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7.1 Introduction

Vibration energy harvesters are gaining increase in popularity as a possible alternative
to battery-based power sources. Vibration energy harvesters are typically resonant
devices that produce appreciable output power when operating at resonance, but they
often fail to deliver reliable power when they are made to vibrate at off-resonance
frequencies. The energy sources of these devices are ambient vibrations, which are
easily available and offer a wide variety of spectra, from narrowband to wideband. A
wide range of vibration energy harvesters designed for various operating conditions
has been proposed and demonstrated to date [1–8]. In particular, it is desirable to
develop microscale energy harvesters that can perform efficiently when using exci-
tation signals that are not only narrowbanded but are of variable frequency, either
over time or from case to case in applications, or when using excitation signals that
are relatively broadbanded [9, 10].

In that respect, nonlinear devices have emerged as a potential solution that can
adapt to the various vibration spectra to increase both the bandwidth response and
the output power. The nonlinearities may appear as part of the harvester design,
such as the use of nonlinear springs that add nonlinearities to the device response at
sufficiently large acceleration amplitudes and thus broaden the harvester’s bandwidth
[10, 11]. Another solution to widen the response of the harvester uses the impact
of the proof mass with end-stops that add additional nonlinearities to the harvester
responses [9, 12, 13]. Even if the proof mass vibrates linearly between the end-
stops, the behavior changes abruptly when themass hits the end-stops. The frequency
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response obtained in this manner depends on the nonlinear springs in the suspension
or on the contact linearity between the proof mass and the end-stops. It should be
possible to produce a wider response than that obtained from a linear resonant device
through appropriate design of the device nonlinearities.

The motion of the proof mass is generally nonlinear on impact with the end-
stop, depending on the system and end-stop parameters [14]. The end-stops in the
vibration energy harvester not only add nonlinearities and enhance the bandwidth but
also saturate the harvester’s output power. Thus, the end-stops set an upper bound on
the output power. This negative end-stop trait can be overcome by the introduction
of sufficiently compliant end-stops to the device and collection of the lost energy
at the end-stops on impact via integrated electronic circuits such as synchronous
electric charge extraction (SECE) or synchronized switch harvesting on inductor
(SSHI) circuits [15]. The energy that is otherwise lost in the end-stops can be used
efficiently by introducing a transduction mechanism at the end-stops [13].

In this chapter, an overview of the use of end-stops in energy harvesters will be
presented. The mathematical modeling of end-stop behavior in a harvester will be
discussed in detail on the basis of phase space trajectories and eigenvalue problem.
The effects of nonlinearities in the motion of the proof mass on variation of the
coefficient of restitution and the device parameterswill be demonstrated. The average
output power from the harvesterwith end-stop nonlinearities for different coefficients
of restitution will be shown in power graphs. Examples of devices with end-stop
nonlinearities will be presented and discussed with respect to their experimental
results, and conclusions will then be drawn.

General Aspects of Vibration Energy Harvesters

The schematic diagram in Fig. 7.1 shows a typical model of a vibration energy
harvester. While this model, which was built up by William and Yates [16, 17] is
mainly applicable to electromagnetic transducers, it can be applied to both piezoelec-
tric and electrostatic transducers in appropriate ways. The model includes a proof
mass m suspended from a mechanical spring with a stiffness k. The mechanical loss
is represented by cm, while the electrical loss ce comes from the coupling between the
mechanical and electrical domains in the system for energy conversion. The power
is obtained from the motion of the proof mass relative to the device package when
the harvester is subjected to vibration. Because of the finite size of the device pack-
age, the proof mass displacement is always constrained by a maximum amplitude
|x(t)| ≤ Xmax. Under sinusoidal excitation with an angular frequency ω in the steady
state [16, 17], the proof mass displacement amplitude and the power obtained are
given by

|X| = A√(
ω2
0 − ω2

)2 + (cm + ce)
2 ω2/m2

(7.1)

P = 1

2

Ceω
2A2

(
ω2
0 − ω2

)2 + (cm + ce)
2 ω2/m2

(7.2)



7 End-Stop Nonlinearities in Vibration Energy Harvesters 215

Fig. 7.1 Typical diagram of a vibration energy harvester model

where A is the acceleration amplitude and ω0 = 2π f0 = √
k/m. The optimum power

is achieved when cm = ce. Additionally, the generated power is limited by Plim =
(2/π)mωXmaxAwhen |X| = Xmax [18, 19]. In addition, at resonance, for |X| = Xmax,
the power obtained isPlim = (1/2)mωXmaxA, which is approximately 78.1% ofPlim.

Depending on their transduction mechanisms, vibration energy harvesters can be
classified into electrostatic energy harvesters [1–3], piezoelectric energy harvesters
[4–6] and electromagnetic energy harvesters [7, 8]. In an electrostatic energy har-
vester, the displacement of the movable proof mass electrode varies the capacitance
between the movable proof mass electrode and the fixed electrode when an appropri-
ate bias is placed on either the movable proof mass electrode or the fixed electrode.
Piezoelectric conversion is a function of the material properties; strain in the material
produces an electric field in that material, and vice versa. The principle of operation
of an electromagnetic energy harvester is based on Faraday’s law of induction. A
variable electric field is generated in an electromagnetic energy harvester, creating
an output voltage V , when the magnetic flux Φ passes through an electrical circuit.
The harvested power can either be used directly for a specific application or can be
managed efficiently using power management circuits such as SSHI or buck–boost
converter circuits [15, 20].

The spectra of the vibration signals vary from narrowband to wideband [21–25].
The role of the energy harvester is to respond effectively to the wideband spectra but
not to the single peaks. However, for applications where the response from a single
frequency peak is the case of interest, the harvester should work efficiently for that
frequency peak.
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The harvesters are excited by ambient vibrations, which introduce the relative
motion of the proof mass with respect to the device frame. The vibration amplitudes
can be unpredictable inmany cases. The harvester designsmust be able to adapt to the
vibration conditions to maximize the output power, while the harvester performance
is required to be both robust and effective. In the following analysis, a sinusoidal
vibration with angular frequency ω = 2π f and amplitude A is used to characterize
the nonlinear behavior of the end-stops of vibration energy harvesters.

7.2 Modeling of the End-Stops

In conventional vibration energy harvesters, the end-stops are unavoidable in the
real prototypes. The displacement is limited by the space constraints of the device
package. Themain function of the end-stops is to confine the proofmassmotion under
sufficiently large vibration conditions. In addition, they protect the beam structures
and prevent degradation of the material properties. The end-stops set an upper bound
on the output power at high acceleration amplitudes, i.e. they limit the harvested
power, which would otherwise be infinitely high without the end-stops.

The end-stops introduce strong nonlinearities into the harvester response when
the proof mass hits the end-stops under extreme accelerations. The positive and
negative characteristics of the end-stops have been discussed in a number of papers.
For example, the nonlinear behavior of proof mass motion in energy harvesters that
include end-stops has been studied via both simulations and experiments [12, 15].
Mathematical modeling of the end-stops in an energy harvester will be discussed in
detail in this section, followed by examples of working devices harvesting power
from the active end-stops. Theoretical and experimental studies have been carried
out to characterize the end-stops in the device design. In [4], a mechanical end-
stop is applied only on one side of the cantilever beam of a piezoelectric energy
harvester. The frequency response of this harvester is demonstrated by varying the
end-stop parameters. In [12], the end-stops applied in an electromagnetic power
generator increase the bandwidth of the frequency up-sweep while maintaining the
same bandwidth for the down-sweep.

7.2.1 Mathematical Analysis

It is useful to have some tools that can provide an insight into the performance of an
energy harvester with and without the end-stop nonlinearities using given parameters
for the desired prototypes. A mathematical tool for nonlinearities related to the end-
stops in vibration energy harvesters using an eigenvalue approach and time domain
simulations is presented in this section. For this analysis, two end-stops that limit
the motion of the proof mass are considered, where the motion is treated as a linear
evolution between the impacts with velocity discontinuities at the end-stops.
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Fig. 7.2 Two-port linear transducer with end-stop effects

An equivalent circuit for an energy harvester model with end-stop effects, irre-
spective of the transduction mechanism, is shown in Fig. 7.2, where m is the proof
mass, bm is the mechanical damping, k is the electromechanical coupling factor, K
is the effective spring stiffness, C is the transducer capacitance, � = √

KC, and R
is the load resistance. The excitation force is represented by Fext = ma. The trans-
ducer model is similar to that of a velocity-damped resonant generator (VDRG).
The end-stop effects are included as the impact force Fs on the mechanical domain
circuit. The impact forceFs is activated when the proof mass displacement amplitude
reaches its maximum.

At equilibrium, the total force on the proof mass and the voltage across the elec-
trical load in the transducer are assumed to be zero. We observe deviations of the
state variables from their equilibrium values when the harvester is excited, and these
deviations depend on the strength of the excitation signal. The linear equations of
proof mass motion under sinusoidal excitation can be formulated as Eqs. (7.3)–(7.7).

dx

dt
= v (7.3)

dv

dt
= −ω2

0x − ω2
0k

�
q − ω0

Q
v + a (7.4)

dq

dt
= −ω0

r
�kx − ω0

r
q (7.5)

da

dt
= −ωb (7.6)

db

dt
= ωa (7.7)

where x is the position of the proof mass, ν is the velocity, q is the transducer
charge, ω is the angular driving frequency, t is the time, Q is the open circuit quality
factor of the device, k is the electromechanical coupling factor, ω0 is the open circuit
angular resonance frequency, r = ω0CR, and acceleration a = A cosωt, where A
is the acceleration amplitude A = √

a2 + b2. To make the system autonomous, an
auxiliary quantity b = A sinωt is introduced into the state equations.
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Equations (7.3)–(7.7) are translated into dimensionless forms with reference to
the dimensionless time (phase angle) θ = ω0t, frequency ς = ω/ω0, and amplitude
Â = A/Xmaxω

2
0. The dimensionless state variables then become

x̂ (θ) = x (t)/Xmax (7.8)

v̂ (θ) = v (t)/Xmaxω0 (7.9)

q̂ (θ) = q (t)/Xmax� (7.10)

â (θ) = a (t)/Xmaxω
2
0 (7.11)

b̂ (θ) = b (t)/Xmaxω
2
0 (7.12)

where ±Xmax denotes the end-stop positions, i.e., |x (t)| ≤ Xmax. Typically, the
motion of the proof mass before impact is linear, and thus the state vector is

û =
[
x̂ v̂ q̂ â b̂

]T
and Eqs. (7.3)–(7.7) then read:

dû

dt
= −L̂û (7.13)

where

L̂ =

⎡
⎢⎢⎢⎢⎣

0 −1 0 0 0
1 1

Q k −1 0
k
r 0 1

r 0 0
0 0 0 0 ς

0 0 0 −ς 0

⎤
⎥⎥⎥⎥⎦

(7.14)

and the linear evolution of the system from, for example θ = θ1 to θ = θ2, is given by

û (θ2) = Û (θ2 − θ1) û (θ1) (7.15)

where
Û (θ) = exp

(
−θ L̂

)
(7.16)

If an impact occurs at the dimensionless time θ1, then the change in velocity at
the time of impact is modeled as v̂

(
θ+
1

) = −ev̂
(
θ−
1

)
, where e is the coefficient of

restitution and the superscript ± denotes a infinitesimally small time after/before θ1.
Thus, the change in the state vector at the time of impact is given by

û
(
θ+
1

) = Sû
(
θ−
1

)
(7.17)
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Fig. 7.3 Modeling of the impact at the end-stops

where

S =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 −e 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

(7.18)

Figure7.3 shows the end-stops model, where the end-stops are placed at the posi-
tions of ±Xmax. Thus, the impacts occur at the normalized positions x̂ = −1 and
x̂ = +1. If the sequence of impacts per cycle of motion is known, then all possible
solutions can be found from the solution to the eigenvalue problem.

Let θ = 0 be the time of impact at x̂ = −1 and assume that, at some intermediate
time θ1, another impact occurs at x̂ = +1, and then the next impact occurs at x̂ = −1
at time θ2 = 2π/ς , thus completing one whole cycle of the proof mass motion.

If the state vector is initially û
(
0+) = u0, then the sequence of linear evolutions

and impacts that occur up to the point in time just after the second impact at x̂ = −1
at time θ = θ+

2 is given by
û

(
θ−
1

) = Û (θ1) u0 (7.19)

û
(
θ+
1

) = Sû(θ−
1 ) = SÛ (θ1) u0 (7.20)

û
(
θ−
2

) = Û (θ2 − θ1) û(θ
+
1 ) = û

(
θ−
2

) = Û (θ2 − θ1) SÛ (θ1) u0 (7.21)

û
(
θ+
2

) = Sû (θ2) = SÛ (θ2 − θ1) SÛ(θ+
1 )u0 (7.22)

If the period of motion is equal to the period of the vibration, then û
(
θ+
2

) =
u0 in (7.22). Therefore, an admissible u0 must be an eigenvector of the matrix
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SÛ (θ2 − θ1) SÛ(θ1) with an eigenvalue of 1. Thus, solution of the eigenvalue prob-
lem provides possible solutions for themotion of the proofmass for onewhole period
of the driving force. The final result must be checked against unphysical solutions
where the proof mass motion extends beyond the limits of the end-stops. The state
vectors give the package acceleration amplitude.

Similar analyses can be conducted for other types of motion, e.g., with more than
one impact per hit. However, the analysis quickly becomes complex when there are
several impacts per period of motion, because that leads to several unknown impact
times and a new eigenvalue problemmust be formulated for each case. This technique
is similar to the technique used in [14].

7.2.2 Analysis of the Numerical Results

System parameters are required for solution of the eigenvalue problem. In this
chapter, the eigenvalue problem is demonstrated using system parameters that are
identical to those given in [15], with ς = 1, r = 1,Q = 350, and k2 = 0.6%. The
effects of changing the system parameters are also compared using the system para-
meters given in [13], with ς = 1, r = 1, Q = 203.5, and k2 = 2.52%. The simplest
case that can be used to check the nonlinear behavior at the end-stops is to assume that
the coefficient of restitution e = 1, i.e., the end-stops are rigid and elastic collisions
occur; no energy is gained or lost at the end-stops. If the end-stops are compliant by
nature, then the coefficient of restitution is less than 1.

Figures7.4, 7.5 and 7.6 show the physical and unphysical sets of solutions for
one period of motion from the eigenvalue problem using Eqs. (7.19)–(7.22). Three
different coefficients of restitution, i.e., e = 1, e = 0 and e = 0.3, are used for illus-
tration purposes here. Figure7.4 shows that there is a single solution in which the first
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Fig. 7.4 Acceleration amplitude versus time between impacts for e = 1
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Fig. 7.5 Acceleration amplitude versus time between impacts for e = 0
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Fig. 7.6 Acceleration amplitude versus time between impacts for e = 0.3

impact occurs at the midpoint of the cycle for a normalized amplitude of 1. As the
amplitude increases, this solution splits into two solutions with opposite asymmetry
in their times between impacts. The motion of the proof mass changes dramatically
for compliant end-stops. Figure7.5 shows that the proof mass motion is unphysical
for the wider set of acceleration amplitudes when compared with the set of physical
solutions. The motion of the proof mass becomes more complicated for e = 0.3, as
shown in Fig. 7.6. Not even single acceleration amplitude is detected for the physi-
cal motion from the eigenvalue problem. The eigenvalue approach used here cannot
detect the motion of the proof mass other than as described in Eqs. (7.19)–(7.22).
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Fig. 7.7 A bare impact at the end-stops when Â = 0.00658 and e = 1

Figure 7.7 shows the acceleration amplitude where proof mass barely hits the end-
stops.

The acceleration amplitude under the condition where the proof mass will barely
hit the end-stops is given by

Â =
(
r + k2Q

)2 + 1√(
Q2 + r2Q2

) (
r + k2Q2

) + Q2 + r2Q2
(7.23)

To study the motion of the proof mass in detail, the acceleration amplitudes from
each set of physical and unphysical solutions are selected for the given coefficient
of restitution. Figures7.8 and 7.9 show the motion of the proof mass for accelera-
tion amplitudes Â = 1.0023 and Â = 1.2271 from the set of physical solutions and
unphysical solutions for e = 1, respectively.

The motion of the proof mass shown in Fig. 7.9 is complex. The proof mass tends
to go beyond the displacement limit that has been set by the end-stops, while in
Fig. 7.8, the period of the proof mass motion is equal to the period of the driving
force with one impact at each end-stop per cycle of the driving force. The jump in
velocity at the point of impact can be seen clearly in these figures.

Figure7.10 shows the evolution of the proof mass motion for the acceleration
amplitudes from the set of physical solutions for e = 1. Figure7.10 shows the dif-
ferent patterns of the proof mass motion for specific acceleration amplitudes. For
Â = 1.0945, the period of the proof mass motion is longer than the period of the
driving force. The eigenvalue problem requires further improvement to detect the dif-
ferent motion patterns as separate entities for the given set of parameters. Figure7.11
shows the complexity of the proof mass motion pattern for e = 0. The acceleration
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Fig. 7.8 Proof mass motion for e = 1 and Â = 1.0023
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Fig. 7.9 Proof mass motion for e = 1 and Â = 1.2271

amplitude Â = 1.0207e + 003 in Fig. 7.11 corresponds to the set of unphysical solu-
tions that was detected by the solution to the eigenvalue problem.

The coefficient of restitution e = 0 is closer to the conditions of real-world colli-
sions. The proof mass will lose all energy at the end-stops on each impact. As shown
in Fig. 7.11, the proof mass tends to go beyond the displacement limit when the
acceleration amplitudes are sufficiently high. The restoring force from the end-stop
then comes into play and limits the displacement of the proof mass to prevent it from
passing beyond the end-stop. The proof mass will leave the end-stop when the restor-
ing force from the end-stop reverses its direction. The restoring force phenomenon
is not modeled in the eigenvalue analysis.
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Fig. 7.10 Proof mass motion for e = 1 and acceleration amplitudes Â = 1.1778, 1.0329, 1.0945,
from left to right
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Fig. 7.11 Proof mass motion for e = 0 and Â = 1.0207e + 003

The eigenvalue problem is a simple analysis that does not account for the initial
transitions that occur in the system, which are otherwise always present during the
experimental testing of the harvester. To characterize the system exclusively, it is
important to simulate the system’s behavior over a time period that is long enough
for these initial transitions to die out.

To check whether simulation of the system for a large driving force cycle makes
any difference to the proof mass motion patterns for given acceleration amplitudes,
the phase space trajectories were studied. The phase space trajectories provide obvi-
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Fig. 7.12 Phase space trajectory for e = 1 and Â = 0.01
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Fig. 7.13 Phase space trajectory for e = 1 and Â = 0.1

ous visualizations of the proof mass motion with changing acceleration amplitudes
for a given coefficient of restitution. Figures7.12, 7.13, 7.14 and 7.15 show the phase
space trajectories projected into the x − v plane for e = 1. Figure7.12 shows the
time evolution of the acceleration amplitude that is necessary to achieve the required
impacts. The phase space trajectory shows the cyclic motion of the proof mass, but
with themotion period being considerably longer than the period of the driving force.
For slightly larger amplitudes, the phase space trajectory becomes very complex and
chaotic, with no repeating patterns, as shown in Fig. 7.13. This may stem from the
fact that eigenvalue analysis is unable to capture complex motion patterns.
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Fig. 7.14 Phase space trajectory for e = 1 and Â = 0.25
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Fig. 7.15 Phase space trajectory for e = 1 and Â = 1.002

For further increases in the acceleration amplitude, the motion pattern becomes
simpler, as shown in Figs. 7.14 and 7.15. Figure7.14 shows that the motion period
of the proof mass is double the period of the driving force. Upon a further increase,
the acceleration amplitude then lies in the region where the period of the proof mass
motion is exactly equal to the period of the driving force with one impact at each
end-stop per cycle, as shown in Fig. 7.15.

Themotion of the proofmass depends significantly on the system parameters. The
proof mass motion therefore varies with different sets of parameters for the same
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Fig. 7.16 Phase space trajectories for e = 1 and Â = 0.25 for the system parameters given in [13]
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Fig. 7.17 Phase space trajectory for e = 0 and Â = 0.05

coefficient of restitution. Figure7.16 shows the proof mass motion pattern based
on the system parameters given in [13] for e = 1. Comparison of Fig. 7.14 with
Fig. 7.16, where both are based on the same acceleration amplitude and coefficient
of restitution, shows that themotionperiods for the different sets of systemparameters
are dissimilar. The motion pattern in Fig. 7.16 is much simpler than that shown in
Fig. 7.14. The appearance of the phase space trajectories thus varies with the different
coefficients of restitution for the given system parameters, and vice versa.

It is interesting to observe the evolution of the phase space trajectories for e = 0
over time. Figures7.17 and 7.18 show the trajectories for the acceleration amplitudes
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Fig. 7.18 Phase space trajectory for e = 0 and Â = 1
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Fig. 7.19 Phase space trajectory for e = 0 and Â = 1.1 without a restoring force

where the motion period is equal to that of the driving force. For an acceleration
amplitude of more than 1, the proof mass motion becomes complicated, because it
tends to go beyond the displacement limit that was set by the end-stops, as shown
in Fig. 7.19. Thus, modeling of the restoring force for the acceleration amplitude for
which the proof mass tends to cross the displacement limit simplifies the proof mass
motion, as shown in Fig. 7.20.
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Fig. 7.20 Phase space trajectory for e = 0 and Â = 1.1 with restoring force

With the restoring force at the end-stops, the equation system fromEqs. (7.3)–(7.7)
is reformulated in the form of

dû

dt
= −L̂1û (7.24)

where

L̂1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
k
r 0 1

r 0 0
0 0 0 0 ς

0 0 0 −ς 0

⎤
⎥⎥⎥⎥⎦

(7.25)

For coefficients of restitution 0 < e < 1, the analysis requires further investiga-
tion. For example, an impact with e = 0.3 is not perfectly inelastic, and thus the
proof mass will have a tendency to bounce back and forth toward the end-stops sev-
eral times before attaining continuous motion. The bouncing motion of the proof
mass must be taken into account to study the complete motion pattern of the proof
mass. The 0 < e < 1 range has not been analyzed in detail in this chapter.

The average output power is calculated using Eq. (7.26) for a linear model with
no end-stop impact. The output power with the end-stop effects is given in Eq. (7.28)
by averaging the instantaneous power over the motion period.

P̂linear = Plinear

mX2
maxω

3
0

= 1

2
rÂ2

∣∣∣ĥ (ς)

∣∣∣
2

(7.26)
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Fig. 7.21 Average output power versus acceleration amplitude

where

ĥ (ς) = iςk{(
1 − k2

) −
(
1 + r

Q

)
ς2 + iς

[
1
Q + r

(
1 − ς2

)]} (7.27)

P̂ = 1

r

(
kx̂ + q̂

)
(7.28)

Figure7.21 shows the average output power for the system with e = 1 and e = 0
that was simulated for large numbers of vibration cycles. The discontinuities shown
in Fig. 7.21 for e = 1 correspond to the acceleration amplitudes that produce complex
phase space trajectories with motion periods that differ from the period of the driving
force, as shown above.

The inset image for e = 0 in Fig. 7.21 shows the complex pattern for an acceler-
ation amplitude of more than 1, which corresponds to the phase space trajectories
where the proof mass passes beyond the displacement limit, and thereby illustrates
the need for the restoring force to be included in the model.

Figure7.22 shows the average output power from the end-stop model when tak-
ing the restoring forces from the end-stops into account. The unevenness shown in
Fig. 7.21 at acceleration amplitudes of more than 1 and for e = 0 is evened out in
Fig. 7.22.

The results in Fig. 7.21 show that the power with e = 0 and e = 1 follows almost
identical curves. However, this may or may not be the case for practical harvester
prototypes, where the impacts are imperfectly elastic (e = 0). Additionally, many
other factors affect the average output power, including the squeeze film damping
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Fig. 7.22 Average output power versus acceleration amplitude with a restoring force

coefficient, the slide film damping coefficient, overcutting in the fabrication process,
fringingfields, parasitic capacitance, and the end-stop configurations.One interesting
phenomenon that is shown in Fig. 7.21 is that the average output power is weakly
dependent on the acceleration amplitude.

7.2.3 Transducing End-Stops

The negative effects of power saturation for e = 1 and of the power loss for 0 <

e < 1 are obvious for the end-stops in vibration energy harvesters when the proof
mass displacement reaches a maximum amplitude, as shown in Fig. 7.21. This effect
has been demonstrated experimentally in many harvester prototypes [9, 11, 12, 26,
27]. The concept of replacement of passive end-stops with active end-stops to act
as secondary transducers is illustrated in Fig. 7.23 [13, 28]. When the excitation
levels are strong enough, the transducing end-stop is actuated by the force of the
impact between the proof mass and the end-stop. The power from the end-stop
transducer is added to that from the main transducer, and thus continuously increases
the total power of the system when the acceleration level increases. As a result, the
efficiency or effectiveness of the harvester is improved by this combination of the
main transducer with the end-stop transducers.

The end-stopmechanism can be one of three types: electrostatic, electromagnetic,
or piezoelectric, as stated earlier. The important function of the transducing end-
stop is to efficiently convert the kinetic energy from the impact force into electrical
power while maintaining the net stiffness to confine the primary transducer’s motion.
Figure7.24 shows an example of a device that implements transducing end-stops
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Fig. 7.23 Active end-stops acting as transducers included within the device package [13, 28]

Fig. 7.24 a A schematic of the device prototype design using the active end-stop transducers, and
b a close-up view of the fabricated device

based on electrostatic mechanisms. An overlap-varying comb-drive capacitor struc-
ture includes main transducers 1 and 2, which vary in anti-phase with each other. The
end-stop transducer is a gap-closing capacitor structure. The masses of both the main
and secondary transducers are suspended using linear folded springs. In the design,
the maximum displacement amplitude of the main proof mass is Xmax = 10µm. The
end-stop transducer begins actuation when the relative displacement of the main
proof mass passes beyond 6 µm.

Figure7.24a shows the main characteristics of the in-plane harvester design.
Figure7.24b shows part of the microelectromechanical system (MEMS) device,
which was fabricated using the silicon-on-insulator multi-user MEMS processing
(SOI-MUMPS) method with a device layer thickness of 25 µm [29]. The total active
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Table 7.1 Design parameters for the device prototype

Parameters Main transducers 1 and 2 End-stop transducer

Finger length 25 µm 55 µm

Finger width 2 µm 2 µm

Nominal overlap 10 µm 50 µm

Nominal gap 2 µm 5 µm

Spring length 530 µm 335 µm

Spring width 6.2 µm 6.2 µm

Mass 1.15 mg 0.05 mg

Fig. 7.25 Output voltage
waveforms of the transducers
for A = 1.2 g
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area of the prototype is 4×5 mm2. The design parameters of the device are listed
in Table7.1. In the experiments, all electrostatic transducers in the device proto-
type are biased using an external bias voltage Vb = 12V in continuous mode. The
output powers from the end-stop and main transducers are obtained by connecting
the fixed electrodes of the transducers to an external load with component value
RL = 18.5M	, which is the optimum load for the main transducers.

At low acceleration levels, the proof mass motion of the main transducers is less
than the maximum displacement amplitude. Therefore, there is no internal impact
between the main transducers and the end-stop transducer. Thus, the transducing
end-stops are deactivated and produce almost no output power. The harvester out-
puts are linear and mainly come from the main transducers, 1 and 2, in opposite
phase. Figure7.25 shows the output voltage waveforms of the main transducers and
the end-stop transducer for an acceleration A = 1.2 g. At this sufficiently large exci-
tation level, the impact force between the masses is strong enough to drive the end-
stop transduction significantly. The output voltage of the end-stop transducer then
becomes comparable to that of the main transducers. This indicates that the energy
conversion process is more effective with the addition of the end-stop transducer.
The waveform of the end-stop transducer is characterized almost in transient time,
which is restricted by the time interval between the impacts, as shown in Fig. 7.25.
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Fig. 7.26 Measured output
voltages of the transducers
versus frequency up-sweep
(solid line) and down-sweep
(dashed line) for A = 1.2 g
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The gap-closing transduction in the end-stop transducer produces a motion period
that is double that of the overlap-varying transduction in the main transducers.

Figure7.26 shows the frequency responses of all measured output voltages for
A = 1.2 g. In the linear regime, the main transducers give a resonant frequency of
f0 = 665Hz and a 3-dB bandwidth of 6.9Hz. The dynamic interaction due to the
impact between the proof masses adds nonlinearities to the frequency responses of
both themain transducers and the end-stop transducer. The frequency responses form
a hysteresis pattern with a jump-down frequency fdown = 653.1Hz and a jump-up
frequency fup = 730.4Hz. The frequency band between the jump frequencies of the
up-sweep and down-sweep is 77.3Hz, which is approximately 11 times higher than
the 3 dB bandwidth in the linear regime. Thus, the positive nonlinearities broaden
the harvester bandwidth based on the end-stop transducer impact mechanism. The
intermediate frequency range shows a high-amplitude revolution in their responses.

Additionally, the output voltage of the transducing end-stop is significant in the
impact frequency range. During an impact, the main proof mass hits the end-stop and
is then moved for an extra distance before it returns to the equilibrium position. The
hysteresis observed in the low-frequency range is affected by the softening-spring
nonlinearity [10, 30–32] because of the electrostatic pull of the end-stop transducer
on the proof mass for small gap sizes. Therefore, the end-stop proof mass is driven
toward a larger displacement amplitude, which leads to greater variation in the gap-
closing capacitance in the end-stop transduction process. As shown in Fig. 7.26, the
minimum gap for the end-stop transducer is achieved for A = 1.2 g. The outputs of
both the main transducers and the end-stop transducer reach their maximum levels.

The benefits of the transducing end-stop can be seen by comparison with the
reference harvester prototype under increasing acceleration amplitudes, as shown in
Fig. 7.28. The reference transducers are designed to be identical to themain transduc-
ers in the same active area. Both prototypes have amaximumdisplacement amplitude
Xmax = 10µm. In the linear regime, the output power of the reference prototype is
slightly higher than that of the impact prototype. This is because the reference har-
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Fig. 7.27 Measured output
power of the prototype with
the transducing end-stops
compared with that of the
reference prototype with
rigid end-stops at their
resonant frequencies
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vester has a larger proof mass and higher transduction designed using the same
constraints. The proof mass motion of the reference device reaches its maximum
displacement amplitude at an acceleration A = 0.18 g. A saturated output power of
35.0 nW is obtained for the reference device.With the additional power coming from
the end-stop transducers, the total power of the impact prototype is higher than that
of the reference harvester under the same conditions. The total power achieved is
81.5 nW atA = 0.91 g, which is 2.3 times higher than that of the reference prototype.

Figure7.27 shows one drawback where a large acceleration gap from A = 0.10 g
to A = 0.91 g must be covered to enable the end-stop transducer to be effective. This
is because the designed mechanical stiffness of the end-stop transducer is rather too
stiff. Therefore, strong acceleration forces are required to enhance the end-stop trans-
duction of the gap-closing capacitance, which varies as∼ 1/

(
g2 − x2s

)
. This problem

can be overcome by designing the end-stop transducer to have a compliant stiffness,
as shown in Fig. 7.28. With a compliant end-stop, the total output power increases
almost linearly when the benefits of the end-stop transducer become recognizable
at A = 0.72 g. The total power is higher than the saturated power of the impact
device with the stiffer end-stop transducer for A > 1.42 g. The high-amplitude orbit
of the end-stop proof mass is achieved quickly when the net stiffness of the end-
stop transducer is reduced. The end-stop transduction is considerable even at small
acceleration amplitudes, and becomes complicated at high acceleration levels. These
complications can be explained with reference to the phase space trajectories from
the mathematical analysis of the end-stop effects that was illustrated earlier. In the
later prototype, the transducing end-stops are used on both the right and left sides of
the main transducers [13].

Alternatively, the mechanical stiffness of the end-stop transducer can be further
reduced by increasing the bias voltages applied to the electrostatic end-stop trans-
ducer. The electrostatic force from the gap-closing transducer cancels the spring
force to produce a low net stiffness while maintaining sufficient strength to secure
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Fig. 7.28 Total output
powers for two different
end-stop designs
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any unstable pull-in effects. Therefore, the end-stop transducer becomes more com-
pliant. The transducing end-stops will need further improvements to improve the
total system output power with given displacement constraints.

7.3 Conclusions

The numerical analysis that was carried out above is a useful tool for study of the
nonlinearities of end-stop effects in vibration energy harvesters. Through simple
modeling of the end-stops, it was found that this simple motion is atypical and that
solutions with complicated trajectories exist in phase space. The periods of motion
for these solutions can be very different from the period of the driving force, if indeed
they are periodic at all. The main effect of the end-stops on the output power is to
produce saturation behavior during continuous mode operation. The phase space
trajectories show that the motion of the proof mass in the energy harvester can
be complex, depending on the acceleration amplitude, but that the output power is
weakly dependent on the acceleration amplitude in the impact regime. Therefore,
the effects of the impacts on device performance during continuous operation are
minor. The consideration of the restoring force at the impacts is demonstrated using
the phase space trajectories and an output power graph.

The inelastic collisions with e = 0 will cause some energy to be lost in the end-
stops on impact. This energy loss can be collected smartly using power conditioning
circuits such as SECE or SSHI circuits. Alternatively, the lost energy on impact can
be collected by introducing the transducing end-stops which not only increases the
total output power of the harvester but also enhances its bandwidth. The compli-
ant transducing end-stops harvest more power than rigid transducing end-stops, as
demonstrated here using harvester prototypes. The harvester output can be further
improved by efficient design of the stiffness of the end-stops.
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The mathematical analysis described in this chapter can provide an insight into
the device behavior for given system parameters. The tool can be used effectively
and efficiently for energy harvester design. For example, when designing an energy
harvester that uses the end-stops as switches for power conversion circuitry, the
simulation approach illustrated in this chapter can be used to predict the switching
on every cycle of the driving force, thus optimizing the power that is harvested.
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