
Chapter 8
Conditioning Circuits for Capacitive
Energy Harvesters

D. Galayko

8.1 Introduction

8.1.1 Generalities

Any sensor converting a physical quantity into electricity needs a minimal elec-
trical conditioning: an appropriate biasing, a readout circuit with an optimal input
impedance, etc. However, in many cases, the conditioning is more complex: for exam-
ple resonant sensors need electrical oscillating circuits, zero displacement accelerom-
eters require PWM or Sigma-Delta modulating feedback loops, etc. The capacitive
transducer, being itself a passive device, requires a sophisticated electrical condi-
tioning for electromechanical energy conversion. As was pointed out in Chap. 4,
the primary goal of the conditioning is an implementation of a cyclic charge flow
synchronized with the variation of the transducer capacitance. Different aspects of
practical conditioning circuits are discussed in this chapter.

In Chap. 4, it was shown that the two equations linking the electrical and mechan-
ical quantities (4.2) and (4.13) of an electrostatic transducer are nonlinear. It was
also emphasized that an ideal scenario of the electromechanical energy conversion
corresponding to a constant voltage QV cycle is implemented by a time variant,
i.e., reconfigurable electrical network. As a consequence, a capacitive harvester as
a whole can be seen as a nonlinear system. More sophisticated conditioning cir-
cuits, e.g., those implementing a rectangular QV cycle based on charge pumps using
diodes, are generally nonlinear as well.

In this chapter, we propose a short review of conditioning circuits used for energy
conversion with capacitive transducers.
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8.1.2 Classification of Conditioning Circuits for Capacitive
Harvesters

As it was shown in Chap. 4, a capacitive transducer needs a dynamic biasing in
order to generate electricity. For a capacitive transducer whose capacitance varies
periodically following a time law Ct (t), the energy conversion process is completely
defined by the charge-voltage cycle Γ . Since the voltage, charge and capacitance
of the transducer are bounded by the equation Qt = CtVt , if Ct (t) is defined, the
energy conversion is defined by the voltage waveform applied to the transducer.
A conditioning circuit for an electrostatic transducer can be seen as an electrical
dipole, which is connected to the electrical terminals of the transducer, as presented
in Fig. 1.3.

Since the past two decades, several architectures of conditioning circuits for
eVEHs (electrostatic Vibration Energy Harvesters) were invented. We propose a
classification of the conditioning circuits on the basis of the shape of the achieved
charge-voltage cycles. Figure 8.1 presents all known basic QV cycles plotted in the
same axes, under hypothesis that the maximum voltage Vt applied to the variable
capacitor is the same for all cycles (Vmax ). We chose such a basis for the comparison,
because in practice, any technology of electronic circuits always impose a maximum
allowed voltage. We distinguish three families of conditioning circuits implementing
three types of QV cycles
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Fig. 8.1 Diagram showing all charge-voltage cycles which have been used to date for conditioning
of capacitive transducers in VEHs: OCB (constant-charge), OAB (constant-voltage), DFBE (rec-
tangular) and “tear drop” cycle corresponding to the continuous conditioning circuit or VEH with
electret layer. All cycles are drawn for the same extreme values of the variable capacitance (Cmin
and Cmax ) and for the same maximum voltage Vmax

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_1
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1. Teardrop, oval, or egg-shaped QV cycle (an example is plotted with dotted lines)
2. Triangular QV cycle (OAB, OCB)
3. Rectangular QV cycle (DFBE)

In this chapter, we present practical topologies of conditioning circuits imple-
menting these QV cycles.

8.1.3 Frame of the Analysis of Conditioning Circuit

The conditioning circuits are usually studied in electrical domain. It means, that the
variation of the transducer capacitance is supposed to be defined and fully char-
acterized by a function of time Ct (t). A usual hypothesis is Ct (t) is periodic with
period Te1 and having only one local maximum and minimum (Cmax and Cmin) over
a period. This is only a working hypothesis allowing to limit the complexity of the
analysis. In reality, because of the electromechanical coupling,Ct (t) depends also on
the electrical operation of the conditioning circuit, as it will be shown in examples in
Sect. 8.7. However, assuming a predetermined Ct (t) is a necessary step in the study
of the harvester as a whole.

In Sect. 8.7, we discuss how the presence of a transducer coupled with a mechan-
ical resonator impacts the operation of the circuit.

8.2 Continuous Conditioning Circuit

The simplest conditioning circuit demonstrating a generation of electrical power out
of variation of a capacitance is called “continuous conditioning circuit.” Its topology
is presented in Fig. 8.2. The circuit is composed of the variable capacitor Ct (the
transducer), a resistive load RL and an initially charged large reservoir capacitor
Cres , or simply a DC voltage source, when only a laboratory test is aimed. The
name of the circuit comes from the fact that all voltages and currents of the circuit
are continuous functions of time; this is not the case of more sophisticated circuits
which use switches or diodes and which will be considered later in this chapter.

The continuous conditioning circuit presented in Fig. 8.2 was first discussed in
[17, 24]. It was proposed as an electric interface between a resistive load and the
capacitive transducer provided with an electret layer [24], and later it was used with
a passive capacitive transducer [1, 17] biased by a voltage source or by a fixed
pre-charged capacitor. In spite of different nature of the transducer devices, these
configurations are equivalent: a DC voltage source in series with a passive capacitive
transducer is exactly an electrical model of a transducer biased by an electret layer

1The index “e” in Te stands for “electrical.” This is to emphasize that the variation of C1 may have
a different frequency that the mechanical vibrations, cf. [1].
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Fig. 8.2 Schematic of continuous conditioning circuit. In this study the continuous circuit represents
all circuit configurations which employ a capacitive transducer, resistive load and some internal or
external voltage to provide the initial bias on the transducer

[24]. Without major impact on prediction capability of the model, the DC voltage
source may be replaced by a large pre-charged capacitor.

Because of the simplicity of its implementation, this circuit is often used in lab-
oratory tests and characterization of capacitive transducers intended for the energy
conversion. In this section we propose a brief analysis of this circuit and its main
shortcomings.

8.2.1 Qualitative Discussion on Operation of the Circuit

In this subsection, we explain briefly the circuit operation on the example of a circuit
where the biasing is provided by a large fixed capacitor Cres initially charged to a
voltage V0, other capacitors are initially discharged and where the transducer capac-
itance varies according to some known periodic time law Ct (t) (Fig. 8.2a). We first
consider the circuit operation in an extreme case, when RL is close to zero [1]. It
can be seen that as the transducer capacitance varies, there is a charge redistribution
among Ct and Cres , which corresponds to a current i(t) equal to

i(t) = V0
dCt

dt
(8.1)

This equation is valid if we can neglect the voltage on RL comparing to V0: that is,
indeed the case if RL ≈ 0. It can be seen that this current dissipates power on RL ,
whose instantaneous value is equal to

PRL = i2(t)RL . (8.2)
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After each period of variation of Ct (t), the circuit returns to the same electrical state,
since the total electrical charge of Ct and Cres is constant, so is their total energy.
One should conclude that the energy dissipated on the resistance comes from the
conversion of energy from mechanical to electrical domain.

The power PRL is proportional to the load resistance: it increases as RL increases.
However, for large RL , the voltage on RL cannot be neglected anymore, and the
Eq. (8.1) is not valid.

We consider now the opposite extreme value of the load resistance: very large
(infinite). If the power on the load resistance is expressed through the voltage on the
load resistance VL as

PRL = V 2
L (t)/RL , (8.3)

we can show that the power tends to zero as RL → ∞. To prove this, it is enough to
show that VL has an upper bound. Indeed, since the current tends toward zero, the
transducer keeps its charge constant. The value of this charge depends on the initial
condition. Let it be Q0, in this case the voltage on Ct is Q0/Ct (t), and the absolute
value of voltage on the resistor is equal to |V0 − Q0/Ct (t)|. Evidently, if Cmin > 0,
this time function has an upper bound.

So, at zero and infinity values of the load resistance, the power is zero, but not for
finite values of RL . Hence, one should conclude that there is an optimal value of the
load resistance, for which the converted power is maximum.

In the next two subsections, we propose a more detailed analysis of the circuit.

8.2.2 Analytical Model in the Electrical Domain

This section presents the mathematical model describing formally the operation of
the conditioning circuit.

The governing equations describing the electrical behavior of the simple condi-
tioning circuit are given by the Kirchhoff voltage law and the element equations:

RL
dQt

dt
+ Qt

Ct (t)
= V0, (8.4)

where Qt is the instantaneous charge on the transducer capacitor, Ct (t) is the time
evolution law of the transducer’s capacitance. The electrical equation of the trans-
ducer is simply

Vt (t) = Qt (t)/Ct(t), (8.5)

where Vt is the voltage on the transducer.
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The instantaneous power converted by the transducer is dissipated on the load
resistance, and can easily be calculated with Eq. (8.2), where the current is given as

i = dQt

dt
(8.6)

The average power converted by the transducer is given by the average of (8.2) on
one period of Ct (t) variation.

In order to calculate the average converted power, the closed expression of Qt (t)
should be found, and for that the differential Eq. 8.4 should be solved. The work
[12] addressed the resolution of this equation. It was concluded that even for simple
geometries of the transducer, this equation cannot be solved in closed form, and the
analytical solution for Qt (t) can be expressed as infinite Fourier series, in which,
however, the terms above third or forth can be neglected in the most practical cases.
The coefficients of the series are expressed through Bessel functions. For this reason,
a comprehensive analytical expression relating the converted power to the parameters
of the system is difficult to establish.

We present here an example of practical study of the continuous conditioning
circuit in the electrical domain. For that, we need to define the function defining the
variation of the transducer capacitance over time,Ct (t). In this example, we study the
case of a gap closing transducer (see Chap. 4) whose mobile plane moves according
to a sinusoidal law. We have:

Ct (t) = Ct (x(t)) = ε0
S

d0 − x(t)
= ε0

S

d0 − X0 sin ωt
, (8.7)

where S and d0 are the overlapping area and the initial transducer gap, respectively,
X0 and ω are the amplitude and the angular velocity of mobile electrode motion.

This function is submitted to Eq. (8.4). The steady-state solution of the linear
parametric equation (8.4) describes a periodic variation of the charge Qt (t) and of
the current Q̇t (t). The solution can be obtained by any tool for EDT solving, or by
a Spice simulator able to model a variable capacitance. Here, we present the result
of numerical resolution of the equation for the values of the parameters presented in
Table 8.1.

Table 8.1 Values of parameters used for simulation of continuous conditioning circuit with gap
closing capacitive transducer

Physical parameters

Fixed parameters Variable parameters

Parameter
name

d (m) S (m2) ω

(rad · s−1)
V0 (V) X0 (m) RL (�)

Parameter
value

50×10−6 1×10−4 2 · π ·100 10 (30, 40, 45) ×
10−6

(1 . . . 100) ×
106

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 8.3 Average power
converted in a steady-state by
the continuous conditioning
circuit used with a gap
closing transducer against
the load resistance, for three
different amplitudes of the
mobile electrode motion

Figure 8.3 presents the plot relating the average power generated on the load
resistance in the steady-state mode (after the transient process) to the value of the
load resistance. The plot is given for three amplitudes of the mobile mass vibrations.
It can be seen that the curves are similar to what is obtained for the power-load
characteristic of a real voltage source having some internal resistance Rs . In this case,
the power is maximum when the load resistance is equal to the internal resistance of
the source. This allows us to consider the load resistance value at which the power
on the plot of Fig. 8.3 is at its maximum as the equivalent internal resistance of the
power source represented by the transducer and the biasing source. Note, that the
internal resistance of such a source depends on the amplitude of the mobile electrode
motion, as shows the plot. This highlights nonlinearity of the system: indeed, in a
linear system, the impedance matching condition for the load does not depend on
the amplitude of the input signal.

Figure 8.4 presents three families of QV cycles in steady-state mode (after the
end of the transient process), corresponding to three different amplitudes of the mass
displacement X0. Each plot contains several QV cycles obtained for different values
of the load resistance. The QV cycles drawn with a thick plain line correspond to the
values of the load resistance at which the converted power is maximum (cf. Fig. 8.3):
this QV cycle has the largest area over all cycles of the family.

Let us have a look on the evolution in the shape of the QV cycle as the load
resistance increases. For low RL , the QV cycles are more “vertical,” and as RL → 0,
the cycle is degenerated to a vertical line (meaning that there is no voltage across
the load resistance). On the contrary, for large RL , the QV cycle is more horizontal,
and in the limit case when RL → ∞, the QV cycle is a horizontal line (meaning that
there is no current flowing through the load resistance). For these two extreme cases,
the energy converted by a cycle is zero (cf. discussion in Sect. 8.2.1). The QV cycle
has a “tear-drop” shape, which, as we discussed before, can not be expressed by any
analytical function written in closed form.
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Fig. 8.4 Three families of QV cycles corresponding to steady-state operation of the continuous
conditioning circuit used with a gap closing transducer, each family is plotted for a value of the
amplitude of mobile electrode motion. The QV cycles on each plot correspond to different load
resistances. The optimal QV cycle (those maximizing the converted power and hence having a
maximum area) is plotted with thick solid line

The plots of Fig. 8.5 presents the time evolution of the transducer capacitance,
the transducer voltage and current at the configuration where X0 = 45µm, RL =
10 M�. The transient process lasting for less than one period is observable on these
plots. The nonlinear nature of the system can clearly be seen from these curves.

Shortcomings of the Continuous Conditioning Circuit. Auto-Increasing of the
Biasing

The main advantage of the continuous conditioning circuit is its simplicity of imple-
mentation. Unfortunately, the drawbacks are numerous, and this is the main moti-
vation for study of alternative but more complex solutions. In this conclusion, we
summarize the drawbacks of this conditioning circuit.



8 Conditioning Circuits for Capacitive Energy Harvesters 247

Fig. 8.5 Time evolution of
the electrical quantities in the
continuos conditioning
circuit used with a gap
closing transducer, obtained
by simulation. The transient
and the steady-state behavior
are clearly observed

• The voltage on the load resistance is AC; it can be seen from the current flowing
through the transducer in Fig. 8.5. An AC–DC conversion is required; in the case
of the electret transducer this may be done by conventional rectifying networks
[20].

• The order of magnitude of the voltage on the load and the bias voltage may be
the same. In the case of the electret layer, the bias voltage may be of several tens
of volts, and a downscale of the voltage is necessary. This is related to generally
very large internal impedance (resistance) of the energy source provided by the
continuous conditioning circuit (cf. discussion in Sect. 8.2.2). An active impedance
matching is required in order to optimally supply an eventually low impedance
load.

• However, the main shortcoming of the continuous conditioning circuit is in the
case when the available bias voltage is, for some reasons, low. Practical studies
highlight that up to tens of volts of bias may be needed for optimal operation [1].
However, the initial charge can only be obtained by a low voltage battery existing
in the system, or by a complementary piezoelectric VEH as proposed in [11] (or
maybe, by a solar cell), and the generated initial voltage will be not greater than few
volts. A low bias voltage means a low output power, since the latter is proportional
to the square of the voltage. A similar problem is when the electret layer is weakly
biased, for example, because of the depolarization due to the aging.



248 D. Galayko

Fig. 8.6 Functional diagram
of a conditioning circuit
allowing an accumulation of
the converted energy on the
reservoir capacitor bias

High bias voltage
generation

Transducer/resonator
AC−DC

DC−DC

HV

• If the bias voltage is generated by a large pre-charged capacitor, the leakage reduces
its charges with time, and the circuit becomes inactive. Similar problems have been
reported with electret layers, which tend to depolarize with time.

The last two points are related to the impossibility of the continuous conditioning
circuit to accumulate the energy converted from the mechanical domain, in order
to increase its biasing. One of the possible functional diagrams required for a con-
ditioning circuit is presented in Fig. 8.6: there should be a mechanism allowing a
generation of a high voltage by using the energy converted from the mechanical
domain. This voltage should then be used for biasing of the transducer. Since the
biasing does not consume energy (under hypothesis of low leakage of capacitors),
the circuit will be able to operate at high biasing, while the start-up may be done
from a low voltage. Obviously, at the initial stage, the energy converted from the
mechanical domain should be used for generation of the high voltage biasing, and
only after the biasing is established, the converted energy can be provided to the
load with a high power due to a high voltage biasing. We call the mode in which
the conditioning circuit accumulate its energy in order to increase its biasing “the
auto-accumulative” or “self-increasing” mode.

The circuits presented in the next sections are free from the drawback of the
continuous conditioning circuit, and all provide the possibility to accumulate the
converted energy on a storage capacitor, which then can be used for the load supply.

8.3 Conditioning Circuits Implementing Triangular QV
Cycles

Two triangular QV cycles are known for conditioning of capacitive transducers in
energy converters: a constant voltage QV cycle (OAB in Fig. 8.1), and a constant
charge QV cycle (OCB in Fig. 8.1). The two cycles have a very important common
property: a discontinuity in time of the voltage on the variable capacitors. It can be
obvious from their QV diagrams: the latter include paths on segments corresponding
to a fixed value of the transducer capacitances (the lines OA, OC, and OB). Since the
transducer capacitance varies in a continuous way (for instance, following the law
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given by (8.7)), these lines correspond to instantaneous, and hence, discontinuous
variation of the charge and of the voltage. That is physically impossible; in practice,
an implementation of such an operation supposes a fast variation of the transducer
voltage, in comparison with the evolution speed of Ct (t). It can be shown that only
inductive DC–DC conversion allows a very fast voltage change on a capacitor without
substantial loss of energy. As a consequence, conditioning circuits implementing
triangular QV cycles need inductive DC–DC conversion stages synchronized with
the variation of the variable capacitance.

8.3.1 Constant Voltage Conditioning Circuit

The constant voltage QV cycle was discussed in Sect. 4.1.5. We showed that the
constant voltage QV cycle provides the best energy yield achievable with a given
transducer having a given dynamics, supporting a given maximum voltage.

In this subsection, we propose a discussion about how to implement practically a
circuit achieving a constant voltage QV cycle on a capacitive transducer. We high-
light fundamental difficulties of implementation, and explain the reasons of very
limited use of the constant voltage scenario and as a consequence, the motivation for
exploring alternative suboptimal solutions.

We summarize the scenario corresponding to the constant voltage QV cycle, and
propose a corresponding electrical network (Fig. 8.7). We suppose that a voltage
source Vmax is available. This can be a large fixed capacitance pre-charged to this
voltage. At the beginning of the cycle, Ct is discharged, SW is OFF.

(1) When Ct is at its maximum, the transducer is pre-charged to a voltage Vmax and
immediately after that the transducer is connected to the source of voltage Vmax .
Note that the transducer cannot be directly connected to the voltage source, if
their voltages are not equal. The only way to avoid losses when chargingCt from
0 to Vmax is to use an inductive DC–DC converter. This conversion is denoted
“Conversion 1” in Fig. 8.7

Fig. 8.7 Diagram
illustrating the principle of
operation of a conditioning
circuit implementing a
constant voltage QV cycle

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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(2) WhenCt decreases fromCmax toCmin , the transducer is connected to the voltage
source (SW is ON). During this time, the voltage source receives charges and
energy from Ct . Indeed, the variable capacitor loses charges ΔQ = (Cmax −
Cmin)Vmax , and the source receives the energy ΔQVmax .

(3) When Ct is at its minimum, the switch becomes OFF, the remaining charges
of Ct are transferred to Vmax , so that the voltage of Ct is zero. The transfer is
achieved by an inductive DC–DC conversion denoted as “Conversion 2.”

(4) Since at each cycle Vres receives more energy that it delivers, the average energy
of Vres increases with time. If the voltage source is implemented as a large
capacitor, its voltage increases with time: that is not desirable, since, by initial
hypothesis, Vmax is the maximum voltage allowed in the given technology. The
circuit should contain a mechanism removing energy from Vmax , for example,
by supplying a load. Since the load is supplied by a low voltage, an inductive
DC–DC converter should be implemented, which is denoted as “Conversion 3.”

We note that this operation must be precisely synchronized with the variation of
Ct . In this description we do not consider how to implement such a synchronization.

Summarizing, an implementation of a constant voltage scenario requires:

• a high voltage source,
• three inductive DC–DC conversions at each cycle,
• a switch connecting the transducer and the Vmax source,
• precise synchronization of the DC–DC conversions with the variation of Ct .

The challenges of implementation of such a circuit are obvious, especially because
of very small available energy for the operation of the control electronics.

An example of a successful implementation of a constant voltage conditioning
circuit has been reported in [25], by a research group of Georgia Tech University.

8.3.2 Constant Charge Conditioning Circuits

The constant charge energy conversion scenario is similar to the constant voltage
scenario, except when the transducer capacitance decreases, the circuit fixes the
charge of the transducer, and not the voltage. The corresponding aspect of QV cycle
is given in Fig. 8.1, cycle OCB. The energy converted by the cycle is given by the
formula:

ΔW = 1

2
V 2

0 Cmax

(
Cmax

Cmin
− 1

)
= 1

2
V 2
max

Cmin

Cmax
(Cmax − Cmin). (8.8)

where V0 is the voltage on Ct when Ct = Cmax .
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Fig. 8.8 Circuit
implementing a
constant-charge QV cycle

If one compares this formula with Eq. (4.19), it is evident that at the same Vmax ,
Cmax and Cmin , the constant charge QV cycle converts Cmax/Cmin times less energy
than the constant voltage QV cycle. This can also be seen from the plot of Fig. 8.1.

However, a conditioning circuit implementing a constant charge QV cycle is
simpler than for a constant voltage QV cycle. A schematic of such a circuit is given
in Fig. 8.8. The circuit is composed of a large capacitor Cres initially pre-charged to
the voltage Vres , or of a voltage source generating the same voltage, of an inductor
and of two externally controlled switches. The operation scenario is the following:

• whenCt is at its maximum and discharged, an inductive DC–DC converter transfers
charges from a reservoir capacitor Cres to Ct , so that Ct has a charge Q0 and a
corresponding voltage V0 = Q0Cmax . Note that the initial voltage V0 is determined
by the timing of the DC–DC conversion (namely, by the ON time of the switch
SW1), and not by the voltage Vres . An appropriate command of the switches SW1
and SW2 is required, as described in [18].

• both switches are off, the transducer capacitance reduces while the charge of the
transducer remains constant. The internal electrical energy of Ct increases.

• when Ct is at its minimum, the DC-DC converter transfers the charge back from
Ct to Cres , without energy losses. The capacitor Cres receives a greater energy that
it initially has given to Ct .

• the transducer capacitance increases while its charge is zero (the switches are off),
until it reaches the maximum, and the cycle repeats.

In this way, the conditioning circuit operates as a bidirectional DC–DC converter.
Two advantages over the constant voltage circuit should be noted:

(1) The voltage Vres may be a low voltage, easy to generate. Nevertheless, the used
DC–DC converter is able to generate a higher initial voltage V0 on Ct , if it is
required for optimal energy conversion by the transducer.

(2) The voltage Vres being low, it is compatible with the requirement of the load
supply. In this way, one DC–DC conversion is removed (the Conversion 3 in
Fig. 8.7).

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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A need of a precise synchronization of the DC–DC conversion with the motion
of the mobile mass is a strong negative point of the constant-charge conditioning
scenario, which makes the implementation of the control electronics complex and
energy consuming. Study of practical implementation of this solution can be found
in [5, 6, 16, 18].

8.4 Circuits Implementing Rectangular QV Cycles

In this section, we propose to study a class of circuits implementing rectangular
QV cycle (DFBE in Fig. 8.1). We present here two subfamilies of such circuits: one
based on a charge pump firstly proposed by Roundy et al. [22], and one based on
the Bennet’s doubler [3]. Other circuits which implement such a QV cycle are full
wave and half wave diode rectifiers loaded by a reservoir capacitor. They are used
with transducer biased by electret layer [20], and are not discussed in this book.

Priorly, to study the circuit topologies, we propose a discussion on the common
properties of these circuits, which are due to the geometry of the implemented QV
cycle.

8.4.1 Study of the Rectangular QV Cycle

Let us consider a rectangular QV cycle having the following parameters related to
the cycle geometry (Fig. 8.9):

• The extreme voltages of the cycle which we call Vres , Vst , such as Vres < Vst

• The extreme charges of the cycle which we call Q1, Q2, such as Q1 > Q2

Fig. 8.9 Geometry of an
ideal rectangular QV cycle
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• The four values of the transducer capacitance corresponding to four points of the
rectangle2:
Cmax = Q1/Vres (corresponds to the point D)
Cmin = Q2/Vst (corresponds to the point B)
C∗ = Q1/Vst (corresponds to the point F)
C∗∗ = Q2/Vres (corresponds to the point E)

If a capacitive transducer is biased so as to follow the electrical state defined by
such a cycle, the energy converted in one cycle is easily calculated as the area of the
cycle

ΔW = (Vst − Vres)(Q1 − Q2) = V 2
resCmax

(
Vst
Vres

− 1

) (
1 − Vst/Vres

Cmax/Cmin

)
(8.9)

To have a physical meaning, this quantity must be positive. Hence, it is required
that

Cmax

Cmin
≥ Vst

Vres
. (8.10)

The expression ΔW is a quadratic form of the variables Vres , Vst . As a conse-
quence, if one of these voltages is fixed, there is an optimal value of other voltage
maximizing ΔW . Also, if there is some limitation applied on the voltages Vres and Vst

(for instance, a maximum allowed value), there is an optimal ratio Vres/Vst , which
is a function of the Cmax/Cmin ratio [13].

How practically a rectangular QV cycle can be implemented? It was said in
Chap. 1, that a conditioning circuit can be seen as a dipole (Fig. 1.3). We now propose
a discussion on main properties of the dipole implementing a conditioning cycle with
a rectangular QV cycle, and we define its current-voltage characteristic.

By analyzing the QV diagram (8.9), it can be seen that when Vres < Vt < Vst , the
transducer current is zero (since Qt = const). We conclude, that at this operation
stage, the conditioning circuit presents a high impedance (an open circuit).

As the transducer voltage reaches Vst when the transducer capacitance decreases
(the segment DF), the voltage of the transducer is fixed to Vst (the segment FB),
i.e., the conditioning circuit presents a voltage source Vst . Note that the current of
transducer is

it = dQt

dt
= Vst

dCt

dt
< 0 (8.11)

since Ct (t) decreases. As a consequence, the transducer gives its charges (and hence
its energy) to the conditioning circuit.

2Each point (V, Q) on a QV diagram defines an unique value of the variable capacitor given by
Q/V , otherwise, by the slope of the line connecting the point (V, Q) and the origin.

http://dx.doi.org/10.1007/978-3-319-20355-3_1
http://dx.doi.org/10.1007/978-3-319-20355-3_1
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A similar process happens when the transducer capacitance increases and its
voltage reduces to Vres (the segment BE), while the capacitance continues to increase.
In this case, the conditioning circuit behaves as a voltage source Vres (the segment
ED). In this case

it = dQt

dt
= Vres

dCt

dt
> 0 (8.12)

since Ct increases, and as a consequence, the transducer takes charges and energy
from the conditioning circuit.

We can define the current-voltage characteristic (relating it and Vt ) of the condi-
tioning circuit as follows:

• if Vres < Vt < Vst , it = 0; (open circuit)
• if it > 0, Vt = Vres ; (voltage source Vres)
• if it < 0, Vt = Vst ; (voltage source Vst )

Figure 8.10a presents the plot of the corresponding current-voltage characteristic.
It can be seen that such a characteristic corresponds to a voltage limiter implemented
by the network given in Fig. 8.10b, often used for the ESD protection of integrated
circuits, and known as “voltage limiter.” The use of this circuit for implementation of
a rectangular QV cycle in capacitive energy harvesters was first proposed by Roundy
[22]. In the literature addressing the energy harvesting, this circuit is usually drawn
as in Fig. 8.11a, and is called “charge pump.” Indeed, as follows from our discussion,
when this circuit is connected to a variable capacitor with periodic variation of the

(a) (b)

Fig. 8.10 Implementation of an ideal rectangular QV cycle: a Current-voltage characteristic of a
dipole which, when connected to a variable capacitor, implements a rectangular QV cycle, b An
electrical network having such a characteristic
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(a) (b)

Fig. 8.11 Schematic of a charge pump implementing a rectangular QV cycle: a ideal charge pump,
b practical implementation

capacitance, the low voltage source Vres gives charges, whereas the high voltage
source Vst receives charges. In such a way, the circuit creates a charge flow from
a low potential (Vres) to a high potential (Vst ). The additional energy necessary for
such an operation comes from the mechanical domain, thanks to the variation of the
transducer capacitor.

The advantage of this circuit with comparison to a constant voltage or constant
charge circuit is obvious: the automatic synchronization of the phases of the biasing
with the variation of the transducer capacitance, without any need of external control.
However, practical use of the charge pump in capacitive energy harvesters requires
to answer the following questions:

• How to generate the voltages Vres and Vst ,
• How to transfer periodically the energy gained by the source Vst to some low

voltage storage device (a large capacitor or a battery).

In this section, we consider two families of circuit implementing rectangular QV
cycle solving these problems.

8.4.2 Practical Implementation of the Charge Pump

An implementation of the charge pump close to the described idealized circuit is
obtained with the network of Fig. 8.11b. The voltage sources are implemented by
charged fixed capacitances of large values. The values of Cres and Cst should be
chosen so that

Cmax � Cst � Cres . (8.13)

Cres capacitor is initially charged to a voltage Vres = Vres0, and so are Cst and Ct

capacitors, because of the charge sharing through the diodes D1 and D2.
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Fig. 8.12 Succession of charge-voltage cycles as the charge pump operates starting from the state
when Vst = Vres : the first cycle DBE , the subsequent cycles DF1B1E1, DF2B2E2, . . ., DFnBnEn .
If n → ∞, the cycle is degenerated to a line passing through the points D, F1, F2 . . . Fn

By initially precharging the circuit to a voltage Vres0, we implement the configu-
ration of Fig. 8.11a with Vres = Vst , in which the converted energy per cycle is zero,
according to (8.9). However, since the Vst voltage source is implemented by a capac-
itor Cst , the charge transfer from Cres to Cst during the first cycle slightly increases
the voltage across Cst . Hence, the corresponding QV cycle is actually triangular,
as shown in Fig. 8.12, cycle DBE . The next cycle starts in a configuration with a
slightly larger Vst , yielding a trapezoidal QV cycle. After each cycle, Vst increases,
so that all further cycles are different. It can be shown that the slope of the line
DB, F1B1, . . . , FnBn is −Cst (steeper than Cmax , but exaggerated in the figure): the
shape of the cycles is close to rectangular, asCst � Cmax . The QV trajectory follows
a succession of cycles, starting from Vst ≈ Vres and asymptotically approaching a
degenerated cycle represented by a trapeze with a zero area (a horizontal line) cor-
responding to the Vst voltage given by:

Vst sat = VresCmax/Cmin. (8.14)

This value is called the “saturation voltage” of the charge pump.
As a result of the operation of this circuit, the capacitor Cst receives energy from

Cres , and in addition, it receives energy converted from the mechanical domain (the
harvested energy). At every QV cycle of the charge pump operation, the overall
electrical energy of the circuit increases. In what follows, we present a quantitative
analysis of this process.
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The voltage Vst at the end of the nth cycle evolves following the recursive equation
[26]:

Vst n = αVst n−1 + β, (8.15)

where

α = Cst

Cst + Cmin
, and β = Vres

Cmax

Cst + Cmin
. (8.16)

The solution of the discrete equation (8.15) is

Vst n =
(
Vst0 − Vres

Cmax

Cmin

)(
Cst

Cst + Cmin

)n

+ Vres
Cmax

Cmin
, (8.17)

where Vst0 is the voltage on Cst capacitor at the zeroth cycle. In this example, it is
assumed Vst0 = Vres0.

Note that if Ct variations are periodic, the variable n is the operating time of the
charge pump divided by the period of Ct variation, Te. From (8.17) it can be derived
that the asymptotic value of Vst n as n → ∞ is Vst sat is given by (8.14).

As Vst increases, the voltage Vres slowly decreases, as the amount of charges on
Cres and Cst is constant (as one neglects the charges on Ct ). The evolution of Vn is
given by:

Vres n ≈ [if Cst � Cmax ] ≈ Vres0 − Cst

Cres
· (Vst n − Vres0) ≈ [if Cres � Cst ] ≈ Vres0.

(8.18)

An example of the evolution of Vres and Vst is given in Fig. 8.13a, where the
charge pump starts from the state Vres = Vst = Vt = Vres0. From formula (8.15) and
(8.16) it can be seen that if Cst � Cmax , the increment of Vst during every cycle is
small, and the charge pump runs through cycles for all possible Vst , from Vres0 to
the saturation value Vst sat .

8.4.3 Evolution of the Harvested Energy

Neglecting the energy in the transducer capacitance since it is small, and supposing
that the Cst voltage is initially Vres0, the energy harvested during the n first Ct

variation periods is stored in the capacitors Cres and Cst , and is given as

Wn = 1

2
Cst V

2
st n + 1

2
CresV

2
res n − 1

2
(Cres + Cst )V

2
res0, (8.19)
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Fig. 8.13 Evolution of the
electrical state of the charge
pump without flyback. a
Evolution of Vst and Vres
voltages, b evolution of the
total converted energy (Wn)
and of the energy converted
at one cycle (ΔWn). The
simulation was done with
Cmin = 200 pF,
Cmax = 400 pF,
Cst = 3.3 nF, Cres = 10 µF,
frequency of Ct variation is
300 Hz

where Vres n is the Cres voltage after n vibration cycles and Vres0 is the initial voltage
of Cres . At the same time, the sum of charges of Cst and Cres is constant, so, the
following relation holds (neglecting the charge shared with Ct ):

Cst Vres0 + CresVres0 = Cst Vst n + CresVres n. (8.20)

Using (8.20), Eq. (8.19) can be simplified

Wn = CstCres

Cst + Cres
(Vst n − Vres n)

2/2. (8.21)

This equation suggests that the harvested energy is stored in the capacitor composed
of Cst and Cres connected in series. This formula can be further simplified if Cst �
Cres and if Cres is large, so that Vres n ≈ Vres0. In this case, we can write

Wn ≈ Cst (Vst n − Vres0)
2/2. (8.22)

This equation suggests that the converted energy is mainly stored in theCst capacitor.
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The value
ΔWn = Wn − Wn−1, (8.23)

gives the energy converted during one cycle. For the case when Cst � Cmax , ΔWn

is equal to ΔW given by Eq. (8.9), if in (8.9) Vst and Vres are replaced by Vres0 and
Vst n corresponding to the cycle.

In the formula (8.22) expressing the energy converted from the state where Vst =
Vres0, there is no explicit dependence on discrete time n (the cycle number). If
Cst � Cmax , the variation of the voltage Vst is negligible at the time scale of one
cycle. For this reason, we can state that Vst evolves continuously, and consider it as
“macroscopic state parameters” defining the energy of the charge pump. It allows us
to remove the indices n in the Eq. (8.22) and to define the total harvested energy W
as

W (Vres0, Vst ) = Cst (Vst − Vres0)
2/2. (8.24)

If, during the operation of the charge pump, the Vst voltage increases from some
V1 to some V2, the corresponding converted energy is given by

ΔW (Vres0, V1, V2) = W (Vres0, V2) − W (Vres0, V1) =
Cst (V2 − V1)(V2 + V1 − Vres0)/2.

(8.25)

Figure 8.13b presents the plots characterizing the evolution of the energy in the
charge pump as a function of the cycle number. During each cycle n, the total energy
(square dots) increases by the value given by (8.9) calculated for the Vst resulting the
previous cycle (triangular dots). Only a few cycles convert a significant amount of
energy: those corresponding to Vst values close to the optimal Vst opt , (cf. the analysis
of Sect. 8.4.1 for fixed Vres). This value is situated in-between the extreme values of
Vst , and a freely running charge pump finishes by entering into the saturation mode,
in which Vst ≈ Vst sat and ΔWn ≈ 0.

8.4.4 Shortcomings of the Single Charge Pump

Because of a dynamic evolution of Vst voltage leading to a saturation, the charge
pump alone is not useful for capacitive VEHs. Practical conditioning circuits should
be able to (i) ensure a sustainable energy conversion by fixing the Vst/Vres ratio to
the optimal value as mentioned in Sect. 8.4.1, (ii) accumulate the converted energy.
These two very important points are discussed in this subsection.

Need for a Flyback

The plot ΔWn in Fig. 8.13b can be seen as the average power converted in a cycle.
The goal of a harvester is to permanently maintain the converted power close to a
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Fig. 8.14 Principle of
operation of a charge pump
with a mechanism of return
of charges from Cres to Cst ,
called “flyback”

maximum level. For this reason, a charge pump needs periodic flyback: a mechanism
returning some of charges from Cst to Cres so as to keep Vst close to the optimal
value and to prevent the charge pump from saturation. Possible implementations of
the flyback will be discussed in Sect. 8.5.

The action of the charge pump can be seen as the generation of an average current
flowing from a low potential (Vres) to a higher potential Vst (Fig. 8.14). This current
is roughly equal to

ich pump = Q1 − Q2

Te
= VresCmax − VstCmin

Te
. (8.26)

The flyback must create an opposite current from Cst to Cres i f ly , preventing the
accumulation of charges on Cst , and so, avoiding the charge pump saturation. This
current, flowing from the high-to-low potential, removes the electrical energy from
the charge pump, and in a practical application, this energy should be transferred to
a useful load. In the steady-state mode, the rate at which the energy is removed from
the charge pump is equal to the power of the electromechanical conversion.

Auto-Increasing of the Internal Energy

From (8.9) and further analysis of Sect. 8.4.2, it can be seen that the energy converted
by a charge pump is proportional to the square of the voltage Vst and Vres , i.e., pro-
portional to the internal energy of the circuit in Fig. 8.11b. Practical studies highlight
that up to tens of volts may be needed for optimal operation [1]. However, the initial
charge can only be obtained by a low voltage battery existing in the system, or by
a complementary piezoelectric VEH as proposed in [11]. In both cases, the initial
voltage generated in this way will certainly be low (few volts).

As a consequence, the conditioning circuit should be able to use a part of the
converted energy in order to increase its biasing: its internal energy represented
by the voltage on the largest capacitor, Vres . This is the “accumulative” or “self-
increasing” mode discussed in Sect. 8.4.4.

The auto-increasing capability is not offered by the basic charge pump.
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8.5 Circuits Derived from the Primitive Charge Pump

In this section, we discuss more sophisticated conditioning circuits which are derived
from the architecture of the basic charge pump considered above. All of them imple-
ment a rectangular QV cycle. In all these circuits, the basic topology of the charge
pump presented in Fig. 8.11 is complemented by networks allowing a return of the
charges, so to allow a steady operation providing a fixed ratio Vst/Vres . Here, we
present a short discussion of these solutions.

8.5.1 Resistive Flyback

The simplest way to implement a flyback is to connect a load between Cres and Cst

(Fig. 8.15), originally proposed in [11]. Here, the load is represented with a resistance
Rload whose current is

i f ly = Vst − Vres

Rload
. (8.27)

A simplified analysis may be done by analyzing independently the charge flows of
the charge pump and of the resistor, and then by superimposing them. The point at
which both currents are equal to each other (ich pump = i f ly) corresponds to steady-
state operation. Although it is an approximation based on the averaging method [19],
it gives good analytical results.

In the steady state, the average Vst voltage on a period Te is the same for all
cycles. The stability of this mode can be easily proven by supposing a perturbation
which yields, for example, ich pump < i f ly . In this case, the load current consumption
outweighs the current due to the charge generation by the pump, and Vst decreases.
This results in decreasing of i f ly , and so in reducing the initial perturbation.

Under these considerations, the average steady-state voltage Vst with resistive
flyback can be predetermined by equating (8.26) and (8.27). Conversely, the value
of Rload yielding a desired Vst (for example, that yielding a maximum ΔW ) can be
calculated.

Fig. 8.15 Charge pump with
resistive flyback
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The resistive flyback configuration provides a sustainable energy conversion by
preventing the charge pump from the saturation. This is an efficient solution from
the point of view of the simplicity of implementation. However, it does not allow
an auto-increasing of its internal energy (cf. Sect. 8.4.4), and for this reason, is not
usable in practical applications.

8.5.2 Inductive Flyback

The inductive flyback is a Buck DC–DC converter, transferring energy from Cst to
Cres (Fig. 8.16a). The flyback operates in two steps

(i) When Vst is high so that the efficiency of the charge pump decreases, some
external control device (cf. the explanation below) activates the switch SW , and
the current in the inductor L starts to increase. This results in: (i) charges being
transferred from Cst to Cres , so that Vst decreases, (ii) the energy previously
generated by the charge pump on Cst is transferred to L .

(ii) As the magnitude of Vst decreases, it becomes close to Vres , and the same external
device cuts the switch, so that the inductor discharges through the flyback diode
D3 onto Cres . This results in a transfer of the inductor energy to Cres , and an
increase of the Cres voltage, since the diode D3 is connected to the ground. In
this way, the converted energy is used to extract charges from the ground and to
inject new charges into the charge pump.

It can be seen that Cres receives charges twice: in the first phase, it receives the
charges previously given to Cst during the pump operation, and in a second phase,
it receives new charges from the ground. In this way, Cres receives the energy it
has given to Cst during the operation of the charge pump, and it receives the energy
converted from the mechanical domain. If such an operation is cyclic, the average
voltage and energy of Cres will grow. In this way, two problems are solved: (i) even if

Fig. 8.16 Conditioning
circuit with inductive
flyback. a The architecture
of the circuit: the basic
charge pump (as presented in
Sect. 8.4.2) and the inductive
flyback (grey background)

Flyback control

D1 D2

D3

RL Vst

Flyback

SwVres
Cres Cst

Ct

Vt

L
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the capacitors are leaky, the losses are compensated by the charges extracted from the
ground, (ii) a large capacitorCres contains the harvested energy available for the load
(represented by dotted lines in Fig. 8.16a). If no load is present, Cres accumulates the
converted energy, and so implements an “auto-increasing” or “accumulative” mode.

The advantage of the charge pump with inductive flyback is the possibility of
a precise control of the QV cycle corresponding to the energy conversion. This is
achieved by a modulation of the average Vst voltage so as to remain in the optimal
mode for energy conversion.

A drawback of the circuit is the need of an external command for the switch.
However, this command is synchronized not with the mobile mass vibrations, but
with the evolution speed of the voltage Vst : first, a voltage can easily be measured, and
second, the evolution is low compared to the frequency of the capacitance variation.
Hence, the cost of such a command is smaller than for circuits implementing constant
voltage or constant charge QV cycles (see Sects. 8.3.1 and 8.3.2).

Practical implementation of adaptive architecture in Fig. 8.16 is challenged by the
relatively low power available for the control circuitry, and by the need to manage
high voltages in the conditioning circuit. Most studies have used an “old” CMOS
technology supporting high voltages (e.g., 0.7 µm CMOS in [14]). The work [9]
used a mixed high-voltage/low-voltage 0.35 µm CMOS technology, where high
voltage circuits are used for the interface with the charge pump, and the processing
is done by low voltage parts. This allows a minimization of the power overhead
of the control electronics. Implementation of a high-side high voltage MOS switch
for the flyback control with a low voltage control interface represented a particular
difficulty. An advanced study of a fully integrated CMOS implementation of the
control architecture, as in Fig. 8.16, was presented in [9, 10]. To date, implementation
of a working IC prototype of this architecture is still a subject of ongoing work in
several research groups.

8.6 Conditioning Circuits Based on the Bennet’s Doubler

8.6.1 Introduction of the Principle

Introduced at the end of the eighteenth century [2], the Bennet’s electricity doubler
is one of the first devices allowing a measure of a voltage, by amplifying the induced
charge. It has recently been proposed by de Queiroz [3] for capacitive kinetic energy
harvesters. Since then, several works have further developed this concept, adapting
it to microscale VEH [7, 8, 15, 21].

The Bennet’s doubler is a switched capacitor network, whose goal is a steady
separation of the electrical charges and an accumulation of the separated charges in
the capacitors. A steady accumulation of the charges may lead to very high (the-
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(a) (b)

(c)

Fig. 8.17 Principle of the charge doubling in Bennet’s doubler: a series configuration of capacitors
when the current is positive, b parallel configuration of capacitors when the current is negative, c a
diode network allowing an automatic switching between the configurations, depending on the sign
of the current

oretically unlimited) voltages. Before analyzing conditioning circuit based on the
Bennet’s doubler, we propose an analysis of a more simple network widely used as a
serial-parallel switched capacitors DC–DC converters. The purpose of the proposed
discussion is to help the reader to acquire an intuitive understanding of the operation
of the Bennet’s doubler based conditioning circuit, whose more detailed analysis will
be given in Sects. 8.6.2 and 8.6.3.

Consider an AC current source providing at the first half period a charge ΔQ,
and pulling at the second half period the same charge. If during the first half period
such a source is connected to a series capacitive network composed of two identical
capacitors initially charged to identical voltages (Fig. 8.17a, V1 = V2), each capac-
itor receives a charge ΔQ. However, if during the second half period, the network
topology is reconfigured and the previously charged capacitors are connected in par-
allel (Fig. 8.17b), the current source takes a charge ΔQ/2 from each capacitors. At
the end, each capacitor receives a charge ΔQ/2, which is added to the preexisting
charges of the capacitors. The cyclic reconfiguration of the circuit topology from
series to parallel is usually achieved by externally controlled switches. In this case,
the circuit can be seen as an AC-DC converter, since the AC current with finite max-
imum and minimum values is converted to a DC voltage, whose value is controlled
by the number of operation cycles.
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In order to achieve an automatic cyclic reconfiguration of the circuit between the
topologies of Fig. 8.17a and b (i.e., without use of an external control), one may bene-
fit from the fact that in each topology the current has a specific direction. Figure 8.17c
presents a topology in which this reconfiguration is automatic thanks to a diode net-
work. When the current is positive, the diode D2 is ON (series configuration), and
when the current is negative, the diodes D1 and D3 are ON (parallel configuration).
The use of the diodes introduces a new feature to the network: the voltages across
C1 and C2 may be different (for example, because of the initial charging). In this
case, when the current is negative, all the current passes through the branch with the
maximum voltage, and the current source generates a voltage max(V1, V2).

The requirement applied to the current source is to be able to generate a voltage3

V1 + V2 during the positive current phase, and a voltage max(V1, V2) during the
negative current phase. This is always possible for an ideal current source, which, by
definition, can generates any voltage necessary to ensure the required current value.
This is not the case of a real current source, and it leads to significant consequences
when the current source is implemented by a transducer, as it will be discussed later
in this chapter.

It can be noticed that on the time scale of one period, the network in Fig. 8.17c
implements a voltage limiter with the characteristic as in Fig. 8.10a if C1 and C2 are
large, and if ΔQ is small comparing to the charges of these capacitors. Indeed, in this
case the variation of the charges and hence of the voltages onC1 andC2 are negligible
at the time scale of one period, and the current source voltage is max(V1, V2) when
the current is negative, and V1 + V2 when the current is positive. If, for some reason,
the voltage applied to the terminals 1 and 2 of the network in Fig. 8.17c is in-between
these limits, all diodes are blocked and the current is zero.

A similarity of the considered network (Fig. 8.17c) with a voltage limiter suggests
that it can be used for implementation of a conditioning circuit achieving a rectangular
QV cycle. Such a configuration is shown in Fig. 8.18, and was originally proposed by
de Queiroz [3]. Its operation principle can be understood if one consider a functional
similarity between a variable capacitorCt (t) and a current source. Consider a variable
capacitor whose capacitance Ct (t) reduces in time. When connected to a voltage
source V , it generates a positive current i = V dCt/dt : the similarity with a positive
current source is obvious. When such a variable capacitor is connected to a open
circuit, it generates an increasing voltage Qt/C(t), where Qt is the charge of the
transducer (which is constant in time, since the current is zero). If the Ct decrease is
bounded by some Cmin , the voltage increase is bounded by Qt/Cmin , and if Cmin →
∞, the voltage tends to become infinite. A current source connected to a open circuit
generates an infinite voltage if the source is ideal, or a voltage limited by I RS if the
source is real, i.e., having an internal resistance RS . There is hence a similarity in the

3We remind that an ideal current source generates in the external network connected to it a current
of a given intensity. For that, it generates a voltage necessary to fix such a current. The value of
this voltage is determined by the external circuits. For instance, if a resistance R is connected to a
current source generating a current I , the source generates a voltage RI .
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Fig. 8.18 Bennet’s doubler
used as a conditioning circuit
for a capacitive VEH, as
proposed in [4]

electrical behavior between a capacitor having an decreasing/increasing capacitance
and a positive/negative current source correspondingly.

As a conclusion, a Bennett’s doubler conditioning circuit is a series-parallel
switched capacitors AC–DC converter, where the input AC current is generated
by a variable capacitor. As the analysis presented in the next section will show, this
circuit does not experience a saturation like the charge pump in Fig. 8.11b, and as a
consequence, doesn’t need any external control for steady generation of electricity.

8.6.2 Operation of a Bennet’s Doubler in the Electrical
Domain

We propose to consider the operation of the Bennet’s doubler starting from a state at
which one of the capacitors is initially charged to a voltageV0, and the other capacitors
are discharged. The Bennet’s doubler will first experience a transient process during
which the voltage of the second fixed capacitor will rise till V0, and then, the circuit
enters into the steady-state, in which the both voltages increase exponentially with
time.

In order to illustrate the operation of the circuit, we performed an Eldo simulation
of the circuit with the following configuration:C1 = 10 nF,C2 = 1 nF, the transducer
is a gap closing transducer as presented in Sect. 4.1.1 with d0 = 50µm and S =
10−4 m2. Capacitor C1 is initially charged to V0 = 5 V. The mobile electrode of the
transducer moves according to sinusoidal law, with amplitude of X0 = 30 µm and
frequency f = 100 Hz. In that way, the transducer capacitance Ct varies according
to Eq. (8.7). From this equation we calculate Cmin = 11.05 pF and Cmax = 44.2 pF.
The listing of the used Eldo model is given in Listing 8.1, and the time evolutions of
V1 and V2 obtained by simulation are given in plots of Fig. 8.19. The plot Fig. 8.19a
presents a long-term evolution of the voltages on capacitors C1 and C2, and the
plot Fig. 8.19b presents a zoom of the time interval covering the transient and the
beginning of the steady-state mode.

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Listing 8.1 Bennet’s doubler with variable capacitance: Eldo netlist
***** The first line is ignored in spice netlists******

.model diode1 d level=1

**** The parameter definition *****
*The transducer gap
.param d=50e-6
*The transducer area
.param S=1e-4
*Permittivity of vacuum
.param eps0=8.85e-12
*Simulation time
.param simtime=30
*Amplitude of the mobile plane motion
.param X0=30e-6
*Frequency of the mobile plane motion
.param f=100

*The voltage source defining the trajectory of the mobile electrode
Vx x_value 0 sin 0 X0 f
*The voltage controlled voltage source
*defining the variation of the transducer capacitance
ECt Ct_value 0 value={eps0*S/(d-v(x_value))}

*The transducer
Ct b3 0 value={v(Ct_value)}

*The two fixed capacitances C1 and C2, initially charged
*to 10V and to 0V respectively
C1 b1 0 10e-9 ic=10
C2 b3 b2 1e-9 ic=0

*The three diodes
db1 0 b2 diode1
db2 b2 b1 diode1
db3 b1 b3 diode1

*Transient simulation command,
*with option uic (Use Initial Conditions)
.tran {simtime} {simtime} uic
*Plotting commands
.plot V(b1) V(b2) V(b3)
.plot V(b3,b2)
.plot V(b1,0)
.plot V(Ct_value)
*Writing of waveforms to text files, for the plot drawing
.printfile tran v(b1) file=V2.txt start=0 stop={simtime} step=5e-6
.printfile tran v(b3, b2) file=V1.txt start=0 stop={simtime} step=5e-6
.printfile tran v(Ct_value) file=Ct.txt start=0 stop={simtime} step=5e

-6
.printfile tran v(b3) file=Vt.txt start=0 stop={simtime} step=5e-6

*simulator options
.options hmax=10e-6
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(a) (b)

Fig. 8.19 Evolution of voltages in the Bennet’s doubler: a long-term evolution of the voltages V1
and V2, b zoom on the time interval covering the end of the transient process and the beginning of
the steady-state

Note that in this configuration the values of the fixed capacitors are much larger
that the value of the maximum transducer capacitance. It means that the variation of
the voltages on C1 and C2 at the time scale of one period are small comparing to the
voltage variation on Ct .

The analysis of starts from Ct = Cmax at t = 0. We consider that thanks to the
diode D1, the transducer is pre-charged to the same voltage as C1. As Ct decreases,
diode D2 is on and both C1 and C2 receive charges from the transducer. In this way,
the voltage on C2 increases slightly. As Ct stars to decrease, the capacitor having
the highest voltage becomes in parallel with the transducer. Since C1 was initially
charged to 5 V and C2 experienced a small voltage increase, C1 is the one becoming
in parallel toC1 through the diode D1, andC1 gives the charges it previously received
from Ct . At the end of this cycle, C1 has the same voltage as in the beginning, and
C2 voltage increased.

The same process continues in the next cycles, till the voltages on the both fixed
capacitors become equal. In the presented simulation, it happens at t = 0.4 s. Start-
ing from that cycle, the network enters in the steady-state operation, in which the
both voltages increase exponentially, and in average, they are equal. Since the diode
network switch so that the voltage applied on the transducer is max(V1, V2) and
V1 + V2, the max-to-min ratio of the voltage on the transducer in the steady-state
mode is 2. The voltage on C1 displays a very low ripple, comparing with the voltage
on C2. This is because of the difference between the value of the capacitances C1

and C2: the charge variation is the approximately the same on both, but the voltage
variation given by Q/C is greater on the smaller capacitor.
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8.6.3 QV Cycle of the Bennet’s Doubler and Approximated
Analysis in Steady State

Figure 8.20a present the simulated plot of QV cycle that the Bennet’s doubler with the
presented configuration achieves in the steady state. The QV diagram is drawn for the
cycle corresponding to the time instant 0.8 s (the simulation shown in Fig. 8.19). The
vertical segment of the QV cycle correspond to the phases at which the transducer
is connected to

• The both fixed capacitors in series (the right segment, D2 is on)
• The smallest of the fixed capacitor of the fixed capacitors (the lower left segment,

only diode D3 is on)
• The both fixed capacitors in parallel (the upper left segment, both diodes D1 and

D3 are on)

Each of this segment has a slope 1/C , where C is the total equivalent capacitance of
the capacitive network connected to the transducer by the diodes in each case. It can
be noticed a non-infinite slope of the vertical segments of the QV cycle, however, the
shape is very close to be rectangular. This is because the fixed capacitors are very large
comparing to Cmax . In order to provide an insight into the operation of the circuit, the
same network was simulated with smaller capacitors C1 and C2 (Fig. 8.20b), whose
values are now of the same order of magnitude as the transducer capacitance. It can
clearly be seen that

• The three non-horizontal sections have different and non-infinite slopes,
• The cycle is not closed: the values of Qt and Vt at Ct = Cmax at the beginning of

the cycle are smaller that at the end of the cycle; this highlights the increase of the
internal energy of the network.

(a) (b)

Fig. 8.20 QV diagram of Bennet’s doubler obtained by simulation with the netlist given in Listing
8.1, with different values of capacitors C1 and C2: a C1 = 10 nF, C2 = 1 nF, as in the netlist given
in Listing 8.1, b C1 = 500 pF, C2 = 100 pF. The corresponding Cmin and Cmax are 11.05 pF and
44.2 pF, respectively. It can be seen that when min(C1,C2) � Cmax , the cycle is very close to
be rectangular (a). As the fixed capacitances are of the same order of magnitude as the transducer
capacitance, the cycle is not exactly rectangular and highlight different stages of the circuit operation
corresponding to different states of the diodes
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Considering the QV cycle of the Bennet’s doubler, it is possible to give an approx-
imated expression of the energy converted in one cycle in the steady-state mode. If
Cmax � C1 and Cmax � C2, the voltage on C1 and C2 may be considered fixed at
the time scale of one cycle, and according to (8.9), we have:

ΔWss ≈ (2V − V )(VCmax − 2VCmin) = V 2 (Cmax − 2Cmin) (8.28)

Here, V is the voltage on one of the capacitors C1 and C2: in the steady state these
voltages are roughly equal.

The energy ΔWss is positive if Cmax − 2Cmin > 0. This is a necessary and suf-
ficient condition allowing the Bennet’s doubler to highlight an accumulative mode
with exponentially increasing voltages on the fixed capacitors. If this condition is
not fulfilled, the Bennet’s doubler is still able to generate electricity (i.e., to convert
energy) in the transient mode, as far as the following condition holds:

Cmax

Cmin
>

V1 + V2

max(V1 + V2)
(8.29)

In this case, the energy converted at each cycle is

ΔWtran ≈ (V1 + V2 − max(V1, V2))(max(V1, V2)Cmax − (V1 + V2)Cmin) (8.30)

As shows the plot Fig. 8.19a, in all this energy is accumulated in the capacitor with
the smallest voltage, so that at some moment the condition (8.29) is not fulfilled since
the smaller voltage increases. Then, the Bennet’s doubler saturates, similarly with a
classical charge pump of Fig. 8.11b, the voltages on C1 and C2 do not increase, the
QV cycle is degenerated into a line and no energy conversion is achieved.

8.7 Dynamic behavior and Electromechanical Coupling of
Rectangular QV Cycle Conditioning Circuits

Analysis of a conditioning circuit in the electrical domain assumes that the variation
of the transducer capacitance is independent from the electrical state of the trans-
ducer. As we mentioned in Chap. 4, in practice, this does not hold for real electrostatic
transducers connected to microscale mechanical resonators. Indeed, as it was said in
Sect. 4.1.6, the electromechanical coupling impacts the dynamic of the mobile mass
vibrations. As a consequence, the extreme values of the transducer capacitance Cmax

and Cmin can also vary with time. As show on the example of charge pump and Ben-
net’s doubler conditioning circuits, the electrical dynamic of the circuits depends

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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on Cmax and Cmin which, in turn, depends on the electrical force generated by a
dynamically biased transducer. Such a coupled behavior, to be described formally,
requires advanced mathematical tools such as nonlinear differential equations, per-
turbation techniques, etc., which were introduced in Chap. 3. In this paragraph, we
only present an example of how electromechanical coupling impacts the operation
of a conditioning circuit, by studying the case of the Bennet’s doubler.

We chose the example of Bennet’s doubler since the difference between its oper-
ation in electrical domain and in a context where a real transducer/resonator are
connected is flagrant. Indeed, without mechanical coupling, the output voltage of the
Bennet’s doubler (e.g., the voltage V1 or V2, Fig. 8.18) increases exponentially with-
out any limit. If the variation of the capacitance is due to the motion of a mechanical
system, one cannot expect an exponential evolution of the voltages and the energy
converted at one cycle, because of the fundamental limit of the power which can be
absorbed from the external vibrations, given by Eq. (3.92) from Chap. 3. The mecha-
nism practically limiting the increase of the voltage is the presence of the electrostatic
force generated transducer, which impacts the amplitude of the mobile mass vibra-
tions so to reduce Cmax/Cmin and to limit the power converted by the transducer.
Simulation and experiments highlight two possible behaviors of the system

• a “smooth” saturation. In this case, as the energy of the Bennet’s doubler increases,
the amplitude of the mobile mass decreases smoothly, and the ratio Cmax/Cmin

asymptotically approaches 2. That stops the energy conversion by the circuit.
Such a behavior was experimentally observed in study [7]. Figure 8.21 presents
simulation curves highlighting such a behavior. As the voltages V1 and V2 grow,
the amplitude of the mobile mass vibration changes in a sophisticated manner: it
increases first, reaches a peak and decreases. This mechanical dynamics impacts
the variation of the transducer’s capacitance. The evolution of the voltages is, in
turn, impacted by the Cmax/Cmin ratio evolution: the rate is slow at the beginning,
increases near the peak of the amplitude, decreases after the peak, and becomes
zero as Cmax/Cmin approaches 2 after time t = 10 s. The presence of a peak of
amplitude at 2.4 s reminds a resonance phenomenon: indeed, we obtain a similar
amplitude envelope if a linear resonator is excited by a sinusoidal signal with
a frequency sweep. In our model, the frequency of the external acceleration is
fixed, but the resonance frequency of the resonator is continuously modified by
the voltages V1 and V2 responsible for the QV cycle definition. The drift of the
resonance frequency is clearly observed in the plot for the displacement x .

• an “abrupt” saturation. In this case, the increase of the output voltage does not
produce the reduction of the amplitude of the mobile mass, but creates conditions
for a pull-in phenomenon proper to the gap closing transducer (cf. [23]). In this
case, as the bias voltage of the circuit increases, the mobile mass sticks to the
stoppers, and does not display any significant motion, so that Cmax/Cmin ratio is
close to 1. This abruptly stops the increase of the output voltage. The resulting
evolution is given in Fig. 8.22.

http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_3
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Fig. 8.21 Simulation results
demonstrating a smooth
saturation of a Bennet’s
doubler (Fig. 8.18), where
the variation of the
transducer capacitance is
done by a gap closing
transducer connected to a
resonator. The variation of
the transducer capacitance is
achieved by a gap closing
transducer with
S = 1 × 10−4 m2, d0 = 70
µm, a resonator with
m = 57 × 10−6 kg, k = 30.8
Nm−1 and Q = 10,
frequency of the external
vibrations is 110 Hz,
acceleration amplitude is
0.4g, C1 = 10 nF, C2 = 1 nF,
initial voltage V1 is 5 V

As a consequence, in practice, the Bennet’s doubler based conditioning circuit
highlights a saturation of the output voltage, similarly with the charge pump consid-
ered in Sect. 8.4.2. Hence, for all circuits is it possible to find the value of the output
voltage yielding a maximum energy conversion rate. A realistic design requires to
take into account the mechanical coupling, which modify the optimal values of the
output voltages calculated by the analysis in the electrical domain. This is discussed
in the next section.
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Fig. 8.22 Simulation results
demonstrating an abrupt
saturation of a Bennet’s
doubler (Fig. 8.18), where
the variation of the
transducer capacitance is
done by a gap closing
transducer connected to a
resonator, with the same
parameters as for the plots of
Fig. 8.21, except the
acceleration amplitude is
0.45 g, a stopper is placed at
3 µm from the fixed
electrode

8.8 Practical Use of Conditioning Circuits
with Rectangular QV Cycle

The last question we would like to discuss is the following: how it is possible to
maintain the output voltage of a conditioning circuit at the optimal level? The most
straightforward and generic technique is presented in Fig. 8.23.
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Fig. 8.23 Architecture implementing the control of the internal energy (the output voltage) of the
vibration energy harvester in order to maximize the converted power

This architecture is based on a DC–DC converter which interfaces the output
capacitance of the conditioning circuit (CS or Cres in the case of the charge pump
with flyback) with a low voltage energy reservoir available for the load supply.
The output voltage of the harvester is defined by two energy flows: (i) the energy
converted from the mechanical domain which tends to increase the output voltage,
(ii) the DC–DC conversion removing energy from the conditioning circuit to the load
reservoir. By controlling the second flow, it is possible to control the average level of
the output voltage, and to guarantee that it corresponds to the optimal value for the
maximum power conversion. The technique is very similar with what we proposed
for the control of the voltage Vst of the charge pump in Sect. 8.5.2 [9]: the definition
of the optimal voltage Vst opt , the definition of the acceptable interval for the output
voltage variation, the control of a DC–DC converter in order to remove the extra
energy from the output capacitor, when necessary. The energy is accumulated on the
load capacitor CL and when there is enough energy for accomplishing some useful
operation, the load is supplied. The most critical block is the one implementing the
control of the DC–DC converter (represented as a gray cloud in the diagram), since
an complex analog information processing is required, as discussed in Sect. 8.5.2. A
simplified version of such an interface with the load is proposed in [3].

The implementation of this technique is a very challenging task, mainly because
of the low level of power available for the implementation of the control algorithm.
Ultra-low power analog integrated circuits is required to make it possible. This issue
is currently being studied in several research groups.
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8.9 Conclusion on Conditioning Circuits for eVEHs

This chapter presented essential information about the electrical conditioning of elec-
trostatic transducers for vibration energy conversion. Such use of the capacitive trans-
ducer is relatively recent (not more than 10–15 years), and the associated practical
knowledge is relatively small. To the date of this book’s writing, most of the presented
concepts have been essentially validated by prototypes issued from research projects
and by simulation. Substantial efforts from the community of researchers and engi-
neers are still necessary in order to elevate the maturity level of these techniques so
to employ them into commercial applications.

In many existing studies, the conditioning circuits of vibration energy harvesters
have been analyzed without accounting for the mechanical coupling. However, both
experiment and the theory emphasize that the electromechanical coupling deeply
modifies the behavior of the circuit. In particular, whereas the electrical analysis
claims that the bias voltage must be the largest possible in order to maximize the
converted power (cf. for instance formulae (8.9) and (8.28)), analysis of the full
system, simulations and experiment highlights the existence of an optimal value of
the bias voltage [7]. Chapter 3 introduces analytical tools which can be used for
the study of the coupling phenomena in capacitive energy harvesters, and provide
some examples. The used mathematical tools are quite involved even for simple
configurations, and to date, more investigation is required to have a comprehensive
and handful representation of the effects of the electromechanical coupling.

Implementation of smart and adaptive behavior of capacitive VEHs like repre-
sented in diagrams Figs. 8.16a and 8.23, is mainly impeded by the low amount of
power available from a microscale capacitive energy harvester. However, this lim-
itation is specific to the technologies of integrated circuits (IC) which have been
available for the studies carried out to date. Future evolutions of the IC technologies
will allow the implementation of the control circuitry with an acceptable power over-
head. From this standpoint, electrostatic vibration energy harvesting may be seen as
an emerging technology, having a strong potential for tomorrow’s applications.
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