
Chapter 5
Nonlinear Structural Mechanics
of Micro-and Nanosystems

Hassen M. Ouakad

In the nanoscale, when trying to fabricate straight clamped-clamped single-walled
CNT transistors, the outcome comes as nonperfectly straight beam with an initial
curvature, also called slack. Hence, we can see that understanding the dynamics of
arches serve both the micro- and nanoworlds.

The dynamic behavior of CNTs also is greatly needed. Researchers have several
reported unexplained and unjustified phenomena for electrically actuated slacked
CNTs. These include multiple resonances, frequency crossing, frequency avoiding
of crossing (veering), undistinguished resonances whether they are out-of-plane or
in-plane, unexplained low values of quality factor, etc. A robust model of these
complicated structures can reveal many of their dynamical related issues.

In the first part of this chapter, we summarize the main contributions in the area
of modeling the structural mechanics of carbon nanotubes used as NEMS devices.
We also address the need to add the slack effect when modeling CNTs. Then, we
introduce general concepts (essentially reduced-order modeling and perturbation
technique) in modeling the nonlinear structural mechanics problems of beams under
several loading conditions (mainly electric actuation). We also include derivation of
the equations of motion of MEMS arches along with discussing some conditions for
applicability of the continuum theory in modeling the mechanical behavior of CNTs.

In the second part of this chapter, we present an investigation into modeling
and analyzing the nonlinear structural mechanics of electrically actuated carbon
nanotube resonators. We investigate in details the nonlinear structural mechanics of
such devices including the effect of their initial curvature (level of slack). We present a
framework and a platform to properly understand the dynamics of these complicated
systems by explaining and revealing the meaning of their various detected resonance
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frequencies. Other topics that are covered include study of the possibility of energy
exchange among the detected modes in slacked carbon nanotubes.

5.1 Literature Review

Since their discovery by Iijima [1] in 1991, CNTs attracted the interest of the nano
scale world, especially the NEMS community [2, 3], due to their unique and dis-
tinguished mechanical and electrical properties. However, people how worked on
investigating the dynamics of these tiny structures encountered serious obstacles
such as their inherent nonlinear behavior even for very small dynamic loading [3],
their low quality factors [4], detection of unexpected resonances, and unexplained
patterns of the dependence of their natural frequencies on the gate voltage [5].

As an example for the structural related issues, it was shown that clamped-clamped
CNT resonators are fabricated with some level of curvature (slack) when using the so-
called Chemical Vapor Deposition (CVD) process [5]. This slack effect has shown to
lead to various scenarios such as mode crossings, mode avoided crossings, multiple
resonances, frequency crossing, frequency avoiding of crossing (veering), undis-
tinguished resonances whether they are out-of-plane or in-plane, unexplained low
values of quality factor, …etc [5, 6].

Estimating accurately the natural and resonant frequencies of CNTs has been the
center of research attention over the past few years [7]. This is because predicting
precisely the resonance frequencies forms the basis of utilizing CNTs as resonant
sensors. In addition, relating the measured resonance frequencies to the predicted
from theory has been proposed as an effective way to extract the mechanical prop-
erties of CNTs, such as Young’s modulus [8, 9].

Clamped-clamped straight CNTs have been under extensive researches in the
NEMS community. Most of the modeling work has especially focused on simulating
their static response (linear and nonlinear) and free vibration (natural frequencies).
Dequesnes et al. [10] used molecular dynamics and linear beam theory with electro-
static force to investigate pull-in and static behavior of CNT switches. The effect of
van der Walls forces was studied and found negligible for gaps above 4 nm. Sapmaz
et al. [11] investigated the static behavior and free vibrations of CNTs for various
DC voltages using nonlinear beam equations for clamped-clamped beam assuming
the DC load as constant. Dequesnes et al. [12] investigated pull-in and natural fre-
quencies of clamped-clamped (including mid-plane stretching) and cantilever CNTs
using molecular dynamics and continuum models. They concluded that nonlinear
continuum model yields good match with molecular dynamics model.

Lefèvre et al. [13] measured the deflection versus DC for a clamped-clamped
CNT using AFM to extract Young’s modulus and simulated the static behavior of
the CNTs using nonlinear beam theory. Ke and Espinosa [14] and Pugno et al. [15]
conducted a nonlinear analysis for the static response of a doubly clamped CNT
using a nonlinear elastic beam equation. Postma et al. [3] used a nonlinear model
of clamped-clamped CNT along with a Galerkin procedure to descritize the beam
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partial differential equation. They concluded that CNTs are almost useless in the
linear regime even for small electric load and this due to the presence of thermal
random noise. Witkamp et al. [16] and Poot et al. [17] presented modeling and
testing of clamped-clamped CNTs. They used a beam model, including mid-plane
stretching, to show the variations of natural frequencies of the CNT versus DC load.
Peng et al. [18] used linear Euler–Bernoulli beam model to calculate the resonance
frequency and quality factor.

Mecular dynamics (MD) analysis represented, in the past, the most used computa-
tional method in studying the physical as well as the mechanical behaviors of CNTs
[12, 19–28]. In fact, MD can be accurately used to simulate the physical–chemical
properties of CNTs at the atomic scale. But still being the most precise method in that
fact, MD is of limited capabilities computationally point of view (maximum of 109
atoms [29] and 10–16 s as time step [30]. Basically in this method, the Newton’s sec-
ond law is applied for each considered atom forming the CNT (i.e., the acceleration
term of each atom is equal to the spatial gradient of the empirical potential energy of
the CNT). Then, the evaluation of that empirical potential energy is based on several
methods such as: the force field method, the bond order method, and semiempirical
method [31].

Several investigations have been conducted to simulate the response of CNTs
using molecular dynamics and their results were compared to results obtained using
continuum mechanics theories, such as beams and shells. All the investigations con-
cluded that continuum mechanics serve the purpose of modeling and simulating
CNTs both accurately and efficiently from a computational point of view. For exam-
ple, Yakobson et al. [32] studied using a molecular dynamics model the large defor-
mation of CNTs. They estimated the buckling of CNTs using continuum theory, a
beam model, to the predictions of the molecular mechanics simulations. They con-
cluded that this behavior of CNTs can be well described by a continuum model.
Based on scaling analysis, Harik [33, 34] tackled the buckling problem of CNTs and
proposed three nondimensional numbers related to the CNT geometric parameters
to check the validity of the beam assumption for modeling the mechanics of CNTs.
Liu and Chen [35] mentioned that investigating the global responses of CNTs such
as deformations, effective stiffness, or load transfer can be done using continuum
mechanics both effectively and efficiently. Pantano et al. [36] used finite element FE
approaches to model a single-walled carbon nanotube SWCNT and a multi-walled
carbon nanotube MWCNT. The CNT walls were modeled as thin shells while the
inter-wall interactions were modeled as pressures. The pressures were defined as
functions of separation distance. Pantano et al. [36] validated their model by com-
paring the FE results with the molecular mechanics simulations and the experimental
data. They found good agreement among all the results. Arroyo and Belytschko [37]
and Arroyo [38] also developed a FE model for MWNTs. They developed a mem-
brane wall model directly using a Tersoff-Brenner potential and a modified Cauchy–
Born rule. They were able to reproduce local buckling, kinking, and rippling effects,
which are nearly identical to the deformed states of the parent molecular simulation,
by using fine meshes for a variety of loadings including compression, torsion, and
bending. They concluded that the continuum/finite element calculations are surpris-
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ingly accurate compared to the atomistic calculations [38]. Dequesnes et al. [10, 12]
employed a nonlinear beam theory in which they used the molecular dynamics sim-
ulations to extract the beam material properties (the beam bending (EI) and the beam
stretching (EA) constants). They finally showed good agreement when comparing
the beam model to the molecular dynamic simulations except for slight difference
very close to pull-in. It was shown by Garg [31] that for the purpose of investigating
the global behavior and response of CNTs, the continuum mechanics can be safely
used under certain conditions.

In relatively more recent works, Wang et al. [39] remarked that atomistic and
molecular methods are limited to CNTs with small number of atoms, due to the high
cost of computation, and are therefore restrained to the study of localized effects on
small portion of the CNT. In order to simulate the mechanical behavior of large-sized
atomic CNTs, Wang et al. [39] proposed the use of continuum models. Sears and
Batra [40] showed that continuum models predict both global and local responses
for buckling of SWCNT by comparing their continuum predictions for bending and
buckling to atomistic simulations. They employed a simple Euler beam to model
the cantilever bending, and they ended up by showing that the continuum SWCNT
strain energy was found to match that of the molecular simulation very well. Also,
the buckling of a SWCNT was studied for tubes of different length to study and it
was found to predict the critical buckling strain of the carbon nanotube for the whole
length scale compared to molecular simulations.

Motivated by the 2-D problem of CNTs, Conley et al. [41] proposed a model for
a CNT accounting for both the in- and out-of-plane motions. They reported the onset
possibility of the non-planar motions in straight CNT resonators that they attributed
to the symmetry of the device, as well as, to the nanotube stretching as it deforms.

Recently, Elishakoff and Pentaras [42] derived analytical expressions for the
fundamental natural frequencies of double-walled carbon nanotubes under various
boundary conditions (simply supported and doubly clamped) using two different
decritization schemes, the Bubnov–Galerkin and the Petrov–Galerkin methods. They
used a linear beam model and showed a possibility to quickly evaluate the natural
frequencies of such systems. In another investigation [43], they adopted a simpli-
fied Bresse-Timoshenko beam model to evaluate the natural frequencies of simply
supported CNTs taking into account the shear deformation as well as the rotary
inertia effects. They showed that the model yields excellent results compared to the
full Bresse-Timoshenko theory as well as the Euler–Bernoulli beam model. Lately,
Georgantzinos et al. [44] proposed a linear spring-based model with lumped masses
to describe and evaluate the vibration characteristics of a single-walled CNT. They
observed that the aspect ratio has a significant role and influence on the basic modes of
vibration of the nanotubes. Hawwa and Al-Qahtani [45] adopted an elastic continuum
approach for modeling the primary resonance of a double-walled carbon nanotube
under a linear harmonic excitation using the Galerkin approach. They showed several
transitions from quasiperiodic to chaotic behavior accompanied with some nonlinear
jump phenomena and nonlinear bifurcations leading to chaos.

Cantilever CNTs received less interest in modeling their nonlinear behavior.
Among the few works on this field, Liu et al. [35] used a nonlinear beam model
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(with cubic geometric nonlinearity) for a cantilever CNT. Ke and Espinosa [46, 47]
presented the modeling of the static behavior of cantilever and doubly clamped CNTs.
Ke et al. [48] studied theoretically and experimentally the static behavior of cantilever
CNTs while considering the effect of the charge concentration, van der Wall forces,
and the large kinematics (geometric nonlinearities). Isacsson et al. [49] investigated
the dynamic response of a three-terminal cantilever CNT resonator structure. They
used a perturbation theory to descritize the beam equation of motion and then deter-
mine analytically the frequency response of the system. Isacsson and Kinaret [50]
modeled the parametric excitation of an array of cantilever CNTs excited by DC and
AC excitations.

The above theoretical investigations were motivated especially by the several
reported phenomenon of previously conducted experimental works [51–62].

Most of the previously mentioned literature work models clamped-clamped elec-
trically actuated CNTs to be perfectly straight. However, due to their fabrication
process using chemical vapor deposition (CVD), fabricating perfectly straight CNTs
with controlled geometry and orientation is very difficult. Indeed, many studies have
indicated that clamped-clamped CNTs are fabricated with some level of curvature
(slack). Kang et al. [63] studied the interatomic interaction between a CNT bridge
and the substrate underneath it used as a NEMS memory device. They showed that
the value of the CNT bridge slack is very important for the operation of the NEMS
memory device as a nonvolatile memory. Gibson et al. [7] stressed the importance
of modeling the slack of CNTs and indicated that no consistent model has been pre-
sented so far to address this issue despite knowing the strong effect of the curvature
of curved beams on modal frequencies.

Among those who reported experimental investigations showing the importance
of slack on estimating accurately the natural frequencies of CNTs, Sazonova et al.
[4] and Sazanova [5] tested slacked clamped-clamped CNT to a DC and AC load and
characterized experimentally their free-vibration response. Comparing their experi-
mental data with the numerical results of [6], they reported some unexplained phe-
nomena [5]. Some of those experimentally observed phenomena are [5]: the sublinear
variation of the frequencies, the avoided crossings (veering), the abundance of res-
onances, and the negative variation of the frequencies for certain carbon nanotubes.
Üstünel et al. [6] were among the very few who attempted to investigate theoretically
the effect of slack on a CNT oscillator. They based their work on a one-dimensional
elastic continuum model by assuming the electrostatic force to be uniformly distrib-
uted along the length of the CNT and ignoring the nonlinear elastic effects. Then, they
derived approximate analytical expressions of the natural frequencies of the CNT
for several behavior regimes of the CNT depending on the gate voltage value. They
identified three zones for the response: bending dominated, catenary dominated, and
elastic dominated. They related this to the impact of slack on the natural frequencies.
They reported that the bending regime can be described by a buckled doubly clamped
beam model, the catenary regime is modeled as a simple string under variable ten-
sion, and the elastic regime is similar to the hanging chain under constant tension.
Another group [64] attempted to model the CNT using a finite element method.
They also reported discrepancy among their theoretically predicted and experimen-
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tally measured resonance frequencies of electrostatically actuated CNTs and cited
slack as a possible reason of this. Mayoof and Hawwa [65] proposed a nonlinear
curved beam model to describe the nonlinear dynamics of a slacked single-walled
carbon nanotube under linear harmonic excitation. They showed several scenarios
of chaotic behavior for the CNT.

5.2 Background

In this section, we introduce general concepts in modeling the nonlinear structural
mechanics problems of beams and then the case where electrostatic forces are used
as actuation method. We also include derivation of the frequency equation using
the so-called method-of-multiples scales. Finally, we present some conditions for
applicability of the continuum theory in modeling the mechanical behavior of CNTs.

5.2.1 Beams

Beams are perhaps the most commonly used structural component in the MEMS and
NEMS field. Micro and nanobeams form the backbone of a wide range of devices
including resonators, resonant sensors, actuators, filters, atomic force microscope
probes, and RF switches. They are also used as spring elements with other microstruc-
tures and MEMS components, such as comb-drive actuators.

(a) Equation of motion

Here, the linear equation of motion of a beam in bending is derived, The deriva-
tion here follows Hamilton’s principle, which is variational mechanics energy-based
approach. This presents an alternative technique to the Newtonian or vectorial method
used in the derivations [66, 67]. Hamilton’s principle is considered very powerful
for deriving the equation of motion, along with the associated boundary conditions,
of complicated distributed-parameter systems of multiple bodies and complicated
boundary conditions. As an example, we will derive the equation of motion and
associated boundary conditions governing the motion of an initially curved beam
(arch beam) using the Hamilton’s principle.

We consider a clamped-clamped shallow arch, Fig. 5.1, of initial shape w0(x),
width b, thickness h, length L , modulus of elasticity E , cross sectional is A = bh,
moment of inertia I , mass density ρ, and subjected to a constant axial force of
magnitude N , as shown in Fig. 5.2. The axial displacement is denoted by u(x, t) and
the transverse displacement is denoted byw(x, t) measured from the initial curvature
w0 (x). The beam is modeled according to the Euler–Bernoulli beam theory and in
which the planes of the cross sections remain planes after deformation.
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Fig. 5.1 Schematic of a
clamped-clamped arch beam
under a compressive axial
load N
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(i) The total axial strain

We first determine the geometrical relations of the beam points using Fig. 5.2.
Figure 5.2 describes how a point Ai , with coordinates xi and zi in the axial and
transverse directions respectively, moves to a point A f with coordinates denoted by
x f and z f after a deformation.

The geometrical relations are determined from Fig. 5.2 which contains a differ-
ential element located at the point Ai with length dxi . The coordinates of A f and the
element length of the deformed configuration are determined respectively as follows,
where the “′” denotes the derivative with respect to x :

{
x f = xi + u = x + u,

z f = zi + w = w0 + w,
(5.1)

ds =
√(

dx f
)2 + (dz f

)2 =
√

(dx + du)2 + (dw + dw0)
2

=
√

(1 + u′)2 + (w′ + w′
0

)2
dx,

(5.2)

Now, under the assumptions of a shallow arch theory (the shallow arch approxi-
mation), in which the slope of the initial rise of the curved beam is considered smaller
compared to unity [68], i.e.,

(
w′

0

)2
<< 1, Eq. (2.2) reduces to

ds =
√

1 + 2u′ + u′2 + w′2 + 2w′w′
0dx (5.3)

From the deformed element length, Eq. (2.3), we determine the strain of the
deformed element and the stretch ratio for a small deformation, respectively, as

http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_2
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ε = ds − dx

dx
=
√

1 + 2u′ + u′2 + w′2 + 2w′w′
0 − 1, (5.4)

λ = ds

dx
=
√

1 + 2u′ + u′2 + w′2 + 2w′w′
0 (5.5)

The rotation angle, shown in Fig. 5.2, is determined as

⎧⎪⎨
⎪⎩

sin (θ) = dy1

ds
= w′

0 + w′

λ
,

cos (θ) = dx1

ds
= 1 + u′

λ
,

(5.6)

Differentiating Eq. (2.6), and using the shallow arch approximation, we get

θ ′ =
(
1 + u′) (w′′

0 + w′′)− u′′ (w′
0 + w′)

λ2
(5.7)

The curvature of the arch mid-plane is given by

κ = dθ
ds = θ ′ dx

ds
=
(
1 + u′) (w′′

0 + w′′)− u′′ (w′
0 + w′)

λ3/2

=
(
1 + u′) (w′′

0 + w′′)− u′′ (w′
0 + w′)

(
1 + 2u′ + u′2 + w′2 + 2w′w′

0

)3/2

(5.8)

Expanding Eqs. (2.4) and (2.8) up to the quadratic terms using a Taylor series
expansion for small u′ and w′, we get

ε ≈ u′ + w′2

2
+ w′w′

0 + · · · (5.9)

κ ≈ (w′′
0 + w′′)− u′′ (w′

0 + w′)− 2
(
w′′

0 + w′′) u′ + · · · (5.10)

Now, the total axial strain at a point of distance z from the arch mid-plane line is
measured to be

εT ≈ ε − zw′′ + · · · (5.11)

(ii) The kinetic and potential energies

Next, we develop expressions for the kinetic and potential energies of the arch beam.
The potential energy due to the beam elastic deformation and the stretching of its
mid-plane is given by

http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_2
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V = 1
2

∫ l
0
∫ h/2
−h/2

∫ b/2
−b/2

(
Eε2

T

)
dydzdx,

= E

2

∫ l

0

∫ h/2

−h/2

∫ b/2

−b/2

⎧⎨
⎩
(
u′ + w′2

2
+ w′w′

0

)2

− zw′′
(
u′ + w′2

2
+ w′w′

0

)
+ z2w′′2

⎫⎬
⎭ dydzdx,

= E A

2

∫ l

0

(
u′ + w′2

2
+ w′w′

0

)2

dx + E I

2

∫ l

0
w′′2dx,

(5.12)
where I = bh3/12.

The kinetic energy of the arch while neglecting the axial inertia term is given by

T = ρA

2

∫ L

0
ẇ2dx, (5.13)

where the dot denotes the partial derivative with respect to the time variable t .

(iii) The extended Hamilton principle

The Hamilton’s principle is an important variational method in deriving the equation
of motion and the associated boundary conditions of continuous systems. In such
systems, the state is described by using continuous functions of space and time. The
extended Hamilton Principle for such bodies is given by

∫ t2

t1

δL dt =
∫ t2

t1

(δT − δV + δWe) dt =0, (5.14)

where L is the Lagrangian, T is the kinetic energy, V is the elastic energy, We is the
nonconservative work done by external loads on the system, and t1, t2 are the initial
and final times, respectively.

The variation of the potential energy is obtained by integrating by parts over time
Eq. (5.12) as follows:

∫ t2

t1
δV dt =

∫ t2

t1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E A

[(
u′ + w′2

2
+ w′w′

0

)
δu

]L
0

− E A
∫ L

0

(
u′ + w′2

2
+ w′w′

0

)′
δudx+

+E A

[(
u′ + w′2

2
+ w′w′

0

)
w′δw

]L
0

− E A
∫ L

0

((
u′ + w′2

2
+ w′w′

0

)
w′
)′

δwdx+

+E A

[(
u′ + w′2

2
+ w′w′

0

)
w′

0δw

]L
0

− E A
∫ L

0

((
u′ + w′2

2
+ w′w′

0

)
w′

0

)′
δwdx+

+E I
[
w′′δw′]L

0 − E I
[
w′′′δw

]L
0 + E I

∫ L

0
w""δwdx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dt

(5.15)
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The variation of the kinetic energy is obtained by integrating by parts over time
Eq. (5.13) as follows:

(5.16)

Finally, the variation of the nonconservative forces is given as follows:

∫ t2

t1

δWe dt =
∫ t2

t1

(F (x, t) δw − cẇ) dt, (5.17)

where F is a distributed load in the transverse direction and c is the viscous damping
coefficient.

Plugging then Eqs. (5.15)–(5.17) into Eq. (5.14), and then collecting the terms
with the arbitrary coefficient “δu”, we get

(
u′ + w′2

2
+ w′w′

0

)′
= 0 (5.18)

Integrating Eq. (5.18) over the beam domain, we obtain the beam’s axial elongation
as

u (L , t) − u (0, t) =
(
u′ + w′2

2
+ w′w′

0

)
L −

∫ L

0

(
w′2

2
+ w′w′

0

)
dx, (5.19)

where u(L , t) and u(0, t) are the axial displacements at the ends of the beam.
From Fig. 5.2, we have a fixed end at x = 0 and compressive axial load acting at

the other end, hence

u (L , t) = −NL

E A
(5.20)

We finally obtain from Eqs. (5.18) and (5.20) that

u′ + w′2

2
+ w′w′

0 = − N

E A
+ 1

L

∫ L

0

(
w′2

2
+ w′w′

0

)
dx (5.21)



5 Nonlinear Structural Mechanics of Micro-and Nanosystems 137

Plugging now Eqs. (5.15)–(5.17) into Eq. (5.14), and then collecting the terms
with the arbitrary coefficient “δw”, we get

ρAẅ + E Iw′′′′ + cẇ = E A

(
u′ + w′2

2
+ w′w

′
0

)′ (
w′ + w′

0
)+

+ E A

(
u′ + w′2

2
+ w′w′

0

) (
w′′ + w′′

0
)+ F (x, t) (5.22)

Plugging Eqs. (5.18)–(5.21) into Eq. (5.22), we get the nonlinear equation of
motion of the shallow arch [69]

ρAẅ + E Iw′′′′ + cẇ =
(

−N + E A

2L

∫ L

0
(w′2 + 2w′w′

0)dx

)
(w′′ + w′′

0) + F(x, t),

(5.23)

(b) Reduced-order modeling

If the equation characterizing the behavior of a beam is nonlinear or if the beam
has some irregular geometrical and material properties, closed-form solutions may
not be accessible. In such cases, numerical methods (such as Rayleigh–Ritz method,
finite element method, and the weighted-residual method) need to be utilized to sim-
ulate the behavior of the beam. However, the previously mentioned methods can be
inconvenient or even computationally very expensive, especially for multi-physics,
nonlinear, and time-dependent problems, such as those commonly encountered in
MEMS and NEMS. Hence, we propose to discuss a powerful technique, the Galerkin
method, which is computationally efficient, capable of handling any systems, and
suits nonlinear beams problems. Beam equations of motion cab be discretized using
the Galerkin technique to yield a reduced-order model (ROM) [70]. To derive a ROM
from a distributed-parameter system, one can either work with the Lagrangian [71],
or work with the partial differential equations, boundary conditions, and orthogo-
nality conditions of the beam [72]. We decide here to present the latter approach.
We consider a general system with an equation and boundary conditions expressed
respectively as

M(w (x, t)) = f (x, t) , (5.24)

BC1(w) = w1, BC2(w) = w2, (5.25)

wherew(x, t) is the dependent variable in space x and time t , M is a differential oper-
ator in space and time, which can be linear or nonlinear, f (x, t) is the forcing term,
BC1 and BC2 are boundary operators and w1 and w2 are non-time-varying boundary
conditions. In the Galerkin discretization technique, we seek an approximate solution
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of the above system in the form of

w(x, t) = φ0(x) +
n∑

i=1

ui (t)φi (x), (5.26)

where φ0(x) is a space function that satisfies the nonzero boundary conditions (w1 and
w2 different of zero). If the boundary conditions are homogeneous (w1 = w2 = 0)
then φ0(x) = 0. The time-varying functions ui (t) are to be determined for the sake
to get the solution w(x, t). The functions φi (x) are space-varying trial functions that
should satisfy the following conditions [73]

• The homogenous form of all the boundary conditions of the problem (w1 = w2 =
0)

• Differentiable as the order of the differential equation of the system.
• Form and belong to a complete set of linearly independent functions.

To proceed, Eq. (5.26) is substituted into Eq. (5.24) yielding the following equation

M

[
φ0(x) +

n∑
i

ui (t)φi (x)

]
= f (x, t) (5.27)

Then, multiplying Eq. (5.27) by φ j , and integrating the equation over the domain
of the problem yields

∫
	

φ j (x)

{
M

[
φ0(x) +

n∑
i

ui (t)φi (x)

]}
dx =

∫
	

φ j (x) f (x, t) dx, (5.28)

Once evaluating the integrals of Eq. (5.38), we get n differential equations in
time of the ui (t) functions, which can be integrated numerically using Runge–Kutta
techniques. Then the results are substituted back into Eq. (5.26) to yield the total
response of the beam. The number n of necessary modes to ensure convergence
needs to be examined.

The reduction of a distributed-parameter system of infinite degree of freedom or
a partial differential equation in space and time into a number of ordinary differen-
tial equations in time (a finite-degree-of-freedom-system) is considered significant
advantage from a computational point of view. Indeed, this is one of the major bene-
fits of using the Galerkin method over finite element approaches. Thus, the Galerkin
method is considered a powerful technique to generate reduced-order models. It is
worth to mention that for static problems ( f (x, t) = f (x)), the Galerkin discretiza-
tion yields to a system of algebraic equations of unknown constant coefficients, which
can be solved using Newton’s Raphson methods.
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z
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Fixed plate
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b
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(a) (b)

Fig. 5.3 Schematic of (a) a parallel-plates capacitor, and (b) a cylinder-plate capacitor

5.2.2 Electric Actuation

(a) About the actuation technique

Electrostatic loading is the most common actuation method in MEMS. The elec-
trostatic actuation scheme is based on the simple parallel-plate capacitors. Those
kinds of capacitors require a voltage source and they are characterized by having
very low power consumption and being one of the fastest actuation methods. Elec-
trostatic actuation depends on the attractive force between the two parallel plates of
a capacitor, which is nonlinearly proportional to the gap width that separates both of
them.

We will derive here the expression of the electrostatic force for two different
cases: two parallel plates and two parallel cylinder and plate. We first consider the
parallel-plate capacitor shown in Fig. 5.3. Here, we assume under the parallel-plate
theory conditions that the electric field lines between the two considered plates are
perpendicular to the plates even near edges (no fringing field effect near the edge of
the plates).

Then, we assume that each capacitor shown in Fig. 5.3 is driven by a voltage source
of load V . The electrical charge and the potential energy stored in each capacitor are
given by the following expressions [74], respectively,

Q = C (z) V, (5.29)

E = V 2

2
C (z) (5.30)

The attractive electrostatic force between each of the two electrodes of both the
capacitors in Fig. 5.3 can be obtained as [74]

Fe = −∂E (z)

∂z
= V 2

2

∂C (z)

∂z
(5.31)

Now, we will derive the analytical expressions of C (z) depending on the geome-
tries of the considered electrodes.

Considering the case of a capacitor formed by two parallel rectangular plates,
Fig. 5.3a, the capacitance can be expressed as [74]
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C (z) = εoLb

z
, (5.32)

where εo = 8.85 × 10−12
(
C2/Nm2

)
is the air permittivity. We substitute Eq. (5.23)

into Eq. (5.31) and get the attractive electrostatic force between the two electrodes
of Fig. 5.3a

Fe = −εobLV 2

2z2
(5.33)

Now, we consider the case of a capacitor formed by parallel cylinder and rectan-
gular plate, Fig. 5.3b. The capacitance can be expressed as [74]

C (z) = 2πεoL

cosh−1 (1 + z/R)
(5.34)

Substituting Eq. (5.34) into Eq. (5.31), we get the attractive electrostatic force
between the two electrodes of Fig. 5.3b

Fe = −πεoLV 2

√
z (z + 2R)

(
cosh−1 (1 + z/R)

)2 (5.35)

We can notice, from both Eqs. (5.33) and (5.35), the inherent nonlinear dependence
of the electrostatic force on the moveable electrodes (the planar electrode in Fig. 5.3a
and the cylindrical electrode in Fig. 5.3b) displacement.

(b) The pull-in instability

In “parallel-plate” electrostatic actuation, Fig. 5.4a, a DC electrostatic load (VDC) is
applied between the lower and upper electrode, which is typically a flexible structure,
such as a rectangular micro or nanobeam or a carbon nanotube. If VDC is small, the
structure stays in the deflected position, at which the elastic restoring force of the
structure is in equilibrium with the opposing electrostatic force. There is an upper
limit for VDC , beyond which the mechanical restoring force of the structure can no
longer resist the opposing electrostatic force. This leads to a sudden collapse of the
structure, which is known as the pull-in instability [75–77]. Typically, the DC load
tends to soften the actuated structure, which decreases its linear natural frequency
[78].

VDC

VAC

VDC

(a) (b)

Fig. 5.4 Schematic of a parallel-plate electrostatic actuation with (a) DC load only, and (b) DC
and AC harmonic load
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Fig. 5.5 The pull-in band
(escape phenomenon) of an
electrically actuated system

VAC

Ω

In addition to the DC electrostatic load of amplitude VDC , resonant sensors and
resonators are actuated by an AC harmonic load of amplitude VAC , Fig. 5.4b. Here,
VDC deflects the movable electrode slightly and VAC vibrates the electrode around
the new deflected position. If VAC is smaller than the dynamic pull-in limit and
the structure is inherently nonlinear, such as the case of doubly clamped beams,
then it can exhibit either softening or hardening behavior (depending on whether the
electrostatic nonlinearity of quadratic nature dominates the geometric nonlinearity of
cubic nature or vice versa). This effect of VAC leads to a further shift in the resonance
frequency, also called nonlinear resonance frequency [79–81]. While attempting to
exceed the noise level of some structures, such as the thermal noises in CNTs [3,
51, 54], the VAC amplitude might be raised to be high enough to trigger a dynamic
pull-in instability [80, 82–84]. This instability, which characterizes the instability of
the structure due to dynamics considerations, is called “dynamic pull-in”.

For a certain DC and AC loads, the upper electrode can oscillate in a stable state,
and varying the forcing frequency can lead to the dynamic pull-in phenomenon also
referred to an escape from a potential well. Figure 5.5 shows a schematic of the
escape band of the electrically actuated system of Fig. 5.4ba. The figure shows that
for any dynamic load VAC with frequency Ω in the shaded area then the escape
phenomenon occurs definitely (inevitable escape) and for a frequency Ω lying in the
nonshaded line, the system can oscillate in a stable state or escape from the potential
well depending on its initial conditions (fractal behavior) [85, 86].

5.2.3 Perturbation Series and the Method of Multiple Scales

In this section, we review the application of a perturbation technique, for instance
the method of Multiple Scales (MMS) to study the nonlinear dynamic of nonlinear
systems.
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(a) Perturbation series

Consider the set of ε-dependent ordinary differential equations given by

x ′ = f (x, t, ε), (5.36)

where ε is a small parameter and for ε = 0 these equations can be easily solved. Then,
a common approach in finding an approximate solution to Eq. (5.36), for small ε, is
to approximate x(t) in the following form of a “perturbation series”

x = x0(t) + εx1(t) + ε2x2(t) + · · · (5.37)

Then Eq. (5.36) can be expanded in powers of ε

x ′
0 + εx ′

1 + ε2x ′
2 + · · · = f (x, t, 0) + d f (x, t, 0)

dε
ε + · · ·

= f (x0, t, 0) + ε

(
d f (x0, t, 0)

dε
+ d f (x0, t, 0)

dx
(x0 + 2εx1 + · · · ) + · · ·

)
+ · · ·
(5.38)

Thus, an infinite sequence of simpler problems by equating terms with like powers
of ε can be obtained. For example, gathering the terms of order 0 (terms multiplying
ε0)

x ′
0 = f (x, t, 0) (5.39)

Once the order 0 problem is solved, the solution for x0 may be plugged into the
order ε1-equation

x ′
1 = d f

dε
(x0, t, 0) + d f

dx
(x0, t, 0)x1, (5.40)

and, hypothetically, this process can be iterated to solve for xn at all orders.
In general, proving that a perturbation series converges or that it is asymptotic is

hard.

(b) Method of multiple scales

The perturbation series expansion is not guaranteed to work for all dynamical prob-
lems. The nonlinear Rayleigh and Van Der Pol oscillators are two classical examples
in which such an expansion fails. This is due to the fact that lower-order solutions
x1, x2, . . ., may grow without bound and eventually become large enough to interact
strongly with higher-order terms. When this happens, treating the dynamics at differ-
ent orders separately no longer makes sense. Generally speaking, this kind of failure
occurs when there are two or more important scales in the system. For example,
when a sound wave with a short wavelength travels through a slowly spatially vary-
ing medium, the resulting wave form looks locally like a sine wave when zooming
into the wavelength scale. But on the length scale over which the medium properties
vary substantially, the wave may exhibit significant phase drift or amplitude changes.
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Solutions of the Rayleigh and Van Der Pol equations also have multiple scales, in
the sense that on the order of one wavelength the solutions have frequency ω ≈ ω0,
but over time scales of order ε−2 (Van Der Pol and Rayleigh) the solutions will have
a significant phase drift.

The idea of this method is to pretend that an ODE is a PDE for a minute, where
x depends both on time and on “slow time”; i.e.,

x = x0(t, T ) + εx1(t, T ) + ε2x2(t, T ) + . . . , (5.41)

where T = εt .
We then derive that

d(.)

dt
= ∂(.)

∂t
+ dT

dt

∂(.)

∂T
= ∂(.)

∂t
+ ε

∂(.)

∂T
(5.42)

and
d2(.)

dt2
= ∂2(.)

∂t2
+ 2ε

∂2(.)

∂t∂T
+ ε2 ∂2(.)

∂T 2
(5.43)

We write the original perturbation expansion in a more reminiscent form

x = x̃0(t) + εx̃1(t) + ε2 x̃2(t) + · · · , (5.44)

where
x̃n(t) = xn(t, T (t)) (5.45)

We then plug these substitutions into our equation, and proceed to solve it itera-
tively as a perturbation series. However, now the first-order equation will be sufficient
only to determine x0’s dependence on time t , and not its dependence on t . This will
leaves us free at order ε to tune the T dependence of x0 to prevent x1 from growing
without bound.

(b) Application of the method of multiple scales

We propose now to approximate the dynamic responses of the Van der Pol and the
Rayleigh oscillators using the method of Multiple Scales.

(i) The Van der Pol oscillator

We consider the Van der Pol oscillator in the case of a primary resonance Excitation;
γ = O(ε), � = ω0 + O(ε)

d2x

dt2
− ε(1 − x2)

dx

dt
+ ω2

0x = f (t), with:

{
f (t) = γ ε cos(�t)
� = ω0 + εσ

(5.46)

We seek an approximate solution of Eq. (5.46) using the method of Multiple
Scales. In general, we consider x(t) to be a function of multiple (two in this case)
independent time variables or scales. We express x in the form
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x = x0(T0, T1) + εx1(T0, T1), (5.47)

where T0 = t is a fast scale and T1 = εt is a slow scale characterizing the modulation
in the amplitude and phase caused by the nonlinearity, damping and resonances. The
time derivatives become

d

dt
= ∂

∂t
+ dT

dt

∂

∂T
= D0 + εD1 (5.48)

so that
d2

dt2
= D2

0 + 2εD0D1, (5.49)

where D=
n ∂/∂Tn . Substituting Eqs. (5.47)–(5.49) into Eq. (5.46) and equating the

coefficient of ε0 and ε1 on both sides, we obtain

D2
0x0 + ω2

0x0 = 0, (5.50)

D2
0x1 + ω2

0x1 + D0x0 − x2
0 D0x0 + 2D0D1x0 = γ cos(�T0) (5.51)

The solution of Eq. (5.50) can be expressed as

x0 = A(T1)exp(iω0T0) + Ā(T1)exp(−iω0T0) (5.52)

Therefore, Eq. (5.51) becomes

D2
0x1 + ω2

0x1 = iω0[−2A′ + A2 Ā − A + γ exp(iσT1)]exp(iω0T0)+
+iω0A3exp(3iω0T0) + cc,

(5.53)

where “cc” denotes the complex conjugate of the preceding terms. The secular terms
can be eliminated from the solution of x1 if

− 2A′ + A2 Ā − A + γ exp(iσT1) = 0 (5.54)

We let A = aexp(iβ)/2 in Eq. (5.54), where a and β are real functions of the slow
times scale T1, and separate real and imaginary parts, to obtain

a′ = a

2
(1 − 1

4
a2) + γ

2ω0
sin(λ), (5.55)

aβ ′ = − γ

2ω0
cos(λ), (5.56)

where a′ and β ′ are derivatives of the slow time scale T1 and
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λ = σT1 − β,
dλ

dT1
= σ − dβ

dT1
(5.57)

Eliminating β from Eqs. (5.55) and (5.56) gives

aλ′ = aσ + γ

2ω0
cos(λ) (5.58)

Therefore, to the first-order of approximation, we obtain

x = a cos(�t − λ) + O(ε) (5.59)

For steady-state motion, the time variation of the amplitude and phase of the
response must vanish a′ = λ′ = 0. It follows from Eqs. (5.55) and (5.56) that

a

2
(1 − a2

4
) = − γ

2ω0
sin(λ), (5.60)

aσ = − γ

2ω0
cos(λ) (5.61)

The steady-state solution of Eq. (5.58), obtained by squaring and adding Eqs. (5.60)
and (5.61), yields the following frequency-response equation:

ρ(ω0 − ρ)2 + 4σ 2ρ = γ 2

4ω0
, where ρ = a2

4
(5.62)

The frequency-response curves, in terms of the amplitude ρ = a2/4, appear in
Fig. 5.6 for selected values of the forcing amplitude γ . As γ increases, the curves
consist of two branches. The first branch runs close to the σ-axis and the second
branch is a close curve which can be approximated by an ellipse having its center

Fig. 5.6 Frequency-
response curves for primary
resonances of the Van der
Pol Oscillator for various
forcing amplitudes of
γ (ω0 = 1 rad/s)

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2 4γ =

2 1γ =
2 0.125γ =

2 0.6γ =
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at the ρ-axis. As γ increases further, the ellipses expand; open and coalesce with
the first branch to form a single branch of solutions and finally the response curves
are single-valued for all σ . We note that in the σ − ρ plane, the frequency-response
curves, which are symmetric with respect to the σ axis, have shapes similar to those
of the force-response curves.

When solving Eqs. (5.60) and (5.61), we can also obtain the first-order approxi-
mate solution in the following form:

x(t) =
√√√√ 4η

1 + (
4η

a2
0

− 1)e−εηt
cos(ω0t) + γ

ω2
0 − �2

cos(�t), where:

⎧⎪⎪⎨
⎪⎪⎩
a0 = x(0) − γ

ω2
0 − �2

η = 1 − γ 2

2(ω2
0 − �2)2

(5.63)

Figure 5.7 shows that the approximate solution, for the Van der Pol oscillator using
the perturbation technique, is close to that found using a numerical integration the
oscillator’s differential equation in Mathematica.

The second-order solution was derived using Mathematica [87] and Fig. 5.8 dis-
plays the resulting response.

Fig. 5.7 Comparison of the
first-order approximate
solution with the exact
solution for the Van Der Pol
oscillator for an initial
condition of x0 = 0.01,
ε = 0.1. (In the figure: (—–)
the numerical solution, and
the approximate solution
using MMS(- - - - -))
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Fig. 5.8 Comparison of the
second-order approximate
solution with the exact
solution for the Van Der Pol
oscillator for an initial
condition of x0 = 0.01,
ε = 0.1. (In the figure: (—–)
the numerical solution and
the approximate solution
using MMS(- - - - -))
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(ii) The Rayleigh oscillator

Now, let us consider the Rayleigh oscillator in the case of a primary resonance Exci-
tation ( γ = O(ε), � = ω0 + O(ε) ). Its dynamics is described by the following
equation:

d2x

dt2
− ε

(
1 −
(
dx

dt

)2
)
dx

dt
+ ω2

0x = f (t), with:

{
f (t) = γ ε cos(�t)
� = ω0 + εσ

, (5.64)

We seek an approximate solution of Eq. (5.64) using the method of Multiple
Scales. An approach similar to that followed in the van der Pol oscillator is used to
determine the following frequency-response equation of this oscillator:

ε2ρ(2η − 3

4
ρ)2 + 4σ 2ρ = γ 2, where

{
ρ = ω2

0a
2

η = 1/2
(5.65)

Similarly, the approximate solution of Eq. (5.64) is expressed in the following form:

x(t) =

√√√√√√
8η
/

3ω2
0

1 + (
8η

3a2
0ω

2
0

− 1)e−2εηt
cos(ωt) + γ

ω2
0�

2
cos(�t), (5.66)

where

a0 = x(0) − γ

ω2
0 − �2

, η = 1

2
− 3

4

γ 2�2

(ω2
0 − �2)2

(5.67)

Figure 5.9 displays the approximate solution with the one obtained by numerically
integrating Eq. (5.64). We can clearly see that the agreement is excellent among both
approaches. Frequency-response curves generated from Eq. (5.65) are presented in
Fig. 5.10.

Fig. 5.9 Comparison of the
approximate solution with
that obtained by integrating
the original equation for an
initial condition x0 = 0.01,
ε = 0.1. (In the figure: (—–)
the numerical solution and
the approximate solution
using MMS(- - - - -))
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Fig. 5.10 Frequency-
response curves for primary
resonances of the Rayleigh
Oscillator for various forcing
amplitudes of
γ (ω0 = 1 rad/s, and ε = 1)
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5.2.4 Carbon Nanotubes

(a) Structure overview

Single-walled carbon nanotubes (SWCNTs) can be considered to be formed by the
rolling of a single layer of graphite (also called a graphene sheet) into a cylinder,
Fig. 5.11.

Multi-walled carbon nanotubes (MWCNTs) can similarly be formed by consid-
ering coaxial assembly of cylinders of SWCNTs separated by the thickness of each
graphene sheet.

Regarding the molecular structure of CNTs, they have a lattice-like structure [88]
consisting of bounded carbon atoms, Fig. 5.11. Their geometric properties define
their structural topology, which is likely similar to beams for small nanotube radius
and to cylindrical shells for large nanotubes radius. This is true under certain specific
conditions [34] that will be discussed later in this chapter. Figure 5.12 describes some
of the geometric properties of CNTs, which are

Roll-up

Graphene sheet Single walled carbon nanotube 
(SWCNT)

Fig. 5.11 Formation of a single-walled carbon nanotube from a graphene sheet
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ac

lc-c

A carbon atom

Single walled carbon nanotube 
(SWCNT)

Fig. 5.12 Carbon atoms attachment in a single-walled carbon nanotube

• The distance of the adjacent carbon atoms (the length of the C–C bonds) denoted
by lc−c and found typically to be equal to 0.14 nm.

• The width of the hexagonal carbon rings denoted by ac, which is typically equal
to 0.24 nm [89].

Other important properties that define the geometry of a nanotube and that are not
represented in Fig. 5.12 are

• The diameter of the nanotube (dNT ) which can be ranged from 0.4 nm to 100 nm
and even higher [33, 34].

• The interlayer spacing (h) also called the graphene shell thickness found to be
equal to 0.34 nm [33, 34]

• The length of the nanotube (LNT ) that may also range from 1 nm to 10 micrometer
[33].

(b) The applicability of the continuum mechanics in modeling CNTs

In the following, we will present criteria for the applicability of the continuum
mechanics in simulating the response of CNTs. Although some simulation results
achieved in the literature were based on the molecular dynamics method, as we
reviewed in Sect. 4.1, this method is still limited to CNTs with a small number of
atoms and is therefore restrained to the study of small-scale modeling such as local-
ized effects on small portions of the CNTs. So, in order to simulate the mechanical
behavior of large-sized atomic CNTs, the continuum model was show to be practical
in analyzing large-scale and the global mechanical behavior of CNTs [39] but under
certain conditions [34].

Based on scaling analysis, Harik [33, 34] proposed following three nondimen-
sional numbers to check the validity of the beam assumption for modeling the
mechanics of CNTs:

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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• The homogenization criteria of the nanotube that ensures the molecular length-
scales and described by the following equation:

ac/LNT ≺ 1 (5.68)

• The aspect ratio criteria described by the following equation:

dNT /LNT ≺ 1 (5.69)

• The linearity of strains criteria described by the following equation:

(LNT − (LNT )0)/LNT ≺ 1 (5.70)

As will be shown later on, we have verified that all the applicability conditions of
the continuum theory as stated by [34] are satisfied for the CNTs under consideration
in this work.

5.3 Structural Behavior of Straight Carbon Nanotube
Resonators

In this section, we investigate the nonlinear static and dynamic of both cantilevered
and clamped-clamped straight carbon nanotubes (CNTs). We present numerical
approaches and methodologies to predict and simulate the dynamic behavior of
CNTs when driven by AC and DC loads ranging from small to large values. We
will present numerical approaches to calculate accurately the resonance frequency
of clamped-clamped and cantilever CNTs accounting for the effects of their geomet-
ric nonlinearities, DC and AC loads. This in turn should lead to accurate calibration
and prediction for the mechanical properties of CNTs by relating the measured non-
linear resonance frequencies to the predicted one based on a proper model. Then,
we present in-depth investigation for the dynamic response of CNT resonators when
driven by large values of AC and DC loads. Instability regimes of the resonators as a
function of the frequency and amplitude of the AC load will be shown. The instability
regimes can increase the knowledge about the limitations and practical applications
of the CNTs when used as resonators.

5.3.1 Problem Formulation

Here, we formulate the problem for the static and dynamic behavior of an electrically
actuated CNT resonator. The considered boundary conditions for the CNT are a
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Fig. 5.13 Schematic of the electrically actuated (a) clamped-clamped and (b) cantilever CNT
resonator

clamped-clamped beam, Fig. 5.13a, and a cantilever beam, Fig. 5.13b. The CNT is
actuated by an electrode underneath it with a gap width d. It is modeled as an Euler-
Bernoulli cylindrical beam of radius R̃, length L , and a quality factor Q. It has a
cross-sectional area A = π R̃2, area moment of inertia I = π R̃4/4, natural frequency
ωn = β2

√
E I/ρAL4 (β is equal to 4.73 for the case of a clamped-clamped beam and

equal to 1.875 for the cantilever beam), and damping coefficient c̃ = ρAωn
/
Q. The

carbon nanotube is assumed to have a Young’s modulus E = 1 TPa and a density
ρ = 1.35 g/cm3 [90].

The equation of motion of a clamped-clamped and cantilever carbon nanotube
resonator, Fig. 5.13a, b, can be written as [10, 12]

E I
∂4w

∂x4
+ ρA

∂2w

∂t2
+ c̃

∂w

∂t
= Fnon + Felec, (5.71)

where ε0 is the air permittivity and the geometric nonlinearity term Fnon is written
for clamped-clamped and cantilever CNTs, respectively as

Fclamped
non =

(
E A

2L

∫ L

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2
, (5.72)

Fcan
non = E I

∂

∂x

[
∂w

∂x

∂

∂x

(
∂w

∂x

∂2w

∂x2

)]
(5.73)

The electrostatic force per unit length expression is given as follows (see back-
ground section, Eq. (5.35)

Felect = πε0(VDC + VAC cos(�̃))2√
(d − w)(d − w + 2R̃)

(
cosh−1

(
1 + d−w

R̃

))2
(5.74)

The boundary conditions for the clamped-clamped CNT are

w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (L , t) = 0,

∂w

∂x
(L , t) = 0, (5.75)
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and for the cantilever CNT

w (0, t) = 0,
∂w

∂x
(0, t) = 0,

∂2w

∂x2
(L , t) = 0,

∂3w

∂x3
(L , t) = 0 (5.76)

For convenience, we introduce the following nondimensional variables:

ŵ = w

d
, x̂ = x

L
, t̂ = t

T
, (5.77)

where T is a time constant defined by T = √ρAL4/E I . Next, by dropping the hats,
the nondimensional equations of motions and associated boundary conditions for the
clamped-clamped and cantilever carbon nanotubes are written respectively as

∂4w

∂x4
+ ∂2w

∂t2
+ c

∂w

∂t
= α1

(∫ 1

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2
+

+ α2(VDC + VAC cos(Ωt))2

√
(1 − w)(1 − w + 2R)

(
cosh−1

(
1 + 1 − w

R

))2 ,
(5.78)

w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (1, t) = 0,

∂w

∂x
(1, t) = 0, (5.79)
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(5.80)

w (0, t) = 0,
∂w

∂x
(0, t) = 0,

∂2w

∂x2
(1, t) = 0,

∂3w

∂x3
(1, t) = 0, (5.81)

where

α1 = 2

(
d

R

)2

, α2 = πε0L4

E Id2
, α3 =

(
d

L

)2

, c = c̃
L4

E I
, Ω = Ω̃

ωn
, R = R̃

d
(5.82)

The Reduced-Order Model

To simulate the response of the CNT, Eqs. (5.78)–(5.81) are discretized using the
Galerkin procedure to yield a ROM. Hence, the deflection of the CNT is approximated
as

w (x, t) =
n∑

i=1

ui (t) φi (x), (5.83)
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where φi (x) are the normalized linear undamped mode shapes of a straight beam and
ui (t) are the nondimensional modal coordinates. To obtain the ROM, we substitute
Eq. (5.83) into Eqs. (5.78)–(5.81), multiply by φi (x), use the orthogonality condi-
tions of the mode shapes, and then integrate the outcome from 0 to 1. The results are
differential equations in terms of the modal coordinates ui (t).

Several points need to be clarified about the developed ROM. Unlike the case
of MEMS [72], here there is no numerical advantage of multiplying Eq. (5.78) or
Eq. (5.80) by the denominator of the electrostatic force term since the mode shape
φi (x) will remain embedded inside the square root term and the inverse hyperbolic
cosine term even after imposing the orthogonality of the mode shapes. To deal with
the complicated integral terms due to the electrostatic force, we evaluated the spatial
integrals containing the φi (x) terms numerically, using a trapezoidal method, simul-
taneously while integrating the differential equations of the modal coordinates ui (t)
with time.

As an example, assuming one mode, the modal equation describing u1(t) for a
clamped-clamped CNT is written as

ü1(t) + Cu̇1(t) + Ku1(t) = α1	u3
1(t)+

+
∫ 1

0

α2(VDC + VAC cos(Ωt))2φ1(x)

√
(1 − φ1(x)u1(t))(1 − φ1(x)u1(t) + 2R)

(
cosh−1

(
1 + 1 − φ1(x)u1(t)

R

))2

2

dx,

(5.84)
where

K =
∫ 1

0

(
φ1 (x) φiv

1 (x)
)
dx, C = c

∫ 1

0
(φ1 (x))dx, (5.85)

and

	 =
[∫ 1

0

(
φ1 (x) φ′′

1 (x)
)
dx

] [∫ 1

0

(
φ′

1 (x)
)2
dx

]
(5.86)

The Static Analysis

Various case studies of carbon nanotubes are considered for simulations, Table 5.1.
We first examine the convergence of the ROM. Figure 5.14 shows the normalized
maximum static deflection of a clamped-clamped carbon nanotube wmax = ws(x =
0.5) for case 2 of Table 5.1 using one, two, and three symmetric modes of the ROM
while varying the DC load. It follows from the figure that using one mode yields
acceptable converged results. This result shows a clear difference between CNTs
and other MEMS beams [72], where at least three symmetric modes need to be used
for convergence. One possible justification for this is due to the high stiffness of
CNTs making the contribution of the higher-order modes weak compared to the first
one.

Next, we verify the obtained results using one mode in the ROM by compar-
ing them with the simulation results of Pugno et al. [15], which are based on a
finite-difference method. Following Pugno et al. [15], we first conduct a comparison
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Table 5.1 The geometrical properties of the studied carbon nanotube beams

Case # Boundary
conditions

d [nm] L [nm] R̃ [nm] References

1 Clamped-clamped 100 3000 20 [15]

2 Clamped-clamped 100 3000 30 [15]

3 Clamped-clamped 100 2000 30 [15]

4 Cantilever 390 2500 5.45 [91]

5 Cantilever 3000 6800 23.5 [47]

Fig. 5.14 Variation of the
normalized static deflection
of the carbon nanotube with
the DC voltage for case 2 of
Table 5.1. In the figure: (◦)
one-mode ROM, (•) two
modes ROM, and (*) three
modes ROM
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assuming a linear beam model for the case of clamped-clamped carbon nanotube
(without mid-plane stretching). Figure 5.15a shows the results for cases 1 and 2 of
Table 5.1 indicating excellent agreement between our results and the results of Pugno
et al. [15]. In addition, we show the unstable branches of the equilibrium solutions.
We can see that both the unstable and stable branches collide at pull-in. Also, it is
worth to note that pull-in occurs here at a normalized deflection approximately equal
0.46, compared to 0.33 in the linear case of electrostatically actuated structures [78].
This can be attributed to the geometrical shape of the carbon nanotube and the dif-
ference between the electrostatic force field in this case and the case of parallel-plate
rectangular shaped capacitor.

Next, we include the mid-plane stretching term in the simulation and compare
with the nonlinear model results of Pugno et al. [15], Fig. 5.15a. The figure also
shows excellent agreement; thereby validating the ROM. Comparing Fig. 5.3a, b,
one can see the importance of mid-plane stretching in predicting accurately the pull-
in voltage of the carbon nanotube. Further, it is noted that pull-in occurs here at
wmax = 0.64, compared to 0.45 in the nonlinear case of an electrostatically actuated
microbeam of rectangular cross section [72]. Table 5.2 shows a comparison between
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Fig. 5.15 Variation of the normalized static deflection of clamped-clamped carbon nanotubes
with the DC voltage, (a) without including mid-plane stretching and (b) with including mid-plane
stretching. In the figure: (—-) stable branch, (- - - - -) unstable branch, and (◦) results of Pugno et al.
[15]

Table 5.2 The calculated pull-in voltages for the cases of Table 5.1

Case # Pull-in voltage [Volt] (linear
theory)

Pull-in voltage [Volt]
(nonlinear theory)

1 18.62 32.65

2 37.46 50.72

3 82.47 114.2

4 2.309 2.31

5 50.20 48.26

the calculated pull-in voltage for the cases of Table 5.1 using linear and nonlinear
beam theories. As noted from the table, the error in using linear theory to predict the
behavior of CNTs can be significant.

Next, we show results for cantilever carbon nanotubes. In Fig. 5.16a, b, we validate
the one-mode ROM results for the cantilever CNT case by comparing them with the
experimental data reported in Akita et al. [91] and Pugno et al. [15]. In the figures, the
normalized maximum static deflection of the cantilever carbon nanotube is wmax =
ws(x = 1). The ROM includes the geometric nonlinearities of the cantilever CNT. In
Fig. 5.16a, b, the parameters of cases 4 and 5 of Table 5.1 were used, respectively. The
experimentally measured pull-in voltages are 2.33 Volt [91] and 48.26 Volt [15] for
cases 4 and 5, respectively, whereas the obtained values using the ROM are 2.31 Volt
and 48.26 Volt. It is clear that the experimental data and the ROM results are in good
agreement. As noted, the effect of the geometric nonlinearities in the cantilever case
is less than it is for the case of clamped-clamped carbon nanotubes.
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Fig. 5.16 Variation of the normalized static deflection of cantilever carbon nanotubes with the DC
voltage for (a) Case 4 of Table 5.1 and (b) Case 5 of Table 5.1. In the figure: (*) ROM (one mode,
linear case), (�) ROM (two modes, linear case), (◦) ROM (two modes, nonlinear case), and (•)
experimental data of (a) Akita et al. [91] and (b) Pugno et al. [15]

Free-Vibration Problem Under a DC Voltage

(a) Numerical approaches

In this section, we present two computationally-efficient approaches to solve the free-
vibration problem of the CNT under a DC electrostatic load. First, we use the ROM
of Sect. 4.3.2. In this approach, the static deflection of the CNT needs to be solved for
each DC voltage. For a given voltage, we substitute the stable static solution, found
by solving the static equations as we did in Sect. 4.3.3, into the Jacobian matrix of
the ROM. Then, the eigenvalues of the calculated Jacobian matrix are solved. By
taking the magnitudes of each individual eigenvalue, the natural frequencies of the
system are obtained. This is similar to what we have been done in [92, 93].

The second approach that can be used is through solving numerically the original
boundary value problem, Eq. (5.71), using numerical software such as Mathematica®
[87]. This approach is considered more accurate compared to the ROM since the latter
approximates the original problem while the former deals with the problem exactly.
This approach can be applied on Eqs. (5.71) and (5.72) for clamped-clamped CNTs
combined with a shooting technique to iterate on the integral term of Eq. (5.72)
[78]. Also, it can be applied directly on Eqs. (5.71) and (5.73) for cantilever CNTs.
However this technique suffers convergence problems for clamped-clamped CNTs
because of the mid-plane stretching term. To resolve this problem, one can split the in-
plane equation from the out-of-plane equation in Eq. (5.71) and then solve the coupled
system. Here, out-of-plane means motion transversal to the beam axis (toward the
substrate) and in-plane means across the beam length. Next, we rewrite the beam
equation as two coupled partial differential equations governing the transverse, w,
and axial, u, deflections of the beam as [94, 95].

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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The boundary conditions governing w and u respectively are

w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (L , t) = 0,

∂w

∂x
(L , t) = 0,

u (0, t) = 0, u (L , t) = 0
(5.89)

Because the natural frequency in the axial direction is much larger than the one
in the transverse direction [95], we drop the inertia term of the u component in
Eq. (5.88), and get the following equation:

∂2u

∂x2
= −∂w

∂x

∂2w

∂x2
(5.90)

Equations (5.87) and (5.90) can now be solved simultaneously for u and w. Using
the nondimensional variables defined in Eq. (5.77) and dropping the hats yield
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(5.91)

∂2u

∂x2
= −α3

∂w

∂x

∂2w

∂x2
, (5.92)

where α1, α2, α3 are given by Eq. (5.82) and α4 = 4(L/R̃)2.
We split the transverse and axial deflections into static components due to the DC

voltage, denoted byws (x) and us (x) respectively, and dynamic components denoted
by wd (x, t) and ud (x, t) respectively, that is,

w (x, t) = ws (x) + wd (x, t) , (5.93)

u (x, t) = us (x) + ud (x, t) (5.94)
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Substituting Eqs. (5.93) and (5.94) into Eqs. (5.91) and (5.92), dropping the AC
forcing term, and retaining only the linear terms in wd and ud yields the follow-
ing equations describing the small free vibration of the clamped-clamped carbon
nanotube:

wd
′′ ′′ + ẅd = α1(w

′2
s wd

′′ + 2ws
′ws

′′w1
d ) + α4(u

′
swd

′′ + ws
′′u1

d )+

+

⎛
⎜⎜⎜⎝

α2V
2
DC

(
2
√

(1 − ws )(1 − ws + 2R) + (1 − ws + R) cosh−1
(

1 + 1 − ws

R

))

((1 − ws (1 − ws )(1 − ws + 2R))
3
2

(
cosh−1

(
1 + 1 − ws

R

))3

⎞
⎟⎟⎟⎠wd , (5.95)

ud
′′ = −α3ws

′wd
′′ − α3ws

′′w
′
d (5.96)

To derive the eigenvalue problem, we let

wd (x, t) = �(x) eiωt , (5.97)

ud (x, t) = ψ (x) eiωt , (5.98)

where �(x) and ψ (x) are the associated transverse and axial eigenfunctions respec-
tively and ω is the nondimensional natural frequency. Substituting Eqs. (5.97) and
(5.98) into Eqs. (5.95) and (5.96) and solving the resulting equations yield the mode
shapes � and ψ and their associated natural frequency ω.

(b) Results

To start, we use a one mode approximation in the ROM of Sect. 4.3.2 to calculate
the natural frequencies and then compare the results to those obtained by solving the
boundary value problem directly. In Fig. 5.17, we compare the variation of the first
natural frequency of a clamped-clamped CNT (case 2 of Table 5.1) using the two
methods. We can conclude from the figure that the one-mode ROM converges and
follow the CNT behavior even near the pull-in instability.

Figure 5.18a depicts the fundamental natural frequency calculated using the ROM
(o) and the results of Dequesnes et al. [12] for a clamped-clamped carbon nanotube
of length = 20.7 nm, radius = 0.9 nm, and gap width = 3 nm. The figure shows that
the natural frequency decreases slightly for small ranges of the DC voltage, then
increases again as the effect of mid-plane stretching of the CNT increases, and then
drops suddenly to zero near pull-in. As seen in the figure, the model shows high
robustness in tracking the increase and then the drop of the natural frequency to zero
near pull-in. Also, the figure indicates good agreement with the results of Dequesnes
et al. [12], which were obtained by a molecular dynamics model.

Because the gap width of this case study is too small (below 3 nm), van der Walls
forces can have significant effect on the results [12]. To investigate this effect, we
add the van der Walls forces term to the beam equation, which becomes [10, 12]

http://dx.doi.org/10.1007/978-3-319-20355-3_4


5 Nonlinear Structural Mechanics of Micro-and Nanosystems 159

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

VDC (Volt)

ω 1
/ ω

0

Fig. 5.17 Variation of the fundamental natural frequency ω0 normalized with that at zero voltage ω0
for various values of DC voltage. Results are shown for the carbon nanotube of case 2 of Table 5.1.
In the figure: (◦) are the results obtained by solving the boundary value problem directly and (—-)
are those obtained using a one-mode ROM
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where
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(5.100)

where r = d − w is the distance between the CNT and the substrate,C6 = 15.2eV
o
A

is a constant characterizing the interaction between two carbon atoms and σ =
38 nm−2 is the substrate layer (graphite) surface density. By applying the procedure
of Sects. 4.3.2 and 4.3.4 on Eqs. (5.99) and (5.100), we obtain the natural frequencies
under the effect of both the electrostatic and van der Walls forces.

Figure 5.18a compares the obtained results with and without the van der Walls
forces. As seen, in this case the van der Walls forces have negligible effect.
Figure 5.18b shows another case of smaller gap width, d = 1 nm, for a clamped-
clamped carbon nanotube of length = 20.7 nm and radius = 0.9 nm. The figure
shows comparisons among the results of the ROM and Dequesnes et al. [12] with and
without van der Walls forces. There are good agreements among all results. In this
case, as shown from Fig. 5.18b, the van der Walls forces have significant impact on
changing the natural frequencies and the pull-in voltage. It is worth to mention that

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.18 Variation of the fundamental natural frequency with the DC voltage for two clamped-
clamped carbon nanotubes. Figure 5.18a is for a CNT of length 20.7 nm and gap width 3 nm and
Fig. 5.18b is for a CNT of length 20.7 nm and gap width 1 nm. In the figure: (◦) ROM without
including van der Wall forces, (♦) ROM with including van der Wall forces, and (•) results of
Desquesnes et al. [12]

Fig. 5.19 Variation of the
normalized fundamental
natural frequency ω1 with
the DC voltage for
clamped-clamped carbon
nanotubes for case 1 (◦),
case 2 (*), and case 3 (•) of
Table 5.1
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from a computational point of view, the ROM is very cheap compared the molecular
dynamics model of Dequesnes et al. [12].

Figure 5.19 shows the variation of the fundamental natural frequency of the
clamped-clamped CNTs for cases 1, 2, and 3 of Table 5.1. As seen in the figure, the
fundamental frequency increases to higher values as the electrostatic force increases
for all the considered cases and then decreases to zero when pull-in occurs. This
is due to the fact that the effect of mid-plane stretching dominates that of the elec-
trostatic force. This agrees with the reported experimental data of [4]. One can see
from Fig. 5.19 that both parameters (the length and the radius) of the CNT can be
used to tune the fundamental natural frequency to be almost unchanged over an
extended range of DC voltages (see the curve of case 3). This attractive feature can
be promising for the implementation of CNTs as resonant sensors.
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Fig. 5.20 Variation of the
fundamental natural
frequency with the DC
voltage for a cantilever
carbon nanotube (case 4 of
Table 5.1)
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We end this section by showing the variation of the natural frequency of a can-
tilever CNT with the DC voltage. Because of the fact that the geometric nonlinearity
is weak in this case, the electrostatic force is always dominant and hence the CNT
experiences a softening behavior. Figure 5.20 shows simulation results for the can-
tilever beam of case 4 of Table 5.1. We notice in the figure a monotonic decrease in
the natural frequency until it reaches zero at pull-in.

Dynamic Response to DC and AC Loads

(a) Primary resonance of the fundamental mode

Here, we simulate the frequency-response of the carbon nanotube when excited by
a DC load superimposed to an AC harmonic load of frequency near its fundamental
natural frequency (primary-resonance excitation, Ω ≈ ω1). In the dynamic analysis,
long-time integration for the reduced-order model equations of motion can be used.
However, this method suffers convergence problems near bifurcations and instabili-
ties and in general is not considered a robust method for studying nonlinear vibrations.
Hence, a second method will be used, which is called the shooting technique [96].
The shooting method is a numerical technique to find periodic solutions, analyze
their stability, and also locate and identify bifurcation points. This method will be
used in conjunction with the Floquet theory [96] to study the stability of the captured
periodic orbits.

We first investigate the response of carbon nanotubes to small AC and DC load
(Figs. 5.21 and 5.22). In all subsequent figures, dashed lines refer to unstable solu-
tions. Figure 5.21 shows a frequency-response curve of a clamped-clamped CNT of
case 2 of Table 5.1. The figure compares the results of the shooting technique, based
on one mode approximation, to the long-time integration technique using one and
two modes in the ROM. The figure verifies the convergence of the ROM for the
dynamic simulations and the fact that one mode yields adequate accuracy. Figure 5.9
shows a hardening behavior of the clamped-clamped CNT even for this small value
of electric load, which is away from the pull-in voltage (50.7 Volt). This represents
another sign for the dominant effect of mid-plane stretching of clamped-clamped
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Fig. 5.21 Frequency-response curve of the CNT for case 2 of Table 5.1 shows the shift in the non-
linear resonance frequency in the hardening-behavior case. Results are shown for VDC = 5 Volt,
VAC = 2 Volt, and Q = 100. In the figure, wmax = w (0.5, t) is the mid-point/maximum deflec-
tion of a clamped-clamped CNT, (—–) shooting method (stable branch), (- - - - -) shooting method
(unstable branch), (*) long-time integration (one-mode ROM), and (◦) long-time integration (two
modes ROM)
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Fig. 5.22 Frequency-response curve of the CNT for case 4 of Table 5.1 showing the shift in the non-
linear resonance frequency in the softening-behavior case. Results are shown for VDC = 0.5 Volt,
VAC = 0.13 Volt, and Q = 100. In the figure, wmax = w (1, t) is the tip/maximum deflection of a
cantilever CNT, (—-) stable branch, and (- - - - -) unstable branch

CNTs. Figure 5.22 shows a frequency-response curve of a cantilever CNT of case
4 of Table 5.1. The figure shows a weak softening behavior even for large values of
VAC .

Next, we show by simulation and using the shooting technique the shift in the
resonance frequency Ωr [79], which is the quantity being measured experimentally
and is influenced by the AC amplitude, compared to the linear natural frequency ω1,
which depends on the DC voltage only. Figure 5.23a, b show the variation of the nor-
malized nonlinear resonance frequency Ωr/ω1 for clamped-clamped and cantilever
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Fig. 5.23 The normalized nonlinear resonance frequency for two cases of CNTs calculated using
the shooting technique for Q = 100

CNTs, respectively, for various values of AC and DC loads. We can see that the
resonance frequency increases considerably with the AC load in the case of hard-
ening behavior for the clamped-clamped CNT but decreases slightly in the case of
softening behavior for the cantilever CNT. It is concluded that the strong hardening
behavior of the clamped-clamped CNTs makes them almost useless in the linear
regime, in agreement with the observation of Postma et al. [3].

Next, we examine the case of the CNT of Fig. 5.23 when VDC is increased to
25 Volt, Fig. 5.24. The figure shows also a hardening-type behavior. In addition, the
figure shows that the upper branch of the frequency-response curve opens up and loses
stability through a saddle-node bifurcation at an excitation frequency near 28, where
its slope approaches infinity and one Floquet multiplier approaches unity. This is an
indication of a dynamic pull-in, as has been found for the case of clamped-clamped
microbeams [84].

Fig. 5.24 Frequency-
response curve of the
clamped-clamped carbon
nanotube of case 2 of
Table 5.1 and for
VDC = 25 Volt,
VAC = 5 Volt, and Q = 100.
In the figure: (—–) stable
branch, (- - - - -) unstable
branch
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Fig. 5.25 Frequency-
response curve of the
clamped-clamped carbon
nanotube of case 3 of
Table 5.1 and for
VDC = 100 Volt,
VAC = 5 Volt, and Q = 100.
In the figure: (—–) stable
branch, (- - - - -) unstable
branch
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Escape band

As the value of the DC voltage is increased further, the frequency-response of
the carbon nanotube in this case remains of hardening type until reaching the static
pull-in voltage (it does not reverse to softening behavior as in MEMS microbeams
[84]). This is because in this considered case, the effect of mid-plane stretching is
always dominant over the electrostatic force, except at pull-in. This seems to be a
unique feature for CNTs over other structures.

To demonstrate a softening-type behavior, we choose another case study, case 3
of Table 5.1, where mid-plane stretching has a slightly weaker effect. Hence, at some
DC load before static pull-in value, the electrostatic force nonlinearity dominates that
of mid-plane stretching. Figure 5.25 shows the results. The figure shows a dynamic
pull-in through period doubling bifurcations, where we found a Floquet multiplier
reaching negative one [84, 96]. Figure 5.25 also shows a band of frequencies where
there is no stable solution for the system. This band is called an inevitable escape
band [85], where the oscillator is forced to escape its potential well. In this case the
carbon nanotube is forced to escape to pull-in (see end of Sect. 4.2.2).

Increasing the AC load further in this case results in a larger escape band of
frequencies. We use the shooting technique to calculate the carbon nanotube escape
bands for the primary resonance case while varying the AC voltage and frequency
(instability tongues). Figure 5.26a, b show the results for case 2 of Table 5.1 with
VDC = 25 Volt (hardening behavior) and for case 3 of Table 5.1 with VDC =
100 Volt (softening behavior), respectively. Operating the resonator within those
instability limits leads to definite pull-in. It is clear also from the figures that if the
AC amplitude increases, the escape band limits increase.

We end this section by investigating the response of cantilever carbon nanotubes.
In this case, the frequency-response curve is always of softening-type because of the
weak effect of the geometric nonlinearity and the strong effect of the electrostatic
nonlinearity. Figure 5.27 shows the frequency-response curve of the carbon nanotube
resonator for case 4 of Table 5.1. The figure shows also a dynamic pull-in through
period doubling bifurcations, where we found Floquet multipliers exceeding the unit
circle through negative one.

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.26 The calculated instability tongues (inevitable escape bands) in the case of primary reso-
nance of a clamped-clamped carbon nanotube (a) for the case 2 of Table 5.1 with VDC = 25 Volt,
(b) for the case 3 of Table 5.1 with VDC = 100 Volt and Q = 100

Fig. 5.27 Frequency-
response curve of a
cantilever carbon nanotube
for case 4 of Table 5.1 and
for VDC = 1Volt,
VAC = 0.1 Volt, and
Q = 100. In the figure,
wmax = w (1, t) is the
tip/maximum deflection of
the carbon nanotube, (—–)
stable branch, and (- - - - -)
unstable branch
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(b) Secondary resonances of the fundamental mode

This section examines the carbon nanotube dynamics near superharmonic resonance
of order two (excitation near half the fundamental natural frequency) and subhar-
monic resonances of order one half and one third (excitation near twice and three
times the fundamental natural frequency).

Figure 5.28 shows the response of the clamped-clamped carbon nanotube of case
2 of Table 5.1 when excited near superharmonic resonance of order two of the funda-
mental mode. The figure shows a hardening-type behavior and a qualitatively similar
behavior to that near primary resonance of Fig. 5.24. Also, the figure indicates the
occurrence of dynamic pull-in through a saddle-node bifurcation in the upper branch
of the curve.

We now examine the response of the same carbon nanotube near subharmonic
resonances. It is worth to note that the activation of subharmonic resonance requires
exceeding specific thresholds of AC load and quality factor. We excited the carbon
nanotube by VDC = 20 Volt and VDC = 1.2 Volt near twice its natural frequency
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Fig. 5.28 Frequency-
response curve of the
clamped-clamped carbon
nanotube for the
superharmonic resonance of
order two for case 2 of
Table 5.1 for VDC = 20 Volt,
VAC = 16 Volt and
Q = 150. In the figure: (—–)
stable branch, (- - - - -)
unstable branch
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Fig. 5.29 Frequency-
response curve for the
subharmonic resonance of
order one half of the carbon
nanotube of case 2 of
Table 5.1 for VDC = 20 Volt,
VAC = 1.2 Volt and
Q = 150. In the figure: (—–)
stable branch, (- - - - -)
unstable branch
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and found that a subharmonic resonance of order one half is activated, Fig. 5.17.
Increasing the AC load further to VAC = 16 Volt leads to a dynamic pull-in, Fig. 5.30.

Figures 5.28, 5.29, and 5.30a demonstrate secondary resonances of order two and
one half due to the influence of the electrostatic force, which is quadratic in nature.
However, it is possible also to activate secondary resonances of order one third and
three due to the effect of mid-plane stretching, which is cubic in nature. An example
of this case is depicted in Fig. 5.30b. Also, in this figure, the curve undergoes dynamic
pull-in characterized by a Floquet multiplier approaching unity. One can note from
Figs. 5.29 and 5.30 the fact that subharmonic resonance remains activated over a wide
range of frequency. This is another significant difference between the dynamics of
CNTs and MEMS beams, where subharmonic resonance is activated over a very
narrow range of frequency [80].

Next, we use the shooting technique to calculate the inevitable escape bands of
frequencies for the subharmonic resonance of order one half while varying the AC
voltage and frequency, as we did in the primary resonance case. Figure 5.31a, b show
the results for cases 2 and 3 of Table 5.1, respectively. To illustrate the increase in
the escape band as the AC voltage increases, the frequency-response curves for the
upper and the lower limits of the instability tongue of Fig. 5.31a are depicted in
Fig. 5.32a, b, respectively.
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Fig. 5.30 Frequency-response curve for the subharmonic resonance of order (a) one half and (b)
one third of the carbon nanotube of case 2 of Table 5.1 for VDC = 20 Volt, VAC = 16 Volt, and
Q = 150. In the figure: (—–) stable branch, (- - - - -) unstable branch
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Fig. 5.31 The calculated instability tongues in the case of subharmonic resonance of order one half
(a) for case 2 of Table 5.1 with VDC = 20 Volt, (b) for case 3 of Table 5.1 with VDC = 100 Volt and
Q = 150

Next we show the subharmonic response of a cantilever carbon nanotube.
Figure 5.33 depicts a softening-type behavior of the subharmonic resonance of order
one half of the fundamental mode. The curve shows dynamic pull-in characterized
by period doubling bifurcation.

5.4 Dynamics of Slacked Carbon Nanotube Resonators

In the previous section, we presented a model utilizing a nonlinear beam equation
to simulate the static and dynamic behaviors of electrically actuated straight CNT
resonators. It is worth to mention that the adopted model does not account for the
effect of slack (curvature), buckling, or initial deformation of carbon nanotubes.
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Fig. 5.32 Frequency-response curves for the subharmonic resonance of order one half of the carbon
nanotube for case 2 of Table 5.1 when VDC = 20 Volt and Q = 150 and for (a) VAC = 37 Volt and
(b) VAC = 40 Volt. In the figure: (—–) stable branch and (- - - - -) unstable branch

Fig. 5.33 Frequency-
response curve for the
subharmonic resonance of
order one half of the
cantilever carbon nanotube
for case 4 of Table 5.1 when
VDC = 1 Volt,
VAC = 0.2 Volt, and
Q = 150. In the figure: (—–)
stable branch, (- - - - -)
unstable branch

6 6.5 7 7.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω

w
m
ax

This can have significant influence on the stability, natural frequencies, and pull-in
calculations presented so far in the previous chapter. In this section, a 2-D nonlinear
curved beam model (arch) is utilized to simulate the motion of a slacked CNT. The
variation of the natural frequencies, mode shapes, and effective nonlinearity of a
CNT with various levels of slack and DC electrostatic loads is investigated. Various
scenarios are shown for mode crossing and mode veering as the levels of slack and DC
load are varied. In addition, the forced vibration of the slacked CNT when actuated
by small DC and AC loads is analyzed to show the transfer of energy among the
vibration modes involved in the veering phenomenon.

5.4.1 Problem Formulation

We start by formulating the 2-D problem governing the static and dynamic behavior
of an electrically actuated slacked carbon nanotube resonator, Fig. 5.34. The nanotube
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Fig. 5.34 (a) 3-D schematic of the electrically actuated slacked carbon nanotube resonator, (b)
in-plane view of the nanotube

is actuated by an electrode underneath it with a gap width d. It is modeled as a hollow
cylinder Euler-Bernoulli beam of radius R̃, shell thickness h, and length L . It has a
cross-sectional area A and an area moment of inertia I . The nanotube is assumed to
have a Young’s modulus E = 1.2 TPa and a mass density ρ = 1.3 g/cm3. The CNT
is considered here to be initially curved in the direction of the lower electrode with
an initial shape [65].

The 2-D equations describing the in-plane deflection ŵ
(
x̂, t̂
)

and out-of-plane
deflection v̂

(
x̂, t̂
)

of the clamped-clamped CNT resonator can be written as [69]

E I
∂4ŵ

∂ x̂4
+ ∂A

∂2ŵ

∂ t̂2
+ c̃

∂ŵ

∂ t̂
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+ E A
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∂ŵ

∂ x̂

)2
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(5.101)

E I
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(5.102)
where

F̂elec = πε0(VDC + VAC cos(�̃t))2

√
(d − ŵ − ŵ0)(d − ŵ − ŵ0 + 2R̃)

(
cosh−1

(
1 + d − ŵ − ŵ0

R̂

))2 ,

(5.103)
and where c̃ is the viscous damping coefficient and ε0 is the air permittivity.

The respective boundary conditions are

ŵ
(
0, t̂
) = 0,

∂ŵ

∂ x̂

(
0, t̂
) = 0, ŵ

(
L , t̂
) = 0,

∂ŵ
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(
L , t̂
) = 0,

v̂
(
0, t̂
) = 0,

∂ v̂

∂ x̂

(
0, t̂
) = 0, v̂

(
L , t̂
) = 0,

∂ v̂

∂ x̂

(
L , t̂
) = 0

(5.104)
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For convenience, we introduce the following nondimensional variables:

w = ŵ

d
, v = v̂

d
, x = x̂

L
, t = t̂

T
, (5.105)

where T is a time constant defined by T =
√(

ρAL4
)
/(E I ). By substituting

Eq. (5.105) into Eqs. (5.101)–(5.104), the nondimensional equations of motions and
associated boundary conditions of the considered clamped-clamped CNT are written
as

∂4w
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(5.106)
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w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (1, t) = 0,

∂w

∂x
(1, t) = 0,

v (0, t) = 0,
∂v

∂x
(0, t) = 0, v (1, t) = 0,

∂v

∂x
(1, t) = 0,

(5.108)

where

Felse = (VDC + VAC cos(Ωt))2

√
(1 − w − w0)(1 − w − w0 + 2R)

(
cosh−1

(
1 + 1 − w − w0

R

))2 ,

(5.109)

w0(x) = bo
d

sin(πx),

α1 = Ad2

2I
, α2 = πε0L4

E Id2
, c = c̃L4

E IT
, � = �̃√

(E I )
/
(ρAL4)

, R = R̃

d
(5.110)

5.4.2 The Reduced-Order Model

To solve the obtained nondimensional equation of motions of the slacked CNT,
Eqs. (5.106)–(5.109) are discretized using the Galerkin procedure to yield a ROM.
Hence, the in-plane and out-of-plane responses of the CNT are approximated, respec-
tively, as
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w (x, t) =
n∑

i=1

ui (t) φi (x), v (x, t) =
m∑
i=1

ξi (t) φi (x), (5.111)

where φi (x) are the normalized linear undamped mode shapes of a straight beam
and ui (t) and ξi (t) are the nondimensional modal coordinates of the in-plane and
out-of-plane motions, respectively.

To obtain the ROM, we substitute Eq. (5.111) into Eqs. (5.106)–(5.108), multiply
by φi (x), use the orthogonality conditions of the mode shapes, and then integrate
the outcome from 0 to 1. The results are differential equations in terms of the modal
coordinates ui (t) and ξi (t). We should mention here that, as in Sect. 4.3.2, the mode
shapes φi (x) will remain embedded inside the denominator of the electrostatic force
term, Eq. (5.109), in the ROM. To deal with the complicated integral terms due to
that electrostatic force, we evaluate the spatial integrals containing the mode shapes
φi (x) numerically simultaneously while integrating the differential equations of the
modal coordinates ui (t) and ξi (t).

The Static Response

As a case study, a CNT of L = 3000 nm, h = 0.34 nm, R̃ = 1 nm, d = 500 nm, and
initial rise bo = 100 nm is considered. Such dimensions are typical of CNTs with
slack [4–6]. We have shown in Sect. 4.3 that using one mode only in the ROM is
enough to capture the static response of a CNT. Next a one mode is used in the ROM
to compare the variation of the maximum in-plane static deflection of the CNT with
and without slack, Fig. 5.35.

The figure indicates that for small DC load, the CNT with slack is relatively stiffer
due to the linear stiffness term added from the initial curvature. It can be also seen
from the figure that the CNT with slack undergoes the pull-in instability at a lower DC
load than the one without slack. This is expected since in the slacked configuration,
the CNT is nearer to the electrode. Note here that the static response of the out-of-
plane motion is zero since the in-plane deflection appears as a homogenous term
in the out-of-plane equation (Eq. (5.107)). The stability of the obtained solutions in
Fig. 5.35 is studied by calculating the eigenvalues of the Jacobian matrix of the ROM

Fig. 5.35 Variation of the
maximum in-plane static
deflection of the CNT with
the DC voltage for various
levels of initial curvature b0.
Solid (——) and dashed
(- - - - -) lines denote the
stable and unstable branches,
respectively
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evaluated at these solutions [72]. The results show that one of the eigenvalues of the
Jacobian matrix corresponding to the upper branches is always positive indicating
unstable solution (dashed line in Fig. 5.35). Also, all of the eigenvalues of the lower
branches are pure imaginary indicating stable solutions (continuous line in Fig. 5.35).
At pull-in, both stable and unstable branches collide and destroy each other with one
eigenvalue tending to zero corresponding to a saddle-node bifurcation.

The Eigenvalue Problem

Next, we investigate the eigenvalue problem of the slacked CNT by calculating the
variation of the in-plane and out-of-plane natural frequencies and mode shapes with
and without slack and under the actuation of the DC voltage. Toward this, we consider
the same procedure of Sect. 4.3.4, where:

X = [u1, u2, ..., un, ξ1, ξ2, ..., ξm] (5.112)

is the considered modal amplitudes vector.
First, we consider the case study of Üstünel et al. [6], which is a non-hollow

CNT of L = 1750 nm, R̃ = 1 nm, and d = 500 nm. For the following results, we
will denote the in-plane natural frequencies by ωi and the out-of-plane frequencies
byλi . In Fig. 5.36, the variation of the in-plane and out-of-plane natural frequencies
is calculated at zero DC load for various values of initial rise of the CNT or slack
percentages. The slack percentage is defined as %slack = (L − L̃)/L , where L̃ is
the length of the CNT in the deformed (curved) position. Figure 5.36 compares the
results with those reported in Üstünel et al. [6], which indicates good qualitative
agreement. However, there is a quantitative discrepancy due to the fact that the
model used in Üstünel et al. [6] is applicable only when the strain is small enough
that the nonlinear elastic effects may be ignored. Unlike their model, our approach

Fig. 5.36 Variation of the
first few in-plane and
out-of-plane natural
frequencies of a CNT with
slack for the case study of
Üstünel et al. [6]. Solid line
(——), dashed line (- - - - -),
and circles (◦) denote,
respectively, the odd
in-plane, even in-plane and
out-of-plane, and the odd
out-of-plane frequencies
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is a continuous model that can describe the nonlinear oscillations of the CNT under
its various parameters without dividing the CNT behavior into different regimes.

In Fig. 5.37, we investigate in more depth the effect of varying the initial rise of the
CNT of Fig. 5.35, assuming zero DC load, on the in-plane and out-of-plane natural
frequencies. We can see clearly that the even in-plane (dashed lines in Fig. 5.37a) and
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Fig. 5.37 (a) Variation of the in-plane and out-of-plane natural frequencies of a CNT with various
levels of slack at zero DC load. (b) A zoomed view of Fig. 5.4a showing the crossings and veering
of the in-plane frequencies (the odd out-of-plane are not shown for clarity). Solid line (——),
dashed line (- - - - -), and circles (◦) denote, respectively, the odd in-plane, the even in-plane and the
out-of-plane, and the odd out-of-plane frequencies
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out-of-plane frequencies (circles in Fig. 5.37a) are insensitive to the variation of slack
whereas the odd in-plane frequencies vary with slack (continuous lines in Fig. 5.37a).
These frequencies appear in the large scale to intersect (Fig. 5.37a). When enlarging
the apparent intersection zones, one can see that they do not intersect (blue circles in
Fig. 5.37b); they diverge in a manner called curve veering [97, 98]. This phenomenon
is common and has been cited for the natural frequencies of a rectangular membrane
when varying the ratio of its lengths’ sides [98] and also for the natural frequencies
of cables when varying their sagging levels [99, 100].

A frequency veering occurs when the loci of two eigenvalues, in an eigenvalue
problem, approach each other when a parameter is varied and then veer away when
being too close like two repulsive charges [101]. In a frequency veering, the eigen-
functions associated with the eigenvalues on each locus before veering is inter-
changed during the veering [98]. To further clarify this, we plot the corresponding
eigenfunctions of the odd in-plane natural frequencies in Table 5.3. We can see that
the modes are exchanging shapes and (bold squares in Table 5.3) when varying the
slack level. This table describes all the veering scenarios depicted in Fig. 5.37b, which
appear following a straight line. In this line, the shape of the first mode is transferred
into the different odd modes, from the lower to the higher modes, depending on the
slack level. A final note to be mentioned here is that the odd in-plane frequencies
intersects the even ones for certain levels of slack offering many possibilities of
internal resonances and exchange of energy among higher- and lower-order modes.

Table 5.3 The simulated eigenfunctions of the first five odd in-plane modes for various slack levels

1ω 3ω 5ω 7ω 9ω

b0=0
μm

b0=10
μm

b0=20
μm

b0=40
μm

b0=70
μm

b0=100
μm
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Fig. 5.38 (a) Variation of the in-plane natural frequencies with the DC load of a CNT (a) without
and (b) with slack. In both cases, a zoomed view near small values of voltages are shown (c) and (d).
Solid line (——) and dashed line (- - - - -) denote the odd in-plane and the even in-plane frequencies,
respectively

Next we investigate the variation of the in-plane natural frequencies of the CNT
with the DC load. First, we consider the unslacked case. We can see from Fig. 5.38a
that all the natural frequencies are sensitive to the variation of the DC voltage. All of
them are increasing dramatically, with a sublinear variation behavior, except for the
first frequency near pull-in where it drops to zero. This increase in the frequencies
suggests a tunable resonator over a wide range of frequencies. Practically, when
designing a resonator made with such CNT, one can easily tune the frequencies from
MHz range to GHz and even THz range. In addition, one can see from Fig. 5.38c
that there is no possibility of modes veering or modes crossing even for small range
of voltages. These scenarios however appear when slack is added, Fig. 5.38b. The
figure shows the variation of the first few in-plane frequencies of the slacked CNT
(b0 = 100 nm) with the DC load. We can see that the odd modes exhibit the frequency
veering phenomenon (blue circles in Fig. 5.38d), but in this case from the higher to
the lower modes where the energy is transferred to the lowest fundamental frequency
that eventually drops to zero at pull-in. There are also possibilities of odd and even
in-plane modes crossings (blue arrows in Fig. 5.38d).
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It is worth to mention here that our demonstrated results can justify and predict
some of observed experimentally phenomena in Sazanova [5]. Other models of [5,
6] could not explain the previously mentioned phenomenon. For example, Fig. 5.38
shows what was cited as sublinear dispersion of the frequency in Sazanova [5]. The
avoided crossings for some frequency range in the case of slack cited in Sazanova
[5], can be considered to be the same as veering, Fig. 5.39. Also, our results, based on
the coupled in-plane and out-of-plane motions, have shown abundance of resonances
as cited in Sazanova [5].

Next, we investigate the sensitivity of the out-of-plane natural frequencies to the
DC load, which although not directly actuated, they are affected due to the nonlinear
coupling between the out-of-plane and in-plane deflections. Figure 5.39 shows the
first five in-plane and out-of plane natural frequencies as they vary with the DC load.
We can note that, except for the first mode, the first few out-of-plane frequencies
are larger than those of the in-plane frequencies especially at high DC loads. For the
higher-order modes, both in-plane and out-of-plane natural frequencies are equal.

5.4.3 The Dynamic Response for Small DC and AC Loads

(a) Long-time integration of the ROM

Next, we use the ROM developed in Sect. 4.4.2 to integrate the differential equations
of motion in time to obtain the dynamic response of the slacked CNT under a very
small DC and AC harmonic load. The choice of the very small voltage loads is to
guarantee linear forced vibration response. The response to small electric loads is
important to enable precise prediction of the resonance frequency in the linear regime.
The resonance frequency is the frequency that is commonly measured experimentally
for CNTs when driven by AC and DC loads. Here we use a nondimentional damping
coefficient c = 1.196. Figure 5.40a, b show the response of the 100 nm and the 200 nm
slacked CNTs, respectively. We can see from the figures that the linear dynamic
response is significant in the neighborhood of the first natural frequency, ω1, and the
frequencies that are located on the veering straight line, as predicted from Fig. 5.37.
Those frequencies are ω9 in the case of the 100 nm slack and ω11 in the case of
the 200 nm slack. It is clear from Fig. 5.40a, b that the higher-order modes located
on the veering line are sharing the energy of vibration with the fundamental mode.
This conclusion might explain one of the reasons behind the low quality factor
reported experimentally for CNTs [5] when driven harmonically at resonance near
their fundamental modes.

To further clarify this point, we calculate in Fig. 5.41 the participation of each
individual odd in-plane mode shape in the dynamic response of the 100 nm slacked
CNT. It is clear from the figure that the participations of the first mode (the lowest
mode) and the ninth mode (the one located on the veering line) are the most important
ones. This indicates that even when exciting the CNT near its first natural frequency,
significant participation is anticipated of the mode located on the veering line.

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.39 a Variation of the first five in-plane and out-of-plane natural frequencies with the DC
load of a CNT with a 100 nm slack. b A zoomed view of Fig. 5.39a near small values of voltages.
Solid line (——), dashed line (- - - - -), and circles (◦) denote, respectively, the odd in-plane, the
even in-plane and the out-of-plane, and the odd out-of-plane frequencies

(b) Perturbation analysis

(i) Derivations

In this section, perturbation analysis is carried out using the method of multiple scales
and a direct attack of the in-plane equations of motion same as we did in Sect. 4.5.1.
To this end, we define the variables for the time scale (Ti ), their derivatives (Di ), the
influence of the damping coefficient and the forcing amplitude, as in Eqs. (4.117)

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.40 Frequency-response curves of (a) 100 nm slacked CNT and (b) 200 nm slacked CNT
at the odd in-plane natural frequencies. Results are shown for VDC = 0.01 Volt, VAC = 0.01 Volt,
and 100 quality factor

Fig. 5.41 Time-response curves of the 100 nm slacked CNT at � ≈ ω1 showing the participation
of the odd in-plane mode shapes. Results are shown for VDC = 0.01 Volt, VAC = 0.01 Volt, and
100 quality factor

and (4.118) respectively, and we seek a solution in the form of Eq. (4.119). Next,
we expand the electrostatic force term, Eq. (5.109), into Taylor series up to the third
order as

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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1√
(1 − u − ws − w0)(1 − u − ws − w0 + 2R̃)

(
cosh−1

(
1 + 1 − u − ws − w0

R̃

))2 ≈ (5.113)

≈ Fs + F1u + F2u
2 + F3u

3 + · · · ,

Substituting Eqs. (4.117)–(4.120) and Eq. (5.113) into Eqs. (5.106) and (5.108)
and then equating like powers of ε, we obtain

• Order ε0: (the static equation)

wiv
s = α1[ws

′′ − w0
′′][	(ws,ws) − 2	(ws,w0)] + Fs,

ws(0) = ws(1) = 0, w
′
s(0) = w

′
s(1) = 0,

(5.114)

• Order ε1:

L (u1) = D2
0u1 + uiv1 − α1 [	 (ws,ws) − 2	 (ws,w0)] u

′′
1

−2α1
[
w′′
s − w′′

0

]
[	 (ws, u1) − 	 (w0, u1)] − α2F1u1 = 0,

(5.115)

• Orderε2:

L (u2) = α1	 (u1, u1)
(
w′′
s − w′′

0

)+ 2α1 [	 (ws, u1) − 	 (w0, u1)] u
′′
1 + F2u

2
1,

(5.116)
• Order ε3:

L (u3) = −2D0D2u1 − cD0u1 + 2α1	 (u1, u2)
(
w′′

s − w′′
0
)

+2α1 [	 (ws, u1) − 	 (w0, u1)] u
′′

2

+2α1 [	 (ws, u2) − 	 (w0, u2)] u
′′

1 + α1	 (u1, u1) u
′′

1

+2α2VDCVACFs cos (�t) + α2F2u1u2 + α2F1u
3
1,

(5.117)

The solution of Eq. (5.115) is assumed to consist of only the directly excited mode,
�i (x), because in the absence of internal resonances, all the other modes die out
with the damping [102]. Accordingly, we express the first dynamic component u1 as

u1(x, T0, T2) = [A(T2)e
iωi T0 + Ā(T2)e

−iωi T0
]
�i (x) , (5.118)

where A(T2) is a complex-valued function, the over bar denotes the complex conju-
gate, and ωi and �i (x) are the natural frequency and corresponding eigenfunction
of the directly excited mode, respectively. Substituting Eq. (5.118) into Eq. (5.16),
we obtain

L(u2) = (2AĀ + A2e2iωi T0 + Ā2e−2iωi T0
)
h (x) , (5.119)

where
h (x) = 2α1 (	(ws,�i ) − 	(w0,�i ))�′′

i ++α1	(�i ,�i )
(
w′′

s − w′′
0
)+ α2F2�

2
i ,

(5.120)

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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The solution of Eq. (5.119) can be expressed as follows:

u2(x, T0, T2) = ψ1 (x) A2(T2)e2iωi T0+
+2ψ2 (x) A(T2) Ā(T2) + ψ1 (x) Ā2(T2)e−2iωi T0 ,

(5.121)

where ψ1 and ψ2 are the solutions of the following boundary value problems:

H
(
ψ j , 2ωiδ1 j

) = h (x) , j = 1, 2,

ψ j = 0 and ψ ′
j = 0 at x = 0 and x = 1, j = 1, 2,

(5.122)

where δi j is the Kronecker delta operator and the linear differential operator H is
defined as

H ( f (x) , ω) = f iv (x) − ω2 f (x)
−2α1

(
w′′
s − w′′

0

)
[	 ( f (x) ,ws) − 	 ( f (x) ,w0)]

−α1 [	 (ws,ws) − 2	 (w0,ws)] f ′′ (x) − α2F1 f (x)
(5.123)

Note here that the eigenfunction �i (x) is solution of

H (�i , ω) = 0, (5.124)

In order to describe the nearness of the excitation frequency Ω to the fundamental
natural frequency ωi , we introduce a detuning parameter σ defined by

Ω = ωi + ε2σ, (5.125)

Substituting Eqs. (5.118), (5.121), and (5.125) into Eq. (5.117) we obtain

L (u3) =
[
−iωi

(
2A′ + cA

)
�i (x) + χ (x) A2 Ā + F̄ (x) eiσT2

]
eiωi T0 + cc + NST,

(5.126)
where

F̄ (x) = 2α2VDCVACFs (5.127)

In Eq. (5.126), A′ denotes the derivative of A with respect to T2, “cc” denotes
the complex conjugate of the preceding terms, NST stands for the terms that do not
produce secular terms, and χ (x) is defined by

χ (x) = α1�′′
i
[
3	 (�i , �i ) + 2	 (ws , ψ1) − 2	 (w0, ψ1) + 4	 (ws , ψ2) − 4	 (w0, ψ2)

]
+α1

[
w′′
s − w′′

0
] [

2	 (�i , ψ1) + 4	 (�i , ψ2)
]

+ 2α1
[
ψ ′′

1 + 2ψ ′′
2
] [

	 (�i ,ws) − 	 (�i ,w0)
]

+ 3α2F3�3
i + 2α2F2�iψ1 + 4α2F2�iψ2,

(5.128)
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Note that the function χ (x) can be divided into two coefficients that describe the
two sources of nonlinearity presented in the considered electrically actuated CNT
slacked resonator as follows:

χ (x) = χc (x) + χq (x) , (5.129)

where

χc (x) = 3α1�
′′
i 	 (�i ,�i ) + 3α2F3�

3
i ,

χq (x) = 3α1�
′′
i [2	 (ws, ψ1) − 2	 (w0, ψ1) + 4	 (ws, ψ2) − 4	 (w0, ψ2)] +

+α1
[
w′′
s − w′′

0

]
[2	 (�i , ψ1) + 4	 (�i , ψ2)] +

+2α1
[
ψ ′′

1 + 2ψ ′′
2

]
[	 (�i ,ws) − 	 (�i ,w0)] +

+2α2F2�iψ1 + 4α2F2�iψ2.

(5.130)
The subscripts c and q denote the cubic nonlinear term and the quadratic nonlinear

term, respectively.
Next, multiplying the right-hand side of Eq. (5.126) by �i (x) e−iωi T0 , where �i

is normalized such that
∫ 1

0 �2
i dx = 1, integrating the result from x = 0 to x = 1 and

equating the secular terms to zero, yields the following solvability condition:

− iω
(
2A′ + cA

)+ SA2 Ā + FeiσT2 = 0, (5.131)

where

F =
∫ 1

0
�i F̄dx, and S = Sc + Sq , (5.132)

where the nonlinear coefficients are expressed as

Sc =
∫ 1

0
�iχcdx, Sq =

∫ 1

0
�iχqdx (5.133)

Next, we express A in the polar form A = aeiβ/2, where a = a (T2) and β =
β (T2) are real-valued functions, representing, respectively, the amplitude and phase
of the response. Substituting the expression of A into Equation (5.31) and letting
γ = σT2 − β, we obtain

[(
−ia′ + aβ ′ − 1

2
ica

)
ωi +

(
a3

8

)
S

]
eiβ + FeiσT2 = 0 (5.134)

Separating the real and imaginary parts in Eq. (5.134), we obtain the following
modulation equations:

a′ = −1

2
ca + sin γ

ωi
F, (5.135)
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aγ ′ = aσ + a3

8ωi
S + cos γ

ωi
F (5.136)

Substituting Eqs. (5.118) and (5.121) into the Method of Multiple Scales approx-
imated solution and setting ε = 1, we obtain, to the second-order approximation, the
following CNT response to the external excitation as follows:

w (x, t) = ws (x) + a cos (�t − γ )�i (x) +
+ 1

2a
2
[
ψ1 (x) cos 2 (�t − γ ) + ψ2 (x)

]+ · · · ,
(5.137)

It follows from Eq. (5.137) that periodic solutions correspond to constant a and
γ ; that is, the fixed points (a0, γ0) of Eqs. (5.135) and (5.136). Thus, letting γ ′ =
0 and a′ = 0 in Eqs. (5.135) and (5.136), and eliminating γ0 yield the following
frequency-response equation:

F2

ω2
i

= a2
0

[(
σ + a2

0

8ωi
S

)2

+ 1

4
c2

]
, (5.138)

where c = 2ζωi .

(ii) Results

As seen before when analyzing the dynamic behavior of MEMS arches, the important
advantage of the perturbation analysis described above is that it enables studying
the variation of the effective nonlinearity of the system and its quadratic and cubic
components analytically. To calculate the variation of the effective nonlinearity of
the slacked CNT along with its two cubic and quadratic nonlinear components,
we evaluate numerically the parameters ωi , �i , ψ1, ψ2, and ws associated with
Eq. (5.132) using a ROM similar to what has been done in Sect. 4.3.3.

First, motivated by studying the effect of the DC load on the CNT nonlinearity
for various unslacked CNT radiuses, we calculate its effective nonlinearity variation
with the electric load for three different radiuses (10, 20, and 30 nm) of a non-hallow
CNT of L = 1000 nm, d = 100 nm, Young modulus E = 1TPa, and mass density
ρ = 1.3 g/cm3, Fig. 5.42. The figure shows clearly that the percentage of the DC load
needed to switch from a hardening behavior to a softening one over the pull-in value
increases with the increase of the CNT radius. This percentage is calculated to be
16 % for the CNT of 10 nm radius, 43 % for the CNT of 20 nm radius, and 65 % for the
CNT of 30 nm radius. One clear possibility of this behavior is that with the increase
of the CNT radius, the ratio of the nondimentional cubic nonlinearity parameter over
the quadratic one of Eq. (5.106), i.e. α1/α2, increases and hence letting the hardening
behavior becoming more dominant for CNT with large radius. Add to all of this, we
can see clearly that with the increase of the CNT radius, the increase of the cubic
nonlinear coefficient (Sc), which turns out to be more dominant over a wide range of
DC load. For those cases, the effective nonlinearity switches from positive to negative
only when the quadratic nonlinear terms (Sq ) starts to vary with the DC load. This
coefficient starts to vary for small DC load compared to the DC pull-in value for

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.42 Variation of the effective nonlinearity of the fundamental mode (—–), the cubic nonlin-
earity coefficient (✰), and the quadratic nonlinearity coefficient (�) for an unslacked CNT with
the DC voltage: a R̃ = 10 nm, b R̃ = 20 nm, and (c) R̃ = 30 nm. The dashed line (- - - - -) sepa-
rates the positive and the negative regimes of the effective nonlinearity describing, respectively, the
hardening and the softening behaviors of the CNT

smaller CNT radius and vice versa. Those trends explain clearly the difference in the
dynamical behavior between CNT with small radius (high aspect ratio) and those
with high radius (small aspect ratio).

Next, as a case study for slacked CNT, a non-hallow CNT of L = 1000 nm, R̃ =
5 nm, d = 200 nm, E = 1 TPa, and ρ = 1.3 g/cm3 is considered. In Fig. 5.43, we
show the variation of the effective nonlinearity coefficient of the fundamental mode
(S) of the CNT with the slack. For the case of small slack (bo < 4 nm), S is positive
indicating a hardening behavior and then it switches to negative sign (bo > 4 nm)
indicating softening-type behavior. Dynamically point of view, this indicates that for
tiny slack level, the CNT is locally dominated by a softening type behavior which
means that the quadratic nonlinearity coming from the initial curvature dominates
the dynamic behavior of the slacked CNT (Sq is dominant for high values of bo).
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Fig. 5.43 a Variation of the
effective nonlinearity of the
fundamental mode (—–), the
cubic nonlinearity coefficient
(✰), and the quadratic
nonlinearity coefficient (�)
of the CNT with the slack
level. b A zoomed view of
Fig. 5.43a showing the
switch of the effective
nonlinearity from positive to
negative values
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To verify the results of Fig. 5.43, we use the ROM developed in Sect. 6.2 and
integrate with time the differential equations of motion to obtain the forced response
of the slacked CNT under small DC voltage and an AC harmonic load. Figure 5.44a, b
show the responses of a 2 nm and 5 nm slacked CNT, respectively. We can see from
the figures that the dynamic response of the CNT switched from being hardening for
the first case to softening for the second case confirming what was found in Fig. 5.43.

Next, we show the variation of the effective nonlinearity coefficient (S) of the CNT
as well as the nonlinear coefficients with DC load for the case of no initial curvature,
Fig. 5.45. For small DC load (VDC < 10 nm), S is positive indicating a hardening
behavior and then it switches to negative sign (VDC > 10 nm) indicating softening
type behavior, Fig. 5.45. This shows that the considered CNT is dominated by a
softening once the DC load exceeds a small voltage compared to the pull-in value.
Here we also generate frequency-response curves based on the ROM, Fig. 5.46, to
verify the results of Fig. 5.45.

http://dx.doi.org/10.1007/978-3-319-20355-3_6
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Fig. 5.44 Frequency-response curves of (a) 2 nm and (b) 5 nm slacked CNT showing hardening
and softening behaviors, respectively. Results are shown for VDC = VAC = 1 Volt, and 100 quality
factor
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Fig. 5.45 Variation of the effective nonlinearity of the fundamental mode (—–), the cubic nonlin-
earity coefficient (✰), and the quadratic nonlinearity coefficient (�) of the unslacked CNT with the
DC voltage

Figure 5.47 shows that for nonzero slack (80 nm), S is always negative, with
an increase except near the pull-in zone, indicating a softening type behavior of
the slacked CNT. This result indicates the fundamental mode of a slacked CNT is
locally dominated by a softening type behavior demonstrating that the quadratic
nonlinearities coming from the initial curvature and the electrostatic force dominate
the dynamic behavior of the slacked CNT.
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Fig. 5.46 Frequency-response curves of unslacked CNT for (a) VDC = 8 Volt, and (b) VDC =
14 Volt showing hardening and softening behaviors respectively. Results are shown for VAC =
0.2 Volt, and 100 quality factor

Fig. 5.47 Variation of the
effective nonlinearity of the
fundamental mode (—–), the
cubic nonlinearity coefficient
(✰), and the quadratic
nonlinearity coefficient (�)
for the 80 nm slacked CNT
with the DC voltage
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5.4.4 The String Model

(a) Motivation and formulation

For some specific CNT geometry, especially those with small radius (i.e., with big
aspect ratio), the beam model experiences some numerical problems especially when
trying to solve the boundary value problems of Eqs. (5.126)–(5.128). The algorithm
that we used to calculate the effective nonlinearity coefficient based on the beam
model of Sect. 4.4.1 works only for small DC load (i.e., the bending dominated
regime). This is expected since, for the case of CNT with small radius, the bend-
ing term is dominant only for small DC load [4, 6]. Hence, we propose to use a
string model, in which we eliminate the bending term in Eq. (5.106). This yields the
following nondimentional equation of motion and associated boundary conditions:

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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∂2w

∂t2 + c
∂w

∂t
= α2Fe + α1

[∫ 1

0

{(
∂w

∂x

)2

− 2

(
∂w

∂x

dw0

dx

)}
dx

][
∂2w

∂x2 − d2w0

dx2

]
, (5.139)

w (0, t) = 0, w (1, t) = 0, (5.140)

where Fe and w0 are given by Eq. (5.109), and the nondimensional parameters are
defined as

α1 = E Ad2

2L2
, α2 = πε0L2

d2
, c = c̃√

ρAL2
, � = �̃

√
ρAL2, R = R̃

d
(5.141)

(b) Results

As a case study for a CNT with small radius and high aspect ratio, a hallow
CNT of L = 3000 nm, h = 0.34 nm, R̃ = 1 nm, d = 500 nm, E = 1.2 TPa, and
ρ = 1.35 g/cm3 is considered.

We first compare between the dimensional fundamental natural frequency of the
considered CNT with small radius while using both models (the beam and the string
models). One can see from Fig. 5.48 that for a wide range of DC load (5 Volt <

VDC < 60 Volt), between the bending dominated regime and the pull-in zone, the
string and the beam model are in a good agreement. Hence, we will use now the
perturbation analysis derived in Sect. 4.4.5b while considering the beam model for
small DC load, and use the string model for higher values of the DC load.

Next, we simulate the variation of the effective nonlinearity with the curvature
level. In this case, the beam model is used since the nonlinearity coming from the
electrostatic load is small. We can see from Fig. 5.49 that S is positive in this case
for very small range of initial curvature level (bo < 1 nm) indicating a hardening

Fig. 5.48 Comparison
between the variations of the
dimensional fundamental
natural frequency of the
unslacked CNT with the DC
voltage using the beam
model (——-) and the string
model (◦)
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Fig. 5.49 Variation of the
effective nonlinearity of the
CNT with slack
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behavior. This means that for CNT with large aspect ratio, a tiny slack level will
soften the fundamental mode. To verify the results of Fig. 5.49, we integrate with
time the differential equations of motion to obtain the dynamic response of the slacked
CNT under small DC and AC harmonic load. Figures 5.50a, b show the response of a
0.5 nm and 1.5 nm slacked CNT, respectively, which verify the perturbation results.

The variation of the effective nonlinearity with the DC load for the unslaked CNT
case is shown in Fig. 5.51. In this case, the beam model applies up to VDC < 1 Volt,
after which the string model is used. We can see from Fig. 5.51a, b that S is only
positive in this case in a very small range of DC load indicating a hardening behavior.
The results of the beam model were compared by those of the string model, in which
we can see that the CNT behavior is of softening type. Also the results are verified
using time integration of the equation of motion using the ROM, Fig. 5.51c, d.
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Fig. 5.50 Frequency-response curves of (a) 0.5 nm and (b) 1.5 nm slacked CNT showing hardening
and softening behaviors respectively. Results are shown for VDC = VAC = 0.01 Volt, and 100
quality factor
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Fig. 5.51 Variation of the effective nonlinearity coefficient S of the unslacked CNT with the
DC voltage while using (a) a beam model, and (b) a string model. Frequency-response curves of
unslacked CNT for (c) VDC = 0.04 Volt, and (d) VDC = 0.2 Volt showing hardening and softening
behaviors respectively. Results of Fig. 6.19c, d are shown for VAC = 0.01 Volt, and 100 quality
factor
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Fig. 5.52 Variation of the effective nonlinearity coefficient S of the 100 nm slacked CNT with the
DC voltage while using (a) a beam model, and (b) a string model

Finally, the results of Fig. 5.51a, b are simulated for a 100 nm slacked CNT in
Fig. 5.52a, b. Here also we notice that the beam model applies in the bending regime,
i.e., VDC < 4 Volt. Above this value, the string model is used. We can see also that
we get the same behavior as the case of CNT with higher radius, Fig. 5.47. In this
case, the CNT is locally dominated by a softening behavior due to the presence of the
huge quadratic nonlinearity from the slack level. We notice also an increase of the
effective nonlinearity, which is due to the presence of a source of cubic nonlinearity
coming from the mid-plane stretching of the CNT. Finally, the effective nonlinearity
starts to decrease near the pull-in zone where the electrostatic force starts to dominate
the behavior of the slacked CNT.
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