in which the quantity T+ 4L is the same (Par. 135) give the same

sound. The same plate could give the following sounds:
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Number of transversal lines

N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5 6 7 8 9 10 11 12

0 re# 1+ sol 2+ sol 3� re# 4 la 4+ re# 5 sol# 5

1 la 2 la 3 mi 4+ si♭ 4+ re# 5+ sol# 5� do 6 re# 6 fa# 6 sol# 6+ si 6 do# 7

2 si♭ 4+ re# 5+ sol# 5� do 6 re# 6 fa# 6 sol# 6+ si 6 do# 7

3 re# 6 fa# 6 sol# 6+ si 6 do# 7 re# 7

4 do# 7 re# 7

I will give here the modes of vibration that give the same sound, one under the

other:

1j1 2j1 3j1 4j1 5j1 6j1
0j2 1j2 2j2

Sum of T+ 4L 5 6 7 8 9 10

Sounds la 2 la 3 mi 4+ si♭ 4+ re# 5+ sol# 5�

7j1 8j1 9j1 10j1 11j1 12j1
3j2 4j2 5j2 6j2 7j2 8j2

0j3 1j3 2j3 3j3 4j3
0j4

Sum of T+ 4L 11 12 13 14 15 16

Sounds do 6 re# 6 fa# 6 sol# 6 si 6 do# 7

145. The ratios of the axes being as 1 to ¼, the sounds of the same plate are the

following:

Number of transversal lines

N
u
m
b
er

o
f
lo
n
g
it
u
d
in
al

li
n
es 0 1 2 3 4 5

0 re# 1+ sol 2+ fa# 3 re# 4�

1 si♭. . .si 2 si♭. . .si 3 fa# 4� do 5 fa 5�

2 do#. . .re 5 fa# 5 si♭ 5 do# 6+ mi 6+ sol 6

3 fa# 6 la 6� si 6 do# 7�

4 fa 7� fa# 7+
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146. When the size of an elliptical plate is reduced still further, the sound of the first
series, in which there are no transverse lines, will not change very much. The

greatest increase to which the first sound will be susceptible does not exceed a semi-

tone, and the sounds of all the other figures in which there are longitudinal lines will

become more acute and in the ratios of axes, considered in Par. 135. All these

sounds will form a single series: for the ratio of 14:3, n¼ 5; for the one of 17:3,

n¼ 7, for the one of 20:3, n¼ 6, and so on. By regarding the quantities that give the

same sound we must take successively T + 5L, T + 6L, etc. I will add the sounds of

plates which have similar ratios by reducing all to the same increase.

In the ratio of 14:3:

1j1 2j1 3j1 4j1 5j1 6j1 7j1 8j1
0j2 1j2 2j2 3j2

Sum of

T+ 5L
6 7 8 9 10 11 12 13

Sounds do# 3+ do# 4+ sol# 4+ re 5� fa# 5 si♭ 5+ re 6 fa. . .fa# 6

9j1 10j1 11j1 12j1 13j1 14j1 15j1
4j2 5j2 6j2 7j2 8j2 9j2 10j2

0j3 1j3 2j3 3j3 4j3 5j3
0j4

Sum of

T+ 5L
14 15 16 17 18 19 20

Sounds sol# 6 si♭. . .si 6 do#. . .re 7 re#. . .mi 7 fa# 7� sol. . .sol# 7 la 7 etc.

In the ratio of 17:3:

1j1 2j1 3j1 4j1 5j1 6j1 7j1
0j2 1j2

Sum of T+ 6L 7 8 9 10 11 12 12

Sounds mi 3+ mi 4+ si 4+ mi 5+ sol#. . .la 5 do. . .do# 6 mi 6�

8j1 9j1 10j1 11j1 12j1 13j1 14j1
2j2 3j2 4j2 5j2 6j2 7j2 8j2

0j3 1j3 2j3
Sum of T+ 6L 14 15 16 17 18 19 20

Sounds sol 6 si♭ 6 do. . .do# 7 re# 7 fa 7 sol 7� sol#. . .la etc.
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In the ratio of 20:3:

1j1 2j1 3j1 4j1 5j1 6j1 7j1
0j3

Sum of T+ 7L 8 9 10 11 12 13 14

Sounds sol 3 sol 4 re 5 sol 5 si 5 re# 6� fa# 6

8j1 9j1 10j1 11j1 12j1 13j1 14j1
1j2 2j2 3j2 4j2 5j2 6j2 7j2

0j3
Sum of T+ 7L 15 16 17 18 19 20 21

Sounds la 6 do 7� re 7+ mi 7+ fa# 7+ sol# 7 la. . .si♭ 7 etc.

I do not want to spend any further time on these experiments (for which the

execution and the editing were very difficult) because they are sufficient for judging

the passage of more elongated ellipses of a rod or narrow blade. The series 2j0, 3j0,
4j0, etc. represents the transversal vibrations and that of 1j1, 2j1, 3j1, 4j1, etc. the
torsional vibrations. I have not added the sound of the only mode of vibration that I

have not produced. I do not believe that the differences of the truth, caused perhaps by

the small irregularities of the plates, especially when the ellipses are elongated, and by

the difficulty of appreciating the very sharp sounds, could equal or exceed a semi-tone.

147. Summary of Research on Elliptical Plates

The following are the results of the research on the sounds of elliptical plates of

different ratios of axes:

1. By reducing an axis by a small amount, the first series of vibrations, in which

there are no transverse lines, is separated successively to begin a second series of

graver sounds, where there are transverse lines intersected by a longitudinal line.

These two series are the same in a round plate where the axes are equal and the

position of these is of no importance. The intervals of the sounds of the first

series, 2j0, 3j0, 4j0, etc., which in a round plate correspond to the squares of 2, 3,
4, etc., are slightly enlarged when the ellipse becomes more elongated, in such a

way that they approach more and more the ratios of the squares of 3, 5, 7, 9, etc.,

which are consistent with the transversal vibrations of a free rod or strip

(Par. 71). The absolute pitch of the sounds, which depends on the length,

increases by no more than a major third for the first sound when the size of a

round plate has undergone a greater diminution.

2. The intervals of sound of the second series, 1j1, 2j1, 3j1, etc., which in the

beginning were the same as those of the first series, diminish, little by little, when

the size of the ellipse is itself reduced more and more. In this way, these intervals
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pass successively to the natural series of numbers 1, 2, 3, 4, etc., which is

consistent with that during vibrations of a rod whose motions do not differ

essentially. When the ellipse is strongly elongated, for example, in the ratio of

axes 17:3 or 20:3, it seems to me that the first sounds of this series approach

somewhat more rapidly than the natural series of numbers.

The first sound of this series 1j1 is always approximately in the inverse ratio of

the minor axis.

3. The sounds of vibrations where there are only longitudinal lines (counting an

elliptical line as two lines, 0j2, 0j3, 0j4, etc.) have between them about the same

ratios as those when there are only transverse lines, 2j0, 3j0, 4j0, etc., but they
are more acute if the minor axis is more diminished. When the difference of the

two axes is slightly greater than 5:4, and slightly less than 4:3, the sounds of the

series 0j2, 0j3, 0j4, etc. are more acute by an octave than those of the series 2j0,
3j0, 4j0, etc. When the axes are between them as 1 is to 1

2
, they differ by two

octaves; when the difference of the axes is slightly less than 1 to 1
3
, the sounds are

more acute by three octaves; when the difference of the axes exceeds slightly the

ratio of 1 to 1
4
, the sounds differ by four octaves.

4. In the ratios of the axes 5:3, 8:3, 11:3, 14:3, etc., all the sounds of the vibrations,

where there are longitudinal lines, join in order to form a single series. If one

counts in the ratio of the axes 5:3 the effect of a longitudinal line as double that

of transverse line, in the ratio 8:3 as triple, in the ratio 11:3 as quadruple, etc., all

the figures in which the sum is the same give the same sound.

5. If the ratio for the axes is 3:2, the sounds of vibrations in which there is an

elliptical line (or two longitudinal lines), 0j2, 1j2, 2j2, 3j2, etc. are the same

as those of the vibrations in which there are only transverse lines: 3j0, 4j0,
5j0, etc.

F. Vibrations of Hexagonal Plates

148. They Differ Little from Those of a Round Plate

The figures of the nodal lines in the vibrations of a hexagonal plate resemble those

of a round plate by relating to a certain number of diametral and circular lines. But,

not knowing how to determine some figures in this way with sufficient accuracy, I

prefer to arrange from the lowest to the highest sounds. For greater precision, I will

write the figures which can be determined in the same manner for a round plate,

separating by a small vertical line the first number, which expresses the diametral

lines, from the second, written in Roman numerals, which expresses the circular

lines.
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149. Figures and Ratios of the Sounds

Of all the figures that can be produced on a hexagonal plate, the one in which two

nodal lines intersect, or 2j0, give the deepest sound. The figures can be shown to be
regular as in Fig. 127, but, by small changes in the points of touching and rubbing,

the position of the lines can be changed without alteration of the sound, in such a

way that their direction no longer has a certain ratio determined by the shape of the

plate. I will regard this sound to be the deepest as do 2, in order to compare it with

other sounds.

The sound of 0j1 (Fig. 128) is almost a minor seventh more acute than the

preceding sound; it will therefore be si♭ 2.
In 3j0, the nodal lines can terminate in the middle of the sides (Fig. 129) or at the

corners (Fig. 130); in the first case the sound will be re 3, in the other fa 3.
In 1jI, a diametral line that cuts the circular line can pass through the middle

from one side to the other (Fig. 131), or at an angle to the other (Fig. 132), or in

every other direction, without changing its sound, which will be more than two

octaves higher than the first (do 4).
4j0, which gives do# 4, ordinarily shows itself as Fig. 133, but the direction of the

lines is arbitrary.

Figure 134 appears to be a distortion of 5j0, the sound is between sol# 4 and la 4.
Figure 135 represents 2jI and Fig. 136 represents 0jII, in which the inflexions of

the other circle are found at the corners to give the same sound si 4. These two

figures can pass from one into the other through intermediate distortions.

Figure 137 is equal to 6j0, and Fig. 138 gives the same sound re 5. I will not
decide if Fig. 138 is a distortion of Fig. 137, or 3jI, with the inflexions in the middle

of the sides.

It appears that Figs. 139 and 140, whose sound is re#, represent 0jII in another

way than Fig. 136, the inflexions of the outer circle being in the middle of the sides.

1jII is shown in two different ways: the diametral line can terminate at the

corners (Fig. 141), or in the middle of the two sides (Fig. 143). In the first case, the

sound will be fa 5, in the other, la 5. Figure 143 is often distorted into Fig. 144.

3jI with the lines that terminate at the corners (Fig. 142) gives fa# 5.
I will not decide if Figs. 145 and 146, which do not differ essentially, represent

8j0 or 4jI; the sound is slightly more acute than si 3.
2jII (Fig. 147), of which Fig. 148 is a distortion, gives re 6.
Figure 149, which gives mi 6, appears to represent 9j0.
Figure 150 is perhaps 3jII, with the diametral lines that terminate in the middle

of each side; the sound is fa 6.
Figure 151, which shows itself sometimes as Figs. 152 and 153, represents 3jII, in

the manner that the diametral lines are terminated at the corners; the sound is sol 6.
The same sound is produced by 6jI (Fig. 154), which is often transformed to

Fig. 155, and through Fig. 156, which I do not rank with certitude.
I will not press the production of figures and sounds of hexagonal planes much

further. The sounds of the modes of vibration 2j0, 3j0 (when the lines terminate in

the middle of the sides (Fig. 129)), 4j0, 5j0, etc. seem to be in the ratios of the
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squares of the numbers 2, 3, 4, 5, etc., the same as on a round plate. The sounds of

the figures in which there is a circular line, 0jI, 1jI, 2jI, 3jI, etc., when the lines are

terminated at the corners, are also approximately in the ratios of the squares of 2, 3,

4, 5, etc. In the figures where there are only one or two circular lines, etc., the

sounds seemed to be as the squares of 1, 2, 3, etc. All this is almost as in the round

plates, but if the nodal lines do not terminate at the corners, the sound is ordinarily

deeper than in the opposite case, because, in the first case, the vibrations are slowed

down by the peaks of the angles.

Very few of the figures of a hexagonal plate have the attributes that are necessary

for formation of regular patterns, when one composes several plates on which is

found the same figure, as I have shown in the square plate (Par. 110).

To avoid verbosity, I have not commented on the manner of producing each

figure which I have set forth in general in Par. 92, and in the remarks on the modes

of producing various sounds of other plates. Here, I have only described the most

suitable points to clamp the plate and apply the bow.

G. Vibrations of Semicircular Plates

150. The figures Are Half Those of a Round Plate

In all the modes of vibration of a semicircular plate, the figures of the nodal lines are

related to a certain number of semi-diametral and semicircular lines. Most of the

figures, especially those in which there are semicircular lines, appear in such a way

that in composing two similar figures on plates of equal size, approximately the

same figures are found as can be produced on a round plate.

151. Ratios of the Sounds

The ratios of the sounds of a semicircular plate will be the following if I regard the

gravest sound in Fig. 209 as do 2:

Number of semi-diametral lines

N
u
m
b
er

o
f
se
m
i-
ci
rc
u
la
r
li
n
es

0 1 2 3 4 5 6 7

0 Fig. 204 Fig. 205 Fig. 206 Fig. 207 Fig. 208

fa 2 re# 3+ do 4� fa# 4 si 4

1 Fig. 209 Fig. 210 Fig. 211 Fig. 212 Fig. 213

do 2 re# 3+ do 4+ sol# 4 re 4� sol 5 si 5

2 Fig. 214 Fig. 215 Fig. 216 Fig. 217 Fig. 218

re 4+ si♭ 4 mi 5 la 5 do# 6+ fa 6

3
fa 5 si♭ 5 re 6+ fa# 6

4
re# 6 sol 6
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I would have presumed that one could also produce a mode of vibration in which

there were two semi-diametral lines, almost as Figs. 211 or 216, if there were

semicircular lines; but this has not been successful.

The sounds of the modes of vibration in which there are only semi-diametral

lines (Figs. 204–208) do not differ much from the squares of the numbers 3, 4, 5, 6,

etc. In regarding this series as isolated from the others, all the sounds of the modes

of vibration in which there are semicircular lines approach the ratios of the squares

of D+ 2C, where D is the number of semi-diametral lines and C the number of

semicircular ones, neglecting the enlargement of the intervals due to the prepon-

derance of semicircular lines and their diminution due to the preponderance of

semi-diametral lines. Everything that takes place here is approximately the same as

on a round plate.

152. Vibrations of Plates That Are a Small Part of a Round
Plate

If the shape of the plate is a quarter or a sixth or in general a part of a round plate,

many of the figures appear in such a way that they are part of those that can be

produced on a round plate, and are related to the lines in the diametral or circular

directions.

H. Vibrations of Triangular and Other Plates

153. Vibrations and Sounds of an Equilateral Triangular
Plate

Some figures of nodal lines of an equilateral triangular plate could be arranged

according to the number of lines or parallels or normals to the base; but, because

several figures do not want to be accommodated to this manner of viewing them, I

range here the figures that I have observed according to the lowness or highness of

pitch of their sounds.

The figure that gives the deepest sound is Fig. 219 that can also appear as

Fig. 220. I will attribute to this figure the sound do 2 to compare it with the others.

Figure 223, which can transform itself easily from Fig. 222, gives a slightly more

acute sound, do# 2. But Figs. 219 and 223 are surpassed by Figs. 220–222. The

sound becomes more acute when the figure approaches Fig. 223, and graver when

the figure approaches Fig. 219. The biggest difference surpasses slightly more than

a semi-tone.
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The sound of Figs. 224 and 225, which are essentially no different, will be slightly

more acute than re# 4;
That of Fig. 226, is close to fa 4;
That of Fig. 227, la 4;
............ Fig. 228, which can also show itself as Fig. 229 or 230, re 5;
............ Fig. 231 and the distortions, Figs. 252 and 253, re# 5;
............ Figs. 234 and 255, sol 5;
............ Figs. 236–238, which are all variations of each one another, and of Fig. 259,

si♭ 5;
............ Figs. 240–242, re# 6;
............ Fig. 243, sol 6.

154. Compositions and Portions of Figures That Can
be Produced on Several Other Plates

All the figures of equilateral triangular plates, when several plates with the same

figures are combined, form more or less complex regular designs.

Several complex figures are also formed by composing four plates in such a way

that they form a larger triangle, as in Fig. 244; for example, Fig. 229, which is

formed by combining Fig. 219 four times, and Fig. 243, which contains Fig. 226

four times. One would have the same Fig. 237 if one surrounded a plate on which is

found Fig. 226, with three others on which one has produced Fig. 223. Some parts

of an equilateral triangle give several figures that can be regarded as parts of those

that form an equal triangle but the ratios of these sounds are different. On a plate

whose shape is a trapezoid, which one has produced by cutting the fourth part of an

equilateral triangle (Fig. 245), the figures are almost as those on triangular plates,

except the part of the figure which should be found on the intersected part. Some

plates whose shape is a right triangle produced by cutting vertically an equilateral

triangle (Fig. 246) also give several figures which are half of those of an equilateral

triangle. Several figures that can be produced by composing two triangular plates

can also be produced on a rhomboidal plate of the same shape (Fig. 247). Very few

of the figures on a hexagonal plate result from the composition of triangular plates;

the only ones I know are those of:

Figure 136, which is formed by taking Fig. 219 six times,

Figure 139 . . . . . . . . . . . . . . . . . . . . . . . . 222,

Figure 150. . . . . . . . . . . . . . . . . . . . . . . . . 237.
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I. Remarks on Some Practical Usage of Plates

155. On Two Chinese Instruments

With us, as far as I know, plates are not used for music, except for carillons, which

consist of rectangular blades of glass, steel, or other sonorous material, beaten with

sticks, or by small hammers put in motion by a keyboard. The mode of vibration is

represented in Figs. 47 and 24. In China, a musical instrument is used, called a king,
which consists of metal or slate plates, and has almost the shape of a bracket, as in

Fig. 248. The ratios of the dimensions are: cd¼ 2, be¼ 3, ab¼ 6, ac¼ 9. A line is

drawn parallel to ca, at a distance of half of cd, and another parallel to ab at a

distance of half of eb; in the place n, where these two lines intersect, a hole is

drilled, to which one plate is suspended. It is hit with sticks at the place marked by

g. More information is found in the Mémoires concernant les Chinois, vol. VI,
written by Amiot,4 p. 2, p. 255, and in an added dissertation: Essai sur les pierres
sonores, also in Vol. XIII of the Histoire générale de la Chine, translated by

Grosier, pp. 300 and 772. Those experiments which I made on glass plates of the

same shape showed that the nodal lines were as in Fig. 249; consequently, the points

where the plate is suspended and beaten are the most suitable.

Another Chinese instrument, which finds its place here, is called gongong or

tamtam. Those that I saw, especially in Copenhagen, were of copper cast in a single
piece, in the shape of a tambourine, about six decimeters in diameter. The edge was

a little more than 6 cm high, and it was the thickness of a finger. On the sounding

plate in the middle, of less thickness, impressions of the blows of a very strong

hammer can be seen, which have served to increase considerably the elasticity of

the plate by the resistance of the edge against the tendency of the plate to expand.5

Consequently, the manner of elasticity of this plate is completely the opposite of

that of a kettledrum, where it is made by tension. One hits the area with a stick

whose end is enveloped in a cloth or something else soft; the sound is extremely

strong and resonant, and is accompanied by a slight upturn that produces an

alarming effect. This instrument was employed in Copenhagen, with success, to

express in an Oratorio the trembling of the earth at the death of Jesus Christ; in

China it is used to give signals.

4 Jean-Joseph-Marie Amiot (1718–1793). French Jesuit missionary sent to China.—MAB
5 I have been told that the inequalities on the outside of the gongong or tamtam appear to be

produced by impressions of the pumice that was used in the mold. Some experiments have shown

that the pieces of a similar instrument are not malleable.—EFF Chladni
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Section 8: Vibrations of Bells and Vessels

156. General Remarks

The vibrations of a bell or of a round vessel correspond to those of a round plate in

which there are only diametric nodal lines (Par. 126). These sounding bodies can be

divided into four, six, eight, or, in general, into an even number of vibrating parts,

separated by nodal lines that intersect in the middle, where the neck of the bell

is. The principal difference from a round plate is the fact that the curves caused by

the vibrations do not apply to the straight directions, but to the curves that already

exist in the shape of the sounding body.

157. Manner of Producing Vibrations and Making
Them Visible

When a bell is struck, one hears the sound most strongly. But, by listening with

attention, one will often find it accompanied by a confused mixture of more acute

sounds that are not very harmonic. However, one can separately produce each

sound to which the bell is susceptible, by touching with the fingers, or in some other

way, one or more of the nodal lines of the mode of vibration that one wishes to

produce and applying the bow to the middle of one vibrating part. One cannot make

use of sand to render visible the nature of the vibrations, since there is not a flat

surface. It is therefore necessary to put some water in the bell or in the vessel,

which, according to whether one produces the first or the second or another mode of

vibration, is driven back by four, six, or more vibrating parts of such sort that the

excitations of the surface are visible, as is shown in Fig. 252 or 257. The same

excitations are seen outside if the bell is surrounded by water. When one spreads a

little very dry lycopodium powder on the surface of the water, the division into four,

six, or a larger number of parts is made visible by the more enduring figures.

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
DOI 10.1007/978-3-319-20361-4_11
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158. The Fundamental Sound of a Bell

The simplest mode of vibration, which yields the deepest sound, can be produced,

without mixing other sounds, if one touches the bell or vessel with the tips of one’s
fingers, in two points either opposite or far removed from one another by a quarter

of a circle, applying the bow at a distance of 45� from a nodal line whose position is

determined by the contact. For example, if the bell (Fig. 250) is touched at m or at

n or at the point of the line pq, one must apply the bow in the direction cf or hg. The
four parts qfn, ngp, pcm, mhq make their motions, as we have shown on a round

plate, in such a way that the two opposing sides are bent inwards, while the other

two are bent outwards; the lines mn and pq remain immobile. The bell takes

alternately the curves represented in Figs. 251a, b. If one puts some water in the

bell, the excitations are seen on the surface as in Fig. 252.

159. Application to a Harmonica Bell

A harmonica bell which turns around the axis and whose vibrations are produced by

rubbing with a wet finger or with other suitable material, and a round glass vessel

rubbed in the same way not far from the edge in the direction of the periphery, also

divide into four vibrating parts. But the position of these parts changes at every

instant. The mode of vibration and the sound are the same as if one struck the bell or

if one applied the bow of a violin to it, but the location where the motion is

produced has another relation to the position of the nodal lines and the vibrating

parts. When the motion is produced by striking or by applying the bow in a

diametrical direction, the point is approximately in the middle of a vibrating part

and the nodal lines are found at a distance of 45�. But when motion is produced by

striking in the direction of the periphery, a nodal line passes through the point of

striking and the part of the bell (Fig. 253) where the striking is done in the direction

mn takes the positions fg and pq alternately.

We cannot touch the harmonica bell in more than one point at the same time

without avoiding the vibrations except in points that are opposite or distant from

each other by a quarter of the periphery.

160. In Irregular Bells the Sound Is Not the Same
Everywhere

The construction of a harmonica is often rendered laborious by the inequalities of

the sound of the same bell when it is struck in different points. The inequalities of

the sound can be caused by irregularities in the thickness or by some eccentricities;

the sound is slightly different if a nodal line passes through the abnormal point, or if
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this point is found in a vibrating part. An experiment on a porcelain cup with a

handle can show this. If one applies a violin bow to the point where the handle is

found, or opposite it, or at a distance of 90�, the position of the nodal lines will be as
in Fig. 254. The sound will be graver than if the motion were produced at a distance

of 45 or 135� because in this case the handle does not undergo vibrations, the

position of the nodal line being as in Fig. 255.

One therefore understands that by applying the bow successively to all the places

on the periphery, it produces eight alternate variations of a deeper sound and a

higher one, as in each rotation of an abnormal bell of a harmonica. A bell for

sounding which has the same defect would, however, emit a pure sound when

struck at a point where one of these two sounds is predominant, and when the

position of the nodal lines is fixed by a type of damping, applied at a distance of

45 or 135� from the point struck.

161. Other Types of Vibrations

In the second type of vibration, a bell or a round vessel divides into six vibrating

parts, like the round plate in Fig. 100. To produce this sound, we apply the bow at a

distance of 90� from the point where a nodal line has been fixed by touching. We

can also touch (at the same time) two points distant from one another by 60�. The
bell bends alternately to the curves shown in Figs. 256a, b. When water is put in the

bell, the excitations of the surface appear as in Fig. 257.

The same type of vibrations are produced by touching together two points

separated from one another by the eighth part of the periphery and applying the

bow to the middle between these two touched points, or in another suitable place. In

the other modes of vibration, the bell or the vessel can be divided into 10, 12, or

more vibrating parts, as many as its size and thickness permit.

If the shape of a bell or vessel is even enough, and the thickness is the same all

the way through, the series of possible sounds is like the squares of 2, 3, 4, etc.

When the gravest sound is do 2, the series of possible sounds will be:

Number of vibrating parts: 4 6 8 10 12

Sounds: do 2 re 3 do 4 sol# 4- re 5-

Numbers whose squares

correspond to these sounds:

2 3 4 5 6

etc.

This series will be that of a hemispherical harmonica bell, or of another similar

vessel. If the shape is different, or if the thickness is not the same towards the edge

and towards the middle, all the intervals could become lesser or greater, in the way

that the distance between the first and second sounds could be less than an octave, or

greater than a twelfth, and in the same way the other distances become greater or

lesser. However, it is necessary to look at the cited series as the average term for the
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distances between one sound and another that are the same as on a round plate

divided in the same way.

L. Euler (de sono campanarum in Nov. Comment. Acad. Petrop. vol. X)

claims that the series of possible sounds of a bell is like 1,
ffiffiffi

6
p

,
ffiffiffiffiffi

20
p

,
ffiffiffiffiffi

50
p

,
ffiffiffiffiffiffiffiffi

105
p

,
ffiffiffiffiffiffiffiffi

196
p

, etc. Golovin, having applied Euler’s research on the vibrations

of the rings of harmonica bells, found that if the fundamental sound of a bell,

divided into four vibrating parts, is equal to 1, the other sounds should be like

the squares of 2, 3, 4, 5, etc. But these results are not observed in the

experiment, and the assumptions on which this research was founded do not

conform to nature.

One must not aim to explain a bell’s vibrations by the vibrations of its

rings; the motion of the vibrating parts of a ring and their link to the sounds

are quite different from those of a bell, and from those that result from Euler’s
and Golovin’s research. It seems to me that there will be no other way of

determining, theoretically, the vibrations of a bell, assuming that the true

expressions for the vibrations of a round plate in Figs. 99, 100, 101a, and 102a

have been found, than to apply the curvature of a straight edge to the

curvature that already exists from the shape of the sounding body.

162. Laws for the Absolute Frequency of Vibrations

If n represents the number whose square corresponds to each mode of vibration,

D the thickness, L the diameter, R the stiffness, and G the specific gravity, the

sounds of vessels or bells, whose shape is the same, will be n2D
L2

ffiffiffi

R
G

q

, as in other rigid

bodies (Par. 75).

163. The Vibrations of Sounding Bodies of Other Shapes Are
Still Not Known

The vibrations of other rigid membranous bodies, for example, of a spherical shape,

cylindrical shape, etc., are quite unknown, and it will be very difficult to determine

them by experiments, and even more difficult to do so theoretically.
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Section 9: On the Coexistence of Several
Modes of Vibration in the Same
Sounding Body

164. Several Vibrations Can Coexist

Many or all of the modes of vibration that can be produced separately can coexist in

the same sounding body; therefore, by listening with enough attention, one hears

the sounds that correspond to all of these types of vibration. To get an idea of the

changes in the shape of the elastic body, one must not apply the curvature that

corresponds to a mode of vibration to the original shape of the body, but to the

curvatures that already exist in each moment due to the other modes of vibration.

Such a coexistence of many types of vibrations and many sounds is not necessary,

as some have claimed, because in every mode of vibration where there are nodes,

one can, by touching them or by applying a mute, exclude all types of vibrations in

which these points should be moving, and produce the desired motion, and the

sound that corresponds to it, without mixing in others.

165–170. Coexistence of Several Vibrations in a Single String

165. In the simplest transverse motion of a string, this coexistence of many sounds

is fairly well-known. While the entire string vibrates, each half, each third, and in

general each aliquot part can vibrate as well; therefore, one hears, in addition to the

fundamental sound equal to the unit, the sounds that correspond to the numbers 2, 3,

4, 5, etc. The curvature that corresponds to a mode of vibration must therefore be

applied to the curvatures in which the string bends in each instant due to the other

modes of vibration. To explain these combinations of many curvatures, I will use

some examples borrowed from the work of Count Giordano Riccati, Delle corde
ovvero fibre elastiche (On strings of elastic fibers).

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
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166. To imagine the combination of the two curves (Fig. 5, BDF2DA and

BGC2GA), one of which pertains to the simplest vibrations of the entire string

(Fig. 1), and the other to those of the same string divided into two halves, one must,

for a point H, extend the ordinate HD towards E; make DE¼DH; and make the

curve BEF2EA pass by every point that can be determined in the same manner; the

resulting curvature will be that of the string in its first state of rest.

After the fourth part of a vibration of the entire string, each half makes a half-

vibration, and in that moment the shape of the string is like BDF2DA. After a half-
vibration of the entire string, and a vibration of each half, the curvature is similar to

BGC2GA in an inverted position. When the entire string made 3
4
of a vibration and

each half made 11
2
vibrations, the shape is like Bdf2dA. Finally, after the entire string

made a vibration, and each half made two, the string arrived at the second state of

rest, and the shape is Bef2eA; which is produced when one makes de¼HG, or when
the curve BE2EFA is found alternatively here and there on the axis.

These alternative positions of the curvatures in the resting states, or

BEF2EA¼A2efeB, take place in all the combinations of vibrations of the entire

string with vibrations of the string divided into an even number of parts. In these

cases, all the points of the string never pass at the same time by the axis BCA,
because, when the point F arrives at C, the point E is advanced beyond point H by

HG, and the point 2E has not yet arrived at 2H, having remained behind 2H2G.

167. In the combinations (Figs. 6 and 7) of the first mode of vibration of a string

BDF2DA with the third, where the string is divided into three sections

BGS2G2S3GA, its curvature is susceptible to two different positions, either like

Fig. 6, or like Fig. 7. Taking at each point H the ordinate HD extended as much as

necessary; and making DE¼HG; then the point E, and all the other points deter-

mined in the same manner, will form the curve BEN2E2N3EA, which agrees with

the string in its first resting state. After a half-vibration of three sections, the shape

of the string will be like BDF2DA. When the entire string has made a half-vibration,

and the three sections have made 11
2
vibrations, the string will be in the straight line

BCA, and all of its points will pass by the axis at the same time, as is also the case in

all other combinations of vibrations of the entire string with those of the string

divided into an odd number of sections. After the three halves have made 5
2

vibrations, the string will once again take the form Bdf2dA, and finally, after a

vibration of the entire string and three vibrations of the string divided into three

sections, the string will be in the second resting state, and its shape will be

Ben2e2n3eA, similar to BEN2E2N3EA, as in all the other combinations of the

first mode of vibration with those where there is an odd number of sections.

168. Just as by the combination of two curves (Figs. 1 and 2), curves BEF2EA and

Bef2eA (Fig. 5) are formed, which produce a mix of the fundamental sound and its

octave; thus, by the combination of these curves with that of the third mode of

vibration (Fig. 3), even more new curves are formed, which simultaneously produce

the first, second, and third sound. One can apply the one that agrees with the fourth

mode of vibration to these new curves, to find the curves that give a mix of sounds
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corresponding to the numbers 1, 2, 3, and 4. By continuing in the same mode, one

can move on to even more complex curves, in which the number of sounds

corresponding to the natural progression of the numbers, mixed with the funda-

mental sound, becomes greater and greater.

If, according to Taylor, Daniel Bernoulli, and Giordano Riccati, for the first type

of vibration of a string (Par. 39) y ¼ A ¼ sin πx
L , for the second, B ¼ sin 2πx

L , for the

third,C ¼ sin 3πx
L , the general expression for all of these combinations of curvatures

will be y ¼ A sin πx
L þ B sin 2πx

L þ C sin 3πx
L , etc.; and when the initial curve is

expressed using this equation, at the moment when a vibration of the entire string

is achieved, ywill be equal to�A sin πx
L þ B sin 2πx

L � C sin 3πx
L þ D sin 4πx

L , etc. This

curve is the same as the original, in an inverted position: x represents here any

abscissa with y as its ordinate, L the length of the string, π the half-circumference of

the circle whose radius is equal to 1. The coefficients A, B, C, D, etc. that can be

taken as positives or negatives express the greatest oscillations in mid-cycle for

each mode of vibration. If, according to Euler and others, a vibrating string is

susceptible to even more shapes, which are not included in this equation, that does

not prevent the combinations of many types of vibrations.

169. Until now, the only question was of combinations of the fundamental sound

and those where the string is divided into aliquot parts; but it is also necessary to

mention the case where two types of vibrations of the aliquot parts happen at the

same time.

The combination of curves BDC2DA and BGS2G2S3GH (Fig. 8.1), which

pertains to the divisions of the string into two or three sections, will form, by

making DE¼HG, the curve BEN2E2N3EA, which pertains to the mix of these two

sounds. After a vibration of the two halves of the string, each third part makes 11
2

vibrations; the shape of the string will thus be BDC2DA, taken at the other side of

the axis. This is not a resting state, because the string, divided into three sections,

continues in its motion. A resting state will only occur after two vibrations of the

string divided into two sections, and three vibrations of the string divided into three

parts; therefore it will have the curve Ben2e2n3eA (Fig. 8.2). Figure 8.1 is separate

from Fig. 8.2 in order to better distinguish the curvatures.

For the string to get from one resting state to the other, it is always necessary to

achieve two vibrations of the halves and three vibrations of the third parts. In the

time necessary for this effect, the entire string will have made one vibration. In this

combination, and in all other combinations of vibrations of aliquot parts, one will

therefore always hear the fundamental sound, which pertains to the unit, when the

numbers of the aliquot parts are expressed in the lesser terms.

170. There is no way to prevent the coexistence of acute sounds with the

fundamental sound; but each sound of the string, divided into aliquot parts, can

be produced, without any mix of other sounds, by touching the nodes to exclude

all types of vibrations in which these points should be moving. It seems that the

reason the harmonic sounds of a cello or a violin are softer than the same sounds

produced in the regular manner is mainly due to these sounds not mixing with

others.
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171. Coexistence of Several Vibrations in an Organ Pipe

An organ pipe, or another wind instrument, can also produce two sounds at the same

time, when the manner of breathing is in between those that serve to produce one

sound or the other.

Similarly, one type of longitudinal vibration of the air is not prevented by

another. The same thing happens in the longitudinal vibrations of strings and rods.

172. Coexistence of Several Vibrations in a Rod

A rod or band that makes transverse vibrations will never simultaneously produce

the sounds contained in the natural series of numbers, but rather sounds that are not

very harmonious, which can only be expressed by the squares of certain numbers

(Pars. 69–74). When, for example, one of the ends is fixed and the other is free

(Par. 69), the sounds that can coexist correspond to the numbers 36, 225, 625, 1225,

2025, etc.; or if one looks at the fundamental sound as a unit: 1, 61
4
, 1713

36
, 34 1

36
, 561

4
, etc.

The vibrations will therefore never coincide at the same time.

173. Coexistence of Several Vibrations in a Fork or a Ring

In the fundamental sound of a fork (Par. 88), one cannot prevent the coexistence of

other sounds, because one cannot touch the middle, which is at rest in all the modes

of vibration. The sounds that one will be able to hear at the same time, by looking at

the fundamental sound as a unit, are 1, 61
4
, 111

9
, 1713

36
, 25, 34 1

36
, etc.; or in whole

numbers, 36, 225, 400, 625, 900, 1225, etc.; consequently the vibrations will not

come back together until after the 36th vibration of the two branches of the fork.

Nevertheless, the sound of a fork (for example a tuning fork) would be agreeable,

because the coexistence of other sounds is almost imperceptible due to their great

distance from the fundamental sound. Each mode of vibration, in which other

modes can be excluded, can be produced, without mixing in the others, by touching

the nodes. A ring-shaped object will give several sounds at the same time. For

example, when it is suspended by a wire and struck, the sounds will conform to the

squares of 3, 5, 7, 9, etc. (Par. 89). By touching the nodes, the mixing of sounds can

be prevented.
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174. Coexistence of Several Vibrations in a Plate

Plates of any shape are susceptible to many motions at the same time, so one hears

all the sounds that correspond to these motions. By touching and hitting a plate at

different points, one often hears more than one sound at the same time. The same

thing also happens sometimes when one uses a violin bow, and in that case one

cannot produce a distinct shape, because the shape that corresponds with one type

of motion is destroyed by the other. It is thus necessary to touch another or even

several points at the same time, where there is a node for one of these modes of

vibration and not the other. The easiest way to discern such a mix of sounds is by

holding a round plate in the middle and hitting it, or applying the bow, without

fixing the position of the nodal lines in any way. One will hear many sounds, having

prevented the other motions, and there will never be a distinct shape.

175. Coexistence of Several Vibrations in a Bell

On a bell, the shock not only produces the simplest motion, where it is divided into

four vibrating parts. At the same time it can also vibrate, divided into six, eight, or

more parts, and one hears, in addition to the fundamental sound, a weak coexistence

of sounds which, the fundamental sound being equal to the square of 2, just

corresponds to the squares of 3, 4, 5, etc. But this coexistence can be prevented

by touching the bell with mutes applied to the nodal lines.

176. Authors Consulted

(Note: The Coexistence of Sounds in the Same Sounding Body Is Not the Basis
of Harmony). The best research on the coexistence of several types of vibrations in

the same sounding body can be found in some dissertations of Daniel Bernoulli (Mé
m. de l’Acad. de Berlin, 1753 and 1765, and Nov. Comment Acad. Petrop. vols. XV
and XIX); in the research on sound by Lagrange (Miscel. Taurin. vols. 1 and 2); in

the work of Giordano Riccati, delle corde ovvero fibre elastiche (Append. in

Schediasm IV); in Matthew Young’s Enquiry into the principal phenomena of
sounds and musical strings, p. II. Mersenne already knew of the coexistence of

acute sounds with the fundamental sound of a string, but he did not explain it well;

Descartes (in Epist Part II, ep. 75 and 106) explained it better, but he attributed this

quality exclusively to irregular strings.
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Several authors have looked at the coexistence of sounds included in the

natural series of numbers (which, according to the true principles, is just an

idiosyncratic phenomenon) as an essential quality of each sound, and as the

essential difference between a distinct sound and a noise. They have taken

this quality to be the basis of all harmony, by believing that an interval is

consonant because the acute sound can be heard with the fundamental sound.

They did not know that if one hears more than one sound at the same time, it

is merely a result of the coexistence of several types of vibrations; that in

many sounding bodies, the series of possible sounds is very different from the

natural series of numbers; and that one can produce each mode of vibration

where there are nodes by touching the points or nodal lines that should be

moving in other modes of vibration. According to their principles, the perfect

minor chord, if one does not want to use sophisms, would not be consonant,

and on a harmonica bell, the ninth (4:9) would be the first consonance,

because it is the first sound that can mix with the fundamental sound, etc.

Daniel Bernoulli and Lagrange (in the cited papers) refuted these false

principles sufficiently. It will always be more natural to look at the greatest

or least simplicity of numerical relationships to vibrations as the basis of

harmony. However, all efforts to develop laws of harmonics, assuming false

physical principles, have not been too detrimental to the theory and practice

of harmonics. Despite the diversity of principles, all agree that intervals that

can be expressed by the numbers 1–6, and by their multiplications by 2, are

consonant and all others are dissonant.

177. Coexistence of a Grave Sound When Two or More
Acute Sounds Are Produced

The coexistence of a grave sound, when two or more acute sounds are produced, is a

general quality which applies to all sounds. The ear perceives not only the effect of

the ratios themselves, but also the effect of the concurrences of the vibrations at the

same moment; it hears the concurrences, in which the ear is hit by two blows,

like a grave sound whose vibrations take place in the same space of time. The

grave sound, caused by the concurrences, will thus always be equal to the unit, if

one expresses the sounds that are really produced by the smallest whole numbers.

I will express here the time intervals in which the vibrations take place by dots. If

one produces two sounds that make a fifth, for example, do 2 and sol 2, the
following concurrences will happen, which will yield a resonance of sound equal

to the unit, do 1:
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If the major third do 3: mi 3 is produced, there will be the same resonance of the

sound do 1, equal to the unit:

The minor third mi 3 and sol 3 will yield the same result, as well as the major

sixth sol 2 and mi 3, etc.
To make this grave sound more perceptible to the ear, it is necessary that the

sounds, truly produced, be extended enough and of roughly the same strength; it is

also necessary that the ratios of the sounds be very exact or differ little from

exactitude.

178. Beats in Poorly Tuned Instruments Are the Same
as Coexistence

If the vibrations of two sounds rarely come back together, these concurrences are

perceived as beats, very disagreeable to the ear in a badly tuned instrument. The

closer the interval gets to exactitude, while tuning the instrument, the more these

beats become undetectable, until finally they are lost in the sensation of the weak

resonance of a grave sound. An instrument is not well-tuned if any interval pro-

duces beats.

Sauveur proposed that we use these beats to find the absolute values of

vibrations, by comparing the interval of the sounds of two organ pipes with

the interval of the time that passes between two beats. Sarti did similar

experiments in the presence of the Imperial Academy in Petersburg, 1796.
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179. Authors Consulted

To the best of my knowledge, the first person to mention the coexistence of a grave

sound equal to the unit was G. A. Sorge, who, in his Instruction pour accorder les
orgues et les clavecins (Anweisung zur Stimmung der Orgelwerke und des Claviers,
Hamburg, 1744), says roughly (pp. 40 and 41):

Where does it come from that if one tunes a fifth 2:3, the third sound is heard in a weak
resonance, and always the octave of the sound deeper than the fifth? Nature shows that for
2:3 the unity is still missing, and it wants to have it as well so that the order of 1, 2, 3 is
perfected. This is why playing a fifth of three feet on an organ makes the sound more perfect
by producing a third sound of almost the same strength as a weak tenor bell; and not only
fifths, but also thirds do the same thing, etc.

Romieu observed this phenomenon and reported it at the Montpelier Academy,

1753. Tartini, to whom this discovery is often attributed, mentioned it in his

Trattato di Musica, Padova, 1754.
The best remarks on this third sound are found in Recherches sur le son, by

Lagrange, (Miscell. Taurin. vol. 1) Sect. 64, and in Matthew Young’s Enquiry into
the principal phenomena of sounds and musical strings, p. 2, sect. vi.

Tartini claimed that this third sound was more acute than an octave, which it

is not really. He regarded this phenomenon, combined with the purported

coexistence of the series of sounds 1, 2, 3, 4, 5, etc. in each fundamental

sound, as the basis of harmonics. Mercadier de Belesta expertly refuted some

of Tartini’s false assertions in his Système de Musique, Paris, 1776.
Abbé Vogler uses this third sound to substitute for a large organ pipe that

produces the same sound in the ordinary way: two small pipes that produce it

as the unity for the numbers of their vibrations.
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Section 10: On the Coexistence of Vibrations
with Other Sorts of Motions

180. These Motions Can Coexist

Vibratory motions can coexist with all other types of motion (Par. 1) in an infinite

number of different modes, which was demonstrated by Daniel Bernoulli and

L. Euler in vols. XV and XIX of Nov. Comment. Acad. Petrop. and established

through experimentation. These coexistences of different motions take place in all

sounding bodies, without exception. It is possible, for example, to produce the

sound of a string stretched over a piece of wood, or that of a blade, a tuning fork, a

bell, etc., and while the vibrations continue, to imprint upon this sounding body a

motion of rotation around its axis, and at the same time a progressive motion by

throwing it. All these movements could happen at the same time, without one being

prevented by the other; but the absolute motion of each point would be very

complex.

181. On a Very Common Coexistence of a Circular Motion
with Vibrations

Movements composed of vibrations and circular motions are often noticeable in

strings of a sufficient length. The space that the vibrating string passes through in

its oscillations seems half-transparent to us, and its limits especially distinguish it,

because the string stays there longer than it stays in the middle of this space. This

space seems sometimes to shrink and enlarge alternatively towards one side or the

other; sometimes in one half of the string this image is on this side of the axis,

while in the other half it is on that side, and sometimes two images seem to get

closer to, and then farther away from, each other. The nature of these complex
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movements is seen most distinctly in a rather elastic rod, for example, an iron wire

held in a vise, by making it bulge out enough that the slowness of the motions

allows the eyes to follow the progress of the wire. When, after having pulled this

wire out of the ordinary position, one lets it go at an oblique angle, the circular

motions mix with the vibrations (Fig. 20), because the wire is more set in one

direction than in the other, and because it leans at an oblique angle against the jaws

of the vise. For the same reason, these composed movements will take place in a

string, if the direction in which the motion is produced makes an oblique angle with

that of the bridge. The progression of the rod, which does not seem to differ from

that of a string in its composed motions, is represented in Fig. 258, by taking all the

vibrations of equal size. When the iron wire, whose ordinary position is at the

middle of the figure, is pulled towards C and released in the direction CD, the
progression of wire will be:

CDxCuDtCsDrCqDpCoDnCmDBCAaBbAcBdAeBfAgBhAiBkA.

So, after having produced some vibrations roughly in the diameter of this

composed motion AB, it will make the same progression in reverse by:

BiAkBgAhBeAfBcAdBaAbBDACnDmCpDoCrDqCtDsCxDuC.

After having produced some vibrations close to the other diameter of this

motion, it will begin the first progression CDxCuDtC, etc. again; and in the

same way, the progression will continue alternating to the left and right, while

getting larger and shrinking now to one, now to the other diameter of this motion.

In Fig. 258, these two diameters AB and CD make a right angle; but they can

intersect at any angle, and if that angle is equal to 0, the motion is only vibratory.

One can vary at will the size of this angle by small differences in the direction in

which motion is produced. When the observer’s eye is in the direction of diameter

AB, one sees, while the progression by AaBbAcBd etc. shrinks toward this

diameter, two images that are getting closer together. While it produces some

vibrations roughly in this diameter, the wire seems immobile; while it gets farther

away from this diameter by BiAkBgAhBeAf, etc., one sees two images that are

getting farther away from each other; and while the motion gets closer to and

farther from the other diameter CD, one sees at the limits of these movements,

C and D, a half-transparent image of this sounding body. The space contained

between these two images roughly resembles a very thin spider-web. When the

eye is in an oblique direction, in relation to one of the diameters, or when the two

diameters intersect at an oblique angle, the phenomenon can manifest in

very different ways. By using, for these experiments, a very long metal wire, I

occasionally produced the second or third mode of vibration, mixed with such a

circular motion; so the nodes of vibrations stay immobile, and the movement of

one part is always opposite to that of the other. Similarly, every other vibratory

motion of such a rod or string divided into aliquot parts can be mixed with circular

and various other motions.

None of these composed motions change the sound.
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Part III

On Transmitted Vibrations, or the
Propagation of Sound



Section 1: On the Propagation
of Sound Through Air and Through
Other Gaseous Fluids

182. General Notions of Sound Propagation

The object of the preceding part was to show how the characteristic vibrations of a

sounding body and their relative frequencies are determined by the shape and by the

other attributes of the body. But for the transmitted vibrations, which I will speak of
here, it is necessary to look at the system of the body by which the sound is

propagated, being of an indeterminate shape and size, and susceptible to vibrations

in all directions and in all possible periods of time.

183. Air Is the Ordinary Conductor of Sound

The vibrations of a sounding body are transmitted through all matter, whether

directly or indirectly adjacent. To hear a sound, a continuation of matter must

exist between the vibrating body and the organs of hearing. The atmospheric air is

the matter through which the impressions normally arrive at our ear, but all matter,

liquid or solid, can perform the same function.

184. Sound Propagates in all Directions from the Center

In the propagation of sound through air or other gases, one is able to look at the

body which produces the sound as the center of an infinity of sound rays or

sound lines, in which the particles of the air, pushed by the vibrations of the

sounding body, push another, and so on, so that the small contractions and expan-

sions are transmitted from one particle to another. When the same are disturbed in a

single direction only, for example, by the crack of a whip, that point will be
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nevertheless a common center for sound waves in all possible directions, because

the portion of the disturbed air is equally elastic in all directions and pushes all

contiguous parts.

185. Sound Propagation Through Air Does Not Differ
Essentially from the Vibrations of Air in a Wind Instrument

The longitudinal vibrations of every extended line of the open air do not differ

essentially from the longitudinal vibrations of an air stream contained in an organ

pipe or other wind instrument; one can therefore look at the objects that will be

explained here as a continuation of Sect. 4 of the preceding part. The frequency of

the vibrations of the air in a pipe does not depend on the diameter of the pipe; if,

therefore, an indefinite enlargement of the walls does not change the frequency, one

will be able remove the walls and allow the open air access to all sides, without

making an essential change.

The open air therefore vibrates in the same period of time as the enclosed air, so

that the sound is propagated by a space of open air, at the same time in which an air

stream of the same length, contained in a pipe, vibrates, the mode of vibration being

simplest in a pipe open at both ends (Fig. 14 and Par. 60). The points where the

compression is greatest, in the open air, are the same as the nodes of vibration in the

air contained in a pipe. The principal difference is that, in a pipe, the nodes always

stay in the same place; while, in the open air, the places where the compression is

greatest are always more and more remote from the body that produces the sound.

186. Air Does Not Make More or Fewer Vibrations Than
the Sounding Body

The air through which the sound is propagated does not make any more or fewer

vibrations than the body which produces the sound. When the vibrations of the

sounding body cease, the disturbance of the air also stops. There is a big difference

here between characteristic vibrations and transmitted vibrations. In characteristic

vibrations, at the moment when the sounding body has arrived at the shape or at the

natural density, it has completed only half of a vibration. It is necessary, therefore,

that it continues this vibration, because the velocity of the motion is the greatest.

When one vibration is finished, and the velocity equals 0, the shape or the density is

not too different from the natural one, so that it can stay in that position; it is

necessary, therefore, that a new vibration begin, and thus the motions should

continue without cessation, if they are not met by any resistance.
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But in vibrations transmitted in the open air, or in the propagation of sound, the

greatest compressions and expansions of a particle of air take place in the same

moment that the particle has the highest velocity. When one vibration is finished,

and the velocity equals 0, the density has achieved a natural state. There is,

therefore, no reason for new vibrations to occur, except when the air is again

pushed by the vibrations of the sounding body, or when these transmitted vibrations

approach the nature of characteristic vibrations, because of local circumstances,

forming an echo or resonance.

187. Sound Waves

The vibrations of a sounding body produce alternating compressions and expan-

sions in each sound ray, which are called sound waves (pulsus sonori, undae
sonorae). One can represent these sound waves, which are expanding in all direc-

tions, as spherical layers that surround the sounding body. One finds the distance

from one wave to another by dividing the space that the sound travels in a certain

time by half of the vibrations that the sounding body makes in the same time. The

reason it is necessary to divide this space by half of the vibrations is because the

vibrations (that is to say the simple oscillations) of a sounding body go alternately

forwards and backwards, in the way that every advance compresses the nearby air

and every return expands it. But (according to Newton and Sauveur) if one wants to

look at every vibration as being composed of an advance and a return, which does

not conform to the actual way of expressing it, it is necessary to say that the space

that the sound traverses must be divided by the number of vibrations. If the gravest

sound of an organ pipe is propagated through the open air, the distance from one

wave to the other (according to Newton in Princ. Phil. Nat. Lib. 11, prop. 50) is
equal to twice the length of the pipe, or rather of the vibrating air stream contained

in the pipe.

Sound waves are often compared with the concentric waves that form on the

surface of water agitated by a foreign body. This comparison can serve for some as

an idea of some sort, but it is not quite exact. The waves of water consist of

transverse elevations on the surface, but sound waves consist of longitudinal

compressions that are propagated in all possible directions.

188. Propagations of Different Tones (Timbre) of Sound

As the propagation of the different timbres of the sound (Par. 51) is completely

unknown, for example, in the different articulations of the voice; in the attributes of

the sounds of different musical instruments; and in the different sounding bodies
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where the mode of vibration, frequency, duration, and intensity of the sound are the

same; the effect is very different.1 Thus, we know nothing about the manner in

which these different modifications of the same sound are propagated in the air and

other media. L. Euler has proposed some ingenious conjectures on this subject, in

his Éclaircissements sur la generation et sur la propagation du son, Sect. 13 (Mém.
de l’Acad. de Berlin, 1765), and in his paper De motu aëris in tubis, Sect.

36 (in Nov. Comment. Acad. Petrop. vol. XVI). He presumes that these different

modifications and articulations are caused by small differences between the scale of

the densities of the air particles and the scale of vibrations with which each particle

is displaced by a very small distance.

189. Sound Is Also Propagated Along Different Curves

Sound is not propagated exclusively in straight lines as light is, but also in all

possible curved directions. Due to equal elasticity in all directions, every point of a

sound wave can be regarded as a new center from which sound waves are projected

in all spaces where they had not been previously. One can sense, therefore, a sound

produced behind a mountain or behind a thick wall, although the sound will be

weaker than if the sound had been propagated in a straight line. Sound propagation

does not take place through the perturbations of the entire mass of the mountain or

the wall, as some of us have presumed, but in the air in the curved lines on the

secondary sound waves.

This has been noted by Mr. Lagrange in his Nouvelle recherché sur le son, Sect.
49 (in theMélanges de Philosophie et de Mathématiques de la Société de Turin, vol.
11). According to Newton, in Princ. Phil. Nat. Libr, 11, prop. 41 and 42, a similar

phenomenon can be observed in waves on the surface of water. If a vessel filled

with water is divided into two parts by a separation in which there is a slit or gap,

and concentric waves are produced by an agitation in one part, these waves will

propagate into the other part in such a way that the gap becomes a new center of

concentric waves.

The curved pipes of an organ and wind instruments, curved in different ways in

which all the sound is the same as in the rectilinear case, show sufficiently that

elastic fluid can vibrate along curved lines as well as in straight lines.

1 The intensity of sound is the power transmitted per unit area.—TDR
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190. Several Sounds Can Be Propagated at the Same Time
in the Same Mass of Air

As in every elastic body, several very small motions can be propagated by the same

mass and by the same particles of air, without impeding the motions of one by the

other. The same can be observed in water waves. If waves are produced by

agitations in two points, the concentric circles which depart from these two centers

will intersect one another without the disturbing of one by the other.

191. Uniformity of Motion

Motion is always uniform in the propagation of sound, such that the distance

traversed is proportional to the time. Whether sounds are strong or weak, grave or

acute, they are propagated in the same manner and with the same speed.

192. Speed of Sound According to Ordinary Theory

Since Newton, many geometricians, including the distinguished Mr. Poisson (Jour-
nal de l’École polytechnique, vol. VII), have been concerned with the method of

determining the speed of sound theoretically. The definitive result of this research is

that the speed is always equal to

ffiffiffiffi

gh
D

q

, where D is the density and gh is the elasticity

of the air, which is equal to the pressure of a column of mercury in the barometer in

which h is the height and g is the gravity. The calculation results in 880–915 ft/sec

(slightly more than 288 m).

193. Results of Observations

The results of observations [of the speed of sound] have always exceeded those of

ordinary theory. The very exact observations of Cassini, Maraldi, and la Caille,

reported in theMém. de l’Acad. de Paris, 1738 and 1739, have yielded a velocity of
1038–1041 ft (338 m)/sec. In the not-very-exact observations that were made by

Müller at G€ottingen, making use of a thirds watch, the velocity was 1040.5 ft/sec

and the difference of several observations was no greater than six thirds; these were

reported in the Notices litteraires de Gottingue (G€ottingsche gelehrte Anzeigen),
1791, no. 159, and in Voigt’s Magazin f€ur das neueste aus der Physik und
Naturgeschichte, vol. viii, ch. 1, p. 170. Several other observations made by

Derham, Flamstead, Bianconi, Conmadine, etc. give results that are still greater.
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194. Circumstances That Affect the Speed of Sound

The speed of sound propagation in air can only be changed by changing the specific

elasticity, that is, the ratio of the absolute elasticity to the density. Here belongs

especially the expansion of the air by heat, which increases the specific elasticity

and diminishes the density, while the pressure remains the same. This is the reason

why, according to the observations of Bianconi (Comment. Bonon, vol. II, p. 365),
the speed is greater in summer than in winter. The mix of the types of gas, weighing

more or less, can also produce changes in speed.

The strength, weakness, depth, or height of the sounds, and in general the nature

of the primal disturbance, do not influence the speed of the propagation of the

sound. On high mountains, and in general at high elevations, the speed is the same

as it is in the lower air, because at more or less great height (supposing that the heat

and the mixture remain the same) the absolute elasticity and the density increase or

diminish to the same degree, so that the specific elasticity does not change. The

direction in which the sound is produced is not influenced by the speed. One hears,

for example, a cannon shot in the same interval of time, whether it is discharged

toward one side or the other. The accelerations or decelerations that are made by the

wind are not greater than its speed. The quality of the weather does not seem to

influence the determination of the speed; the same speed is observed in foggy or

rainy weather as it is in calmer weather.

195. Ways of Explaining the Differences Between
Observation and Theory

The theory, from which we deduce the speed of the propagation of sound, seems to

be too much in compliance with the laws of mechanics for us to abandon it. One

makes, therefore, several assumptions for explaining the differences between the

results of the theory and those of observations, some of which are listed below.

1. Perhaps the air contains several solid or liquid particles which increase its
gravity without changing its absolute elasticity, and which transmit the sound
instantaneously; it is necessary, therefore, to look at the air as it would be without
these particles being mixed in.

If air had a mixture of solid or liquid particles, it would be less transparent,

especially when it was condensed by the cold, or compressed by mechanical means;

one would also find similar particles in the chemical analysis of the air, which is not

at all the case. The observations also show that, in rainy weather or in thick fog, the

speed of the sound stays the same.

2. Sound is looked at ordinarily as a simple pulse, transmitted in the air, but
when several follow on each other, one accelerates the other.

L. Euler proposed this hypothesis in his Conjectura physica circa
propagationem soni et luminis, Berol. 1750; but he himself regards it as false in
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his Dissertation de la Propagation du son, Sect. 42 (in the Mém. de l’Acad. de
Berlin, 1759). If such an acceleration of one pulse by another took place, acute

sounds would propagate more quickly than grave sounds, which is in contrast to the

observations.

3. In the theory, very small disturbances are assumed, but a very strong sound,
such as those which have been observed, must advance more rapidly.

But the theory and the observations show that the speed does not depend on the

strength or on other attributes of the sound.

4. Elasticity is always assumed to be proportional to the density, but perhaps
there are some distortions in the different degrees of compression.

Some want to claim that air is condensed a little more or less than the degree of

the compression; but up until now Mariotte’s Law2 has always held constant, when

the compressed air is at rest and the temperature stays the same.

Mr. Poisson (Journal de L’École Polytechnique, Chap. 14) and Mr. Biot (Jour-
nal de Physique, vol. LV, p. 173) have shown, following the ideas of Mr. de

Laplace, that if thermal effects are entered into the calculation, it is done in every

compression of the air and that the elasticity increases. The results of this theory are

in accordance with the observations. The results of the research of Mr. Biot on the

propagation of sound through vapor (in Vol. II of the Mémoires de la Société
d’Arcueil) showed evidence of the existence of thermal effects in the propagation

of sound.

It seems to me that a thermal effect, through compression, is an unknown

chemical quality, to which I have attributed the difference between the theory and

the observations and which, while being modified differently in different gaseous

materials, makes the air, or a similar mix of oxygen gas and nitrogen gas, seem to

vibrate a little faster than the two gases of which it is composed (Par. 67).

196. The Speed of Sound in Different Gases

Following the theory, the speed at which sound is propagated through different

types of gas will be the inverse of the square roots of their weight, so that a lighter

gas will propagate the sound faster than a gas weighing more.

One will not always have at one’s disposal a rather long expanse, filled with any
type of gas, to make direct observations; but the ratios of the sounds of the same

organ pipe—full of, surrounded by, and inflated with different types of gas

(Par. 67)—will serve to judge the speed at which the sound would be propagated

by these fluids, because transmitted vibrations are not essentially different from

characteristic vibrations. Therefore, if the sound is propagated in the atmospheric

air, or by an artificial mix of oxygen gas and nitrogen gas, in one second of time,

over a distance of 337 m, oxygen gas (whose sound was graver by a semi-tone or

2Also known as Boyle’s Law or the Boyle-Mariotte Law.—MAB
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close to a tone) will propagate it close to 310 m/sec. Nitrogen gas will propagate it a

little less than in the atmospheric air. Hydrogen gas, according to whether it is more

or less pure, gives more acute sounds by close to an octave or a tenth; the speed of

the propagation of the sound in this gas will therefore be between 680 and 820 m/

sec. In carbonic acid gas, which gives a graver sound by a major third, the speed

will be 269 m/sec; and in nitrous gas it will be close to 320 m/sec.

These frequencies are not completely in accordance with the theory; it appears,

therefore, that they are dependent not only on the ratio of the elasticity to the

gravity, but also on the chemical attributes of every gas. I have nevertheless

admitted that it would be useful to repeat the experiments, which I made with

Jacquin of Vienna, more carefully this time, using a monochord divided in decimals

for the comparison of the sounds.

Mr. Perolle, who has published many very interesting experiments on the

propagation of sound in different materials, has disputed these experiments, believ-

ing the results contrary to his. But it is only a misunderstanding, caused by a very

short abstract that was given on my paper. My experiments concern the speed of the
propagation of sound by different gaseous materials, speed that, following the

theory, has to be the inverse of their gravities, and this is what the experiment

notes, with a few differences caused by chemical attributes.

The experiments of Mr. Perolle concern the intensity of the sound propagated by
the same materials, intensity that, according to the theory, must be greater in

heavier gases than in lighter gases, and this observation (which will be the question

of Par. 198) also notes a few exceptions caused by chemical attributes. Therefore, it

is not a disputed subject; it is even necessary that, apart from several differences,

the heavier gases propagate the sound with less speed and more intensity; and the

lighter gases with more speed and less intensity, when the absolute elasticity is

equal to the atmospheric pressure.

197. Intensity of Sound Transmitted in the Air

The intensity of sound transmitted in the air depends on the following

circumstances:

1. The size of the sounding body. The greater the surface that shakes the air with its
vibrations, the greater the intensity of the sound. This is the reason why the

sound of a string stretched on a resonant board is stronger than the sound of the

same string stretched on a narrow piece of wood that is not in contact with other

resonant bodies; and the sound of a tuner alone is weak in comparison to the

same tuner when it is leaning on a table or on other solid bodies to which it can

transmit its vibrations.

2. The intensity of the vibrations of the sounding body. The greater the oscillations
on the vibrating part, the greater the displacement of the contiguous air particles,

and, consequently the compression of all the others increases.

146 Section 1: On the Propagation of Sound Through Air and Through Other Gaseous. . .



3. The number of vibrations. When the vibrations are in a more or less rapid mode,

where each simple vibration shakes the air with the same force, an acute sound

will have more of an effect on the ear than a grave sound, because of the greater

number of vibrations. If one wants the intensity of the grave sound to be the same

as that of the acute sound, the intensity of the simple vibrations must be the

inverse of the number of vibrations given in the same time interval. The best

research on this subject, and on its application to string instruments and wind

instruments, is located in the work of Giordano Riccati, Delle corde ovvero fibre
elastiche, Schediasme VI.

4. The distance. Following the ordinary theory, the intensity of the sound, as the

intensity of every motion that leaves a common center in any direction, dimin-

ishes by the squares of the distances.

5. The density of the air. It is supposed that the intensity of the sound is because of
the density. The sonorous vibrations of a body, produced in an empty space, will

not be heard if one prevents the transmission of these motions to the solid matter

in which the sounding body is suspended or on which it is placed. Zanetti has

observed a weakening of the sound in an open vessel, where the air was heated,

and consequently its density diminished without changing the absolute elasticity

(Hawksbee, Exper. vol. II, p. 323). Roebuck (Transactions of the Royal Society
of Edinburgh, vol. V, part 1, p. 34), being shut up in a cavity excavated in rock,

which served as an air reservoir for the iron foundries at Devon, has observed

that the intensity of the sound was considerably augmented by the air com-

pressed by the action of the bellows. Because of the different densities of the air,

a sound produced down low is heard better, at a greater height, than the same

sound produced at the greater height down below.

6. The direction in which the air is pushed by the vibrations of the sounding body.

One hears, for example, the sound of a glass or metal plate more strongly if the

ear is turned in the direction of the surface. The discharge of a cannon fired

directly towards the observer is distinguished by greater intensity than that of a

cannon fired in the opposite direction. One will hear the words better if the

speaker is turned towards this side, etc.

7. The direction of the wind. It appears that wind increases the compressions of the

air by a modulation of the sound waves in such a way that, if the direction of the

wind gets behind it, a larger quantity of sound waves touches our ear than in the

opposite case.

198. Intensity of Sound Transmission Through Different
Types of Gases

The intensity with which sound is transmitted through different types of gas

depends, following Priestley (Experiments and observations relating to the various
branches of natural philosophy, vol. III, p. 355), exclusively on the density. For his
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experiments, he made use of a ring bell and a hammer, set in motion with a timing

device, and contained in a glass bell filled with gas, to observe the distance at which

the sound ceases to be perceptible to the ear.

In hydrogen gas, the sound was not much more perceptible than in the empty

space; in carbonic acid gas, it was much stronger than in the atmospheric air; and in

oxygen gas, it was also stronger than in the air, to a degree which, it is believed,

surpasses that of the density. Experiments made in nearly the same manner by

Mr. Perolle (Mém. de l’Acad. de Toulouse, 1781; Mém. de l’Acad. de Turin, 1786–
1787; Journal de Physique, vol. XLVIII, p. 455) gave the following results, which

differ a little from those found by Priestley:

Tone Intensity

Distance at which the

sound is no longer

perceptible

Atmospheric

air

. . . . . . . . . . . . . . . . 56 ft, 6 in.

Carbonic

acid gas

A little lower More muffled 48 ft, 5 in.

Oxygen gas Seems a little more acute More clear 63 ft

Nitrous gas Nearly as in oxygen gas . . . . . . . . . . . . . . . .

Hydrogen

gas

Not distinguished very well,

and resembling rather a very

faint noise

Without consis-

tency and without

strength

11 ft

If the sound of a small hand bell was a little graver in carbonic acid gas, I attribute

it to the delay that the vibrations of a sounding body, as also the oscillations of a clock,

feel from the resistance of the gas that surrounds them,which is somuch greater when

the fluid is denser. If the tone of the same sounding body seemed a little more acute in

the oxygen gas, this might be due to a type of illusion in the greatest intensity of the

sound. Otherwise it would be as difficult to explain as the difference of the results

that Priestley and Perolle obtained as to the intensity of the sound in the carbonic

acid gas. The other results show that the intensity of the propagation of the sound is

greater when the fluid is denser, just as the theory claims.

Nitrogen gas was not examined by either Priestley or Perolle; however, it can be

assumed that the sound propagated by this gas will be a bit weaker than if it had

been propagated by atmospheric air.

In my experiments mentioned in Pars. 67 and 196, which, like those of Priestley

and Perolle, do not deal with sound (of another sounding body) in different gaseous
materials, but the sound of these materials, I did not aim to examine the intensity of

the propagation of sound by these materials. However, these experiments could

have indirectly had such an effect, because the sounding part of the gas enclosed in

the organ pipe was surrounded by the other mass of the same gas, which propagated

the sound. I remember precisely enough that the sound of hydrogen gas, though

much more acute, was very weak and difficult to distinguish, and that the sound of

the oxygen gas, though more grave, was stronger than that of the atmospheric air.
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In the sound of carbonic acid gas and nitrogen gas, I do not remember having

observed anything remarkable as to the intensity. The nitrous gas seems better

suited to propagating sound than in making sound itself.

One inspired observation on the effect of hydrogen gas, which yielded the sound

of a spindly and reedy voice, is reported by Odier in the Bibl. britannique, nos.
79, 80, p. 347, and in the Journal de Physique, vol. xlviii.

199. Sound Propagation Through Vapors

The vapors of water, alcohol, and ether propagate the sound as well as air or other

gaseous materials, according to the experiments of Mr. Biot, published in Vol. II of

his Mémoires de Physique et de Chimie de la Société d’Arcueil, p. 94. These
experiments establish Mr. de Laplace’s idea that, in the propagation of sound by

expandable gas, small compressions made by the vibrations of the sounding body

cause heat to develop, which somewhat accelerates the speed of the propagation.

For (according to Mr. Biot) it is proven by the experiments of Deluc, Saussure, and

Dalton that the amount of water vapor, or the vapor of any other liquid, that forms in

an empty space depends only upon the space’s temperature and dimensions, so that

if the vapor is compressed and the temperature stays the same, one part of the vapor

will return to a liquid state. Therefore, each oscillation of a sounding body,

contained in the same environment, will diminish the space in one direction and

make it larger in the other direction. Thus there will be, on one side, a small amount

of vapor that will return to a liquid state, and on the other side, a small amount of

liquid will become vapor. These compressions and expansions will take place very

close to the sounding body in the very small range of its vibrations, but they will not

be produced beyond that. As such, the shock will not propagate in the rest of the

fluid mass, and consequently the sound will not be transmitted. But if the sounding

body, by compressing the vapor with its rapid vibrations, mechanically gives off a

certain amount of heat, the small compressed portion will not pass into a liquid

state; the sound will be able to be transmitted by the entire gaseous mass, just as

well as it can be in permanent gases. So then, if it happens like that, it necessarily

follows that in the small vibrations of vapors and gases, there is a release of heat

such that it must be considered in theory as causing changes in elasticity. But trying

to verify these changes by the application of a thermometer would be in vain,

because this instrument is no more affected by these successive and momentary

variations in heat than a barometer is by the momentary variations in elastic force

that occur in the production of sound.
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200. Distances at Which Sound Can Be Perceived

The distance at which a sound transmitted in the air is still perceptible to the ear

depends entirely upon the intensity, and consequently upon everything that serves

to determine it. The direction of the wind contributes a lot to augmenting or

diminishing the distance at which sound can still be heard. So do certain local

circumstances, for example, the directions of mountains.

There are examples where sounds have been heard from very great distances.

For example, in a siege at Genoa, the cannon shots were heard from a distance of

90 miles from Italy (Philosoph. Transact., no. 113). In the siege of Mannheim in

1795, they were heard at the other end of Swabia, at N€ordlingen and Wallerstein. In

the battle of Jena, they were heard between Wittenberg and Treuenbrietzen; I

myself heard cannon shots in Wittenberg, at a distance of 17 miles from Germany

(15 of which make a degree of the equator), not so much through the air as by

feeling the shaking of solid bodies by putting my head against a wall. When a fiery

meteor exploded, some heard the explosion 10 minutes later, from which one can

judge the distance and the necessary intensity for this effect. Among musical

sounds, there is none that can be heard farther away than horn music in Russia,

quite perfect in its genre. It has been heard at times at a distance of 5–7 wersts, or

roughly 1½ leagues [5.18 miles].

A rather well-known means of hearing a sound at a greater distance is to put

one’s ear to the ground. In this way, Franklin heard the sound of two stones thrown
one on top of the other at a great distance, as distinctly as if it had happened right

next to his ear (Experiments and Observations, London, 1774, p. 445). The earth’s
surface serves as a resonant table by transmitting the shocks that it receives.

201. Megaphones3

The human voice can be transmitted a great distance by a megaphone. To obtain

this effect, it is necessary that the lateral compressions of the air, which without this

would be dispersed in every direction, press against the walls of this pipe in such a

way that they take, as much as possible, a direction parallel to the axis and reinforce

the sound going out towards this side. A cylindrical or prismatic pipe, and in general

a pipe in which the diameter is the same everywhere, could not be used for this

effect; the sound waves that go out of the mouth in C (Fig. 259), in the directions

F and G, and that would be dispersed, remain in the pipe, and after being pressed

several times against the walls, they are dispersed while going out in the directions

M and N and in all other directions. Consequently, the only effect that one can

obtain by such a pipe consists in hearing the sound produced in C, at the other end in
L, without the least weakening or even a little more sonorous than if it was produced

in that place. Through such a pipe, two people, placed at opposite ends, could

3 In French, literally “voice carrier.”—RRB
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transmit and receive words at a considerably great distance. It is therefore more

agreeable to name such a pipe communication pipe rather than megaphone. This
quality of a pipe with a diameter that is equal everywhere, to transmit sound with

the same force at considerable distance from one end to the other, was observed by

several people in the Aqua Claudia [aqueduct] in Rome and by Mr. Biot (Mém. de
la Soc. d’Arcueil, vol. ii) in an aqueduct in Paris where even the weakest sounds are
sustained at a distance of 951 m or 488 toises,4 and the deepest voice, the same as

when one is speaking to the ear, is heard in such a way that all words are perfectly

distinct and a conversation can be followed. But to transmit a sound through the

open air at a great distance, the pipe must get bigger at the other end.

According to Lambert (Mém. de l’Acad. de Berlin, 1763), the most suitable

shape is a truncated cone, because if one wants to apply the catoptric principles,

sound waves are reflected by the walls such that, after one or more refractions, they

become parallel to the axis (Fig. 260) or at least only slightly divergent. If we

express the cone’s angle with p and the first angle of incidence by q, the angles of
incidence are q, q-p, q-2p, q-3p, etc., until the series becomes negative; so the angle

with the axis diminishes with each reverberation. All shapes that, by getting larger,

turn their convexity towards the axis must be rejected, according to Lambert,

because they spread the sound over an entire hemisphere. These types of shapes

are good for musical instruments because it is important to spread the sound out as

evenly as possible; but megaphones are designed to direct the sound towards the

place where it is intended to be heard. Thus, the curvature must be such that it turns

the concavity towards the axis, without actually becoming parallel to the axis, or

shrinking after having gotten bigger until a certain point. For if the surface becomes

parallel to the axis, it begins to produce the effect of a cylinder, and if it converges

toward the axis, it will have the effect of an upside-down cone. A parabolic

megaphone, whose mouthpiece must be in the focus, will have less of an effect

than a conical megaphone of the same length.

Mr. Hassenfratz (Journ. de Physique, vol. LVI, p. 18) conducted many experi-

ments by placing a watch in a megaphone and measuring the distance at which an

ear stops hearing the ticking of this watch. If, as Lambert says, it is necessary to

reject all shapes that, by getting bigger, turn their convexity toward the axis, the

earpiece that is usually placed at the end of a megaphone would be useless.

However, Mr. Hassenfratz observed that between two equal megaphones, the one

that has an earpiece made it so that the ticking of the watch could be heard at a

distance roughly double that of the other, which didn’t have an earpiece. When the

tinplate megaphone was doubled by wool fabric, the effect did not change.

Some authors have claimed that a megaphone has to be made of a very elastic

material to reinforce the sound made by its vibrations; others claim that the body

must not be elastic in order to avoid the confusion of sounds that the pipe’s
vibrations can cause. But it seems that this criterion doesn’t matter; the pipe’s
own resonance contributes very little to augmenting the sound because it would also

4A pre-metric system unit in France for measuring length, area, and volume.—RRB
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propagate toward the exterior; but it could not cause too unfavorable an effect

because all solid bodies can also propagate articulated sounds. It would not even

matter if the interior surface were polished or not. The intensity of the transmission

of the sound will depend only upon the interior shape, but the difference in material

could vary the tone.

The way of explaining a megaphone’s effects following the laws of catoptrics,

like the refraction of light in a mirror, while yielding valid results, does not seem to

exactly conform to nature, because:

1. The refraction of light depends on each point on the surface, but the action of

sound depends on the general shape of the surfaces it comes in contact with, and

the effect is not changed by small imperfections in these surfaces.

2. Light only spreads in a straight line, but sound, due to new centers of sound

waves, spreads in all possible directions.

It seems therefore that these changes in a sound’s direction are more similar to

the movement of waves on the surface of water, which, after encountering an

obstacle, make secondary waves that eventually spread over the entire surface of

the water, and whose center is at the same distance from one side of the obstacle as

the center of the primary waves is on the other side.

We communally consider Sir Samuel Morland to be the inventor of the

megaphone; his instrument was a rather large type of trumpet, made of

glass or copper. He wrote about it in a paper that appeared in London, and

there is an excerpt of it in the Philos. Transact., no. 79, p. 3056. Athan.
Kircher claims to have made similar instruments before Morland, but every-

thing that he and others said about these instruments before Morland has more

to do with ear trumpets than megaphones. Cassegrain (Journ. des Savans, vol.
III) gave them a hyperbolic shape and claimed to have had more success than

Morland. In Germany, Sturm (Colleg. curiosum, Nuremberg, 1701, p. 2) and

J. M. Hase (de tubis stentoreis, Lips. 1719) made many attempts at different

shapes of megaphones.

Lambert published a lot of research in his paper Sur quelques instrumens
acoustique (Mém. de l’Acad. de Berlin, 1763), but it is impossible to agree

with him when he wants to attribute the same movements to sound as he does

to light (Sects. 9–12), and when he aims to explain the sounds of trumpets by

the vibrations of metal reflected by air (Sects. 13–15). At that time, he had not

yet done research on wind instruments that was as precise as what he

published in the Mém. de Berlin, 1775. Lambert’s dissertation was translated

into German and published by Mr. Huth, Professor of Mathematics at

Frankfurt-on-Oder (in Berlin 1796), with interesting additions. The first

addition has to do with Alexander the Great’s horn or megaphone, mentioned

in Kircher, Ars magna lucis et umbrae and in his Phonurgia, adapted from a

work attributed to Aristotle, Aristotelis secreta ad Alexandrum magnum. The
second addition contains experiments on an elliptical megaphone, by which

(continued)

152 Section 1: On the Propagation of Sound Through Air and Through Other Gaseous. . .



the sound was strengthened very little but was more resonant; it worked better

as an ear trumpet. In the third addition, Mr. Huth recommends the megaphone

as a transmitter of news at great distances through the use of intermediary

stations; such a telephone could be useful, especially when, due to fog, etc., it
is not possible to use telegraphs.

Some remarks on the megaphone can also be found in Euler’s dissertation,
de motu aëris in tubis (Nov. Acad. Ac. Petrop., vol. XVI) and in Matthew

Young’s Enquiry into the principal phenomena of sounds and musical strings
(Dublin, 1784), p. 1, Sect. II.

202. Ear Trumpets

An ear trumpet is, so to speak, a reverse megaphone, arranged so that all the action

of the sound that is made on a larger surface concentrates in the auditory canal of

people who are hard of hearing. Lambert (in the paper cited, Sect. 69) recommends

the parabolic figure as the more advantageous, but it is necessary that the parabola is

truncated near the focal point, and that at this point a small tube is adapted for

transmitting to the auditory canal. One could still obtain the same effect in giving

these instruments a conical figure, but it is necessary for the cone to be truncated so

that the sound does not turn back before reaching the ear. Mr. Huth observed that an

elliptical megaphone worked well as an ear trumpet. In practice, other shapes are

used as well; for example, shapes that turn their convexity towards the axis are used

more or less successfully. Sometimes this instrument is also given a winding shape

for more convenience. In Traité des sens, by le Cat, p. 292 and in vol. II ofMachines
et Inventions approuvées par l’Académie de Paris, p. 109, etc., many ideas and

representations of ear trumpets can be found.

203. Speaking Chambers5

These changes in the direction of sound through the use of ear trumpets resemble

that which is observed in some rooms or chambers, called speaking chambers, in
which a weak sound, produced in a certain spot, is heard in another very far away

spot, while elsewhere it is not perceptible to the ear at a much lesser distance. The

most remarkable examples, reported by several authors, are the dome of St. Paul’s

5Also known as whispering galleries.—MAB
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Cathedral in London, where the ticking of a watch can be heard from one side to the

other; the gallery in Gloucester, where two people speaking very low can be heard

from one end to the other, at a distance of 25 toises [approx. 150 ft]; a hall in the

Paris Observatory; the Agrigento Cathedral in Sicily, where a very low voice can be

heard distinctly from one end of the church to the other. Abbé Actis described the

phenomena that he observed in this church in the Mém. de l’Acad. de Turin,
1788–1789; he also mentioned the cave known as ear of Dionysius (grotta della
favella) in the ancient Latomies6 of Syracuse. In the past, a person who stood in the

center of the spiral of this cave could hear people who were standing in the

convergent spirals; but this monument seems to have changed a lot due to new

holes that were made below, and to those that were blocked above; and yet a small

noise still multiplies infinitely. The tearing of a piece of paper can be heard very

distinctly from one end of the cave to the other, though the length is 47 ft 7 in..

If one wanted to deliberately construct a hall for this effect, one could give the

walls and ceiling the shape of an elongated ellipsoid, by which the sound coming

out of one focus would be concentrated in the other. A shape resembling two cones,

or two pyramids joined at the base, would produce the same effect, in such a way

that two people, placed at narrow opposite ends, could hear each other from one end

to the other with the lowest voice, while nothing could be heard in the other areas of

the hall.

204. General Explanation of an Echo

When the same sound is heard more than one time, it is called an echo. In all cases,
the reaction of the air compressed by the first sound surpasses the degree of the

natural density; therefore the retrograde compression can be heard as a second

sound similar to the first. When these repetitions happen one after the other, too

quickly to distinguish the intervals of time, they are called a resonance. It is
generally presumed that, at most, eight or nine different sounds can be distinguished

in a second of time; therefore, in order for a repetition of the same sound to be

heard, not as a resonance but as a genuine echo, it is necessary that the repetition

follow the sound at least 1/9 of a second later.

Ordinarily, the reactions of a sound are explained, following the laws of catop-

trics, like reflections of light on a mirror (Par. 200); but Lagrange showed, in his

Recherches sur la nature et la propagation du son, Sect. I, ch. 2 (Miscell.
Taurinens., vol. I), that a true cataphonic or catacoustic, comparable to the catop-

tric, does not exist, as d’Alembert already noted in the Encyclopedia. After him,

L. Euler outlined the theory of the echo, in theMém. de l’Acad. de Berlin, 1765, and
in his Dissertation de motu aëris in tubis (Nov. Comment. Acad. Petrop., vol. XVI),
ch. 2. Mr. Poisson produced some scholarly research on the reflection of sound by

6Quarries.—MAB
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an indefinite plane, an ellipsoid, a paraboloid, and a circular hyperboloid of

revolution, in Vol. VII of the Journal de l’École Polytechnique, p. 350. When an

echo is formed by the reaction of air that presses against an obstacle, the retrograde

compression will follow the normal laws of reverberation; the explanation by

catoptric principles does not therefore give false results. But there are still other

cases where an echo is formed when a long enough air stream, isolated toward the

sides, does not press against an obstacle, being terminated by the open air;

from which it follows that the echo is not produced by reverberations, but by

other circumstances.

205. Different Cases in Which an Echo Is Formed

An echo is produced when the compression of air particles, and the speed with

which each particle is displaced in a very small space, do not make an equal

progression, as in the normal propagation of sound (Par. 186), but are interrupted

by some sort of obstacle. Since the vibrations of enclosed air and open air follow the

same laws (Par. 185), the repetitions of the same sound, caused by different

progressions of speed and compression, will be presented here as reported by

Euler, by considering (under varying circumstances) the movements of a mass of

air enclosed in a pipe after striking it. It will be the same whether one imagines such

a pipe to be straight or curved, wide or narrow, or if the mass of air is isolated from

the other atmospheric air in any sort of way. When the pipe is immensely long on

both sides, the condensations and the speeds always follow an equal progression,

and at the same moment when the speed of the very small motion of each molecule

becomes equal to 0, its natural density is re-established. There is therefore no reason

that this portion of the air can continue the motion; one will therefore only hear a

simple sound, after P/K seconds, if P represents the distance between the ear and the

place where the sound is produced, and K represents the space that sound traverses

in one second. This is the normal propagation of sound, where the air does not make

more vibrations than the sounding body (Par. 186). But if the pipe tapers towards

one end or towards both, the compressions and the speeds of the air particles don’t
follow an equal progression, and consequently the compression and the speed

become equal to 0 at the same time, or until other obstacles stop the motion. A

tapered end of a pipe can be either open or closed. If it is open, the air, because of its

interaction with the open air, will always have the natural density, regardless of

speed. If it is closed, the speed of the air in that place will always be equal to

0, regardless of compression. The different cases in which one hears repetitions of a

simple sound are:

1. In a pipe (Fig. 261) that is tapered on one end Bb and is open and the other end
a extends to infinity, a sound that is agitated in L will only be heard as a simple

sound when it is near to the tapered open end Bb, after the time of Lb/K seconds.

Toward L, and even in L, the sound is heard twice, in such a way that the resonance
that is formed changes into a more pronounced echo as the listener gets farther from
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Bb. In each place a behind L, the original sound is heard after the time of aL/K
seconds. If Lb equals 338 m, there will be a two second echo. So this is an example

of an echo that cannot be explained by reflection.

This case could not exist for an experiment, except if, in the place of an infinite

extension, one imagines an extension too long for the sound to be able to have an

effect all the way to the other end; for example, in a very long gallery, where the

farther one goes from the open end, the more pronounced one hears the repetition of

sound.

2. When the pipe is tapered and closed in Bb (Fig. 262), and stretched to infinity

in the other direction, the same phenomenon will also happen. If the point L, where
the sound is produced, is slightly farther away from the closed end b, one hears a

resonance, and the greater the distance Lb, the more one hears a pronounced echo.

For each point a and in L itself, the echo will follow the original sound after the time

of 2BL/K seconds. We can see therefore that the results are the same, when the Bb
end is closed, as if it were open. Here one could say that the echo comes from

reflection; but since the same echo is formed when the end is open, although no

reflection could take place there, we can see that the formation of an echo cannot

really be attributed to reflection.

This second case is that which most likely occurs in experiments. This case

incorporates all the cases where the open air (whose vibrations follow the same

laws as those of enclosed air) pushes against a wall, a thick forest, or a rocky slope

and where it is necessary to look at this mass of air as tapered on one side and

indefinite on the other. The polish and the inequalities of the surfaces don’t matter,

since often the best echoes are found in mountainous regions and forests where

there isn’t a single even surface; but the general shape of the objects against which

the air is pushing must be suitable to produce this effect. Some aeronauts7 have

observed that at a sufficient height the earth always produces an echo that can help

judge how high the listener is.

3. When a pipe AB/ab (Fig. 263) tapers and is open on both ends, each sound

produced in any place L causes a multiplied echo, in which every fourth pulse is the

same. If the ear is at end A, it will hear the principal sound after a time of AL/K
seconds, then after a time of 2BL/K it will hear the first echo, which will be followed

by the second after a time of 2AL/K, then the third after a time of 2BL/K, then the

fourth after a time of 2AL/K seconds, and so on. The principal sound will therefore

be repeated an infinite number of times by the echoes, which will follow each other

alternatively in intervals equal to 2BL/K and 2AL/K seconds. If the sound is

produced in A itself, the number of echoes is reduced by half, and the intervals of

time between them will be equal, and equal to 2BA/K seconds, so if the length of the

pipe were 169 m, the echoes would follow every second. If the first sound is

produced in L, and if the ear is in the same place, the first echo will follow the

original sound after a time of 2AL/K, the second after a time of 2BL/K, the third

7 The word aéronautewas coined in France in the late eighteenth century to describe the pilot (and,
by association, the passengers) in a hot air balloon.—CBH
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after a time of 2AB/K, which, since it is produced by two equal agitations that are

similar to the principal sound, will be stronger and more distinct. This one will be

followed in the same order by echoes after the times 2AL/K, 2BL/K, 2AB/K, and so

on. If the point L is in the middle of the pipe, all of the echoes will follow each other

in intervals equal to AB/K seconds. If the ear is in another place P, the number of

echoes will be even greater, and the intervals between them will be more unequal.

The four echoes would follow each other in equal intervals of time only in the case

where L would be in the middle of the pipe and P in the middle between L and B.
The number of repetitions would be infinite if there were no resistance. This

multiplied echo cannot be explained by the catoptric principles.

This third case, where a pipe is tapered and open on both ends, is applicable to

long, vaulted galleries, open at both ends. Even on narrow paths, a resonance has

sometimes been noticed that would be a true echo if the path were long enough.

Mr. Biot (Mém de la Société d’Arcueil, vol. ii, p. 403), in his experiments on the

propagation of sound in a Parisian aqueduct, 951 m or 488 toises long, noted that by

speaking in the pipe he heard his own voice, repeated by echoes, up to six times.

The intervals between these echoes were all equal to one another and almost exactly

half a second. The last one came back a little bit after three seconds, which is to say

in a time equal to that which the sound used to transmit itself to the other end; but

the person who was at that end, and who was being spoken to, only heard one sound.

The half-second intervals of time that Mr. Biot observed are much less than those

that would result in theory (51
3
sec ); it seems that we must attribute this to the nodes

of vibration that were formed in the mass of air contained in the pipe, which

happens in all pipes whose diameters are small in comparison to their lengths.

4. In a pipe tapered and closed at both ends, the echoes follow each other in the

same intervals of time as in the preceding case, where both ends were open.

This case applies to long galleries with both ends closed, for example in mines,

where I noticed a resonance that was unpleasant to the ear. It also encompasses

multiplied echoes, which are occasionally found between two walls that are rather

far apart from each other, or between two rocky slopes.

5. When the pipe is tapered at both ends, with one end open and the other closed,

there is a multiplied echo, in which every eighth pulse or, if the sound is produced at

the closed end and stretches toward the open end, every fourth pulse is the same.

This fifth case can take place in rather long vaulted galleries, open at one end and

closed at the other.

206. Remarkable Examples of Echoes

Some examples of particularly remarkable echoes are mentioned by Athan. Kircher

in his Phonurgia, and by several other authors, for example, the one at Genetay, two

leagues from Rouen, which change the voice in different ways; the one by Koblenz

on the bank of the Rhine, which repeats a word 17 times; the one by the Chateau
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Simonetta, caused by two parallel walls, which repeats a word up to 40 times.

Gassendi mentions an echo near the tomb of Metella, which repeated the first verse

of the Aeneid eight times. In the Mém. de l’Acad. de Paris 1710, there are notes

about an echo caused by two opposite towers, which multiply the sound 12 or

13 times. Another, not far from Milan, which multiplies it even more than that, is

mentioned in the Philos. Transact. 480, No. 8. It was claimed that the one near

Rosneath in Scotland repeats a melody three times, each time in a deeper tone,

which I find to be unlikely. At Muyden, not far from Amsterdam, I observed an

echo, well-known in Holland, caused by a semi-elliptical wall; the two foci are a

few steps apart from one another, in a somewhat oblique direction toward the semi-

ellipse; the sound produced in one focus produces a very strong echo in the other

focus. It seems to come from the earth, which I attribute to a slight tilt of the wall

inside. It can be presumed that, if the wall had continued in the same way to make a

full ellipse, the echo would be even stronger and more multiplied.

207–210. On the Construction of Halls That Are Favorable
to Sound

207. It would be very useful to always know the best way to build halls, so that
sound could be heard distinctly throughout, without sacrificing some other attri-

butes or conventions, or things necessary for other goals. In most of the halls which

have been successful, it appears to be a matter of chance and not an exact theory. A

hall will be favorable to sound:

1. When it is well arranged to facilitate the natural propagation of the sound.

2. When the intensity of the sound is augmented by the resonance of other bodies,

or by suitable reverberations.

I have borrowed the method to explain this subject, as also some ideas, from a

small paper of J. G. Rhode (Theorie der Verbreitung des Schaller f€ur
Bauk€unstler, that is to say Theory of the propagation of sound for architects)
that came out in Berlin in 1800, and that I prefer to a lot of others.

208. It is very easy to arrange halls in a manner favorable to the natural propagation

of sound, by obtaining suitable reinforcements by artificial means; but this natural

propagation is not sufficient for very large halls, designed for great numbers of

meetings. According to Saunders (Treatise on theaters, including some experiments
on sound, London, 4), one can regard 70 ft as the distance at which an ordinary

voice is still perceptible; a theater built according to that maxim would contain

approximately 2000 people. When the space is not big, so that no one is more than

60 ft away from the speaker, the shape of the hall is almost indifferent, because the

sound traverses this space too quickly for one to hear an unfavorable reverberation.

A similar reverberation will be able to reinforce the sound in a single case, namely,
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when the surface against which the sound presses is a little distant, and conse-

quently the reaction is completed too quickly to distinguish it from the fundamental

sound. To prevent the resonance or echo that a reaction could cause, it will always

be advantageous to arrange the seats in the form of an amphitheater, successively

elevated, so that no surface is found in any part that is too big, against which the

agitated air would be able to be pushed in the same instant. If the hall is not too high

and too arched, the resonance or the echo that would be caused by the reaction of

the sound from the high to low would be better avoided, and the sound will be

spread more easily in this smaller space. The semi-circular or semi-oval shape that

is ordinarily given to theaters is suitable to contain a lot of people at a modest

distance from the place where the sound is produced; but the shape of a former

theater of Athens with divergent walls (Fig. 264) could contain an assembly of even

a greater number, at the same distance.

It is also necessary to avoid anything that can prevent the propagation of the

sound, for example, decorations that stick out too much from the walls, etc.

An orchestra must not occupy toomuch space, so it is not too difficult to follow the

same tempo, because of the time that it takes for the transmission of the sound from

one end to the other. Similarly, it is almost impossible for all to follow the same

tempo if one places two choirs far apart from each other, at the two ends of a hall.

209. Resonance of other bodies, for example, if the walls are paneled with thin

boards, or if an orchestra is seated on wooden boards which transmit vibrations, is

applicable for halls designed for music; but it will not make it easier to hear speech.

In several theaters, the ancients used practical vases8 between the seats of the

spectators to reinforce the sound, according to Vitruve (Book 5, Ch. 5), but this

method did not seem to be of any use.

210. Suitable reverberations are the better means of increasing the intensity of

sound. Some architects followed principles that were directly opposed to those that

it would have been necessary to follow. They imagined that sound that goes forward

must make a retrograde action, which only makes a disagreeable resonance that

degenerates to an echo, so much more pronounced when the reflecting surface is

moved away from those that hear the sound. To obtain a useful increase in the

intensity of the sound from the reverberations, it is necessary that every retrograde

action is avoided, but that the sound that is scattered to the right, to the left, behind,

and above, is rerouted towards the public by a suitable shape of the walls, and that it

can be heard everywhere almost in the same instant as the principal sound.

Of all possible shapes in which a hall can be designed to hear sound, the ellipse is

the most advantageous.9 The principal attribute of an ellipse is that all of the rays

emanating from one focal point are reunited at the other focal point. If it were

possible to concentrate an orchestra at one of the focal points, and the whole public

8 Sounding vases.—MAB
9 Present day architectural acousticians do not consider elliptical halls to be the “most advanta-

geous” shape.—TDR
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at the other, the secondary sound would be very strong, but of no use: if the hall is

small, one does not need a reinforcement of the sound, and if the hall is large, one

will hear the secondary sound later than the fundamental sound, unless the ellipse is

very elongated. When the sound is produced and heard outside the focal points, the

resonance or the echo will be shown in many different ways. In Berlin, the theater

and the concert hall, regular ellipses, will serve to observe the effects of the

elliptical shape. A round shape would not be suitable because of the multiple

reverberations, as, for example, in the dome of St. Paul’s Church in London and

in the Rotunda10 in Rome. I have also observed a very prolonged resonance in a

half-round hall.

When it is a matter of hearing a speaker distinctly everywhere, or a singer, or an

instrument, a parabolic shape for the walls and the ceiling would be highly

suitable11; one could make the two branches of the parabola pass into upright

parallel lines (Fig. 265). The sound should be produced at the focal point of the

parabola, marked in the figure by a dot; and all of the sound that does not directly

reach the public would reach them reverberated in directions parallel to the axis.

In general, the intensity of the sound of an orchestra or of an organ will be greatly

increased when placed under a deep narrow vault, which is not very wide. The same

effect would also be obtained by giving the walls and the ceiling a conical or

pyramid-like shape, that could be extended into parallel walls (Fig. 266); the

speaker or the orchestra should be seated in the narrow section of the hall, at the

point where it would be truncated or rounded; the reverberations of the sound would

resemble those of a megaphone. Whatever the form, a successive elevation of the

seats will always be favorable to the sound.

It appears to me that music is very effective in a round hall where the ceiling is

vaulted at a sufficient height; the orchestra should be seated at the very top, or in the

center of the dome. The effect would be the same if the ceiling were conical, or if

the shape of the hall were a square or a polygon and the ceiling were pyramid-

shaped. The sound coming from the top, and reverberating almost as in a mega-

phone, would be heard everywhere very distinctly without the least echo and

without any prolonged reverberations.

I have observed a surprising effect of music at Ludwigslust in the church of the

court of the Duke of Mecklenburg-Schwerin. The Church has a single nave; all the

way at the end, where the altar is found, there is a tableau that represents the

appearance of the angels that announced the birth of Jesus Christ to the shepherds.

Between the boards on top that form the clouds is seated an orchestra that does not

see the public, and which is not seen; all the sound is poured out from the top and

only reaches the public by reverberations from the ceiling. The sound is beautiful

and distinct, and before knowing of the construction of the Church, it is difficult to

guess where it comes from; one looks for the orchestra without finding it.

10 Pantheon.—MAB
11 Present day architectural acousticians would probably disagree with this statement as

well.—TDR
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Rhode, in his Traité cited in Par. 207, noted that most theaters are not very

favorable to sound, because the laws of the propagation of sound are neglected in

the use of pipes with parallel sides and megaphones. Box seats on the sides, near the

stage, are very unfavorable because they absorb too much sound. It would produce a

better effect if there were only straight or parallel walls on the sides, as in Fig. 267,

or diverging walls, as in Fig. 264, without protruding decorations. The ceiling

should not be too high; it can be parallel to the orchestra and gradually rise toward

the part of the hall farthest from the stage. The opposite end of the theater can form

the arc of a circle. The well-known theater in Parma can serve as an example. For

even larger theaters, divergent walls would be preferable. The amphitheatrical

seating arrangement would not prevent the construction of some separate special

seating, by interrupting the series of seats by a modest space. Rhode also noted that

the standard arrangement of the wings [backstage] is unfavorable to the propagation

of sound, because they absorb all the sound that spreads toward the sides.

According to him, the old triangular turning machines, whose three surfaces can

be painted or covered in painted netting, would be more favorable for sound, when

they are turned in such a way that they form a wall that reflects sound forward, at

least toward the proscenium.

Since an air current, going in the same direction as the sound, greatly intensifies

the sound, some have wanted to use that method in a theater; but experience

demonstrated that the inconveniences surpassed the advantages that could be

gained.

It seems that ancient theaters, where the seats were successively elevated as they

got farther from the stage, were more suitable for facilitating the natural propaga-

tion of sound than reinforcing it by artificial means. In the rest of these theaters, for

example in the Circus of Murviedro in Spain (in the ancient city of Sagunto),

according to Mr. Biot, and also as in the Arena of Nı̂mes, and in the amphitheatre in

Hadrian’s Villa in Tivoli, what is said in the arena can be heard very well in the

more elevated areas. These effects can be attributed in part to reflections of sound

by the earth, and to the fact that the propagation of sound up high is facilitated by

the action of the denser air on slightly less dense air.

211. Works and Dissertations that Contain Research
on Sound Propagated in the Air

The following works and dissertations serve to further inform the research that has

been done on the theory of the propagation of sound in air:

H. Newton, Principia Philosophiae naturalis mathematica, lib. I, sect. VIII, de
motu per fluida propagato.

Research on the propagation of sound, by L. Euler, with two continuations in the

Mém. de l’Acad. de Berlin, 1753.
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Clarifications and details on the generation and the propagation of sound and on

the formation of an echo, by L. Euler, in the Mém. de l’Acad. de Berlin, 1765.
L. Euler, de propagatione pulsuum per medium elasticum, in Nov. Comment.

Ac. Petrop., vol. I.
L. Euler, de motu aëris in tubis, in Nov. Comment. Acad. Petrop. vol. XVI.
Research on the nature and the propagation of sound, by Lagrange, in the

Melanges de Philosophie et de Mathematiques de la Société de Turin, vols. I and II.
On the manner of rectifying the two points of the principles of Newton, relative

to the propagation of sound, and the motion of waves, by Lagrange, in theMém. de
L’Acad. de Berlin, 1786.

Giordano Riccati, Delle corde ovvero fibre elastiche, Bologna, 1767.
Enquiry into the principal phenomena of sounds and musical strings, by

Matthew Young, Dublin, 1784.

On the speed of sound, by Lambert, in the Mém. de l’Acad. de Berlin, 1768.
Observations on the theory and on the principals of the motion of fluids, by

J. Trembley, in the Mém. de l’Acad. de Berlin, 1801.
Treatise on equilibrium and the motion of fluids, by d’Alembert, book 2, chap.

IV, and Opuscul. vol. V.
On the theory of sound, by Mr. Poisson, in the Journal de l’École Polytechnique,

vol. VII.
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Section 2: On the Propagation of Sound
Through Liquids and Solids

212. All Possible Materials Propagate Sound

The vibrations of a sounding body are transmitted to all contiguous material,

directly or indirectly. Air is the ordinary conductor of sound and the most proper

medium for transmitting the sensation of sound to the exterior organs of hearing to

man and to all types of land animals. But all liquid and solid materials also

propagate the sound with a great deal of intensity; the same with all of the

modifications to the sound propagated by these materials.

213. Propagation of Sound in Water

The propagation of sound in water may be concluded from the fact that aquatic

animals also possess organs of hearing; it is noted also in the experiments. When

under water, one can hear sounds that are produced in the air, but one hears more

strongly the sounds that are produced under water. (Journal des Savants, 1678,
p. 178; Hawksbee, Philos. Transact. No. 321; Arderon, Philosoph. Transact.
No. 486; Nollet, Mém. de l’Acad. de Paris, 1743 and Leçons de Physique
expérimentale, vol. III, p. 417; Musschenbroek, Introd. ad Philos. nat., vol. II,
Sect. 226; Monro, Physiology of fishes, etc., Ch. IX).

Sound produced in the water is also heard in the air. The air does not contribute

at all to the propagation of sound in water; if the air contained in water is carefully

separated, the propagation is the same, according to the experiments of Nollet and

Musschenbroek. But, unlike air, water is not compressible when an enormous force

is applied, except to a very small degree, according to the experiments of Canton,

Abich, Zimmermann, and Herbert. One will not be able to apply the theory of the

propagation of sound in air, to determine the way in which one particle of water

transmits the pulse to another, which is not consistent in compression and

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
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expansion. These differences between liquids and expandable gases are also shown

in that liquids never make the same sound vibrations as the air or other gaseous

material contained in a pipe.

214. The Resistance of Water Delays the Vibrations
of a Sounding Body

When a bell or a sounding vessel is full of water, or when a sounding body is

plunged into water, the sound is graver than that produced in the air, because of the

delay of the vibrations by the resistance of the water as a denser fluid. This delay

increases when the vessel is filled with water, or when the sounding body is plunged

more deeply under water. At an even greater depth, sound vibrations cease, and

only an imperceptible clacking is produced. Some other liquids, for example, oil,

milk, foaming champagne, etc., resist even more sound vibrations than water.

215. The Velocity of Sound Through Liquid Matter
is Unknown

The velocity with which sound is propagated in water, or in other liquids, is

completely unknown. One can nevertheless presume that it will not be the same

at different depths, because the density does not increase due to the pressure, as in

the expandable fluids. It would be difficult to do experiments on this subject.

216. The Intensity of Sound Propagated Through Water
and Through Other Liquids

The intensity of the propagation of sound through water, when it is produced in the

water, greatly surpasses that of the propagation of sound in the air. Nollet observed

that the effect of two rocks striking against each other was almost unbearable. A

sound produced in the air is also heard under water, but it is weaker, because of the

lesser action of a less dense fluid1 on a denser fluid.

Mr. Perolle did many experiments on the intensity of sound in different liquid

materials, which he published in theMém. de l’Acad. de Turin, 1790–1791. He used
a watch hanging by a thread in a vessel filled with the liquid material to determine

the distance at which one can still hear it ticking. In the air, this distance was 8 ft, in

1Gas, for example.—MAB
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water 20 ft, in olive oil 16 ft, in oil of turpentine 14 ft, and in ethanol 12 ft. When

repeating these experiments, he did not always obtain the same results. We cannot

demand in these experiments the same exactitude that would be required if there

were a continuation of the same material between the sounding body and the ear;

yet we can see that these fluids vibrate with more strength than air; even the vessel

and the table it was placed on were noticeably vibrating; the surface of the water

stayed still. Each fluid is distinguished by a different tone.

Mr. d’Arnim (Annal. de Gilbert, vol. iv, ch. 1, p. 113) notes that the intensity of

sounds must be due to the specific gravities of fluids, if the other factors remain the

same, and that the results that Mr. Perolle obtained do not differ very much in these

specific gravities.

The surface of water stays still because the motion of each particle happens

only in an extremely small space, such that it is impossible or almost

impossible to perceive. The motions of the surface of the water, represented

in Figs. 252 and 257, do not apply to the object I am talking about right now,

because they are caused by sounding vibrations of the vessel itself, which

pushes back the contiguous/surrounding water.

217. Solid Matter Also Propagates Sound

Solid materials propagate sound very strongly, especially if their shape is favorable

to vibrations; but to better perceive the sound propagated by such a material, it is

useful to press it against the firm parts of the head, which can transmit the

impressions to the interior organs of hearing. A simple wire made of such a material

will suffice to propagate sound; for example, when two people stretch out a wire,

while holding the ends between the teeth, they can hear each other by covering their

ears and speaking very low. If one hangs a large silver spoon at one end of the wire

and holds the other end between the teeth, it sounds, when one’s ears are covered,
like the sound of a large bell. With the ear held to one end of a long beam, one

distinctly hears the impact of a pin hitting the opposite end, whereas the same sound

transmitted by air cannot be heard at the same distance. A rod of any length,

thickness, and material transmits sound, and even words, very well if one of the

ends is held against the sounding body and the other is held by the teeth or at

another firm part of the head, especially when the material of the rod is somewhat

elastic. The effect is almost the same if the person who is speaking holds the rod to

their teeth, their throat, or even a button on their clothes, held tightly against their

chest. Instead of a single rod one could also use an extension of several rods, even if

they are joined at different angles. Words are heard even more distinctly if the rod is

held against a metal, glass, or porcelain vessel, and if the speaker directs his voice

toward the inside of the vessel. The intensity is even greater if the vessel itself is
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held against the teeth, or another suitable part of the head. The sounds of an

instrument are heard very well, when the ears are blocked, and the end of the rod

is pressed to the resonant table or against the walls of the instrument. In the same

way, it would also be possible to hear the sound of a tuning fork pressed against an

instrument, after its vibrations, propagated by the air, stop being perceptible to the

ear. This method of hearing sounds produces a sensation almost as if the sound were

coming from the rod itself. Every material changes the tone differently.

Deaf people, or those who are hard of hearing, could use this method to hear

words or the sound of an instrument, if the cause of their hearing loss is located in

the exterior organs; but if the interior organs are the cause, it would not be helpful

to them.

This propagation of sound through all solid materials also allows the miner

digging a passageway to hear the blows of the miner on the opposite side and

thereby judge his own direction.

Many observations about the propagation of sounds by solid materials can be

found in a dissertation by J. Jorissen, Nova methodus, surdos reddendi
audientes, Halle, 1757; and in another by Winkler: de Ratione audendi per
dentes, Lips. 1759; in Kircher’s Musurgia, book 1, sec. VII, ch. 7; in

Boerhavii Praelect. in Institut. Rei medicae, vol. IV, de auditu, etc. More

recent studies include those of Perolle, Biot, Herhold, and Rafin.

218. Direction of Motions

One can presume that the longitudinal or transverse direction of the motion of a

propagating body, when it is pushed by the vibrations of a sounding body, depends

in part on the form of the propagating body, and in part on the direction in which the

sounding body acts on the body that propagates the sound. The nature of the

vibrations of the sounding body (if they are transverse or longitudinal) will be

indifferent.

219. Velocity of Sound Through Solids

It seems to me that the velocity of the propagation of sound in solid materials, as
long as it is made by longitudinal vibrations, can be determined by the following

method. Sound is propagated by a length of open air in the same amount of time as

that of a column of air of the same length, enclosed in a pipe, which makes a

longitudinal vibration (Par. 185). The longitudinal vibrations of rigid bodies (Pars.

77–83) follow the same laws as air; we can thus suppose that the sound is
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propagated by each rigid or expandable material at the same time that that material,

as a sounding body, makes a longitudinal vibration. The propagation of sound by

rigid materials would thus be all the more rapid as the longitudinal sound gets more

acute, supposing that the length is the same. Therefore, roughly the same correla-

tion will exist between these velocities and the velocity of the air, as the sounds

presented in Par. 82. However, the length being the same, the longitudinal sound of

tin is more acute than that of air by two octaves and a major seventh. That of silver

is more acute by three octaves and a tone, and that of copper by almost three octaves

and a fifth. Those of iron, glass, and fir, whose vibrations are more rapid, surpass

that of air by at least four octaves and a semi-tone, etc. So if there were a sufficiently

long and homogeneous continuation of such a material, the speed of the propaga-

tion of sound by air would be surpassed by that of tin approximately 7.5 times,

silver 9 times, leather almost 12 times, iron and glass almost 17 times, different

types of wood 11–17 times, and terracotta roughly 10–12 times.

220. Experiments That Have Been Performed
on This Subject

The experiments that have been done up until now note a greater speed of the

propagation of sound through solid materials than through air. Mr. Wunsch, Pro-

fessor at Frankfurt-on-Oder, published experiments (in his Mémoires allemands,
présentés �a l’Académie de Berlin 1793) on the propagation of sound by a very

extended expanse of wooden boards. Sound is propagated much more rapidly than

by air; but we cannot agree with him when he claims (like Hook in the preface of his

Micrographia) that sound propagates itself through solid bodies instantaneously, or
at least as quickly as light. Mr. Herhold and Mr. Rafin in Copenhagen performed

experiments (published in Reil’s Archiv f€ur die Physiologie, vol. III, ch. 3, p. 178)
on the propagation of sound by a cord with a length of 300 ells or 600 Danish feet.

One of the ends of this twisted linen cord was tied to a wooden stake, and a silver

spoon was attached near that end, so that they hit each other; the other end was

pressed against the ear, or held in the teeth, while holding the cord. The sound was

heard through the cord much quicker than through the air; the difference seemed to

them to be almost a second, which seems to be too much for that distance. The most

interesting experiments on this subject are those of Mr. Biot, which I mentioned in

Pars. 201 and 205, described in vol. II ofMémoires de la Société d’Arcueil, p. 403.
For these experiments, he used pipes in a Parisian aqueduct, made of cast iron, that

altogether formed an uninterrupted length of 951 m (488 toises). In the last pipe, he

placed an iron ring of the same diameter as himself, wearing at his center a bell and

a hammer that could be dropped at will. So at the other end it must have been

possible to hear two sounds, one transmitted by metal and one transmitted by air. He

went on to verify these experiments with two demonstrations where, after a certain

time, someone delivered a blow at each end. Mr. Hassenfratz (Traité de Physique
par M. Ha€uy, sec. 479), having gone down into one of the quarries located
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underneath Paris, tasked someone to hit a hammer against a rock mass that forms

the wall of one of the passageways, in the middle of the quarries. He always

distinguished two sounds, one of which, transmitted by the rock, arrived earlier

than the other, transmitted by air; but it also got weaker more rapidly as the observer

got farther away.

221. Intensity of Sound Propagation Through Solids

The intensity of the propagation of sound through solids greatly surpasses the

intensity of the propagation of sound through open air (Par. 216). The best exper-

iments on this subject are those of Mr. Perolle, published in theMém. de l’Acad. de
Turin, 1791–1792, and in the Journal de Physique, vol. XLIX, p. 382. He used

various materials, with one end touching a watch and the other touching one of the

firm parts of the head; assuming the ear was not blocked, the sound was heard much

better than if the sounding body had been placed in the air at a much lesser distance.

The intensity of the propagation by cylinders of different types of wood seemed to

decrease in the following order:

1. Fir

2. Campeche wood

3. Boxwood

4. Oak

5. Cherry

6. Chestnut

In general, the metal cylinders propagated the sound a bit less than the wood

cylinders. The intensity seemed to follow this order:

1. Iron

2. Copper

3. Silver

4. Gold

5. Tin

6. Lead

The strings propagated it with less force than the solid bodies, and the intensity

seemed to follow this order:

1. Catgut

2. Hair

3. Linen

4. Silk

5. Hemp

6. Wool

7. Cotton
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The pieces of zinc, antimony, glass, rock salt, gypsum, and dried clay were also

good conductors of sound; marble was noticeable for the small amount of force

with which it transmitted the motion.

In the experiments that I performed on this subject, I observed the greatest

intensity when the sound was propagated by glass rods or by thermometer or

barometer tubes, and by rods of fir wood.

It seems that the intensity also depends on the shape of the body propagating the

sound, if it is more or less suitable for vibrating in different ways. A rod or a blade

will propagate sound much better than a shapeless mass of the same material.

Descartes has already noted (in Epist. p. 2, ep. 72) that the intensity of the

propagation of sound by solid bodies is greater than the intensity of the propagation

of sound by air, due to the greater cohesion of these bodies.

222. Reinforcement of Sound by a Resonant Board

The resonance of solid bodies is used to increase the effect of a sounding body that,

without this artificial means, would have too little intensity. The sound of a string,

stretched on a narrow piece of wood, with no support, would be very weak; this is

the reason why one stretches the string on a thin wooden board, to increase the

effect of the vibrations that the string transmits to this bigger surface. Also, the

sound of a very weak tuning fork or another type of fork is greatly increased when

this body is leaned on a wooden board, or on another support that is sufficiently

extensive and elastic. A similar resonant body must be looked at as being of

indeterminate dimensions, since it vibrates in all possible intervals of time. In

every sound, reinforced by vibrations transmitted to a larger surface, the whole

body resonates in motion, in such a way that it is divided into vibrating parts,

alternately above and below, separated by nodal lines, almost as in the character-

istic vibrations of plates, described in Sect. 7 of the preceding part. If one wants a

resonant board to reinforce all sounds, especially the gravest, it must not be too

small or too thick, and it must be elastic enough to easily vibrate in all modes. In

observing carefully, one will find that a resonant board often reinforces some

sounds more than some others; this unequal reinforcement is most likely to take

place if the sounds are the same as those that the board could render if it were the

sounding body. One will be able to find the places that are more or less in motion in

the reinforcement of a sound, while supporting a tuner that renders the same sounds,

successively, at the different points of the board and while observing the different

intensities of the sound. Any wooden box will serve for these experiments. The

differences in intensity will again be greater if one sets up or supports a pointed iron

wire in different places, in order to produce the modes of vibration described in

Pars. 69 and 70.

A resonant board will reinforce several sounds at the same time, vibrating in

different modes, when one does not prevent the other (Pars. 164–176).
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Maupertuis (in the Mém. de l’Acad. de Paris, 1724) has better explained the

intensification of all the sounds made by the same board, by claiming that

each sound shook only some fibers endowed with an elasticity in compliance

with this sound.

223. Sound Produced by Motions in all Bodies That
Can Vibrate in the Same Time Intervals

A sound that is transmitted in the air, or in solid matter, puts in motion all of the

bodies that can vibrate in the same time interval. If, in the same instrument, or in

different instruments that can act on one another by the air or by a continuation of

other material, two strings are in unison, and one of the strings is put in motion, the

other will also vibrate; because in every time interval where it can make a vibration,

it is pushed again by the vibrations of the other one. The same phenomenon will

take place if one of the equal sounds, or both of them, result in divisions of the string

into aliquot parts. One can render visible the nature of these vibrations by putting

small papers on different points of the string (Par. 37).

Another reverberating sound will also produce more or less such a resonance,

because one of these bodies, after a small number of vibrations, is pushed again by a

vibration of another. A strong enough sound can rather easily shake windowpanes,

walls, or other objects; this happens in the case where the nature of the shaking body

permits it to vibrate in the same interval of time as the body that produces the sound.

224. Vessels Can be Broken by the Voice, According
to Some Authors

Some authors, such as Morhof (Stentor hyaloclastes, sive de scypho vitreo per vocis
humanae sonom rupto, Kil., 1683) and Bartoli (Trattato del suono e de tremori
armonici, Bologna, 1780), talked of glass vessels, thin and convex, that were

broken by a very strong and sustained voice, and that this phenomenon was

preceded by a very strong quivering. The sound of voice then had to be the same

each time; an octave that was suited to the vessel. I have also been told of a place in

the Talmud (Bawa Kama, 18) that contains discussions on the damages that can be

demanded when a vessel is broken by the voice of a domestic animal; which leads

one to presume that, if a similar case had never happened, one would not have

conceived the idea to take up discussion on this subject.
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Part IV

On the Sensation of Sound:
On the Hearing of Men and Animals

It should be noted that Chladni’s exposition treatment of
hearing is of value for its historical significance. Although it
does contain some correct insights, it differs from modern
auditory theory in a number of ways.—JPC



Section 1: Human Hearing

A. The Structure and Functions of the Hearing Organs

225. Explanations

Hearing is the sensation that vibrations produce in the ear. The impressions of the

vibrations are able to be transmitted by any matter, but the air is the ordinary

conductor that transmits them to the auditory nerve by the outer and inner parts of

the ear.

226. Position and Parts of These Organs

The organs of hearing are situated on two sides of the head, in the portion of the

temporal bone which, because of its hardness, is called the petrous bone. The parts
which constitute these organs are the external ear, the auditory meatus, the tym-
panic cavity, and the labyrinth. The last is the destination for the sound itself, and

the other parts only serve to transmit the impressions of the vibrations in the air to

the cochlea.

227. The Outer Ear

The exterior of the ear (or the outer ear) is cartilage in the shape of an almost half-

oval, which is designed to reinforce the sound. This section consists of a housing

called the concha; some projections, as the exterior edge withdraws, called the

helix; a projection almost parallel in back of the helix, that crosses the ear

obliquely, called the antihelix; a projection located toward the front of the
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auditory meatus, called the tragus; and another small one on the other side of the

auditory meatus, that is called the antitragus. The lower section of the cartilage

terminates in a fatty lobe. Some muscles seem to be designed to move the outer

ear, but there are very few individuals that are able to use them for this effect;

perhaps, because one loses the abilities of early childhood because of the pressure

of head coverings.

228. The Auditory Meatus

The auditory meatus is part cartilaginous and part bony. The housing of the concha
becomes tubular, and continues thus as far as the bony section, terminated by the

eardrum that immediately receives the vibrations of the air, for the transmission to

the inner ear. The face of the eardrum is an irregular cone. It is concave downwards

on the outside and pointed inwards. It is attached to a circle of bone that is called the

framework.

229. The Tympanic Cavity

Between the eardrum and the labyrinth, one finds the tympanic cavity, an irregular
cavity that is almost a half-circle, full of air, and communicating with the mouth

by a canal called the Eustachian tube. The partition that is face to face with the

eardrum presents an oblique projection called the promontory. Above this pro-

jection is located an opening of the labyrinth that is called the round window; it is

covered by a membrane. To the underside there is another opening of the

labyrinth, the oval window. It allows the impressions of the vibrations on the

eardrum to be transmitted to the labyrinth by an intermediate, very mobile,

mechanism composed of four bones: the hammer, the anvil, the lenticular bone,
and the stirrup.

The hammer is formed by a long and thin shaft, with the end adhered to the

eardrum; and with a head that is at an angle with the shaft, and which articulates

with the anvil. The part of the head that is slightly thinner is called the collar; it has
two protuberances, the short protrusion and the spindly protrusion. This can be

looked at as the stationary point of the lever. The anvil articulates on one side of the

head of the hammer, and the part opposing the two protrusions, which it uses for

support; the other is articulated by the lenticular bone with the stirrup, whose shape
resembles that of a stirrup used to mount a horse. It is at an almost right angle with

the anvil; the mobile base forms the oval window of the labyrinth, which is shaken

on the interior by its pressure. The hammer has three muscles, the stirrup a single

one, and the anvil has none at all. It seems that this device serves to allow people to
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hear more perfectly, but one has heard about cases where these organs have been

destroyed (in the opinion of Astley Cooper, in the Philosoph. Transact. 1800, vol.
1, no. 8). Sometimes the deafness has been healed (for a short time) by the

perforation of the eardrum, according to, for example, Mr. Hunold of Cassel. In

these cases, the sound appears to be transmitted to the labyrinth by the immediate

action of the air surrounding the membrane of the round window, which Scarpa

calls the secondary membrane of the eardrum.

230. The Labyrinth

The labyrinth, so called because of the complex canals, is part of the inner ear,

closely enveloped by the rock of the temporal bone. It contains the auditory nerve,

differently scattered membranes, and fibers in a watery gelatin. Its parts are the

three semi-circular canals, the vestibule, and the cochlea.
The semi-circular canals, of which there are two, united at one end, are vertical.

And the almost horizontal third contains similar membranous canals, each of which

has a bulb-shaped swelling. These membranous canals leave the bony canals and

are rejoined in the cavity that is called the vestibule and form a sac, called the

common sac of the vestibule. Another smaller separate sac is called the proper sac
of the vestibule. The cochlea, part bony and part membranous, rotates itself around

a conical axis in a spiral that completes two and a half turns and diminishes so that

the cochlea approaches a globular shape. One of its two ramps comes through the

round window that is in the tympanic cavity; the other goes to the vestibule that is

connected to the cavity by the oval window.

231. The Auditory Nerve

The auditory nerve is very short and appears to be produced from a grayish band

that crosses the posterior face of the pedicle of the cerebellum. It enters the

labyrinth twisted on itself, by the internal auditory canal, and divides into four

shafts, of which two go to the bulbs of the semi-circular canals. A third, situated

between the two preceding, expands into the vestibule, and the fourth, which is the

continuation of the trunk, continues into the cochlea in numerous nets.

The facial nerve that enters with the auditory nerve at the far end of the same

canal gives nets to the muscles of the hammer and the stirrup and forms the

tympanic rope, a nerve net, so named because it is placed under this membrane,

as a rope that crosses the membrane of a drum.
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232. Ordinary Transmission of Impressions to the Inner Ear

Sound impressions are received in the following way. The vibration of the air

agitated by the sounding body disturbs the eardrum. This moves the small bones in

the cavity, which act on one another as levers. The base of the stirrup imprints these

vibrations on the gelatinous fluid that fills the whole labyrinth, by means of the oval

window. The vibrations of the eardrum also disturb the air contained in the cavity,

which transmits these impulses to the round window, so that the impression is

handled in two ways at the same time. The auditory nerve, the substance of which is

widespread in the whole labyrinth, transmits these impressions to the brain, as the

common center of all sensation.

233. Transmission of Impressions by the Solid Part
of the Head

Sounds propagated by liquid or solid matter can be heard especially well when the

vibrations are transmitted to the solid parts of the head, which transmit it to the

auditory nerve, as discussed in Sect. 2 of Part III. The impression is stronger than

that of sound propagated by the air and transmitted through the ear in the regular

way. The effect (or the timbre) is made up of the original timbre and the one that is

propagated through imprinting.

Mr. Perolle has conducted many experiments on hearing, experimenting on

different sections, which have been published in the Mém. de la Societé de Mé
decine. An excerpt of his paper is found in the Journal de Phys., Nov. 1783. The
solid parts of the head transmit the pulsations of a ticking watch better than those

that are covered with a lot of flesh. The teeth, especially the incisors, are very

sensitive, as are also several bones of the cranium, first vertebrae of the spine, etc.

The soft parts of the mouth and the cartilaginous parts of the nose do not have any

type of sensitivity. When the watch was placed in the mouth, the sound was not

propagated through the Eustachian tube.

A rather strong sound, for example, the beating of a drum, is also heard

faintly when the ears are blocked, by the action of the air on the solid parts of

the head.

234. The Impressions Act on the Entire Labyrinth

The impressions of the vibrations are transmitted to the two windows of the

labyrinth, disturbing all the mass of liquid that the labyrinth contains, as in

general every pressure on a fluid is spread to the mass, in such a way that every

molecule is pressed with the same force (according to Euler, de statu aequilibrii
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fluidorum, in Comment. Acad. Petrop. vol. xiii and d’Alembert in his Traité de
l’Équilibre et du mouvement des fluides, Paris, 1744). One can therefore suppose

that this pressure also vibrates all of the nerves that the labyrinth contains; so that

it does not conform to nature to pretend that each sound only vibrates some parts.

But the impressions on all of the substance can be accomplished in many different

ways. If several sounds are heard at the same time, all of the motions necessary

for this effect take place at the same time without one precluding the other. The

same thing takes place in all of the elements of motion. It appears that the

labyrinth is organized in a complex manner to facilitate many more sorts of

impressions.

235. Authors Consulted

Among the older authors, Cassebohm, Valsalva, Morgagni, Duvernei, etc., one

finds important research on the organs of human hearing; but to learn of the current

state of knowledge on this subject, one can consult the following works:

Anton. Scarpa, Anatomicae disquisitions de auditu et olfactu, Pavie, 1789, the
foremost work that explains the true organization of the labyrinth.

Andr. Camparetti, Observat. Anatom. de aure interna comparata, Patav., 1789.
Leçons d’Anatomie comparée, by G. Cuvier, vol. II.

The Tables anatomiques of Loder contain depictions of the organs of hearing,

Tables 54, 55, 161, 162.

Abbildungen des Geh€ororgans (Depictions of the organs of hearing) by

S€ommering, Frankfurt, 1806.

C. F. L. Wildberg, €Uber die Gehorwerkzeuge des Menschen (On the auditory
organs of man), Jena, 1795. Work used to teach physiology and pathology on these

parts.

Alex. Monro, Observations on the nervous system. Contains microscopic obser-

vations on the structure of the nerves of the cochlea.

B. The Subject of Hearing

236. The Ear Records the Sensation of All Sufficiently Rapid
and Sufficiently Intense Disturbances

All of the disturbances that are sufficiently rapid and sufficiently intense to agitate

the auditory organs produce a sensation of sound. The reason why vibrations that

are less rapid don’t elicit this sensation appears to be that ordinarily these vibrations
do not have the force necessary for this effect. To hear slow vibrations as well as

236. The Ear Records the Sensation of All Sufficiently Rapid and Sufficiently. . . 177



rapid vibrations, it is necessary (according to Giord. Riccati, Delle corde ovvero
fibre elastiche, Schediasm. vi) that the intensity of every vibration is simply a

function of its duration, or (to express it another way) that in different sounds, the

intensity of the vibrations is an inverse function of the number of vibrations

occurring in the same time interval. For this reason, and because of the different

organization of each individual and of each species of animal, absolute limits on the

perceptibility of sound do not exist.

In the same way, it appears that a simple and rather strong shock can

sometimes be heard, as in an explosion, in the crack of a whip, or in a sudden

burst of the air in an empty space. One can presume, however, that a simple

shock that is able to cause some irregular vibrations in solid bodies and in the air

encounters different obstacles. It is perhaps for this reason that often such a

simple shock is not heard in a single moment, but with some resonance, as, for

example, thunder.

A progressive motion, or in general a motion that is not vibratory (Par. 1), is not

heard, unless it produces vibrations in the air or in other matter. In the rapid passage

of a cannon ball or a rifle bullet through the air, one hears a hissing, of which the

tone, when it is distinguishable, appears dependent on the magnitude of the body.

The displacement of air which is found in the direction of the motion, the burst of

air behind this body, and the friction on the air to the sides excite the vibrations

more or less regularly in the air, as the friction generated in solid materials. When

one hits the air quickly with a cane or a stick, it also produces a hissing or buzzing.

As to how much of the tone is perceptible, it seems to me to depend above all on the

width of the surface that displaces the air.

237. It Records the Sensation of the Relative Frequency
of the Vibrations

When one hears two or more sounds at the same time, one after the other, the ear

records the sensation of the relative frequency of the vibrations (Par. 6) and of their

coincidence (Par. 177). The motions act on the ear, as shapes on the eye. We do not

calculate the ratios themselves; but nature calculates for us and managing to reach

our sensations is the result of these ratios. An exclusive usage of consonant ratios,

which because of their simplicity are pleasant on their own, would cause too much

monotony. It is therefore also necessary to present dissonant ratios, which, being

more complex, are not agreeable when they relate to themselves or when they pass

by others which are simpler. The more or less agreeable effect of complex strong

ratios is not the same for everyone; it depends on differences in organization and

habit. Thus, for example, a choral fugue of Handel, which delights the connoisseurs,

will be only a confused noise for those who do not know to follow the way of many

voices at the same time.
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Descartes (epist. 111) expresses very well the effects of consonances and

dissonances: Inter objecta sensus illud non animo gratissimum est, quod
facile sensu percepitur, neque etiam, quod difficillime, sed quod non tam
facile, ut naturale desiderium, quo sensus feruntur in objecta, planè impleat,
neque etiam tam difficulter, ut sensus fatiget.1

The measure of the more or less agreeable effects of these ratios, which

Euler gave in his Tentamen novae theoriae musicae, conforms somewhat to

the experiments.

238. Very Small Differences from the Exact Ratios of Tones
Are Not Perceptible to the Ear

The ear cannot distinguish small differences in the exact ratios between the sounds.

There is rather the sensation of the simpler ratio, from which the one that is heard, in

effect, only differs slightly (Pars. 20 and 25). Without this illusion, there is no point

to music (Par. 21).

The different absolute frequencies of the vibrations give the impression of a

sound more or less grave or acute; but the same numbers are not able to be

perceived by the ear, because, as with the gravest sounds, the vibrations follow

one on another too quickly to distinguish (Par. 5). One is able to count 8 or

9 vibrations within about one second’s time. But the gravest sounds which one is

able to hear make at least 30 vibrations per second. All sounds distinguishable or

perceptible by us are contained in little more than nine octaves; but we do not know

if there are living beings to whom vibrations a lot slower or quicker are perceptible

as distinct sounds.

239. Ordinarily, the Shape of a Sounding Body and Its Mode
of Vibration Cannot Be Determined by Hearing

In most cases, the shape of a sounding body and its mode of vibration cannot be

determined by hearing. The fundamental sound of a string can be distinguished

from the sounds of its parts by the coexistence of other sounds with the fundamental

sound, and by the softer sound of the divided parts. But one would never be able to

distinguish by ear the more or less great numbers of parts into which a string is

1Descartes suggests that the soul is most satisfied by objects of the senses which are neither too

easy, nor too hard, to understand.—CBH
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divided, if one did not know the attributes of the string. In the same way, in listening

to the sound of a plate, as in the experiments explained in Part II, Sect. 7, one will

not be able to judge the shape of the plate or the mode of its vibration by listening,

except that the sounds of those figures where the interior is surrounded by nodal

lines are more sonorous than those of the figures where there are only divergent

lines towards the edge.

240. Timbre and Articulation of Sounds

The different timbre of sounds and their articulation are one of the more remarkable

purposes of the ear. It doesn’t appear to be dependent on the mode of the vibrations,

nor the form of the sounding body (or only slightly), but rather (Par. 31) on the

material of the sounding body and that of the body with which it is rubbed or hit that

propagates the sound. We do not have the least idea of the nature of these different

characteristics of the sound, or of their propagation.

241. Distance of a Sound

One does not have the direct sensation of the distance from the point where the

sound is produced; but the intensity often serves to determine it, according to

certain measures that were developed from the experiments. An increase in the

intensity leads to the belief that the object which produced the sound is

approaching, and a decrease in the intensity leads to the presumption that it is

receding.

242. Direction of a Sound

The best research on the manner in which the direction of sound can be determined

by the ear was done by Venturi (Voigt’s Magazin, vol. 2, ch. 1). If one of the ears is
blocked, the eyes are blindfolded, and one stays in the same position, the sound

always appears to come from the side of the open ear, no matter where it is placed or

how it is produced. The object which produces the sound appears to be on the

acoustic axis of the ear. When the intensity of the sound remains the same, and

the head is turned successively toward all of the points of the horizon, one hears the

sound more or less strongly, depending on whether the acoustic axis of the open ear

approaches or recedes from the direction of the sound. One will be able, therefore,

to judge direction of the sound by the effect of the sound on an ear. When both ears
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are opened one will be able to determine the direction by the inequalities of the

effect on one and the other, except that when the listener remains stationary, one

cannot distinguish between sounds that are produced in front or behind. It appears

that animals sometimes turn their ears from side to side to inform themselves of the

direction of the sound.
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Section 2: The Hearing of Different Animals

243. General Remarks

In comparing the auditory organs of man with those of different animals, one finds

that, in all animals, the essential organs necessary for hearing consist of a gelatinous

pulp, wrapped in a very fine and elastic membrane, in which the ends of the auditory

nerve are resolved. Some other sections, designed to enforce or to modify the

sound, are not found in all animals, and their structure varies greatly.

244. Essential Organs Necessary for Hearing

The simplest auditory organs are observed in some crustaceans. In crayfish, one

finds a scaly cylinder at the base of the antennae, the substance of which is harder

than that of the head. The exterior end of this cylinder is closed by an elastic

membrane that Minasi (De’ timpanette dell’ udito scoperti nel Granchio Paguro,
Nap., 1775) and Fabricius (Nov. Act. Hafniens, 1783) take for the round window.

The cavity of this cylinder contains a membranous sac full of gelatinous water, in

which is located the substance of the auditory nerve. It enters from the interior end

of the cylinder and has the same origin as the nerves of the antennae. Because of the

exterior membrane, it appears that these organs are designed to hear as well in air as

in water.

Comparetti, who described the organs in detail, also found a small auditory bone

in the shape of a nail in the cancer hastatus. The bone is wrapped in a membrane.

The point of this small bone is pointed inwards.

In several insects, Comparetti thought he also observed little sacs or transparent

tubes enveloped in fine membranes, which appeared to be auditory organs; for

example, in beetles, grasshoppers, butterflies, moths, hornets, bees, flies, ants,

spiders, etc.

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
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245. Auditory Organs of Cuttlefish, Octopi, and Squid

Auditory organs are not found in any species of mollusks or worms, except in

cuttlefish (sepia), octopi, and squid (loligo). They are as simple as those of the

crayfish and approach those of fish. In the ring-shaped cartilage that forms the base

of the feet or tentacles, there are two irregular oval cavities, separated by a wall.

Each of these cavities contains a sac filled with a gelatinous pulp, in which a small

body is suspended. The substance of this body is bony in the cuttlefish and

resembles starch in the octopus. The sound is only sensed by the motion of the head.

246. Auditory Organs of Fish

Fish with free gills do not have any exterior opening at all; they hear, therefore, only
by the motion of the head. Their labyrinth contains three semi-circular canals which

pass into a sac. Each of these canals has a bulge in the shape of a bulb near the point

where it penetrates the sac. Two of these canals reunite; so that there are only five

openings that communicate with the sac, as are found in other higher classes of

animals. The bag, near bursting with gelatinous pulp, contains rocks or small bones,

of which the number (one to three), the shape, and the hardness vary greatly. They

are suspended by a large number of nerve fibers. All of these organs are contained in

the same cavity as the brain, and the bones are only found in some recesses.

In fish with fixed gills, or chondro-pterygiens, such as the rays and dogfish, one

finds the same parts as in those preceding, but arranged in a different way. They also

have an opening that one could regard as a round window, closed by a thin

membrane and covered by ordinary skin. The small bones or rocks that the bag

contains are less consistent than the ones in the preceding cases. The entire

labyrinth is contained in a special cavity which only communicates with the brain

cavity via the holes through which the nerves pass. The auditory organs of these fish

seem to be intermediate between those preceding and those of the reptiles.

247. Auditory Organs of Reptiles

In reptiles, the auditory organ is composed of the same parts as those of fish, but

some species have one additional part.

Salamanders have three canals and a sac which contains a rock of the consis-

tency of starch. The organ is contained in the cranium, as in the fish with free gills.

Their oval window is closed with a small cartilaginous cover.

Snakes have the same parts and an oval window covered with a plate of small

bone, whose exterior extremity touches the skin behind the joint of the lower jaw.
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The caecilia americaine has also a type of eardrum to which this bone transmits,

and a Eustachian tube.

Frogs, toads, lizards, and turtles have the same parts as fish, but also a cavity, an

eardrum (with the exception of the chameleon and several other species), a

Eustachian tube, a bone, and a trace of a cochlea. The shape and disposition of

the parts vary widely.

248. Auditory Organs of Birds

In birds, the auditory organs resemble slightly those of the land reptiles, except that

they do not have stones, but a less twisted cochlea like that of man or quadrupeds.

The oval window is closed by a small bone that connects to the eardrum. There is

also a round window, by which the sound is transmitted to the labyrinth in two

ways. The cavity leads to three great cavities covered by bony thin blades and an

elastic membrane that appear to serve to reinforce the action of the sound on the

labyrinth.

249. Auditory Organs of Mammals

In mammals, one finds the same auditory organs as in man, as described in the

preceding section, but the dimensions, the shape, and the distribution are not the

same in all these animals. Marine mammals have the same organs as the other

mammals, but the cochlea is stronger and slightly elevated. The canals are very thin

and the bony blade that forms the cavity is rolled towards itself in the shape of a

shell. In general, the labyrinth of the mammals is smaller than that of the birds.

250. Summary of the Organs Found in Different Animals

The organs required for hearing are found, therefore, in all animals examined up

until now; but some auxiliary organs, designed to hear more perfectly, are located

only in some classes of animals. As for the labyrinth, as the principal center of

operations of the ear, crayfish and cuttlefish appear to have a vestibule, and the

organs of some insects, which appear to be designed to hear, are not well enough

known to compare them with the auditory organs of other animals. All of the other

classes of animals have, besides the vestibule, three canals that expand in bulbous

form before rejoining in the sac of the vestibule. Hot-blooded animals have a

cochlea, and the others have small bones or suspended rocks in the sac of the

vestibule. In most animals, the substance of the auditory nerve appears in two ways;

in pulpy form in the canals and in the sac, and in fibrous form elsewhere.
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The round window is found in all animals that have a cochlea.

The oval window is found in all animals (except insects and squid); in some

animals it is formed by a bony cover of cartilage, and in others by a small bone. The

two windows are not always in oval and round shapes. Therefore, it will be more

suitable to name them vestibular window and cochlear window.
A cavity and a Eustachian tube are not found in all animals that have an eardrum.

These are lacking in insects, worms, some snakes, and salamanders. In mammals, it

is concave on the outside, and in birds and some reptiles it is convex. The cavity of

mammals contains four small bones; birds and reptiles have only one. The auditory
meatus is found only in mammals and birds, and the external ear is found only in

most mammals.

251. Authors Consulted

The principal authors who have published these observations regarding the auditory

organs of the different animals are:

Ant. Scarpa, in Anatom. Disquisit. de auditu et olfactu, Ticin, 1789.
And. Comparetti, in Observat. Anatom. de aure interna comparata, Patav, 1789.
Leçons d’Anatomie comparée, de G. Cuvier, lesson xiii, De l’organe de l’ouı̈e,

contains much new research.

P. Camper has published observations on the auditory organs of fish and

cuttlefish, in the papers presented at l’Acad. de Paris, vol VII, p. 177, and in the

Memoirs of the Haarlem Society (Verhandlingen der Haarlemer Maatschappye),
vol. VII, p. 1, vol. IX, p. 3, and vol. VXVII, p. 2. The papers of Camper are also

translated into German (Kleine Schriften, vol. I and II), but the work is not found in
the three-volume French translation.

John Hunter has described fish in Philosoph. Transact., vol. 72.
The structure and physiology of fishes explained and compared with those of

man and other animals by Alex. Monro, Edinburgh, 1785. Chapters VII, IX, and X

contain much research on the auditory organs of marine mammals, cuttlefish, fish,

and sea turtles. A German translation of this work, by J. G. Schneider with

annotation by P. Camper, was published in Leipzig, 1787.

Etienne Louis Geoffroy, Sur l’organe de l’ouie de l’homme, des reptiles et des
poissons, Amsterdam and Paris, 1778. This memoir can also be found in Vol. II of

the Memoirs presented at the Academy of Sciences in Paris; a German translation

was published in Leipzig, 1780.

Kohlreuter, in the Nov. Comment. Acad. Petrop., vol. XVII.
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Appendix A: Program of the Institut
de France, in Which a Prize Is Proposed
for the Mathematical Theory
of Vibrating Plates

Institute de France: Class of the Mathematical
and Physical Sciences

Mathematics Prize

The first research on sound dates back to high antiquity; Pythagoras is attributed

with the discovery of the ratios between the length of the strings which render

different tones; but this field of physical–mathematical science did not develop, and

has only made notable progress since the end of the seventeenth century.

It was Sauveur, elected member of the Paris Academy of Science in 1696, who

has the glory of having developed the theory of vibrating strings and its application

to music, one of the important branches of physics, and of having connected it to

mechanics. This scholar found, or at least made perceptible by very ingenious

methods, the divisions of a sonorous string into several waves separated by nodes

or points of repose, which takes place in certain circumstances. To the knowledge

of the ratios between the numbers of vibrations and the tones, he added the

determination of the absolute number of vibrations which constitutes every tone,

concluded from fine and curious experiments, and compared them with analytical

formulae which he deduced from the theory of the centers of oscillations (Mémoires
de l’Académie, 1713).1

Taylor, in his Methodus incrementorum, published in 1717, addressed the

problem in depth, from an analytic point of view, in supposing that the forces that

animate the material points of the system are proportional to their distance from a

line drawn between the fixed points, and that, consequently, these points arrive at

1 The Report is printed following this Program.—Note from original text
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this line all together. Twenty or thirty years later, Daniel Bernoulli added many

developments to the theory of Taylor, but the general solution and rigorousness of

the problem is due to d’Alembert and Euler; these great geometricians were the first

ones to employ the differential equation of the motion of the sonorous string, which

is in second-order partial derivatives. This equation was first found and integrated

by d’Alembert; but Euler had a better sense for the very generality of the integral.

One of the geometricians of the Class subsequently published papers on the same

subject, where the material is treated with the clarity and depth that characterizes all

of his productions.

An equation of the same nature and of the same order as that of the vibrating

string applies to the oscillation of air in pipes. The order of the equation does not

change when one passes from the linear case (treated first by Lagrange and which

Euler seems to have then exhausted) to the cases of two and three dimensions, with

which Euler and the other great geometricians are also occupied. Mr. Poisson

recently read a very good dissertation on this subject to the Class, which was

crowned by his testimony.

In the problems of which we have just spoken, the order of the differential

equation of the motion holds in the way that one envisions the effects of the

elasticity on the bodies that are animated by this motion. Thus, for example, if it

is a question of the sonorous string, which is given a certain tension between two

points that have been rendered immobile, the elasticity of this string, that one

supposes is without natural stiffness, can take place only in the direction of its

length. The effect of this elasticity, when one elongates the string a little by

bending, consists of giving it a continual tendency to put itself back in the

rectilinear position between the two fixed points. If one assumes that one of these

points is immobile and the other made free, the perfect flexible string is no longer

capable of producing acoustic phenomena.

Things happen completely differently if the string becomes a spring, naturally
assuming a certain shape. When all its points are free, it always returns to this same

shape, when it has been changed by exterior forces and when the spring no longer

has a fixed point.

In this last case, and while limiting oneself, if one wishes, to a single fixed point,

the rod or blade that is a spring will return a perceptible sound when it is put into

vibration, as long as the number of the oscillations is at least at 25 per second. The

differential equation of the motion, which was of the second order in the case of the

flexible taut string, is found to be of the fourth order for the springy rod; the primary

problem can be looked at as a particular case of the second, while disregarding the

spring, but the inverse does not take place.
This basic difference between the questions of motion, considered under each of

these points of view in the simple linear case, shows right away that the same type

of differences, and a great increase in difficulty, will be found when introducing two

dimensions into the calculation. The acoustic phenomena that are offered by the

membranes or taut skins of the drums and kettledrums relate to those of the taut

string, without natural stiffness; vibrations of the planes or metallic blades are in the

class that includes spring rods.
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Euler, in his dissertation de Motu vibratorio tympanorum, seeks to relate the

vibratory motion of the taut membranes to that of the nonrigid string, in considering
these membranes as tissues composed of filaments that cross at right angles. One of

the geometricians of the Class has published research on this matter in one of our

volumes, where he looks at the question from the same point of view; the differ-

ential equation of the motion, partial of the second order, cannot be integrated, at

least in finite terms.

The same Euler, in his dissertation de Sono campanarum, has also tried to relate
the vibrations of the rigid surfaces of revolution to those of the rings or circular lines

that are springs, in considering these surfaces as assemblies of similarly situated

rings in perpendicular planes at the axis of revolution, and while supposing that the

effect of vibrations consists of variations in the lengths of their diameters. He

arrives at an equation of the partial differential of the fourth order, so that it

makes up the nature of the question, which cannot be integrated in finite terms.

This is all that the geometricians were able to do on the problem of sounding

bodies, considered in the case of two dimensions. They introduced some simplifi-

cations which (it cannot be concealed) change the natural state of things in a way

that the results of the analysis are not applicable.

These hypothetical simplifications are especially inadmissible when it is a

question of vibrating metallic surfaces, or those enjoying a natural elasticity.

Taking the simpler case of the plane, it has been demonstrated that one cannot

apply the assumption of Euler to the moving surfaces, reducing the vibrations to

simple changes in the curved shapes that one can trace on this plane.

One does not, therefore, get the same differential equations of the motion for this

type of vibration, while contemplating their phenomena such as nature gives them.

The research of these equations alone would offer to the geometricians a very

interesting subject of meditation that can contribute equally to the progress of

physics and to that of analysis.

Fortunately, relative to the vibrations of elastic surfaces, we find ourselves in a

similar position as the one in which Sauveur put physicians and geometricians at the

beginning of the eighteenth century. Mr. Chladni has been occupied for several

years with the examination of acoustic phenomena that are offered by elastic

blades. He has discovered and rendered perceptible in these blades, in a very

ingenious manner, vibrating layers analogous to the waves of the strings of

Sauveur, and the curves of equilibrium or of repose which correspond to the

nodes or points of repose of the same strings.

His Majesty the Emperor and King, who has deigned to call Mr. Chladni to him

and to look at his experiments, struck by the influence that the discovery of a

rigorous theory, that would explain all of the phenomena made perceptible by these

experiments, would have on the progress of physics and analysis, desires that the

Class select the subject of a prize which will be proposed to all of the scholars of

Europe. This new conception of the beneficial genius that leads and directs the great

and profound views of His Majesty for the progress and propagation of wisdom will

be received appreciatively by all people who honor and cultivate the sciences.
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Therefore, the Class proposes for the topic of the prize: to give the mathematic

theory of the vibrations of elastic surfaces, and to compare it with experiments. The

prize will be a gold medal, valued at 3000 francs; it will be awarded in the public

session of the first Monday of January 1812. These works will only be received until

October 1, 1811; this deadline is firm.
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Appendix B: Reports on the Clavicylinder
and on the Acoustic Research of the Author

Adopted by the Class of Mathematical and Physical Sciences,
and by Those of the Fine Arts, on a New Musical Instrument
Invented by Mr. Chladni, in the Sessions of December
19 and 24, 1808

Mr. Chladni, correspondent of the Academy of Petersburg and member of several

other scholarly societies, presented to the Class of Mathematical and Physical

Sciences, and to those of the Fine Arts, a musical instrument of his invention

which is called the clavicylinder, and a work containing research on the mathematic

and physical theory of sound. His instrument was heard, and he explained the

principal points of his theory to a commission composed of members taken from

the two Classes, who will first give their opinion on the primary subject, and who

will next do a special report on the second subject.

The clavicylinder is a keyboard instrument, of nearly the same shape as the

pianoforte, but smaller in size. The length is 0.8 m, the width is 0.5 m, and the depth

is 0.18 m. The spread of his keyboard is four and a half octaves, from the deepest do
up to the most acute fa of the harpsichord. When one wants to play this instrument,

one turns a glass cylinder placed in the box between the inside end of the keys and

the backboard of the instrument, by means of a pedal crank provided with a small

wheel. This cylinder is the same length as the keyboard and is parallel to it; and

when the keys go down, they rub against the surface of the bodies which produce

the sounds.

The author makes a secret of the interior mechanism; the sounding bodies are

hidden; only the cylinder is visible; and it is presumed that this piece itself would be

hidden without the necessity of having to wet it time after time when playing the

clavicylinder.

We can therefore only realize the musical effect of the instrument on which

Mr. Chladni, who is equally skillful in the theory and the practice of music, played

several pieces for us that we heard with the greatest pleasure. This instrument has

E.F.F. Chladni, R.T. Beyer, Treatise on Acoustics,
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many similarities to the harmonica, according to the quality and the timbre of the

sound, without exciting a discomfort and an irritation in the nervous system in some

very sensitive individuals that puts them in a state of suffering, as the harmonica

does.2

The clavicylinder also has the advantage over the harmonica in that the gradu-

ation of intensity of sounds is better nuanced between the high-pitched and the bass;
in this regard, it is superior to the bourdon,3 which is played in a chamber organ and

to which it can be compared.

It was important to know if each of the sounding bodies contained in the box

produced the sound promptly as soon as its key was lowered. To reassure ourselves,

several of us put a hand on the keyboard and recognized that the clavicylinder left

very little to be desired in this regard.

Mr. Chladni assures that the harmony of the instrument is inalterable when its

interior parts have been adjusted and regulated, once and for all. We are not

penalized in believing it, as much for the confidence which he deserves, as for the

plausible conjectures that one can make on the nature of the sounding bodies that it

employs. We must also grant that, as is true for all keyboard instruments, the black

keys take on the double function of the sharps above and the flats below.

But what essentially distinguishes and characterizes the clavicylinder is the

precise correctness that it gives to spun sounds.4 By pressing the key more or

less, one can increase these sounds at will and by the most imperceptible nuances.

Above all, it possesses this quality to an eminent degree, from medium intensity to

smorzando.
The limits between this medium and the maximum of the rinforzando are not

very great, seeing that the instrument does not have a very forceful sound. If one

wants to preserve the beauty of the timbre in all its purity, it is not necessary to press

the key too hard; so to use it, in its current state, with the effects of an orchestra, it

would be necessary, for larger halls, to gather together several. Nevertheless, we

have reason to believe that the clavicylinder can be perfected in this regard, and

that, while increasing the interval of piano to forte, according to the intensity of the
sound, one will increase at the same time the difference between the smallest and

the greatest pressure of the keys, compatible with the beauty of the execution.

Although we do not know, as we have seen previously, the interior mechanism

of the clavicylinder, we are certain that this mechanism is essentially different from

those that have been adopted by several other keyboard instruments, set up to obtain

continuous sounds, either by metal or catgut strings, by rubbing against the strings

with types of bows, chains, or endless loops, etc. One of us heard, in Paris,

2While the glass harmonica was originally believed to have calming and even healing qualities,

because of its hypnotic sweetness, it was eventually thought to cause nervous disorders, animal

convulsions, marital disputes, premature childbirth, and mental illness.—CBH
3 Name derived from the French word for buzz; refers to a type of organ pipe.—MAB
4 Son filé—the progression of a musical note from weak to strong and then returning back to

silence.—MAB

192 Appendix B: Reports on the Clavicylinder and on the Acoustic Research of the Author



approximately 30 years ago, a type of harpsichord that was called an

aéroclavicorde, whose metal strings were made to resonate by directing currents

or streams of air on them, which gave a lively impulse with a very strong bellows.

The sounds were of great beauty; but this instrument, totally different from that of

Mr. Chladni, did not offer any resources for the rinforzando and the smorzando. It
was also inconveniently slow in the production of sound, which was only heard at

the end of a perceptible length of time after the lowering of the key.

The clavicylinder, exempt from this defect, was able to return quick successions

of sounds and the trill effect, and also lends itself to the execution of the allegro. But

to allow it to produce all of the effects of which it is capable, it is necessary, above

all, to apply it to pieces of a tender, melancholic, and even sad nature. Mr. Chladni

played for us several of these diverse genres, which have a really charming

expression on his instrument, and which made the whole party conceive what a

skillful musician could draw from it, to express with truth and energy the feeling

that animates him. The successions of chords, the holding of harmony, cold on the

organ, and dry on the harpsichord, take on life and color on the clavicylinder, and

offer to the composer a means of varying and enriching his tableau.

As Mr. Chladni’s project has made his instrument well heard by the public, we

dispense with entering into greater detail. His invention appeared to us to add new

resources to those who possess the musical art, and merits the approval of the two

Classes to which it was presented.

Signed, PRONY, reporter;
LACÉPÈDE, HAÜY, members of the Class of Physical and

Mathematical Sciences;
GRÉTRY, GOSSEC, MÉHUL, members of the Class of Fine Arts;
JOACHIM LEBRETON, permanent secretary of the

aforementioned Class.
The conclusions presented in this Report have been adopted by the Class of

Physical and Mathematical Sciences and by the Class of Fine Arts.

Certified conforming to the original.

The permanent secretary for the Mathematical Sciences, signed

DELAMBRE.

Adopted by the Class of Mathematical and Physical Sciences,
and by Those of the Fine Arts, in the Sessions of February
13 and of March 18, 1809, on the Work of Mr. Chladni,
Relative to the Theory of Sound

The Classes of the Sciences and of the Fine Arts heard a report, on the 19th and 24th

of last December, on a new musical instrument invented by Mr. Chladni, which

must be followed by another report on research presented to these two classes by the
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same author, relative to the theory of sound. The joint committee introduces the

results of the examination made of this research. Mr. Chladni, who has devoted a

considerable amount of time to these experiments on sounding bodies, employed

very usefully for the progress of science, published his results in a 1787 dissertation

containing interesting discoveries on the physical theory of sound.5

One section of that dissertation treats the vibrations of rods, both rectilinear

and curved, and the sounds that are obtained. Another section, which is of

particular interest to physicists, contained new and very curious facts on the

vibrations of elastic surfaces. Our colleague, Mr. Haüy, after having learned of

it, has repeated experiments in front of the members of the Philomatic Society,

using the means by which Mr. Chladni makes visible the division of a vibrating

surface into several partial layers, each having their distinct oscillations, that

correspond to those of the waves of a sounding string. These layers separated one

from another by the curves of equilibrium which represent the nodes or stationary
points of the same string; the waves and the nodes of the sounding string, as it

behaves here, were discovered, or at least made perceptible, by Sauveur more

than a century ago.

At the end of this [1787] work, the author promised further extensive details on

the material that was his subject, and he kept his promise in publishing a second

treatise on this same material that contains everything important from the first one,

with considerable additions. This treatise, published in 1802, is written in German,

and Mr. Chladni, who suggested making a French translation during his stay in

Paris, wished to subject it to the judgment of the Institute before making it public.

The work, under the title of d’Acoustique [On Acoustics], is divided into four

parts that address, respectively:

1. Numeric ratios of the vibrations of sounding bodies.

2. Laws of the phenomena that they offer.

3. Laws of the propagation of the sound.

4. The physiologic part of acoustics, where the author examines the concerns of the

sensation of sound and the hearing organs in men and animals.

In general, the first part, which addresses the numeric ratios of the vibrations of

the sounding bodies, only contains things that are known. The author proposes, as

Sauveur had done in 1713, to adjust the tones of the keyboard, relative to the

absolute number of the vibrations, in such a way that the first do produces a number

of vibrations equal to 128 or to the seventh power of 2, by means of which the

different octaves of this fundamental sound also respond to the full force of

the same number 2. Knowing the ingenious procedure imagined by Sauveur for

determining the absolute number of vibrations given by one of the tones of the

5 In 1787, Chladni published Entdeckungen €uber die Theorie des Klanges (Discovery of the Theory
of Pitch), in which he first outlined his experiments with sand, glass plates, and a violin bow. Die
Akustik (On Acoustics) was published in 1802, in German, and d’Acoustique (a revised and

expanded version and the subject of this translation) was published in 1809, shortly after the

material was introduced in this lecture series.—MAB
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musical scale,6 Mr. Chladni uses another which consists of causing a strip of metal,

fixed at one end, to vibrate for rather a long time, so that one can count the

oscillations or vibrations that it makes during a set length of time. Their number

will be the same as those of another blade, during the same period of time and in the

same circumstances, in reverse ratio to the length of the blade.

In this first part, Mr. Chladni also treats temperaments7 proposed by various

people. He gives preference to that which was adopted by Rameau, and which

rendered the 12 semi-tones contained within the limits of an octave perfectly equal

between them, and matching them to 12 geometric means taken between the

extreme terms. Some musicians found that this temperament satisfied the spirit

more than the ear. In their opinion, the thirds are a little too strong, sacrificed to less

altered fifths, although likely a more bearable alteration; but this is not the place to

examine this question.

The second part, which treats the laws of the phenomena offered by the vibra-

tions of bodies, is the one where, along with things already known on this subject,

one finds the new discoveries of the author which makes this part of his work most

original and curious, and worthy of the interest and attention of physicists and

6When two organ pipes approaching unison resonate together, there is a certain moment where the

joint sound that they render is stronger, and these moments seem to return at equal intervals of

time. Sauveur supposed, with a lot of credibility, that these swelling sounds, called beats by the

organists, took place when vibrations, after a certain time of non-coincidence, came together to hit

the ear at the same time. According to this ingenious insight, knowing the interval between the

tones of the pipes (by which the ratio between the numbers of their vibrations is deduced) and the

time that passes between two beats, the absolute numbers of vibrations of the pipes during this

time become the terms of the ratio between the numbers of vibrations, with this ratio being reduced

to its simplest expression.

In this way, Sauveur found that an open organ pipe, five feet in length, gave 102 pulsations per

second. This pipe is at unison with la, understood in the rising range of the deepest do of a

harpsichord, and it was concluded that the do below this, that is, the deepest do of the harpsichord,
must give 61 pulsations per second.

These experiments were conducted in 1700. Twelve years later, Sauveur compared their results

with formulas that he had deduced from the theory of the centers of oscillations, and these

expressed the relationship between the time and the number of vibrations of the strings, when

one had the necessary data. He was surprised to find, by these formulas, a number of vibrations

double those that were deduced from the experiments; but he noticed very quickly that one must

distinguish, according to the effect on the ear, the oscillations of a cylinder of air contained in a

pipe that produce sensible beats, from those that seem to escape the ear and give only insensible

beats. He saw, according to this insight, that in his experiments on pipes, he had counted the

comings and goings as a single vibration, instead of the relative calculations of the strings; the

coming was taken for one vibration and the going for another, as and when it behaves like the

oscillations of a clock.

Sauveur was determined to take the vibrations as the pipes gave them to him, that is, in

counting one coming and one going as a single vibration that he called acoustic vibration. Since
61, the number of acoustic vibrations per second of the deepest do of the harpsichord, is little

different from 64, which is the sixth power of 2, he raised it a little and assigned the number 64 to

this do. This is equivalent to the number 128 adopted by Mr. Chladni, in counting each acoustic

vibration as two ordinary vibrations.—Class reporter’s note
7 A temperament is a system of tuning for musical instruments. See Pars. 24–28.—MAB
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geometricians. He first examines the vibrations of strings and rods, and

distinguishes three kinds, namely: transverse, longitudinal, and the one that he

calls torsional. The first ones are those that take place when a string or rod is

touched in a direction perpendicular to its length. They are related to the phenom-

ena that, in the last century, were submitted to the analysis of several geometricians,

one of whom is member of this Class.

But a rod that returns a certain sound, when touched in this way, will be heard

completely differently if it is rubbed in the direction of its length with a piece of

cloth, which must be wet for glass, and dry for other bodies. This is already an

important class of phenomena in which it appears that Mr. Chladni is the first to

engage. He finds that these vibrations in a solid rod, that he calls longitudinal, are

subject to the same laws as the longitudinal vibrations of the air in an organ pipe,

and gives a table of the frequencies of these vibrations for different materials, such

as glass, metal, and wood.

Still different sounds than those produced in the two preceding circumstances

are obtained when one rubs a rod in a sharply angled direction from its axis.

Mr. Chladni uses the term torsional for the vibrations resulting from this type of

friction because it is assumed that the molecules of the body move in rotation or

oscillation around its longitudinal axis. He says that he recognizes that in these

vibrations the numeric ratios are the same as those of the longitudinal vibrations,

but that the tones of each rod are lowered by a fifth. It does not appear that others did

these experiments before him.

Each series of experiments of which we have just spoken was done on rods that

were fixed, simply supported at one or both ends, fixed at one end and supported at

the other, or, finally, with both ends free. Each of these circumstances offers

specific results. Mr. Chladni also examines the vibrations of curved rods, forks,

and rings. Euler wanted to apply this last type of vibration to the phenomena of the

sounds of bells, but Mr. Chladni finds, with reason, that his hypothesis does not

conform to nature.

The last two sections of this second part are dedicated to the vibrations of plates

and bells, or, in general, planar or curved surfaces, a completely new subject in

experimental physics, and which, despite the striking and remarkable regularity of

the phenomena, has resisted the efforts of skillful geometricians who wanted to

address it.

Mr. Chladni has determined the places occupied in the musical scale by the

sounds that one can draw from plates in looking at their different shapes, and in

making them sound in different ways. But the interest inspired by this research

increases significantly when we combine it with the research whose object is the

determination of the portions of the surfaces of every plate that have distinct and

coexisting vibrations and remarkable curves that serve as boundaries. Mr. Chladni

has imagined a simple and ingenious means of rendering these curves visible to the

eye. He covers with sand the plate that he wants to resonate. When the sound is

produced, the sand abandons all of the oscillating parts of the body, and, remaining

stationary on their borders, takes refuge where the curved axes of equilibrium are

located, which assume a variety of different, but perfectly regular, shapes.
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To perform the experiments, it is necessary to squeeze the plate with the tips of

two fingers at two opposite points on its faces, and to rub it with a bow at a point on

the perimeter. Sometimes, a third finger is applied at different points of one of the

sides to vary the results of the experiments. Instead of holding the plate between the

fingers, one of its faces can be set down on a fixed point, and the other face

supported at a second point exactly opposite from the first. This is how

Mr. Paradisi, of Milan, did these experiments, which we will speak of soon.

The support point is always part of one of the curves of equilibrium; their shapes

and the arrangement of their composition depends on the shape of the plate, the

position of the point held, the position of the point where one applies the bow, and,

finally, on the different sounds that one wants to obtain while rubbing the bow in

different ways at the same point. If one or more of these circumstances change, the

shapes of the bends and the arrangement of their composition also change.

In reporting on these curious phenomena, we cannot avoid speaking about a

dissertation that contains its own research to establish the systems and the connec-

tions between them, and which is included in the first volume of the collection of

the Institute of the Sciences of the Kingdom of Italy,8 under the title of Ricerche
sopra lavibrazione delle lamines elastiche.

The author of this dissertation is Mr. Paradisi, member of the Institute, and state

counselor and director general of public works for the Kingdom of Italy. He states

in a note, that he undertook this work after reading a passage in the Bibliothèque
brittanique about Mr. Chladni’s experiments and his way of making the curves of

equilibrium visible, in spreading sand on the plates. Provided with a device by

means of which he could keep the plates at the fixed points arbitrarily situated on

their surfaces, without a helping hand, he recognized at first that the curves of

equilibrium only achieved a constant shape after a gradual progression, and con-

tinued with variable shapes, the generation of which he has examined with care,

driving him to new conclusions on the theory of these curves.

So, for example, if a glass plate in the shape of a parallelogram rectangle, 9 in.

long and 3 in. wide, is held on the long axis at one sixth of the distance between the

two ends, and a bow is applied against one of the long sides of the parallelogram, at

a third of the distance between the ends of this side, the sand lines attain a fixed

state, dividing the surface of the plate into eight equal squares, with a line in the

direction of the long axis, and three equidistant lines parallel to the short edge. This

is the first of Mr. Paradisi’s experiments; but he recognized that in making the plate

vibrate by a series of small successive strokes of the bow, eight semicircles are

obtained first, with their centers and their diameters placed symmetrically on the

long sides of the parallelogram, and the point of application of the bow is at one of

these centers. These circles (those that rest against the same side) increase gradually

8 The Istituto Nazionale was founded in 1802 and consisted of three sections: Physical and

Mathematical Sciences, Political and Moral Sciences, and Literature and Fine Arts. The first

30 members were chosen by Napoleon Bonaparte. In 1810, it was reorganized as the Istituto Reale
di Scienze, Lettere e Arti.—CBH
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in size. From separated (at first) they become tangential, and then penetrating, while

leaving the perpendicular rectilinear tracks between them on the long side. At the

same time that these tracks increase in length, the arcs become flattened as they

approach the long axis of the parallelogram, with which they eventually merge.

In other experiments, Mr. Paradisi obtains these complete circles, initially

formed on the surface of the plate, and semicircles against the long and short

sides of the parallelogram. The velocity of the grains of sand located on the borders

diminishes by the same measure that the rays increase.

He calls the center of the circle, that forms around the point of application of the

bow, the center of vibration, and those of other circles located on the plates are

called secondary centers, assuming that when the system of curves has reached a

fixed state, any element of these curves is influenced by the direct result of several

forces, including the actions emanating from the various centers of vibrations. The

functions of their distances from the curved element with which they are concerned,

requires a differential equation between the coordinates of this element, whose

integration demands that one know the form and function that represent the laws of

the actions of the forces. He has announced another dissertation about the research

on this object.

We must look at Mr. Paradisi’s dissertation for the details of his other experi-

ments which are distinguished by interesting changes in position of the support

points and the point of application of the bow, but which don’t produce anything

new in the shapes and the arrangement of the system of curves.

Mr. Chladni ends the second part with the consideration of the vibrations of bells

and of curved surfaces in general and on the coexistence of vibrations in the

sounding bodies. He speaks of the theory and the hypotheses of Euler on the

sound of bells, the musical system of Tartini, supported by experiments which,

according to Mr. Chladni, were known in Germany for a long time before Tartini

made use of them, and that one can look at as the inverse of those of Rameau.

Finally, he treats the combination, which takes place in certain circumstances, of

vibratory motion with other types of motion.

In the third part, which has for its subject the propagation of sound, the author

first considers this propagation operating in the air and in different gases, and he

next examines the case where it take place through the intermediary of liquid and

solid bodies. In this part of the work, one will note experiments on the vibrations of

various types of gas that the author made with Prof. Jacquin of Vienna, conjectures

on the cause of the difference between the theoretical speed and the observed speed

of the propagation of sound in air, etc., research on the transmission of the sound in

solid bodies, etc.

We can dispense with giving a detailed analysis of his work on these matters,

already enriched by the research of physicists and geometricians, and we will be

satisfied to indicate the subject of the fourth part of the Treatise on Acoustics, under
the viewpoint which interests physiology, and that has to be judged by the anatomists.

We seem to be united in giving credit that the discoveries with which

Mr. Chladni has enriched the physics of sound could not be more curious and

interesting, and that they offer the advantage of presenting new and important
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phenomena to physicists and geometricians that uniquely excite their curiosity and

their competition for finding the explanations and determining the laws. Opening

this field to scholarly research will not be the only debt that they will have to the

author of the new Acoustics. It is rather remarkable that a branch of the natural

sciences, where there are still so many fine but difficult problems to address, is the

first where the history of the human spirit points out prominent truths, and, which is

worthy of attention, founded on a rigorous application of calculation to observation.

Everyone knows that the discovery of the ratios between the vibrations of sounding

bodies that produce different sounds, attributed to Pythagoras, dates back to the

greatest antiquity. These ratios, to speak of it in passing, have been used since

ancient times as the basis of a musical system convention that distinguished

scholars look at as having been common to the Greeks, the Egyptians, the Chinese,

etc. One of the principal properties of this system, in which all of the sounds were

generated by the triple progression, giving a series of fifths, was to have only one

type of tone and one type of semi-tone, and to produce a call or an energy attraction
between the sounds proceeding from the last interval.

It was believed that in this system was found the real generation of the natural

melody of man when he sings or plays an instrument with free sounds, without

accompaniment. We objected to those who wanted to link it to our harmonic

system, since the thirds which it gave, considered as dissonant by the ancients,

could not be admitted to the harmony, as they were appreciably stronger than those

given by the resonance of the sounding body. Aristoxenus and Ptolemy had already

introduced this into the ancient system, by modifying that of Pythagoras. Doubts on

the principal unity of our musical system were born out of this discussion.

The theorems on the ratios of the vibrations of sounding bodies have been, until

Newton, the only truths well recorded in this part of physics. Since the impetus

given to the physical–mathematical sciences by this immortal genius, several geo-

metricians of the first order have occupied themselves with problems related to

sound. However, the general complete solution of the least difficult one of these

problems, in which a simple wire is stretched between two fixed points, escaped all

the resources of integral calculus, in an epoch where this calculus was already

enriched with the brilliant discoveries of Newton, Leibniz, Bernoulli, Euler, and

d’Alembert themselves, and only particular solutions were able to be obtained by

their means. The general solution was nevertheless given first by d’Alembert and

soon after by Euler; but a new method of analysis was necessary to get there, which

is now one of the great instruments of geometricians in the application of calculus

to the phenomena of nature, and must be applied to the physics of sound, which has

been the subject of one of its first applications, a distinguished rank in the annals of

the human spirit.9

9 Before the integration of the equation of the vibrations of strings, Euler and d’Alembert

integrated the equations in partial differentials; the first, in a paper published among those of

the Academy of Petersburg, in 1794; the second in his Traité de la cause des vents.—Class
reporter’s note
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D’Alembert and Euler together had some rather long disputes on their respective

solutions, and Euler had on his opposing side the advantage of a better sense than

d’Alembert for the full extent of the meaning of the arbitrary functions that

complement the integrals of partial differential equations.10

Our colleague, Mr. de Lagrange, has given detailed explanations on everything

that has to do with the problem of the vibrating string. These explanations, which

leave nothing to be desired, can be found in two good, strong papers published

among those of the Academy of Turin.

The problems relative to the propagation of sound have also been the subject of

research by several scholars of great merit. We have the great pleasure of recalling

one of them to the Class, a young geometrician, who has rewarded, by his approval,

the discoveries made in an age where commonly we consider ourselves very happy

to be able to understand and appreciate the discoveries of others. These problems on

the propagation of sound are the same as those that concern vibrating strings, with

the advantage of having been treated with the consideration of two and three

dimensions of space.

Nevertheless, Euler wanted to extend the applications of the method of analysis

to the vibratory motion of sounding bodies, the method of analysis that had

succeeded so well for him for the vibrating string, and on which he was the first

to give a Treatise ex professo (third volume of his Integral Calculus), and published
two papers (New Commentaries of the Academy of Petersburg, vol. X, 1764); one
on the vibratory motion of the kettledrums, and the other on the sound of bells; but

physics has not withdrawn the fruit of this work where the deep analytical science

of the author shines. In the fourth volume of our Memoirs, our colleague Mr. Biot,

10Mr. de Laplace demonstrated the discontinuity of these arbitrary functions, in his dissertation

Sur les fonctions génératrices, Academy of Sciences, 1779.

Mr. Monge made this discontinuity very perceptible, and one might say evident, by geometric

considerations. The geometricians’ opinion on this question of analysis are explained in detail in a

paper commemorating Mr. Arbogast, On the nature of arbitrary functions, etc. that won the prize

proposed in 1787 at the Academy of Petersburg where this paper was printed in 1791.

Note: The rest of this note was communicated to the reporter by one of the members of the
Class.

The dissertation, On the nature of the propagation of sound, included in the first volume of the

Society of Turin, which appeared in 1759, contains the first rigorous demonstration on the

discontinuity of arbitrary functions, which were then the subject of the dispute between Euler

and d’Alembert. This is demonstrated by the unique application made to the solution of the

problem of the oscillations of a taut wire loaded with any number of weights; the case where the

number of weights approaches infinity, with the wire or string having a uniform thickness and the

same manner of construction, results in the consideration of discontinuous functions. This paper

also contains the first rigorous general theory of the oscillations of air in open and closed flutes, and

the propagation of sound and echoes in a physical line of air; material that Euler treated

exhaustively in the papers of Berlin and of Petersburg. Mr. Poisson has looked to extend the

theory to the case of three dimensions.

The equation for vibrating surfaces, given by Mr. Biot in the fourth volume of our Memoirs, is

only the equation for vibrating surfaces stretched like drums and kettledrums, and not for vibrating

elastic surfaces. This one has not yet been given, and appears subject to some difficulties.—Class
reporter’s note

200 Appendix B: Reports on the Clavicylinder and on the Acoustic Research of the Author



and Mr. Brisson, bridge and road engineer, took up the question of the motion of

vibrating elastic surfaces, considering the elasticity only one flat dimension. This

manner of looking at the question (explained in greater detail in the Program cited

here)11: the details, the analytic results to which one aspires, are not applicable to

the problems involved in the experiments of Mr. Chladni.

Besides, the principal object of Mr. Biot was to give an example of his methods,

to use the general integrals in infinite terms of the partial differential equations in

the resolution of these problems, when these integrals cannot be explained other-

wise. According to this purely analytical goal, he did not give any special attention

to the physics part of the question and to the phenomena found by Mr. Chladni that

were known at the time he published his dissertation.

Euler’s dissertation, De sono Campanarum, gave rise to observations of the

same kind. (See the Program cited here.)

It is necessary to acknowledge that the problem of the vibratory motion of

sounding bodies deserves all the more to be attacked by geometricians with all

new efforts. Far from being resolved when we consider it with two dimensions, the

problem offers still more of the same difficulties in the linear case, when one adds a

condition to its fundamental terms. For example, if we assume that the string is the

largest variable, the increase in difficulties in the case of two dimensions is easily

conceived, when one considers that this case reproduces an infinite number of times

the already infinite number of circumstances that complicate the linear case.

We think, according to the details which we have just written, that the two

Classes owe distinguished praise to the discoveries of Mr. Chladni, relative to the

physics of sound, and that it would be important to direct the attention and the

emulation of scholars on the physical–mathematical research to which these dis-

coveries can give rise.

Minutes signed by, DE LACÉPÈDE, HAÜY, MÉHUL, GOSSEC, GRÉTRY, LE

BRETON, DE PRONY, reporters;
This report and its conclusions have been adopted by the Class of Mathematical

and Physical Sciences and by the Class of Fine Arts.

Certified conforming to the original:

The permanent secretary for the Mathematical Sciences, signed DELAMBRE.

The permanent secretary for the Fine Arts, signed Joachim LE BRETON.

11 Program of the Prix de Mathematiques—included in Appendix A.—MAB

Adopted by the Class of Mathematical and Physical Sciences, and by Those. . . 201
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Mariotte, Abbé Edme (ca. 1620–1684),

195, 145
Marpurg, Friedrich Wilhelm (1718–1795), 5, 6,

28, 24
Maupertuis, Pierre Louis (1698–1759),

222, 170
Mercadier de Belesta, Jean-Baptiste, 179, 134
Mersenne, Marin (1588–1648), 176, 131
Minasi, Antonio Maria (1736–1806), 244, 183
Monge, Gaspard (1746–1818), B, 200
Monro, Alexander (1733–1817), 235, 177,

251, 186
Morhof, Daniel Georg (1639–1691), 224, 170
Morland, Sir Samuel (1615–1695), 201, 152
Newton, Sir Isaac (1642–1727), 187, 141, 189,

142, B, 199
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Circus of Murviedro, 210, 161
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Jena, Battle of, 200, 150
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Melody, definition of, 4, 5
Membranes, taut, 30, 29
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232, 176
Oxygen gas, sound of, 67, 55, 196, 145,
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P
Pantheon, Rome, 210, 160
Paris

aqueduct, 201, 151, 205, 157, 220, 167
observatory, 203, 154

Parma, theatre, 210, 161
Partial, second, 5 n, 6n
Pendulums, theory of, 1, 1
Physicists’ scale, 5 n, 6n
Pipes

chimney, 63, 52
converging and diverging, 63, 52
flue, 55, 47–48
labial, 55, 47
organ, 51, 44, 53, 46, 55–56, 47– 49, 63,

52, 171, 130
shape of, 63, 52–53
sound of, 53–67, 46–55

Plates, vibrations of, 91–155, 73–122, 174, 131
Poisson ratio, 34 n, 31n
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Practical vases, 209, 159
Progressions

chromatic, 14, 13
diatonic, 14, 13
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from one chord to another, 18, 16

Promontory, of ear, 229, 174
Protrusion, of ear, 229, 174
Pythagorean comma, 24–25, 21, 27–28, 23–24

R
Ratios

altered, 21–28, 19–25
primary, 3–20, 5–18

Reed stops, 54, 47
Reptiles, hearing of, 247, 184, 250, 186
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Resonance, 204, 154
Resonant board, 222, 169
Rings, vibrations of, 89, 70–71, 173, 130
Rods, vibrations of, 68–90, 57–67, 69–71,

172, 130
Rome, aqueduct, 201, 151
Rosneath, echo, 206, 158
Round window of ear, 229–230, 174–175,

232, 176
Russian horn music, 200, 150

S
Salamanders, hearing of, 247, 184, 250, 186
Scales, 11, 11–12, 15–16, 14–15
Second harmonic, 5 n, 7 n

Second partial, 5 n, 6n
Semi-tones, 11–12, 11–12
Sensible note, 16, 15
Sharp, definition, 14, 13
Shear, 1, 1, 30, 29
Snakes, hearing of, 247, 184, 250, 186
Snoring sound, 42, 37
Sound

definition of, 1–3, 1–2, 5
direction of, 242, 180–181
distance of transmission of, 200, 150,

241, 180
fluted, 37, 34
grave and acute, 3, 5, 177, 132–133,

197, 147
harmonic, 37, 34
intensity of, 35, 32, 197–198, 146–149,

221, 168–169
propagation of, through air and gaseous

fluids, 182–211, 139–161
propagation of, through liquids and solids,

212–224, 163–170
speed of, 192–196, 143–146
summary of research on, A, 187, 189
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200, 150, 217, 165, 221, 168, 233, 176
velocity of, 186, 140, 219, 166–167,

221, 168
waves, 187, 141, 189, 142, 197, 147, 201,

150–153

Sounding vases, 209, 159
Speaking chambers, 203, 153–154
Squid, hearing of, 245, 184
St. Paul’s Cathedral, 203, 153–154, 210, 160
Stiffness, 1, 1, 30, 29
Stirrup, of ear, 229, 174, 232, 176

Stringed instruments, effect of cold

and heat on, 64, 53
Strings

curves of, 39, 35
snoring sound, 42, 37
vibration of, 36–45, 33–39, 165–170,

127–129

Subdominant, definition of, 17, 16
Sulfuric acid gases, sound of, 67, 55

T
Talmud, 224, 170
Tamtam, 155, 122, 122n
Temperament, B, 195

definition of, 22, 20
equal, 24–27, 21–23
necessity of, 21, 19
unequal, 24, 21, 28, 23–24

Tension, 1, 1, 30, 29
Thermal effects, 195, 145
Thunder, 236, 178
Timbre

definition of, 31, 30
propagation of, 188, 141–142, 240, 180

Toads, hearing of, 247, 185
Tones

grave and acute, 3, 5
major and minor, 12, 12
signs for, 29, 24–25

Tonic, definition, 17, 16
Tonometer, description, 5, 6
Torsional vibrations

definition of, 34, 31
of elliptical plates, 146, 115
of forks, 88, 69
of rods, 84–87, 66–67, 69, 98, 79

Tragus, 227, 174
Transverse vibrations

definition of, 34, 31
of elliptical plates, 146, 115
of plates, 98–101, 78–83, 107, 85, 117,

95, 123, 97
of rings, 89, 70
of rods, 68–76, 57–62, 83, 66, 172, 130
of strings, 36–42, 33–38, 165, 127

Trumpet, 20, 18, 55–56, 48–49,
49n, 62, 51

Trumpet, ear, 202, 153
Trumpet, marine, 37, 34
Tuning fork, 222, 169
Tuning instruments, 27, 23
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Turtles, hearing of, 247, 185
Tympanic cavity, 226, 173, 228, 174
Tympanic rope, 231, 175

U
Unison, definition, 7, 9

V
Velocity of sound, 186, 140, 219, 166–167,

221, 168
Vestibule, of ear, 230, 175
Vibrating parts, simple and double, 77, 62
Vibrations

absolute frequency of, 5, 6–8
of bells and vessels, 156–163, 123–126
coexistence of several modes of, 164–179,

127–134

coexistence with other motions, 180–181,
135–136

direction of, 34, 31
of elliptical plates, 132–147, 105–117
of forks, 88, 69–70
of gases, 67, 55
general laws of, 32, 30–31
of glass, 82, 65
of hexagonal plates, 148–149, 117–119
longitudinal, 34, 31, 43–45, 38–39, 53–54,

46–47, 56–57, 48–49, 77–83, 62–66,
86, 67, 88, 70, 171, 130, 185, 140,
219, 166–167

methods of measuring, 5, 6
of metal, 82, 64
of plates, 91–155, 75–123
of rectangular plates, 99–124, 80–98
of rings, 89, 70–71
of rods, 68–90, 57–67, 69–71

of round plates, 125–131, 99–105
of semicircular plates, 150–152, 119–120
small, 33, 31
of stretched membranes, 46–47, 41–42
of strings, 36–45, 35–41
torsional, 34, 31, 84–88, 66–67, 69, 98,

79, 146, 116
transmitted, 182–224, 139–170
transverse, 34, 31, 36–42, 33–38, 68–76,

57–62, 83, 66, 89, 70–71, 98–101,
78–82, 107, 85, 117, 95, 123, 97,
146, 115, 165, 127, 172, 130

of triangular plates, 153–154, 120–121
of whalebone, 82, 64
in wind instruments, 48–67, 43–55
of wood, 82, 64

Violin, 37, 34, 170, 129
Violoncello, 29, 24, 37, 34
Voice, breaking of vessels by, 224, 170
Voices, of humans and animals, 52, 44
Von Kempelen’s Speaking Machine, 52, 45
Vowels, forming, 52, 47

W
Whip, crack of, 49, 43, 184, 139, 236, 178
Whispering galleries, 203, 153
Wind instruments, 30, 29, 64, 53
Worms, hearing of, 250, 186

Y
Young’s modulus, 34 n, 31n

Z
Zinc and muriatic acid gases,

sound of, 67, 55
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