
Chapter 6
Nonlinear Dynamics of Ambient
Noise-Driven Graphene Nanostructured
Devices for Energy Harvesting

A. El Aroudi, M. López-Suárez, E. Alarcón, R. Rurali and G. Abadal

6.1 Introduction

Recently, there has been an increasing of interest in self-powered devices in remote
environment applications where energy becomes an important system requirement
and the use of rechargeable batteries becomes problematic such as in hard-to-access
locations or, because the lifetime of the batteries is much shorter than of that of
the system to be powered. Many solutions have been suggested in the literature to
remedy this problem by using energy harvesting techniques [1]. Energy harvesting
is considered a key factor in the development of autonomous sensors and micro-
and nanogenerators with extended lifetimes. There are different energy harvesting
technologies that can be used depending on the kind of the available energy. Among
the energy sources, vibrational kinetic energy is the most used for applications such
as development of microgenerators [1] and noise harvesters for nanosensors [2]. In
this approach, mechanical energy is converted to electricity by using piezoelectric,
capacitive, or inductive transducers. Vibration-based energy harvesting research has
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largely focused on linear electromechanical devices excited at resonance. To over-
come problems related to linear energy harvester working as resonators, nonlinear
energy harvesters have been proposed in certain applications [3]. In the nonlinear
energyharvesting approach, rather than resonance frequency tuning [4, 5], the nonlin-
earity of the system is exploited to improve the performances of the energy harvester
within a wide frequency range outperforming classical resonant energy harvesters
[3, 6]. Energy harvesting can be performed both at the macro-[3], micro-[7] and even
at nanoscales [2]. Unfortunately, most of the available power sources have very low
frequency oscillations while the resonant frequency of any nano-mechanical device
is paradoxically high (∝ GHz) which makes many issues related to their perfor-
mances as energy harvesters yet to be solved, particularly that of extracting energy
at low frequencies. Nonlinearities in energy harvesting nanodevices may play a vital
role to solve these issues. Recent works have used nanodevices such as piezoelectric
zinc oxide (ZnO) nanowires [8] where mechanical energy coming from light wind
and body movement was converted to electrical energy by a coupled piezoelectric-
semiconductor process. Due to their extremely lowpower consumption, nanosystems
that harvest their energy from their environment is attractive for applications such
as wireless sensing, personal electronics for battery charging, implantable biological
devices, biomedical science, and environmental monitoring such as animalmigration
tracking and gas and chemical species sensing [9–11]. The nanogenerators could also
be used to harvest energy created by tire pressure change and mechanical vibration
due to moving vehicles [9].

6.2 Graphene-Based Nanomaterials for Energy Harvesting

Graphene is a newly discovered nanomaterial that has interesting peculiar electronic
and mechanical properties making it a promising candidate for future electronic
applications [12]. It consists of a flat monolayer of carbon atoms tightly packed
into a two-dimensional honeycomb-like lattice. It can be considered as a building
block for graphite materials of all other dimensionality [13]. This material exhibits
high conductivity, large surface area, and electrochemical window. All these proper-
ties make it an advantageous material for energy storage devices. A literature review
concerning the electrochemical application of graphene in energy storage/generation
devices can be found in [14]. Some applications of graphene in solar cells, batter-
ies, and fuel cells can be found in [15]. In [16] biosensors and biosensing systems
employing graphene have been described.

A review providing a scientific progress of different type of graphene materials
is [17]. Their structural, thermal, optical, and electrical properties along with their
potential applications and the impact of graphene and related materials on the envi-
ronment, its toxicological effects and its future prospects have been also discussed.

In [18] it has been shown that a strained nanostructured graphene posses an intrin-
sic mechanical nonlinearity and it can be used for nonlinear energy harvesting at the
nanoscale. There, it has been also shown that whenweakly compressed, the graphene
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sheet behaves like a double-well system and that for a critical value of the compres-
sion ratio, the harvested power is optimal. In [19] some discussions on some recent
studies on graphene-based NGs have been provided. In [20], tests involving water
flow with various molarities of hydrochloric acid over few-layered graphene are per-
formed and the authors report higher induced voltages for graphene as compared
to nanotubes. In [21] graphene oxide films have been fabricated as a low-cost and
flexible nanogenerator to convert acoustic energy into electricity with a about of 12%
conversion efficiency.

6.3 Chapter Outline

The aim of this chapter is to study the nonlinear dynamic behavior of a strained
nanostructured graphenemembrane first considered in [18] for possible use in energy
harvesting applications. Based on the initial study by the authors that was presented
in [22] and [23], in this chapter we thoroughly study and expand the previous analysis
and we fully explain the reported phenomena. To accomplish this aim, the rest of the
paper is organized as follows. In Sect. 6.2, a brief description of the mathematical
model of the graphene harvester is provided. Section6.3 presents the dynamical
behavior of the device in the absence of any external excitation. Equilibrium points
and their stability are studied in the same section. In Sect. 6.4, deterministic excitation
is considered and the dynamics of the system is studied when the external force
intensity and frequency are varied. In Sect. 6.5, the dynamics of the system is studied
under a random excitation in the form of a white noise with a Gaussian distribution
and a limited bandwidth. In Sect. 6.6, the performances of the system under random
excitation are studied in terms of RMS levels. The study is extended in Sect. 6.7
to an array of three graphene membrane-based harvesters. Finally, conclusions are
provided in the last section.

6.4 Mathematical Model of the Graphene Vibrating
Membrane for Energy Harvesting Applications

6.4.1 Nonlinear Mathematical Model

Figure6.1 shows the system under study in this chapter. It consists of a flat suspended
graphene membrane with a compression ratio defined as ε = (L0 − L)/L0, where L
is the length of the graphenemembrane and L0 its equilibrium value in the absence of
any compression. Let us consider different values of the compression ratio ε between
0% (uncompressed graphene) and 10%.

Let us suppose that the graphene membrane is submerged in a noisy environment.
Let ξ(t) = σ 2η(t), where η(t) is a white noise excitationwith aGaussian distribution
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Fig. 6.1 Uncompressed or
weakly compressed
graphene membrane [18]

Fig. 6.2 Potential V (x) for
different values of the
compression factor ε. For
ε �= 0, equilibrium points are
also plotted. E+ and E− are
attractors while E0 is a
saddle point
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noisewhosemean value is zero, its variance is σ 2. By developing the Euler–Bernoulli
equation for clamped beams, the following mass-spring dynamic model is obtained
for the considered graphene membrane [18]

mẍ = −∂V

∂x
− bẋ + σ 2η(t) (6.1)

where x is the displacement, m represents the effective mass of the layer, b stands
for the damping factor, and V (x) is the potential energy which is given by [18]

V (x) = 1

56
v8x

8 + 1

30
v6x

6 + 1

12
v4x

4 + 1

2
v2x

2 (6.2)

The potential energy is depicted in Fig. 6.2 for different values of the compression
factor ε. Equilibrium points represented by extremum points of V (x) are also plotted
in the same figure. For ε = 0, the potential energy corresponds to a harmonic linear
oscillator presenting a single equilibrium point E0 at the origin. For ε �= 0, the points
E+ and E− are minima and therefore they are attractors while E0 is a maximum and
corresponds to a saddle point.
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Table 6.1 Coefficients vi (i = 2, 4, 6, 8) for the potential energy for different values of the com-
pression ratio ε

ε v8/56 v6/30 v4/12 v2/2

0 6.57 × 1050 −5.73 × 1033 6.74 × 1016 0.0096

0.025 1.30 × 1051 −1.36 × 1034 9.26 × 1016 −0.036

0.05 2.56 × 1051 −2.29 × 1034 1.14 × 1017 −0.078

0.075 2.76 × 1051 −2.34 × 1034 1.16 × 1017 −0.112

0.1 3.89 × 1051 −3.43 × 1034 1.49 × 1017 −0.165

The coefficients vi (i = 2, 4, 6, 8) are given in Table6.1 for different values of
compression coefficient ε. These values have been obtained by means of ab initio
density-functional calculations with the SIESTA code [18, 24], where the graphene
sheet is modeled at a fully atomistic level and its electronic structure solved quantum
mechanically. Equation (6.1) can be rearranged as follows

ẍ = − b

m
ẋ − 1

m

∂V

∂x
+ σ 2

m
η(t) (6.3)

If we let v = ẋ . Hence, the previous model can also be written as a set of two first-
order differential equation in the state space form

ẋ = v (6.4)

v̇ = − b

m
v − 1

m

∂V

∂x
+ σ 2

m
η(t) (6.5)

whose divergence is

∇ = ∂ ẋ

∂x
+ ∂v̇

∂v
+ ∂ ṫ

∂t
= − b

m
(6.6)

which is unconditionally negative and therefore the system is dissipative for every
set of parameter values.

6.4.2 Dynamics of the Unforced System

Before embarking on the study of the noise-driven system, let us consider first, the
situation where ξ(t) = 0 in such a way that the system is free from any excitation.
Under this circumstance the dynamics of the systemwill depend upon the parameters
of the nanodevice. Namely, mass, damping factor, and compression ratio. Let us
consider a compressed graphene membrane with compression coefficient ε �= 0 in
such a way that the origin is a saddle point (non-stable).
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ẋ = v (6.7)

v̇ = − b

m
v − 1

m

∂V

∂x
(6.8)

Therefore the model (6.7) and (6.8) has three equilibrium points which are

E0 = (0, 0), E− = (X−, 0), E+ = (X+, 0) (6.9)

where X− and X+ are the non-null displacement equilibria that can be obtained in
closed form. Moreover, one can observe that the potential is symmetric and that if
Xq is an equilibrium position−Xq will also be. Therefore one has X− = −X+. Only
real equilibrium points are of practical interest. These equilibrium points can also be
obtained by forcing the derivative of V (x) to be zero and solving for x . Let us define
μ as follows

μ = 14700v4v6v8 − 94500v2v
2
8 − 2744v3

6

+ 140v8
√
5
√

(3500v3
4v8 − 735v2

4v
2
6 − 28350v4v6v8v2 + 91125v2

2v
2
8 + 5292v2v3

6

(6.10)

Therefore the expressions of the non-null equilibrium points are given by the fol-
lowing expression

X− = − 1

30v8 3
√

μ

√
−30v8 3

√
μ(14v6 3

√
μ − 3

√
μ + 700v4v8 − 196v2

6) (6.11)

X+ = 1

30v8 3
√

μ

√
−30v8 3

√
μ(14v6 3

√
μ − 3

√
μ + 700v4v8 − 196v2

6) (6.12)

The Jacobian matrix of (6.7) and (6.8) is

J =
⎛
⎝

0 1

− 1

m

∂2V

∂x2
− b

m

⎞
⎠ (6.13)

and the corresponding characteristic polynomial can be expressed as follows

p(λ, x) = λ2 + b

m
λ + 1

m

∂2V

∂x2
(6.14)

The twoequilibriumpoints E− and E+ with adisplacement different fromzerowill be
both attracting since their corresponding Jacobian matrices do not have eigenvalues
on the right-half side of the complex plane. For the equilibrium point E0 with null
displacement x = 0, the characteristic polynomial will have one eigenvalue in the
right-half plane and another one in the left side which corresponds to a saddle point.
This is a typical situation for double-well systems where two attracting points can
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be reached depending on the initial conditions while the separatrix of the saddle
point will establish the boundary of the basins of attraction. In the bistable case,
the two equilibrium points E− and E+ are separated by a barrier whose maximum
is at x = 0 and whose height is ΔV = −V (X+) = −V (X−). The dynamics of the
system is mainly characterized by the oscillation around the twominima X+ and X−,
and crossing over the potential barrierΔV . This fact will be exploited by making the
displacement to swing between the two minima and accordingly to make the RMS
value to increase proportionally to the distance between the equilibrium point which
under sufficient excitation intensity, this in turn will imply a maximization of the
harvested energy when the system is noise driven [25].

6.5 Dynamical Behavior of the Noise-Driven System
from Numerical Simulations

Consider now that the system is subject to a random excitation with a normal distri-
bution and a maximum bandwidth ωbw. When such noise is applied to the system,
the probability to swing between the two equilibrium points X− and X+ increases.
Consequently noise can be used to increase the RMS value of the displacement
and accordingly to raise the harvested energy. Let us also consider a compressed
graphene sheet with compression coefficient ε �= 0 in such a way that the origin
is a saddle point (non stable). The nonlinear model of the system is numerically
solved. AMATLAB Simulink model was built for the system equation modeling the
graphene nano-harvester device according to the mathematical model given in (6.1).
The MATLAB Simulink block diagram used for simulations is shown in Fig. 6.3.

For some specific values of noise level, the systemwas simulated during 500ns and
the time series, phase space, probability density, and amplitude spectra are plotted.
The parameter values used are as follows, damping coefficient b = 9.9869 × 10−15

1
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Fig. 6.3 Simulink block diagram of the graphene membrane
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Fig. 6.4 Dynamics of the graphene membrane under a random excitation σ 2 = 1 pN (red), σ 2 =
50.5 pN (green) and σ 2 = 100 pN (black)
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Fig. 6.5 Spectrum and probability density function corresponding to Fig. 6.4. Note that the spec-
trum is spread down to low frequency regions when the noise intensity is sufficiently large so that
the potential barrier can be crossed

and m = 5.2982 × 10−24. Figures6.4 and 6.5 show the dynamics of the system for
different values of noise strengths. The following particular cases are plotted in these
figures

• σ 2 = 1 pN, the noise intensity is weak and the system evolves to the vicinity of
one of the stable equilibrium points X− or X+ depending on the initial conditions.
The probability to swing between the two equilibria is almost zero. The vicinities
of X− and X+ correspond to the unique set with nonzero values of the probability
density function. The energy of the system is concentrated in a limited range of
frequency near the resonant frequency (≈50 GHz).

• σ 2 = 50.5 pN, the noise intensity is sufficient to make the barrier to be beat
and make the system to leave the vicinity of the stable equilibrium points X−
or X+ swinging between them. The range within which the displacement can be
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obtained includes the interval (X−, X+). The equilibria X− and X+ correspond to
the maximum of the probability density function.

• σ 2 = 100 pN, the noise intensity is in such a way that the probability of swinging
between the stable equilibrium points X− or X+ is larger and the system presents
larger velocities and displacements and therefore the harvested energy will also
be larger.

6.6 Performance of the System in Terms of Design
Parameters

The RMS value of the displacement and noise amplitude spectra for varying noise
level and compression ratio are computed and the amount of power that can be
harvested versus noise level and compression ratio are plotted. This power is divided
by the corresponding noise amplitude. The results are shown in Fig. 6.6. One can
observe in Fig. 6.6a that as the noise level and the compression ratio are increased,
the RMS value of the displacement also increases.

Regarding the power that can be harvested, shown in Fig. 6.6b, it can be observed
that there is an optimal zone where this ratio is maximal. In particular, it can be
noticed that for the linear case (ε ≈ 0), the power that can be harvested is low even
for relatively high values of the noise level. Nonlinear effects in the device (ε �= 0),
improve the potentials of the device for energy harvesting even at low noise intensity
levels. From Fig. 6.6, one can observe that with ε �= 0, the RMS value of x and
therefore the power that can be harvested is always larger than the corresponding
linear case (ε = 0)
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6.7 Coupled Graphene Vibrating Membrane for Energy
Harvesting

6.7.1 Nonlinear Mathematical Model

We consider four coupled flat suspended graphene sheets with a compression ratio
εi , effective mass mi with an equivalent damping factor bi and a potential energy
Vi , i = 1 . . . 4. The equivalent mechanical scheme is shown in Fig. 6.7. The coupled
system can be described by the following set of coupled differential equations

m1 ẍ1 = − ∂V (x)

∂x

∣∣∣∣
x=x1

− ∂V1(x)

∂x

∣∣∣∣
x=x2−x1

− bẋ1 + σ 2η(t) (6.15)

m2 ẍ2 = − ∂V (x)

∂x

∣∣∣∣
x=x2−x3

− bẋ2 + ∂V2(x)

∂x

∣∣∣∣
x=x1−x2

− bẋ2 (6.16)

m3 ẍ3 = − ∂V (x)

∂x

∣∣∣∣
x=x3−x4

− bẋ3 + ∂V3(x)

∂x

∣∣∣∣
x=x2−x3

− bẋ2 (6.17)

m4 ẍ4 = − ∂V (x)

∂x

∣∣∣∣
x=x4

− bẋ4 + ∂V4(x)

∂x

∣∣∣∣
x=x3−x4

− bẋ2 (6.18)

Fig. 6.7 Mechanical
equivalent scheme of three
coupled graphene
membranes

b1k1

x1

ξ(t)

m1

b2V2

x2 m2

b3V3

x3 m3

b4V4

x4 m4



6 Nonlinear Dynamics of Ambient Noise-Driven Graphene … 207

where xi , i = 1 . . . 4 are the displacements for the coupled graphene membranes,
mi for i = 1 . . . 4 represents the effective mass of each of the layer i , ki its equivalent
stiffness and bi stands for their damping factors. For simplicity it is assumed that all
the membranes are identic, i.e., they have the samemass, stiffness, the same damping
coefficient and compression ratio and therefore the same potential energy V which
is the same one given (6.2).

6.8 Dynamics of the Coupled Membranes from Numerical
Simulations

In this section, only two values of noise intensity are considered, namely σ 2 = 1 and
50 pN, and different diagrams in the form of times series, state planes, FFT spectra,
and probability density function of the displacement are obtained as for the single
membrane case.
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Fig. 6.8 Time domain waveforms of the displacements xi and velocities vi , (i = 1 . . . 4) corre-
sponding to the four graphene membranes for two values of noise intensities
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Fig. 6.9 The state space in the planes (xi , vi ), (i = 1 . . . 4) corresponding to the four graphene
membranes for two values of noise intensities

Figure6.8 shows the time domain waveforms of the system. For low values of
noise intensity the system stays in the vicinity of the equilibrium point. For low
values of noise intensity the system stays in the vicinity of the equilibrium point.

Figure6.9 shows the projection of the state plane time of the system in the planes
(xi , vi ), (i = 1 . . . 4) corresponding to each graphene membrane. For relatively high
values of noise intensity, the trajectory can only evolve to an equilibrium point being
the ambient vibration in this case not sufficient to make the system to oscillate
between the two regions. When the noise intensity increases, as in the case of the
single membrane, the system trajectory visits more the different equilibrium points
and larger oscillation amplitude can be reached. All the four membranes are charac-
terized by the same dynamics.
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Figure6.10 depicts the FFT spectra of the displacement corresponding to each
graphene membrane. Since we have a system with four degrees of freedom, four
different vibration modes of with different frequencies should appear. While this is
the case for the low intensity noise case, the spectrum corresponding to a relatively
high value of noise intensity is spread a broad range of frequencies. This occurs for
all the membranes.

Figure6.11 shows the probability density functions calculated for the different
displacements of the membranes. For low values of noise intensity, the probability
of finding the system in the vicinity of one of its equilibrium points is practically one.
For relatively high values of noise intensity, the probability to visit a wider region
increases being the maximum probability that corresponding to the vicinity of the
equilibrium points.
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Fig. 6.11 Probability density function of the displacements xi (i = 1 . . . 4) for two values of noise
intensities. For reference, the probability density of the noise driving signal is also plotted

6.9 Conclusions

In this chapter, we have considered the nonlinear dynamics of four identical coupled
nanostructured graphene vibratingmembranes for ambient energy applications at the
nanoscale. The compressed graphene presents a nonlinearity that has been shown to
play an important role in increasing the efficiency of this energy harvesting device
by increasing the RMS values of the displacement and the velocity. We presented a
continuous-time nonlinear dynamical model of the coupled system. When random
vibrations are considered as the main ambient energy source for the system, the
performances of the system as an energy harvester are presented in the steady- state
nonequilibrium regime when the noise level for a certain value of the compression
ratio. Although the study can be carried out for the system with the above-mentioned
eighth-order potential, a simpler double-well fourth-order potential can be considered
in order to inherit many available analytical results on the behavior of the Duffing
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oscillator. Finally it should be noted that this structure of mechanically coupled
graphenemembranes is feasible and canphysically fabricated.Apossibleway to get it
is by suspending the membranes on a shared elastic anchors in a series configuration.
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