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Preface

As circuits and systems become more miniature and less power-consuming, we
move towards a complete synthesis of systems and renewable power sources. This
is an essential step towards fully autonomous, micro- and nano-scale smart systems
that will become a part of the Internet of Things (IoT) trend. The area of engi-
neering that develops autonomous energy sources, able to derive energy from
environment, is called energy harvesting. It is a versatile, multidisciplinary and
rapidly developing area that combines electronic engineering, materials science and
physics with circuit design and system-level integration.

There are many energy sources available for harvesting in the environment.
Perhaps, one of the most common examples of an energy harvester known to every
reader is a solar cell. But this is not the only example though. In this book, we
discuss vibration energy harvesting, a particular type of energy conversion from
mechanical motion. Due to the ubiquitous nature of mechanical motion and
vibrations, they seem as a very promising approach to supply microsystems with
energy. Moreover, since we would like to focus on micro- and nano-systems, we
will consider only electrostatic and electromagnetic energy conversion mechanisms,
which are particularly suitable for implementation through microtechnologies and
can be scaled down.

Since the idea of vibration energy harvesting has been introduced, it has become
clear that there are certain challenges that cannot be addressed applying a con-
ventional approach based on linear mechanical resonators. In particular, modern
energy harvesters are required to be robust, to respond to a large range of external
frequencies, and in some cases, to operate with noise-like vibrations. Often per-
ceived as parasitic, nonlinearity in energy harvesting systems can address these
particular challenges. As we shall show throughout the book, nonlinearity is
inevitable and arises due to the nature of energy harvesters. Since energy harvesters
are ‘mixed’ systems combining the electrical and the mechanical domains, the
presence of electromechanical coupling causes nonlinearity that should not be
neglected in analysis and, actually, can be utilised and improve the performance of
a harvester.

v



This book covers a range of different topics related to nonlinearity in vibration
energy harvesters. We start, however, with some fundamentals and explain what is
microtechnology and how it is employed to build a harvester. We also present
introductory discussions on oscillators and transducers for energy harvesters. With
these fundamentals covered, we proceed and discuss each particular case of non-
linearity due to nonlinear mechanical resonators (nonlinearity in the mechanical
domain) and conditioning circuits in electrostatic and piezoelectric harvesters
(nonlinearity due to electromechanical coupling).

We sincerely thank all the authors for their research and contribution to the field
and to this book: Manuel Domínguez-Pumar, Joan Pons-Nin, Juan
Chávez-Domínguez, Hassen M. Ouakad, Miguel López-Suárez, Riccardo Rurali
Gabriel Abadal, Sukhdeep Kaur, Cuong Phu Le, Peter Harte, Orla Feely, Adrien
Badel and Elie Lefeuvre.

Dublin, Ireland Elena Blokhina
Tarragona, Spain Abdelali El Aroudi
Barcelona, Spain Eduard Alarcon
Paris, France Dimitri Galayko
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Chapter 1
Introduction to Vibration Energy
Harvesting

Elena Blokhina, Abdelali El Aroudi, Eduard Alarcon
and Dimitri Galayko

1.1 Historical Background

Energy harvesting has received increased attention in the recent years from different
disciplines, mainly due to its potential impact as a key technology enabling self-
powered ultra-low-power electronic systems.

In a general case, energy harvesting is the utilisation of ambient energy from
the environment surrounding a system, converting this energy to a different form
(usually electricity) and then using this energy to power the aforementioned system.
This differs from powering a system using finite energy sources such as coal, oil,
batteries, fuel cells, etc. As a concept, energy harvesting is not new: in fact, it has
been in operation for millennia. Water wheels that harvest energy from the currents
of streams to power mills have been in existence since at least the first century BC [1]
while wind powered machines are known from the first century AD [2].

In the roughly two thousand years that have passed since those first recorded
energy harvesting systems the world has changed radically, with electricity now
being one of the main sources of energy for many of the systems used on the planet.
In that time, the concept of energy harvesting has not changed but the sources for, and
forms of energy that are outputted from energy harvesting systems have. Modern day
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2 E. Blokhina et al.

systems for large-scale renewable power generation such as solar arrays, wind farms
and ocean wave generators follow the concept of energy harvesting. By downscaling
the energy levels to those used in portable applications, a historic example of energy
harvesting are the kinetic wristwatches, which harness the human body kinetic energy
and store it mechanically in springs to actuate mechanical clocks. Nowadays, the term
energy harvesting is usually understood to mean the generation of electrical energy for
low powered, miniature, wireless devices [3]. It is this definition of energy harvesting
that this book follows.

In recent years, energy harvesting has become a huge area of research and has
attracted much interest from both academia [3–6] and industry [7–9]. This interest
has been boosted even more since we enter the age of the Internet of Things (IoT),
aiming at wearable technologies and micro-electronics for bio-applications. In many
instances, the main objective of these IoT technology will be to sense information
about the environment and communicate this information wirelessly. In this case, the
communicating objects connected into networks are referred to as wireless sensor
nodes (WSNs).

In numerous applications of WSNs, the sensors are located in remote locations
that reduce their accessibility. This means that in a lot of cases, these devices will
require their own power supply. A solution to this problem is to use a battery or a
fuel cell. Such power supplies though, have finite lifetimes and depending on the
power usage of the WSN in question, may not last very long. This creates a different
problem: replacing these power sources. This is particularly true when the objects
being powered are in difficulty to reach locations. Thus, it is desirable that WSNs are
completely autonomous from a power point of view and this is the major motivating
factor for energy harvesting research.

1.2 Ambient Energy Sources for Harvesting

There are many different ambient sources in a variety of environments from which
energy can be harvested. The choice of which source to harvest from depends not
only on its availability but also on the application in question. Below, some of the
more common energy harvesting sources are outlined, along with some of their
advantages, disadvantages and applications.

Ambient solar energy is the most popular source for energy harvesting, and as a
result it is the most mature and commercially established field in energy harvesting
research [10]. Solar energy harvesting is based on the principle of the photovoltaic
effect. The photovoltaic effect was discovered by Alexandre-Edmond Becquerel and
using this knowledge, he designed the first solar cell in 1839 [5, 11]. For nearly forty
years, solar energy harvesting has been used in consumer electronics with the most
ubiquitous example being the handheld calculator [12].

Standard solar cells have energy conversion efficiencies of between ten and twenty
percent, and can produce roughly 100 mW/cm2 in sunlight. This reduces by an order
of magnitude to approximately 100µW/cm2 in a standard illuminated office [4]. This
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is a major disadvantage for solar energy harvesting. If the system being powered is
located in a poorly lit environment, e.g. a bio-sensor monitoring a person’s health
from within their body, then the amount of energy converted reduces dramatically
and thus solar energy scavenging is not a viable option.

Temperature variations can be converted to electrical energy through thermo-
electric generators. These thermal energy harvesters generally consist of two differ-
ent conductors joined in two places. When there is a temperature difference between
these junctions, an open circuit voltage develops between them. This is the basis of
the Seebeck effect, named after Thomas Johann Seebeck who discovered the phe-
nomenon in 1821 [5, 6, 13]. The effectiveness of these harvesters hinges on the
availability of large thermal gradients since the voltage produced by the generator
is proportional to the temperature difference between the two junctions [14]. There
are many heat sources where thermoelectric generators can be used including human
body warmth [15] and the waste heat of car engines [16]. Harvesting thermal energy
from the human body, in theory, is very attractive for wearable technologies but due
to the small temperature gradient between the human body and the ambient tempera-
ture, these harvesters can only output less than 30 µW/cm2 [15]. This leaves thermal
energy harvesters somewhat ineffective for applications like bio-sensors that require
very compact device geometries.

Ambient radio frequency energy is another possible source for energy harvest-
ing. Ambient RF energy is available through the vast number of radio commu-
nications transmitters scattered throughout the modern world. These transmitters
generate strong electromagnetic fields and RF energy harvesters can convert this
into electrical energy. A major limitation of RF energy harvesting is the very low
power density levels associated with it. Power density levels less than 1 mW/m2

are expected around 25 m from a GSM base station and this is at least an order of
magnitude less again from wireless LAN networks [6, 17, 18]. The power received
by an RF harvester decreases dramatically as the distance from the source trans-
mitter increases. Thus, this type of harvester requires either a very large collection
antenna, which increases its size beyond practical use in a microsystem, or to be
very close in proximity to the radiating source, thereby reducing its number of viable
applications [4].

Microbial fuel cells operate on a similar principle to standard fuel cells. Their
difference lies in the fact that unlike normal fuel cells, which have a finite lifetime,
albeit with a very large energy capacity, microbial fuel cells source their energy
from the potential of anaerobic bacteria to respire, oxidise and transport electrons
efficiently [5]. They convert chemical energy into electrical energy through these
‘electro-active’ bacteria. Their potential is certainly not fully realised yet. In fact,
their main applications appear not only to be in energy harvesting but also in the
treatment of wastewater in a very environmentally friendly way [19, 20].

The final ambient energy source covered here is kinetic energy. Much research
has gone into kinetic energy harvesting in the 21st Century [21–28]. This is due to
certain advantages it has over other harvesting technologies. Kinetic motion energy
sources are available in most environments and due to microelectomechanical sys-
tems (MEMS) technology, kinetic energy harvesters can be microscaled with great
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Table 1.1 A sample of recorded power densities for ambient energy sources according to a variety of
references. Directly comparing different energy harvesting methods is difficult due to the multitude
of variables affecting energy harvester performance. This table serves only to give an idea of the
order of magnitude of power density expected from current designs

Energy source Power density References

Solar 100 mW/cm2 (direct sun) [30]

0.1 mW/cm2 (office desk)

Temperature gradients 0.015 mW/cm2 (10 ◦C
gradient)

[31]

RF waves 1 mW/m2 (25 m from GSM
base station)

[5]

Microbial fuel cell 6.86 W/m2 [5]

Vibrations 0.01–0.1 mW/m2 [14]

success. This means they can be used in a vast array of applications from bio-tech
devices inside the human body to the structural monitoring of buildings during con-
struction [29]. Vibration energy harvesters (VEHs) that are powered by ambient
mechanical vibrations are a subset of a more general class of kinetic energy har-
vesters (KEHs) that are powered by any kind of motion (fluidic, air, mechanical and,
etc.).

These are currently the main areas of energy harvesting research. A table com-
paring the presently expected power densities for harvesting devices with respect to
the various sources can be seen in Table 1.1. Unfortunately, this table serves only to
give an idea of the expected order of magnitude of power density given the multitude
of variables affecting energy harvesting performance.

Some energy harvesting methods are more well established than others. The avail-
ability of the ambient source affects all of the methods, but certainly some sources
are more readily available than others, e.g. vibrations are in abundance within the
human body but sunlight is not. Even though an ambient energy may be available in
a certain environment, the harvester may not be able to scavenge it effectively if it is
not located in close proximity to the source of this energy, e.g. RF harvesters.

1.3 Vibration Energy Harvesters

In a broad sense, kinetic energy harvesters can convert any mechanical motion energy
(like fluid flows, pressure variations and ambient vibrations) into electrical energy to
power systems located in the environs of this ‘free’ mechanical energy [29]. Vibration
energy harvesting is a subset of this harvesting method dedicated to the conversion
of vibration energy into electrical energy. There are a large number of sources from
which vibrations can be harvested and it is for this reason that this is a very active
and growing area of research. These sources include the shaking of a car engine, the
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Table 1.2 The acceleration and frequency characteristics of a variety of different sources of vibra-
tion energy [14, 33]

Vibration source Acceleration [ms−2] Frequency [Hz]

Car engine 12 200

Base of 3-axis machine tool 10 70

Food blender casing 6.4 121

Clothes dryer 3.5 121

Door frame just after door
closes

3 125

Microwave oven 2.25 121

Air conditioning vents in office
building

0.2–1.5 60

External windows next to a
busy street

0.7 100

CD drive on notebook
computer

0.6 75

Washing machine 0.5 109

Refrigerator 0.1 240

Human motion 0.35 1–10

motion of a beating heart and the low level vibrations of a microwave oven amongst
others [32]. The acceleration and frequency characteristics of a variety of vibration
sources found in [14, 33] can be seen in Table 1.2.

A flow chart highlighting a generic process for vibration energy harvesting can be
seen in Fig. 1.1. Mechanical vibration energy in an environment can be ‘captured’ by
a mechanical resonator. Such a resonator is normally composed of a mass coupled to
a spring. When this mechanical energy has been captured, it must then be converted
to electrical energy. A transducer converts energy from one form to another. This
electromechanical conversion is controlled by conditioning circuitry, which some-
times take the form of smart electronics. This conditioning circuitry also manages the
transfer of the converted energy to the system or load it exists to supply for example,
a WSN or a pacemaker.

Vibration energy harvesters are generally classified by their transduction method.
The three most common transduction methods for VEHs are: electromagnetic, piezo-
electric and electrostatic. These methods are discussed below.

Electromagnetic vibration energy harvesters (emVEHs) convert mechanical
energy in the form of vibrations to electrical energy using electromagnetic trans-
duction methods similar in theory to what most macroscale electrical generators are
based upon [10]. Their basic design consists of a magnetic core and a coil, one of
which is coupled to the mechanical resonator and the other remains static. Following
Faraday’s law of induction, when the resonator vibrates, the relative movement of
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Fig. 1.1 Generic flow chart describing the vibration-to-electrical energy conversion. Mechanical
vibrations in an environment are ‘captured’ by a mechanical resonator. This resonator will be
coupled to a transducer which performs an electromechanical conversion of the energy, resulting in
electricity. This process is controlled by some conditioning circuity which also manages the transfer
of the harvested energy to the load/circuit that needs to be supplied, e.g. a pacemaker or a WSN

the magnet to the coil induces an AC voltage on the coil. It is in this way that the
mechanical energy is converted to electrical energy. An example of the electromag-
netic transduction mechanism can be seen in Fig. 1.2a.

Many emVEH designs have been fabricated both with single magnets [34, 35]
and multiple magnets [36, 37]. Electromagnetic transduction is a very effective way
of harnessing mechanical vibrations. EmVEHs have good power densities and do
not require complex conditioning electronics [38]. Their major drawback lies in their
inability to be microscaled due to their bulky magnets and coils. As a result, emVEHs
are not suited to applications with strict size constraints.

Piezoelectrical vibration energy harvesters (pVEHs) are based upon the piezo-
electric effect whereby a strain in a certain type of material produces an electric field
within that material [10]. The piezoelectric transduction mechanism can be seen in
Fig. 1.2c. In a pVEH, the transducer/resonator generally consists of a cantilever beam

(a) (b) (c)

Fig. 1.2 Graphical representations of VEH transduction mechanisms from [14]. a Electromagnetic,
b Electrostatic, c Piezoelectric
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fixed on one end, with an oscillating mass at the opposite end. The cantilever contains
a piezoelectric material layer and when the resonator vibrates, this layer is deformed.
This deformation causes charge to be displaced across the piezoelectric element. The
resulting potential difference can be used to power devices [33, 39–42].

The main advantages of pVEHs are their high output power, particularly for their
size. That having been said, their cantilever beams suffer from material degradation
including fatigue, depolarisation and micro-‘fissure’ [43]. This considerably reduces
their longevity. This degradation is accelerated when pVEHs are microscaled using
MEMS technology. More discussion about piezoelectric energy harvester will be
provided in Chaps. 4 and 10.

Electrostatic vibration energy harvesters (eVEHs) employ high-quality mechan-
ical resonators and conditioning electronics, coupled together through a variable
capacitor (the transducer). Usually, the electromechanical coupling is implemented
by employing the movable plate of the variable capacitor as the mass of the mechani-
cal micro-resonator. The energy conversion occurs when there is a constant charge or
voltage on the capacitor whilst its plates are separating. As the capacitance decreases,
electricity is generated. The management of this conversion is carried out by con-
trol/conditioning electronics. The mechanism of an eVEH can be seen in Fig. 1.2b.
Over the past fifteen years, many eVEHs have been reported on in [10, 22, 24, 25,
27, 44].

One of the major benefits of eVEHs is their ability to be microscaled using mature
MEMS technology. Although their output power levels are not high (in the order of
a few tens of microwatts), due to their diminutive size they have huge potential in
a variety of applications that have strict constraints on package dimensions. These
include wireless sensor nodes and bio-sensors. They also display highly nonlinear
behaviour, which requires detailed analysis and study. The electrostatic transduction
mechanism is described in detail in Chap. 3. A comparison of the characteristics of
the three VEH classes can be found in Table 1.3.

Table 1.3 Some advantages and disadvantages of the three main VEH transduction mechanisms

Transducer Advantages Disadvantages

Electromagnetic No voltage source needed Low output voltage

Robust Difficult to microscale

Piezoelectric No voltage source needed Requires voltage rectification

High output voltage and power Fatigue of PZT beams

Electrostatic High output voltage Voltage source needed

Suited to microscaling Requires complex control
electronics

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_10
http://dx.doi.org/10.1007/978-3-319-20355-3_3
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1.4 Components of Vibration Energy Harvesters

In this section, we will give more details on the components of vibration energy
harvesters and explain their role in the process of vibration-to-electricity conversion.
A functional energy harvesting system requires (a) a mechanical subsystem that
captures mechanical motion of the environment, (a) an energy conversion device,
which is known as a transducer, and (c) a power management circuit that will control
the storage and usage of converted energy (see Fig. 1.1).

In general, we know that energy has many different forms. For example, kinetic
energy of vibrations cannot be used directly to power an electronic circuit. It must be
converted to the electrical domain first. Thus, we should have a device or a mecha-
nism that will transfer one form of energy (mechanical) to another (electrical). Such
a device is called transducer. The transducer may be electromagnetic, piezoelectric
or electrostatic (capacitive).

Electromechanical transducers are never attached directly to moving mechanical
objects—this would be ineffective (and in some cases, technologically impossible).
There must be an intermediate system that transfers external motion due to the
environment to the motion of a transducer. This system must be purely mechanical
since it involves the transformation of motion entirely in the mechanical domain.

Let us consider the example of a electrostatic (capacitive) transducer. How could
we arrange a proper connection of a variable capacitor to a vibrating environment?
Consider a system shown schematically in Fig. 1.3. The electrostatic transducer of this
example has one fixed electrode and one movable electrode. The movable electrode is
suspended on a spring. The spring is attached to an enclosing frame. Now the frame
is placed in a vibrating environment and experiences acceleration due to external

(a) (b)

Fig. 1.3 Schematic view of a resonator, a transducer and a conditioning circuit of an electrostatic
VEH. Figure a emphasises the transducer while figure b emphasises the resonator in this scheme.
Note that the movable electrode is simultaneously a part of the transducer and a part of the resonator
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vibrations. The relative displacement of the movable electrode with respect to the
frame cases a change in the capacitance of the transducer.

This is shown in Fig. 1.3: case (a) highlights the variable capacitor (transducer)
while case (b) emphasises the mechanical mass-spring system that controls the capac-
itance of the transducer. As is seen from the figure, the movable electrode is simulta-
neously a part of the mechanical system and a part of the transducer. This mass-spring
system forms a resonator. Since there are always some losses due to dissipation (for
example, air damping) in a realistic mechanical system, we add a damper to the sys-
tem to accommodate these losses. Hence, we usually say that this is a mass-spring-
damper system or a damped resonator. The ideal model of the mass-spring-damper
system is shown in Fig. 1.4. The aim of the resonator is to constrain the motion of the
movable electrode and capture external vibrations in the most efficient way, usually
through the phenomenon of resonance.

Actual resonators do not look like the simplified structure shown in Figs. 1.3 and
1.4 with a proof mass attached on a spring. Realistic VEH resonators are distributed
mechanical structures suspended on elastic arms, sometimes of a very complex form.
Two examples of an electrostatic and piezoelectric VEHs are shown in Figs. 1.5
and 1.6. We note, however, that the 1D model shown in Fig. 1.4 is a very good
approximation, simple and convenient for the use in analytical and semi-analytic
studies of VEHs. We will discuss this model in Chap. 3.

Every VEHs also have electrical components. The role of this component is to
condition the state of the transducer and to manage the converted energy. The circuit
implementing these functions is called the conditioning circuit (see Figs. 1.1 and
1.3). The conditioning circuit operates entirely in the electrical domain. In the case
of electrostatic transducers, the conditioning circuit implements dynamical biasing.
Without biasing, a capacitive transducer cannot operate and convert energy. Biasing
of electrostatic transducers is described in Chap. 4. In the case of piezoelectric and
electromagnetic transducers, conditioning circuits help to maximise the converted
energy. Conditioning circuits for piezoelectric transducers are discussed in details in
Chap. 10.

Fig. 1.4 Schematic view of
the ideal model of a
mass-spring-damper system
(the resonator) driven by an
external (mechanical) force
Fext

http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_10
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Fig. 1.5 A photo of a MEMS resonator and a transducer for a VEH described in [45]. Note the
proof mass, the direction of vibrations and the shape of the springs that support the proof mass

Fig. 1.6 Another example of a MEMS resonator: a photo of a resonator with a piezoelectric
transducer. Note that the role of the spring is played by a thin and light elastic clamped-free beam
while the proof mass is represented by a large and massive ‘tip’ attached to the beam [46]

Finally, electrical energy (voltage) generated by the transducer needs to be con-
verted into a form suitable to supply to a load. The circuit that implements dc–dc
conversion is called the power management circuit. The operation of this circuit is
also performed entirely in the electrical domain. In many cases, the power manage-
ment block is tightly integrated with the conditioning circuit.

Usually, very low levels of the converted power (above one milliwatt in the
majority of cases) makes the design of conditioning and power management cir-
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cuits extremely challenging. For this reason, electrical conditioning of transducers
for vibration energy harvesters deserves particular attention and is a large area of
research itself.

Thus, we have established that in order to capture the motion of the environment,
we use a mass-spring-damper system (resonator). The resonator drives the movable
plate of a variable capacitor (transducer) changing its capacitance and, therefore,
changing its electrical energy. A conditioning circuit controls the voltage (or charge)
applied to the transducer in order to maximise energy conversion. Converted energy is
further managed by the power management circuit and stored. The resonator operates
in the mechanical domain while the conditioning circuit, the power management
circuit and energy storage operate in the electrical domain. The variable capacitor
(transducer) couples the mechanical and electrical domains.

1.5 Nonlinearity in Vibration Energy Harvesters

1.5.1 Role of Nonlinearities

For thorough understanding and optimal design of energy harvesting systems, it is
necessary to take account of the presence of nonlinearity, both desired and undesired,
within these systems. This nonlinearity arises through a number of mechanisms.
The fundamental methods of energy conversion are typically nonlinear. Nonlinear-
ities appear both in the electrical domain, through elements such as diodes, and the
mechanical, for example, through nonlinearity in the spring force and impact non-
linearities. A number of recent contributions seek to utilise nonlinearity in novel
way to improve performance. High-Q mechanical resonators that commonly appear
in vibration energy harvesters can efficiently harvest energy only when excited by
vibrations very close to the resonant frequency. Designers are exploring the use of
nonlinearity to widen the bandwidth and reduce the ambient frequency sensitivity of
such harvesters.

The modelling, analysis and design of energy harvesters are already made complex
by the fact that the systems combine elements from different domains. Nonlinearity
adds to this complexity. The behaviour of linear systems is broadly well understood,
and the tools available for their analysis are readily applied. With the introduction
of nonlinearity, even apparently simple systems can give rise to highly complex
behaviour. This can include the presence of coexisting solutions, sudden qualitative
changes in behaviour with parameter variation, various forms of instability and the
intricate patterns of behaviour known as chaos. The combination of nonlinearity with
stochastic excitation brings still further complexity.

The need for understanding of nonlinearity is not unique to energy harvesting
systems. For around a century now, the analysis of a variety of electrical systems has
drawn on, and has also inspired, advances in the underpinning mathematical science
of nonlinear systems. The theory and application of this science saw huge advances
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throughout the twentieth century, beginning with the work of Lyapunov [47] and
Poincare [48] around the start of that century and proceeding through the work of van
der Pol, Andronov, Lorenz and Smale to the popularisation and broad application
of this work since the 1980s. The name of Leon Chua is synonymous with the
application of nonlinear methods in electrical engineering, with seminal contributions
in memristive circuits, chaotic circuits, neural networks and the development of a
theoretical foundation for nonlinear circuits more generally.

The theory of nonlinear oscillators [49–52] was central to this development, and
is also of particular relevance to the study of energy harvesting. The behaviour of
electronic oscillators cannot be fully explained by application of linear theory. A
number of authors delivered successful analyses through various forms of harmonic
balance. Others applied a variety of methods of nonlinear dynamics to study oscilla-
tions by examining the existence, stability and bifurcation of limit cycles of related
nonlinear differential equations. The long-observed entrainment of oscillators was
successfully studied by application of techniques of nonlinear dynamics.

Nonlinearity, often considered as a parasitic effect by electrical engineers and
system designers, is of great importance in the design of VEHs. There are a number
of issues related to modern harvesters, and these issues cannot be addressed by
employing linear ‘building blocks’ for VEHs. Since we just discussed the role of
VEH components, we can take, for instance, the resonator and its role in a VEH
and briefly summarise the advantages and disadvantages of linear and nonlinear
resonators.

One of the most sought-after effects that designers aim to achieve is broadening of
the frequency response of a VEH with respect to the frequency of external vibrations
ωext. It is clearly a useful effect since it allows the resonator of a VEH to sustain
mechanical motion even in the case when the external driving frequency is far from
the natural frequency of the resonator. This is virtually impossible to achieve with
a linear resonator: in order to widen the frequency response of linear resonator one
would have to decrease its quality factor. This, in turn, will result in additional
mechanical losses and worsen electromechanical coupling and energy conversion.
However, a wider frequency response can be achieved using nonlinearities. We are
going to overview three common sources of nonlinearities in VEHs: mechanical
nonlinearity associated with nonlinear springs of the resonator, impact nonlinearity
and nonlinearity that arises from electromechanical coupling.

1.5.2 Examples of Useful Nonlinearities

From Sect. 1.4 we know that a VEH must employ a mechanical resonator. Let us
compare two energy harvesting systems, one employing a high-Q linear resonator
and the other—a high-Q nonlinear resonator with mechanical nonlinearity arising
from a nonlinear spring. (Here we imply that a reader has a basic knowledge of a
resonator and resonance. A detailed discussion on these will be presented in Chap. 3.)

http://dx.doi.org/10.1007/978-3-319-20355-3_3
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First, consider a case of a linear resonator having a natural resonance frequency
ω0. The resonance response (i.e. the displacement of the resonator as a function of
the frequency of the driving vibrations) of a linear resonator is shown in Fig. 1.7,
the line marked ‘linear’. If we drive a harvester that utilised a linear resonator by
a harmonic vibration (or vibrations) at a frequency (or frequencies) ωext ≈ ω0, we
will obtain large amplitude vibrations. This phenomenon is called resonance. The
characteristics of these vibrations are completely predictable. Now, if for some reason
the frequency of the external vibrations ωext changes and shifts from ω0, the linear
resonator will be quickly ‘detuned’ from resonance, and the amplitude of vibrations
will drop significantly.

For this reason, researchers and VEH designers seek to expand the resonance
response of the mechanical part of a harvester (keeping the Q-factor of the resonator
large) [53–59]. This is only possible by employing some sort of nonlinearity. For
example, one can introduce mechanically induced nonlinearities to the resonator’s
springs. These nonlinearities lead to some fundamental nonlinear effects (the spring
hardening or the spring softening effects). The spring hardening effect is observed
when the effective resonance frequency increases with the amplitude of external
vibrations and with the amplitude of the resonator vibrations. The spring softening
effect is observed when the effective frequency, vice versa, decreases. These two
fundamental cases are shown in Fig. 1.7 and are manifested through the ‘tilt’ of the
resonance curve to the right (hardening) or to the left (softening).

Now, assume that we drive a harvester with a nonlinear resonator by a harmonic
vibration at a frequency ωext. We see that the nonlinear resonator will continue to be
‘in resonance’ even for frequencies ωext that are not close to the natural frequency
ω0.

Fig. 1.7 Resonance in linear and nonlinear resonators. The amplitude of steady-state forced oscil-
lations is shown as a function of the normalised frequency mismatch σ = ωext/ω0 − 1. The grey
line corresponds to the linear case while the blue and green lines correspond to nonlinear cases. For
the nonlinear cases one can see multi-modality and hysteresis: there is a segment of the resonance
curve where two stable solutions of a0 and one unstable a0 (shown by the dashed line) coexist
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Therefore, for linear resonators

• Disadvantage: narrow bandwidth and high frequency selectivity;
• Advantage: unique amplitude and stability;

while for nonlinear resonators

• Disadvantage: multi-stability and hysteresis may lead to jumps between two or
more possible solutions;

• Advantage: Wider bandwidth and less selective frequency response.

Nonlinear resonators seem to be particularly suitable for wideband energy har-
vesting and noise harvesting (i.e. when external vibrations represent noise) due to
their wider frequency response. This property has been exploit in vibration energy
harvesters by designing and fabricating MEMS resonators with nonlinear springs.
For example, study [60] shows that MEMS energy harvesters with nonlinear springs
showing strong softening effect (similar to the one shown in Fig. 1.7) respond effec-
tively to noise actuation.

It is interesting that similar nonlinear effects (hardening or softening) can be intro-
duced into the resonator using mechanisms other than the nonlinear design of springs.
For instance, impacts (with stoppers or another mass) and electric nonlinearity due
to the transducer force will bring similar nonlinear effects and can be utilised for the
widening of the frequency response of the resonator.

Study [61] introduces a multiple mass system and demonstrate how the dynamics
of multiple mass systems can be used to significantly enhance the power output of
VEHs compared to single-mass VEH designs. The particular case of such a system
with two-mass resonator is shown in Fig. 1.8. The reason why this structure was
proposed for energy harvesting is that it allows us to explore the velocity amplification
principle through the impact of the proof mass with another mass. Indeed, note that
the second mass is detached from the lower (heavier) mass and experiences an impact
with the lower mass if the system is driven by large amplitude vibrations. To explain
the principle of velocity amplification, consider an elastic collision the two travelling
masses. The conservation of total momentum dictates that the final velocity of the
smaller mass v2 f is equal to

v2 f = (e + 1)m1v1i + (m2 − e m1)v2i

m1 + m2
(1.1)

where e is the coefficient of restitution and v1i and v2i are the velocities of the first
and second masses before the impact. By assuming that e = 1 and m1/m2 → ∞,
we can obtain the upper limit to the velocity of the second mass v2 f = 2v1i − v2i .
In the case of equal but opposite velocities v1i = −v2i , one can obtain a substantial
gain in the velocity of the second mass v2 f = 3v2i . This is particularly important for
VEHs whose transduction mechanism is proportional to the velocity. This is the case
for electromagnetic harvesters where the induced e.m.f in the coil connected to the
resonator is directly proportional to the velocity of the second mass v2.
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Fig. 1.8 Schematic structure
of a two-mass resonator for
wideband energy harvesting
employing the velocity
amplification principle
from [61, 62]

However, the impact dynamics of the two-mass systems introduce nonlinearity
and causes an additional effect—widening of the frequency response of the system.
In study [62], it has been shown that although the dynamics each of the masses are
subjected to linear equations, the impact instances between the two masses and the
impact with the stopper lead to a set of piecewise equations. Therefore this system
as a whole cannot be considered as a linear system and over a very broad range
of parameters it behaves nonlinearly and chaotically. Figure 1.9 illustrates a typical
response of such a system to a frequency sweep (the parameters of the device can
be found in [61, 62]). Note that since the displacement of the first and the second
mass is irregular, the frequency response is given in terms of the root mean square
(RMS) of the power generated by the harvester. Also note that the bandwidth of the
response is wide compared to a linear oscillator case and is increasing with Aext.

Study [63] also employs impact to widen the frequency response of electrostatic
energy harvesters. In this paper, the author suggests a new structure of the MEMS
resonators for an electrostatic VEH that exploits mechanical frequency amplification
by multiple mass impacts in combination with elastic stoppers, see Fig. 1.10. When
the system is shaken at low frequency in a range of 10–60 Hz, a micro-ball, placed
in the cavity of the MEMS proof mass, impacts with it and transfer kinetic energy
to the gap-closing comb transducer. The transducer, however, resonates at its natural
frequency, which is higher than the frequency of external vibrations. In addition,
elastic stoppers amplify the proof mass and ball velocity throughout collision with
the fixed frame. The systems combines the advantages of impact nonlinearity (wider
frequency response) with the frequency-up conversion mechanism. Such a system
can be driven by vibrations at a lower frequency (more common for mechanical
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Fig. 1.9 Average converted power PL versus the frequency of the input vibrations ωext of an
electromagnetic harvesters utilising the two-mass resonator with velocity amplification. The details
of the system can be found in [62]. The black line is the experimental measurement while the red
line is the model proposed in the latter study. Note the wideband response of the system—i.e. the
absence of clear and narrow peak around the resonance frequency

Fig. 1.10 Mechanical structure of the MEMS resonator employing impacts from study [63]

vibration and much lower than the natural frequency of the MEMS resonator) and it
will respond to them as shown in that work.

The effect of stoppers on the performance of electrostatic harvesters has been
exploited in studies [64, 65]. In these works, the authors show that through simulation
and measurement results show that the impact with stoppers has positive effects. It
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Fig. 1.11 Nonlinear effects
that are caused by
electrostatic transducer force
Ft are similar to those
caused by mechanical
nonlinear forces. This figure
shows the effect of hysteresis
and frequency shift due to Ft
(compare with Fig. 1.7). The
two curves correspond to a
theory and measurements
whose details can be found
in study [67] 100 110 120 130 140
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increases the bandwidth of the resonator and moderately increases the converted
power in saturation for large acceleration power spectral densities.

Finally, electromechanical coupling and the presence of a transducer force also
causes nonlinear effects. These effects are similar to those produced by nonlin-
ear mechanical forces. For instance, the transducer force causes hysteresis, multi-
stability, and so-called electrostatic softening or hardening effects even in the absence
of mechanical nonlinearity (see Fig. 1.11). In the context of electrostatic harvesters,
these effects are quantified, described and measured in studies [45, 66, 67]. In partic-
ular, in study [67] the authors treat the transducer force in a way similar to nonlinear
mechanical forces and provide a theory to explain and quantify the electromechanical
coupling due to this force. The nonlinear effects due to electromechanical coupling
are discussed in Chap. 9.

Therefore, mechanical and nonmechanical nonlinearities cause similar effects to
the resonator of a VEH. The most ‘obvious’ and useful effect is the widening of the
frequency response of the resonator with respect to the frequency of external vibra-
tions ωext. This is clearly seen from the frequency characteristic given in Fig. 1.11 and
is demonstrated in many studies of nonlinearity in energy harvesters. Additionally,
nonlinearities shifts (modifies) the resonance frequency and may cause hysteresis (in
the case of strong nonlinearities).

1.6 Scope and Structure of the Book

This book is aimed at vibration energy harvesters at micro- and nanoscale. Due to
scaling issues, only electrostatic and piezoelectric energy conversion mechanisms
are efficient at these scales and, therefore, we will focus on these type of energy
harvesters. The main aim of the book is to highlight the positive role on nonlinearities
in the design of such systems, regardless of the origin of this nonlinearity.

We start with the overview of MEMS technologies that are employed to fabricate
micro- and nanoscale harvesters (Chap. 2). Chapters 3 and 4 provide a detailed expla-

http://dx.doi.org/10.1007/978-3-319-20355-3_9
http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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nation into the concepts of resonators and transducers and underline the energy con-
version principle. Chapter 5 deals with advanced nonlinear mechanics that appears in
the analysis of mechanical nonlinearities. These chapters are fundamental for under-
standing energy harvesting process. Particular nonlinearities that arise due to stoppers
(impact), the use of graphene or the use of conditioning electronics in electrostatics
and piezoelectric harvesters are discussed in Chaps. 6 through 10.
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Chapter 2
MEMS Technologies for Energy Harvesting

Manuel Domínguez-Pumar, Joan Pons-Nin
and Juan A. Chávez-Domínguez

2.1 Introduction

The technology of Microelectromechanical Systems, or MEMS, is generally defined
as the miniaturization of mechanical and electromechanical structures that are fabri-
cated using standard processes from the integrated circuit industry and other compat-
ible processes usually aimed at ‘sculpting’ 3D structures. MEMS can in particular
include moveable parts such as cantilevers, beams, membranes, plates, etc. They
may present interactions with biological, chemical and thermal phenomena, includ-
ing interaction with fluids. At the same time MEMS devices usually interact with
fields and forces that are not electromagnetic, such as mechanical forces, piezoelec-
tric and thermoelectric forces, among others. This has promoted MEMS technology
to be an excellent tool for the miniaturization of energy harvesters.

Common physical dimensions of MEMS can range from below 1µm (in this case
they are usually called Nanoelectromechanical), up to the mm scale. It is remarkable
that generally the MEMS equivalent of a sensor/actuator macrosystem outperforms
the latter. Among other factors, the repeatability and high reliability of MEMS batch
fabrication processes can clearly contribute to this improvement, while at the same
time even reducing the unit cost. Furthermore, the recent merging between MEMS
and CMOS technology has opened new platforms on which both the microelectro-
mechanical parts and the sensing/actuation circuits can be found within the same
silicon die.
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This chapter is divided into three main parts. Section2.2 introduces the most
common fabrication processes used in MEMS technology. Special attention is paid
to the processes that are specific to MEMS such as anisotropic etching. Section2.3
introduces the main design procedures that have been used in MEMS to generate
nonlinear actuation and sensing in energy harvesters. In particular the creation of
bistable potentials, impact energy transfer and nonlinear springs is addressed. Recent
examples found in the literature are presented and linked with the fabrication of the
devices. Finally, due to its growing relevance, an introduction to piezoelectricity is
given in Sect. 2.5. Some examples also found in the literature of energy harvesters
designed using piezoelectric actuation and sensing are also introduced.

2.2 MEMS Fabrication Processes

This section provides a brief guide to the fabrication processes used in MEMS tech-
nology. As MEMS fabrication developed out of integrated circuits (IC) fabrica-
tion, we first focus on the main differences between MEMS and IC technologies. A
description of the deposition and etching techniques most frequently used forMEMS
follows. Special emphasis is made on those techniques that areMEMS-specific, such
as anisotropic etching, wafer bonding, and, in particular, deep reactive-ion etching.
The next focus is on MEMS fabrication strategies, including surface micromachin-
ing, bulkmicromachining and silicon on insulator (SOI) based techniques. Finally, an
example is provided of a commercial process aimed at the fabrication of piezoelec-
tric MEMS devices that can be suitable for energy harvesting applications, among
others.

2.2.1 IC Versus MEMS Fabrication

IC andMEMS fabrication possess a common series of process steps (e.g. photolitho-
graphy, etch, oxidation, diffusion, LPCVD or sputter deposition) and materials (e.g.
silicon, polysilicon, silicon nitride, silicon oxide or metals). In fact, IC and MEMS
fabrication technologies can be seen as a complex sequence of deposition, material
growth, lithography and etching processes. The objective of lithography is to translate
a geometrical pattern onto a given material layer. The basic steps of standard contact
lithography are shown in Fig. 2.1, where the layer to pattern is on the substrate. First,
a thick layer of photoresistive polymer (photoresist) is deposited on top of the layer
to be patterned. Next, the photoresist is exposed to light through a mask with opaque
areas corresponding to the desired pattern. Due to such illumination, the solubility of
the photoresist to developers becomes very different between shadowed and illumi-
nated areas, Fig. 2.1a. The photoresist is then developed to obtain the desired pattern,
which may be that of the mask (positive photoresist) or its complement (negative
photoresist), Fig. 2.1b. The pattern in the photoresist is then transferred to the target
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(a)

(b)

(c)

(d)

Fig. 2.1 Photolithography-etch process with either positive (left) or negative (right) photoresist:
a exposure to light through the mask, b photoresist develop, c layer etch, d photoresist removal

layer using selective etching techniques, Fig. 2.1c. Finally, the remaining photoresist
is chemically stripped, Fig. 2.1d.

MEMS technology, on the other hand, has unique requirements and a growing set
of applications that makes it clearly diverge from IC fabrication [1, 2]. The first obvi-
ous distinction is that MEMS can make use of thicker deposited or grown layers and
deeper etchings. It may well be the case that even the whole substrate is to be etched
in some parts of the wafer. Second, MEMS fabrication involves a wider variety of
materials, including quartz, ceramics, polymers, glass, piezoelectric and magnetic
materials, etc. As a consequence, processes such as electroplating, wafer bonding,
molding, anisotropic wet etching or deep reactive-ion etching, are more common,
or specific, to MEMS fabrication. Third, some devices must be processed on both
sides of the wafer, thus adding front-backside alignment as a technological necessary
requirement for certain devices. A fourth difference is that MEMS devices include
moveable mechanical parts such as beams and membranes that must be released.
Additionally, the mechanical properties must be carefully controlled to avoid release
distortion due to phenomena such as residual stress or stiction. Obviously control-
ling the mechanical properties of layers requires considerable effort. Putting all this
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together, a remarkable characteristic of MEMS technology is the existence of multi-
ple and very diverse MEMS fabrication processes. This is especially true in the area
of energy harvesting, where many different processes are designed in order to obtain
tailored mechanical properties of the devices. This fact represents in itself a large
divergence from what is, generally, the more common situation in IC technology.

2.2.2 Addition Processes for MEMS

Addition of materials onto a wafer is basic in MEMS. Process steps such as doping,
thermal oxidation and epitaxy are inherited from IC technology. For instance, diffu-
sion and ion implantation techniques are used in MEMS, but not in the same fashion
as in IC technology. In the latter case, the objective is to have a very strict control on
the electrical properties of the devices. In the MEMS case, though, the goal can be
simply to convert a resistive layer into quite a good electrical conductor.

Thermal oxidation is a simple process used to grow good-quality thin films of
silicon oxide on silicon substrates. The substrate is immersed into an oxygen-rich
environment, which can be wet/liquid or dry/vapour. High temperatures, from 800 to
1100 ◦C, speed up the chemical oxidation of the substrate. However, as the thickness
of the oxide layer increases, the substrate surface becomes harder to reach for the oxy-
gen molecules. This effect causes nonlinear reduction of growth rate for thicknesses
greater than 100–200 nm.

Other addition, or deposition, processes also come from IC technology, but due
to the above-mentioned expansion to new applications the variety of specific MEMS
processes is growing continuously. The next sections will focus on the physical and
chemical deposition processes widely used for MEMS.

Physical Deposition

Physical deposition implies the direct transfer of a material, from a certain source,
on the wafer surface. Examples are evaporation, sputtering and casting. Evaporation
and sputtering are often used to deposit metals such as copper, gold and aluminium,
among others. Evaporation is also used to deposit polymers. Casting is a common
method to deposit polymers and glass. The thickness of deposited layers can range
from a few hundreds of nanometres to microns. These processes are made at low
temperatures, and may therefore be compatible with previous process steps executed
on the wafer. On the other hand, the quality of the layers (e.g. density of defects,
resistivity, etc.) is not as good as when deposited by chemical methods.

• In Evaporation the source material and the wafer are placed inside a vacuum
chamber. There, the source material is heated until it boils and evaporates. Being
in vacuum, the evaporated molecules freely travel and condensate on all surfaces
inside the chamber, including the wafer. A method to heat the source material
consists of placing it in a tungsten chest and then applying a high current. A high-
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energy electron beam or a laser targeting the source material are other common
heating methods that serve to speed up the process.

• Sputtering is also performed inside a vacuum chamber. The chamber contains
the source material, called target, the destination wafer and gas plasma at low
pressure. RF power is applied to generate gas ions and accelerate them towards
the target. This causes extraction, or sputtering, of target atoms. Sputtered atoms
travel and condense on all surfaces inside the chamber. Sputtering is performed at
lower temperatures than evaporation.

• In Casting the source material is first dissolved in a liquid solvent. Then the
solution is dropped on the wafer either by piping or spraying techniques. Next,
the wafer is spun to spread the solution uniformly over the entire surface (spin
coating). Amaterial layer, with thickness that can range from the nanoscale to tens
of microns, is obtained once the solvent has evaporated. Due to their solubility in
organic solvents, casting is a common practice for the deposition of polymers,
including photoresists used in photolithography.

Chemical Deposition

In this case, the source material is obtained from a chemical reaction taking place
close to the wafer. Favourable conditions to excite and control the reaction, such as
temperature, pressure, electric field or presence of plasma, are provided by specific
equipment, which also provides means to remove the byproducts of the reaction.

• Chemical Vapour Deposition (CVD) is achieved by placing the wafer inside
a reactor. A chemical reaction between two or more gas species produces the
sourcematerial, which condenses on all surfaces inside the reactor, wafer included.
CVD yields thin layers with almost-uniform thickness and good coverage, even
on stepped topographies. A variety of materials, including polysilicon, silicon
nitride, silicon oxide, phosphosilicate glass (PSG), ceramics and plastics, can be
deposited. Some materials are unpopular because of reactor contamination or due
to the hazardous byproducts they generate.
Low Pressure CVD (LPCVD) is performed at high temperature (from 500 to
800 ◦C). It yields fair material properties and layers with uniform thickness, but
slowdeposition rates.As an example, polysilicon deposition is achieved by decom-
position of silane gas (SiH4) into solid silicon and hydrogen gas under temper-
atures around 600 ◦C. Plasma Enhanced CVD (PECVD) is performed at lower
temperatures because plasma adds extra energy to the gas mixture, but the layers
have inferior quality compared with LPCVD layers. PECVD is often used for fast
deposition of low-quality silicon oxide.

• Electroplating is a generic techniquewithmany industrial applications. InMEMS,
it is mainly used to deposit metals such as nickel and gold. The surfaces on which
we wish to deposit the corresponding metal are previously coated with a conduc-
tive material, if they are not conductive themselves. Then the wafer is immersed
into a liquid electrolyte solution. By applying a voltage between the wafer and an
electrode also immersed in the solution, a reduction–oxidation reaction is excited.
As a result, wafer surfaces are coated with the source material. In this way, nearly
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uniform metal layers with thickness ranging from microns to tens of microns can
be deposited.
Someappropriate chemicalmixtures allow the reaction to take placewithout apply-
ing any external voltage, or without placing contacts or electrodes within a liquid.
In this case, known as electroless plating, the reaction is excited by the electro-
chemical potential between the solution and one or more materials on the wafer.
However, the reaction behaves spontaneously and results such as deposition rate
and layer thickness are difficult to control.

Wafer Bonding

The objective of wafer bonding is to obtain a permanent contact of two wafers. This
process can also be performed at die level or at device level. Wafer bonding allows
addition of materials obtained from different processes, but is also highly useful for
other processing and post-processing purposes, such as planarization, wafer sealing
in vacuum, packaging or MEMS-IC integration.

Wafer bonding can be performed in many ways, chemical or physical, depending
on materials to join and compatibility with other fabrication processes. In general,
three subsequent steps are applied: (1) wafer preprocessing (cleaning and pretreat-
ment of the surfaces to contact and, if needed, addition of intermediate layers), (2)
wafer alignment and contact (it usually yieldsweak adhesion), (3) annealing andbond
consolidation (by temperature, pressure, electric field, intermediate layer hardening,
etc.).

Let us distinguish among direct and indirect bonding processes

• Direct bonding is performed for wafer to wafer contact. The process is activated
and enhanced by a temperature or an electric field. For example, silicon-to-silicon
bonding is achieved with annealing temperatures around 800 ◦C, a value often not
compatible with other processes. Plasma enhanced bonding allows to decrease
the temperature to 400 ◦C or less. In anodic bonding, the wafers are stacked and
placed between two electrodes, where voltage is applied. This low-temperature
process is mostly used for glass-to-silicon and glass-to-metal bonding. In ther-
mocompression, pressure force and temperature are applied simultaneously to the
stacked wafers until solid diffusion occurs. This process is used for metal-to-metal
bonding.

• In indirect bonding, an intermediate material is placed between the wafers. This
material provides long-time adhesion properties and reduces the relevance of the
properties of the surfaces to contact (e.g. defects or topography). In adhesive bond-
ing, polymers such as BCB (benzocyclobuten) or SU-8 (a negative photoresist)
are used. Annealing is performed at relatively low temperature, with no voltage
required. Since the wafers are not in direct contact, bonding of many different
materials is enabled. In glass soldering, a glass layer with low melting point is
used as an intermediate material. In eutectic bonding, the intermediate material
is a metal alloy. This alloy goes directly from solid to liquid state at tempera-
tures far below the melting points of the metals involved. This way, good-quality
aluminium-to-silicon and gold-to-silicon bonding is achieved.
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2.2.3 Etching Processes for MEMS

Etching processes are crucial in MEMS fabrication. Selectivity of etchant species
against protection (masking) materials, substrates and the target material is a major
issue, but etch rate, etch uniformity and temperature are also key characteristics. Let
us first distinguish between wet and dry etching processes.

Wet Etching

WetEtching is relatively simple and cheap. It allows to attack amaterial by immersing
the wafer into a liquid etchant. The etchant chemically reacts with the material in
unprotected areas. Wet etching can be isotropic or anisotropic.

• Isotropic wet etching is a classical technique performed to remove a wide range
of materials, including semiconductors, dielectrics, metals or polymers. When
used for patterning purposes, isotropic etching causes undercutting: the chemical
reaction attacks the walls under the protection mask and produces a lateral etch
effect, Fig. 2.2a. The amount of undercutting is the same distance as etch depth,
thus it affects pattern transfer precision.

• Anisotropic wet etching. Solubility properties of crystalline materials may vary
with crystal orientation. In silicon, potassium hydroxide (KOH) and ethylene
diamine pyrocatechol (EDP) have different etch rates along the three crystallo-
graphic planes. For example, KOH yields etch rate selectivity of 300:1 or higher
between the 〈100〉 and 〈111〉 planes. This means that etching can be virtually
stopped on certain planes, and therefore substrates can be “sculpted” to produce a
variety of structures. As an example, a trench is built in Fig. 2.2b.
The alignment of the mask against the crystal planes, the etchant used and the
process time are key factors. Additionally, precise temperature control and gas
reflux systems are required to keep the etchant concentration constant during the
process, and therefore the etch rate. Wet etchant and related byproducts are haz-
ardous substances that may cause handling or environmental safety problems.
Anisotropic wet etching produces characteristic geometrical forms, since planes
are not vertical to the surface when etching holes or trenches, as seen in Fig. 2.2b.
This implies large silicon consumption, loss of precision in pattern transfer and
limits what structures are possible.

Dry Etching

In dry etching, thewafers are placed inside chambers that contain either gas or plasma
reacting with the target material. In general, dry etching yields better etch perfor-
mance than wet etching, but at noticeably higher costs due to the more sophisticated
equipment used.

• Isotropic gas etching utilizes a gas with high etch selectivity against the mask
protection material. As an example, xenon difluoride (XeF2) has etch selectivity
of silicon versus silicon oxide up to 10,000:1, whereas selectivity versus silicon
nitride is around 100:1.
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(a) (b) (c)

Fig. 2.2 Typical trench profiles obtained in siliconwith different etch processes: a isotropic etching,
b wet anisotropic etching—two crystallographic axes shown-, c anisotropic dry etching

• Plasma etching is performed inside a specific reaction chamber that contains
chemically active gas species at low pressure and applies an electric field to the gas.
The electric field creates electrically charged gas radicals, which chemically react
with the wafer material. In addition, the electric field may cause a physical etch
effect: the charged radicals accelerate until they hit and sputter the wafer material.
The physical etch component is anisotropic, whereas the chemical component is
isotropic and material selective.

• Reactive Ion Etching (RIE) is a special kind of plasma etching. In RIE, RF
power is applied to increase the physical component of the etching, therefore it
can be more anisotropic than traditional plasma etching. Moreover, the chemical-
isotropic and physical-anisotropic mechanisms can be balanced to obtain etched
features with rounded to nearly vertical sidewalls. However, the process has many
parameters to adjust and this implies long-time development until the desired
balance is achieved. In practice, RIE is limited in etch depth (e.g. tens of microns
for silicon) and etch rate (e.g. typical values around 1µ/min for silicon). The next
section focuses on Deep RIE, a special class of RIE that has gained enormous
popularity in modern MEMS fabrication.

Deep Reactive-Ion Etching

Deep Reactive-Ion Etching (DRIE) is a highly anisotropic process aimed at creating
deep holes and trenches in silicon, with high aspect ratios and nearly vertical side
walls. It was first developed by theGerman companyRobert BoschGmbH [3, 4]. The
process is performed at room temperature. DRIE strongly improves etch performance
against traditional anisotropic dry and wet etching techniques: silicon etch depths
up to 750µm at rates up to 25µm/min are typically achieved. Etching uniformity at
wafer scale is also improved.
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Fig. 2.3 Successive etching and passivation steps of a DRIE process

The DRIE process performs RIE in small depth increments by alternating two
different gas mixtures in the reactor

1. The first mixture (e.g. SF6 for silicon) provides standard RIE etching of the
substrate, or another thick layer, through a window opened in a mask material
(e.g. photoresist, silicon oxide, silicon nitride and metal, among others). This
results in nearly vertical etching of the substrate.

2. The second mixture (e.g. C4F8) deposits a passivation layer. This layer dissolves
very slowly in the chemical part of the subsequent RIE etch. The RIE directional
ions attack the passivation layer at the bottom of the etched area. Then this bottom
layer is sputtered off and the substrate becomes exposed to the chemical etch.

An etch-passivation cycle only lasts for seconds. It is repeated many times, result-
ing in a large number of small etch steps only taking place at the bottom of quasi-
vertical sidewalls, Fig. 2.3. However, the sidewalls have slightly undulated shapes,
with typical amplitudes from tens to a few hundreds of nanometres. Cycle times can
be adjusted for a trade-off between smoother walls and higher etch rates [5].

Specific DRIE recipes have been developed for materials other than silicon,
including glass, silica, quartz, InP and polymers. DRIE of glass substrates is per-
formed applying high RF power, but this implies that mask materials must be care-
fully chosen. Chemically amplified photoresists and polysilicon are typically used
as mask materials in DRIE of glass. Metal masks are used in DRIE of polymers, but
this is expensive due to the additional deposition and lithography steps they require.

2.2.4 MEMS Fabrication Strategies

Surface Micromachining

MEMS surface micromachining aims at building moveable structures by deposition
and patterning of different layers on top of the substrate. The moveable parts of
the devices are made of what are called structural materials. These materials are
deposited on top of what are called sacrificial layers, previously deposited or grown
to hold the structural parts. The sacrificial layers will be removed later during the
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(a) (c)

(b) (d)

Fig. 2.4 MEMS cantilever fabrication using surface micromachining

fabrication process. The removal of the sacrificial layers is known as the release
process.

As an example, Fig. 2.4 summarizes a series of steps performed to build up a
cantilever structure. To begin, the sacrificial layer (i.e. silicon dioxide) is deposited
and patterned through a photolithography-etch process, Fig. 2.4a. The uncovered area
will be used to attach (anchor) the device to the substrate. The structural layer (e.g.
polysilicon) is then deposited on top of the wafer, Fig. 2.4b. Next, the structural layer
is patterned to define the device, Fig. 2.4c. Finally, the sacrificial layer is etched. As
shown in Fig. 2.4d, this creates a void, equal to the thickness of the sacrificial layer,
below the beam.

MEMS surface micromachining has evolved directly from IC fabrication, but
some strong differences arise. For instance, in surface micromachining only up to
7–8 masks and minimum feature sizes around 0.5–1µm are typically used; this
decreases mask costs. However, in surface micromachining, layers are thicker than
the thin films used in IC fabrication. This adds specific challenges to deposition
and etch processes, including topography-related issues. As after 7–8 successive
layer deposition and etch steps, the vertical dimensions of structures can be anything
ranging from zero to tens of microns.

Another difference is that MEMS fabrication must take special care to control the
mechanical properties, such as density, stress and Young’s modulus, of structures
to release. These properties are highly sensitive to the temperatures applied during
fabrication. For example, successive heating and cooling can generate residual stress
between two stacked layers due to the different thermal expansion coefficients of
the materials. If one of such layers is removed, the released structure would not be
flat and exhibit either tensile or compressive stress deformation, thus affecting the
expected mechanical performance.

Finally, during the release process the surface tension of wet etchant can force
contact between fixed and moveable parts of a device and cause stiction failure: the
adhesion forces generated in the contact are strong enough to deformandpermanently
attract these parts. Dry etching, critical point drying (CPD) during the final phase of
wet etching, increasing the surface roughness or coating the layer with low surface
energy materials are techniques used to prevent stiction. For devices with large areas
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Fig. 2.5 Top view of an
electrostatic MEMS, taken
from [6], fabricated with
surface micromachining. A
360× 360µm2 polysilicon
plate is held by four arms in
“L” anchored to the substrate
at the other ends. The plate is
suspended over the substrate
through a 2µm air gap and a
0.65µm silicon nitride layer

to release, as the one shown in Fig. 2.5, it is common practice to etch regular grids
of holes in the structural layer. This enables efficient diffusion of wet etchant during
the etch of the sacrificial layer below.

Since surface micromachining is relatively close to IC fabrication, it constitutes
the most frequent basis to develop monolithic microsystems, where electronic (e.g.
CMOS) and mechanical components are fabricated on the same substrate. The prop-
erties of the substrate are less important in surface micromachining than in other
MEMS fabrication strategies, such as bulk or SOI micromachining. In this case, sur-
face micromachining enables the use of substrate materials other than silicon, such
as glass, quartz, plastics or organic polymers.

On the other hand, surface micromachining is not suitable to fabricate structures
with large moveable parts, to use layers thicker than 2–5µm, or to build features
with the high aspect ratios that some MEMS applications demand. Additionally,
some geometrical structures are not possible to achieve, giving opportunities to other
fabrication strategies, such as bulk and SOI micromachining.

Bulk and SOI Micromachining

Unlike surface micromachining, bulk micromachining aims to create MEMS struc-
tures within the substrate. It is based on selective deep etching of materials such as
silicon or glass. Bulkmicromachining fabrication processes that combine anisotropic
and isotropic wet etching have been widely used to obtain a variety of mechanical
structures in silicon.

Figure2.6 illustrates the fabrication of a silicon cantilever. A mask material (e.g.
silicon dioxide) is first deposited on top of a silicon wafer. Then it is patterned by
a lithography-etch process, Fig. 2.6a. A subsequent boron diffusion is performed in
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(a) (c)

(b) (d)

Fig. 2.6 MEMS cantilever fabrication in a silicon substrate using bulk micromachining

the uncovered substrate area. The p+ doped area becomes resistant against wet etch
species.

Once the initial mask removed, a second protection layer (e.g. polymide photore-
sist) is deposited and patterned, see Fig. 2.6b, where the dashed line encloses the
boron diffusion. Next, anisotropic wet etching is applied to chemically attack the
uncovered surface. Due to different etch selectivity along crystallographic planes
and to the resistance of the p+ area, the substrate trench and the suspended structure
shown in Fig. 2.6c are obtained. The last step is the removal of the protection layer,
Fig. 2.6d.

Bulk micromachining techniques based on wet anisotropic etch of silicon are
widely used in MEMS. However, these techniques have some issues. Notably, the
cost in silicon is high, since large wafer areas are usually etched to obtain a unique
device. A second issue are the process limits for which geometrical structures can
be done and which are not achievable. Third, wet etching is unreliable to achieve
structures with sizes below the micron scale.

In recent years, MEMS processes that use silicon on insulator (SOI) wafers in
place of conventional silicon wafers have gained great popularity [1]. A SOI wafer
is a stack of silicon, insulator and silicon layers. The MEMS structures are mainly
fabricated in the top silicon layer, usually known as the device, or active, layer.
This is good-quality crystalline silicon with well-known electrical and mechanical
properties. In SOI wafers for MEMS the typical thickness of the device layer is tens
of microns, well above the 1µm or less of SOI wafers used in IC fabrication. The
buried insulating layer is typically silicon oxide, with thickness of microns or below.
The bottom silicon layer, with typical thickness of hundreds of microns, is known as
the handle substrate.

SOI-based MEMS processes allow one combine both bulk and surface microma-
chining techniques to obtain a rich set of structures. For example, the buried insulator
can provide built-in stop for dry and wet etching processes performed in the device
layer, but it can also be used to stop deep etch processes performed in the handle
substrate. This way, features such as through-wafer holes, front or backside cavi-
ties of controlled depth, structure release from both sides of the wafers, full-wafer
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thickness suspended structures, etc. can easily be achieved. Surface micromachining
techniques can be also used, mostly on the device layer. A commercial SOI-based
MEMS process is described in Sect. 2.2.4.

Multi-project Wafer Processes

SomeMEMS foundries offermulti-project wafer (MPW) processes. These are robust
closed fabrication processes that provide well-known and reliable results. Addition-
ally, MPW processes can be inexpensive, since wafers can be shared among several
users. Their use facilitate users to focus on the device design, avoiding challenges
associatedwith process development.MPWprocesses offerCAD tools such as device
templates, design rules for layout checking and electrical and mechanical parameters
for simulation. In general, MPW processes have not been targeted for commercial
production, but used for research and prototyping. In recent years, some foundries
have started providing specialized MPW services for low-volume production cus-
tomers trying to reduce their design cost and time to market.

The first MPW process offered was a surface micromachining process developed
by Howe and Muller [7, 8], with three polysilicon structural layers. Today, a number
of MPW processes that use surface, bulk and SOI micromachining, electroplating
and CMOS integration at wafer level are available. Some examples include

• MEMSCAP’s MUMPS (Multi-User MEMS Processes) [9] offers PolyMUMPS,
SOIMUMPS, MetalMUMPS and PiezoMUMPS. PolyMUMPS includes surface
micromachining with three polysilicon structural layers and two silicon oxide sac-
rificial layers. SOIMUMPS combines SOI bulk and surface silicon micromachin-
ing. MetalMUMPS combines electroplating, surface and bulk micromachining,
with nickel and polysilicon as structural materials. Finally, PiezoMUMPS adds a
piezoelectric layer to a process similar to SOIMUMPS.

• Sandía SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology) V [10] is
a surface micromachining process similar to PolyMUMPS, but with five structural
layers and including planarization.

• InvenSense’s NF Shuttle process [11] offers MEMS-CMOS integration. MEMS
SOI devices and CMOS circuitry are fabricated on separated wafers. Then the
wafers are bonded together using low-temperature eutectic bonding.

• Teledyne-DALSA’s High Voltage CMOS/DMOS Technology with MEMS Post-
Processing [12]. This process combines high-voltage CMOS circuitry and simple
MEMS structures, with metal as the structural material.

• Lionix’s TriPleX MPW and Fluidic MPW processes [13] are specifically targeted
to devices for either integrated optics or microfluidic applications.

The PiezoMUMPS Process

The PiezoMUMPSprocess [14]was introduced byMEMSCAP in 2013 as a response
to the growing interest in piezoelectric MEMS. This low cost and low temperature
process evolved from the previous SOIMUMPS. It uses the same SOI wafers and
inherits some well-known bulk and surface micromachining features. The SOI wafer
is a stack of, from bottom to top, a silicon substrate layer (400±5µm), a buried
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silicon oxide layer (1± 0.05µm) and the SOI device layer (10± 1µm). A thin
oxide layer is present on the bottom surface.

The process includes deposition and patterning of an aluminium nitride (AlN)
piezoelectric film on top of the SOI device layer. It also includes deposition and
patterning of additional metal and silicon oxide layers. Five mask levels are used.
The minimum feature size for the SOI layer is 2µm, making structures with aspect
ratios up to 5:1 possible.

In order to illustrate the process flow, let us apply it to obtain the unimorph
piezoelectric cantilever shown in Fig. 2.7, a structure rather similar to resonators
used in energy harvesting applications.

The process starts with LPCVD deposition of PSG on top of the SOI layer,
Fig. 2.8a, followed by thermal annealing in argon atmosphere, 1050 ◦C for 1 h. Due
to the corresponding phosphorous diffusion, the surface of the SOI device layer
becomes highly conductive (15–25Ω/sq). After that, the PSG layer is completely
removed by wet etching. Next, a 0.2µm layer of thermal oxide is grown on top sur-
face. Through a photolithography-etch process using positive photoresist and RIE,
the oxide is patterned accordingly to the PADOXIDE mask, Fig. 2.8b.

The first material deposited is a 0.5µm thick AlN piezoelectric layer. A reactive
sputtering process is used for this purpose. Then, using photolithography with posi-
tive photoresist and wet etching, the PZFILM mask pattern is transferred to the AlN
layer. That is followed by a photoresist strip, Fig. 2.8c.

Next, a metal stack composed of 20nm of Chrome and 1µm of Aluminium is
deposited and patterned using the following lift-off process: the wafer is coated with
negative photoresist and exposed to light through the PADMETAL mask, then the
photoresist is developed and the metal layer is deposited over the entire surface
by evaporation; finally, the photoresist is dissolved to leave behind metal only in
the uncovered (developed) areas, Fig. 2.8d. This process allows one define 3µm
minimum metal features and spaces with 3µm tolerance alignment.

The 10µm SOI device layer is patterned using positive photoresist and the SOI
mask. The pattern is transferred to silicon using a specific DRIE process, based
on inductively coupled plasma (ICP) technology, that prevents undercutting of the

Fig. 2.7 Unimorph
piezolectric cantilever
structure with a full-wafer
thickness mass suspended at
the free end. The two outer
metal PADs provide
electrical contacts to the SOI
active layer, while the one in
the middle contacts the
piezoelectric film
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 2.8 PiezoMUMPS fabrication process steps: a silicon doping, b thermal oxide deposition and
patterning (PADOXIDE), c piezoelectric layer deposition and patterning (PZFILM), d metal layer
lift-off (PADMETAL), e silicon device layer patterning (SOI), f polymide coating, g substrate layer
patterning (TRENCH), h structure release

silicon when the etch reaches the buried oxide layer. After etching, the photoresist
is stripped, Fig. 2.8e. Since the surface of the device layer is heavily doped, the
separated metal features deposited on this layer will be electrically contacted unless
they are also separated by a trench feature defined by the SOI mask.

Next, a thick polymide coating is applied onto the front surface of the wafer,
Fig. 2.8f. This coating holds the wafer together through the next process steps. The
wafer is then reversed and negative photoresist is deposited on the bottom surface.
Next, the photoresist is patterned accordingly to the TRENCH mask. A RIE process
is then used to remove the bottom oxide in the uncovered areas. Subsequent DRIE is
performed to etch the TRENCHmask patterns through the substrate, until the buried
oxide is reached. When the etch is completed, the remaining photoresist is stripped.
Finally, wet etching is used to remove the oxide layer in the uncovered areas. As a
result, the substrate layer is patterned accordingly to the TRENCH mask, Fig. 2.8g.
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Fig. 2.9 Top and lateral
view of a piezoelectric
MEMS resonator fabricated
in the PiezoMUMPS batch
reported in [15]. Cantilever
dimensions are 1100µm
long and 500µm wide. The
mass suspended at the free
end has an area of 600µm x
1000µm and full-wafer
thickness (410µm). The first
mechanical resonance mode
is at 1.22kHz

Finally, the front side protection coating is removed using a dry etch process.
This releases the mechanical structures in the SOI active layer located over through-
substrate holes, Fig. 2.8h. Figure2.9 shows two photographs of a low-frequency
MEMS resonator fabricated with PiezoMUMPS technology.

2.3 Nonlinear Mechanisms Used in Energy Harvesting
with MEMS

The first approach made to energy harvesting was based on the use of linear res-
onators. The main disadvantage of linear devices is that they present a small band-
width and therefore are only able to retrieve energy from a part of the mechanical
excitations spectrum. To solve this issue, the use of resonators exploiting nonlinear
mechanisms has been proposed as a way to, in some cases, dramatically enhance
the performance of these devices. In this section, we introduce the main design tech-
niques used in MEMS devices to implement nonlinear mechanisms such as bistable
potentials, nonlinear springs and impact energy transfer.
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2.3.1 Bistable Potentials

Bistable Potentials Obtained with Permanent Magnets

One of the methods used in the literature to produce bistable potentials is achieved
by suitably placing a permanent magnet on top of a cantilever and another one fixed
to the structure frame. By placing both magnets so that in the rest position they face
each other with the same polarity, a bistable potential is easily generated. In [16] a
MEMS device is presented on which the bistable potential is achieved by placing
the permanent magnet at the tip of a BESOI (bulk etched SOI) cantilever, opposite
another permanent magnet such that the polarity of both magnets is opposed at the
nearest point, see Fig. 2.10. This configuration of magnets provides a repulsive force
such that the rest position of the cantilever is no longer stable.

Regarding the fabrication, the authors use aBESOI technologywith a bulk 450µm
thick, 2µm of buried oxide, a 15µm crystalline silicon active layer and several
deposited layers with oxide, polysilicon andmetal. The cantilevers are 2000µm long
with different widths in the range below 800µm. The permanent magnet deposited at
the tip of the cantilever has a cylindrical shape and is made of NdFeB. Generally, the
whole structure ismanually assembled ormicroassembled, [17], since the fabrication
process of the magnets is not compatible with the MEMS fabrication. This difficult
placement can result in either non-repeatability or high production cost.

The obtained bistable potential is assumed to be that of a nonlinear pendulum
governed by a double well nonlinearity

U(x) = kx2 + (ax2 + bΔ2)−3/2 + cΔ2 (2.1)

whereΔ is the distance between the south poles of both, see Fig. 2.10, and parameters
a, b and c depend on the specific geometry of the cantilever and its mechanical
properties. Taking into account this kind of potential, the equation governing the
dynamics of the inverted pendulum with the bistable potential is [18]

N S S N

Δ

Fig. 2.10 Schematics of the structure proposed in [16]: a cantilever with a fixed magnet at the
tip, facing another magnet with south pole polarities facing each other. The rest position of the
cantilever is no longer stable and whole structure is bistable
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mẍ = dU(x)

dx
− γ ẋ − KνV (t) + σξ(t) (2.2)

where the γ ẋ term represents mechanical damping, −KνV (t) represents the energy
transfer to the electrical domain and σξ(t) corresponds to the external vibration force
driving the pendulum.

The main disadvantage cited against this type of structure is the presence of
moving magnets, since they can generate fluctuations in the magnetic field which
can affect other parts of the circuit, [19]. Furthermore, another disadvantage is the
placement itself of the permanent magnets on theMEMS structures, which is usually
made microassembled by hand. Electroplating [20], though, has been proposed as
an alternative means to produce MEMS compatible permanent magnets, without
manual assembly [21, 22].

Bistable Potentials Obtained by Buckling or Snap-through Instability

Buckling has also been used in energy harvesters to obtain a bistable potential. As it
has been very well explained in [23], a bistable system is created by simply holding
a business card between fingers and bowing it. A force normal to the surface of the
card can make it snap from one stable position to the other. In order to obtain this
kind of behaviour in MEMS structures, the axial load necessary for this buckling
behaviour may come from residual stress of the fabrication process, or from the
actuation with comb drives conveniently placed in the device to transmit an axial
load to the corresponding beam [24]. Other mechanisms have also been established
to create bistable mechanical structures such as: a clampmechanismwith an actuator
to switch between stable states [25], or two curved parallel beams clamped in the
centre [23] not relying on residual stress to obtain the buckling behaviour.

In [24] a tunable bistable mechanism is presented where an actuator generates a
tunable axial compressive force on a beam, which is also subjected to a transversal
force (see Fig. 2.11). The actuator is used to establish the necessary compressive force
on the buckling beam to obtain the bistable potential. The beam is located between
points A and B in the schematics of Fig. 2.11a. The actuator force, proportional to
the square of the voltage applied on the comb drive (Fig. 2.11b), is shared between

Fig. 2.11 Schematics of the structure proposed in [24]: a principle of actuation for a tunable bistable
mechanism; b model of the structure
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Fig. 2.12 Left: overall photograph of the actuator and the bistable buckling beam of [24]. Right:
detail of the beam and up and bottom comb drives

its own springs (located to the left in Fig. 2.11a) and the buckling beam. The force
transverse to the beam is generated by two comb drives vertically arranged between
pointsA andB in Fig. 2.11a). A photograph of the device can be observed in Fig. 2.12.
The main actuator spans an area of 1× 1 mm2, has 800 comb drives and is supported
by six beams, held by anchors. It has been designed to generate only compressive
stress on the buckling beam. The fact that this compressive force is exerted by the
comb drives of the main actuator is what makes this device tunable, since the bistable
potential can be modified as a function of the voltage applied to the main actuator.

In [23] the authors present another bistable device that does not rely on prestress
of the beam to produce buckling. They use two curved centrally clamped parallel
beams to generate the bistable potential, see Fig. 2.13. A similar approach is taken
in [26] on which preshaped buckled beams are designed [27]. In general, the physics
of curved arches requires additional analysis in order to predict the nonlinear effects,
due to the curvature of the structures and the snap-through instability [28, 29].

In [19] a bistable potential is obtained by a different structure on which a central
mass is connected with two slightly slanted rigid fixed links through flexural pivots.
In this way, two symmetrical stable positions can be achieved and therefore the
structure presents a bistable potential. The equivalent mechanical model for the
potential energy can be observed in Fig. 2.14. The slant angle, namely θ0 plays an
important role in the definition of the elastic potential of the structure, since it is used
to generate the bistable potential (for θ0 = 0 the potential is monostable), while at the
same time it will generate an asymmetry in the elastic potential. The reason for this is
that the slant angle makes the snap easier from one of the states than from the other.
The potential energy of themechanical structure is difficult to analyze and the authors
use FEM simulations to obtain the elastic potential. However, in the final proposed
structure, double fixed links are connected in a H configuration with a central mass.
The whole thickness of the BESOI wafer (467µm) is used in the implementation
of the arms. This is done in order to improve the mechanical stability of the design,
specifically avoiding the appearance of unwanted vibration modes. The slant angle



42 M. Domínguez-Pumar et al.

Fig. 2.13 Bistable mechanism of double curved beams, [23], a initial stable position, b applied
force deflects the double beams, c more force generates more deflection, d beams at the second
stable position

Fig. 2.14 Pseudo-Rigid
body model of the first
microstructure proposed
in [19]

is finally chosen to be 0.5 ◦. The sensing electrodes, consisting of a comb drive, are
placed perpendicular to the direction of the fixed links and extract the mechanical
energy harvested by the mechanical structure, see Fig. 2.15.

2.3.2 Nonlinear Springs

The use of nonlinear springs has been proposed to increase the effective bandwidth in
energy harvesters. Nonlinearity in the spring stress–strain relationship can generate
either a hardening, [30, 31], or a softening behaviour, [32, 33]. In the first case, the
resonant frequency increases when the oscillation amplitude increases, while in the
second case the resonant frequency decreases with increasing oscillation amplitude.
In general both phenomena can occur in a device, but depending on some condi-
tion (applied voltage, dimensions of the structure, etc.) one of them dominates the
other, [34]. Nonlinearity in springs appears for large deflections. For example, in the
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Fig. 2.15 Model of the final
structure proposed in [19].
Pads “A”, “B” and “C” are
for the electrical connection
of the comb capacitors

case of thin fixed-fixed beams, or tethers, it appears when the displacement of the
proof mass is comparable or larger than the thickness of the springs, resulting in an
increase of the strain energy due to stretching of the neutral surface, [34–36]. This is
obviously an unwanted phenomenon in linear devices whereas it is a desired feature
in some applications, such as energy harvesting, in which nonlinearity is sought as
a means to increase bandwidth.

The authors in [32] present a wafer thick resonator that has nonlinear springs
for enhancing energy harvesting. The fabrication process consists mainly of a full-
wafer-thickness dry etch that serves to delimit the inertial mass and the supporting
nonlinear springs. This wafer will be anodically bonded to a Pyrex glass wafer that
has been previously wet etched so that the inertial mass is free to move. Special
care has been taken by placing dummy protective structures close to springs and
capacitor fingers. This is to limit inward sloping sidewalls in places where the etch
opening is of the order of the etch depth or larger. In this design the spring restoring
force is approximated by a seventh order polynomial. Figure2.16 shows a model of
the proposed structure, a photograph of the nonlinear spring and also the relation
between the force versus displacement in the nonlinear spring obtained by FEM
simulations. As can be observed in Fig. 2.16ii the softening behaviour is obtained
only in one direction (negative displacement).

The authors in [37] propose to use a clamped–clamped configuration for the
supporting thin beams of a proof mass. Each beam is clamped between the proof
mass and the supporting structure. In this way, the displacement of the proof mass
generates stretching. The only existence of bendingwould require lateral motion and,
since the proof mass is in the centre of a clamped–clamped beam, this is not possible.
This effect is illustrated in Fig. 2.17a. The fabrication process includes several steps
comprised of both surface and bulk micromachining. The structural layer of the
beams is composed of LPCVD silicon nitride and low temperature silicon oxide.
The active layer consists of Ti/Al interdigitated electrodes, a PZT thin film and a
layer of ZrO2. A PECVD passivation layer is finally added to protect the active layer
and compensate the residual stress. After the structure has been fabricated external



44 M. Domínguez-Pumar et al.

Fig. 2.16 i Geometry of the device using nonlinear springs proposed in [33], ii spring force as
a function of displacement of the nonlinear spring calculated by FEM, iii photograph of one the
nonlinear springs in the device

Fig. 2.17 Device proposed in [37]: a displacement of the proof mass generates nonlinear bending
and stretching strain in the supporting beams, b general overview of the device with four beams
supporting the main structure of the bulk silicon wafer. An external mass will be attached to the
upper surface of the beams afterwards, c cross section of the structure, d photograph of the final
device
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Fig. 2.18 Schematic of the
device proposed in [38].
Dark grey rectangles are
mass-spring anchorages and
black squares represent
electrical pads. The
displacement of the proof
mass is in plane between
comb drives

masses are attached to the upper surface of the beams to achieve a higher nonlinearity
of the structure.

The authors in [38] propose an electrostatic harvester using a large mass subjected
by nonlinear springs to increase the effective bandwidth. A schematic of the device
can be seen in Fig. 2.18 on which two comb drives are at the top and bottom, while
the inertial mass is anchored in four points (dark grey areas in the middle of the
inertial mass). The device has been fabricated with a commercial SOI process from
Tronics Inc. The nonlinear regime is obtained at large displacements of the inertial
mass. The authors have fitted with a seventh order polynomial the nonlinear terms
of the spring.

2.3.3 Nonlinear Energy Transfer by Impact

The first proposed use of impact in energy harvesting application can be traced
back to [39]. Impact actuation can be seen as an example of pulsed actuations,
i.e. an actuation on which the velocity of the device is almost instantly changed.
This type of excitation has been used to obtain self-sustained oscillations in MEMS
resonators, [40–42].

An example of energy transfer by impact applied to energy harvesting can be
found in [43, 44] where the authors propose the use of two cantilevers, one with a
low resonant frequency (LRF) and another with a higher resonant frequency (HRF)
that may impact each other. The structure of the proposed device can be observed
in Fig. 2.19. The LRF cantilever has a silicon inertial mass and has to be stopped
by the HRF cantilever. For this purpose, a specific packaging has been designed.
The LRF cantilever excites the second one, the HRF cantilever. This results in a
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Fig. 2.19 Device proposed in [43]: a Schematic of the overall system, b LRF cantilever, c HRF
cantilever, d schematic of the arrangement of both cantilevers inside the packaging, e illustration
of the impact between cantilevers

FUC, Frequency Up-Conversion, on which the energy is transferred from the LRF
cantilever to the HRF.

The simplified equations of motion are

(m0 + m1)z̈ + (c0 + c1)ż + (k0 + k1)z − k1x0 = −(m0 + m1)ÿ, (z ≥ x0)

m0z̈ + c0ż + k0z = −m0ÿ, (z < x0)
(2.3)

The excitation cantilever, LRF, has as a proof mass m0, a damping coefficient c0
and a spring constant k0. At a distance x0 the second cantilever is placed with a mass
m1, a damping coefficient c1 and a spring constant k1. Both cantilevers interact when
the displacement of the first one is greater than the distance between both resonators,
z ≥ x0.

The fabrication process of the piezoelectric cantilever, [45], is started from a SOI
wafer with a 5µm thick silicon active layer, a buried oxide of 1µm and the bulk
of the wafer, 400µm. On top of the active Si layer, multiple layer depositions are
made (the first one of Pt/Ti for the bottom electrode, second one of 3µm of (100)-
oriented PZT, and a third metal deposition composed of Ti/Pt/Ti for the configuration
of the top electrode). The metal depositions are made using sputtering and the PZT
is deposited with a sol-gel process. The etching of the multilayer is made with an
Ar-ion beam for the metals and the PZT layer is wet etched. The whole structure is
passivated with a SiO2 layer deposited by sputtering. Holes are made on the oxide
layer to place contacts. The bulk of the SOI wafer is later etched from the backside
to release the moveable parts while preserving the inertial mass.
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For this application, special care must be takenwith the packaging because it must
provide the correct separation between the cantilevers while at the same time one of
them is placed upside-down, see Fig. 2.19.

2.4 Transduction Principles

The objective of this section is to present the specific requirements of electrostatic
and electromagnetic transduction when used in energy harvesters. In particular the
electrostatic transduction, in some devices, requires the presence of electrets. Elec-
trets are dielectric materials on which permanent charge has been introduced. The
movement of the electrets due to external vibrations can trigger currents in some
parts of the device from which energy can be retrieved. Piezoelectric transduction
will be treated later in a separate section.

2.4.1 Electrostatic Transduction

In electrostatic harvesters, the vibration energy is recovered by means of electrosta-
tic force, which acts as a damping mechanical force. These kinds of devices require
an initially precharged surface, so that the movement of a seismic mass generates a
current flow in some part of a circuit. In order to provide this initial charge, several
alternatives have been proposed such as insulated floating electrodes, [46], elec-
trets [47, 48] and also electret-less circuits that require an external starting voltage
or current, [49]. Electrets have been extensively used although they may require
unconventional steps in the fabrication process.

On the other hand, some papers in the literature present electrostatic energy har-
vesters avoiding the presence of electrets or even external circuits necessary for
precharging the structure. This kind of papers focus on the exploited mechanical
nonlinearity or other features and use standard power sources to harvest. In this sub-
section, we will focus on electrets and we will present some examples of energy
harvesters that make use of them.

Electrets are dielectrics onwhich aquasi-permanent chargehas been injected, [50].
The lifetime of these charges can be very large. As an example, experiments onwhich
a charge density has remained unchanged for 35years are reported in [51]. Electrets
present this charge, and therefore a stable built-in voltage, due to some previous ion
injection, poling or application of a voltage. Among the materials most commonly
used for electrets we find inorganic layers made of SiO2, a combination of SiO2 and
Si3N4 layers, [52], and also organic compounds based on polymers. Among the poly-
mers compatible with MEMS processes we may find the amorphous perfluorinated
polymer CYTOP (Asahi Glass Col., Ltd), [53–56]. This polymer can provide up to
four times more charge density than Teflon.



48 M. Domínguez-Pumar et al.

There are numerous methods used for poling electrets such as: corona charging,
ion implantation, contact charging, thermal poling, UV irradiation, soft X-ray irra-
diation and electron-beam irradiation. Charges have also been successfully injected
into electretswith very inexpensive equipment such as ionic hair-dryers, [56]. Corona
charging generates principally surface charge whereas electron beam and thermal
poling produce volume, surface charges and polarization. Thermal annealing may
follow the corona charging to increase charge stability by driving charges to the bulk
of thematerial. Long term, both SiO2 andCYTOP present good charge stability, [55],
which is an essential property.

Themore conventional approach for using electrets includes planar electrets, [57],
although they can also be deposited on vertical walls, [56, 58]. Vertical electrets are
more difficult to produce as, for example, the corona method or ion implantation
cannot be used. On the other hand, vertical electrets are compatible with standard
electrostatic comb drive actuation.

Examples of recent energy harvesters using electrets can be found in [56, 57, 59].
The authors in [57] propose an electrostatic energy harvester using an electret inside
the active gap. Figure2.20 shows a schematic of the device. The electret has been
patterned in stripes on the bottom wafer while the proof mass, which is conductive,
moves inside the potential generated by the electret. If a load is connected between
electrodes 1 and 2, a current will flow and power will be transferred. Since the
displacement of themass can surpass a single electret stripe, frequency up-conversion
may occur. This is because a single period in the proof mass movement can generate
several electret stripe crossings and therefore several periods in the generated current.

The authors in [56] propose a 3D electrostatic energy harvester using sidewall
electrets. The device allows one retrieve vibration energy in any direction due to
the specific design that fixes an angle of 45 ◦ between the suspending beams and
the comb drive electrodes with electrets, see Fig. 2.21. The pull-in contact between
electrodes is avoided by the presence of the mechanical stoppers shown in Fig. 2.21a.
The electrets have been vertically placed on the surface of the fixed electrode fingers
and are made of SiO2. The authors have charged the electrets using an hair-dryer
that is commercially called “ionic hair-dryer” since it generates ions to compensate
for the charge generated in hairs by combing. Electret charging with this method

Fig. 2.20 Cross section of
the device proposed in [57].
The motion of the proof
mass is indicated by the
arrow. The proof mass is
conductive
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Fig. 2.21 a Detail of the device proposed in [56], b schematic of the overall device, c cross section
of the device (suspending beams not shown)

strongly depends on the exposure angle. Nevertheless, the authors are able to charge
these vertically placed electrets by exposing them to the air flow for more time.

2.4.2 Electromagnetic Transduction

In this kind of transduction, the energy is recovered in coils present in the device as a
function of the variation of a magnetic field. The variation of the magnetic field will
be due to some vibration mode activated in the structure by the external acceleration
from which energy must be recovered.

The authors in [60] propose a device for electromagnetic energy harvesting. This
device uses a SOI wafer for which the thickness of the active layer and the bulk
of the wafer are 5µm and 400µm, respectively. The design has two thin clamped–
clamped beams connected to a large mass by beam joints, see Fig. 2.22. A cross
section of the device can be observed in the same figure. The device presents a
two fold objective to increase performance of the device: nonlinear force-deflection
characteristic, an amplitude-stiffenedDuffing-spring andmulti-frequency harvesting
mechanisms using different resonant modes of the structure (out of plane 70.7Hz,
torsion 85.78Hz and twist modes 147.92Hz). The electromagnetic harvesting is
accomplished by placing a cylindrical magnet on top of the device that generates a
magnetic field perpendicular to the surface of the device. The largemass integrates the
EM coils that will be used to retrieve the electromagnetic energy. All threemodes can
generate large beam deflection and stretching strain, generating therefore a nonlinear
response of the device.
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Fig. 2.22 Schematic of the
electromagnetic harvester
presented in [60]. A cross
section of the device is
shown at the bottom of the
figure. The thickness of the
silicon active layer, used for
the clamped–clamped beams
is 5µm and the thickness of
the bulk of the wafer is
400µm

The expression showing the equivalent force applied in the centre of the clamped–
clamped beam of the device is
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(
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where E is the Young’s modulus, w, h and l are the width, thickness and length of the
beam. The first term is due to the bending strain and produces a linear spring constant,
whereas the second term, related to the stretching strain, produces the cubic term.
Observing this expression the nonlinear term will be significant for displacements
larger that the thickness of the beam [60].

2.5 MEMS Devices Based on the Piezoelectric
Transduction Mechanism

This section describes the structures, materials and main properties of MEMS based
on the piezoelectric transduction mechanism. The piezoelectric properties of materi-
als and a description of the most common piezoelectric materials are included. Sub-
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sequently, cantilever beam structure with a tip mass is described due to its wide use in
MEMS energy harvesters. The unimorph and bimorph cantilever structures are pre-
sented and discussed. Bimorph piezoelectric cantilevers allow higher output power
while unimorph piezoelectric cantilevers are more manufacturable. Furthermore, the
top-bottom electrodes, TPE, and interdigitated, IDE, and electrodes configurations
for unimorph cantilevers are also reviewed. These electrode configurations are used
when 31 or 33 modes of piezoelectric materials are required. Finally, an application
example of a MEMS-based bimorph energy harvester is illustrated.

Piezoelectric transduction is an advantageous mechanism to convert vibration-to-
electric energy for small scales as stated by Marin et al. [61] and Cook et al. [62].
Marin studied the relationship between the effective material volume (ν) and the out-
put power for different mechanisms. The output power for the piezoelectric mech-
anism is proportional to v3/4, while that for the electromagnetic mechanism is pro-
portional to v2. At volumes smaller than 0.5 cm3 the electromagnetic transformation
factor reduces abruptly [61]. The piezoelectric mechanism has the highest energy
conversion efficiency [63, 64] and is the most appropriate technology for the scale
of MEMS devices [65, 66].

2.5.1 Piezoelectricity

The piezoelectric effect was reported by Jacques and Pierre Curie in 1880 [67, 68].
They found that some kind of crystals subjected to mechanical strain became electri-
cally polarized. Furthermore, they found that the relationship between the degree of
polarization and the applied strain is proportional. The inverse piezoelectric effect,
these materials deform when a voltage is applied, was predicted by Lippmann [69]
and confirmed experimentally by the brothers Curie.

Piezoelectric materials present anisotropic behaviour. Consequently, the proper-
ties of the material depend upon the direction of the strain and the direction of the
polarization and in particular, on the position of the electrodes. It is important to note
that the piezoelectric engineered materials, unlike natural materials, are subjected
to a process called poling to impart the piezoelectric behaviour. The dipoles of the
cells of a macroscopic crystalline structure are originally randomly oriented and the
piezoelectric effect is negligiblewhen thematerial is subjected to amechanical stress.
The poling process consists of applying a very high electric field that permanently
orients the dipoles in the direction of the field, Fig. 2.23.

It is important to avoid the depolarization of the piezoelectric material. There are
two ways to de-pole a piezoelectric material: (i) applying a very high electric field
opposite to the field applied during the poling process, and (ii) heating the material
above its Curie temperature.
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Fig. 2.23 The poling process induces piezoelectric properties in the material. Before the poling
process the dipoles are randomly aligned (left). After poling process the dipoles tend to be pointed
to poling direction (right)

2.5.2 Properties of Piezoelectric Materials

The compliance, coupling and permittivity properties for a piezoelectric material are
second-order tensors due to the anisotropic behaviour of these materials. As a result,
constants defined to characterize the piezoelectric materials have two subscripts, one
related to the applied force, stress, and the other related to the change in length, the
strain. The specific coordinate system used to indicate the directions of the stress and
the strain are shown in Fig. 2.24. Conventionally, the poling direction is the z-axis
(or 3), except in quartz where it is x-axis (or 1).

As can be seen, the x, y and z axes are represented by the subscripts 1, 2 and 3,
respectively. The subscripts 4, 5 and 6 are used to represent the rotation about these
axes.

The constants commonly used to characterize piezoelectric materials are: (i) the
piezoelectric strain/charge constant, d, (ii) the piezoelectric stress/voltage constant,
g, (iii) the electromechanical coupling coefficient, k, and (iii) the permittivity, ε.

Fig. 2.24 Specific notation for coordinates used in piezoelectric constants and quantities. The z-
axis coincides with the poling direction. The numbers 1, 2 and 3 represent the Cartesian coordinates
(left) and the numbers 4, 5 and 6 represents the shear about Cartesian coordinates (right)
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The anisotropic piezoelectric mechanical and electrical quantities are linked using
double subscripts (i.e. kij). The subscripts designate the axis parallel to the direction
of the excitation and the axis parallel to the direction of the response [70].

The strain/charge constants, dij, express the relationship between the strain devel-
oped along or around an axis and the applied electric field parallel to an axis when
all external stresses are constant [71]

dij = strain developed along j − axis

applied electric field parallel to i − axis

(m
V

)
(2.5)

The strain/charge constant can also be defined as the relationship between the
short-circuit charge per unit area flowing between connected electrodes that are
perpendicular to an axis and the stress applied along or around an axis when all other
external stresses are constant [71]

dij = short − circuit charge flowperpendicular to i − axis

applied stress along j − axis

(
C

N

)
(2.6)

The stress/voltage constant, gij, is the relationship between the open circuit electric
field developed along an axis and the stress applied along or around an axis when all
other external stresses are constant [71]

gij = open circuit field along i − axis

stress applied along j − axis

(
Vm

N

)
(2.7)

The stress/voltage constant can also be defined as the relationship between the
strain developed along an axis and the electric charge density applied to electrodes
that are normal to an axis [71]

gij = strain developed along j − axis

applied charge density normal to j − axis

(
m2

C

)
(2.8)

The electromechanical coupling coefficients, kij, are the energy ratios describing
the conversion from mechanical energy to electrical energy or vice versa [64]. The
ratio of energy stored, mechanical or electrical, to energy, mechanical or electrical,
applied can be calculated by squaring the electromechanical coupling factor, k2.
The first subscript, i, indicates the direction of the electrical field and the second
designates the direction of the mechanical strain. These coefficients have no dimen-
sions. Equation2.9 shows the relationship between the mechanical input energy in
the j-axis, Wm

j , and the electrical energy stored in the i-axis, We
i .

k2ij = We
i

Wm
j

(dimensionless) (2.9)
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Fig. 2.25 Piezoelectric
material with two electrodes
on its opposite sides. Ve is
the voltage across the
electrodes and a, b an c are
the dimensions of the
piezoelectric element

Themost common piezoelectric constants and coefficients used in energy harvest-
ing systems are listed below using the dimensions and the reference system shown
in Fig. 2.25.

• d31: This constant represents the relationship between the charge developed, Q,
flowing between the shorted electrodes, Ve = 0 V, that are orthogonal to the poling
axis (3− z), and a force, F, applied along the axi 1. Therefore, the charge developed
Q can be calculated as [72]:

Q(Ve = 0 V ) = d31F
b

c
(2.10)

• d33: This constant represents the relationship between the charge developed, Q,
flowing between shorted electrodes that are orthogonal to the poling axis (3− z),
and a force, F, applied in the direction of the polarization axis (3− z).Therefore,
Q can be calculated as [72]:

Q(Ve = 0 V ) = d33F (2.11)

• g31: This constant expresses the relationship between the induced electric field
is along the poling axis(3− z) and the force applied in the direction orthogonal
to the polarization axis (1− x), Fig. 2.26. Therefore, the induced voltage can be
calculated as [72]

Ve(Q = 0 C) = g31
F

a
(2.12)

• g33: This constant expresses the relationship between the induced electric field
along the poling axis(3− z) and the force applied in the direction of the polarization
axis (3− z), Fig. 2.27. Therefore, voltage induced can be calculated as [72]

Ve(Q = 0 C) = g33F
c

ab
(2.13)

Therefore, the spatial orientation of the materials is very important. It must be
taken into account when a system is modelled, analyzed or simulated.
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Fig. 2.26 The 31 mode operation for piezoelectric materials. No voltage is induced when no force
is applied (left) and voltage is induced when force is applied (right)

Fig. 2.27 The 33 mode operation for piezoelectric materials. Effect when no force is applied (left)
and voltage is induced when force is applied along the poling axis (right)

2.5.3 Piezoelectric Materials

Piezoelectric materials are used in a range of applications such as pressure sensing,
data storage, mechanical actuation, ultrasonic wave generation and energy harvest-
ing. Owing to this wide range of applications, a large number of materials have
been developed. The following classification includes the most available forms of
piezoelectric materials [73, 74]:

• Crystals: Quartz (SiO2), Berlinite (AlPO4), Gallium Ortophosphate GaPO4, Tur-
maline, etc.

• Polycrystalline ceramics: Barium titanate (BaTiO3), Lead Zirconate Titanate
(PZT) [75]. These materials are characterized by its perovskite tungsten-bronze
structure.

• Thin film non-ferroelectric materials: Sputtered zinc oxide (ZnO), Aluminium
Nitride (AlN) [76].

• Polymeric materials: Polyvinylidine fluoride (PVDF) [77].
• Screen printable thick-films based upon piezoceramic powders [78] and compos-
ites such as polyvinylidene-trifluoroethylene-PZT (PVDF-TrFE) [79]

• Organic crystals: single-crystal diisopropylammonium chloride (DIPAC) and
diisopropylammonium bromide (DIPAB) [80, 81]

MEMS devices require thin and thick film technologies since the layers of the
materials must be below 100µm. Thin-film technologies, physical or chemical depo-
sition, are used to fabricate films with thickness lower than 5 µm. Thick layers with
thickness up to 100 µm can be fabricated using the screen printing method. Maas
et al., [82], describe PZT printing onto silicon, the powdered PZT is mixed with
borosilicate glass powder and an organic vehicle to make a paste, it is the ink. The
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Table 2.1 Coefficients of common piezoelectric materials [64, 84–86]

Property PZT-5H PZT-5A BaTiO3 PVDmF AlN GaN ZnO

d33 (10−12 C N−1) 593 374 149 −33 5 3.7 12.4

d31 (10−12 C N−1) −274 −171 78 23 −2 −1.9 −5

g33 (10−3 V m N−1) 19.7 24.8 14.1 330 – – –

g31 (10−3 V m N−1) −9.1 −11.4 5 216 – – –

k33 (dimensionless) 0.75 0.71 0.48 0.15 0.23 – 0.48

k31 (dimensionless) 0.39 0.31 0.21 0.12 – – 0.182

layer is printed, dried to remove the solvent and finally fired. The aluminium nitride,
AlN, has recently been included on the list of materials used in energy harvesting.
Schaijk et al. justify the selection of AlN as piezoelectric material as it is easier
to process than PZT [83]. The piezoelectric constants of PZT are better than AlN
but the main advantage of AlN is its compatibility with CMOS processing. This is
because it is foreseeable that in the near future, new investigations will result in better
performance devices based on AlN. Finally, the piezoelectric constants for common
materials used in MEMS devices are shown in Table2.1.

2.5.4 Piezoelectric Energy Harversters

Energy harvesting MEMS devices based on piezoelectric materials generally have
a cantilever beam structure as shown in Fig. 2.28. The beam is clamped at one end
and the mechanical vibrations are generated principally along the third axis through
bending. As can be seen, the vertical movement of the mass induces a strain along
the x-axis (or 1). Accordingly, if a 31 mode piezoelectric material is deposited on the
beam, then a voltage would be induced between the two sides of this material when
it is exposed to vibration sources.

The structure shown at Fig. 2.28 creates equal and opposite strains on the beam.
Therefore, it is not possible to use a beam based only on a piezoelectric material as
the total voltage or current generated would be null. To be effective as a generator a
piezoelectric layer is fixed to a non-piezoelectric elastic layer, Fig. 2.29. Thereby the

Fig. 2.28 Cantilever beam
structure with a tip mass
subjected to bending. The
strain developed above the
neutral axis is opposite to the
strain developed below the
neutral axis
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Fig. 2.29 The unimorph
structure based on a
piezoelectric layer and a
inactive substrate. The
generated voltage, Ve,
depends only on the strain on
the piezoelectric layer

neutral axis, the line in which the beam does not change in length, is not in the centre
of the piezoelectric layer. This structure is named unimorph because it is composed
of a unique piezoelectric active layer.

The 33mode of piezoelectricmaterials is oftenmore favourable than 31mode, see
Table2.1. This would be a reason to use this mode but the structure shown at Fig. 2.29
is not feasible as the direction of the induced electric field in 33mode is parallel to the
stress direction. The interdigitated electrode, IDE, configuration presented by Jeon
et al. at [66] and Park et al. at [87] enables one employ the 33 mode and discards the
bottom electrode layer, Fig. 2.30.

IDE configuration has the additional advantage of allowing a designer adjust the
electrode spacing and, consequently, output voltage since the open circuit voltage is
proportional to the distance between electrodes, see Eq.2.13. A comparison between
the structures proposed using the 31 and 33 modes is shown in Fig. 2.31.

Therefore, the electrode lengths and shapes are important parameters that affect
the output voltage due to the nonuniformity of the strain along the beam [88]. Kim
et al. have fabricated and compared piezoelectric energy harvesters based on d31 and
d33 modes [89]. These authors have demonstrated that the output power of the d33
mode depends strongly on the dimensions of IDE.

Fig. 2.30 Structure of the unimorph cantilevered beam with interdigitated electrode proposed by
Jeon et al. [66]

Fig. 2.31 Relationship
between applied stress and
induced field, white arrows,
for 31 and 33 modes
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Bimorph Cantilever Structure

The structure of a bimorph piezoelectric energy harvester based on a cantilever beam
is shown in Fig. 2.32. Two piezoelectric layers are fixed to a non-piezoelectric elastic
layer. The electrodes can be connected in series or in a parallel configuration. The
main advantage of a bimorph structure is that there is a lower loss in the mechanical
support materials since only the piezoelectric layer is strained.

Currently, the optimization of energy harvesters is one of the most important
challenges due the low energy extracted. In order to analyze and optimize designs,
several models of the piezoelectric energy harvesters have been proposed. Lumped-
parameter models allow simple expressions but with limited accuracy. Models based
on distributed-parameters offer higher accuracy, increasing the complexity of the
expressions. Erturk et al. at [90] present a detailed electromechanical modelling of
piezoelectric energy harvesters.

Application Example

A MEMS vibration energy harvester based on a PZT/PZT thick film bimorph with
an integrated silicon tip mass is described in [91], Fig. 2.33.

The authors propose a new fabrication process that improves the quality of the
thick film. The PZT layers are screen printed, treated with a high pressure process
and finally sintered (high-temperature heating without melting the material). The

Fig. 2.32 Structure of a
bimorph piezoelectric energy
harvester

Fig. 2.33 Front and back of
a MEMS-based PZT/PZT
thick film bimorph vibration
energy harvester fabricated
by R. Xu et al [91]
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Fig. 2.34 RMS power
output as a function of the
input acceleration [91]

characterization of the power output as a function of the acceleration is shown in
Fig. 2.34. The output power reaches 37.1,µWwhen the energy harvester is subjected
to an acceleration of 1 g. It is important to denote that the power output due to the
bottom layer and the power due to the top layer are very similar.
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Chapter 3
Oscillators for Energy Harvesting

E. Blokhina and D. Galayko

3.1 Linear Oscillator

3.1.1 Free Linear Oscillator

The linear oscillator is a fundamental model in physics. It is broadly used to model
various systems of mechanical, electronic, biological and chemical nature [3, 19–21,
28, 35]. The linear oscillator is the most common model that describes deflections
and oscillations of micro-mechanical structures including MEMS oscillators [14,
31] and therefore it has a direct relation to energy harvesting applications. Although
in practice, continuous micro-structures such as cantilevers or beams are described
using partial differential equations [27], it is possible to reduce them to the model of
a linear or nonlinear oscillators [22]. In this way, an oscillator is the most common
model of mechanical microsystems.

The simplest example of a linear oscillator is shown in Fig. 3.1. The mechanical
oscillator1 (Fig. 3.1a) is composed of a mass m attached to a spring k, one end of
which is fixed, and placed in a viscous medium with the friction (also called damping

1In engineering sciences, the systems from Fig. 3.1 are called resonators. In a certain sense, the term
resonator is more accurate since it highlights that these systems are passive. Indeed, as we shall see
later, sustained oscillations can exist in them only if an external force/driving is applied. In physics
and mathematics, such systems and equations describing them are generally called oscillators. To
specify, one may say that Fig. 3.1 shows a passive oscillator in contrast to a self-oscillator such as the
Van der Pol oscillator [3]. The latter is a system with negative nonlinear damping that can display
an oscillatory process without any external forcing. However, this is only a matter of naming, and
in this book we will often refer to all oscillator-like systems as simply oscillators.
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(a) (b)

Fig. 3.1 Model of a linear oscillator. aMechanical system composed of a body of mass m suspended
on a spring with the coefficient k. The system is subjected to viscous air damping described by the
coefficient b. b Oscillating circuit composed of a capacitor C, inductor L and resistor R

or dissipation) coefficient b. The electric oscillating circuit (Fig. 3.1b) consists of a
capacitor C, inductor L and resistor R.

The displacement x(t) of the mechanical oscillator from Fig. 3.1a, in the absence
of external forces, can be obtained from Newton’s second law mẍ = ∑

Fi by taking
into account all forces acting on the mass m: the spring force Fspring = −kx and the
viscous friction (damping) force Fdamping = −bv = −bẋ:

mẍ(t) = −kx(t) − bẋ(t) (3.1)

By rearranging the above equation, one can obtain the equation describing the dis-
placement x(t) of the mass m

ẍ(t) + 2γ ẋ(t) + ω2
0x(t) = 0 (3.2)

where γ = b/(2m) is the dissipation (damping, friction) parameter and ω0 = √
k/m

is the natural frequency of the oscillator. The overdot denotes the derivative with
respect to time. For instance, the velocity of the mass is the derivative of its displace-
ment v(t) = ẋ(t) = dx/dt.

A similar equation can be obtained for the oscillating circuit in Fig. 3.1b, from
Kirchhoff’s voltage law for the charge on the capacitor Q(t):

Q̈(t) + (R/L)Q̇(t) + (1/LC)Q(t) = 0 (3.3)

and in this case we may denote γ = R/(2L) and ω0 = √
1/(LC).

Ordinary differential equation (3.2) is known as a linear mass–spring–damper
system or a linear oscillator or sometimes also a linear resonator (see the footnote).
In particular, in the case b > 0 we say that it is a damped linear oscillator or the
linear oscillator with dissipation, while in the case b = 0 we say it is a conservative
or harmonic oscillator.

We will start with the case of a harmonic oscillator when friction is absent (no
damper and no resistor in Fig. 3.1, i.e. γ = 0). Equation (3.2) takes the following
form

ẍ + ω2
0x = 0 (3.4)
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The general solution of differential equation (3.4) with the initial conditions
x(0) = x0 and ẋ(0) = v0 is written in terms of harmonic functions of sine and cosine

x(t) = x0 cos ω0t + v0

ω0
sin ω0t = A0 cos (ω0t + ϕ0)

v(t) = v0 cos ω0t − x0ω0 sin ω0t = −A0ω0 sin (ω0t + ϕ0)

(3.5)

The quantity A0 =
√

x2
0 + v2

0

ω2
0

defines the amplitude of oscillations, while the quantity

ϕ0 = arctan(−v0/ω0x0) defines their phase. This solution is shown in Fig. 3.2a, and
it corresponds to the steady-state periodic oscillations of the displacement x(t) and
the velocity v(t).

Note that the harmonic oscillator is a conservative system whose total energy
remains constant. In order to prove this, let us multiply both sides of Eq. (3.1),
recalling that γ = 0 for the conservative case, by ẋ. Noting that ẋẍ = d(ẋ2)/dt and
ẋ x = d(x2)/dt, we obtain

d

dt

[
mẋ2

2
+ kx2

2

]
= 0 (3.6)

The expression in the brackets is the total energy W of the oscillator that is the
superposition of the kinetic energy Wk = mẋ2/2 and the potential energy Wp =
kx2/2. It is clear that the energy of a harmonic oscillator does not change

dW

dt
= 0 =⇒ W = mẋ2

2
+ kx2

2
= const (3.7)

Now we consider a damped oscillator, γ > 0. There are two particular cases:
‘small’ dissipation γ < ω0 and ‘large’ dissipation γ > ω0. In both cases, one can
solve the equation of the linear damped oscillator (3.2) using the standard method,
i.e. by substituting x = exp(λt). Here we give the final result yielded by this method.

(a) (b)

Fig. 3.2 a Displacement x(t) and the velocity v(t) of a linear oscillator without damping given by
Eq. (3.4) as functions of time, ω0 = 1. b Displacement x(t) of a linear damped oscillator given by
Eq. (3.2) for three different dissipation parameters (or three different Q-factors), ω0 = 1
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For sufficiently small dissipation γ < ω0 the solution is

x(t) = e−γ t

[
x0 cos ωt + v0 + γ x0

ω
sin ωt

]

v(t) = e−γ t

[
v0 cos ωt − γ v0 + ω2

0x0

ω
sin ωt

] (3.8)

where we have introduced a new quantity ω =
√

ω2
0 − γ 2 (note that ω2

0 − γ 2 > 0,
and therefore ω is a real value). It is sometimes referred to as the frequency of the
damped oscillatory process.

For sufficiently large dissipation γ > ω0 on the other hand, the solution is

x(t) = e−γ t

[
x0 cosh � t + v0 + γ x0

�
sinh � t

]

v(t) = e−γ t

[
v0 cosh � t − γ v0 + ω2

0x0

�
sinh � t

] (3.9)

where we have introduced another quantity � =
√

γ 2 − ω2
0 (in this case, γ 2 − ω2

0 >

0 and therefore � is a real value). In contrast to Eq. (3.8) that describes decaying
oscillating process, Eq. (3.9) describes a straightforward non-oscillatory decay of the
displacement and velocity with time since these equations contain hyperbolic sine
and cosine functions (sinh(� t) and cosh(� t)). The displacement x(t) of a damped
linear oscillator is shown in Fig. 3.2b, where the red and green lines correspond to
a linear oscillator with small dissipation and the blue line corresponds to a linear
oscillator with large dissipation. Oscillators with ω0 > γ are called underdampled
while oscillators with ω0 < γ are called overdampled.

It should be mentioned that there are several examples of oscillators with negative
damping, i.e. γ < 0. In this case, solutions (3.8) and (3.9) are still valid. According to
them, the displacement and velocity of the system will increase infinitely due to the
coefficient exp(|γ |t) in front of the brackets. In realistic systems however, the infinite
increase of displacement is not possible and it will be later limited by other factors,
such as nonlinearities. Oscillators with negative (linear or nonlinear) dissipation
belong to the class of self-oscillators [3]. We do not consider self-oscillating systems
since they are beyond the scope of this book.

In Fig. 3.2b, we use the quantity Q to distinguish between ‘small’ and ‘large’
dissipation. This quantity is a characteristic of the system introduced in the theory of
vibrations. It is called the quality factor or the Q-factor. Fundamentally, it is given
by the relation

Q = 2π
Maximal energy stored in the system over a cycle

Energy dissipated per one cycle
= ω

Energy stored

Power loss
(3.10)
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In general, the quality factor is a frequency-dependent parameter. In the case of a
second-order resonator, it is given by:

Q = ω

2γ
(3.11)

Another very common definition of the quality factor that can be found in the liter-
ature is

Q̃ = ω0

2γ
(3.12)

In the context of formula (3.12), it is often said that the case Q̃ > 1/2 corresponds
to an underdamped oscillator (described by expressions (3.8)) while the case Q̃ <

1/2 corresponds to an overdamped oscillator (described by expressions (3.9)). We
used this notation in Fig. 3.2b. The solution given by (3.8) is shown in Fig. 3.2 for
three different Q̃-factors. It is seen that the higher Q̃-factor is, the longer time is
required for oscillations to decay. Eventually, all oscillations of a free linear damped
oscillator (3.2) will decay.

In the case of a mechanical resonator, the Q-factor characterises the losses in
the resonator, which may be unwanted (for instance, due to friction) or intentionally
introduced (for instance, in the case of the energy conversion systems as we will show
later in Sect. 3.3). An oscillator with a higher Q-factor will loose less energy during
one period of oscillations T = 2π/ω than another oscillator with a lower Q-factor
during the same time T .

A linear damped oscillator loses its energy due to friction that is present in the
equation in the form of the term bẋ (or γ ẋ, recall the expression linking these two).
Let us again multiply Eq. (3.1) by ẋ. We obtain

d

dt

[
mẋ2

2
+ kx2

2

]
= −bẋ2 (3.13)

It is obvious from this equation that the energy does not remain constant and decreases
due to the action of dissipation. We can rewrite the above expression in another form.
By definition, the power is P = dW/dt = vF, where v is the velocity of the system
and F is some force. We can write that

dW

dt
= d

dt

[
Wk + Wp

] = Pdamping (3.14)

where Pdamping = −bẋ2 is the power of the friction force.
Note that the same discussion as presented above can be carried out in terms of

the oscillating circuit from Fig. 3.1b. In this case we obtain

dW

dt
= d

dt
[Wm + We] = Pres (3.15)
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Table 3.1 The relationship between the variables and parameters of mechanical and electrical
oscillators

Mechanical domain Electrical domain

Displacement x Charge Q

Velocity v Current I

Mass m Inductance L

Spring coefficient k Inverse capacitance 1/C

Damping coefficient b Resistance R

Force F(t) Voltage V (t) (as shown in Fig. 3.3)

Kinetic energy of mass Wk = mv2

2 Energy of the magnetic field in the inductor

Wm = LI2

2

Potential energy of spring Wp = kx2

2 Energy of the electric field in the capacitor

Wc = Q2

2C

Energy relation d(Wk+Wp)

dt = −bv2 Energy relation d(Wm+Wc)
dt = −RI2

where Wm = LI2/2, We = Q2/(2C) and Pres = −RI2. The relationships between
the variables and parameters of the mechanical and electrical oscillators shown in
Fig. 3.1 are presented in Table 3.1.

3.1.2 Forced Oscillator and Linear Resonance

The case that is of particular interest for energy harvesting is a driven linear oscil-
lator, or an oscillator actuated by an external force. Figure 3.3a shows a mechanical
oscillator. We will consider the fundamental case of a harmonic external force

ẍ + 2γ ẋ + ω2
0x = F0 cos(ωextt + φ0) (3.16)

(a) (b)

Fig. 3.3 Model of a forced linear oscillator. aMechanical system and b electric circuit. The notation
for the direction of forces and the direction of voltages across the elements are chosen to keep direct
equivalence between the two systems
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where F0 = F̃/m is the amplitude of the external force F(t) = F̃ cos(ωextt + φ0)

normalised by the mass of the oscillator m. The solution of this differential equation
is a superposition of a solution corresponding to the homogeneous equation (3.2)
and of a particular solution of (3.16) [12, 32]:

x(t) = xh(t) + xnh(t) (3.17)

where xh(t) is known from (3.8) or from (3.9).
The force on the right-hand side of Eq. (3.16) can be presented in the form F(t) =

Re[F0 exp(iφ0) exp(iωextt)] and the quantity F = F0 exp(iφ0) is called the complex
amplitude of the force or the force phasor. Because of the specific form this force,
we will look for a particular solution of the non-homogeneous equation (3.16) in the
form x(t) = Re[A exp(iφ) exp(iωextt)] where A and φ are the resulting amplitude
and phase of forced oscillations. Correspondingly, the quantity X = A exp(iφ) is
called the complex amplitude or the phasor of the displacement (or more generally,
of a generic signal).

After substituting x and F into the original equation, we will obtain the equation
linking two complex amplitudes:

(−ω2
ext + 2iγωext + ω2

0)X = F (3.18)

We will skip the further steps of the derivation as they are straightforward. The
resulting solution is

xnh(t) = A cos(ωextt + φ + φ0) (3.19)

In this expression, the amplitude A of the forced oscillation is defined as

A = F0√
(ω2

0 − ω2
ext)

2 + 4γ 2ω2
ext

(3.20)

while the phase φ of the forced oscillation is found from the following expressions:

cos φ = ω2
0 − ω2

ext√
(ω2

0 − ω2
ext)

2 + 4γ 2ω2
ext

, sin φ = −2γωext√
(ω2

0 − ω2
ext)

2 + 4γ 2ω2
ext

(3.21)

Now we write the full solution of this system that represents the superposition of
oscillations (3.8) and forced oscillations (3.19):

x(t) = xh(t) + xnh(t) = e−γ t [C1 cos ωt + C2 sin ωt] +
+ F0√

(ω2
0 − ω2

ext)
2 + 4γ 2ω2

ext

cos(ωextt + φ + φ0)
(3.22)
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where the coefficients C1 and C2 are defined from the initial conditions

C1 = x0 − xnh(0), C2 = v0 − ẋnh(0) + γ (x0 − xnh(0))

ω
(3.23)

and x0 and v0 denotes, as usual, the initial state of the oscillator at t = 0.
It is important to mention that after a sufficiently long time, the oscillator will

display only the forced oscillations. Following (3.22), the eigen oscillation term is
multiplied by exp(−γ t), and if time t is large, this term tends to zero. Without loss of
generality, we may assume that (3.19) describes the steady-state regime of a forced
linear oscillator.

Let us investigate the amplitude of forced oscillations A given by (3.20). It depends
on the parameters of the external force (the force amplitude F0 and the frequency
ωext) and on the parameters of the oscillator itself (its natural frequency ω0 and the
dissipation factor γ ).

It is obvious that for a particular oscillator with fixed ω0 and γ , the dependence on
the force amplitude F0 is linear: as F0 increases, the response of the oscillator becomes
larger. However the dependence of A on the external frequency ωext is somewhat non-
trivial (see Fig. 3.4). The amplitude A as a function of ωext displays an increase in
the oscillator response to the external force in the case when the frequency ωext of
the external force approached the natural frequency of the oscillator, i.e. ωext ≈ ω0.
This increase is more visible for oscillators with higher Q-factors and less visible for
oscillators with lower Q-factor.

This phenomenon is called resonance. On a qualitative level, it can be defined as
an increase in the amplitude of forced oscillations when the frequency of the external
force ωext is close to the natural frequency of the oscillator ω0. For a conservative
oscillator with γ = 0, the amplitude of forced oscillations will increase infinitely, as
shown in Fig. 3.4 (see the line marked as γ = 0).

Fig. 3.4 The amplitude of the forced oscillations of a linear damped oscillator A(F0, ωext) as a
function of the external frequency ωext for three different Q-factors. In the case of a conservative
linear oscillator with γ = 0, the amplitude of forced oscillations increases infinitely. ω0 = 1, F0 = 1
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It is interesting to note that at ωext = ω0 the phase shift of forced oscillation found
from (3.21) is exactly −π/2:

cos φ = 0, sin φ = −1 =⇒ φ = −π/2 (3.24)

Sometimes, the case ωext = ω0 is called exact resonance in the literature. On the
other hand, as one can see from (3.20), the maximum oscillator displacement (i.e.

the maximum of A) is reached when ωext =
√

ω2
0 − 2γ 2.

The amplitude A(F0, ωext) is directly related to the transfer function of an oscilla-
tor. Such an approach, utilising transfer functions, may be more familiar to readers
with a background in electric and electronic engineering. In order to obtain the trans-
fer function of an oscillator, we use the Laplace method and substitute x = X0 exp(st)
into Eq. (3.16) (we use that F = F0 exp(st)), as a result we obtain

X0 = H(s)F0 = 1

s2 + 2γ s + ω2
0

F0 (3.25)

Let us write the energy relation for a forced harmonic oscillator. Again, we will
take Eq. (3.16) and multiply it by v = ẋ:

d

dt

[
mv2

2
+ kx2

2

]
= vF(t) − bv2 (3.26)

where vF(t) expresses the instantaneous power of the external force F(t) = mF0 cos
(ωextt + φ0). The above equation describes the energy conservation law in this sys-
tem: the power of the external force is dissipated by the change of the energy of
the oscillator and losses due to dissipation. If we find the average of (3.26) over the
period T = 2π/ωext applying the following rule

F(t) = 1

T

t+T∫
t

F(τ )dτ (3.27)

we obtain that
bv2(t) = v(t)F(t) (3.28)

This law expresses the fact that the average power of the external force over the
period of oscillations is equal to the power dissipated by the friction force. We can
write the same expressions for the electric circuit. In this case, the role of the external
force is played by an additional source of voltage V (t)

d

dt

[
LI2

2
+ Q2

2C

]
= IV (t) − RI2 (3.29)
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Fig. 3.5 A schematic view
of the simplest vibration
energy harvester (VEH), also
called a kinetic energy
harvester (KEH)

and
RI2(t) = I(t)V (t) (3.30)

The phenomenon of forced oscillations and resonance is widely used for macro-
and micro-scale vibration energy harvesting [17, 18, 37]. A detailed discussion on the
application of linear and nonlinear resonators for energy harvesting will be provided
in Sect. 3.3. A schematic view of a vibration energy harvester (VEH), also called a
kinetic energy harvester (KEH), is shown in Fig. 3.5. It consists of a mass m attached
to a movable frame through the spring k. There is also a force Ft that acts on the
oscillator as a dissipating force (it takes the energy of the system and transfers it from
the mechanical domain to the electrical domain). The implementation of this force
is discussed in Sect. 3.3.

In order to effectively transfer energy from the mechanical to the electrical domain,
the resonator must display large amplitude vibrations, and in this way the kinetic
energy of the resonator will be large. For this reason, resonance can be very useful
for energy harvesting: by designing a resonator that operates near the resonance of
external vibrations ω0 ≈ ωext, one ensures its large amplitude oscillations. There
are many energy harvesting systems that employ linear resonators, and all of them
operate in resonance.

3.1.3 Equilibrium Points and Stability. An Oscillator
as a Dynamical System

In the previous section, we discussed free and forced oscillations of a conservative
and damped (γ > 0) linear oscillator. However, we have not yet discussed other
cases. What if damping is negative? Will the behaviour of such a system be different
from the studied case? In order to obtain a more general view of the behaviour of the
linear oscillator, let us present it in the form of a dynamical system:

ẋ = F(x) (3.31)

In this form, x(t) is the state vector containing the state variables, and the vec-
tor function F(x) defines the evolution of the system and also called the evolution
operator.
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Let us present Eq. (3.2) as a set of ordinary differential equations of the first order:

ẋ = v

v̇ = −2γ v − ω2
0x

(3.32)

From this form, we can introduce the state vector as x = (x, v)T and the vector
function F = (v,−2γ v − ω0x)T

(
ẋ
v̇

)
=

(
v

−2γ v − ω0x

)
⇔

(
ẋ
v̇

)
=

(
0 1

−ω2
0 −2γ

)(
x
v

)
(3.33)

From the transformation that has been carried out in the above equation, we can
see that the linear oscillator belongs to the class of linear dynamical systems. In-
deed, the vector function F can be presented in the form F = Mx where the matrix
M = (

0 1
−ω2

0 −2γ ) is constant matrix. It depends only on the parameters γ and ω0 and
does not depend on the variables x and v. Therefore, we can present the system in
the form

ẋ = M · x (3.34)

and hence it is a linear system.
The key property of a dynamical system is that knowing its evolution operator,

the state of the system at any time t > t0 can be defined from the initial conditions
x0 = x(t0) and v0 = v(t0).

From Eq. (3.32) it is obvious that xe = 0 and ve = 0 is an equilibrium point: the
solution starting from this point will remain zero all time. It is important to understand
the stability type of equilibrium points because it defines the behaviour of the system
around these points. Indeed, what happens in the case if the initial conditions are
very close to zero x0 ≈ 0 and v0 ≈ 0, but not exactly zero? Will the solution decay
to the equilibrium (0, 0) or not?

There are a number of definitions of stability, but the most commonly used ones are
Lyapunov stability and asymptotic stability. The equilibrium of a dynamical system
xe(t) is Lyapunov stable if every solution starting from a δ-neighbourhood of the
equilibrium ‖x(t0) − xe‖ < δ remains in a small neighbourhood of this equilibrium
‖x(t) − xe‖ < ε for all t > t0 (δ, ε > 0). Note that the solutionx(t) need not approach
the equilibrium xe in order for xe to be considered stable in the context of Lyapunov
stability. Asymptotic stability is a stronger definition. It requires that the solution
must eventually approach the equilibrium: ‖x(t) − xe‖ → 0 if t → ∞.

To investigate the behaviour of a dynamical system (3.31) around an equilibrium
xe, the state variables are presented in the form x = xe + x̃ and substituted in the
governing equation (3.31). The right-hand side of this equations is linearised F(xe +
x̃) ≈ F(xe) + Jx̃ where J = ∂F/∂x is the Jacobian matrix. Since ẋe = F(xe), one
obtains a linear equation for the perturbed x̃ in the form ˙̃x = Jx̃. The matrix J is
analysed in term of its eigenvalues λi. The general rule is that if Re(λi) < 0 then the
equilibrium xe is asymptotically stable and if Re(λi) > 0, it is unstable.
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Let us apply this methodology to the analysis of the equilibrium (0, 0) of a linear
oscillator. We will write the displacement x and the velocity v in the form x = x̃ and
v = ṽ where x̃ and ṽ are very small perturbations from the equilibrium point (0, 0).
Now we substitute this into (3.32). It is easy to show that

( ˙̃x
˙̃v
)

=
(

0 1
−ω2

0 −2γ

) (
x̃
ṽ

)
= M

(
x̃
ṽ

)
(3.35)

The eigenvalues of the matrix M (the same matrix as in (3.34)) are found from the

equation λ(2γ + λ) + ω2
0 = 0 and λ1,2 = −γ ±

√
γ 2 − ω2

0.
We immediately see that depending on the sign of γ , the eigenvalues λ1,2 can

have positive or negative real parts and depending of the relation between γ and ω0

they can be real or complex.
For the case of equilibrium in a conservative system (3.4) with γ = 0 and ω0 > 0

(the harmonic oscillator we started our chapter with), there are two purely imaginary
eigenvalues and it is neither stable nor unstable according to this definition. The
corresponding equilibrium is called the centre point. To be more accurate, the centre
point is not asymptotically stable, but it is Lyapunov stable.

Another type of a conservative system that belongs to the family of linear oscil-
lators is the inverted pendulum [3]:

ẍ − ω2
0x = 0 (3.36)

The equilibrium of an inverted pendulum is characterised by two real eigenvalues
(one positive and one negative) and thus is unstable. It is called a saddle point.

In the case of a linear oscillator with small (positive) damping (γ > 0 andγ < ω0),
the equilibrium point (0, 0) is characterised by eigenvalues whose real part is negative
Re(λ1,2) < 0, however λ1,2 are complex conjugates. Such an equilibrium is called
a stable focus. In the case of a linear oscillator with large damping (γ > 0 and
γ > ω0), the equilibrium point is characterised by eigenvalues that are real and
negative λ1,2 < 0. Such an equilibrium is called a stable node.

In the equation of the linear oscillator, the coefficient γ can be negative. For
an oscillator with small negative damping (γ < 0 and |γ | < ω0), the equilibrium
point (0, 0) is characterised by eigenvalues whose real part is positive Re(λ1,2) > 0,
however λ1,2 are complex conjugates. Such an equilibrium is called an unstable
focus. In the case of a linear oscillator with large negative damping (γ < 0 and
|γ | > ω0), the equilibrium point is characterised by eigenvalues that are real and
positive λ1,2 < 0. Such an equilibrium is called an unstable node. The equilibrium
types are summarised in Table 3.2.

Finally, we would like to explain the concept of a phase portrait. In Eqs. (3.2)
and (3.32), x and v = ẋ are functions of time. We can plot them as functions of time
to show a temporal evolution as we do it Fig. 3.2. Alternatively, we can present v
as a function of x parametrically in the (x, v)-plane. This approach to present the
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Table 3.2 Equilibrium types
of the general model of a
linear oscillator

Eignevalues Point type

γ > 0, γ < ω0 Stable focus

γ > 0, γ > ω0 Stable node

γ < 0, |γ | < ω0 Unstable focus

γ < 0, |γ | > ω0 Unstable node

γ = 0, +ω2
0 Centre point

γ = 0, −ω2
0 Saddle point

evolution of a dynamic system is very common in nonlinear dynamics and is called
the phase portrait. In order to show the direction of x and v evolution in the plane
(x, v), one uses arrows.

The phase portraits of a linear oscillator for different combination of γ and ω0

around the equilibrium point (0, 0) are shown in Fig. 3.6. For example, let us consider
a conservative oscillator with γ = 0 and ω2

0 > 0. The evolution of x(t) and v(t) with
time is shown in Fig. 3.2a. Now we will plot this solution parametrically in the
(x, v)-plane. Such a solution, starting from particular initial condition x0 and v0,
is called a trajectory. We can see that trajectories corresponding to different initial
conditions form ovals around the equilibrium point (centre-type equilibrium) in the
origin of Fig. 3.6a. Another example is a damped linear oscillator. The case of γ > 0
and γ < ω0 is shown in Fig. 3.2b by the two lines that are marked Q1 and Q2. The
corresponding phase portrait is shown in Fig. 3.6c and the equilibrium point in the
centre is a stable focus. The case of γ > 0 and γ > ω0 is shown in Fig. 3.2b by the
line marked by Q3. The corresponding phase portrait is shown in Fig. 3.6e and the
equilibrium point in the centre is a stable node.

3.2 Nonlinear Oscillators

3.2.1 Free Nonlinear Oscillator

The nonlinear oscillator is the next concept we are going to consider in this chap-
ter [11, 15, 21]. It is an expansion of the linear oscillator to include the case of
nonlinear forces Fdamping and Fspring .

At this stage, it would be very useful to discuss briefly the nature of mechanical
forces in the context of energy conversion. In classical mechanics, a force describes
an interaction between objects and it depends only on the position of the objects.
Classical mechanics introduces a fundamental notion of potential (also called con-
servative) forces. The work done by potential forces depends only on the starting and
ending points x1 and x2 of the trajectory of a body and is independent on the shape of
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(a) (b)

(d)(c)

(e) (f)

Fig. 3.6 Trajectories in the plane (x, v) spanned by the state variables x and ẋ (phase portraits)
around the six types of equilibrium points. a Centre point corresponding to a conservative linear
oscillator (3.4). b Saddle point corresponding to a conservative inverted pendulum (3.36). c Stable
focus, γ > 0 and γ < ω0. d Stable node, γ > 0 and γ > ω0. eUnstable focus, γ < 0 and |γ | < ω0.
f Unstable node, γ < 0 and |γ | > ω0. The arrows show the direction of evolution along a trajectory.
Different trajectories correspond to different initial conditions
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the trajectory. For such forces, one can introduce a quantity called ‘potential energy’
that in a one-dimensional case is defined as the following integral:

Wp = −
∫

F(x)dx, (3.37)

where x is the position along the trajectory. It indeed follows from this definition
that the work done by a potential force F(x) on a body to move from x1 to x2 is
Wx1 to x2 = Φ(x2) − Φ(x1) (where Φ is the antiderivative of F) and is independent of
the trajectory.

The potential forces have a very important property: they only depend on the
position x and not on the velocity of the body. A force generated by a linear spring
can be seen as a good example of a potential force. This force depends only on the
compression or expansion of the spring Fspring = −kΔx, where Δx is the deformation
of the spring. In a more general case, a potential force may be a nonlinear function
of the objects’s position.

In a isolated mechanical system with only potential forces, total energy is con-
served. You may refer to the discussion about the linear oscillator (in particular,
the derivation of Eq. (3.6)) as an illustration of this statement. For this reason, the
potential forces are also called conservative.

However in practice, any mechanical system experiences the loss of energy, mainly
due to different kinds of friction. For example, a body with an initial velocity v slides
on a rough uniform horizontal surface. It will eventually lose its momentum and stop.
This behaviour is modelled by the introduction of a force that acts on the body and
that depends only on its velocity. For example, the damper that we have introduced
in the model of a linear oscillator generates a linear friction force Fdamping = −bv.
In a more general case, a friction force can be a nonlinear function of the velocity.

Let us note that in the particular case of the air damping force we introduced, b > 0,
and therefore energy decreases. In most real systems, damping forces reduce energy,
and for this reason they are called dissipative. We must mention that there is the
specific case of ‘negative’ dissipation (in the case of a linear oscillator, b < 0). It leads
to the increase of the total energy of the system (such as in self-oscillators), however
the discussion on self-oscillating systems it outside the scope of this book. Let us
also note here that there is a collective term for such systems—non-conservative,
since these forces modify the mechanical energy of the system.

Dissipative forces can also depend on both, the displacement and the velocity. In
MEMS resonators, there are two known examples of such forces—a squeeze film
damping force [31] and a transducer-generated force (used in the context of vibration
energy harvesting, as explained in Sect. 3.3).

We will give an illustration of conservative and non-conservative forces using the
example of oscillatory applications. Consider a case when a body whose position
x(t) varies periodically (the displacement is described by a sinusoidal function of
time)

x(t) = X0 sin(ωt). (3.38)
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is subjected to a nonlinear force F(x(t), ẋ(t)). In this case, the force F(t) is also peri-
odic, but, in the most general case, not sinusoidal. Often, only the first (fundamental)
harmonic of the force is considered.

• In the case of a potential force F = F(x(t)), which can be nonlinear, the funda-
mental harmonic of the force has the same phase as the displacement (or with a
π -phase shift), i.e. the force is also expressed as a sinusoidal function

F(t) = F1 sin(ωt), (3.39)

where F1 is calculated as

F1 = 1

π

(∫ 1

−1
F(−X0

√
1 − y2)dy −

∫ 1

−1
F(X0

√
1 − y2)dy

)
(3.40)

The derivation of this formula can be found in Appendix I. Note that if F(x) is
even, the first harmonic of the force is equal to zero. However, this does not happen
in most of practical cases.

• In the case of a ‘purely’ dissipative force F = F(ẋ(t)) (dependent only on the
velocity), its fundamental harmonic has the same phase as the velocity (or with a
π -phase shift, i.e. it is expressed as cosine function

F(t) = F1 cos(ωt), (3.41)

where F1 can be calculated as

F1 = 1

π

(∫ 1

−1
F(ωX0

√
1 − y2)dy −

∫ 1

−1
F(−ωX0

√
1 − y2)dy

)
(3.42)

The derivation of this formula can be found in Appendix II. Note that if F(ẋ) is
even, the first harmonic of the force is equal to zero.

• In the case of the force that depends on both the displacement and velocity F(x, ẋ),
the fundamental harmonic of the force may have a phase shift with respect to both
the velocity and displacement.

F = Fc
1 cos(ωt) + Fs

1 sin(ωt) = F1 cos(ωt + φ1) (3.43)

The corresponding sine and cosine components are calculated as

Fc
1 = 1

π

(∫ 1
−1 F(X0y, ωX0

√
1 − y2)dy − ∫ 1

−1 F(X0y,−ωX0

√
1 − y2)dy

)
Fs

1 = 1
π

(∫ 1
−1 F(X0

√
1 − y2, ωX0y)dy − ∫ 1

−1 F(−X0

√
1 − y2, ωX0y)dy

)(3.44)
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The representation of the first harmonic of the force as the superposition of the sine
and cosine components is sometimes interpreted as the superposition of potential
and purely dissipative components (see the discussion in [31] on modeling of the
squeeze film damping force). It should be noted though that it is only useful in the
context of systems with periodically varying displacements and velocities.

In the context of this discussion, we are going to consider only those oscillators
that are subjected to ‘purely’ dissipative (dependent of the velocity only) and potential
forces. The specific case of a force depending on both x and ẋ will appear later in
the discussion on transducers and transducer forces (see Sect. 3.3).

Now let us consider an expansion of the model of a linear oscillator to the case of
nonlinear potential forces. For example, Fig. 3.7 shows a mechanical oscillator with
a nonlinear spring. In the similar model of a linear oscillator shown in Fig. 3.1, the
spring follows Hooke’s law so that Fspring = −kx. For a nonlinear spring however
the force has a nonlinear dependance on the displacement. Therefore, in the most
general case, a free nonlinear damped oscillator is described by the equation

ẍ + 2γ ẋ + g(x) = 0 (3.45)

where g(x) is a nonlinear spring force of the displacement x the mass of oscillator
m.

One of the most common models of nonlinear oscillators is obtained when we
write a nonlinear spring force Fspring using its Taylor series and limit this series
to the cubic term only, thus assuming that Fspring = − (k1x ± k3x3). The odd order
of this polynomial reflects the fact that the spring force is an odd function of the
displacement, i.e. it always opposes to the deformation. In addition, following the
note made in Sect. 3.1.3 on Eq. (3.36) that describes an oscillator near an unstable
equilibrium, we can also consider that the linear term k1x can appear with a minus
sign. Substituting the force into (3.45), we obtain

ẍ + 2γ ẋ ± ω2
0x + κx3 = 0 (3.46)

(a) (b)

Fig. 3.7 a Simple nonlinear mechanical oscillator that is obtained from the linear oscillator in
Fig. 3.1 by considering that the spring restoring force Fspring(x) has a nonlinear dependance on the
displacement x. b Example of nonlinear spring force in the form Fspring(x) = k1x + k3x3. For the
comparison, the linear spring force is shown together with the nonlinear one
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where ω2
0 = k1/m and the coefficient κ = ±k3/m can have any sign. Note that it is

often accepted that the coefficient appearing before the linear term x is denoted as ω2
0.

Therefore if one wants to consider the sign of this term, one writes ±ω2
0x (obviously

we assume that ω2
0 > 0 since ω0 is real). We do not have such a limitation on the

term κ that can be both positive or negative.
This model is known as the Duffing oscillator [8, 13]. The Duffing type of non-

linearity often appears in micro-scale mechanical structures (MEMS) due to me-
chanical properties or it can be induced electrically [1, 7, 14, 31]. In micro-scale
energy harvesting applications, there is a large number of examples of nonlinear
MEMS resonators [5, 16, 23, 24, 33, 37] that are designed specifically to improve
characteristics of harvesters.

The potential energy of a nonlinear oscillator is introduced in the standard way

dWp

dx
= m · g(x) = −Fspring (3.47)

For instance, we have already established that for a linear oscillator its potential
energy associated with the spring force is Wp = −kx2/2. Indeed, Fspring = − kx and,
as follows form the above equation, Wp = − ∫

F(x)dx = ∫
kxdx = kx2/2.

In order to obtain the energy relation for a nonlinear oscillator, we will multiply
Eq. (3.45) by ẋ:

d

dt

[
mẋ2

2
+ Wp

]
= −bẋ2 (3.48)

where b = 2γ m is a corresponding damping coefficient. This expression is similar
to the case of the linear oscillator with the difference that Wp can now be some other
function of the displacement, different from the parabolic kx2/2 expression. For a
nonlinear oscillator in the absence of friction γ = 0, its energy is conserved. While
in the presence of friction γ > 0, energy dissipates.

The oscillations resulting from Eqs. (3.2), (3.4) or (3.45) can be seen as the
coordinates of a particle that moves (oscillates) on a curved surface whose profile
has the shape of the potential function Wp. If such a surface is ideal (no friction) it
will correspond to the case γ = 0, and the particle slides (oscillates) on this surface
without loss of energy. This analogy is shown in Fig. 3.8 where a particle of mass m
moves in a potential well Wp. The displacement and the velocity of such a particle
is the same as x and v we obtain from solving differential equations (3.2), (3.4)
or (3.45).

Figure 3.8 shows the potential functions, Wp, of a linear and two nonlinear Duffing
oscillators. For the linear oscillator, the potential function Wp = kx2/2 is a parabola.
For the nonlinear oscillator with Wp = αx2 + βx4 (α = k1/2 and β = k3/4), the
potential function also resembles a parabola. Although it is qualitative similar to
the linear case, the large-scale of the linear and nonlinear systems will be different.
Only small-scale oscillations around the local minimum of Wp will be similar in both
systems. For a nonlinear oscillator shown in Fig. 3.8c, the potential function is given
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(a) (b) (c)

Fig. 3.8 Schematic view of the potential energy Wp of three different oscillators. a Linear oscillator
with g(x) = ω2

0x and Wp = kx2/2. b Nonlinear oscillator with g(x) = ω2
0x + κx3 and Wp = αx2 +

βx4 where α = k1/2, β = k3/4 and α, β > 0. c Nonlinear oscillator with g(x) = −ω2
0x + κx3 and

Wp = −αx2 + βx4 where α = k1/2, β = k3/4 and α, β > 0

by Wp = −αx2 + βx4 (α = k1/2 and β = k3/4). Such a potential well has two local
minima and one local maximum.

Any local extremum of the potential function corresponds to an equilibrium point
of Eq. (3.45). In a linear oscillator, its parabolic function Wp has only one extremum,
a minimum. If the linear oscillator is conservative, i.e. γ = 0, this local minimum
corresponds to a centre point, and if γ > 0 it corresponds to a stable focus or node.
In a linear oscillator, such as an inverted pendulum (3.36), the potential function is
Wp = −kx2/2, and has only one extremum, a maximum. It corresponds to a saddle
point. In a nonlinear oscillator from Fig. 3.8c, there are three extrema, two minima
and one maximum. Each local minimum corresponds to a centre (γ = 0) or sta-
ble focus/node (γ > 0), while a maximum corresponds to a saddle point. Such an
oscillator has two coexisting stable equilibria, and therefore is called bistable. De-
pending on initial conditions, the particle from Fig. 3.8c can oscillate either around
one minimum of Wp or the other.

A number of fundamental consequences arise from the presence of the nonlinear
function g(x) in (3.45). For instance, we know that the frequency of free oscillations
of a linear oscillator does not depend on the amplitude of oscillations or on the
energy of the system. We say that these oscillations are isochronous. Indeed, the
natural frequency ω2

0 = k/m is a constant and is independent of the energy of the
oscillator. For nonlinear oscillators, it is not even clear from Eqs. (3.45) or (3.46)
what quantity must be considered as the natural frequency. It turns out that for a
nonlinear oscillator, its frequency depends on the amplitude of oscillations (or its
energy), i.e. it is not a fixed quantity. Such oscillations are called anisochronous.

Consider for simplicity the conservative case when γ = 0. Since the energy is
conserved, Eq. (3.48) can be written as

mẋ2

2
+ Wp = W0 (3.49)
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where W0 is the full or initial energy of the oscillator. The velocity is expressed from
the equation

ẋ = ±
√

2(W0 − Wp)

m
(3.50)

By separating the variables ẋ = dx/dt, we obtain dt = dx/
√

2m−1(W0 − Wp). Let
us assume that the turnoff points x1 and x2 bound the displacement of the system (see
Fig. 3.8). We can find the time required for the mass m to make one full oscillation
between x1 and x2 and back:

T = 2

x2∫
x1

dx√
2m−1(W0 − Wp)

(3.51)

This time defines the period of oscillations (T ) for an oscillator whose potential
energy is given by the function Wp and whose full energy is W0. Note that for
symmetrical potential functions Wp, which account for most cases, x2 = −x1 = A
where A is the amplitude of oscillations.

It is easy to show that in the case of a linear oscillator with Wp = kx2/2, the
time calculated from (3.51) is T = 2π/

√
k/m = 2π/ω0 and is the period of natural

oscillations. In the majority of other practical cases, including the Duffing oscillator,
the result will depend on the full energy W0 and as a consequence on the amplitude
of oscillations A. For instance, for the Duffing oscillator

ω = 2π

T
≈

√
k

m

[
1 + 3(k3/k1)A2

8

]
(3.52)

As is seen from the above formula, the larger the amplitude of oscillations A is, the
larger their frequency ω is.

Finally, let us emphasise that there is no general analytical solution of Eq. (3.45).
In order to understand and analyse the behaviour of a nonlinear oscillator, one can
apply various perturbation techniques [19]. The two most commonly used methods
in the context of weakly nonlinear oscillators are the Lindstedt—Poincaré method
and the multiple scales method. Let us obtain the approximate solution of a weakly
nonlinear Duffing oscillator using the multiple scale method.

Perturbation methods are applied when there is a ‘small’ parameter present in a
nonlinear equation. In order to introduce a small parameter, we first must obtain a
dimensionless system. In order to do so, let us introduce dimensionless time τ = ω0t
and dimensionless displacement y = x/d where d is some characteristic scale of the
displacement. Equation (3.46) will become

y′′ + 2βy′ + y + αy3 = 0 (3.53)
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where β = γ /ω0 = b/(2
√

km) is the dimensionless dissipation parameter and α =
κd2/ω2

0 is the nonlinear parameter. The prime denotes the derivative with respect
to the dimensionless time τ . Moreover, following the approximation of a weakly
nonlinear system, let us suggest that β, α 
 1. We will express the ‘smallness’ of
these coefficients in (3.54) by presenting them in the form β = εβ̃ and α = εα̃ where
ε is an auxiliary ‘small’ parameter:

y′′ + 2εβ̃y′ + y + εα̃y3 = 0 (3.54)

Following the method of multiple scales, we introduce different time scales:

T0 = t, T1 = εt, T2 = εt2 . . . (3.55)

The variable y(τ ) in (3.54) now can be presented as a series, and every term is this
series is a function of these time scales

y(τ ) = y0(T0, T1, T2, . . .) + εy1(T0, T1, T2, . . .) + ε2y2(T0, T1, T2, . . .) + . . .

(3.56)
The full derivative with respect to time τ can be expressed through partial derivatives
with respect to times Ti:

d

dτ
= ∂

∂T0

dT0

dτ
+ ∂

∂T1

dT1

dτ
+ ∂

∂T2

dT2

dτ
+ . . . = ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ . . . =

= D0 + εD1 + ε2D2 . . .

d2

dτ 2
= (D0 + εD1 + ε2D2 . . .)2 = D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . .

(3.57)
where we introduced the operators Di = ∂/∂Ti. Using Eqs. (3.56) and (3.57), we
rewrite the original Eq. (3.54):

(
D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . .

)
(y0 + εy1 + ε2y2 + . . .)+

+2εβ̃
(
D0 + εD1 + ε2D2 . . .

)
(y0 + εy1 + ε2y2 + . . .) + (y0 + εy1 + ε2y2 + . . .)+

+εα̃(y0 + εy1 + ε2y2 + . . .)3 = 0
(3.58)

In the next step, we set every term of the εi order to zero:

D2
0y0 + y0 = 0

D2
0y1 + y1 = −2D0D1y0 − 2β̃D0y0 − α̃y3

0

(3.59)

From the first equation in (3.59) we obtain that

y0 = A(T1)e
iT0 + A∗(T1)e

−iT0 = a(T1) cos(τ + ϕ(T1)) (3.60)
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where A(T1) = (a/2) exp(iϕ) is the slow amplitude of oscillations, A∗ is the com-
plex conjugate of A and ϕ is the phase of oscillations. Now we will use this in
the second equation in (3.59), taking into account that D0y0 = iA(T1) exp(iT0) and
D1y0 = Ȧ(T1) exp(iT0), where Ȧ now denotes the derivative with respect to time
scale T1.

D2
0y1 + y1 = −2iȦeiT0 + 2iȦ∗e−iT0 − 2iβ̃AeiT0 + 2iβ̃A∗e−iT0 − α̃(AeiT0 + A∗e−iT0)3

(3.61)

Instead of one real-valued variable y, we just introduced a complex variable A (that
contains in fact two variables, Re(A) and Im(A)). Therefore, we can suggest one
additional equation for the variable A. In order to introduce such an equation, let
us analyse the terms on the right-hand side of the above equation. The terms that
are proportional to exp(iT0) lead to resonance in a linear system: as discussed in
Sect. 3.1.2, they will cause an infinite increase of the oscillations. These terms are
also called secular terms. Since, this is not possible in a realistic system, we will
choose an additional equation such that these terms are removed. As a result, we set

− 2iȦeiT0 − 2iβ̃AeiT0 − 3α̃A2A∗eiT0 = 0 (3.62)

and, therefore, this is the equation to find the slow amplitude. (Implicitly we assume
that the complex conjugate of (3.62) is also equal to zero.)

Expressing complex A through real a and ϕ, we obtain two equations that define
the evolution of slow amplitude a and phase ϕ with time:

ȧ = −β̃a

ϕ̇ = −3α̃a2/8
(3.63)

These equations are called the truncated equations. Knowing the initial conditions
a(0) = a0 and ϕ(0) = ϕ0, it is easy to solve these equations

a = a0e−β̃T1

ϕ̇ = ϕ0 + 3α̃a2
0

16β̃

(
1 − e−2β̃T1

) (3.64)

Finally, in order to find y, we return to Eq. (3.61) after having excluded all resonant
terms

D2
0y1 + y1 = −(α̃a3/4) cos(3τ + 3ϕ) (3.65)

where we have taken into account that the only two terms left in the right-hand side
are A3 exp(3iT0) + (A∗)3 exp(−3iT0) = (a3/4) cos(3τ + 3ϕ). The particular solu-
tion of Eq. (3.61) corresponding to a forced oscillation under a harmonic force
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F(t) = α̃a3 cos(3τ + 3ϕ) was found in Sect. 3.1.2. In order to use the solution (3.19),
we set F0 = α̃a3/4, ωext = 3, γ = 0 and φ = −π :

y1 = α̃a3

32
cos(3τ + 3ϕ) (3.66)

Taking into account y0 and y1 and noting that εβ̃ = β, εα̃ = α and α̃/β̃ = α/β, we
can write

y(τ ) = y0 + εy1 + . . . ≈ a0 cos(τ + ϕ) + αa3

32
cos(3τ + 3ϕ) =

= a0e−βτ cos

(
τ + ϕ0 + 3αa2

0

16β

(
1 − e−2βτ

)) +

+αa3
0e−3βτ

32
cos

(
3τ + 3ϕ0 + 9αa2

0

16β

(
1 − e−2βτ

))
(3.67)

Furthermore one can note that this solution does not depend on the auxiliary small
parameter ε we introduced in Eq. (3.54) for our analysis. If a more accurate solution
is required, one can continue and write the equation for y2 and use the already found
y0 and y1 to solve it.

From (3.67) we can see that the solution of a free, unforced Duffing oscillator con-
tains not only the fundamental component cos(τ + ϕ) but also the third harmonics
cos(3τ + 3ϕ), i.e. it is anharmonic. Figure 3.9 shows the evolution of the dimen-
sionless displacement y of the normalised Duffing equation (3.54) as a function of
time τ at β = 0.05 and α = 0.5 obtained from a numerical simulation. For compar-
ison, we also give the solution of a linear oscillator at the same dissipation β = 0.05
(and α = 0 in this case). We also show the approximated solution (3.67) obtained
from the multiple scale method. Although the parameter of nonlinearity α cannot be
considered very small compared to unity, the approximated solution is still accurate.

Fig. 3.9 Evolution of y as a function of time for a linear oscillator (3.2) and the Duffing oscil-
lator (3.46) obtained from numerical simulation of the equation. The equations are normalised as
shown for Eq. (3.54) β = 0.05 and α = 0.5. For the comparison, the approximated solution (3.67)
obtained from the multiple scales method (MSM) is shown by the dashed line
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Note the change in the frequency of nonlinear oscillations due to cubic nonlinearity
compared to the linear case: it is easily seen at the point when y(τ ) crosses zero.

3.2.2 Forced Nonlinear Oscillator

We have already studied a linear oscillator under external harmonic actuation and
established that if the frequency of the external force is close to the natural frequency
of the oscillator, one observes resonance. In a nonlinear oscillator, as we know from
the previous section, oscillations are anisochronous, i.e. the frequency of such oscil-
lation is not a constant, but rather depends on the energy of the oscillator. However,
resonance is also possible in nonlinear systems, but the resulting forced oscillations
are more complex than in the linear case. We will consider a Duffing oscillator as an
example to illustrate nonlinear resonance. We will write a forced nonlinear Duffing
oscillator in the following dimensionless form

ÿ + 2β ẏ + y + αy3 = f0 cos((1 + σ)τ + φ0) (3.68)

where we remind the reader that α can be positive or negative. The term cos[(1 +
σ)τ + φ0] appeared after the normalisation procedure. Indeed, cos(ωextt + φ0) =
cos(ωext(ω

−1
0 τ) + φ0) = cos(Ωτ + φ0). We will present the dimensionless external

frequency in the form Ω = 1 + σ where σ is a frequency mismatch between the
dimensionless natural frequency (equal to unity after normalisation) and the dimen-
sionless external frequency Ω . As in the previous section, following the procedure
of introducing a small parameter ε, we will assume that β = εβ̃, α = εα̃, σ = εσ̃

and f0 = εf̃0:

ÿ + 2εβ̃ ẏ + y + εα̃y3 = εf̃0 cos((1 + εσ̃ )τ + φ0) (3.69)

We will apply the multiple scale method as shown in the previous section. In order
to do so, we will use (3.56) and (3.57). Equation (3.69) will transform into

(
D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . .

)
(y0 + εy1 + ε2y2 + . . .)+

+2εβ̃
(
D0 + εD1 + ε2D2 . . .

)
(y0 + εy1 + ε2y2 + . . .) + (y0 + εy1 + ε2y2 + . . .)+

+εα̃(y0 + εy1 + ε2y2 + . . .)3 = εf̃0 cos((1 + εσ̃ )τ + φ0)

(3.70)

The term of the external force can also be presented using the complex form:
f̃0 cos((1 + εσ̃ )τ + φ0) = (f̃0/2) exp[i(1 + εσ̃ )τ + φ0] + c.c.
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Collecting the terms corresponding to different orders of ε, we obtain:

D2
0y0 + y0 = 0

D2
0y1 + y1 = −2D0D1y0 − 2β̃D0y0 − α̃y3

0 +
(
(f̃0/2) exp[(1 + εσ̃ )T0 + φ0] + c.c.

)
(3.71)

The solution has the form y0 = A(T1) exp(iT0) where the complex slow amplitude
A = (a/2) exp(iϕ) can be written through a real slow amplitude a and real slow phase
ϕ. In the second equation of the set (3.71), we set all secular terms to zero in order
to avoid a linear resonance in a lossless system. This yields the equation for A:

− 2iȦeiT0 − 2iβ̃AeiT0 − 3α̃A2A∗eiT0 + (f̃0/2)eiεσ̃T0+φ0 eiT0 = 0 (3.72)

Note that the term exp(iεσ̃T0 + φ0) = exp(iσ̃T1 + φ0) is in fact a slowly varying
term, as T1 = εT0. Now using the representation of the complex A through real a
and ϕ, we write to equations

ȧ = −β̃a + f̃0
2

sin(σ̃T1 + φ0 − ϕ)

aϕ̇ = 3α̃a3

8
− f̃0

2
cos(σ̃T1 + φ0 − ϕ)

(3.73)

where we remind the reader that the overdot denotes the derivative with respect
to the slow time scale T1. Finally, we will introduce a new variable phase ψ =
σ̃T1 + φ0 − ϕ. Since ψ̇ = σ̃ − φ̇, Eq. (3.73) will take the form

ȧ = −β̃a + f̃0
2

sin ψ

ψ̇ = σ̃ − 3α̃a2

8
+ f̃0

2a
cos ψ

(3.74)

One can compare the set of equations (3.74) to the truncated equations (3.63) of a
free oscillator. The external driving is presented in the form of terms proportional to
f̃0. From this equation, we will find the amplitude a0 and phase ψ0 of steady-state
forced oscillations by assuming that a0, ψ0 = const, i.e. ȧ0, ψ̇0 = 0:

f̃0
2

sin ψ0 = β̃a0

f̃0
2a

cos ψ0 = −σ̃ + 3α̃a2
0

8

(3.75)
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Since cos2 ψ0 + sin2 ψ0 = 1, we will obtain an equation that allows us to find the
slow real amplitude a0:

β̃2a2
0 +

(
σ̃a0 − 3α̃a3

0

8

)2

= f̃ 2
0

4
(3.76)

Note again that since β̃ = β/ε, σ̃ = σ/ε, α̃ = α/ε and f̃0 = f0/ε, the above equation
can be rewritten in terms of the original parameters β, σ , α and f0 and is independent
of the auxiliary parameter ε we introduced in (3.69). Therefore,

y0(τ ) = a0 cos(τ + ϕ0) = a0 cos((1 + εσ̃ )τ + φ0 − ψ0) (3.77)

and we can find y1 from the equation:

D2
0y1 + y1 = −(α̃a3

0/4) cos(3(1 + εσ̃ )τ + 3φ0 − 3ψ0) (3.78)

The particular solution of this equation can be found from (3.19) where we set
F0 = α̃a3/4, ωext = 3, γ = 0 and φ = −π :

y1 = α̃a3
0

32
cos(3(1 + εσ̃ )τ + 3φ0 − 3ψ0) (3.79)

Taking into account y0 and y1 and noting that εβ̃ = β, εα̃ = α, α̃/β̃ = α/β and
1 + εσ̃ = Ω , we can write a steady-state solution in the form

y(τ ) ≈ a0 cos(Ωτ + φ0 − ψ0) + α0
a3

32
cos(3Ωτ + 3φ0 − 3ψ0) (3.80)

where a is the solution of (3.76) and ψ is found from (3.75).
The amplitude of steady-state forced oscillations in the Duffing oscillator a0 as a

function of the frequency mismatch σ = ωext/ω0 − 1 obtained from (3.76) is shown
in Fig. 3.10. Three cases are shown: α = 0 (corresponds to the resonance in a linear
damped oscillator), α < 0 (nonlinear, spring softening) and α > 0 (nonlinear, spring
hardening). All of them are calculated for the same amplitude of the external force
f0 = 0.2. In contrast to the linear case shown by the grey line, resonance in nonlinear
oscillators leads to bistability and hysteresis.

From this figure, one can see that for certain values of the frequency mismatch
σ there are three overlapping branches of the graph. This means that there are three
solutions for a0 found from (3.76). Further analysis of these solutions shows that two
of them are stable (shown by the solid line) while the third is not stable (this branch
is shown by the dashed line). Depending on the initial conditions x(t0) and v(t0), the
oscillator can display forced vibrations with a large amplitude a0,1 or with a smaller
amplitude a0,2. This phenomenon is called multistability.
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Now imagine that we can slowly change the frequency of the external oscillations
ωext, for example over the range from some −ω∗

ext to +ω∗
ext (this is called a frequency

sweep). If one sweeps the frequency of the external force in the direction shown by
the arrows on the resonance curves, one will observe hysteresis. For example, let
us consider the case α > 0. Increasing the frequency ωext, we will observe gradual
increase of the oscillation amplitude (arrow moving right in the figure). When the
peak of the resonance curve is reached at some ωext,1, we will observe a sharp
jump as we will switch to the lower stable branch of the curve. Decreasing the
frequency ωext, we also will observe a gradual increase of the forces oscillations. At
another frequency ωext,2 < ωext,1, we observe a jump to a higher stable branch of
oscillations. This phenomenon is known as the hysteresis of the nonlinear resonance
curve (Fig. 3.10).

Figure 3.11 shows the transformation of the resonance curve a0(σ ) if the am-
plitude of the external force f0 increases. If f0 is small enough, the system behaves
similarly to a linear oscillator and does not display bistability or hysteresis. However,
as the amplitude f0 increases, the amplitude of forced oscillations also increases. The
segment with bistability and hysteresis increases correspondingly. As is clearly seen
from this figure, nonlinear oscillators can respond to external vibrations (maintain
resonance, i.e. large amplitude oscillations) for a wide frequency range of ωext, which
can be significantly larger than the ‘resonance’ frequency range of a linear oscillator.
This property has been exploited in vibration energy harvesters by designing and
fabricating MEMS resonators with nonlinear springs [2, 23, 24]. It has been shown
in these studies that such systems respond more effectively to ambient wideband or
noise-like vibrations.

Fig. 3.10 Resonance in linear and nonlinear oscillators. The amplitude a0 of steady-state forced
oscillations as a function of the normalised frequency mismatch σ = ωext/ω0 − 1. The grey line
corresponds to the linear case when α = 0 (see also Fig. 3.4), while the blue and green lines corre-
spond to nonlinear cases (α > 0 and α < 0). For the nonlinear cases one can see multistability and
hysteresis: there is a segment of the resonance curve a0(σ ) where two stable solutions of a0 and
one unstable a0 (shown by the dashed line) coexist
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Fig. 3.11 Resonance in a
nonlinear Duffing oscillators
with α > 0. The larger the
amplitude of the external
force f0, the larger the
amplitude of forced
oscillations. The segment of
the resonance curve a0(σ )

with bistability and
hysteresis (shown by the
dashed lines) increases
correspondingly

3.3 Resonators and Kinetic Energy Harvesting

The last two sections presented a few issues related with the fundamental properties
and analysis of resonators. This section explains how mechanical resonators can be
used for conversion of kinetic energy towards a non-mechanical domain. Conversion
towards the electrical domain will be cited as an example, although the presentation
of this section is valid for any conversion of kinetic energy.

3.3.1 Architecture of a Kinetic Energy Harvester (KEH)

A general structure of a kinetic energy harvester is given in Fig. 3.12a [17, 30,
36]. The harvester is placed into the reference frame Ox attached to the external
vibration structure (e.g. a car). The main element of such a harvester is a mobile
mass, sometimes called a ‘proof mass’ or ‘seismic mass’. It should be understood
that, in general, the energy of external vibrations is very high compared to what can
be stored in the harvester. The role of the mobile mass is to capture a small part
of external kinetic energy into the harvester. In order to achieve this, the mass must
be mobile in the frame Ox. The energy transfer is done through an apparent force
acting on the mass, which is, in fact, due to the non-inertial nature of the reference
frame Ox. Indeed, according to theoretical mechanics [34], a non-inertial reference
frame moving with acceleration aext can be considered as inertial if a force −maext is
applied to every mass m of the system. In this way, the source of mechanical energy
inside a harvester is given by the force −maext applied to the mobile mass. With this,
the reference frame Ox should be considered as inertial, and the Newtonian laws
valid for inertial systems can be used for the system analysis.

In order to convert mechanical energy that the mass receives from the force−maext ,
a transducer is used. The role of the transducer is the generation of a force called
‘transducer force’ Ft . The nature and origin of this force depends on the domain
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into which the energy should be converted. In our study, we are interested in the
generation of electricity. Hence, the force Ft is electrical, and it should reduce the
kinetic energy of the mobile mass while increasing the electrical energy of the force
Ft generator. The Ft generator should be designed to maximise the power of the
energy conversion. The transducer is composed of the physical device interfacing
the mechanical and electrical domains, and the electronic networks connected to the
physical device from the electrical side. These networks (circuits) impact the value
of the generated force Ft , and should be considered part of the system related to the
transducer. In practice, the mobile mass should be mechanically attached/suspended
to the harvester frame related to the Ox reference frame. These suspensions are
usually implemented as springs (linear or nonlinear), which can be of zero stiffness
(in the case of a freely moving mass [9]). In addition, parasitic losses are usually
present (friction, air damping). These losses are modelled by a damper, which can
also be linear or nonlinear.

The equivalent model of the harvester in the mechanical domain is given in
Fig. 3.12b: in this diagram, all forces acting on the mass in the new reference frame 0x
are shown explicitly. Note that this figure defines the conventional positive directions
of the forces.

The mathematical model of such a system is given by the equation given by the
second Newtonian law:

− maext + Fspring(x) + Fdamping(x, ẋ) + Ft(x, ẋ, θ) = mẍ (3.81)

In this equation, Fspring(x) is an elastic force related with the suspensions of the
mobile mass. It depends only on the mobile mass position [34]. In the case of a linear
spring, it is equal to −kx, but the expression is more complex in practice (nonlinear
springs as in Sect. 3.2.1, stoppers [31], etc.). The force Fdamping(x, ẋ) represents the
damping force; it depends on the mobile mass velocity and in general, on x. In the
case of linear damping it is equal to −bẋ [34], but in practice, the model for damping
is more complex (e.g. nonlinear squeeze film damping, cf. [31]). Because of the
difficulties in modeling the high amplitude squeeze film damping, in most studies
this force is considered linear.

The transducer force depends, generally, on the position, the velocity and on some
set of parameters θ related with the construction of the transducer itself.

In this way, a KEH can be considered as a resonator characterised by its three
components (inertial, elastic and losses), submitted to an external force and associated
with a transducer generating the force Ft .

The harvested power is equal to the rate at which the energy is extracted from the
mechanical domain by the force Ft

P = − 1

Δt

∫ t+Δt

t
Ft ẋdt = −Ftẋ. (3.82)
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Fig. 3.13 Diagram
illustrating the energy flow in
a KEH

Dissipated on damper

Converted by the transducer

Input power

Mechanical domain

−Fdampingẋ

−Ftẋ
−maextẋ

where Δt is the time interval at which the system is considered. The minus sign
means that we are interested in the negative work done by this force.

The energy transformations in a KEH are characterised by the power, which,
in general, means the rate of energy evolution in a (sub)system. We highlight three
zones of the system, between which there is meaningful energy exchange: the external
vibrating frame (mechanical domain), the mechanical domain of the kinetic energy
harvester (energy of mass and spring) and the non-mechanical domain into which the
damper and the transducer convert the energy of the harvester (cf. Fig. 3.13). It should
be noted that at steady-state operation, the time average of the input energy flow is
equal to the time average of the output flow. Indeed, non-equality of these flows would
mean one of two impossible (absurde) behaviours: (i) the mechanical energy of the
resonator (mass and spring) increases without limits, which is in contradiction with a
limited geometry of the system, and with mandatory limitations on the mobile mass
motion magnitude, (ii) the mechanical energy of the resonator decreases to zero, so
the mass does not move and there is no energy flow, but this is in contradiction with
the hypothesis of steady-state operation.

3.3.2 Design and Optimization of KEH

The goal the design of a KEH is generally formulated with relation to the application.
Typically, the application specifies the desirable size of the system, the parameters
of external vibrations and the desired harvested power (which should generally be as
high as possible). Moreover, for different reasons related to the context of a particular
project, the technology is fixed as well, hence constraining the geometry of the key
resonator. Given these constraints, usually present in practice, two questions are of
importance

• What is the theoretical limit of the maximum power the system can convert.
• Given a resonator, what should be the transducer dynamics maximising the con-

verted power.

Presently, exhaustive answers to these questions exist only for the case of resonators
excited by vibrations having sinusoidal acceleration aext :

aext = Aext cos(ωt). (3.83)
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We propose here an analysis of a kinetic energy harvester submitted to sinusoidal
vibrations. In this section, we calculate the maximum power which can be extracted
and converted from external vibrations given the mobile mass, the system size and the
parameters of external vibrations. Then, we show what should be the force generated
by the transducer in order to maximise the power of the energy conversion.

3.3.3 Study of a General Case

The kinetic energy harvester is described by the second Newtonian law (3.81). To
calculate the instantaneous power injected into the mechanical domain by each force,
we multiply both sides of the equation by ẋ and integrate them over t

− maext ẋ + Fsprig(x)ẋ + Fdamping(x, ẋ)ẋ + Ft(x, ẋ, θ)ẋ = mẍẋ
∣∣∣ 1

Δt

∫ t+Δt

t
· dt (3.84)

It is reasonable to assume that if the input force is sinusoidal, the displace-
ment of the mobile mass x(t) is periodic, with the period of the external vibrations
T = 2π/ω, so that x(t) = x(t + T). This assumption excludes the cases of complex
system behaviour, when the motion can be chaotic. In the case of a periodic motion
of the mobile mass, the average power can be calculated over the period, i.e. taking
Δt = T/(2πω) in Eq. (3.84). At the same time, x is periodic and can be represented
by a sum of its harmonics with frequencies 0, ω, 2ω, etc.

x(t) =
∞∑

n=1

[an cos(nωt) + cn sin(nωt)] (3.85)

Eq. (3.84) represents the power balance of the system. The term related to −maext

represents the source of mechanical energy and is positive. The terms related to
Fspring and to mẍ represent the energy flow on the elastic spring and on the mass,
which is zero in the context of periodic motion. The terms related to Fdamping and
Ft represent the energy extracted from the mechanical domain: the first term is the
parasitic dissipation, the latter term represents the wanted energy transfer into the
electrical domain. These two terms are negative if they extract energy from the
mechanical domain.

Maximum Energy that can be Extracted from External Vibrations

We now calculate the maximum power that can be provided by the input vibrations,
i.e. the maximum achievable value of the power term related with −maext . We con-
sider the expression which gives power injected into the mechanical domain by the
external force



3 Oscillators for Energy Harvesting 97

Pext = 1

T

∫ t+T

t
(−maext)ẋdt (3.86)

aext is expressed by (3.83), and as a consequence only the ω harmonic of x contributes
to Pext . According to (3.85), the first harmonic of ẋ(t) is

ẋ1(t) = −a1ω sin(ωt) + c1ω cos(ωt). (3.87)

Thus we obtain the power

Pext = 1

T
mAext

∫ t+T

t
cos(ωt)[−a1ω sin(ωt) + c1ω cos(ωt)] =

1

2
mAextc1ωdt (3.88)

From this equation, it can be seen that the power given by the external force is un-
limited if no constraints are applied on the amplitude of the first harmonic. However,
practical (geometrical) considerations usually apply a limit on the maximum value
of the function x(t), that we call Xlim. It can be shown that the maximum amplitude
c1 of the sinusoidal component of the first harmonic of a periodic function x(t) such
as |x(t)| ≤ Xlim corresponds to the case when x(t) is an odd rectangular function with
amplitude Xlim

x(t) =
{

Xlim, t%T < T/2,

−Xlim, t%T ≥ T/2,
, (3.89)

where % denotes the modulo operator. This is proven by considering the formula
calculating c1

c1 = 2

T

T∫
0

x(t) sin(ωt)dt (3.90)

The interval of the integration T can be split into two halves at which the sinus
function keeps its sign

c1 = 2

T

T/2∫
0

x(t) sin(ωt)dt − 2

T

T∫
T/2

x(t)| sin(ωt)|dt (3.91)

From the latter formula, it is clear that for 0 < t < T/2, x(t) should be positive and
maximised, and for T/2 < t < T , x(t) should be negative and minimised. Because
of the limit on extreme values of x(t), Eq. (3.89) is obtained. For such x(t), c1
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is 4/π · Xlim. This trajectory of the mobile mass guarantees the extraction of the
maximum power from the external force. This maximum power is given by

Pextmax = 2

π
mAextXlimω. (3.92)

This expression states the absolute upper limit of power what can be extracted from
external sinusoidal vibrations, given the four parameters of Eq. (3.92). In practice,
this value of extracted power cannot be obtained. Indeed, the velocity corresponding
to the optimal x(t) is a train of Dirac functions

v(t) = Xlim(δ(t + nT) − δ(t + nT − T/2)), n ∈ N (3.93)

In this formula, the Delta function has a dimension of one over the time (1/sec). Such
a velocity corresponding to an infinite kinetic energy of the mobile mass during the
transition between the levels −Xlim and Xlim has no physical sense. Moreover, the
formula (3.92) bounds the extracted energy, and only a part of it can be converted
into electricity, because of unavoidable losses (cf. the next section).

Maximum Power Which can be Converted by the Transducer

As mentioned in Sect. 3.3.1, only a part of the energy extracted from the external
vibrations is converted into electricity if the resonator is subject to mechanical losses.
In this section, we calculate the maximum power which can be converted by the
transducer (Pt), given the geometry of the resonator and the parameters of the external
vibrations, under constraints of maximum amplitude of the mobile mass displacement
Xlim. We start from the Eq. (3.84), and we consider the power extracted by the
transducer

Pt = − 1

T

∫ t+T

t
Ft ẋ dt =

= − 1

T

∫ t+T

t

[
maext − Fspring(x) − Fdamping(x, ẋ) + mẍ

]
ẋdt

(3.94)

The minus sign before the integral means that we express the power extracted
from the mechanical domain.

It can be shown that the terms mẍ and Fspring(x) do not contribute to the power
Pt , i.e.

∫ t+T

t
Fspring(x)ẋ dt = 0 (3.95)

and
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∫ t+T

t
mẍẋ dt = 0 (3.96)

for any x(t) with period T . Physically, it means that in steady-state mode, the average
energy of the mass and of the spring remains constant.

In this way, only the terms maext and Fdamping contribute with non-zero power. So,
we can write

Pt = − 1

T

∫ t+T

t

[
maext ẋ − Fdamping(x, ẋ)ẋ

]
dt (3.97)

We should now look for x(t) maximising this expression, where x(t) is defined by
(3.85).

The integral (3.97) has two components including ẋ. In the first one, only the
fundamental sinusoidal harmonic of x(t) has a non-zero contribution to the value of
the integral, since aext is cosinusoidal (cf. (3.83)). The first term is equal to

− 1

T

∫ t+T

t
maext ẋdt = −1

2
mc1Aextω (3.98)

The second term of the integral can be calculated if the function Fdamping(x, ẋ)
is known. In this study, we consider the most common case, where the damping is
linear and is given by

Fdamping(x, ẋ) = −bẋ. (3.99)

The second term of (3.97) becomes:

− 1

T

∫ t+T

t
bẋ2dt = −1

2
b

∞∑
n=1

[
(annω)2 + (cnnω)2] (3.100)

Therefore, for the power absorbed by the transducer, we have

Pt = −1

2
mc1Aextω − 1

2
b

∞∑
n=1

[
(annω)2 + (cnnω)2

]
,

maxt∈[0,T)[x(t)] ≤ Xlim (3.101)

We need to find a trajectory given by coefficients an and cn to maximise (3.101).
This optimization problem does not have an analytical solution, but can easily be
solved with a numerical tool.

One particular case allows an exact solution in closed form. If there is no limitation
on the maximum value of x(t), the optimization problem is trivial: all coefficients
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except c1 should be zero (the displacement is sinusoidal), and the problem is reduced
to an optimisation of a function with one parameter c1. It can be shown that in this
case, the optimal c1 is

c1 = −0.5mAext/(bω), (3.102)

the optimal mobile mass displacement is

xopt(t) = −mAext

2bω
sin(ωt), (3.103)

and the maximum power is

Pt max = 1

8

(mAext)
2

b
. (3.104)

The corresponding optimal transducer force can be found if the obtained optimal
x(t) is submitted into the Eq. (3.105). We have for Ft(t)

Ft(t) = maext + mẍ − Fsprig(x) − Fdamping(x, ẋ) (3.105)

This equation provides the optimal evolution in time of the force of transducer.
In general, this force should be nonsinusoidal, in order to balance the harmonics
generated by the nonlinear spring. We consider a particular common case, when the
elastic force is linear and is expressed as

Fspring(x) = −kx. (3.106)

We obtain for optimal Ft

Ft(t) = maext + mẍ + bẋ + kx =
mAext cos(ωt) − mx1ω

2 sin(ωt) + bx1ω cos(ωt) + kx1 sin(ωt) =
(mAext + bωx1) cos(ωt) − x1(mω2 − k) sin(ωt) =

1

2
mAext cos(ωt) + mAext

2b

(
mω − k

ω

)
sin(ωt) (3.107)

3.3.4 Case of a Narrow Band Resonator

If the resonator is of high quality (narrow frequency band), and if the frequency
of the external sinusoidal vibration is in the resonator passband, its motion can be
considered sinusoidal, as higher harmonics of nonlinear nonsinusoidal forces are
filtered out by the resonator frequency characteristic [19]. In this case, the general
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expression for the mobile mass displacement is

x(t) = x1(t) = a1 cos(ωt) + c1 sin(ωt). (3.108)

This case can be analysed rigorously, with simple mathematical tools. The analysis
is presented in this section.

Maximum Power Which can be Extracted from the External Force

The expression Pext defined in Eqs. (3.86) and (3.88) is maximised if c1 = Xlim,
a1 = 0, i.e. when

x(t) = Xlim sin(ωt). (3.109)

The maximum power that can be extracted is

P1
extmax

= 1

2
mAextXlimω. (3.110)

Obviously, P1
extmax

is below the absolute limit given by (3.92).

Maximum Power Which can be Converted by the Transducer

In order to find the maximum power which can be extracted by a transducer, we
consider again the expression (3.97) providing the power converted by the transducer
in the context of a periodic motion of the mobile mass. We submit (3.108) into it, and
we are looking for a1 and c1 maximising the converted power. Considering linear
damping (Eq. 3.99) and submitting (3.108) into (3.97), we have

Pt = −1

2
mAextωc1 − 1

2
bω2(a2

1 + c2
1) (3.111)

This expression is maximised when a1 is zero, and when c1 = −mAext/(2ωb) (the
global maximum of a quadratic function with a negative quadratic coefficient). This
is the same result as that obtained in Sect. 3.3.4 (Eq. 3.102). Now, we consider two
cases.

(a) Xlim is less than the absolute value of Eq. (3.102). In this case, the limitation on
the maximum displacement is not restrictive. The optimal system behaviour is
described in Sect. 3.3.4.
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(b) However, when Xlim is less than mAext/(2ωX), the valid interval for c1 is −Xlim ≤
c1 ≤ 0 (the optimal a1 is still zero), and this interval corresponds to the right
(increasing) branch of the parabolic function Pt(c1) (3.111). Hence, the optimal
value of c1 is −Xlim, and, for the optimal power, we get

Pt = 1

2
mAextωXlim − 1

2
b(ωXlim)2. (3.112)

We let the reader calculate the transducer force Ft guaranteeing this power of con-
version.

This result can be summarised in one equation, showing the maximum power a
transducer can extract from the mechanical domain

Pt =

⎧⎪⎪⎨
⎪⎪⎩

1

8

(mAext)
2

b
,

mAext

2bω
< Xlim,

1

2
ωXlimmAext − 1

2
b(ωXlim)2,

mAext

2bω
≥ Xlim,

(3.113)

The corresponding optimal transducer force is given by

Ft(t) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
mAext cos(ωt) + mAext

2b

(
mω − k

ω

)
sin(ωt),

mAext

2bω
< Xlim,

(mAext − bωXlim) cos(ωt) + Xlimω

(
mω − k

ω

)
sin(ωt),

mAext

2bω
≥ Xlim,

(3.114)

3.3.5 Conclusion

The above analysis presents the ideal behaviour of the transducer in the context
of kinetic energy harvesting and defines the upper limit of the performance of a
harvester composed of a realistic resonator (with losses) and some ideal transducer.
Unfortunately, physical constraints and limitations of realistic transducer devices
make the transducer behaviour deviate from the idealistic scenario. Nevertheless,
an awareness of the upper bound of performances of kinetic energy harvesters may
help in design of the KEH systems, and may provide an objective measure of the
efficiency of the designed and implemented KEH.
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Appendix I

In this appendix, we calculate the fundamental harmonic of the force generated by a
nonlinear spring submitted to sinusoidal deformation. Let the spring be characterised
by the relationship between the force Fspring and the deformation x

Fspring = F(x), (3.115)

and x is given by

x = X sin(ωt). (3.116)

The complex amplitude of the fundamental harmonic of the force Ḟspring is
given by

Ḟspring = ω

π

∫ T

0
f [X sin(ωt)]e−jωtdt (3.117)

(Do not confuse Ḟspring used in this section with the notation for the derivative.)
We first calculate the real part of this integral

Re(Ḟspring) = ω

π

∫ T

0
f [X sin(ωt)] cos(ωt)dt =

1

π

∫ T

0
f [X sin(ωt)]d sin(ωt) = 1

π

∮
y

f [Xy]dy (3.118)

Since the force of a spring is potential, this integral on a closed path is zero, so
that

Re(Ḟspring) = 0. (3.119)

Now we calculate the imaginary part

Im(Ḟspring) = −ω

π

∫ T

0
f [X sin(ωt)] sin(ωt)dt =

1

π

∫ T

0
f [X sin(ωt)]d cos(ωt) =

1

π

∫ −1

1
f [X

√
1 − y2]dy + 1

π

∫ 1

−1
f [−X

√
1 − y2]dy (3.120)

For the complex amplitude of the spring force, we get
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Ḟspring = j

[
1

π

∫ −1

1
f [X

√
1 − y2]dy + 1

π

∫ 1

−1
f [−X

√
1 − y2]dy

]
(3.121)

and as a consequence, the force in the time domain is given by

Ḟspring =
[

1

π

∫ −1

1
f [X

√
1 − y2]dy + 1

π

∫ 1

−1
f [−X

√
1 − y2]dy

]
sin(ωt). (3.122)

Appendix II

In this appendix, we calculate the fundamental harmonic of the force generated by a
nonlinear damper submitted to sinusoidal deformation. Let the damper characterised
by the relationship between the force Fdamper and the deformation x

Fdamper = F(ẋ), (3.123)

and x is given by

x = X sin(ωt). (3.124)

The complex amplitude of the fundamental harmonic of the force Fdamper is
given by

Ḟdamper = ω

π

∫ T

0
f [Xω cos(ωt)]e−jωtdt (3.125)

We first calculate the real part of this integral

Re(Ḟdamper) = ω

π

∫ T

0
f [Xω cos(ωt)] cos(ωt)dt =

1

π

∫ T

0
f [Xω cos(ωt)]d sin(ωt) =

1

π

∫ 5T/4

T/4
f [Xω cos(ωt)]d sin(ωt) =

1

π

∫ −1

1
f [Xω

√
1 − y2]dy + 1

π

∫ 1

−1
f [−Xω

√
1 − y2]dy (3.126)

Now we calculate the imaginary part



3 Oscillators for Energy Harvesting 105

Im(Ḟdamper) = −ω

π

∫ T

0
f [Xω cos(ωt)] sin(ωt)dt =

1

π

∫ T

0
f [Xω cos(ωt)]d cos(ωt) =

1

π

∮
y

f [Xωy]dy (3.127)

According to the Green-Riemann theorem [29], this integral is zero.
The expression of the reaction force of a damper is

Ḟdamper =
[

1

π

∫ −1

1
f [Xω

√
1 − y2]dy + 1

π

∫ 1

−1
f [−Xω

√
1 − y2]dy

]
cos(ωt).

(3.128)
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Chapter 4
Transducers for Energy Harvesting

E. Blokhina, A. El Aroudi and D. Galayko

4.1 Capacitive Transducers

This section presents the basic information describing capacitive transducers used
as converters of mechanical energy into electricity [6, 16].

The widespread use of capacitive transducers has become possible thanks to the
miniaturization of electronic systems. Indeed, capacitive transducers are inefficient
at microscale, for reasons which will be explained later in this section. Capacitive
transducers are mainly implemented with MEMS silicon technologies which are
compatible with the requirements of batch fabrication.

Capacitive transducers are used as sensors/actuators for the transfer of information
between the mechanical and electrical domains. For information processing, the
functions describing relations between mechanical and electrical quantities should
be linear. For that reason, the preferable mode of operation of the transducer/actuator
is a small-signal mode, where the magnitude of dynamic quantities is small enough
to negate the nonlinear distortions.

The energy conversion, however, sets very different constraints. Not only is the
linearity of the conversion not important, but in many cases nonlinear behavior of
electrical and mechanical devices is unavoidable or even desirable. The energy con-
version devices operate at large amplitude mode, and linearized small-signal mode
is not adequate for modeling of the behavior.
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As will be shown, a capacitive transducer is an intrinsically nonlinear device.
Moreover, in themodeof the energy conversion, the transducer is associatedwith con-
ditioning electronics having a time-variant operation. Nonlinear models are required
in the study and design of energy conversion systems with use of capacitive trans-
ducers.

4.1.1 Presentation of a Capacitive Transducer

A capacitive transducer is a physical capacitor whose geometry can change in time
and so, to vary the electrical capacitance. Although a capacitor can be of any geomet-
rical shape (spheric, cylindric,...), in practice, the most common shape is a parallel
plate capacitor, whose geometry is given in Fig. 4.1. Such a capacitor is constituted
from a pair of parallel conductive planes (electrodes) spaced by some distance, called
“gap.” A dielectric material can be present between the planes. The capacitance Ct

of such a transducer is

Ct = ε0εr
S

d
, (4.1)

where d is the distance between the planes (gap), S is the overlapping area of the
planes, ε0 is the permittivity of the vacuum (a fundamental constant, equal to 8.85 ·
10−12 Fm−1), and εr is the dielectric constant of the material between the electrodes.

Fig. 4.1 Geometry of a
parallel plate capacitor
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The capacitance of a parallel plate capacitor is a function of three parameters, and
a variation of each of them produces a variation of the capacitance

Ct (t) = ε0εr (t)
S(t)

d(t)
. (4.2)

Most existing variable capacitors operate in air or in vacuum, so that εr ≈ 1. How-
ever, there are “exotic” cases where the variation of the capacitance is produced by a
motion of the dielectric material separating the electrodes(cf. Fig. 4.2), in particular,
in fluidic devices.

A variable capacitor is usually obtainedwhen one electrode of the capacitormoves
with regard to the other. To simplify the analysis, it is usually considered that one
electrode of the capacitor is fixed, and the other moves. This is the most common
configuration in energy harvesters (and will generally be assumed in this book),
although there are many other applications of capacitive transducers where both
electrodes are mobile [7]. In principle, the motion can be in any direction, but in the
majority of devices there are only two possible and exclusive kinds of motion: (i)
electrodes move in their plane, or (ii) electrodes move along the axis normal to their
planes. The choice of the particular motion mode is obtained by implementation of
a particular geometry of capacitor, so that all undesirable directions of motion are
blocked. We now consider two cases of variable capacitor geometry.

(1) The parallel motion of electrodes. Such a capacitor is called an “area overlap
capacitor” (Fig. 4.3). In this case the distance between the electrodes is kept constant,
and the capacitance varies according to

Ct (t) = ε0
S(t)

d
. (4.3)

Fig. 4.2 Principle of a
capacitive transducer with
movable dielectric
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Fig. 4.3 Geometry of a
transducer with parallel
motion of electrodes

The variation of the overlapping area can be related to the relative displacement
of the electrodes by a function S(x), where S(·) depends on the geometry of the
transducer. If the transducer electrodes have a rectangular shape (the most common
in energy harvesters), and themobile electrodemoves in parallel with one of its sides,
the function S is given by

S(x) = l(x0 ± x), (4.4)

where l is the length of the side perpendicular to the motion, x0 is the length of the
overlapping rectangular area at rest. The parameter x0 and the sign of x depend on
the choice of the reference frame. For the structure given in Fig. 4.3, x0 = w, and
S(x) is expressed as

S(x) = l(w − |x |). (4.5)

In general, the relationship between the capacitance of a parallel plate transducer
and the position of the mobile electrode (x) can be expressed as

Ct (x) = ε0
l(x0 ± x)

d
. (4.6)

It should be noted that the function (4.4) may become zero. It is very important
to remember, that the model of a parallel plate capacitor is only valid when the
dimensions of the overlapping area are much greater than the gap. If the overlapping
area goes to zero, there is residual capacitance, which is not accounted for anymore
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by (4.1), but which is non zero. A typical plot of capacitance for a rectangular area
overlap transducer versus position of the mobile electrode is given in Fig. 4.4. As
can be seen, the relation between Ct and x is linear only when the overlapping area
is large. Even if no overlap exists and the plates are separated far each from other
(formally, it corresponds to a negative overlapping area), the capacitance is still not
zero. Ignoring this point may lead to completely wrong results in modeling and
simulation.

(2) Perpendicular motion of the electrodes. A transducer whose mobile electrode
moves following the direction normal to the plane is called a “gap closing variable
capacitor” (Fig. 4.5). Its capacitance changes according to:

Ct (t) = ε0
S

d(t)
(4.7)

Fig. 4.4 The relationship between the capacitance of an area overlap transducer and the position
of the movable electrode (Fig. 4.3). For the case when the overlapping area is large, Ct (x) is linear,
otherwise, when the overlapping area goes to zero and becomes negative, the characteristic is
nonlinear

Fig. 4.5 Geometry of a
capacitive transducer with
gap-closing geometry
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The transducer gap is linearly related to x

d(t) = d0 ± x(t). (4.8)

Here d0 is the initial gap of transducer at rest (x = 0). d0 and the sign before x depend
on the choice of the reference frame.

The capacitance is expressed over x as

Ct (x) = ε0
S

d0 ± x
. (4.9)

It should be noted thatCt (x) tends toward infinity when the denominator becomes
zero. In practice, this corresponds to a strong increase in the transducer capacitance
when the electrodes become separated by very small distance. In this case the attract-
ing force approaches infinity as well, resulting in a strong risk of instability. For this
reason stoppers are added in practical devices, to prevent the reduction of gap between
the electrodes below some predefined value.

An important conclusion of this subsection is that the capacitance is a geometrical
parameter, and the function Ct (x) depends only on the geometry of the transducer.

4.1.2 Electrical Operation of a Variable Capacitor

From an electrical point of view, a capacitor is a system of two electrodes separated
by a dielectric or by a vacuum. A capacitor behaves as an electrical element when its
two electrodes have different electrical charges. If electrodes 1 and 2 have charges
Q1 and Q2, the voltage between the electrodes is given by

V12 = φ1 − φ2 = Q1 − Q2

2C
. (4.10)

Here V12 is the voltage equal to a potential difference between the electrodes (φ1 −
φ2). Note that the electrode having the highest charge has the highest potential.

In electronics, a capacitor is usually considered as an electrically neutral device,
so that its electrodes have the same absolute charge, but of opposite sign. This charge
is called “the charge of the capacitor.” Its sign is defined by the sign of the charge
in one of the electrodes chosen arbitrarily, called “positive electrode” and labeled
by character “+” (cf. Fig. 4.6). This figure demonstrates also the definition of the
conventional positive voltage of the capacitor (the arrow points toward the positive
electrode). The equation describing the capacitor is written as

Q = CV (4.11)
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Fig. 4.6 Definition of the
charge of the capacitor

The neutrality of a capacitor is a very important hypothesis for electrical circuit
analysis. In particular, it allows the use of Kirchhoff laws for the circuit analysis
(the current law). In practice, the neutrality of capacitors is ensured by existing DC
(direct current) paths to the ground, thanks to different electrical devices or thanks
to leakages.

It can be shown that a capacitor stores energy. This is the energy of the electrical
field existing between the electrodes of the capacitance. Since this field is created by
the charges on the capacitor, the stored energy W depends directly on the quantity
of charges stored by the capacitance

W = Q2

2C
(4.12)

This is a potential energy, and it is always positive.

4.1.3 Forces in a Capacitive Transducer

The existence ofmechanical forces created by the electrical field of a capacitor allows
the use of a capacitor as a potential electromechanical transducer. These forces are
applied to all parts of a capacitor.1 To calculate the mechanical force applied to some
part of the capacitor along an axis x , the following mental experiment should be
made:

• The considered part of the system should be made freely movable along the axe
x ,

• The considered part should be moved along this axis by infinitesimal distance dx ,
• the capacitance variation dC should be measured.

The force along the axe x is then calculated as

Fx = 1

2
V 2 dC

dx
, (4.13)

where V is the voltage of the capacitor.

1A force is a notion from mechanics, but sometimes in the literature the forces created by electrical
phenomena are called “electrical forces.” Their action on mechanical system are described by usual
laws of mechanics.
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As a consequence, an electrostatic force is only applied to the parts whose geo-
metric position impacts the value of the capacitance: the electrodes and the dielectric
between the plates. The force is oriented in the direction of increasing capacitance.

For the geometries of transducers considered in the previous subsections, the
forces Ft are given by the following expressions. For an area overlap capacitor whose
capacitance is given by (4.6)

Ft = ±1

2
V 2
t ε0

l

d
. (4.14)

For a gap-closing transducer whose capacitance is given by (4.9)

Ft = ∓1

2
V 2
t ε0

S

(d0 ± x)2
. (4.15)

Note that in the case where the transducer gap goes to zero, the force becomes
infinite.

These expressions explain why a capacitive transducer is only efficient at the
microscale. Indeed, the transducer force does not scale with the device dimensions
(since both S and (d0 − x)2 scale quadratically), whereas mechanical forces are at
least proportional to the dimensions for the springs. For the masses, the inertia force
is proportional to the cube of linear dimensions. It means that electrostatic forces are
too weak to be useful at the macroscale.

These expressions highlight the dependence of the transducer force on the voltage.
The ability to modulate the transducer force by the applied voltage is a powerful tool
for electrical synthesis of mechanical behavior. However, the transducer force is
unilateral, i.e., cannot change sign, because of the square dependence of the voltage.
This creates some problems both for sensor/actuator implementation [16] and for
the energy conversion. One possible solution is the use of a differential capacitive
transducer. Differential structures are often used for sensing/actuating applications,
but they are too complex to be widespread in energy harvesting devices.

4.1.4 Energy Conversion with a Capacitive Transducer

The work of the force generated by the capacitive transducer represents the energy
transferred between the mechanical and the electrical domains.

Suppose that during a time interval [t1, t2] the capacitance of transducerCt changes
monotonically. The work produced by the force of transducer during a time interval
[t1, t2] is given by

A =
∫ t2

t1

Ftvdt =
∫ t2

t1

1

2
V 2
t

dCt

dx

dx

dt
dt =

∫ C2

C1

1

2
V 2
t dCt , (4.16)
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Fig. 4.7 Example of a cyclic operation of a capacitive transducer plotted in the charge-voltage
plane

whereC1 = Ct (t1) andC2 = Ct (t2), and v is the instantaneous velocity of the mobile
electrode.

Since V 2
t ≥ 0, the work is positive when the capacitance increases, and is negative

when the capacitance decreases.Mechanical energy is converted into electricitywhen
this work is negative. By consequence, for the energy harvesting applications, the
voltage on the transducer should be minimized when the capacitance increases, and
maximized when the capacitance decreases.

The quantity Ct evolving in time can be seen as a path defined in the plane
(Vt , Qt ), given by the relation Ct = Qt/Vt , and the integral can be seen as a path
integral. This allows an application of the formalism of vector calculus. Given dCt =
dQt/Vt − (Qt/V 2

t )dVt , the above formula can be written as

A = 1

2

∫
Γ

[VtdQt − QtdVt ] , (4.17)

where Γ is the path which the transducer state follows in the plane QV, between the
times t1 and t2, and

∫
Γ
is the path integral.

If the curve Γ forms a cycle so that the Ct (t1) = Ct (t2), the work A is written as

A = 1

2

∮
Γ

[VtdQt − QtdVt ] . (4.18)

According to Green’s theorem, this formula expresses the area enclosed by the curve
Γ , if the path is positively oriented in the plane (Vt , Qt ), i.e., the path is counter
clockwise in the QV plane in Fig. 4.7. (cf. proof in the appendix I). When the path is
negatively oriented (clockwise), Eq. (4.18) is negative, and the area enclosed by the
path represents the energy converted into electricity during the cycle of Ct variation.
The line representing the state of the transducer in the (Vt , Qt ) plane is called “QV
diagram,” and is a very elegant representation widely used for the analysis of the
energy conversion achieved by capacitive transducers.
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4.1.5 Optimization of the Operation of a Capacitive
Transducer

The goal when designing energy harvesters is to maximize the area of the cycle QV
corresponding to the converted energy. Let us consider a transducer whose capaci-
tance variation is between Cmin and Cmax . In the QV plane, all possible states of this
transducer are limited by loci Qt = CminVt and Qt = CmaxVt (Fig. 4.8). This defines
an open segment with infinite area on the QV plane, if there is no limit on the voltage
on the transducer. In practice, the voltage is always limited by the technology, let us
say, by a value Vmax . In this way, an ideal QV cycle is a triangle, formed by the lines
C = Cmax , C = Cmin , Vt = Vmax (triangle OMN, Fig. 4.8). Its area is given by

ΔW = 1

2
V 2
max (Cmax − Cmin). (4.19)

Such aQV cycle is called “constant voltageQV cycle” [11]. This term emphasizes
the fact that the energy conversion is achieved when the voltage on the transducer is
constant.

This formula provides an opportunity to estimate the maximal energy and power
that can be generated by a capacitive transducer in a realistic context. We take the
value for Cmin and Cmax from a state-of-the art MEMS capacitive transducer [1] (40
pF and 140 pF respectively) and 50V for Vmax (the limit for the 0.35 µm technology
of AustrianMicrosystem).We obtain 125 nJ per cycle. And with the frequency of the
capacitance variation at 100 hertz, it corresponds to 12 µWof converted power. This
figure should be seen as the order of magnitude of the maximal convertible power
with capacitive transducers at microscale. This value can be changed if one assumes
different hypotheses on the frequency, transducer parameters, and the maximal volt-
ages.

As follows from the formula (4.16), the operation of a capacitive transducer is fully
controlled by the voltage waveform Vt (t) applied to its electrodes as the transducer
capacitanceCt varies. Indeed, for each value ofCt , as far asVt is defined, the electrical
state of the transducer is uniquely defined through the formula Qt = CVt . In this

Fig. 4.8 Ideal QV cycle
giving the following system
parameters and limitations:
the transducer capacitance
varies from Cmin to Cmax ,
the maximal allowable
voltage is Vmax
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way, by generating an appropriate voltage waveform on the transducer, it is possible
to “synthesize” any desirable QV cycle. This is one of the roles of the conditioning
circuit: definition of a dynamic biasing required for the energy conversion by the
transducer. In that way, a capacitive vibration energy harvester is composed of a
mechanical device, of a capacitive transducer, and of a conditioning circuit which
sets dynamically the voltage Vt and the charge Qt of the transducer, cf. Fig. 1.4

However, the QV cycles implemented practically are often different from the
optimal cycle given in Fig. 4.8. The first reason is the difficulty to generate the optimal
QV cycle at a reasonable energy cost. Second, the optimization of the converted
energy is only one of two roles of the conditioning circuit. The other role is the
optimal transmission of the converted energy toward the storage or load device.
The compromise between the efficiency of these two functions results in suboptimal
power conversion. Design of conditioning circuits will be discussed in Chap. 8.

4.1.6 Electromechanical Coupling

In the previous subsections, we assumed a defined variation of the transducer capac-
itance, between Cmin and Cmax . This hypothesis is non realistic, and that can be
highlighted in the following mental experiment. Imagine a transducer attached to
a given resonator submitted to some external vibrations. For some conditions, the
capacitance of the transducer varies between Cmin and Cmax . According to (3.92),
there is an upper bound of the power Pextmax , that the system is able to convert from
the mechanical to the electrical domain. Suppose that the triangular cycle of Fig. 4.8
is used. According to the Eq. (4.19), the energy converted by the transducer can have
any large value, if the voltage Vmax is not limited. There is an apparent contradic-
tion, which is solved by the consideration of the electromechanical coupling. Indeed,
assuming a given variation of the transducer capacitance is equivalent to assume a
given motion of the mobile mass. However, the energy conversion is done through
an application to the mass of the transducer’s force, which is proportional to the
square of the voltage. If the voltage is high, this force is large, and the motion of
the mobile mass is likely to be affected by the process of the energy conversion.
By consequence, the capacitance variation of the transducer is affected, therefore
enforcing the fundamental limit given by (3.92).

This situation explains the difficulty in analysis and design of capacitive vibration
energy harvesters. In order to analyze the energy conversion of the transducer, the
capacitance variation (and hence, the motion of the mobile mass) should be known,
but the mechanical dynamics of the system are strongly affected by the electrical
operation of the transducer, especially when the energy conversion is to be maxi-
mized. More insight into the methods allowing analysis and design of kinetic energy
harvesters with capacitive conversion will be presented in Chaps. 8 and 9.

http://dx.doi.org/10.1007/978-3-319-20355-3_1
http://dx.doi.org/10.1007/978-3-319-20355-3_8
http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_8
http://dx.doi.org/10.1007/978-3-319-20355-3_9


118 E. Blokhina et al.

4.2 Piezoelectric Transducers

4.2.1 Piezoelectric Mechanism

This section describes briefly energy harvesting using the piezoelectric mechanism.
Piezoelectric energy harvesting is the process of acquiring the energy surrounding
a vibrating system and converting it into usable electrical energy using a piezoelec-
tric transducer. Piezoelectricity means electrical energy that results frommechanical
pressure. It is generated by the accumulation of electric charge in certain solid mate-
rials when they are mechanically pressed. The piezoelectric effect was discovered
in 1880–1981 by the French Curie brothers [2, 3] in naturally occurring crystals.
However, it was only in 1950s that started to be used for industrial applications.
Since then man-made materials have been also demonstrated to exhibit piezoelectric
effects which have been increasingly used and can be regarded as a mature technol-
ogy since it is being exploited in various applications such as medical [17], trans-
portation, [20] and cell phone battery chargers among others. In the transportation
industry, for example, piezoelectric elements are used, among others, as knock sen-
sors for detecting irregular combustion, for ultrasonic distance sensors for parking,
fuel injection systems, active vibration reduction, and for energy harvesting [13].
Depending of what type of physical effect is used, piezoelectric can be designed
to operate as sensors, actuators, or transducers [18]. The first case makes use of the
direct piezoelectric effect and the mechanical energy is transformed into an electrical
energywhich ismanifested as voltage signal between the surfaces of the piezoelectric
material (Fig. 4.9).

Actuators takes advantage of the reversible process of piezoelectricity in the sense
that when a voltage is applied to a piezoelectric material this will deform (Fig. 4.10).

The deformation in the reverse process is usually very slight and proportional to
the voltage applied, and so the reverse effect finds application in precise movement
detection on themicroscale. The piezoelectric sensor convertsmechanical energy into
electrical energy, and the actuator converts electrical energy into mechanical energy.
Finally, in transducers both effects are used within the same device. Therefore, a
transducer may be used as an actuator.

Fig. 4.9 Direct piezoelectric
effect

V
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Fig. 4.10 Reverse
piezoelectric effect

+

Fig. 4.11 A cantilever
beam-based energy harvester

4.2.2 Energy Harvesting Using Piezoelectric Transducers

The use of piezoelectric effect in energy harvesting applications has been investigated
since the beginning of the 1990s and since then it became an emerging technology.
When a body, to which a piezoelectric material is attached, moves, the last one
vibrates and produces electricity. The piezoelectric energy harvesting produces rela-
tively higher voltage and power density levels than electromagnetic and electrostatic
harvesters. One of the most effective methods of implementing an energy harvester
system using piezoelectric materials is to use mechanical vibration to apply a strain
energy to it. Energy harvesting from mechanical vibration usually uses ambient
vibration around the harvester as an energy source, and then converts it into electri-
cal energy, in order to power other devices ranging fromdigital electronics towireless
transmitters. The piezoelectric energy harvester is typically a cantilever beam struc-
ture with piezoelectric layers attached on the beam and a mass at its free end to
amplify strains resulted from a given external force ξ(t) (Fig. 4.11).
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Beams and cantilevers can be considered as elastic systems and are usually mod-
eled by distributed-parameter models represented by partial differential equations
with specified boundary conditions. The motion of the beam can be described by the
so called Euler–Bernoulli equation. For small oscillations, the response can be ade-
quately described by linear equations and boundary conditions. Energy harvesters
can be modeled by a reduced-order single degree of freedom spring–mass systems.
However, in general, the governing equations, boundary conditions, or both are non-
linear.

The schematic diagram representation of the model is shown in Fig. 4.12. It con-
sists of a typical spring–mass-damper system with a mass m, a total damping b, and
an external force ξ(t) as source of vibration. By developing theEuler–Bernoulli equa-
tion and performing a model reduction the following mass–spring dynamic model is
obtained for the considered transducer,

mẍ = −∂Wp

∂x
− bẋ + ξ(t) (4.20)

where x is the displacement, m represents the effective mass of the layer, and b
stands for the damping factor. Different kinds of external vibrational source ξ(t) can
be considered. In some cases, these sources are governed by stochastic laws and their
parameters can only be known in terms of statistical estimators such as mean values
and variances [4, 10]. However, there are other applications where these sources can
be considered deterministic signals such as in rotating machines and in vehicle and
aircraft tires [20]. In the first case the idealized excitation sinusoidal term will only
represent an approximation of the real case.

In order to take into account the dynamic coupling of the piezoelectric device,
an extra differential equation describing the output voltage vo (applied to the load)
must be added to the system in (4.20). Considering resistive load R is connected at
the output of the transducer and applying Kirchoff’s voltage law for the electrical
subsystem and the secondNewton law for themechanical part, the following coupled
governing differential equation is obtained

Fig. 4.12 Schematic
diagram the
spring-mass-damper model
for a piezoelectric transducer
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mẍ + ∂Wp

∂x
+ bẋ = Γvvo + ξ(t) (4.21)

v̇o + 1

RC
vo = α ẋ (4.22)

whereΓv is the piezoelectric coupling parameter in themechanical part of the system,
R is the resistive load, C is the equivalent capacitance of the piezoelectric layers,
and α is the piezoelectric coupling parameter in the electrical part of the system. In
the linear case, the potential energy is given by

Wp(x) = 1

2
kx2 (4.23)

Therefore, the model described in (4.21)–(4.22) becomes as follows:

mẍ + bẋ + kx = Γvvo + ξ (4.24)

v̇o + 1

RC
vo = α ẋ . (4.25)

A state-space model can be obtained from the previous mathematical representa-
tion for numerical simulation and a study of the harvested voltage vo and the corre-
sponding harvested power P = vo,rms/R can be analyzed in terms of the excitation
level using simple linear theory.

For applications where the vibration frequency is known, linear piezoelectric har-
vesters can be efficient.However, like in other kind of energy harvesting technologies,
the main drawback of a linear piezoelectric vibration energy harvester is a narrow
bandwidth implying a tight tuning of the linear resonant harvester tomatch the vibrat-
ing source frequency when this is uncertain or time varying. The next section gives
more details on the shortcoming of linear resonators operating as energy harvesters
and presents some existing alternatives.

As mentioned previously, in most of the reported studies, the energy harvesters
are designed as linear resonators by matching the resonant frequency of the harvester
with that of the external excitation to extract maximum power. This maximum power
extraction depends on the quality factor (Q factor) of the linear resonator. However, it
is viable onlywhen the excitation frequency is known a priori.Moreover, amaximum
energy extraction with a high Q factor will paradoxically imply a limited and narrow
frequency range within which energy can be harvested. The performance of these
systems is therefore rapidly degraded if the excitation frequency is far from the
resonant one and they are efficient only when an optimum design is implemented
by tuning the resonance frequency to match with the ambient source vibrations
frequency. However, in environments where no single dominant frequency exists,
these performances can be lowered significantly as the excitation frequency moves
away from the designed frequency [9]. Some solutions have been reported recently to
remedy these problems.Among them, resonance tuning and frequency up-conversion
techniques [14, 19]. These methods can overcome the above mentioned problems
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at the expense of making their implementation a challenging task. For instance,
resonance tuning implies the change of the mass of the harvester while frequency-up
conversion would imply the use of an array of resonators which would increase the
size and cost of the harvester and making it not a suitable choice for small self-
powered portable devices.

Traditionally, nonlinearities are to be avoided in device design. However, recently
these nonlinearities have been shown to have potential to allow designers to take
advantages of nonlinear behavior in certain applications [9], where the performance
of energy harvesters is enhanced by inducing a bistable potential well through intro-
ducing suitable polynomial nonlinearities inducing a double well potential effect
which makes the harvester efficient in a broad frequency range including low fre-
quencies. Using this approach, rather than resonance frequency tuning, the nonlin-
earity of the system is exploited to improve the performances of the energy harvester
within a wide frequency range outperforming, in this way, classical resonant energy
harvesters [9, 21]. These techniques have been demonstrated to work both at the
microscale [8] and nano-scale [10]. Polynomial nonlinearity is not the only way
to enhance the performances of the harvesters at low frequencies. Other alternative
inducing similar double well effect is in [22].

Double well potential in piezoelectric transducers can be induced by placing
permanent magnets in the proximity of the proof mass (Fig. 4.13) forming the double
well beam system studied in [12] for the first time.

It consists of a cantilever beam hung vertically with the free end attached by two
magnets as shown in Fig. 4.13. The harvester is realized with a piezoelectric beam,
in which magnetic effect induces double well potential. On the free end of the beam

Fig. 4.13 An example of a
piezoelectric cantilever beam
energy harvester system
arranged such that it has two
different equilibrium point in
the absence of excitation
force by placing two
magnets in the proximity of
the free end



4 Transducers for Energy Harvesting 123

two magnets has been added. In the presence of vibration the structure oscillates
making the piezoelectric beam to generate a voltage. The magnetic filed makes the
potential energy to be nonharmonic and the equation of motion of the harvesting
piezoelectric beam to be nonlinear The resulting potential energy can be expressed
as follows:

Wp(x) = 1

2
k1x

2 + 1

4
k2x

4 (4.26)

and the resulting equation of motion becomes as follows: [5]

mẍ + bẋ + k1x + k2x
3 = Γvvo + ξ, (4.27)

v̇o + 1

RC
vo = α ẋ . (4.28)

The voltage produced from the piezoelectric layers is an irregular AC signal which
is then rectified by a diode bridge AC-DC rectifier. A filtering capacitor C is also
placed in parallel with the load as shown in Fig. 4.14.

Let us consider the linear case for simplicity. The equivalent circuit representation
of the piezoelectric harvester is depicted in Fig. 4.15. There, the mass m has been
replaced by the inductance Leq , the damping coefficient b has been replaced by a
resistor with resistance Req and finally, the spring has been modeled by a capacitor

Fig. 4.14 Schematic diagram of the energy harvester based on a piezoelectric transducer

Fig. 4.15 Equivalent circuit diagram of the energy harvester based on a piezoelectric transducer
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with capacitance Ceq . This model can be used for simulations, design, and analysis.
The transformer represents the coupling effect. Introducing nonlinear effect can also
be done by replacing the linear equivalent capacitance Ceq by a nonlinear one.

Appendix I

In this section, we present the demonstration of the fact that the area of a charge-
voltage cycle performed by a variable capacitance is numerically equal to the electri-
cal energy generated or absorbed by the capacitance, depending on the cycle direc-
tion.

The demonstration starts from the formula (4.18) expressing the work achieved
by the capacitive transducer in the mechanical domain

A = 1

2

∮
Γ

[V dQ − QdV ] . (4.29)

The Green theorem states that for a positively oriented, piecewise smooth, simple
closed curve Γ in a right-handed plane (V, Q), for a region D bounded by Γ and for
functions L(V, Q), M(V, Q) defined on an open region containing D and having
continuous partial derivatives, the following equality is true [15]:

∮
Γ

(LdV + MdQ) =
∫∫
D

[
∂M

∂V
− ∂L

∂Q

]
dV dQ (4.30)

Applying this theorem to Eq. (4.29), we get

A = 1

2

∮
Γ

[−QdV − V dQ] = 1

2

∫∫
D

[1 + 1]dV dQ =
∫∫
D

dVdQ. (4.31)

The last double integral expresses the area of the domain D enclosed by the curve.
For a positively oriented (counterclockwise) path, A is positive: that means that the
energy is transferred from the electrical into the mechanical domain. Conversely, for
a negatively inverted (clockwise) path, the transducer’s force work is negative, and
the elctrical energy is converted from the mechanical energy.
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Chapter 5
Nonlinear Structural Mechanics
of Micro-and Nanosystems

Hassen M. Ouakad

In the nanoscale, when trying to fabricate straight clamped-clamped single-walled
CNT transistors, the outcome comes as nonperfectly straight beam with an initial
curvature, also called slack. Hence, we can see that understanding the dynamics of
arches serve both the micro- and nanoworlds.

The dynamic behavior of CNTs also is greatly needed. Researchers have several
reported unexplained and unjustified phenomena for electrically actuated slacked
CNTs. These include multiple resonances, frequency crossing, frequency avoiding
of crossing (veering), undistinguished resonances whether they are out-of-plane or
in-plane, unexplained low values of quality factor, etc. A robust model of these
complicated structures can reveal many of their dynamical related issues.

In the first part of this chapter, we summarize the main contributions in the area
of modeling the structural mechanics of carbon nanotubes used as NEMS devices.
We also address the need to add the slack effect when modeling CNTs. Then, we
introduce general concepts (essentially reduced-order modeling and perturbation
technique) in modeling the nonlinear structural mechanics problems of beams under
several loading conditions (mainly electric actuation). We also include derivation of
the equations of motion of MEMS arches along with discussing some conditions for
applicability of the continuum theory in modeling the mechanical behavior of CNTs.

In the second part of this chapter, we present an investigation into modeling
and analyzing the nonlinear structural mechanics of electrically actuated carbon
nanotube resonators. We investigate in details the nonlinear structural mechanics of
such devices including the effect of their initial curvature (level of slack). We present a
framework and a platform to properly understand the dynamics of these complicated
systems by explaining and revealing the meaning of their various detected resonance
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frequencies. Other topics that are covered include study of the possibility of energy
exchange among the detected modes in slacked carbon nanotubes.

5.1 Literature Review

Since their discovery by Iijima [1] in 1991, CNTs attracted the interest of the nano
scale world, especially the NEMS community [2, 3], due to their unique and dis-
tinguished mechanical and electrical properties. However, people how worked on
investigating the dynamics of these tiny structures encountered serious obstacles
such as their inherent nonlinear behavior even for very small dynamic loading [3],
their low quality factors [4], detection of unexpected resonances, and unexplained
patterns of the dependence of their natural frequencies on the gate voltage [5].

As an example for the structural related issues, it was shown that clamped-clamped
CNT resonators are fabricated with some level of curvature (slack) when using the so-
called Chemical Vapor Deposition (CVD) process [5]. This slack effect has shown to
lead to various scenarios such as mode crossings, mode avoided crossings, multiple
resonances, frequency crossing, frequency avoiding of crossing (veering), undis-
tinguished resonances whether they are out-of-plane or in-plane, unexplained low
values of quality factor, …etc [5, 6].

Estimating accurately the natural and resonant frequencies of CNTs has been the
center of research attention over the past few years [7]. This is because predicting
precisely the resonance frequencies forms the basis of utilizing CNTs as resonant
sensors. In addition, relating the measured resonance frequencies to the predicted
from theory has been proposed as an effective way to extract the mechanical prop-
erties of CNTs, such as Young’s modulus [8, 9].

Clamped-clamped straight CNTs have been under extensive researches in the
NEMS community. Most of the modeling work has especially focused on simulating
their static response (linear and nonlinear) and free vibration (natural frequencies).
Dequesnes et al. [10] used molecular dynamics and linear beam theory with electro-
static force to investigate pull-in and static behavior of CNT switches. The effect of
van der Walls forces was studied and found negligible for gaps above 4 nm. Sapmaz
et al. [11] investigated the static behavior and free vibrations of CNTs for various
DC voltages using nonlinear beam equations for clamped-clamped beam assuming
the DC load as constant. Dequesnes et al. [12] investigated pull-in and natural fre-
quencies of clamped-clamped (including mid-plane stretching) and cantilever CNTs
using molecular dynamics and continuum models. They concluded that nonlinear
continuum model yields good match with molecular dynamics model.

Lefèvre et al. [13] measured the deflection versus DC for a clamped-clamped
CNT using AFM to extract Young’s modulus and simulated the static behavior of
the CNTs using nonlinear beam theory. Ke and Espinosa [14] and Pugno et al. [15]
conducted a nonlinear analysis for the static response of a doubly clamped CNT
using a nonlinear elastic beam equation. Postma et al. [3] used a nonlinear model
of clamped-clamped CNT along with a Galerkin procedure to descritize the beam
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partial differential equation. They concluded that CNTs are almost useless in the
linear regime even for small electric load and this due to the presence of thermal
random noise. Witkamp et al. [16] and Poot et al. [17] presented modeling and
testing of clamped-clamped CNTs. They used a beam model, including mid-plane
stretching, to show the variations of natural frequencies of the CNT versus DC load.
Peng et al. [18] used linear Euler–Bernoulli beam model to calculate the resonance
frequency and quality factor.

Mecular dynamics (MD) analysis represented, in the past, the most used computa-
tional method in studying the physical as well as the mechanical behaviors of CNTs
[12, 19–28]. In fact, MD can be accurately used to simulate the physical–chemical
properties of CNTs at the atomic scale. But still being the most precise method in that
fact, MD is of limited capabilities computationally point of view (maximum of 109
atoms [29] and 10–16 s as time step [30]. Basically in this method, the Newton’s sec-
ond law is applied for each considered atom forming the CNT (i.e., the acceleration
term of each atom is equal to the spatial gradient of the empirical potential energy of
the CNT). Then, the evaluation of that empirical potential energy is based on several
methods such as: the force field method, the bond order method, and semiempirical
method [31].

Several investigations have been conducted to simulate the response of CNTs
using molecular dynamics and their results were compared to results obtained using
continuum mechanics theories, such as beams and shells. All the investigations con-
cluded that continuum mechanics serve the purpose of modeling and simulating
CNTs both accurately and efficiently from a computational point of view. For exam-
ple, Yakobson et al. [32] studied using a molecular dynamics model the large defor-
mation of CNTs. They estimated the buckling of CNTs using continuum theory, a
beam model, to the predictions of the molecular mechanics simulations. They con-
cluded that this behavior of CNTs can be well described by a continuum model.
Based on scaling analysis, Harik [33, 34] tackled the buckling problem of CNTs and
proposed three nondimensional numbers related to the CNT geometric parameters
to check the validity of the beam assumption for modeling the mechanics of CNTs.
Liu and Chen [35] mentioned that investigating the global responses of CNTs such
as deformations, effective stiffness, or load transfer can be done using continuum
mechanics both effectively and efficiently. Pantano et al. [36] used finite element FE
approaches to model a single-walled carbon nanotube SWCNT and a multi-walled
carbon nanotube MWCNT. The CNT walls were modeled as thin shells while the
inter-wall interactions were modeled as pressures. The pressures were defined as
functions of separation distance. Pantano et al. [36] validated their model by com-
paring the FE results with the molecular mechanics simulations and the experimental
data. They found good agreement among all the results. Arroyo and Belytschko [37]
and Arroyo [38] also developed a FE model for MWNTs. They developed a mem-
brane wall model directly using a Tersoff-Brenner potential and a modified Cauchy–
Born rule. They were able to reproduce local buckling, kinking, and rippling effects,
which are nearly identical to the deformed states of the parent molecular simulation,
by using fine meshes for a variety of loadings including compression, torsion, and
bending. They concluded that the continuum/finite element calculations are surpris-
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ingly accurate compared to the atomistic calculations [38]. Dequesnes et al. [10, 12]
employed a nonlinear beam theory in which they used the molecular dynamics sim-
ulations to extract the beam material properties (the beam bending (EI) and the beam
stretching (EA) constants). They finally showed good agreement when comparing
the beam model to the molecular dynamic simulations except for slight difference
very close to pull-in. It was shown by Garg [31] that for the purpose of investigating
the global behavior and response of CNTs, the continuum mechanics can be safely
used under certain conditions.

In relatively more recent works, Wang et al. [39] remarked that atomistic and
molecular methods are limited to CNTs with small number of atoms, due to the high
cost of computation, and are therefore restrained to the study of localized effects on
small portion of the CNT. In order to simulate the mechanical behavior of large-sized
atomic CNTs, Wang et al. [39] proposed the use of continuum models. Sears and
Batra [40] showed that continuum models predict both global and local responses
for buckling of SWCNT by comparing their continuum predictions for bending and
buckling to atomistic simulations. They employed a simple Euler beam to model
the cantilever bending, and they ended up by showing that the continuum SWCNT
strain energy was found to match that of the molecular simulation very well. Also,
the buckling of a SWCNT was studied for tubes of different length to study and it
was found to predict the critical buckling strain of the carbon nanotube for the whole
length scale compared to molecular simulations.

Motivated by the 2-D problem of CNTs, Conley et al. [41] proposed a model for
a CNT accounting for both the in- and out-of-plane motions. They reported the onset
possibility of the non-planar motions in straight CNT resonators that they attributed
to the symmetry of the device, as well as, to the nanotube stretching as it deforms.

Recently, Elishakoff and Pentaras [42] derived analytical expressions for the
fundamental natural frequencies of double-walled carbon nanotubes under various
boundary conditions (simply supported and doubly clamped) using two different
decritization schemes, the Bubnov–Galerkin and the Petrov–Galerkin methods. They
used a linear beam model and showed a possibility to quickly evaluate the natural
frequencies of such systems. In another investigation [43], they adopted a simpli-
fied Bresse-Timoshenko beam model to evaluate the natural frequencies of simply
supported CNTs taking into account the shear deformation as well as the rotary
inertia effects. They showed that the model yields excellent results compared to the
full Bresse-Timoshenko theory as well as the Euler–Bernoulli beam model. Lately,
Georgantzinos et al. [44] proposed a linear spring-based model with lumped masses
to describe and evaluate the vibration characteristics of a single-walled CNT. They
observed that the aspect ratio has a significant role and influence on the basic modes of
vibration of the nanotubes. Hawwa and Al-Qahtani [45] adopted an elastic continuum
approach for modeling the primary resonance of a double-walled carbon nanotube
under a linear harmonic excitation using the Galerkin approach. They showed several
transitions from quasiperiodic to chaotic behavior accompanied with some nonlinear
jump phenomena and nonlinear bifurcations leading to chaos.

Cantilever CNTs received less interest in modeling their nonlinear behavior.
Among the few works on this field, Liu et al. [35] used a nonlinear beam model
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(with cubic geometric nonlinearity) for a cantilever CNT. Ke and Espinosa [46, 47]
presented the modeling of the static behavior of cantilever and doubly clamped CNTs.
Ke et al. [48] studied theoretically and experimentally the static behavior of cantilever
CNTs while considering the effect of the charge concentration, van der Wall forces,
and the large kinematics (geometric nonlinearities). Isacsson et al. [49] investigated
the dynamic response of a three-terminal cantilever CNT resonator structure. They
used a perturbation theory to descritize the beam equation of motion and then deter-
mine analytically the frequency response of the system. Isacsson and Kinaret [50]
modeled the parametric excitation of an array of cantilever CNTs excited by DC and
AC excitations.

The above theoretical investigations were motivated especially by the several
reported phenomenon of previously conducted experimental works [51–62].

Most of the previously mentioned literature work models clamped-clamped elec-
trically actuated CNTs to be perfectly straight. However, due to their fabrication
process using chemical vapor deposition (CVD), fabricating perfectly straight CNTs
with controlled geometry and orientation is very difficult. Indeed, many studies have
indicated that clamped-clamped CNTs are fabricated with some level of curvature
(slack). Kang et al. [63] studied the interatomic interaction between a CNT bridge
and the substrate underneath it used as a NEMS memory device. They showed that
the value of the CNT bridge slack is very important for the operation of the NEMS
memory device as a nonvolatile memory. Gibson et al. [7] stressed the importance
of modeling the slack of CNTs and indicated that no consistent model has been pre-
sented so far to address this issue despite knowing the strong effect of the curvature
of curved beams on modal frequencies.

Among those who reported experimental investigations showing the importance
of slack on estimating accurately the natural frequencies of CNTs, Sazonova et al.
[4] and Sazanova [5] tested slacked clamped-clamped CNT to a DC and AC load and
characterized experimentally their free-vibration response. Comparing their experi-
mental data with the numerical results of [6], they reported some unexplained phe-
nomena [5]. Some of those experimentally observed phenomena are [5]: the sublinear
variation of the frequencies, the avoided crossings (veering), the abundance of res-
onances, and the negative variation of the frequencies for certain carbon nanotubes.
Üstünel et al. [6] were among the very few who attempted to investigate theoretically
the effect of slack on a CNT oscillator. They based their work on a one-dimensional
elastic continuum model by assuming the electrostatic force to be uniformly distrib-
uted along the length of the CNT and ignoring the nonlinear elastic effects. Then, they
derived approximate analytical expressions of the natural frequencies of the CNT
for several behavior regimes of the CNT depending on the gate voltage value. They
identified three zones for the response: bending dominated, catenary dominated, and
elastic dominated. They related this to the impact of slack on the natural frequencies.
They reported that the bending regime can be described by a buckled doubly clamped
beam model, the catenary regime is modeled as a simple string under variable ten-
sion, and the elastic regime is similar to the hanging chain under constant tension.
Another group [64] attempted to model the CNT using a finite element method.
They also reported discrepancy among their theoretically predicted and experimen-
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tally measured resonance frequencies of electrostatically actuated CNTs and cited
slack as a possible reason of this. Mayoof and Hawwa [65] proposed a nonlinear
curved beam model to describe the nonlinear dynamics of a slacked single-walled
carbon nanotube under linear harmonic excitation. They showed several scenarios
of chaotic behavior for the CNT.

5.2 Background

In this section, we introduce general concepts in modeling the nonlinear structural
mechanics problems of beams and then the case where electrostatic forces are used
as actuation method. We also include derivation of the frequency equation using
the so-called method-of-multiples scales. Finally, we present some conditions for
applicability of the continuum theory in modeling the mechanical behavior of CNTs.

5.2.1 Beams

Beams are perhaps the most commonly used structural component in the MEMS and
NEMS field. Micro and nanobeams form the backbone of a wide range of devices
including resonators, resonant sensors, actuators, filters, atomic force microscope
probes, and RF switches. They are also used as spring elements with other microstruc-
tures and MEMS components, such as comb-drive actuators.

(a) Equation of motion

Here, the linear equation of motion of a beam in bending is derived, The deriva-
tion here follows Hamilton’s principle, which is variational mechanics energy-based
approach. This presents an alternative technique to the Newtonian or vectorial method
used in the derivations [66, 67]. Hamilton’s principle is considered very powerful
for deriving the equation of motion, along with the associated boundary conditions,
of complicated distributed-parameter systems of multiple bodies and complicated
boundary conditions. As an example, we will derive the equation of motion and
associated boundary conditions governing the motion of an initially curved beam
(arch beam) using the Hamilton’s principle.

We consider a clamped-clamped shallow arch, Fig. 5.1, of initial shape w0(x),
width b, thickness h, length L , modulus of elasticity E , cross sectional is A = bh,
moment of inertia I , mass density ρ, and subjected to a constant axial force of
magnitude N , as shown in Fig. 5.2. The axial displacement is denoted by u(x, t) and
the transverse displacement is denoted byw(x, t) measured from the initial curvature
w0 (x). The beam is modeled according to the Euler–Bernoulli beam theory and in
which the planes of the cross sections remain planes after deformation.
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Fig. 5.1 Schematic of a
clamped-clamped arch beam
under a compressive axial
load N
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Fig. 5.2 Segment of the
beam after deformation

x

z

dxi

Ai (xi, zi)

A f(x f, z f)

u

w
xi

ds

θ

dx f

dz f

x

w0(x)

(i) The total axial strain

We first determine the geometrical relations of the beam points using Fig. 5.2.
Figure 5.2 describes how a point Ai , with coordinates xi and zi in the axial and
transverse directions respectively, moves to a point A f with coordinates denoted by
x f and z f after a deformation.

The geometrical relations are determined from Fig. 5.2 which contains a differ-
ential element located at the point Ai with length dxi . The coordinates of A f and the
element length of the deformed configuration are determined respectively as follows,
where the “′” denotes the derivative with respect to x :

{
x f = xi + u = x + u,

z f = zi + w = w0 + w,
(5.1)

ds =
√(

dx f
)2 + (dz f

)2 =
√

(dx + du)2 + (dw + dw0)
2

=
√

(1 + u′)2 + (w′ + w′
0

)2
dx,

(5.2)

Now, under the assumptions of a shallow arch theory (the shallow arch approxi-
mation), in which the slope of the initial rise of the curved beam is considered smaller
compared to unity [68], i.e.,

(
w′

0

)2
<< 1, Eq. (2.2) reduces to

ds =
√

1 + 2u′ + u′2 + w′2 + 2w′w′
0dx (5.3)

From the deformed element length, Eq. (2.3), we determine the strain of the
deformed element and the stretch ratio for a small deformation, respectively, as

http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_2
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ε = ds − dx

dx
=
√

1 + 2u′ + u′2 + w′2 + 2w′w′
0 − 1, (5.4)

λ = ds

dx
=
√

1 + 2u′ + u′2 + w′2 + 2w′w′
0 (5.5)

The rotation angle, shown in Fig. 5.2, is determined as

⎧⎪⎨
⎪⎩

sin (θ) = dy1

ds
= w′

0 + w′

λ
,

cos (θ) = dx1

ds
= 1 + u′

λ
,

(5.6)

Differentiating Eq. (2.6), and using the shallow arch approximation, we get

θ ′ =
(
1 + u′) (w′′

0 + w′′)− u′′ (w′
0 + w′)

λ2
(5.7)

The curvature of the arch mid-plane is given by

κ = dθ
ds = θ ′ dx

ds
=
(
1 + u′) (w′′

0 + w′′)− u′′ (w′
0 + w′)

λ3/2

=
(
1 + u′) (w′′

0 + w′′)− u′′ (w′
0 + w′)

(
1 + 2u′ + u′2 + w′2 + 2w′w′

0

)3/2

(5.8)

Expanding Eqs. (2.4) and (2.8) up to the quadratic terms using a Taylor series
expansion for small u′ and w′, we get

ε ≈ u′ + w′2

2
+ w′w′

0 + · · · (5.9)

κ ≈ (w′′
0 + w′′)− u′′ (w′

0 + w′)− 2
(
w′′

0 + w′′) u′ + · · · (5.10)

Now, the total axial strain at a point of distance z from the arch mid-plane line is
measured to be

εT ≈ ε − zw′′ + · · · (5.11)

(ii) The kinetic and potential energies

Next, we develop expressions for the kinetic and potential energies of the arch beam.
The potential energy due to the beam elastic deformation and the stretching of its
mid-plane is given by

http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_2
http://dx.doi.org/10.1007/978-3-319-20355-3_2
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V = 1
2

∫ l
0
∫ h/2
−h/2

∫ b/2
−b/2

(
Eε2

T

)
dydzdx,

= E

2

∫ l

0

∫ h/2

−h/2

∫ b/2

−b/2

⎧⎨
⎩
(
u′ + w′2

2
+ w′w′

0

)2

− zw′′
(
u′ + w′2

2
+ w′w′

0

)
+ z2w′′2

⎫⎬
⎭ dydzdx,

= E A

2

∫ l

0

(
u′ + w′2

2
+ w′w′

0

)2

dx + E I

2

∫ l

0
w′′2dx,

(5.12)
where I = bh3/12.

The kinetic energy of the arch while neglecting the axial inertia term is given by

T = ρA

2

∫ L

0
ẇ2dx, (5.13)

where the dot denotes the partial derivative with respect to the time variable t .

(iii) The extended Hamilton principle

The Hamilton’s principle is an important variational method in deriving the equation
of motion and the associated boundary conditions of continuous systems. In such
systems, the state is described by using continuous functions of space and time. The
extended Hamilton Principle for such bodies is given by

∫ t2

t1

δL dt =
∫ t2

t1

(δT − δV + δWe) dt =0, (5.14)

where L is the Lagrangian, T is the kinetic energy, V is the elastic energy, We is the
nonconservative work done by external loads on the system, and t1, t2 are the initial
and final times, respectively.

The variation of the potential energy is obtained by integrating by parts over time
Eq. (5.12) as follows:

∫ t2

t1
δV dt =

∫ t2

t1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E A

[(
u′ + w′2

2
+ w′w′

0

)
δu

]L
0

− E A
∫ L

0

(
u′ + w′2

2
+ w′w′

0

)′
δudx+

+E A

[(
u′ + w′2

2
+ w′w′

0

)
w′δw

]L
0

− E A
∫ L

0

((
u′ + w′2

2
+ w′w′

0

)
w′
)′

δwdx+

+E A

[(
u′ + w′2

2
+ w′w′

0

)
w′

0δw

]L
0

− E A
∫ L

0

((
u′ + w′2

2
+ w′w′

0

)
w′

0

)′
δwdx+

+E I
[
w′′δw′]L

0 − E I
[
w′′′δw

]L
0 + E I

∫ L

0
w""δwdx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dt

(5.15)
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The variation of the kinetic energy is obtained by integrating by parts over time
Eq. (5.13) as follows:

(5.16)

Finally, the variation of the nonconservative forces is given as follows:

∫ t2

t1

δWe dt =
∫ t2

t1

(F (x, t) δw − cẇ) dt, (5.17)

where F is a distributed load in the transverse direction and c is the viscous damping
coefficient.

Plugging then Eqs. (5.15)–(5.17) into Eq. (5.14), and then collecting the terms
with the arbitrary coefficient “δu”, we get

(
u′ + w′2

2
+ w′w′

0

)′
= 0 (5.18)

Integrating Eq. (5.18) over the beam domain, we obtain the beam’s axial elongation
as

u (L , t) − u (0, t) =
(
u′ + w′2

2
+ w′w′

0

)
L −

∫ L

0

(
w′2

2
+ w′w′

0

)
dx, (5.19)

where u(L , t) and u(0, t) are the axial displacements at the ends of the beam.
From Fig. 5.2, we have a fixed end at x = 0 and compressive axial load acting at

the other end, hence

u (L , t) = −NL

E A
(5.20)

We finally obtain from Eqs. (5.18) and (5.20) that

u′ + w′2

2
+ w′w′

0 = − N

E A
+ 1

L

∫ L

0

(
w′2

2
+ w′w′

0

)
dx (5.21)
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Plugging now Eqs. (5.15)–(5.17) into Eq. (5.14), and then collecting the terms
with the arbitrary coefficient “δw”, we get

ρAẅ + E Iw′′′′ + cẇ = E A

(
u′ + w′2

2
+ w′w

′
0

)′ (
w′ + w′

0
)+

+ E A

(
u′ + w′2

2
+ w′w′

0

) (
w′′ + w′′

0
)+ F (x, t) (5.22)

Plugging Eqs. (5.18)–(5.21) into Eq. (5.22), we get the nonlinear equation of
motion of the shallow arch [69]

ρAẅ + E Iw′′′′ + cẇ =
(

−N + E A

2L

∫ L

0
(w′2 + 2w′w′

0)dx

)
(w′′ + w′′

0) + F(x, t),

(5.23)

(b) Reduced-order modeling

If the equation characterizing the behavior of a beam is nonlinear or if the beam
has some irregular geometrical and material properties, closed-form solutions may
not be accessible. In such cases, numerical methods (such as Rayleigh–Ritz method,
finite element method, and the weighted-residual method) need to be utilized to sim-
ulate the behavior of the beam. However, the previously mentioned methods can be
inconvenient or even computationally very expensive, especially for multi-physics,
nonlinear, and time-dependent problems, such as those commonly encountered in
MEMS and NEMS. Hence, we propose to discuss a powerful technique, the Galerkin
method, which is computationally efficient, capable of handling any systems, and
suits nonlinear beams problems. Beam equations of motion cab be discretized using
the Galerkin technique to yield a reduced-order model (ROM) [70]. To derive a ROM
from a distributed-parameter system, one can either work with the Lagrangian [71],
or work with the partial differential equations, boundary conditions, and orthogo-
nality conditions of the beam [72]. We decide here to present the latter approach.
We consider a general system with an equation and boundary conditions expressed
respectively as

M(w (x, t)) = f (x, t) , (5.24)

BC1(w) = w1, BC2(w) = w2, (5.25)

wherew(x, t) is the dependent variable in space x and time t , M is a differential oper-
ator in space and time, which can be linear or nonlinear, f (x, t) is the forcing term,
BC1 and BC2 are boundary operators and w1 and w2 are non-time-varying boundary
conditions. In the Galerkin discretization technique, we seek an approximate solution
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of the above system in the form of

w(x, t) = φ0(x) +
n∑

i=1

ui (t)φi (x), (5.26)

where φ0(x) is a space function that satisfies the nonzero boundary conditions (w1 and
w2 different of zero). If the boundary conditions are homogeneous (w1 = w2 = 0)
then φ0(x) = 0. The time-varying functions ui (t) are to be determined for the sake
to get the solution w(x, t). The functions φi (x) are space-varying trial functions that
should satisfy the following conditions [73]

• The homogenous form of all the boundary conditions of the problem (w1 = w2 =
0)

• Differentiable as the order of the differential equation of the system.
• Form and belong to a complete set of linearly independent functions.

To proceed, Eq. (5.26) is substituted into Eq. (5.24) yielding the following equation

M

[
φ0(x) +

n∑
i

ui (t)φi (x)

]
= f (x, t) (5.27)

Then, multiplying Eq. (5.27) by φ j , and integrating the equation over the domain
of the problem yields

∫
	

φ j (x)

{
M

[
φ0(x) +

n∑
i

ui (t)φi (x)

]}
dx =

∫
	

φ j (x) f (x, t) dx, (5.28)

Once evaluating the integrals of Eq. (5.38), we get n differential equations in
time of the ui (t) functions, which can be integrated numerically using Runge–Kutta
techniques. Then the results are substituted back into Eq. (5.26) to yield the total
response of the beam. The number n of necessary modes to ensure convergence
needs to be examined.

The reduction of a distributed-parameter system of infinite degree of freedom or
a partial differential equation in space and time into a number of ordinary differen-
tial equations in time (a finite-degree-of-freedom-system) is considered significant
advantage from a computational point of view. Indeed, this is one of the major bene-
fits of using the Galerkin method over finite element approaches. Thus, the Galerkin
method is considered a powerful technique to generate reduced-order models. It is
worth to mention that for static problems ( f (x, t) = f (x)), the Galerkin discretiza-
tion yields to a system of algebraic equations of unknown constant coefficients, which
can be solved using Newton’s Raphson methods.
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Fig. 5.3 Schematic of (a) a parallel-plates capacitor, and (b) a cylinder-plate capacitor

5.2.2 Electric Actuation

(a) About the actuation technique

Electrostatic loading is the most common actuation method in MEMS. The elec-
trostatic actuation scheme is based on the simple parallel-plate capacitors. Those
kinds of capacitors require a voltage source and they are characterized by having
very low power consumption and being one of the fastest actuation methods. Elec-
trostatic actuation depends on the attractive force between the two parallel plates of
a capacitor, which is nonlinearly proportional to the gap width that separates both of
them.

We will derive here the expression of the electrostatic force for two different
cases: two parallel plates and two parallel cylinder and plate. We first consider the
parallel-plate capacitor shown in Fig. 5.3. Here, we assume under the parallel-plate
theory conditions that the electric field lines between the two considered plates are
perpendicular to the plates even near edges (no fringing field effect near the edge of
the plates).

Then, we assume that each capacitor shown in Fig. 5.3 is driven by a voltage source
of load V . The electrical charge and the potential energy stored in each capacitor are
given by the following expressions [74], respectively,

Q = C (z) V, (5.29)

E = V 2

2
C (z) (5.30)

The attractive electrostatic force between each of the two electrodes of both the
capacitors in Fig. 5.3 can be obtained as [74]

Fe = −∂E (z)

∂z
= V 2

2

∂C (z)

∂z
(5.31)

Now, we will derive the analytical expressions of C (z) depending on the geome-
tries of the considered electrodes.

Considering the case of a capacitor formed by two parallel rectangular plates,
Fig. 5.3a, the capacitance can be expressed as [74]
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C (z) = εoLb

z
, (5.32)

where εo = 8.85 × 10−12
(
C2/Nm2

)
is the air permittivity. We substitute Eq. (5.23)

into Eq. (5.31) and get the attractive electrostatic force between the two electrodes
of Fig. 5.3a

Fe = −εobLV 2

2z2
(5.33)

Now, we consider the case of a capacitor formed by parallel cylinder and rectan-
gular plate, Fig. 5.3b. The capacitance can be expressed as [74]

C (z) = 2πεoL

cosh−1 (1 + z/R)
(5.34)

Substituting Eq. (5.34) into Eq. (5.31), we get the attractive electrostatic force
between the two electrodes of Fig. 5.3b

Fe = −πεoLV 2

√
z (z + 2R)

(
cosh−1 (1 + z/R)

)2 (5.35)

We can notice, from both Eqs. (5.33) and (5.35), the inherent nonlinear dependence
of the electrostatic force on the moveable electrodes (the planar electrode in Fig. 5.3a
and the cylindrical electrode in Fig. 5.3b) displacement.

(b) The pull-in instability

In “parallel-plate” electrostatic actuation, Fig. 5.4a, a DC electrostatic load (VDC) is
applied between the lower and upper electrode, which is typically a flexible structure,
such as a rectangular micro or nanobeam or a carbon nanotube. If VDC is small, the
structure stays in the deflected position, at which the elastic restoring force of the
structure is in equilibrium with the opposing electrostatic force. There is an upper
limit for VDC , beyond which the mechanical restoring force of the structure can no
longer resist the opposing electrostatic force. This leads to a sudden collapse of the
structure, which is known as the pull-in instability [75–77]. Typically, the DC load
tends to soften the actuated structure, which decreases its linear natural frequency
[78].

VDC

VAC

VDC

(a) (b)

Fig. 5.4 Schematic of a parallel-plate electrostatic actuation with (a) DC load only, and (b) DC
and AC harmonic load
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Fig. 5.5 The pull-in band
(escape phenomenon) of an
electrically actuated system

VAC

Ω

In addition to the DC electrostatic load of amplitude VDC , resonant sensors and
resonators are actuated by an AC harmonic load of amplitude VAC , Fig. 5.4b. Here,
VDC deflects the movable electrode slightly and VAC vibrates the electrode around
the new deflected position. If VAC is smaller than the dynamic pull-in limit and
the structure is inherently nonlinear, such as the case of doubly clamped beams,
then it can exhibit either softening or hardening behavior (depending on whether the
electrostatic nonlinearity of quadratic nature dominates the geometric nonlinearity of
cubic nature or vice versa). This effect of VAC leads to a further shift in the resonance
frequency, also called nonlinear resonance frequency [79–81]. While attempting to
exceed the noise level of some structures, such as the thermal noises in CNTs [3,
51, 54], the VAC amplitude might be raised to be high enough to trigger a dynamic
pull-in instability [80, 82–84]. This instability, which characterizes the instability of
the structure due to dynamics considerations, is called “dynamic pull-in”.

For a certain DC and AC loads, the upper electrode can oscillate in a stable state,
and varying the forcing frequency can lead to the dynamic pull-in phenomenon also
referred to an escape from a potential well. Figure 5.5 shows a schematic of the
escape band of the electrically actuated system of Fig. 5.4ba. The figure shows that
for any dynamic load VAC with frequency Ω in the shaded area then the escape
phenomenon occurs definitely (inevitable escape) and for a frequency Ω lying in the
nonshaded line, the system can oscillate in a stable state or escape from the potential
well depending on its initial conditions (fractal behavior) [85, 86].

5.2.3 Perturbation Series and the Method of Multiple Scales

In this section, we review the application of a perturbation technique, for instance
the method of Multiple Scales (MMS) to study the nonlinear dynamic of nonlinear
systems.
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(a) Perturbation series

Consider the set of ε-dependent ordinary differential equations given by

x ′ = f (x, t, ε), (5.36)

where ε is a small parameter and for ε = 0 these equations can be easily solved. Then,
a common approach in finding an approximate solution to Eq. (5.36), for small ε, is
to approximate x(t) in the following form of a “perturbation series”

x = x0(t) + εx1(t) + ε2x2(t) + · · · (5.37)

Then Eq. (5.36) can be expanded in powers of ε

x ′
0 + εx ′

1 + ε2x ′
2 + · · · = f (x, t, 0) + d f (x, t, 0)

dε
ε + · · ·

= f (x0, t, 0) + ε

(
d f (x0, t, 0)

dε
+ d f (x0, t, 0)

dx
(x0 + 2εx1 + · · · ) + · · ·

)
+ · · ·
(5.38)

Thus, an infinite sequence of simpler problems by equating terms with like powers
of ε can be obtained. For example, gathering the terms of order 0 (terms multiplying
ε0)

x ′
0 = f (x, t, 0) (5.39)

Once the order 0 problem is solved, the solution for x0 may be plugged into the
order ε1-equation

x ′
1 = d f

dε
(x0, t, 0) + d f

dx
(x0, t, 0)x1, (5.40)

and, hypothetically, this process can be iterated to solve for xn at all orders.
In general, proving that a perturbation series converges or that it is asymptotic is

hard.

(b) Method of multiple scales

The perturbation series expansion is not guaranteed to work for all dynamical prob-
lems. The nonlinear Rayleigh and Van Der Pol oscillators are two classical examples
in which such an expansion fails. This is due to the fact that lower-order solutions
x1, x2, . . ., may grow without bound and eventually become large enough to interact
strongly with higher-order terms. When this happens, treating the dynamics at differ-
ent orders separately no longer makes sense. Generally speaking, this kind of failure
occurs when there are two or more important scales in the system. For example,
when a sound wave with a short wavelength travels through a slowly spatially vary-
ing medium, the resulting wave form looks locally like a sine wave when zooming
into the wavelength scale. But on the length scale over which the medium properties
vary substantially, the wave may exhibit significant phase drift or amplitude changes.
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Solutions of the Rayleigh and Van Der Pol equations also have multiple scales, in
the sense that on the order of one wavelength the solutions have frequency ω ≈ ω0,
but over time scales of order ε−2 (Van Der Pol and Rayleigh) the solutions will have
a significant phase drift.

The idea of this method is to pretend that an ODE is a PDE for a minute, where
x depends both on time and on “slow time”; i.e.,

x = x0(t, T ) + εx1(t, T ) + ε2x2(t, T ) + . . . , (5.41)

where T = εt .
We then derive that

d(.)

dt
= ∂(.)

∂t
+ dT

dt

∂(.)

∂T
= ∂(.)

∂t
+ ε

∂(.)

∂T
(5.42)

and
d2(.)

dt2
= ∂2(.)

∂t2
+ 2ε

∂2(.)

∂t∂T
+ ε2 ∂2(.)

∂T 2
(5.43)

We write the original perturbation expansion in a more reminiscent form

x = x̃0(t) + εx̃1(t) + ε2 x̃2(t) + · · · , (5.44)

where
x̃n(t) = xn(t, T (t)) (5.45)

We then plug these substitutions into our equation, and proceed to solve it itera-
tively as a perturbation series. However, now the first-order equation will be sufficient
only to determine x0’s dependence on time t , and not its dependence on t . This will
leaves us free at order ε to tune the T dependence of x0 to prevent x1 from growing
without bound.

(b) Application of the method of multiple scales

We propose now to approximate the dynamic responses of the Van der Pol and the
Rayleigh oscillators using the method of Multiple Scales.

(i) The Van der Pol oscillator

We consider the Van der Pol oscillator in the case of a primary resonance Excitation;
γ = O(ε), � = ω0 + O(ε)

d2x

dt2
− ε(1 − x2)

dx

dt
+ ω2

0x = f (t), with:

{
f (t) = γ ε cos(�t)
� = ω0 + εσ

(5.46)

We seek an approximate solution of Eq. (5.46) using the method of Multiple
Scales. In general, we consider x(t) to be a function of multiple (two in this case)
independent time variables or scales. We express x in the form
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x = x0(T0, T1) + εx1(T0, T1), (5.47)

where T0 = t is a fast scale and T1 = εt is a slow scale characterizing the modulation
in the amplitude and phase caused by the nonlinearity, damping and resonances. The
time derivatives become

d

dt
= ∂

∂t
+ dT

dt

∂

∂T
= D0 + εD1 (5.48)

so that
d2

dt2
= D2

0 + 2εD0D1, (5.49)

where D=
n ∂/∂Tn . Substituting Eqs. (5.47)–(5.49) into Eq. (5.46) and equating the

coefficient of ε0 and ε1 on both sides, we obtain

D2
0x0 + ω2

0x0 = 0, (5.50)

D2
0x1 + ω2

0x1 + D0x0 − x2
0 D0x0 + 2D0D1x0 = γ cos(�T0) (5.51)

The solution of Eq. (5.50) can be expressed as

x0 = A(T1)exp(iω0T0) + Ā(T1)exp(−iω0T0) (5.52)

Therefore, Eq. (5.51) becomes

D2
0x1 + ω2

0x1 = iω0[−2A′ + A2 Ā − A + γ exp(iσT1)]exp(iω0T0)+
+iω0A3exp(3iω0T0) + cc,

(5.53)

where “cc” denotes the complex conjugate of the preceding terms. The secular terms
can be eliminated from the solution of x1 if

− 2A′ + A2 Ā − A + γ exp(iσT1) = 0 (5.54)

We let A = aexp(iβ)/2 in Eq. (5.54), where a and β are real functions of the slow
times scale T1, and separate real and imaginary parts, to obtain

a′ = a

2
(1 − 1

4
a2) + γ

2ω0
sin(λ), (5.55)

aβ ′ = − γ

2ω0
cos(λ), (5.56)

where a′ and β ′ are derivatives of the slow time scale T1 and
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λ = σT1 − β,
dλ

dT1
= σ − dβ

dT1
(5.57)

Eliminating β from Eqs. (5.55) and (5.56) gives

aλ′ = aσ + γ

2ω0
cos(λ) (5.58)

Therefore, to the first-order of approximation, we obtain

x = a cos(�t − λ) + O(ε) (5.59)

For steady-state motion, the time variation of the amplitude and phase of the
response must vanish a′ = λ′ = 0. It follows from Eqs. (5.55) and (5.56) that

a

2
(1 − a2

4
) = − γ

2ω0
sin(λ), (5.60)

aσ = − γ

2ω0
cos(λ) (5.61)

The steady-state solution of Eq. (5.58), obtained by squaring and adding Eqs. (5.60)
and (5.61), yields the following frequency-response equation:

ρ(ω0 − ρ)2 + 4σ 2ρ = γ 2

4ω0
, where ρ = a2

4
(5.62)

The frequency-response curves, in terms of the amplitude ρ = a2/4, appear in
Fig. 5.6 for selected values of the forcing amplitude γ . As γ increases, the curves
consist of two branches. The first branch runs close to the σ-axis and the second
branch is a close curve which can be approximated by an ellipse having its center

Fig. 5.6 Frequency-
response curves for primary
resonances of the Van der
Pol Oscillator for various
forcing amplitudes of
γ (ω0 = 1 rad/s)
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at the ρ-axis. As γ increases further, the ellipses expand; open and coalesce with
the first branch to form a single branch of solutions and finally the response curves
are single-valued for all σ . We note that in the σ − ρ plane, the frequency-response
curves, which are symmetric with respect to the σ axis, have shapes similar to those
of the force-response curves.

When solving Eqs. (5.60) and (5.61), we can also obtain the first-order approxi-
mate solution in the following form:

x(t) =
√√√√ 4η

1 + (
4η

a2
0

− 1)e−εηt
cos(ω0t) + γ

ω2
0 − �2

cos(�t), where:

⎧⎪⎪⎨
⎪⎪⎩
a0 = x(0) − γ

ω2
0 − �2

η = 1 − γ 2

2(ω2
0 − �2)2

(5.63)

Figure 5.7 shows that the approximate solution, for the Van der Pol oscillator using
the perturbation technique, is close to that found using a numerical integration the
oscillator’s differential equation in Mathematica.

The second-order solution was derived using Mathematica [87] and Fig. 5.8 dis-
plays the resulting response.

Fig. 5.7 Comparison of the
first-order approximate
solution with the exact
solution for the Van Der Pol
oscillator for an initial
condition of x0 = 0.01,
ε = 0.1. (In the figure: (—–)
the numerical solution, and
the approximate solution
using MMS(- - - - -))
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Fig. 5.8 Comparison of the
second-order approximate
solution with the exact
solution for the Van Der Pol
oscillator for an initial
condition of x0 = 0.01,
ε = 0.1. (In the figure: (—–)
the numerical solution and
the approximate solution
using MMS(- - - - -))
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(ii) The Rayleigh oscillator

Now, let us consider the Rayleigh oscillator in the case of a primary resonance Exci-
tation ( γ = O(ε), � = ω0 + O(ε) ). Its dynamics is described by the following
equation:

d2x

dt2
− ε

(
1 −
(
dx

dt

)2
)
dx

dt
+ ω2

0x = f (t), with:

{
f (t) = γ ε cos(�t)
� = ω0 + εσ

, (5.64)

We seek an approximate solution of Eq. (5.64) using the method of Multiple
Scales. An approach similar to that followed in the van der Pol oscillator is used to
determine the following frequency-response equation of this oscillator:

ε2ρ(2η − 3

4
ρ)2 + 4σ 2ρ = γ 2, where

{
ρ = ω2

0a
2

η = 1/2
(5.65)

Similarly, the approximate solution of Eq. (5.64) is expressed in the following form:

x(t) =

√√√√√√
8η
/

3ω2
0

1 + (
8η

3a2
0ω

2
0

− 1)e−2εηt
cos(ωt) + γ

ω2
0�

2
cos(�t), (5.66)

where

a0 = x(0) − γ

ω2
0 − �2

, η = 1

2
− 3

4

γ 2�2

(ω2
0 − �2)2

(5.67)

Figure 5.9 displays the approximate solution with the one obtained by numerically
integrating Eq. (5.64). We can clearly see that the agreement is excellent among both
approaches. Frequency-response curves generated from Eq. (5.65) are presented in
Fig. 5.10.

Fig. 5.9 Comparison of the
approximate solution with
that obtained by integrating
the original equation for an
initial condition x0 = 0.01,
ε = 0.1. (In the figure: (—–)
the numerical solution and
the approximate solution
using MMS(- - - - -))
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Fig. 5.10 Frequency-
response curves for primary
resonances of the Rayleigh
Oscillator for various forcing
amplitudes of
γ (ω0 = 1 rad/s, and ε = 1)
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5.2.4 Carbon Nanotubes

(a) Structure overview

Single-walled carbon nanotubes (SWCNTs) can be considered to be formed by the
rolling of a single layer of graphite (also called a graphene sheet) into a cylinder,
Fig. 5.11.

Multi-walled carbon nanotubes (MWCNTs) can similarly be formed by consid-
ering coaxial assembly of cylinders of SWCNTs separated by the thickness of each
graphene sheet.

Regarding the molecular structure of CNTs, they have a lattice-like structure [88]
consisting of bounded carbon atoms, Fig. 5.11. Their geometric properties define
their structural topology, which is likely similar to beams for small nanotube radius
and to cylindrical shells for large nanotubes radius. This is true under certain specific
conditions [34] that will be discussed later in this chapter. Figure 5.12 describes some
of the geometric properties of CNTs, which are

Roll-up

Graphene sheet Single walled carbon nanotube 
(SWCNT)

Fig. 5.11 Formation of a single-walled carbon nanotube from a graphene sheet
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ac

lc-c

A carbon atom

Single walled carbon nanotube 
(SWCNT)

Fig. 5.12 Carbon atoms attachment in a single-walled carbon nanotube

• The distance of the adjacent carbon atoms (the length of the C–C bonds) denoted
by lc−c and found typically to be equal to 0.14 nm.

• The width of the hexagonal carbon rings denoted by ac, which is typically equal
to 0.24 nm [89].

Other important properties that define the geometry of a nanotube and that are not
represented in Fig. 5.12 are

• The diameter of the nanotube (dNT ) which can be ranged from 0.4 nm to 100 nm
and even higher [33, 34].

• The interlayer spacing (h) also called the graphene shell thickness found to be
equal to 0.34 nm [33, 34]

• The length of the nanotube (LNT ) that may also range from 1 nm to 10 micrometer
[33].

(b) The applicability of the continuum mechanics in modeling CNTs

In the following, we will present criteria for the applicability of the continuum
mechanics in simulating the response of CNTs. Although some simulation results
achieved in the literature were based on the molecular dynamics method, as we
reviewed in Sect. 4.1, this method is still limited to CNTs with a small number of
atoms and is therefore restrained to the study of small-scale modeling such as local-
ized effects on small portions of the CNTs. So, in order to simulate the mechanical
behavior of large-sized atomic CNTs, the continuum model was show to be practical
in analyzing large-scale and the global mechanical behavior of CNTs [39] but under
certain conditions [34].

Based on scaling analysis, Harik [33, 34] proposed following three nondimen-
sional numbers to check the validity of the beam assumption for modeling the
mechanics of CNTs:

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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• The homogenization criteria of the nanotube that ensures the molecular length-
scales and described by the following equation:

ac/LNT ≺ 1 (5.68)

• The aspect ratio criteria described by the following equation:

dNT /LNT ≺ 1 (5.69)

• The linearity of strains criteria described by the following equation:

(LNT − (LNT )0)/LNT ≺ 1 (5.70)

As will be shown later on, we have verified that all the applicability conditions of
the continuum theory as stated by [34] are satisfied for the CNTs under consideration
in this work.

5.3 Structural Behavior of Straight Carbon Nanotube
Resonators

In this section, we investigate the nonlinear static and dynamic of both cantilevered
and clamped-clamped straight carbon nanotubes (CNTs). We present numerical
approaches and methodologies to predict and simulate the dynamic behavior of
CNTs when driven by AC and DC loads ranging from small to large values. We
will present numerical approaches to calculate accurately the resonance frequency
of clamped-clamped and cantilever CNTs accounting for the effects of their geomet-
ric nonlinearities, DC and AC loads. This in turn should lead to accurate calibration
and prediction for the mechanical properties of CNTs by relating the measured non-
linear resonance frequencies to the predicted one based on a proper model. Then,
we present in-depth investigation for the dynamic response of CNT resonators when
driven by large values of AC and DC loads. Instability regimes of the resonators as a
function of the frequency and amplitude of the AC load will be shown. The instability
regimes can increase the knowledge about the limitations and practical applications
of the CNTs when used as resonators.

5.3.1 Problem Formulation

Here, we formulate the problem for the static and dynamic behavior of an electrically
actuated CNT resonator. The considered boundary conditions for the CNT are a
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Fig. 5.13 Schematic of the electrically actuated (a) clamped-clamped and (b) cantilever CNT
resonator

clamped-clamped beam, Fig. 5.13a, and a cantilever beam, Fig. 5.13b. The CNT is
actuated by an electrode underneath it with a gap width d. It is modeled as an Euler-
Bernoulli cylindrical beam of radius R̃, length L , and a quality factor Q. It has a
cross-sectional area A = π R̃2, area moment of inertia I = π R̃4/4, natural frequency
ωn = β2

√
E I/ρAL4 (β is equal to 4.73 for the case of a clamped-clamped beam and

equal to 1.875 for the cantilever beam), and damping coefficient c̃ = ρAωn
/
Q. The

carbon nanotube is assumed to have a Young’s modulus E = 1 TPa and a density
ρ = 1.35 g/cm3 [90].

The equation of motion of a clamped-clamped and cantilever carbon nanotube
resonator, Fig. 5.13a, b, can be written as [10, 12]

E I
∂4w

∂x4
+ ρA

∂2w

∂t2
+ c̃

∂w

∂t
= Fnon + Felec, (5.71)

where ε0 is the air permittivity and the geometric nonlinearity term Fnon is written
for clamped-clamped and cantilever CNTs, respectively as

Fclamped
non =

(
E A

2L

∫ L

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2
, (5.72)

Fcan
non = E I

∂

∂x

[
∂w

∂x

∂

∂x

(
∂w

∂x

∂2w

∂x2

)]
(5.73)

The electrostatic force per unit length expression is given as follows (see back-
ground section, Eq. (5.35)

Felect = πε0(VDC + VAC cos(�̃))2√
(d − w)(d − w + 2R̃)

(
cosh−1

(
1 + d−w

R̃

))2
(5.74)

The boundary conditions for the clamped-clamped CNT are

w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (L , t) = 0,

∂w

∂x
(L , t) = 0, (5.75)
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and for the cantilever CNT

w (0, t) = 0,
∂w

∂x
(0, t) = 0,

∂2w

∂x2
(L , t) = 0,

∂3w

∂x3
(L , t) = 0 (5.76)

For convenience, we introduce the following nondimensional variables:

ŵ = w

d
, x̂ = x

L
, t̂ = t

T
, (5.77)

where T is a time constant defined by T = √ρAL4/E I . Next, by dropping the hats,
the nondimensional equations of motions and associated boundary conditions for the
clamped-clamped and cantilever carbon nanotubes are written respectively as

∂4w

∂x4
+ ∂2w

∂t2
+ c

∂w

∂t
= α1

(∫ 1

0

(
∂w

∂x

)2

dx

)
∂2w

∂x2
+

+ α2(VDC + VAC cos(Ωt))2

√
(1 − w)(1 − w + 2R)

(
cosh−1

(
1 + 1 − w

R

))2 ,
(5.78)

w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (1, t) = 0,

∂w

∂x
(1, t) = 0, (5.79)

∂4w

∂x4
+ ∂2w

∂t2
+ c

∂w

∂t
= α3

∂

∂x

[
∂w

∂x

∂

∂w

(
∂w

∂x

∂2w

∂x2

)]
+

+ α2(VDC + VAC cos(Ωt))2

√
(1 − w)(1 − w + 2R)

(
cos h−1

(
1 + 1 − w

R

))2 ,
(5.80)

w (0, t) = 0,
∂w

∂x
(0, t) = 0,

∂2w

∂x2
(1, t) = 0,

∂3w

∂x3
(1, t) = 0, (5.81)

where

α1 = 2

(
d

R

)2

, α2 = πε0L4

E Id2
, α3 =

(
d

L

)2

, c = c̃
L4

E I
, Ω = Ω̃

ωn
, R = R̃

d
(5.82)

The Reduced-Order Model

To simulate the response of the CNT, Eqs. (5.78)–(5.81) are discretized using the
Galerkin procedure to yield a ROM. Hence, the deflection of the CNT is approximated
as

w (x, t) =
n∑

i=1

ui (t) φi (x), (5.83)
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where φi (x) are the normalized linear undamped mode shapes of a straight beam and
ui (t) are the nondimensional modal coordinates. To obtain the ROM, we substitute
Eq. (5.83) into Eqs. (5.78)–(5.81), multiply by φi (x), use the orthogonality condi-
tions of the mode shapes, and then integrate the outcome from 0 to 1. The results are
differential equations in terms of the modal coordinates ui (t).

Several points need to be clarified about the developed ROM. Unlike the case
of MEMS [72], here there is no numerical advantage of multiplying Eq. (5.78) or
Eq. (5.80) by the denominator of the electrostatic force term since the mode shape
φi (x) will remain embedded inside the square root term and the inverse hyperbolic
cosine term even after imposing the orthogonality of the mode shapes. To deal with
the complicated integral terms due to the electrostatic force, we evaluated the spatial
integrals containing the φi (x) terms numerically, using a trapezoidal method, simul-
taneously while integrating the differential equations of the modal coordinates ui (t)
with time.

As an example, assuming one mode, the modal equation describing u1(t) for a
clamped-clamped CNT is written as

ü1(t) + Cu̇1(t) + Ku1(t) = α1	u3
1(t)+

+
∫ 1

0

α2(VDC + VAC cos(Ωt))2φ1(x)

√
(1 − φ1(x)u1(t))(1 − φ1(x)u1(t) + 2R)

(
cosh−1

(
1 + 1 − φ1(x)u1(t)

R

))2

2

dx,

(5.84)
where

K =
∫ 1

0

(
φ1 (x) φiv

1 (x)
)
dx, C = c

∫ 1

0
(φ1 (x))dx, (5.85)

and

	 =
[∫ 1

0

(
φ1 (x) φ′′

1 (x)
)
dx

] [∫ 1

0

(
φ′

1 (x)
)2
dx

]
(5.86)

The Static Analysis

Various case studies of carbon nanotubes are considered for simulations, Table 5.1.
We first examine the convergence of the ROM. Figure 5.14 shows the normalized
maximum static deflection of a clamped-clamped carbon nanotube wmax = ws(x =
0.5) for case 2 of Table 5.1 using one, two, and three symmetric modes of the ROM
while varying the DC load. It follows from the figure that using one mode yields
acceptable converged results. This result shows a clear difference between CNTs
and other MEMS beams [72], where at least three symmetric modes need to be used
for convergence. One possible justification for this is due to the high stiffness of
CNTs making the contribution of the higher-order modes weak compared to the first
one.

Next, we verify the obtained results using one mode in the ROM by compar-
ing them with the simulation results of Pugno et al. [15], which are based on a
finite-difference method. Following Pugno et al. [15], we first conduct a comparison
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Table 5.1 The geometrical properties of the studied carbon nanotube beams

Case # Boundary
conditions

d [nm] L [nm] R̃ [nm] References

1 Clamped-clamped 100 3000 20 [15]

2 Clamped-clamped 100 3000 30 [15]

3 Clamped-clamped 100 2000 30 [15]

4 Cantilever 390 2500 5.45 [91]

5 Cantilever 3000 6800 23.5 [47]

Fig. 5.14 Variation of the
normalized static deflection
of the carbon nanotube with
the DC voltage for case 2 of
Table 5.1. In the figure: (◦)
one-mode ROM, (•) two
modes ROM, and (*) three
modes ROM
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assuming a linear beam model for the case of clamped-clamped carbon nanotube
(without mid-plane stretching). Figure 5.15a shows the results for cases 1 and 2 of
Table 5.1 indicating excellent agreement between our results and the results of Pugno
et al. [15]. In addition, we show the unstable branches of the equilibrium solutions.
We can see that both the unstable and stable branches collide at pull-in. Also, it is
worth to note that pull-in occurs here at a normalized deflection approximately equal
0.46, compared to 0.33 in the linear case of electrostatically actuated structures [78].
This can be attributed to the geometrical shape of the carbon nanotube and the dif-
ference between the electrostatic force field in this case and the case of parallel-plate
rectangular shaped capacitor.

Next, we include the mid-plane stretching term in the simulation and compare
with the nonlinear model results of Pugno et al. [15], Fig. 5.15a. The figure also
shows excellent agreement; thereby validating the ROM. Comparing Fig. 5.3a, b,
one can see the importance of mid-plane stretching in predicting accurately the pull-
in voltage of the carbon nanotube. Further, it is noted that pull-in occurs here at
wmax = 0.64, compared to 0.45 in the nonlinear case of an electrostatically actuated
microbeam of rectangular cross section [72]. Table 5.2 shows a comparison between
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Fig. 5.15 Variation of the normalized static deflection of clamped-clamped carbon nanotubes
with the DC voltage, (a) without including mid-plane stretching and (b) with including mid-plane
stretching. In the figure: (—-) stable branch, (- - - - -) unstable branch, and (◦) results of Pugno et al.
[15]

Table 5.2 The calculated pull-in voltages for the cases of Table 5.1

Case # Pull-in voltage [Volt] (linear
theory)

Pull-in voltage [Volt]
(nonlinear theory)

1 18.62 32.65

2 37.46 50.72

3 82.47 114.2

4 2.309 2.31

5 50.20 48.26

the calculated pull-in voltage for the cases of Table 5.1 using linear and nonlinear
beam theories. As noted from the table, the error in using linear theory to predict the
behavior of CNTs can be significant.

Next, we show results for cantilever carbon nanotubes. In Fig. 5.16a, b, we validate
the one-mode ROM results for the cantilever CNT case by comparing them with the
experimental data reported in Akita et al. [91] and Pugno et al. [15]. In the figures, the
normalized maximum static deflection of the cantilever carbon nanotube is wmax =
ws(x = 1). The ROM includes the geometric nonlinearities of the cantilever CNT. In
Fig. 5.16a, b, the parameters of cases 4 and 5 of Table 5.1 were used, respectively. The
experimentally measured pull-in voltages are 2.33 Volt [91] and 48.26 Volt [15] for
cases 4 and 5, respectively, whereas the obtained values using the ROM are 2.31 Volt
and 48.26 Volt. It is clear that the experimental data and the ROM results are in good
agreement. As noted, the effect of the geometric nonlinearities in the cantilever case
is less than it is for the case of clamped-clamped carbon nanotubes.
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Fig. 5.16 Variation of the normalized static deflection of cantilever carbon nanotubes with the DC
voltage for (a) Case 4 of Table 5.1 and (b) Case 5 of Table 5.1. In the figure: (*) ROM (one mode,
linear case), (�) ROM (two modes, linear case), (◦) ROM (two modes, nonlinear case), and (•)
experimental data of (a) Akita et al. [91] and (b) Pugno et al. [15]

Free-Vibration Problem Under a DC Voltage

(a) Numerical approaches

In this section, we present two computationally-efficient approaches to solve the free-
vibration problem of the CNT under a DC electrostatic load. First, we use the ROM
of Sect. 4.3.2. In this approach, the static deflection of the CNT needs to be solved for
each DC voltage. For a given voltage, we substitute the stable static solution, found
by solving the static equations as we did in Sect. 4.3.3, into the Jacobian matrix of
the ROM. Then, the eigenvalues of the calculated Jacobian matrix are solved. By
taking the magnitudes of each individual eigenvalue, the natural frequencies of the
system are obtained. This is similar to what we have been done in [92, 93].

The second approach that can be used is through solving numerically the original
boundary value problem, Eq. (5.71), using numerical software such as Mathematica®
[87]. This approach is considered more accurate compared to the ROM since the latter
approximates the original problem while the former deals with the problem exactly.
This approach can be applied on Eqs. (5.71) and (5.72) for clamped-clamped CNTs
combined with a shooting technique to iterate on the integral term of Eq. (5.72)
[78]. Also, it can be applied directly on Eqs. (5.71) and (5.73) for cantilever CNTs.
However this technique suffers convergence problems for clamped-clamped CNTs
because of the mid-plane stretching term. To resolve this problem, one can split the in-
plane equation from the out-of-plane equation in Eq. (5.71) and then solve the coupled
system. Here, out-of-plane means motion transversal to the beam axis (toward the
substrate) and in-plane means across the beam length. Next, we rewrite the beam
equation as two coupled partial differential equations governing the transverse, w,
and axial, u, deflections of the beam as [94, 95].

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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The boundary conditions governing w and u respectively are

w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (L , t) = 0,

∂w

∂x
(L , t) = 0,

u (0, t) = 0, u (L , t) = 0
(5.89)

Because the natural frequency in the axial direction is much larger than the one
in the transverse direction [95], we drop the inertia term of the u component in
Eq. (5.88), and get the following equation:

∂2u

∂x2
= −∂w

∂x

∂2w

∂x2
(5.90)

Equations (5.87) and (5.90) can now be solved simultaneously for u and w. Using
the nondimensional variables defined in Eq. (5.77) and dropping the hats yield
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(5.91)

∂2u

∂x2
= −α3

∂w

∂x

∂2w

∂x2
, (5.92)

where α1, α2, α3 are given by Eq. (5.82) and α4 = 4(L/R̃)2.
We split the transverse and axial deflections into static components due to the DC

voltage, denoted byws (x) and us (x) respectively, and dynamic components denoted
by wd (x, t) and ud (x, t) respectively, that is,

w (x, t) = ws (x) + wd (x, t) , (5.93)

u (x, t) = us (x) + ud (x, t) (5.94)
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Substituting Eqs. (5.93) and (5.94) into Eqs. (5.91) and (5.92), dropping the AC
forcing term, and retaining only the linear terms in wd and ud yields the follow-
ing equations describing the small free vibration of the clamped-clamped carbon
nanotube:

wd
′′ ′′ + ẅd = α1(w

′2
s wd

′′ + 2ws
′ws

′′w1
d ) + α4(u

′
swd

′′ + ws
′′u1

d )+

+

⎛
⎜⎜⎜⎝

α2V
2
DC

(
2
√

(1 − ws )(1 − ws + 2R) + (1 − ws + R) cosh−1
(

1 + 1 − ws

R

))

((1 − ws (1 − ws )(1 − ws + 2R))
3
2

(
cosh−1

(
1 + 1 − ws

R

))3

⎞
⎟⎟⎟⎠wd , (5.95)

ud
′′ = −α3ws

′wd
′′ − α3ws

′′w
′
d (5.96)

To derive the eigenvalue problem, we let

wd (x, t) = �(x) eiωt , (5.97)

ud (x, t) = ψ (x) eiωt , (5.98)

where �(x) and ψ (x) are the associated transverse and axial eigenfunctions respec-
tively and ω is the nondimensional natural frequency. Substituting Eqs. (5.97) and
(5.98) into Eqs. (5.95) and (5.96) and solving the resulting equations yield the mode
shapes � and ψ and their associated natural frequency ω.

(b) Results

To start, we use a one mode approximation in the ROM of Sect. 4.3.2 to calculate
the natural frequencies and then compare the results to those obtained by solving the
boundary value problem directly. In Fig. 5.17, we compare the variation of the first
natural frequency of a clamped-clamped CNT (case 2 of Table 5.1) using the two
methods. We can conclude from the figure that the one-mode ROM converges and
follow the CNT behavior even near the pull-in instability.

Figure 5.18a depicts the fundamental natural frequency calculated using the ROM
(o) and the results of Dequesnes et al. [12] for a clamped-clamped carbon nanotube
of length = 20.7 nm, radius = 0.9 nm, and gap width = 3 nm. The figure shows that
the natural frequency decreases slightly for small ranges of the DC voltage, then
increases again as the effect of mid-plane stretching of the CNT increases, and then
drops suddenly to zero near pull-in. As seen in the figure, the model shows high
robustness in tracking the increase and then the drop of the natural frequency to zero
near pull-in. Also, the figure indicates good agreement with the results of Dequesnes
et al. [12], which were obtained by a molecular dynamics model.

Because the gap width of this case study is too small (below 3 nm), van der Walls
forces can have significant effect on the results [12]. To investigate this effect, we
add the van der Walls forces term to the beam equation, which becomes [10, 12]

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.17 Variation of the fundamental natural frequency ω0 normalized with that at zero voltage ω0
for various values of DC voltage. Results are shown for the carbon nanotube of case 2 of Table 5.1.
In the figure: (◦) are the results obtained by solving the boundary value problem directly and (—-)
are those obtained using a one-mode ROM
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where r = d − w is the distance between the CNT and the substrate,C6 = 15.2eV
o
A

is a constant characterizing the interaction between two carbon atoms and σ =
38 nm−2 is the substrate layer (graphite) surface density. By applying the procedure
of Sects. 4.3.2 and 4.3.4 on Eqs. (5.99) and (5.100), we obtain the natural frequencies
under the effect of both the electrostatic and van der Walls forces.

Figure 5.18a compares the obtained results with and without the van der Walls
forces. As seen, in this case the van der Walls forces have negligible effect.
Figure 5.18b shows another case of smaller gap width, d = 1 nm, for a clamped-
clamped carbon nanotube of length = 20.7 nm and radius = 0.9 nm. The figure
shows comparisons among the results of the ROM and Dequesnes et al. [12] with and
without van der Walls forces. There are good agreements among all results. In this
case, as shown from Fig. 5.18b, the van der Walls forces have significant impact on
changing the natural frequencies and the pull-in voltage. It is worth to mention that

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4


160 H.M. Ouakad

0 5 10 15 20
0

10

20

30

40

50

60

70

80

VDC (Volt)

Fu
nd

am
en

ta
l f

re
qu

en
cy

 (G
H

z)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

VDC (Volt)

Fu
nd

am
en

ta
l f

re
qu

en
cy

 (G
H

z)

(a) (b)

Fig. 5.18 Variation of the fundamental natural frequency with the DC voltage for two clamped-
clamped carbon nanotubes. Figure 5.18a is for a CNT of length 20.7 nm and gap width 3 nm and
Fig. 5.18b is for a CNT of length 20.7 nm and gap width 1 nm. In the figure: (◦) ROM without
including van der Wall forces, (♦) ROM with including van der Wall forces, and (•) results of
Desquesnes et al. [12]

Fig. 5.19 Variation of the
normalized fundamental
natural frequency ω1 with
the DC voltage for
clamped-clamped carbon
nanotubes for case 1 (◦),
case 2 (*), and case 3 (•) of
Table 5.1
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from a computational point of view, the ROM is very cheap compared the molecular
dynamics model of Dequesnes et al. [12].

Figure 5.19 shows the variation of the fundamental natural frequency of the
clamped-clamped CNTs for cases 1, 2, and 3 of Table 5.1. As seen in the figure, the
fundamental frequency increases to higher values as the electrostatic force increases
for all the considered cases and then decreases to zero when pull-in occurs. This
is due to the fact that the effect of mid-plane stretching dominates that of the elec-
trostatic force. This agrees with the reported experimental data of [4]. One can see
from Fig. 5.19 that both parameters (the length and the radius) of the CNT can be
used to tune the fundamental natural frequency to be almost unchanged over an
extended range of DC voltages (see the curve of case 3). This attractive feature can
be promising for the implementation of CNTs as resonant sensors.
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Fig. 5.20 Variation of the
fundamental natural
frequency with the DC
voltage for a cantilever
carbon nanotube (case 4 of
Table 5.1)
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We end this section by showing the variation of the natural frequency of a can-
tilever CNT with the DC voltage. Because of the fact that the geometric nonlinearity
is weak in this case, the electrostatic force is always dominant and hence the CNT
experiences a softening behavior. Figure 5.20 shows simulation results for the can-
tilever beam of case 4 of Table 5.1. We notice in the figure a monotonic decrease in
the natural frequency until it reaches zero at pull-in.

Dynamic Response to DC and AC Loads

(a) Primary resonance of the fundamental mode

Here, we simulate the frequency-response of the carbon nanotube when excited by
a DC load superimposed to an AC harmonic load of frequency near its fundamental
natural frequency (primary-resonance excitation, Ω ≈ ω1). In the dynamic analysis,
long-time integration for the reduced-order model equations of motion can be used.
However, this method suffers convergence problems near bifurcations and instabili-
ties and in general is not considered a robust method for studying nonlinear vibrations.
Hence, a second method will be used, which is called the shooting technique [96].
The shooting method is a numerical technique to find periodic solutions, analyze
their stability, and also locate and identify bifurcation points. This method will be
used in conjunction with the Floquet theory [96] to study the stability of the captured
periodic orbits.

We first investigate the response of carbon nanotubes to small AC and DC load
(Figs. 5.21 and 5.22). In all subsequent figures, dashed lines refer to unstable solu-
tions. Figure 5.21 shows a frequency-response curve of a clamped-clamped CNT of
case 2 of Table 5.1. The figure compares the results of the shooting technique, based
on one mode approximation, to the long-time integration technique using one and
two modes in the ROM. The figure verifies the convergence of the ROM for the
dynamic simulations and the fact that one mode yields adequate accuracy. Figure 5.9
shows a hardening behavior of the clamped-clamped CNT even for this small value
of electric load, which is away from the pull-in voltage (50.7 Volt). This represents
another sign for the dominant effect of mid-plane stretching of clamped-clamped
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Fig. 5.21 Frequency-response curve of the CNT for case 2 of Table 5.1 shows the shift in the non-
linear resonance frequency in the hardening-behavior case. Results are shown for VDC = 5 Volt,
VAC = 2 Volt, and Q = 100. In the figure, wmax = w (0.5, t) is the mid-point/maximum deflec-
tion of a clamped-clamped CNT, (—–) shooting method (stable branch), (- - - - -) shooting method
(unstable branch), (*) long-time integration (one-mode ROM), and (◦) long-time integration (two
modes ROM)
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Fig. 5.22 Frequency-response curve of the CNT for case 4 of Table 5.1 showing the shift in the non-
linear resonance frequency in the softening-behavior case. Results are shown for VDC = 0.5 Volt,
VAC = 0.13 Volt, and Q = 100. In the figure, wmax = w (1, t) is the tip/maximum deflection of a
cantilever CNT, (—-) stable branch, and (- - - - -) unstable branch

CNTs. Figure 5.22 shows a frequency-response curve of a cantilever CNT of case
4 of Table 5.1. The figure shows a weak softening behavior even for large values of
VAC .

Next, we show by simulation and using the shooting technique the shift in the
resonance frequency Ωr [79], which is the quantity being measured experimentally
and is influenced by the AC amplitude, compared to the linear natural frequency ω1,
which depends on the DC voltage only. Figure 5.23a, b show the variation of the nor-
malized nonlinear resonance frequency Ωr/ω1 for clamped-clamped and cantilever
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Fig. 5.23 The normalized nonlinear resonance frequency for two cases of CNTs calculated using
the shooting technique for Q = 100

CNTs, respectively, for various values of AC and DC loads. We can see that the
resonance frequency increases considerably with the AC load in the case of hard-
ening behavior for the clamped-clamped CNT but decreases slightly in the case of
softening behavior for the cantilever CNT. It is concluded that the strong hardening
behavior of the clamped-clamped CNTs makes them almost useless in the linear
regime, in agreement with the observation of Postma et al. [3].

Next, we examine the case of the CNT of Fig. 5.23 when VDC is increased to
25 Volt, Fig. 5.24. The figure shows also a hardening-type behavior. In addition, the
figure shows that the upper branch of the frequency-response curve opens up and loses
stability through a saddle-node bifurcation at an excitation frequency near 28, where
its slope approaches infinity and one Floquet multiplier approaches unity. This is an
indication of a dynamic pull-in, as has been found for the case of clamped-clamped
microbeams [84].

Fig. 5.24 Frequency-
response curve of the
clamped-clamped carbon
nanotube of case 2 of
Table 5.1 and for
VDC = 25 Volt,
VAC = 5 Volt, and Q = 100.
In the figure: (—–) stable
branch, (- - - - -) unstable
branch
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Fig. 5.25 Frequency-
response curve of the
clamped-clamped carbon
nanotube of case 3 of
Table 5.1 and for
VDC = 100 Volt,
VAC = 5 Volt, and Q = 100.
In the figure: (—–) stable
branch, (- - - - -) unstable
branch
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Escape band

As the value of the DC voltage is increased further, the frequency-response of
the carbon nanotube in this case remains of hardening type until reaching the static
pull-in voltage (it does not reverse to softening behavior as in MEMS microbeams
[84]). This is because in this considered case, the effect of mid-plane stretching is
always dominant over the electrostatic force, except at pull-in. This seems to be a
unique feature for CNTs over other structures.

To demonstrate a softening-type behavior, we choose another case study, case 3
of Table 5.1, where mid-plane stretching has a slightly weaker effect. Hence, at some
DC load before static pull-in value, the electrostatic force nonlinearity dominates that
of mid-plane stretching. Figure 5.25 shows the results. The figure shows a dynamic
pull-in through period doubling bifurcations, where we found a Floquet multiplier
reaching negative one [84, 96]. Figure 5.25 also shows a band of frequencies where
there is no stable solution for the system. This band is called an inevitable escape
band [85], where the oscillator is forced to escape its potential well. In this case the
carbon nanotube is forced to escape to pull-in (see end of Sect. 4.2.2).

Increasing the AC load further in this case results in a larger escape band of
frequencies. We use the shooting technique to calculate the carbon nanotube escape
bands for the primary resonance case while varying the AC voltage and frequency
(instability tongues). Figure 5.26a, b show the results for case 2 of Table 5.1 with
VDC = 25 Volt (hardening behavior) and for case 3 of Table 5.1 with VDC =
100 Volt (softening behavior), respectively. Operating the resonator within those
instability limits leads to definite pull-in. It is clear also from the figures that if the
AC amplitude increases, the escape band limits increase.

We end this section by investigating the response of cantilever carbon nanotubes.
In this case, the frequency-response curve is always of softening-type because of the
weak effect of the geometric nonlinearity and the strong effect of the electrostatic
nonlinearity. Figure 5.27 shows the frequency-response curve of the carbon nanotube
resonator for case 4 of Table 5.1. The figure shows also a dynamic pull-in through
period doubling bifurcations, where we found Floquet multipliers exceeding the unit
circle through negative one.

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.26 The calculated instability tongues (inevitable escape bands) in the case of primary reso-
nance of a clamped-clamped carbon nanotube (a) for the case 2 of Table 5.1 with VDC = 25 Volt,
(b) for the case 3 of Table 5.1 with VDC = 100 Volt and Q = 100

Fig. 5.27 Frequency-
response curve of a
cantilever carbon nanotube
for case 4 of Table 5.1 and
for VDC = 1Volt,
VAC = 0.1 Volt, and
Q = 100. In the figure,
wmax = w (1, t) is the
tip/maximum deflection of
the carbon nanotube, (—–)
stable branch, and (- - - - -)
unstable branch
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(b) Secondary resonances of the fundamental mode

This section examines the carbon nanotube dynamics near superharmonic resonance
of order two (excitation near half the fundamental natural frequency) and subhar-
monic resonances of order one half and one third (excitation near twice and three
times the fundamental natural frequency).

Figure 5.28 shows the response of the clamped-clamped carbon nanotube of case
2 of Table 5.1 when excited near superharmonic resonance of order two of the funda-
mental mode. The figure shows a hardening-type behavior and a qualitatively similar
behavior to that near primary resonance of Fig. 5.24. Also, the figure indicates the
occurrence of dynamic pull-in through a saddle-node bifurcation in the upper branch
of the curve.

We now examine the response of the same carbon nanotube near subharmonic
resonances. It is worth to note that the activation of subharmonic resonance requires
exceeding specific thresholds of AC load and quality factor. We excited the carbon
nanotube by VDC = 20 Volt and VDC = 1.2 Volt near twice its natural frequency
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Fig. 5.28 Frequency-
response curve of the
clamped-clamped carbon
nanotube for the
superharmonic resonance of
order two for case 2 of
Table 5.1 for VDC = 20 Volt,
VAC = 16 Volt and
Q = 150. In the figure: (—–)
stable branch, (- - - - -)
unstable branch

8 9 10 11 12 13 14 15 16 17
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω

w m
ax

Fig. 5.29 Frequency-
response curve for the
subharmonic resonance of
order one half of the carbon
nanotube of case 2 of
Table 5.1 for VDC = 20 Volt,
VAC = 1.2 Volt and
Q = 150. In the figure: (—–)
stable branch, (- - - - -)
unstable branch
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and found that a subharmonic resonance of order one half is activated, Fig. 5.17.
Increasing the AC load further to VAC = 16 Volt leads to a dynamic pull-in, Fig. 5.30.

Figures 5.28, 5.29, and 5.30a demonstrate secondary resonances of order two and
one half due to the influence of the electrostatic force, which is quadratic in nature.
However, it is possible also to activate secondary resonances of order one third and
three due to the effect of mid-plane stretching, which is cubic in nature. An example
of this case is depicted in Fig. 5.30b. Also, in this figure, the curve undergoes dynamic
pull-in characterized by a Floquet multiplier approaching unity. One can note from
Figs. 5.29 and 5.30 the fact that subharmonic resonance remains activated over a wide
range of frequency. This is another significant difference between the dynamics of
CNTs and MEMS beams, where subharmonic resonance is activated over a very
narrow range of frequency [80].

Next, we use the shooting technique to calculate the inevitable escape bands of
frequencies for the subharmonic resonance of order one half while varying the AC
voltage and frequency, as we did in the primary resonance case. Figure 5.31a, b show
the results for cases 2 and 3 of Table 5.1, respectively. To illustrate the increase in
the escape band as the AC voltage increases, the frequency-response curves for the
upper and the lower limits of the instability tongue of Fig. 5.31a are depicted in
Fig. 5.32a, b, respectively.
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Fig. 5.30 Frequency-response curve for the subharmonic resonance of order (a) one half and (b)
one third of the carbon nanotube of case 2 of Table 5.1 for VDC = 20 Volt, VAC = 16 Volt, and
Q = 150. In the figure: (—–) stable branch, (- - - - -) unstable branch
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Fig. 5.31 The calculated instability tongues in the case of subharmonic resonance of order one half
(a) for case 2 of Table 5.1 with VDC = 20 Volt, (b) for case 3 of Table 5.1 with VDC = 100 Volt and
Q = 150

Next we show the subharmonic response of a cantilever carbon nanotube.
Figure 5.33 depicts a softening-type behavior of the subharmonic resonance of order
one half of the fundamental mode. The curve shows dynamic pull-in characterized
by period doubling bifurcation.

5.4 Dynamics of Slacked Carbon Nanotube Resonators

In the previous section, we presented a model utilizing a nonlinear beam equation
to simulate the static and dynamic behaviors of electrically actuated straight CNT
resonators. It is worth to mention that the adopted model does not account for the
effect of slack (curvature), buckling, or initial deformation of carbon nanotubes.
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Fig. 5.32 Frequency-response curves for the subharmonic resonance of order one half of the carbon
nanotube for case 2 of Table 5.1 when VDC = 20 Volt and Q = 150 and for (a) VAC = 37 Volt and
(b) VAC = 40 Volt. In the figure: (—–) stable branch and (- - - - -) unstable branch

Fig. 5.33 Frequency-
response curve for the
subharmonic resonance of
order one half of the
cantilever carbon nanotube
for case 4 of Table 5.1 when
VDC = 1 Volt,
VAC = 0.2 Volt, and
Q = 150. In the figure: (—–)
stable branch, (- - - - -)
unstable branch
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This can have significant influence on the stability, natural frequencies, and pull-in
calculations presented so far in the previous chapter. In this section, a 2-D nonlinear
curved beam model (arch) is utilized to simulate the motion of a slacked CNT. The
variation of the natural frequencies, mode shapes, and effective nonlinearity of a
CNT with various levels of slack and DC electrostatic loads is investigated. Various
scenarios are shown for mode crossing and mode veering as the levels of slack and DC
load are varied. In addition, the forced vibration of the slacked CNT when actuated
by small DC and AC loads is analyzed to show the transfer of energy among the
vibration modes involved in the veering phenomenon.

5.4.1 Problem Formulation

We start by formulating the 2-D problem governing the static and dynamic behavior
of an electrically actuated slacked carbon nanotube resonator, Fig. 5.34. The nanotube
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Fig. 5.34 (a) 3-D schematic of the electrically actuated slacked carbon nanotube resonator, (b)
in-plane view of the nanotube

is actuated by an electrode underneath it with a gap width d. It is modeled as a hollow
cylinder Euler-Bernoulli beam of radius R̃, shell thickness h, and length L . It has a
cross-sectional area A and an area moment of inertia I . The nanotube is assumed to
have a Young’s modulus E = 1.2 TPa and a mass density ρ = 1.3 g/cm3. The CNT
is considered here to be initially curved in the direction of the lower electrode with
an initial shape [65].

The 2-D equations describing the in-plane deflection ŵ
(
x̂, t̂
)

and out-of-plane
deflection v̂

(
x̂, t̂
)

of the clamped-clamped CNT resonator can be written as [69]

E I
∂4ŵ

∂ x̂4
+ ∂A

∂2ŵ

∂ t̂2
+ c̃

∂ŵ

∂ t̂
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+ E A

2L

[∫ L

0

{(
∂ŵ
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)2
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(
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)}
dx

][
∂2ŵ

∂ x̂2
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]
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(5.101)

E I
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(
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(5.102)
where

F̂elec = πε0(VDC + VAC cos(�̃t))2

√
(d − ŵ − ŵ0)(d − ŵ − ŵ0 + 2R̃)

(
cosh−1

(
1 + d − ŵ − ŵ0

R̂

))2 ,

(5.103)
and where c̃ is the viscous damping coefficient and ε0 is the air permittivity.

The respective boundary conditions are

ŵ
(
0, t̂
) = 0,

∂ŵ

∂ x̂

(
0, t̂
) = 0, ŵ

(
L , t̂
) = 0,

∂ŵ

∂ x̂

(
L , t̂
) = 0,

v̂
(
0, t̂
) = 0,

∂ v̂

∂ x̂

(
0, t̂
) = 0, v̂

(
L , t̂
) = 0,

∂ v̂

∂ x̂

(
L , t̂
) = 0

(5.104)
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For convenience, we introduce the following nondimensional variables:

w = ŵ

d
, v = v̂

d
, x = x̂

L
, t = t̂

T
, (5.105)

where T is a time constant defined by T =
√(

ρAL4
)
/(E I ). By substituting

Eq. (5.105) into Eqs. (5.101)–(5.104), the nondimensional equations of motions and
associated boundary conditions of the considered clamped-clamped CNT are written
as

∂4w

∂x4
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(5.106)
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w (0, t) = 0,
∂w

∂x
(0, t) = 0, w (1, t) = 0,

∂w

∂x
(1, t) = 0,

v (0, t) = 0,
∂v

∂x
(0, t) = 0, v (1, t) = 0,

∂v

∂x
(1, t) = 0,

(5.108)

where

Felse = (VDC + VAC cos(Ωt))2

√
(1 − w − w0)(1 − w − w0 + 2R)

(
cosh−1

(
1 + 1 − w − w0

R

))2 ,

(5.109)

w0(x) = bo
d

sin(πx),

α1 = Ad2

2I
, α2 = πε0L4

E Id2
, c = c̃L4

E IT
, � = �̃√

(E I )
/
(ρAL4)

, R = R̃

d
(5.110)

5.4.2 The Reduced-Order Model

To solve the obtained nondimensional equation of motions of the slacked CNT,
Eqs. (5.106)–(5.109) are discretized using the Galerkin procedure to yield a ROM.
Hence, the in-plane and out-of-plane responses of the CNT are approximated, respec-
tively, as
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w (x, t) =
n∑

i=1

ui (t) φi (x), v (x, t) =
m∑
i=1

ξi (t) φi (x), (5.111)

where φi (x) are the normalized linear undamped mode shapes of a straight beam
and ui (t) and ξi (t) are the nondimensional modal coordinates of the in-plane and
out-of-plane motions, respectively.

To obtain the ROM, we substitute Eq. (5.111) into Eqs. (5.106)–(5.108), multiply
by φi (x), use the orthogonality conditions of the mode shapes, and then integrate
the outcome from 0 to 1. The results are differential equations in terms of the modal
coordinates ui (t) and ξi (t). We should mention here that, as in Sect. 4.3.2, the mode
shapes φi (x) will remain embedded inside the denominator of the electrostatic force
term, Eq. (5.109), in the ROM. To deal with the complicated integral terms due to
that electrostatic force, we evaluate the spatial integrals containing the mode shapes
φi (x) numerically simultaneously while integrating the differential equations of the
modal coordinates ui (t) and ξi (t).

The Static Response

As a case study, a CNT of L = 3000 nm, h = 0.34 nm, R̃ = 1 nm, d = 500 nm, and
initial rise bo = 100 nm is considered. Such dimensions are typical of CNTs with
slack [4–6]. We have shown in Sect. 4.3 that using one mode only in the ROM is
enough to capture the static response of a CNT. Next a one mode is used in the ROM
to compare the variation of the maximum in-plane static deflection of the CNT with
and without slack, Fig. 5.35.

The figure indicates that for small DC load, the CNT with slack is relatively stiffer
due to the linear stiffness term added from the initial curvature. It can be also seen
from the figure that the CNT with slack undergoes the pull-in instability at a lower DC
load than the one without slack. This is expected since in the slacked configuration,
the CNT is nearer to the electrode. Note here that the static response of the out-of-
plane motion is zero since the in-plane deflection appears as a homogenous term
in the out-of-plane equation (Eq. (5.107)). The stability of the obtained solutions in
Fig. 5.35 is studied by calculating the eigenvalues of the Jacobian matrix of the ROM

Fig. 5.35 Variation of the
maximum in-plane static
deflection of the CNT with
the DC voltage for various
levels of initial curvature b0.
Solid (——) and dashed
(- - - - -) lines denote the
stable and unstable branches,
respectively
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evaluated at these solutions [72]. The results show that one of the eigenvalues of the
Jacobian matrix corresponding to the upper branches is always positive indicating
unstable solution (dashed line in Fig. 5.35). Also, all of the eigenvalues of the lower
branches are pure imaginary indicating stable solutions (continuous line in Fig. 5.35).
At pull-in, both stable and unstable branches collide and destroy each other with one
eigenvalue tending to zero corresponding to a saddle-node bifurcation.

The Eigenvalue Problem

Next, we investigate the eigenvalue problem of the slacked CNT by calculating the
variation of the in-plane and out-of-plane natural frequencies and mode shapes with
and without slack and under the actuation of the DC voltage. Toward this, we consider
the same procedure of Sect. 4.3.4, where:

X = [u1, u2, ..., un, ξ1, ξ2, ..., ξm] (5.112)

is the considered modal amplitudes vector.
First, we consider the case study of Üstünel et al. [6], which is a non-hollow

CNT of L = 1750 nm, R̃ = 1 nm, and d = 500 nm. For the following results, we
will denote the in-plane natural frequencies by ωi and the out-of-plane frequencies
byλi . In Fig. 5.36, the variation of the in-plane and out-of-plane natural frequencies
is calculated at zero DC load for various values of initial rise of the CNT or slack
percentages. The slack percentage is defined as %slack = (L − L̃)/L , where L̃ is
the length of the CNT in the deformed (curved) position. Figure 5.36 compares the
results with those reported in Üstünel et al. [6], which indicates good qualitative
agreement. However, there is a quantitative discrepancy due to the fact that the
model used in Üstünel et al. [6] is applicable only when the strain is small enough
that the nonlinear elastic effects may be ignored. Unlike their model, our approach

Fig. 5.36 Variation of the
first few in-plane and
out-of-plane natural
frequencies of a CNT with
slack for the case study of
Üstünel et al. [6]. Solid line
(——), dashed line (- - - - -),
and circles (◦) denote,
respectively, the odd
in-plane, even in-plane and
out-of-plane, and the odd
out-of-plane frequencies
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is a continuous model that can describe the nonlinear oscillations of the CNT under
its various parameters without dividing the CNT behavior into different regimes.

In Fig. 5.37, we investigate in more depth the effect of varying the initial rise of the
CNT of Fig. 5.35, assuming zero DC load, on the in-plane and out-of-plane natural
frequencies. We can see clearly that the even in-plane (dashed lines in Fig. 5.37a) and
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Fig. 5.37 (a) Variation of the in-plane and out-of-plane natural frequencies of a CNT with various
levels of slack at zero DC load. (b) A zoomed view of Fig. 5.4a showing the crossings and veering
of the in-plane frequencies (the odd out-of-plane are not shown for clarity). Solid line (——),
dashed line (- - - - -), and circles (◦) denote, respectively, the odd in-plane, the even in-plane and the
out-of-plane, and the odd out-of-plane frequencies
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out-of-plane frequencies (circles in Fig. 5.37a) are insensitive to the variation of slack
whereas the odd in-plane frequencies vary with slack (continuous lines in Fig. 5.37a).
These frequencies appear in the large scale to intersect (Fig. 5.37a). When enlarging
the apparent intersection zones, one can see that they do not intersect (blue circles in
Fig. 5.37b); they diverge in a manner called curve veering [97, 98]. This phenomenon
is common and has been cited for the natural frequencies of a rectangular membrane
when varying the ratio of its lengths’ sides [98] and also for the natural frequencies
of cables when varying their sagging levels [99, 100].

A frequency veering occurs when the loci of two eigenvalues, in an eigenvalue
problem, approach each other when a parameter is varied and then veer away when
being too close like two repulsive charges [101]. In a frequency veering, the eigen-
functions associated with the eigenvalues on each locus before veering is inter-
changed during the veering [98]. To further clarify this, we plot the corresponding
eigenfunctions of the odd in-plane natural frequencies in Table 5.3. We can see that
the modes are exchanging shapes and (bold squares in Table 5.3) when varying the
slack level. This table describes all the veering scenarios depicted in Fig. 5.37b, which
appear following a straight line. In this line, the shape of the first mode is transferred
into the different odd modes, from the lower to the higher modes, depending on the
slack level. A final note to be mentioned here is that the odd in-plane frequencies
intersects the even ones for certain levels of slack offering many possibilities of
internal resonances and exchange of energy among higher- and lower-order modes.

Table 5.3 The simulated eigenfunctions of the first five odd in-plane modes for various slack levels

1ω 3ω 5ω 7ω 9ω

b0=0
μm

b0=10
μm

b0=20
μm

b0=40
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b0=70
μm

b0=100
μm
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Fig. 5.38 (a) Variation of the in-plane natural frequencies with the DC load of a CNT (a) without
and (b) with slack. In both cases, a zoomed view near small values of voltages are shown (c) and (d).
Solid line (——) and dashed line (- - - - -) denote the odd in-plane and the even in-plane frequencies,
respectively

Next we investigate the variation of the in-plane natural frequencies of the CNT
with the DC load. First, we consider the unslacked case. We can see from Fig. 5.38a
that all the natural frequencies are sensitive to the variation of the DC voltage. All of
them are increasing dramatically, with a sublinear variation behavior, except for the
first frequency near pull-in where it drops to zero. This increase in the frequencies
suggests a tunable resonator over a wide range of frequencies. Practically, when
designing a resonator made with such CNT, one can easily tune the frequencies from
MHz range to GHz and even THz range. In addition, one can see from Fig. 5.38c
that there is no possibility of modes veering or modes crossing even for small range
of voltages. These scenarios however appear when slack is added, Fig. 5.38b. The
figure shows the variation of the first few in-plane frequencies of the slacked CNT
(b0 = 100 nm) with the DC load. We can see that the odd modes exhibit the frequency
veering phenomenon (blue circles in Fig. 5.38d), but in this case from the higher to
the lower modes where the energy is transferred to the lowest fundamental frequency
that eventually drops to zero at pull-in. There are also possibilities of odd and even
in-plane modes crossings (blue arrows in Fig. 5.38d).
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It is worth to mention here that our demonstrated results can justify and predict
some of observed experimentally phenomena in Sazanova [5]. Other models of [5,
6] could not explain the previously mentioned phenomenon. For example, Fig. 5.38
shows what was cited as sublinear dispersion of the frequency in Sazanova [5]. The
avoided crossings for some frequency range in the case of slack cited in Sazanova
[5], can be considered to be the same as veering, Fig. 5.39. Also, our results, based on
the coupled in-plane and out-of-plane motions, have shown abundance of resonances
as cited in Sazanova [5].

Next, we investigate the sensitivity of the out-of-plane natural frequencies to the
DC load, which although not directly actuated, they are affected due to the nonlinear
coupling between the out-of-plane and in-plane deflections. Figure 5.39 shows the
first five in-plane and out-of plane natural frequencies as they vary with the DC load.
We can note that, except for the first mode, the first few out-of-plane frequencies
are larger than those of the in-plane frequencies especially at high DC loads. For the
higher-order modes, both in-plane and out-of-plane natural frequencies are equal.

5.4.3 The Dynamic Response for Small DC and AC Loads

(a) Long-time integration of the ROM

Next, we use the ROM developed in Sect. 4.4.2 to integrate the differential equations
of motion in time to obtain the dynamic response of the slacked CNT under a very
small DC and AC harmonic load. The choice of the very small voltage loads is to
guarantee linear forced vibration response. The response to small electric loads is
important to enable precise prediction of the resonance frequency in the linear regime.
The resonance frequency is the frequency that is commonly measured experimentally
for CNTs when driven by AC and DC loads. Here we use a nondimentional damping
coefficient c = 1.196. Figure 5.40a, b show the response of the 100 nm and the 200 nm
slacked CNTs, respectively. We can see from the figures that the linear dynamic
response is significant in the neighborhood of the first natural frequency, ω1, and the
frequencies that are located on the veering straight line, as predicted from Fig. 5.37.
Those frequencies are ω9 in the case of the 100 nm slack and ω11 in the case of
the 200 nm slack. It is clear from Fig. 5.40a, b that the higher-order modes located
on the veering line are sharing the energy of vibration with the fundamental mode.
This conclusion might explain one of the reasons behind the low quality factor
reported experimentally for CNTs [5] when driven harmonically at resonance near
their fundamental modes.

To further clarify this point, we calculate in Fig. 5.41 the participation of each
individual odd in-plane mode shape in the dynamic response of the 100 nm slacked
CNT. It is clear from the figure that the participations of the first mode (the lowest
mode) and the ninth mode (the one located on the veering line) are the most important
ones. This indicates that even when exciting the CNT near its first natural frequency,
significant participation is anticipated of the mode located on the veering line.

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.39 a Variation of the first five in-plane and out-of-plane natural frequencies with the DC
load of a CNT with a 100 nm slack. b A zoomed view of Fig. 5.39a near small values of voltages.
Solid line (——), dashed line (- - - - -), and circles (◦) denote, respectively, the odd in-plane, the
even in-plane and the out-of-plane, and the odd out-of-plane frequencies

(b) Perturbation analysis

(i) Derivations

In this section, perturbation analysis is carried out using the method of multiple scales
and a direct attack of the in-plane equations of motion same as we did in Sect. 4.5.1.
To this end, we define the variables for the time scale (Ti ), their derivatives (Di ), the
influence of the damping coefficient and the forcing amplitude, as in Eqs. (4.117)

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.40 Frequency-response curves of (a) 100 nm slacked CNT and (b) 200 nm slacked CNT
at the odd in-plane natural frequencies. Results are shown for VDC = 0.01 Volt, VAC = 0.01 Volt,
and 100 quality factor

Fig. 5.41 Time-response curves of the 100 nm slacked CNT at � ≈ ω1 showing the participation
of the odd in-plane mode shapes. Results are shown for VDC = 0.01 Volt, VAC = 0.01 Volt, and
100 quality factor

and (4.118) respectively, and we seek a solution in the form of Eq. (4.119). Next,
we expand the electrostatic force term, Eq. (5.109), into Taylor series up to the third
order as

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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1√
(1 − u − ws − w0)(1 − u − ws − w0 + 2R̃)

(
cosh−1

(
1 + 1 − u − ws − w0

R̃

))2 ≈ (5.113)

≈ Fs + F1u + F2u
2 + F3u

3 + · · · ,

Substituting Eqs. (4.117)–(4.120) and Eq. (5.113) into Eqs. (5.106) and (5.108)
and then equating like powers of ε, we obtain

• Order ε0: (the static equation)

wiv
s = α1[ws

′′ − w0
′′][	(ws,ws) − 2	(ws,w0)] + Fs,

ws(0) = ws(1) = 0, w
′
s(0) = w

′
s(1) = 0,

(5.114)

• Order ε1:

L (u1) = D2
0u1 + uiv1 − α1 [	 (ws,ws) − 2	 (ws,w0)] u

′′
1

−2α1
[
w′′
s − w′′

0

]
[	 (ws, u1) − 	 (w0, u1)] − α2F1u1 = 0,

(5.115)

• Orderε2:

L (u2) = α1	 (u1, u1)
(
w′′
s − w′′

0

)+ 2α1 [	 (ws, u1) − 	 (w0, u1)] u
′′
1 + F2u

2
1,

(5.116)
• Order ε3:

L (u3) = −2D0D2u1 − cD0u1 + 2α1	 (u1, u2)
(
w′′

s − w′′
0
)

+2α1 [	 (ws, u1) − 	 (w0, u1)] u
′′

2

+2α1 [	 (ws, u2) − 	 (w0, u2)] u
′′

1 + α1	 (u1, u1) u
′′

1

+2α2VDCVACFs cos (�t) + α2F2u1u2 + α2F1u
3
1,

(5.117)

The solution of Eq. (5.115) is assumed to consist of only the directly excited mode,
�i (x), because in the absence of internal resonances, all the other modes die out
with the damping [102]. Accordingly, we express the first dynamic component u1 as

u1(x, T0, T2) = [A(T2)e
iωi T0 + Ā(T2)e

−iωi T0
]
�i (x) , (5.118)

where A(T2) is a complex-valued function, the over bar denotes the complex conju-
gate, and ωi and �i (x) are the natural frequency and corresponding eigenfunction
of the directly excited mode, respectively. Substituting Eq. (5.118) into Eq. (5.16),
we obtain

L(u2) = (2AĀ + A2e2iωi T0 + Ā2e−2iωi T0
)
h (x) , (5.119)

where
h (x) = 2α1 (	(ws,�i ) − 	(w0,�i ))�′′

i ++α1	(�i ,�i )
(
w′′

s − w′′
0
)+ α2F2�

2
i ,

(5.120)

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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The solution of Eq. (5.119) can be expressed as follows:

u2(x, T0, T2) = ψ1 (x) A2(T2)e2iωi T0+
+2ψ2 (x) A(T2) Ā(T2) + ψ1 (x) Ā2(T2)e−2iωi T0 ,

(5.121)

where ψ1 and ψ2 are the solutions of the following boundary value problems:

H
(
ψ j , 2ωiδ1 j

) = h (x) , j = 1, 2,

ψ j = 0 and ψ ′
j = 0 at x = 0 and x = 1, j = 1, 2,

(5.122)

where δi j is the Kronecker delta operator and the linear differential operator H is
defined as

H ( f (x) , ω) = f iv (x) − ω2 f (x)
−2α1

(
w′′
s − w′′

0

)
[	 ( f (x) ,ws) − 	 ( f (x) ,w0)]

−α1 [	 (ws,ws) − 2	 (w0,ws)] f ′′ (x) − α2F1 f (x)
(5.123)

Note here that the eigenfunction �i (x) is solution of

H (�i , ω) = 0, (5.124)

In order to describe the nearness of the excitation frequency Ω to the fundamental
natural frequency ωi , we introduce a detuning parameter σ defined by

Ω = ωi + ε2σ, (5.125)

Substituting Eqs. (5.118), (5.121), and (5.125) into Eq. (5.117) we obtain

L (u3) =
[
−iωi

(
2A′ + cA

)
�i (x) + χ (x) A2 Ā + F̄ (x) eiσT2

]
eiωi T0 + cc + NST,

(5.126)
where

F̄ (x) = 2α2VDCVACFs (5.127)

In Eq. (5.126), A′ denotes the derivative of A with respect to T2, “cc” denotes
the complex conjugate of the preceding terms, NST stands for the terms that do not
produce secular terms, and χ (x) is defined by

χ (x) = α1�′′
i
[
3	 (�i , �i ) + 2	 (ws , ψ1) − 2	 (w0, ψ1) + 4	 (ws , ψ2) − 4	 (w0, ψ2)

]
+α1

[
w′′
s − w′′

0
] [

2	 (�i , ψ1) + 4	 (�i , ψ2)
]

+ 2α1
[
ψ ′′

1 + 2ψ ′′
2
] [

	 (�i ,ws) − 	 (�i ,w0)
]

+ 3α2F3�3
i + 2α2F2�iψ1 + 4α2F2�iψ2,

(5.128)
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Note that the function χ (x) can be divided into two coefficients that describe the
two sources of nonlinearity presented in the considered electrically actuated CNT
slacked resonator as follows:

χ (x) = χc (x) + χq (x) , (5.129)

where

χc (x) = 3α1�
′′
i 	 (�i ,�i ) + 3α2F3�

3
i ,

χq (x) = 3α1�
′′
i [2	 (ws, ψ1) − 2	 (w0, ψ1) + 4	 (ws, ψ2) − 4	 (w0, ψ2)] +

+α1
[
w′′
s − w′′

0

]
[2	 (�i , ψ1) + 4	 (�i , ψ2)] +

+2α1
[
ψ ′′

1 + 2ψ ′′
2

]
[	 (�i ,ws) − 	 (�i ,w0)] +

+2α2F2�iψ1 + 4α2F2�iψ2.

(5.130)
The subscripts c and q denote the cubic nonlinear term and the quadratic nonlinear

term, respectively.
Next, multiplying the right-hand side of Eq. (5.126) by �i (x) e−iωi T0 , where �i

is normalized such that
∫ 1

0 �2
i dx = 1, integrating the result from x = 0 to x = 1 and

equating the secular terms to zero, yields the following solvability condition:

− iω
(
2A′ + cA

)+ SA2 Ā + FeiσT2 = 0, (5.131)

where

F =
∫ 1

0
�i F̄dx, and S = Sc + Sq , (5.132)

where the nonlinear coefficients are expressed as

Sc =
∫ 1

0
�iχcdx, Sq =

∫ 1

0
�iχqdx (5.133)

Next, we express A in the polar form A = aeiβ/2, where a = a (T2) and β =
β (T2) are real-valued functions, representing, respectively, the amplitude and phase
of the response. Substituting the expression of A into Equation (5.31) and letting
γ = σT2 − β, we obtain

[(
−ia′ + aβ ′ − 1

2
ica

)
ωi +

(
a3

8

)
S

]
eiβ + FeiσT2 = 0 (5.134)

Separating the real and imaginary parts in Eq. (5.134), we obtain the following
modulation equations:

a′ = −1

2
ca + sin γ

ωi
F, (5.135)
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aγ ′ = aσ + a3

8ωi
S + cos γ

ωi
F (5.136)

Substituting Eqs. (5.118) and (5.121) into the Method of Multiple Scales approx-
imated solution and setting ε = 1, we obtain, to the second-order approximation, the
following CNT response to the external excitation as follows:

w (x, t) = ws (x) + a cos (�t − γ )�i (x) +
+ 1

2a
2
[
ψ1 (x) cos 2 (�t − γ ) + ψ2 (x)

]+ · · · ,
(5.137)

It follows from Eq. (5.137) that periodic solutions correspond to constant a and
γ ; that is, the fixed points (a0, γ0) of Eqs. (5.135) and (5.136). Thus, letting γ ′ =
0 and a′ = 0 in Eqs. (5.135) and (5.136), and eliminating γ0 yield the following
frequency-response equation:

F2

ω2
i

= a2
0

[(
σ + a2

0

8ωi
S

)2

+ 1

4
c2

]
, (5.138)

where c = 2ζωi .

(ii) Results

As seen before when analyzing the dynamic behavior of MEMS arches, the important
advantage of the perturbation analysis described above is that it enables studying
the variation of the effective nonlinearity of the system and its quadratic and cubic
components analytically. To calculate the variation of the effective nonlinearity of
the slacked CNT along with its two cubic and quadratic nonlinear components,
we evaluate numerically the parameters ωi , �i , ψ1, ψ2, and ws associated with
Eq. (5.132) using a ROM similar to what has been done in Sect. 4.3.3.

First, motivated by studying the effect of the DC load on the CNT nonlinearity
for various unslacked CNT radiuses, we calculate its effective nonlinearity variation
with the electric load for three different radiuses (10, 20, and 30 nm) of a non-hallow
CNT of L = 1000 nm, d = 100 nm, Young modulus E = 1TPa, and mass density
ρ = 1.3 g/cm3, Fig. 5.42. The figure shows clearly that the percentage of the DC load
needed to switch from a hardening behavior to a softening one over the pull-in value
increases with the increase of the CNT radius. This percentage is calculated to be
16 % for the CNT of 10 nm radius, 43 % for the CNT of 20 nm radius, and 65 % for the
CNT of 30 nm radius. One clear possibility of this behavior is that with the increase
of the CNT radius, the ratio of the nondimentional cubic nonlinearity parameter over
the quadratic one of Eq. (5.106), i.e. α1/α2, increases and hence letting the hardening
behavior becoming more dominant for CNT with large radius. Add to all of this, we
can see clearly that with the increase of the CNT radius, the increase of the cubic
nonlinear coefficient (Sc), which turns out to be more dominant over a wide range of
DC load. For those cases, the effective nonlinearity switches from positive to negative
only when the quadratic nonlinear terms (Sq ) starts to vary with the DC load. This
coefficient starts to vary for small DC load compared to the DC pull-in value for

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 5.42 Variation of the effective nonlinearity of the fundamental mode (—–), the cubic nonlin-
earity coefficient (✰), and the quadratic nonlinearity coefficient (�) for an unslacked CNT with
the DC voltage: a R̃ = 10 nm, b R̃ = 20 nm, and (c) R̃ = 30 nm. The dashed line (- - - - -) sepa-
rates the positive and the negative regimes of the effective nonlinearity describing, respectively, the
hardening and the softening behaviors of the CNT

smaller CNT radius and vice versa. Those trends explain clearly the difference in the
dynamical behavior between CNT with small radius (high aspect ratio) and those
with high radius (small aspect ratio).

Next, as a case study for slacked CNT, a non-hallow CNT of L = 1000 nm, R̃ =
5 nm, d = 200 nm, E = 1 TPa, and ρ = 1.3 g/cm3 is considered. In Fig. 5.43, we
show the variation of the effective nonlinearity coefficient of the fundamental mode
(S) of the CNT with the slack. For the case of small slack (bo < 4 nm), S is positive
indicating a hardening behavior and then it switches to negative sign (bo > 4 nm)
indicating softening-type behavior. Dynamically point of view, this indicates that for
tiny slack level, the CNT is locally dominated by a softening type behavior which
means that the quadratic nonlinearity coming from the initial curvature dominates
the dynamic behavior of the slacked CNT (Sq is dominant for high values of bo).
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Fig. 5.43 a Variation of the
effective nonlinearity of the
fundamental mode (—–), the
cubic nonlinearity coefficient
(✰), and the quadratic
nonlinearity coefficient (�)
of the CNT with the slack
level. b A zoomed view of
Fig. 5.43a showing the
switch of the effective
nonlinearity from positive to
negative values
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To verify the results of Fig. 5.43, we use the ROM developed in Sect. 6.2 and
integrate with time the differential equations of motion to obtain the forced response
of the slacked CNT under small DC voltage and an AC harmonic load. Figure 5.44a, b
show the responses of a 2 nm and 5 nm slacked CNT, respectively. We can see from
the figures that the dynamic response of the CNT switched from being hardening for
the first case to softening for the second case confirming what was found in Fig. 5.43.

Next, we show the variation of the effective nonlinearity coefficient (S) of the CNT
as well as the nonlinear coefficients with DC load for the case of no initial curvature,
Fig. 5.45. For small DC load (VDC < 10 nm), S is positive indicating a hardening
behavior and then it switches to negative sign (VDC > 10 nm) indicating softening
type behavior, Fig. 5.45. This shows that the considered CNT is dominated by a
softening once the DC load exceeds a small voltage compared to the pull-in value.
Here we also generate frequency-response curves based on the ROM, Fig. 5.46, to
verify the results of Fig. 5.45.

http://dx.doi.org/10.1007/978-3-319-20355-3_6
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Fig. 5.44 Frequency-response curves of (a) 2 nm and (b) 5 nm slacked CNT showing hardening
and softening behaviors, respectively. Results are shown for VDC = VAC = 1 Volt, and 100 quality
factor
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Fig. 5.45 Variation of the effective nonlinearity of the fundamental mode (—–), the cubic nonlin-
earity coefficient (✰), and the quadratic nonlinearity coefficient (�) of the unslacked CNT with the
DC voltage

Figure 5.47 shows that for nonzero slack (80 nm), S is always negative, with
an increase except near the pull-in zone, indicating a softening type behavior of
the slacked CNT. This result indicates the fundamental mode of a slacked CNT is
locally dominated by a softening type behavior demonstrating that the quadratic
nonlinearities coming from the initial curvature and the electrostatic force dominate
the dynamic behavior of the slacked CNT.
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Fig. 5.46 Frequency-response curves of unslacked CNT for (a) VDC = 8 Volt, and (b) VDC =
14 Volt showing hardening and softening behaviors respectively. Results are shown for VAC =
0.2 Volt, and 100 quality factor

Fig. 5.47 Variation of the
effective nonlinearity of the
fundamental mode (—–), the
cubic nonlinearity coefficient
(✰), and the quadratic
nonlinearity coefficient (�)
for the 80 nm slacked CNT
with the DC voltage
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5.4.4 The String Model

(a) Motivation and formulation

For some specific CNT geometry, especially those with small radius (i.e., with big
aspect ratio), the beam model experiences some numerical problems especially when
trying to solve the boundary value problems of Eqs. (5.126)–(5.128). The algorithm
that we used to calculate the effective nonlinearity coefficient based on the beam
model of Sect. 4.4.1 works only for small DC load (i.e., the bending dominated
regime). This is expected since, for the case of CNT with small radius, the bend-
ing term is dominant only for small DC load [4, 6]. Hence, we propose to use a
string model, in which we eliminate the bending term in Eq. (5.106). This yields the
following nondimentional equation of motion and associated boundary conditions:

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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∂2w

∂t2 + c
∂w

∂t
= α2Fe + α1

[∫ 1

0

{(
∂w

∂x

)2

− 2

(
∂w

∂x

dw0

dx

)}
dx

][
∂2w

∂x2 − d2w0

dx2

]
, (5.139)

w (0, t) = 0, w (1, t) = 0, (5.140)

where Fe and w0 are given by Eq. (5.109), and the nondimensional parameters are
defined as

α1 = E Ad2

2L2
, α2 = πε0L2

d2
, c = c̃√

ρAL2
, � = �̃

√
ρAL2, R = R̃

d
(5.141)

(b) Results

As a case study for a CNT with small radius and high aspect ratio, a hallow
CNT of L = 3000 nm, h = 0.34 nm, R̃ = 1 nm, d = 500 nm, E = 1.2 TPa, and
ρ = 1.35 g/cm3 is considered.

We first compare between the dimensional fundamental natural frequency of the
considered CNT with small radius while using both models (the beam and the string
models). One can see from Fig. 5.48 that for a wide range of DC load (5 Volt <

VDC < 60 Volt), between the bending dominated regime and the pull-in zone, the
string and the beam model are in a good agreement. Hence, we will use now the
perturbation analysis derived in Sect. 4.4.5b while considering the beam model for
small DC load, and use the string model for higher values of the DC load.

Next, we simulate the variation of the effective nonlinearity with the curvature
level. In this case, the beam model is used since the nonlinearity coming from the
electrostatic load is small. We can see from Fig. 5.49 that S is positive in this case
for very small range of initial curvature level (bo < 1 nm) indicating a hardening

Fig. 5.48 Comparison
between the variations of the
dimensional fundamental
natural frequency of the
unslacked CNT with the DC
voltage using the beam
model (——-) and the string
model (◦)
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Fig. 5.49 Variation of the
effective nonlinearity of the
CNT with slack
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behavior. This means that for CNT with large aspect ratio, a tiny slack level will
soften the fundamental mode. To verify the results of Fig. 5.49, we integrate with
time the differential equations of motion to obtain the dynamic response of the slacked
CNT under small DC and AC harmonic load. Figures 5.50a, b show the response of a
0.5 nm and 1.5 nm slacked CNT, respectively, which verify the perturbation results.

The variation of the effective nonlinearity with the DC load for the unslaked CNT
case is shown in Fig. 5.51. In this case, the beam model applies up to VDC < 1 Volt,
after which the string model is used. We can see from Fig. 5.51a, b that S is only
positive in this case in a very small range of DC load indicating a hardening behavior.
The results of the beam model were compared by those of the string model, in which
we can see that the CNT behavior is of softening type. Also the results are verified
using time integration of the equation of motion using the ROM, Fig. 5.51c, d.
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Fig. 5.50 Frequency-response curves of (a) 0.5 nm and (b) 1.5 nm slacked CNT showing hardening
and softening behaviors respectively. Results are shown for VDC = VAC = 0.01 Volt, and 100
quality factor
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Fig. 5.51 Variation of the effective nonlinearity coefficient S of the unslacked CNT with the
DC voltage while using (a) a beam model, and (b) a string model. Frequency-response curves of
unslacked CNT for (c) VDC = 0.04 Volt, and (d) VDC = 0.2 Volt showing hardening and softening
behaviors respectively. Results of Fig. 6.19c, d are shown for VAC = 0.01 Volt, and 100 quality
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Fig. 5.52 Variation of the effective nonlinearity coefficient S of the 100 nm slacked CNT with the
DC voltage while using (a) a beam model, and (b) a string model

Finally, the results of Fig. 5.51a, b are simulated for a 100 nm slacked CNT in
Fig. 5.52a, b. Here also we notice that the beam model applies in the bending regime,
i.e., VDC < 4 Volt. Above this value, the string model is used. We can see also that
we get the same behavior as the case of CNT with higher radius, Fig. 5.47. In this
case, the CNT is locally dominated by a softening behavior due to the presence of the
huge quadratic nonlinearity from the slack level. We notice also an increase of the
effective nonlinearity, which is due to the presence of a source of cubic nonlinearity
coming from the mid-plane stretching of the CNT. Finally, the effective nonlinearity
starts to decrease near the pull-in zone where the electrostatic force starts to dominate
the behavior of the slacked CNT.
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Chapter 6
Nonlinear Dynamics of Ambient
Noise-Driven Graphene Nanostructured
Devices for Energy Harvesting

A. El Aroudi, M. López-Suárez, E. Alarcón, R. Rurali and G. Abadal

6.1 Introduction

Recently, there has been an increasing of interest in self-powered devices in remote
environment applications where energy becomes an important system requirement
and the use of rechargeable batteries becomes problematic such as in hard-to-access
locations or, because the lifetime of the batteries is much shorter than of that of
the system to be powered. Many solutions have been suggested in the literature to
remedy this problem by using energy harvesting techniques [1]. Energy harvesting
is considered a key factor in the development of autonomous sensors and micro-
and nanogenerators with extended lifetimes. There are different energy harvesting
technologies that can be used depending on the kind of the available energy. Among
the energy sources, vibrational kinetic energy is the most used for applications such
as development of microgenerators [1] and noise harvesters for nanosensors [2]. In
this approach, mechanical energy is converted to electricity by using piezoelectric,
capacitive, or inductive transducers. Vibration-based energy harvesting research has
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largely focused on linear electromechanical devices excited at resonance. To over-
come problems related to linear energy harvester working as resonators, nonlinear
energy harvesters have been proposed in certain applications [3]. In the nonlinear
energyharvesting approach, rather than resonance frequency tuning [4, 5], the nonlin-
earity of the system is exploited to improve the performances of the energy harvester
within a wide frequency range outperforming classical resonant energy harvesters
[3, 6]. Energy harvesting can be performed both at the macro-[3], micro-[7] and even
at nanoscales [2]. Unfortunately, most of the available power sources have very low
frequency oscillations while the resonant frequency of any nano-mechanical device
is paradoxically high (∝ GHz) which makes many issues related to their perfor-
mances as energy harvesters yet to be solved, particularly that of extracting energy
at low frequencies. Nonlinearities in energy harvesting nanodevices may play a vital
role to solve these issues. Recent works have used nanodevices such as piezoelectric
zinc oxide (ZnO) nanowires [8] where mechanical energy coming from light wind
and body movement was converted to electrical energy by a coupled piezoelectric-
semiconductor process. Due to their extremely lowpower consumption, nanosystems
that harvest their energy from their environment is attractive for applications such
as wireless sensing, personal electronics for battery charging, implantable biological
devices, biomedical science, and environmental monitoring such as animalmigration
tracking and gas and chemical species sensing [9–11]. The nanogenerators could also
be used to harvest energy created by tire pressure change and mechanical vibration
due to moving vehicles [9].

6.2 Graphene-Based Nanomaterials for Energy Harvesting

Graphene is a newly discovered nanomaterial that has interesting peculiar electronic
and mechanical properties making it a promising candidate for future electronic
applications [12]. It consists of a flat monolayer of carbon atoms tightly packed
into a two-dimensional honeycomb-like lattice. It can be considered as a building
block for graphite materials of all other dimensionality [13]. This material exhibits
high conductivity, large surface area, and electrochemical window. All these proper-
ties make it an advantageous material for energy storage devices. A literature review
concerning the electrochemical application of graphene in energy storage/generation
devices can be found in [14]. Some applications of graphene in solar cells, batter-
ies, and fuel cells can be found in [15]. In [16] biosensors and biosensing systems
employing graphene have been described.

A review providing a scientific progress of different type of graphene materials
is [17]. Their structural, thermal, optical, and electrical properties along with their
potential applications and the impact of graphene and related materials on the envi-
ronment, its toxicological effects and its future prospects have been also discussed.

In [18] it has been shown that a strained nanostructured graphene posses an intrin-
sic mechanical nonlinearity and it can be used for nonlinear energy harvesting at the
nanoscale. There, it has been also shown that whenweakly compressed, the graphene
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sheet behaves like a double-well system and that for a critical value of the compres-
sion ratio, the harvested power is optimal. In [19] some discussions on some recent
studies on graphene-based NGs have been provided. In [20], tests involving water
flow with various molarities of hydrochloric acid over few-layered graphene are per-
formed and the authors report higher induced voltages for graphene as compared
to nanotubes. In [21] graphene oxide films have been fabricated as a low-cost and
flexible nanogenerator to convert acoustic energy into electricity with a about of 12%
conversion efficiency.

6.3 Chapter Outline

The aim of this chapter is to study the nonlinear dynamic behavior of a strained
nanostructured graphenemembrane first considered in [18] for possible use in energy
harvesting applications. Based on the initial study by the authors that was presented
in [22] and [23], in this chapter we thoroughly study and expand the previous analysis
and we fully explain the reported phenomena. To accomplish this aim, the rest of the
paper is organized as follows. In Sect. 6.2, a brief description of the mathematical
model of the graphene harvester is provided. Section6.3 presents the dynamical
behavior of the device in the absence of any external excitation. Equilibrium points
and their stability are studied in the same section. In Sect. 6.4, deterministic excitation
is considered and the dynamics of the system is studied when the external force
intensity and frequency are varied. In Sect. 6.5, the dynamics of the system is studied
under a random excitation in the form of a white noise with a Gaussian distribution
and a limited bandwidth. In Sect. 6.6, the performances of the system under random
excitation are studied in terms of RMS levels. The study is extended in Sect. 6.7
to an array of three graphene membrane-based harvesters. Finally, conclusions are
provided in the last section.

6.4 Mathematical Model of the Graphene Vibrating
Membrane for Energy Harvesting Applications

6.4.1 Nonlinear Mathematical Model

Figure6.1 shows the system under study in this chapter. It consists of a flat suspended
graphene membrane with a compression ratio defined as ε = (L0 − L)/L0, where L
is the length of the graphenemembrane and L0 its equilibrium value in the absence of
any compression. Let us consider different values of the compression ratio ε between
0% (uncompressed graphene) and 10%.

Let us suppose that the graphene membrane is submerged in a noisy environment.
Let ξ(t) = σ 2η(t), where η(t) is a white noise excitationwith aGaussian distribution
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Fig. 6.1 Uncompressed or
weakly compressed
graphene membrane [18]

Fig. 6.2 Potential V (x) for
different values of the
compression factor ε. For
ε �= 0, equilibrium points are
also plotted. E+ and E− are
attractors while E0 is a
saddle point
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noisewhosemean value is zero, its variance is σ 2. By developing the Euler–Bernoulli
equation for clamped beams, the following mass-spring dynamic model is obtained
for the considered graphene membrane [18]

mẍ = −∂V

∂x
− bẋ + σ 2η(t) (6.1)

where x is the displacement, m represents the effective mass of the layer, b stands
for the damping factor, and V (x) is the potential energy which is given by [18]

V (x) = 1

56
v8x

8 + 1

30
v6x

6 + 1

12
v4x

4 + 1

2
v2x

2 (6.2)

The potential energy is depicted in Fig. 6.2 for different values of the compression
factor ε. Equilibrium points represented by extremum points of V (x) are also plotted
in the same figure. For ε = 0, the potential energy corresponds to a harmonic linear
oscillator presenting a single equilibrium point E0 at the origin. For ε �= 0, the points
E+ and E− are minima and therefore they are attractors while E0 is a maximum and
corresponds to a saddle point.
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Table 6.1 Coefficients vi (i = 2, 4, 6, 8) for the potential energy for different values of the com-
pression ratio ε

ε v8/56 v6/30 v4/12 v2/2

0 6.57 × 1050 −5.73 × 1033 6.74 × 1016 0.0096

0.025 1.30 × 1051 −1.36 × 1034 9.26 × 1016 −0.036

0.05 2.56 × 1051 −2.29 × 1034 1.14 × 1017 −0.078

0.075 2.76 × 1051 −2.34 × 1034 1.16 × 1017 −0.112

0.1 3.89 × 1051 −3.43 × 1034 1.49 × 1017 −0.165

The coefficients vi (i = 2, 4, 6, 8) are given in Table6.1 for different values of
compression coefficient ε. These values have been obtained by means of ab initio
density-functional calculations with the SIESTA code [18, 24], where the graphene
sheet is modeled at a fully atomistic level and its electronic structure solved quantum
mechanically. Equation (6.1) can be rearranged as follows

ẍ = − b

m
ẋ − 1

m

∂V

∂x
+ σ 2

m
η(t) (6.3)

If we let v = ẋ . Hence, the previous model can also be written as a set of two first-
order differential equation in the state space form

ẋ = v (6.4)

v̇ = − b

m
v − 1

m

∂V

∂x
+ σ 2

m
η(t) (6.5)

whose divergence is

∇ = ∂ ẋ

∂x
+ ∂v̇

∂v
+ ∂ ṫ

∂t
= − b

m
(6.6)

which is unconditionally negative and therefore the system is dissipative for every
set of parameter values.

6.4.2 Dynamics of the Unforced System

Before embarking on the study of the noise-driven system, let us consider first, the
situation where ξ(t) = 0 in such a way that the system is free from any excitation.
Under this circumstance the dynamics of the systemwill depend upon the parameters
of the nanodevice. Namely, mass, damping factor, and compression ratio. Let us
consider a compressed graphene membrane with compression coefficient ε �= 0 in
such a way that the origin is a saddle point (non-stable).
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ẋ = v (6.7)

v̇ = − b

m
v − 1

m

∂V

∂x
(6.8)

Therefore the model (6.7) and (6.8) has three equilibrium points which are

E0 = (0, 0), E− = (X−, 0), E+ = (X+, 0) (6.9)

where X− and X+ are the non-null displacement equilibria that can be obtained in
closed form. Moreover, one can observe that the potential is symmetric and that if
Xq is an equilibrium position−Xq will also be. Therefore one has X− = −X+. Only
real equilibrium points are of practical interest. These equilibrium points can also be
obtained by forcing the derivative of V (x) to be zero and solving for x . Let us define
μ as follows

μ = 14700v4v6v8 − 94500v2v
2
8 − 2744v3

6

+ 140v8
√
5
√

(3500v3
4v8 − 735v2

4v
2
6 − 28350v4v6v8v2 + 91125v2

2v
2
8 + 5292v2v3

6

(6.10)

Therefore the expressions of the non-null equilibrium points are given by the fol-
lowing expression

X− = − 1

30v8 3
√

μ

√
−30v8 3

√
μ(14v6 3

√
μ − 3

√
μ + 700v4v8 − 196v2

6) (6.11)

X+ = 1

30v8 3
√

μ

√
−30v8 3

√
μ(14v6 3

√
μ − 3

√
μ + 700v4v8 − 196v2

6) (6.12)

The Jacobian matrix of (6.7) and (6.8) is

J =
⎛
⎝ 0 1

− 1

m

∂2V

∂x2
− b

m

⎞
⎠ (6.13)

and the corresponding characteristic polynomial can be expressed as follows

p(λ, x) = λ2 + b

m
λ + 1

m

∂2V

∂x2
(6.14)

The twoequilibriumpoints E− and E+ with adisplacement different fromzerowill be
both attracting since their corresponding Jacobian matrices do not have eigenvalues
on the right-half side of the complex plane. For the equilibrium point E0 with null
displacement x = 0, the characteristic polynomial will have one eigenvalue in the
right-half plane and another one in the left side which corresponds to a saddle point.
This is a typical situation for double-well systems where two attracting points can
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be reached depending on the initial conditions while the separatrix of the saddle
point will establish the boundary of the basins of attraction. In the bistable case,
the two equilibrium points E− and E+ are separated by a barrier whose maximum
is at x = 0 and whose height is ΔV = −V (X+) = −V (X−). The dynamics of the
system is mainly characterized by the oscillation around the twominima X+ and X−,
and crossing over the potential barrierΔV . This fact will be exploited by making the
displacement to swing between the two minima and accordingly to make the RMS
value to increase proportionally to the distance between the equilibrium point which
under sufficient excitation intensity, this in turn will imply a maximization of the
harvested energy when the system is noise driven [25].

6.5 Dynamical Behavior of the Noise-Driven System
from Numerical Simulations

Consider now that the system is subject to a random excitation with a normal distri-
bution and a maximum bandwidth ωbw. When such noise is applied to the system,
the probability to swing between the two equilibrium points X− and X+ increases.
Consequently noise can be used to increase the RMS value of the displacement
and accordingly to raise the harvested energy. Let us also consider a compressed
graphene sheet with compression coefficient ε �= 0 in such a way that the origin
is a saddle point (non stable). The nonlinear model of the system is numerically
solved. AMATLAB Simulink model was built for the system equation modeling the
graphene nano-harvester device according to the mathematical model given in (6.1).
The MATLAB Simulink block diagram used for simulations is shown in Fig. 6.3.

For some specific values of noise level, the systemwas simulated during 500ns and
the time series, phase space, probability density, and amplitude spectra are plotted.
The parameter values used are as follows, damping coefficient b = 9.9869 × 10−15

1
s
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s
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1
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1
7v8x
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5 + 1
3v4x
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Vibration force

Damping factor
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DisplacementVelocityAcceleration

Fig. 6.3 Simulink block diagram of the graphene membrane
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Fig. 6.4 Dynamics of the graphene membrane under a random excitation σ 2 = 1 pN (red), σ 2 =
50.5 pN (green) and σ 2 = 100 pN (black)
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Fig. 6.5 Spectrum and probability density function corresponding to Fig. 6.4. Note that the spec-
trum is spread down to low frequency regions when the noise intensity is sufficiently large so that
the potential barrier can be crossed

and m = 5.2982 × 10−24. Figures6.4 and 6.5 show the dynamics of the system for
different values of noise strengths. The following particular cases are plotted in these
figures

• σ 2 = 1 pN, the noise intensity is weak and the system evolves to the vicinity of
one of the stable equilibrium points X− or X+ depending on the initial conditions.
The probability to swing between the two equilibria is almost zero. The vicinities
of X− and X+ correspond to the unique set with nonzero values of the probability
density function. The energy of the system is concentrated in a limited range of
frequency near the resonant frequency (≈50 GHz).

• σ 2 = 50.5 pN, the noise intensity is sufficient to make the barrier to be beat
and make the system to leave the vicinity of the stable equilibrium points X−
or X+ swinging between them. The range within which the displacement can be
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obtained includes the interval (X−, X+). The equilibria X− and X+ correspond to
the maximum of the probability density function.

• σ 2 = 100 pN, the noise intensity is in such a way that the probability of swinging
between the stable equilibrium points X− or X+ is larger and the system presents
larger velocities and displacements and therefore the harvested energy will also
be larger.

6.6 Performance of the System in Terms of Design
Parameters

The RMS value of the displacement and noise amplitude spectra for varying noise
level and compression ratio are computed and the amount of power that can be
harvested versus noise level and compression ratio are plotted. This power is divided
by the corresponding noise amplitude. The results are shown in Fig. 6.6. One can
observe in Fig. 6.6a that as the noise level and the compression ratio are increased,
the RMS value of the displacement also increases.

Regarding the power that can be harvested, shown in Fig. 6.6b, it can be observed
that there is an optimal zone where this ratio is maximal. In particular, it can be
noticed that for the linear case (ε ≈ 0), the power that can be harvested is low even
for relatively high values of the noise level. Nonlinear effects in the device (ε �= 0),
improve the potentials of the device for energy harvesting even at low noise intensity
levels. From Fig. 6.6, one can observe that with ε �= 0, the RMS value of x and
therefore the power that can be harvested is always larger than the corresponding
linear case (ε = 0)
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6.7 Coupled Graphene Vibrating Membrane for Energy
Harvesting

6.7.1 Nonlinear Mathematical Model

We consider four coupled flat suspended graphene sheets with a compression ratio
εi , effective mass mi with an equivalent damping factor bi and a potential energy
Vi , i = 1 . . . 4. The equivalent mechanical scheme is shown in Fig. 6.7. The coupled
system can be described by the following set of coupled differential equations

m1 ẍ1 = − ∂V (x)

∂x

∣∣∣∣
x=x1

− ∂V1(x)

∂x

∣∣∣∣
x=x2−x1

− bẋ1 + σ 2η(t) (6.15)

m2 ẍ2 = − ∂V (x)

∂x

∣∣∣∣
x=x2−x3

− bẋ2 + ∂V2(x)

∂x

∣∣∣∣
x=x1−x2

− bẋ2 (6.16)

m3 ẍ3 = − ∂V (x)

∂x

∣∣∣∣
x=x3−x4

− bẋ3 + ∂V3(x)

∂x

∣∣∣∣
x=x2−x3

− bẋ2 (6.17)

m4 ẍ4 = − ∂V (x)

∂x

∣∣∣∣
x=x4

− bẋ4 + ∂V4(x)

∂x

∣∣∣∣
x=x3−x4

− bẋ2 (6.18)

Fig. 6.7 Mechanical
equivalent scheme of three
coupled graphene
membranes
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where xi , i = 1 . . . 4 are the displacements for the coupled graphene membranes,
mi for i = 1 . . . 4 represents the effective mass of each of the layer i , ki its equivalent
stiffness and bi stands for their damping factors. For simplicity it is assumed that all
the membranes are identic, i.e., they have the samemass, stiffness, the same damping
coefficient and compression ratio and therefore the same potential energy V which
is the same one given (6.2).

6.8 Dynamics of the Coupled Membranes from Numerical
Simulations

In this section, only two values of noise intensity are considered, namely σ 2 = 1 and
50 pN, and different diagrams in the form of times series, state planes, FFT spectra,
and probability density function of the displacement are obtained as for the single
membrane case.
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Fig. 6.8 Time domain waveforms of the displacements xi and velocities vi , (i = 1 . . . 4) corre-
sponding to the four graphene membranes for two values of noise intensities
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Fig. 6.9 The state space in the planes (xi , vi ), (i = 1 . . . 4) corresponding to the four graphene
membranes for two values of noise intensities

Figure6.8 shows the time domain waveforms of the system. For low values of
noise intensity the system stays in the vicinity of the equilibrium point. For low
values of noise intensity the system stays in the vicinity of the equilibrium point.

Figure6.9 shows the projection of the state plane time of the system in the planes
(xi , vi ), (i = 1 . . . 4) corresponding to each graphene membrane. For relatively high
values of noise intensity, the trajectory can only evolve to an equilibrium point being
the ambient vibration in this case not sufficient to make the system to oscillate
between the two regions. When the noise intensity increases, as in the case of the
single membrane, the system trajectory visits more the different equilibrium points
and larger oscillation amplitude can be reached. All the four membranes are charac-
terized by the same dynamics.
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Figure6.10 depicts the FFT spectra of the displacement corresponding to each
graphene membrane. Since we have a system with four degrees of freedom, four
different vibration modes of with different frequencies should appear. While this is
the case for the low intensity noise case, the spectrum corresponding to a relatively
high value of noise intensity is spread a broad range of frequencies. This occurs for
all the membranes.

Figure6.11 shows the probability density functions calculated for the different
displacements of the membranes. For low values of noise intensity, the probability
of finding the system in the vicinity of one of its equilibrium points is practically one.
For relatively high values of noise intensity, the probability to visit a wider region
increases being the maximum probability that corresponding to the vicinity of the
equilibrium points.

10−1 100 101−320

−300

−280

−260

−240

−220

−200

X
1

(d
B

)

Frequency(GHz)
10−1 100 101−320

−300

−280

−260

−240

−220

−200
X

2
(d

B
)

Frequency(GHz)

10−1 100 101−320

−300

−280

−260

−240

−220

−200

X
3

(d
B

)

Frequency(GHz)
10−1 100 101−320

−300

−280

−260

−240

−220

−200

X
4

(d
B

)

Frequency(GHz)

Fig. 6.10 FFT spectra of the displacements xi (i = 1 . . . 4) corresponding to the four graphene
membranes for two values of noise intensities
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Fig. 6.11 Probability density function of the displacements xi (i = 1 . . . 4) for two values of noise
intensities. For reference, the probability density of the noise driving signal is also plotted

6.9 Conclusions

In this chapter, we have considered the nonlinear dynamics of four identical coupled
nanostructured graphene vibratingmembranes for ambient energy applications at the
nanoscale. The compressed graphene presents a nonlinearity that has been shown to
play an important role in increasing the efficiency of this energy harvesting device
by increasing the RMS values of the displacement and the velocity. We presented a
continuous-time nonlinear dynamical model of the coupled system. When random
vibrations are considered as the main ambient energy source for the system, the
performances of the system as an energy harvester are presented in the steady- state
nonequilibrium regime when the noise level for a certain value of the compression
ratio. Although the study can be carried out for the system with the above-mentioned
eighth-order potential, a simpler double-well fourth-order potential can be considered
in order to inherit many available analytical results on the behavior of the Duffing
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oscillator. Finally it should be noted that this structure of mechanically coupled
graphenemembranes is feasible and canphysically fabricated.Apossibleway to get it
is by suspending the membranes on a shared elastic anchors in a series configuration.
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Chapter 7
End-Stop Nonlinearities in Vibration
Energy Harvesters

Sukhdeep Kaur and Cuong Phu Le

7.1 Introduction

Vibration energy harvesters are gaining increase in popularity as a possible alternative
to battery-based power sources. Vibration energy harvesters are typically resonant
devices that produce appreciable output power when operating at resonance, but they
often fail to deliver reliable power when they are made to vibrate at off-resonance
frequencies. The energy sources of these devices are ambient vibrations, which are
easily available and offer a wide variety of spectra, from narrowband to wideband. A
wide range of vibration energy harvesters designed for various operating conditions
has been proposed and demonstrated to date [1–8]. In particular, it is desirable to
develop microscale energy harvesters that can perform efficiently when using exci-
tation signals that are not only narrowbanded but are of variable frequency, either
over time or from case to case in applications, or when using excitation signals that
are relatively broadbanded [9, 10].

In that respect, nonlinear devices have emerged as a potential solution that can
adapt to the various vibration spectra to increase both the bandwidth response and
the output power. The nonlinearities may appear as part of the harvester design,
such as the use of nonlinear springs that add nonlinearities to the device response at
sufficiently large acceleration amplitudes and thus broaden the harvester’s bandwidth
[10, 11]. Another solution to widen the response of the harvester uses the impact
of the proof mass with end-stops that add additional nonlinearities to the harvester
responses [9, 12, 13]. Even if the proof mass vibrates linearly between the end-
stops, the behavior changes abruptly when themass hits the end-stops. The frequency
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response obtained in this manner depends on the nonlinear springs in the suspension
or on the contact linearity between the proof mass and the end-stops. It should be
possible to produce a wider response than that obtained from a linear resonant device
through appropriate design of the device nonlinearities.

The motion of the proof mass is generally nonlinear on impact with the end-
stop, depending on the system and end-stop parameters [14]. The end-stops in the
vibration energy harvester not only add nonlinearities and enhance the bandwidth but
also saturate the harvester’s output power. Thus, the end-stops set an upper bound on
the output power. This negative end-stop trait can be overcome by the introduction
of sufficiently compliant end-stops to the device and collection of the lost energy
at the end-stops on impact via integrated electronic circuits such as synchronous
electric charge extraction (SECE) or synchronized switch harvesting on inductor
(SSHI) circuits [15]. The energy that is otherwise lost in the end-stops can be used
efficiently by introducing a transduction mechanism at the end-stops [13].

In this chapter, an overview of the use of end-stops in energy harvesters will be
presented. The mathematical modeling of end-stop behavior in a harvester will be
discussed in detail on the basis of phase space trajectories and eigenvalue problem.
The effects of nonlinearities in the motion of the proof mass on variation of the
coefficient of restitution and the device parameterswill be demonstrated. The average
output power from the harvesterwith end-stop nonlinearities for different coefficients
of restitution will be shown in power graphs. Examples of devices with end-stop
nonlinearities will be presented and discussed with respect to their experimental
results, and conclusions will then be drawn.

General Aspects of Vibration Energy Harvesters

The schematic diagram in Fig. 7.1 shows a typical model of a vibration energy
harvester. While this model, which was built up by William and Yates [16, 17] is
mainly applicable to electromagnetic transducers, it can be applied to both piezoelec-
tric and electrostatic transducers in appropriate ways. The model includes a proof
mass m suspended from a mechanical spring with a stiffness k. The mechanical loss
is represented by cm, while the electrical loss ce comes from the coupling between the
mechanical and electrical domains in the system for energy conversion. The power
is obtained from the motion of the proof mass relative to the device package when
the harvester is subjected to vibration. Because of the finite size of the device pack-
age, the proof mass displacement is always constrained by a maximum amplitude
|x(t)| ≤ Xmax. Under sinusoidal excitation with an angular frequency ω in the steady
state [16, 17], the proof mass displacement amplitude and the power obtained are
given by

|X| = A√(
ω2
0 − ω2

)2 + (cm + ce)
2 ω2/m2

(7.1)

P = 1

2

Ceω
2A2

(
ω2
0 − ω2

)2 + (cm + ce)
2 ω2/m2

(7.2)
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Fig. 7.1 Typical diagram of a vibration energy harvester model

where A is the acceleration amplitude and ω0 = 2π f0 = √
k/m. The optimum power

is achieved when cm = ce. Additionally, the generated power is limited by Plim =
(2/π)mωXmaxAwhen |X| = Xmax [18, 19]. In addition, at resonance, for |X| = Xmax,
the power obtained isPlim = (1/2)mωXmaxA, which is approximately 78.1% ofPlim.

Depending on their transduction mechanisms, vibration energy harvesters can be
classified into electrostatic energy harvesters [1–3], piezoelectric energy harvesters
[4–6] and electromagnetic energy harvesters [7, 8]. In an electrostatic energy har-
vester, the displacement of the movable proof mass electrode varies the capacitance
between the movable proof mass electrode and the fixed electrode when an appropri-
ate bias is placed on either the movable proof mass electrode or the fixed electrode.
Piezoelectric conversion is a function of the material properties; strain in the material
produces an electric field in that material, and vice versa. The principle of operation
of an electromagnetic energy harvester is based on Faraday’s law of induction. A
variable electric field is generated in an electromagnetic energy harvester, creating
an output voltage V , when the magnetic flux Φ passes through an electrical circuit.
The harvested power can either be used directly for a specific application or can be
managed efficiently using power management circuits such as SSHI or buck–boost
converter circuits [15, 20].

The spectra of the vibration signals vary from narrowband to wideband [21–25].
The role of the energy harvester is to respond effectively to the wideband spectra but
not to the single peaks. However, for applications where the response from a single
frequency peak is the case of interest, the harvester should work efficiently for that
frequency peak.
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The harvesters are excited by ambient vibrations, which introduce the relative
motion of the proof mass with respect to the device frame. The vibration amplitudes
can be unpredictable inmany cases. The harvester designsmust be able to adapt to the
vibration conditions to maximize the output power, while the harvester performance
is required to be both robust and effective. In the following analysis, a sinusoidal
vibration with angular frequency ω = 2π f and amplitude A is used to characterize
the nonlinear behavior of the end-stops of vibration energy harvesters.

7.2 Modeling of the End-Stops

In conventional vibration energy harvesters, the end-stops are unavoidable in the
real prototypes. The displacement is limited by the space constraints of the device
package. Themain function of the end-stops is to confine the proofmassmotion under
sufficiently large vibration conditions. In addition, they protect the beam structures
and prevent degradation of the material properties. The end-stops set an upper bound
on the output power at high acceleration amplitudes, i.e. they limit the harvested
power, which would otherwise be infinitely high without the end-stops.

The end-stops introduce strong nonlinearities into the harvester response when
the proof mass hits the end-stops under extreme accelerations. The positive and
negative characteristics of the end-stops have been discussed in a number of papers.
For example, the nonlinear behavior of proof mass motion in energy harvesters that
include end-stops has been studied via both simulations and experiments [12, 15].
Mathematical modeling of the end-stops in an energy harvester will be discussed in
detail in this section, followed by examples of working devices harvesting power
from the active end-stops. Theoretical and experimental studies have been carried
out to characterize the end-stops in the device design. In [4], a mechanical end-
stop is applied only on one side of the cantilever beam of a piezoelectric energy
harvester. The frequency response of this harvester is demonstrated by varying the
end-stop parameters. In [12], the end-stops applied in an electromagnetic power
generator increase the bandwidth of the frequency up-sweep while maintaining the
same bandwidth for the down-sweep.

7.2.1 Mathematical Analysis

It is useful to have some tools that can provide an insight into the performance of an
energy harvester with and without the end-stop nonlinearities using given parameters
for the desired prototypes. A mathematical tool for nonlinearities related to the end-
stops in vibration energy harvesters using an eigenvalue approach and time domain
simulations is presented in this section. For this analysis, two end-stops that limit
the motion of the proof mass are considered, where the motion is treated as a linear
evolution between the impacts with velocity discontinuities at the end-stops.
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Fig. 7.2 Two-port linear transducer with end-stop effects

An equivalent circuit for an energy harvester model with end-stop effects, irre-
spective of the transduction mechanism, is shown in Fig. 7.2, where m is the proof
mass, bm is the mechanical damping, k is the electromechanical coupling factor, K
is the effective spring stiffness, C is the transducer capacitance, � = √

KC, and R
is the load resistance. The excitation force is represented by Fext = ma. The trans-
ducer model is similar to that of a velocity-damped resonant generator (VDRG).
The end-stop effects are included as the impact force Fs on the mechanical domain
circuit. The impact forceFs is activated when the proof mass displacement amplitude
reaches its maximum.

At equilibrium, the total force on the proof mass and the voltage across the elec-
trical load in the transducer are assumed to be zero. We observe deviations of the
state variables from their equilibrium values when the harvester is excited, and these
deviations depend on the strength of the excitation signal. The linear equations of
proof mass motion under sinusoidal excitation can be formulated as Eqs. (7.3)–(7.7).

dx

dt
= v (7.3)

dv

dt
= −ω2

0x − ω2
0k

�
q − ω0

Q
v + a (7.4)

dq

dt
= −ω0

r
�kx − ω0

r
q (7.5)

da

dt
= −ωb (7.6)

db

dt
= ωa (7.7)

where x is the position of the proof mass, ν is the velocity, q is the transducer
charge, ω is the angular driving frequency, t is the time, Q is the open circuit quality
factor of the device, k is the electromechanical coupling factor, ω0 is the open circuit
angular resonance frequency, r = ω0CR, and acceleration a = A cosωt, where A
is the acceleration amplitude A = √

a2 + b2. To make the system autonomous, an
auxiliary quantity b = A sinωt is introduced into the state equations.
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Equations (7.3)–(7.7) are translated into dimensionless forms with reference to
the dimensionless time (phase angle) θ = ω0t, frequency ς = ω/ω0, and amplitude
Â = A/Xmaxω

2
0. The dimensionless state variables then become

x̂ (θ) = x (t)/Xmax (7.8)

v̂ (θ) = v (t)/Xmaxω0 (7.9)

q̂ (θ) = q (t)/Xmax� (7.10)

â (θ) = a (t)/Xmaxω
2
0 (7.11)

b̂ (θ) = b (t)/Xmaxω
2
0 (7.12)

where ±Xmax denotes the end-stop positions, i.e., |x (t)| ≤ Xmax. Typically, the
motion of the proof mass before impact is linear, and thus the state vector is

û =
[
x̂ v̂ q̂ â b̂

]T
and Eqs. (7.3)–(7.7) then read:

dû

dt
= −L̂û (7.13)

where

L̂ =

⎡
⎢⎢⎢⎢⎣

0 −1 0 0 0
1 1

Q k −1 0
k
r 0 1

r 0 0
0 0 0 0 ς

0 0 0 −ς 0

⎤
⎥⎥⎥⎥⎦ (7.14)

and the linear evolution of the system from, for example θ = θ1 to θ = θ2, is given by

û (θ2) = Û (θ2 − θ1) û (θ1) (7.15)

where
Û (θ) = exp

(
−θ L̂

)
(7.16)

If an impact occurs at the dimensionless time θ1, then the change in velocity at
the time of impact is modeled as v̂

(
θ+
1

) = −ev̂
(
θ−
1

)
, where e is the coefficient of

restitution and the superscript ± denotes a infinitesimally small time after/before θ1.
Thus, the change in the state vector at the time of impact is given by

û
(
θ+
1

) = Sû
(
θ−
1

)
(7.17)
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End-stop
(-Xmax)
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(+Xmax)

Fig. 7.3 Modeling of the impact at the end-stops

where

S =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 −e 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (7.18)

Figure7.3 shows the end-stops model, where the end-stops are placed at the posi-
tions of ±Xmax. Thus, the impacts occur at the normalized positions x̂ = −1 and
x̂ = +1. If the sequence of impacts per cycle of motion is known, then all possible
solutions can be found from the solution to the eigenvalue problem.

Let θ = 0 be the time of impact at x̂ = −1 and assume that, at some intermediate
time θ1, another impact occurs at x̂ = +1, and then the next impact occurs at x̂ = −1
at time θ2 = 2π/ς , thus completing one whole cycle of the proof mass motion.

If the state vector is initially û
(
0+) = u0, then the sequence of linear evolutions

and impacts that occur up to the point in time just after the second impact at x̂ = −1
at time θ = θ+

2 is given by
û

(
θ−
1

) = Û (θ1) u0 (7.19)

û
(
θ+
1

) = Sû(θ−
1 ) = SÛ (θ1) u0 (7.20)

û
(
θ−
2

) = Û (θ2 − θ1) û(θ
+
1 ) = û

(
θ−
2

) = Û (θ2 − θ1) SÛ (θ1) u0 (7.21)

û
(
θ+
2

) = Sû (θ2) = SÛ (θ2 − θ1) SÛ(θ+
1 )u0 (7.22)

If the period of motion is equal to the period of the vibration, then û
(
θ+
2

) =
u0 in (7.22). Therefore, an admissible u0 must be an eigenvector of the matrix
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SÛ (θ2 − θ1) SÛ(θ1) with an eigenvalue of 1. Thus, solution of the eigenvalue prob-
lem provides possible solutions for themotion of the proofmass for onewhole period
of the driving force. The final result must be checked against unphysical solutions
where the proof mass motion extends beyond the limits of the end-stops. The state
vectors give the package acceleration amplitude.

Similar analyses can be conducted for other types of motion, e.g., with more than
one impact per hit. However, the analysis quickly becomes complex when there are
several impacts per period of motion, because that leads to several unknown impact
times and a new eigenvalue problemmust be formulated for each case. This technique
is similar to the technique used in [14].

7.2.2 Analysis of the Numerical Results

System parameters are required for solution of the eigenvalue problem. In this
chapter, the eigenvalue problem is demonstrated using system parameters that are
identical to those given in [15], with ς = 1, r = 1,Q = 350, and k2 = 0.6%. The
effects of changing the system parameters are also compared using the system para-
meters given in [13], with ς = 1, r = 1, Q = 203.5, and k2 = 2.52%. The simplest
case that can be used to check the nonlinear behavior at the end-stops is to assume that
the coefficient of restitution e = 1, i.e., the end-stops are rigid and elastic collisions
occur; no energy is gained or lost at the end-stops. If the end-stops are compliant by
nature, then the coefficient of restitution is less than 1.

Figures7.4, 7.5 and 7.6 show the physical and unphysical sets of solutions for
one period of motion from the eigenvalue problem using Eqs. (7.19)–(7.22). Three
different coefficients of restitution, i.e., e = 1, e = 0 and e = 0.3, are used for illus-
tration purposes here. Figure7.4 shows that there is a single solution in which the first
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Fig. 7.4 Acceleration amplitude versus time between impacts for e = 1
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Fig. 7.5 Acceleration amplitude versus time between impacts for e = 0
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Fig. 7.6 Acceleration amplitude versus time between impacts for e = 0.3

impact occurs at the midpoint of the cycle for a normalized amplitude of 1. As the
amplitude increases, this solution splits into two solutions with opposite asymmetry
in their times between impacts. The motion of the proof mass changes dramatically
for compliant end-stops. Figure7.5 shows that the proof mass motion is unphysical
for the wider set of acceleration amplitudes when compared with the set of physical
solutions. The motion of the proof mass becomes more complicated for e = 0.3, as
shown in Fig. 7.6. Not even single acceleration amplitude is detected for the physi-
cal motion from the eigenvalue problem. The eigenvalue approach used here cannot
detect the motion of the proof mass other than as described in Eqs. (7.19)–(7.22).
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Fig. 7.7 A bare impact at the end-stops when Â = 0.00658 and e = 1

Figure 7.7 shows the acceleration amplitude where proof mass barely hits the end-
stops.

The acceleration amplitude under the condition where the proof mass will barely
hit the end-stops is given by

Â =
(
r + k2Q

)2 + 1√(
Q2 + r2Q2

) (
r + k2Q2

) + Q2 + r2Q2
(7.23)

To study the motion of the proof mass in detail, the acceleration amplitudes from
each set of physical and unphysical solutions are selected for the given coefficient
of restitution. Figures7.8 and 7.9 show the motion of the proof mass for accelera-
tion amplitudes Â = 1.0023 and Â = 1.2271 from the set of physical solutions and
unphysical solutions for e = 1, respectively.

The motion of the proof mass shown in Fig. 7.9 is complex. The proof mass tends
to go beyond the displacement limit that has been set by the end-stops, while in
Fig. 7.8, the period of the proof mass motion is equal to the period of the driving
force with one impact at each end-stop per cycle of the driving force. The jump in
velocity at the point of impact can be seen clearly in these figures.

Figure7.10 shows the evolution of the proof mass motion for the acceleration
amplitudes from the set of physical solutions for e = 1. Figure7.10 shows the dif-
ferent patterns of the proof mass motion for specific acceleration amplitudes. For
Â = 1.0945, the period of the proof mass motion is longer than the period of the
driving force. The eigenvalue problem requires further improvement to detect the dif-
ferent motion patterns as separate entities for the given set of parameters. Figure7.11
shows the complexity of the proof mass motion pattern for e = 0. The acceleration
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Fig. 7.8 Proof mass motion for e = 1 and Â = 1.0023
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Fig. 7.9 Proof mass motion for e = 1 and Â = 1.2271

amplitude Â = 1.0207e + 003 in Fig. 7.11 corresponds to the set of unphysical solu-
tions that was detected by the solution to the eigenvalue problem.

The coefficient of restitution e = 0 is closer to the conditions of real-world colli-
sions. The proof mass will lose all energy at the end-stops on each impact. As shown
in Fig. 7.11, the proof mass tends to go beyond the displacement limit when the
acceleration amplitudes are sufficiently high. The restoring force from the end-stop
then comes into play and limits the displacement of the proof mass to prevent it from
passing beyond the end-stop. The proof mass will leave the end-stop when the restor-
ing force from the end-stop reverses its direction. The restoring force phenomenon
is not modeled in the eigenvalue analysis.



224 S. Kaur and C.P. Le

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time evolution for one cycle of driving force

D
is

pl
ac

em
en

t o
f p

ro
of

 m
as

s

Physical solutions

Fig. 7.10 Proof mass motion for e = 1 and acceleration amplitudes Â = 1.1778, 1.0329, 1.0945,
from left to right

0 1 2 3 4 5 6
-800

-600

-400

-200

0

200

400

600

800

1000

Time evolution for one cycle of driving force

V
el

oc
ity

, D
is

pl
ac

em
en

t a
nd

 A
cc

el
er

at
io

n

Velocity
Displacement
Acceleration

Fig. 7.11 Proof mass motion for e = 0 and Â = 1.0207e + 003

The eigenvalue problem is a simple analysis that does not account for the initial
transitions that occur in the system, which are otherwise always present during the
experimental testing of the harvester. To characterize the system exclusively, it is
important to simulate the system’s behavior over a time period that is long enough
for these initial transitions to die out.

To check whether simulation of the system for a large driving force cycle makes
any difference to the proof mass motion patterns for given acceleration amplitudes,
the phase space trajectories were studied. The phase space trajectories provide obvi-
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Fig. 7.12 Phase space trajectory for e = 1 and Â = 0.01
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Fig. 7.13 Phase space trajectory for e = 1 and Â = 0.1

ous visualizations of the proof mass motion with changing acceleration amplitudes
for a given coefficient of restitution. Figures7.12, 7.13, 7.14 and 7.15 show the phase
space trajectories projected into the x − v plane for e = 1. Figure7.12 shows the
time evolution of the acceleration amplitude that is necessary to achieve the required
impacts. The phase space trajectory shows the cyclic motion of the proof mass, but
with themotion period being considerably longer than the period of the driving force.
For slightly larger amplitudes, the phase space trajectory becomes very complex and
chaotic, with no repeating patterns, as shown in Fig. 7.13. This may stem from the
fact that eigenvalue analysis is unable to capture complex motion patterns.
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Fig. 7.14 Phase space trajectory for e = 1 and Â = 0.25
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Fig. 7.15 Phase space trajectory for e = 1 and Â = 1.002

For further increases in the acceleration amplitude, the motion pattern becomes
simpler, as shown in Figs. 7.14 and 7.15. Figure7.14 shows that the motion period
of the proof mass is double the period of the driving force. Upon a further increase,
the acceleration amplitude then lies in the region where the period of the proof mass
motion is exactly equal to the period of the driving force with one impact at each
end-stop per cycle, as shown in Fig. 7.15.

Themotion of the proofmass depends significantly on the system parameters. The
proof mass motion therefore varies with different sets of parameters for the same
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Fig. 7.16 Phase space trajectories for e = 1 and Â = 0.25 for the system parameters given in [13]
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Fig. 7.17 Phase space trajectory for e = 0 and Â = 0.05

coefficient of restitution. Figure7.16 shows the proof mass motion pattern based
on the system parameters given in [13] for e = 1. Comparison of Fig. 7.14 with
Fig. 7.16, where both are based on the same acceleration amplitude and coefficient
of restitution, shows that themotionperiods for the different sets of systemparameters
are dissimilar. The motion pattern in Fig. 7.16 is much simpler than that shown in
Fig. 7.14. The appearance of the phase space trajectories thus varies with the different
coefficients of restitution for the given system parameters, and vice versa.

It is interesting to observe the evolution of the phase space trajectories for e = 0
over time. Figures7.17 and 7.18 show the trajectories for the acceleration amplitudes
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Fig. 7.18 Phase space trajectory for e = 0 and Â = 1
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Fig. 7.19 Phase space trajectory for e = 0 and Â = 1.1 without a restoring force

where the motion period is equal to that of the driving force. For an acceleration
amplitude of more than 1, the proof mass motion becomes complicated, because it
tends to go beyond the displacement limit that was set by the end-stops, as shown
in Fig. 7.19. Thus, modeling of the restoring force for the acceleration amplitude for
which the proof mass tends to cross the displacement limit simplifies the proof mass
motion, as shown in Fig. 7.20.
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Fig. 7.20 Phase space trajectory for e = 0 and Â = 1.1 with restoring force

With the restoring force at the end-stops, the equation system fromEqs. (7.3)–(7.7)
is reformulated in the form of

dû

dt
= −L̂1û (7.24)

where

L̂1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
k
r 0 1

r 0 0
0 0 0 0 ς

0 0 0 −ς 0

⎤
⎥⎥⎥⎥⎦ (7.25)

For coefficients of restitution 0 < e < 1, the analysis requires further investiga-
tion. For example, an impact with e = 0.3 is not perfectly inelastic, and thus the
proof mass will have a tendency to bounce back and forth toward the end-stops sev-
eral times before attaining continuous motion. The bouncing motion of the proof
mass must be taken into account to study the complete motion pattern of the proof
mass. The 0 < e < 1 range has not been analyzed in detail in this chapter.

The average output power is calculated using Eq. (7.26) for a linear model with
no end-stop impact. The output power with the end-stop effects is given in Eq. (7.28)
by averaging the instantaneous power over the motion period.

P̂linear = Plinear

mX2
maxω

3
0

= 1

2
rÂ2

∣∣∣ĥ (ς)

∣∣∣2 (7.26)
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Fig. 7.21 Average output power versus acceleration amplitude

where

ĥ (ς) = iςk{(
1 − k2

) −
(
1 + r

Q

)
ς2 + iς

[
1
Q + r

(
1 − ς2

)]} (7.27)

P̂ = 1

r

(
kx̂ + q̂

)
(7.28)

Figure7.21 shows the average output power for the system with e = 1 and e = 0
that was simulated for large numbers of vibration cycles. The discontinuities shown
in Fig. 7.21 for e = 1 correspond to the acceleration amplitudes that produce complex
phase space trajectories with motion periods that differ from the period of the driving
force, as shown above.

The inset image for e = 0 in Fig. 7.21 shows the complex pattern for an acceler-
ation amplitude of more than 1, which corresponds to the phase space trajectories
where the proof mass passes beyond the displacement limit, and thereby illustrates
the need for the restoring force to be included in the model.

Figure7.22 shows the average output power from the end-stop model when tak-
ing the restoring forces from the end-stops into account. The unevenness shown in
Fig. 7.21 at acceleration amplitudes of more than 1 and for e = 0 is evened out in
Fig. 7.22.

The results in Fig. 7.21 show that the power with e = 0 and e = 1 follows almost
identical curves. However, this may or may not be the case for practical harvester
prototypes, where the impacts are imperfectly elastic (e = 0). Additionally, many
other factors affect the average output power, including the squeeze film damping
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Fig. 7.22 Average output power versus acceleration amplitude with a restoring force

coefficient, the slide film damping coefficient, overcutting in the fabrication process,
fringingfields, parasitic capacitance, and the end-stop configurations.One interesting
phenomenon that is shown in Fig. 7.21 is that the average output power is weakly
dependent on the acceleration amplitude.

7.2.3 Transducing End-Stops

The negative effects of power saturation for e = 1 and of the power loss for 0 <

e < 1 are obvious for the end-stops in vibration energy harvesters when the proof
mass displacement reaches a maximum amplitude, as shown in Fig. 7.21. This effect
has been demonstrated experimentally in many harvester prototypes [9, 11, 12, 26,
27]. The concept of replacement of passive end-stops with active end-stops to act
as secondary transducers is illustrated in Fig. 7.23 [13, 28]. When the excitation
levels are strong enough, the transducing end-stop is actuated by the force of the
impact between the proof mass and the end-stop. The power from the end-stop
transducer is added to that from the main transducer, and thus continuously increases
the total power of the system when the acceleration level increases. As a result, the
efficiency or effectiveness of the harvester is improved by this combination of the
main transducer with the end-stop transducers.

The end-stopmechanism can be one of three types: electrostatic, electromagnetic,
or piezoelectric, as stated earlier. The important function of the transducing end-
stop is to efficiently convert the kinetic energy from the impact force into electrical
power while maintaining the net stiffness to confine the primary transducer’s motion.
Figure7.24 shows an example of a device that implements transducing end-stops
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Fig. 7.24 a A schematic of the device prototype design using the active end-stop transducers, and
b a close-up view of the fabricated device

based on electrostatic mechanisms. An overlap-varying comb-drive capacitor struc-
ture includes main transducers 1 and 2, which vary in anti-phase with each other. The
end-stop transducer is a gap-closing capacitor structure. The masses of both the main
and secondary transducers are suspended using linear folded springs. In the design,
the maximum displacement amplitude of the main proof mass is Xmax = 10µm. The
end-stop transducer begins actuation when the relative displacement of the main
proof mass passes beyond 6 µm.

Figure7.24a shows the main characteristics of the in-plane harvester design.
Figure7.24b shows part of the microelectromechanical system (MEMS) device,
which was fabricated using the silicon-on-insulator multi-user MEMS processing
(SOI-MUMPS) method with a device layer thickness of 25 µm [29]. The total active
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Table 7.1 Design parameters for the device prototype

Parameters Main transducers 1 and 2 End-stop transducer

Finger length 25 µm 55 µm

Finger width 2 µm 2 µm

Nominal overlap 10 µm 50 µm

Nominal gap 2 µm 5 µm

Spring length 530 µm 335 µm

Spring width 6.2 µm 6.2 µm

Mass 1.15 mg 0.05 mg

Fig. 7.25 Output voltage
waveforms of the transducers
for A = 1.2 g
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area of the prototype is 4×5 mm2. The design parameters of the device are listed
in Table7.1. In the experiments, all electrostatic transducers in the device proto-
type are biased using an external bias voltage Vb = 12V in continuous mode. The
output powers from the end-stop and main transducers are obtained by connecting
the fixed electrodes of the transducers to an external load with component value
RL = 18.5M	, which is the optimum load for the main transducers.

At low acceleration levels, the proof mass motion of the main transducers is less
than the maximum displacement amplitude. Therefore, there is no internal impact
between the main transducers and the end-stop transducer. Thus, the transducing
end-stops are deactivated and produce almost no output power. The harvester out-
puts are linear and mainly come from the main transducers, 1 and 2, in opposite
phase. Figure7.25 shows the output voltage waveforms of the main transducers and
the end-stop transducer for an acceleration A = 1.2 g. At this sufficiently large exci-
tation level, the impact force between the masses is strong enough to drive the end-
stop transduction significantly. The output voltage of the end-stop transducer then
becomes comparable to that of the main transducers. This indicates that the energy
conversion process is more effective with the addition of the end-stop transducer.
The waveform of the end-stop transducer is characterized almost in transient time,
which is restricted by the time interval between the impacts, as shown in Fig. 7.25.
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Fig. 7.26 Measured output
voltages of the transducers
versus frequency up-sweep
(solid line) and down-sweep
(dashed line) for A = 1.2 g
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The gap-closing transduction in the end-stop transducer produces a motion period
that is double that of the overlap-varying transduction in the main transducers.

Figure7.26 shows the frequency responses of all measured output voltages for
A = 1.2 g. In the linear regime, the main transducers give a resonant frequency of
f0 = 665Hz and a 3-dB bandwidth of 6.9Hz. The dynamic interaction due to the
impact between the proof masses adds nonlinearities to the frequency responses of
both themain transducers and the end-stop transducer. The frequency responses form
a hysteresis pattern with a jump-down frequency fdown = 653.1Hz and a jump-up
frequency fup = 730.4Hz. The frequency band between the jump frequencies of the
up-sweep and down-sweep is 77.3Hz, which is approximately 11 times higher than
the 3 dB bandwidth in the linear regime. Thus, the positive nonlinearities broaden
the harvester bandwidth based on the end-stop transducer impact mechanism. The
intermediate frequency range shows a high-amplitude revolution in their responses.

Additionally, the output voltage of the transducing end-stop is significant in the
impact frequency range. During an impact, the main proof mass hits the end-stop and
is then moved for an extra distance before it returns to the equilibrium position. The
hysteresis observed in the low-frequency range is affected by the softening-spring
nonlinearity [10, 30–32] because of the electrostatic pull of the end-stop transducer
on the proof mass for small gap sizes. Therefore, the end-stop proof mass is driven
toward a larger displacement amplitude, which leads to greater variation in the gap-
closing capacitance in the end-stop transduction process. As shown in Fig. 7.26, the
minimum gap for the end-stop transducer is achieved for A = 1.2 g. The outputs of
both the main transducers and the end-stop transducer reach their maximum levels.

The benefits of the transducing end-stop can be seen by comparison with the
reference harvester prototype under increasing acceleration amplitudes, as shown in
Fig. 7.28. The reference transducers are designed to be identical to themain transduc-
ers in the same active area. Both prototypes have amaximumdisplacement amplitude
Xmax = 10µm. In the linear regime, the output power of the reference prototype is
slightly higher than that of the impact prototype. This is because the reference har-
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Fig. 7.27 Measured output
power of the prototype with
the transducing end-stops
compared with that of the
reference prototype with
rigid end-stops at their
resonant frequencies
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vester has a larger proof mass and higher transduction designed using the same
constraints. The proof mass motion of the reference device reaches its maximum
displacement amplitude at an acceleration A = 0.18 g. A saturated output power of
35.0 nW is obtained for the reference device.With the additional power coming from
the end-stop transducers, the total power of the impact prototype is higher than that
of the reference harvester under the same conditions. The total power achieved is
81.5 nW atA = 0.91 g, which is 2.3 times higher than that of the reference prototype.

Figure7.27 shows one drawback where a large acceleration gap from A = 0.10 g
to A = 0.91 g must be covered to enable the end-stop transducer to be effective. This
is because the designed mechanical stiffness of the end-stop transducer is rather too
stiff. Therefore, strong acceleration forces are required to enhance the end-stop trans-
duction of the gap-closing capacitance, which varies as∼ 1/

(
g2 − x2s

)
. This problem

can be overcome by designing the end-stop transducer to have a compliant stiffness,
as shown in Fig. 7.28. With a compliant end-stop, the total output power increases
almost linearly when the benefits of the end-stop transducer become recognizable
at A = 0.72 g. The total power is higher than the saturated power of the impact
device with the stiffer end-stop transducer for A > 1.42 g. The high-amplitude orbit
of the end-stop proof mass is achieved quickly when the net stiffness of the end-
stop transducer is reduced. The end-stop transduction is considerable even at small
acceleration amplitudes, and becomes complicated at high acceleration levels. These
complications can be explained with reference to the phase space trajectories from
the mathematical analysis of the end-stop effects that was illustrated earlier. In the
later prototype, the transducing end-stops are used on both the right and left sides of
the main transducers [13].

Alternatively, the mechanical stiffness of the end-stop transducer can be further
reduced by increasing the bias voltages applied to the electrostatic end-stop trans-
ducer. The electrostatic force from the gap-closing transducer cancels the spring
force to produce a low net stiffness while maintaining sufficient strength to secure
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Fig. 7.28 Total output
powers for two different
end-stop designs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

Acceleration [g]

O
ut

pu
t p

ow
er

 [n
W

]

Stiff transducing end-stops
Compliant transducing end-stops

any unstable pull-in effects. Therefore, the end-stop transducer becomes more com-
pliant. The transducing end-stops will need further improvements to improve the
total system output power with given displacement constraints.

7.3 Conclusions

The numerical analysis that was carried out above is a useful tool for study of the
nonlinearities of end-stop effects in vibration energy harvesters. Through simple
modeling of the end-stops, it was found that this simple motion is atypical and that
solutions with complicated trajectories exist in phase space. The periods of motion
for these solutions can be very different from the period of the driving force, if indeed
they are periodic at all. The main effect of the end-stops on the output power is to
produce saturation behavior during continuous mode operation. The phase space
trajectories show that the motion of the proof mass in the energy harvester can
be complex, depending on the acceleration amplitude, but that the output power is
weakly dependent on the acceleration amplitude in the impact regime. Therefore,
the effects of the impacts on device performance during continuous operation are
minor. The consideration of the restoring force at the impacts is demonstrated using
the phase space trajectories and an output power graph.

The inelastic collisions with e = 0 will cause some energy to be lost in the end-
stops on impact. This energy loss can be collected smartly using power conditioning
circuits such as SECE or SSHI circuits. Alternatively, the lost energy on impact can
be collected by introducing the transducing end-stops which not only increases the
total output power of the harvester but also enhances its bandwidth. The compli-
ant transducing end-stops harvest more power than rigid transducing end-stops, as
demonstrated here using harvester prototypes. The harvester output can be further
improved by efficient design of the stiffness of the end-stops.
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The mathematical analysis described in this chapter can provide an insight into
the device behavior for given system parameters. The tool can be used effectively
and efficiently for energy harvester design. For example, when designing an energy
harvester that uses the end-stops as switches for power conversion circuitry, the
simulation approach illustrated in this chapter can be used to predict the switching
on every cycle of the driving force, thus optimizing the power that is harvested.

Acknowledgments This work was supported by the Research Council of Norway under Grant no.
191282. We thank Prof. Einar Halvorsen for useful discussions and suggestions.

References

1. Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., & Suzuki, S. (2009). Electrostatic micro
power generation from low-frequency vibration such as human motion. Journal of Microme-
chanics and Microengineering, 19, 094002.

2. Roundy, S. (2003). Energy scavenging for wireless sensor nodes with a focus on vibration to
electricity conversion. Ph.D. thesis, The University of California, Berkeley, Spring

3. Halvorsen, E., Westby, E. R., Husa, S., Vogl, A., Østbø, N. P., Leonov, V., et al. (2009). An
electrostatic energy harvester with electret bias. Proceeding of Transducers, 2009, 1381–1384.

4. Blystad, L.-C. J., & Halvorsen, E. (2011). A piezoelectric energy harvester with a mechanical
end stop on one side.Microsystem Technologies, 17, 505–511.

5. Roundy, S., & Wright, P. K. (2004). A piezoelectric vibration based generator for wireless
electronics. Smart Materials and Structures, 13, 1131–1142.

6. Che, L., Halvorsen, E., Chen, X., & Yan, X. (2010). Amicromachined piezoelectric PZT-based
pantilever in d33mode. InProceeding of the 5th IEEE International Conference onNano/Micro
Engineered and Molecular Systems (pp. 785–788).

7. Amirtharajah, R., & Chandrakasan, A. P. (1998). Self-powered signal processing using
vibration-based power generation. IEEE Journal of Solid-State Circuits, 33, 687–695.

8. Cao, X., Chiang, W. J., King, Y. C., & Lee, Y. K. (2007). Electromagnetic energy harvesting
circuit with feedforward and feedback DC-DC PWM boost converter for vibration power
generator system. IEEE Transactions on Power Electronics, 22, 679–685.

9. Le, C. P., & Halvorsen, E. (2012). MEMS electrostatic energy harvesters with end-stop effects.
Journal of Micromechanics and Microengineering, 22, 074013.

10. Tvedt, L. G. W., Nguyen, D. S., & Halvorsen, E. (2010). Nonlinear behavior of an electrosta-
tic energy harvester with wide- and narrowband excitation. Journal of Micromechanics and
Microengineering, 19, 305–316.

11. Hoffmann, D., Folkmer, B., &Manoli, Y. (2009). Fabrication, characterization andmodeling of
electrostatic microgenerators. Journal of Micromechanics and Microengineering, 19, 094001.

12. Soliman, M. S. M., Abdel-Rahman, E. M., El-Saadany, E. F., & Mansour, R. R. (2008). A
wideband vibration based energy harvester. Journal of Micromechanics andMicroengineering,
18, 115021.

13. Le, C. P., Halvorsen, E., Søråsen, O., & Yeatman, E. (2012). Microscale electrostatic energy
harvester using internal impacts. Journal of Intelligent Material Systems and Structures, 13,
1409–1421.

14. Neubauer, M., Krack, M., &Wallaschek, J. (2010). Parametric studies on the harvested energy
of piezoelectric switching techniques. Smart Materials and Structures, 19, 025001.

15. Blystad, L.-C. J., Halvorsen, E., & Husa, S. (2010). Piezoelectric MEMS energy harvesting
driven by harmonic and random vibrations. IEEE Ultrasonics, Ferroelectrics and Frequency
Control Society, 57, 908–919.



238 S. Kaur and C.P. Le

16. Williams, C. B., &Yates, R. B. (1995). Analysis of amicro-electric generator formicrosystems.
In Proceeding of Transducers’95 (pp. 369–372).

17. Williams, C. B., &Yates, R. B. (1996). Analysis of amicro-electric generator formicrosystems.
Sensors and Actuators A: Physical, 52, 8–11.

18. Cantatore, E.,&Ouwerkerk,M. (2006). Energy scavenging andpowermanagement in networks
of autonomous microsensors. Microelectronics Journal, 37, 1584–1590.

19. Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., & Green, T. C. (2008). Energy
harvesting from human and machine motion for wireless electronic devices. Proceedings of
the IEEE, 96, 1457–1486.

20. Meninger, S., JMur-Mirande, J.O.,Amirtharajah,R.,Chandrakasan,A. P.,&Lang, J.H. (2001).
Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Intergration
(VLSI) Systems, 9, 64–76.

21. Miller, L. M., Halvorsen, E., Dong, T., & Wright, P. K. (2011). Modeling and experimental
verification of low-frequency MEMS energy harvesting from ambient vibrations. Journal of
Micromechanics and Microengineering, 21, 045029.

22. Westby, E. R., & Halvorsen, E. (2012). Design and modeling of a patterned-electret based
energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions on Mecha-
tronics, 17, 995–1005.

23. Vocca, H., Neri, I., Travasso, F., & Gammaitoni, L. (2012). Kinetic energy harvesting with
bistable oscillators. Applied Energy, 97, 771–776.

24. Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013). Non-
linear MEMS electrostatic kinetic energy harvester with a tunable multistable potential for
stochastic vibrations. Proceeding of Transducers, 2013, 1336–1339.

25. Guillemet, R., Basset, P., Galayko,D., Cottone, F.,Marty, F.,&Bourounia, T. (2013).Wideband
MEMS electrostatic vibration energy harvesters based on gap-closing interdigited combs with
a trapezoidal cross section. Proceeding of IEEE MEMS, 2013, 817–820.

26. Hoffmann, D., Folkmer, B., & Manoli, Y. (2011). Analysis and characterization of triangu-
lar electrode structures for electrostatic energy harvesting. Journal of Micromechanics and
Microengineering, 21, 104002.

27. Stanton, S. C., McGehee, C. C., & Mann, B. P. (2009). Reversible hysteresis for broadband
magnetopiezoelastic energy harvesting. Applied Physics Letters, 95, 174103.

28. Le, C. P., Halvorsen, E., Søråsen, O., & Yeatman, E. M. (2012). Comparison of transducing
end-stops with different stiffness in MEMS electrostatic energy harvesters. Proceeding of
PowerMEMS, 2012, 444–447.

29. (2013). http://www.memscap.com/products/mumps/soimumps.
30. Mestrom, R. M. C., Fey, R. H. B., Phan, K. L., & Nijmeijer, H. (2010). Simulations and exper-

iments of hardening and softening resonances in a clamped-clamped beam MEMS resonator.
Sensors and Actuators A: Physical, 162, 225–234.

31. Amri, M., Basset, P., Cottone, F., Galayko, D., Najar, F., & Bourouina, T. (2013). Novel non-
linear spring design for wideband vibration energy harvesters. Proceeding of PowerMEMS,
2011, 189–192.

32. Elshurafa, A. M., Khirallah, K., Tawfik, H. H., Emira, A., Aziz, A. K. S. A., & Sedky, S. M.
(2011). Nonlinear dynamics of spring softening and hardening in folded mems comb drive
resonators. Journal of Microelectromechanical Systems, 20, 943–958.

http://www.memscap.com/products/mumps/soimumps


Chapter 8
Conditioning Circuits for Capacitive
Energy Harvesters

D. Galayko

8.1 Introduction

8.1.1 Generalities

Any sensor converting a physical quantity into electricity needs a minimal elec-
trical conditioning: an appropriate biasing, a readout circuit with an optimal input
impedance, etc. However, in many cases, the conditioning is more complex: for exam-
ple resonant sensors need electrical oscillating circuits, zero displacement accelerom-
eters require PWM or Sigma-Delta modulating feedback loops, etc. The capacitive
transducer, being itself a passive device, requires a sophisticated electrical condi-
tioning for electromechanical energy conversion. As was pointed out in Chap. 4,
the primary goal of the conditioning is an implementation of a cyclic charge flow
synchronized with the variation of the transducer capacitance. Different aspects of
practical conditioning circuits are discussed in this chapter.

In Chap. 4, it was shown that the two equations linking the electrical and mechan-
ical quantities (4.2) and (4.13) of an electrostatic transducer are nonlinear. It was
also emphasized that an ideal scenario of the electromechanical energy conversion
corresponding to a constant voltage QV cycle is implemented by a time variant,
i.e., reconfigurable electrical network. As a consequence, a capacitive harvester as
a whole can be seen as a nonlinear system. More sophisticated conditioning cir-
cuits, e.g., those implementing a rectangular QV cycle based on charge pumps using
diodes, are generally nonlinear as well.

In this chapter, we propose a short review of conditioning circuits used for energy
conversion with capacitive transducers.
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8.1.2 Classification of Conditioning Circuits for Capacitive
Harvesters

As it was shown in Chap. 4, a capacitive transducer needs a dynamic biasing in
order to generate electricity. For a capacitive transducer whose capacitance varies
periodically following a time law Ct (t), the energy conversion process is completely
defined by the charge-voltage cycle Γ . Since the voltage, charge and capacitance
of the transducer are bounded by the equation Qt = CtVt , if Ct (t) is defined, the
energy conversion is defined by the voltage waveform applied to the transducer.
A conditioning circuit for an electrostatic transducer can be seen as an electrical
dipole, which is connected to the electrical terminals of the transducer, as presented
in Fig. 1.3.

Since the past two decades, several architectures of conditioning circuits for
eVEHs (electrostatic Vibration Energy Harvesters) were invented. We propose a
classification of the conditioning circuits on the basis of the shape of the achieved
charge-voltage cycles. Figure 8.1 presents all known basic QV cycles plotted in the
same axes, under hypothesis that the maximum voltage Vt applied to the variable
capacitor is the same for all cycles (Vmax ). We chose such a basis for the comparison,
because in practice, any technology of electronic circuits always impose a maximum
allowed voltage. We distinguish three families of conditioning circuits implementing
three types of QV cycles

A

B
C

D

E

O

F

Cloc
kw

ise
 di

rec
tio

n 

for
 el

ect
ric

ity
 ge

ne
rat

ion

Fig. 8.1 Diagram showing all charge-voltage cycles which have been used to date for conditioning
of capacitive transducers in VEHs: OCB (constant-charge), OAB (constant-voltage), DFBE (rec-
tangular) and “tear drop” cycle corresponding to the continuous conditioning circuit or VEH with
electret layer. All cycles are drawn for the same extreme values of the variable capacitance (Cmin
and Cmax ) and for the same maximum voltage Vmax

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_1
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1. Teardrop, oval, or egg-shaped QV cycle (an example is plotted with dotted lines)
2. Triangular QV cycle (OAB, OCB)
3. Rectangular QV cycle (DFBE)

In this chapter, we present practical topologies of conditioning circuits imple-
menting these QV cycles.

8.1.3 Frame of the Analysis of Conditioning Circuit

The conditioning circuits are usually studied in electrical domain. It means, that the
variation of the transducer capacitance is supposed to be defined and fully char-
acterized by a function of time Ct (t). A usual hypothesis is Ct (t) is periodic with
period Te1 and having only one local maximum and minimum (Cmax and Cmin) over
a period. This is only a working hypothesis allowing to limit the complexity of the
analysis. In reality, because of the electromechanical coupling,Ct (t) depends also on
the electrical operation of the conditioning circuit, as it will be shown in examples in
Sect. 8.7. However, assuming a predetermined Ct (t) is a necessary step in the study
of the harvester as a whole.

In Sect. 8.7, we discuss how the presence of a transducer coupled with a mechan-
ical resonator impacts the operation of the circuit.

8.2 Continuous Conditioning Circuit

The simplest conditioning circuit demonstrating a generation of electrical power out
of variation of a capacitance is called “continuous conditioning circuit.” Its topology
is presented in Fig. 8.2. The circuit is composed of the variable capacitor Ct (the
transducer), a resistive load RL and an initially charged large reservoir capacitor
Cres , or simply a DC voltage source, when only a laboratory test is aimed. The
name of the circuit comes from the fact that all voltages and currents of the circuit
are continuous functions of time; this is not the case of more sophisticated circuits
which use switches or diodes and which will be considered later in this chapter.

The continuous conditioning circuit presented in Fig. 8.2 was first discussed in
[17, 24]. It was proposed as an electric interface between a resistive load and the
capacitive transducer provided with an electret layer [24], and later it was used with
a passive capacitive transducer [1, 17] biased by a voltage source or by a fixed
pre-charged capacitor. In spite of different nature of the transducer devices, these
configurations are equivalent: a DC voltage source in series with a passive capacitive
transducer is exactly an electrical model of a transducer biased by an electret layer

1The index “e” in Te stands for “electrical.” This is to emphasize that the variation of C1 may have
a different frequency that the mechanical vibrations, cf. [1].
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Transducer
capacitance  

(a) (b)

Fig. 8.2 Schematic of continuous conditioning circuit. In this study the continuous circuit represents
all circuit configurations which employ a capacitive transducer, resistive load and some internal or
external voltage to provide the initial bias on the transducer

[24]. Without major impact on prediction capability of the model, the DC voltage
source may be replaced by a large pre-charged capacitor.

Because of the simplicity of its implementation, this circuit is often used in lab-
oratory tests and characterization of capacitive transducers intended for the energy
conversion. In this section we propose a brief analysis of this circuit and its main
shortcomings.

8.2.1 Qualitative Discussion on Operation of the Circuit

In this subsection, we explain briefly the circuit operation on the example of a circuit
where the biasing is provided by a large fixed capacitor Cres initially charged to a
voltage V0, other capacitors are initially discharged and where the transducer capac-
itance varies according to some known periodic time law Ct (t) (Fig. 8.2a). We first
consider the circuit operation in an extreme case, when RL is close to zero [1]. It
can be seen that as the transducer capacitance varies, there is a charge redistribution
among Ct and Cres , which corresponds to a current i(t) equal to

i(t) = V0
dCt

dt
(8.1)

This equation is valid if we can neglect the voltage on RL comparing to V0: that is,
indeed the case if RL ≈ 0. It can be seen that this current dissipates power on RL ,
whose instantaneous value is equal to

PRL = i2(t)RL . (8.2)
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After each period of variation of Ct (t), the circuit returns to the same electrical state,
since the total electrical charge of Ct and Cres is constant, so is their total energy.
One should conclude that the energy dissipated on the resistance comes from the
conversion of energy from mechanical to electrical domain.

The power PRL is proportional to the load resistance: it increases as RL increases.
However, for large RL , the voltage on RL cannot be neglected anymore, and the
Eq. (8.1) is not valid.

We consider now the opposite extreme value of the load resistance: very large
(infinite). If the power on the load resistance is expressed through the voltage on the
load resistance VL as

PRL = V 2
L (t)/RL , (8.3)

we can show that the power tends to zero as RL → ∞. To prove this, it is enough to
show that VL has an upper bound. Indeed, since the current tends toward zero, the
transducer keeps its charge constant. The value of this charge depends on the initial
condition. Let it be Q0, in this case the voltage on Ct is Q0/Ct (t), and the absolute
value of voltage on the resistor is equal to |V0 − Q0/Ct (t)|. Evidently, if Cmin > 0,
this time function has an upper bound.

So, at zero and infinity values of the load resistance, the power is zero, but not for
finite values of RL . Hence, one should conclude that there is an optimal value of the
load resistance, for which the converted power is maximum.

In the next two subsections, we propose a more detailed analysis of the circuit.

8.2.2 Analytical Model in the Electrical Domain

This section presents the mathematical model describing formally the operation of
the conditioning circuit.

The governing equations describing the electrical behavior of the simple condi-
tioning circuit are given by the Kirchhoff voltage law and the element equations:

RL
dQt

dt
+ Qt

Ct (t)
= V0, (8.4)

where Qt is the instantaneous charge on the transducer capacitor, Ct (t) is the time
evolution law of the transducer’s capacitance. The electrical equation of the trans-
ducer is simply

Vt (t) = Qt (t)/Ct(t), (8.5)

where Vt is the voltage on the transducer.
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The instantaneous power converted by the transducer is dissipated on the load
resistance, and can easily be calculated with Eq. (8.2), where the current is given as

i = dQt

dt
(8.6)

The average power converted by the transducer is given by the average of (8.2) on
one period of Ct (t) variation.

In order to calculate the average converted power, the closed expression of Qt (t)
should be found, and for that the differential Eq. 8.4 should be solved. The work
[12] addressed the resolution of this equation. It was concluded that even for simple
geometries of the transducer, this equation cannot be solved in closed form, and the
analytical solution for Qt (t) can be expressed as infinite Fourier series, in which,
however, the terms above third or forth can be neglected in the most practical cases.
The coefficients of the series are expressed through Bessel functions. For this reason,
a comprehensive analytical expression relating the converted power to the parameters
of the system is difficult to establish.

We present here an example of practical study of the continuous conditioning
circuit in the electrical domain. For that, we need to define the function defining the
variation of the transducer capacitance over time,Ct (t). In this example, we study the
case of a gap closing transducer (see Chap. 4) whose mobile plane moves according
to a sinusoidal law. We have:

Ct (t) = Ct (x(t)) = ε0
S

d0 − x(t)
= ε0

S

d0 − X0 sin ωt
, (8.7)

where S and d0 are the overlapping area and the initial transducer gap, respectively,
X0 and ω are the amplitude and the angular velocity of mobile electrode motion.

This function is submitted to Eq. (8.4). The steady-state solution of the linear
parametric equation (8.4) describes a periodic variation of the charge Qt (t) and of
the current Q̇t (t). The solution can be obtained by any tool for EDT solving, or by
a Spice simulator able to model a variable capacitance. Here, we present the result
of numerical resolution of the equation for the values of the parameters presented in
Table 8.1.

Table 8.1 Values of parameters used for simulation of continuous conditioning circuit with gap
closing capacitive transducer

Physical parameters

Fixed parameters Variable parameters

Parameter
name

d (m) S (m2) ω

(rad · s−1)
V0 (V) X0 (m) RL (�)

Parameter
value

50×10−6 1×10−4 2 · π ·100 10 (30, 40, 45) ×
10−6

(1 . . . 100) ×
106

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Fig. 8.3 Average power
converted in a steady-state by
the continuous conditioning
circuit used with a gap
closing transducer against
the load resistance, for three
different amplitudes of the
mobile electrode motion

Figure 8.3 presents the plot relating the average power generated on the load
resistance in the steady-state mode (after the transient process) to the value of the
load resistance. The plot is given for three amplitudes of the mobile mass vibrations.
It can be seen that the curves are similar to what is obtained for the power-load
characteristic of a real voltage source having some internal resistance Rs . In this case,
the power is maximum when the load resistance is equal to the internal resistance of
the source. This allows us to consider the load resistance value at which the power
on the plot of Fig. 8.3 is at its maximum as the equivalent internal resistance of the
power source represented by the transducer and the biasing source. Note, that the
internal resistance of such a source depends on the amplitude of the mobile electrode
motion, as shows the plot. This highlights nonlinearity of the system: indeed, in a
linear system, the impedance matching condition for the load does not depend on
the amplitude of the input signal.

Figure 8.4 presents three families of QV cycles in steady-state mode (after the
end of the transient process), corresponding to three different amplitudes of the mass
displacement X0. Each plot contains several QV cycles obtained for different values
of the load resistance. The QV cycles drawn with a thick plain line correspond to the
values of the load resistance at which the converted power is maximum (cf. Fig. 8.3):
this QV cycle has the largest area over all cycles of the family.

Let us have a look on the evolution in the shape of the QV cycle as the load
resistance increases. For low RL , the QV cycles are more “vertical,” and as RL → 0,
the cycle is degenerated to a vertical line (meaning that there is no voltage across
the load resistance). On the contrary, for large RL , the QV cycle is more horizontal,
and in the limit case when RL → ∞, the QV cycle is a horizontal line (meaning that
there is no current flowing through the load resistance). For these two extreme cases,
the energy converted by a cycle is zero (cf. discussion in Sect. 8.2.1). The QV cycle
has a “tear-drop” shape, which, as we discussed before, can not be expressed by any
analytical function written in closed form.
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Fig. 8.4 Three families of QV cycles corresponding to steady-state operation of the continuous
conditioning circuit used with a gap closing transducer, each family is plotted for a value of the
amplitude of mobile electrode motion. The QV cycles on each plot correspond to different load
resistances. The optimal QV cycle (those maximizing the converted power and hence having a
maximum area) is plotted with thick solid line

The plots of Fig. 8.5 presents the time evolution of the transducer capacitance,
the transducer voltage and current at the configuration where X0 = 45µm, RL =
10 M�. The transient process lasting for less than one period is observable on these
plots. The nonlinear nature of the system can clearly be seen from these curves.

Shortcomings of the Continuous Conditioning Circuit. Auto-Increasing of the
Biasing

The main advantage of the continuous conditioning circuit is its simplicity of imple-
mentation. Unfortunately, the drawbacks are numerous, and this is the main moti-
vation for study of alternative but more complex solutions. In this conclusion, we
summarize the drawbacks of this conditioning circuit.
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Fig. 8.5 Time evolution of
the electrical quantities in the
continuos conditioning
circuit used with a gap
closing transducer, obtained
by simulation. The transient
and the steady-state behavior
are clearly observed

• The voltage on the load resistance is AC; it can be seen from the current flowing
through the transducer in Fig. 8.5. An AC–DC conversion is required; in the case
of the electret transducer this may be done by conventional rectifying networks
[20].

• The order of magnitude of the voltage on the load and the bias voltage may be
the same. In the case of the electret layer, the bias voltage may be of several tens
of volts, and a downscale of the voltage is necessary. This is related to generally
very large internal impedance (resistance) of the energy source provided by the
continuous conditioning circuit (cf. discussion in Sect. 8.2.2). An active impedance
matching is required in order to optimally supply an eventually low impedance
load.

• However, the main shortcoming of the continuous conditioning circuit is in the
case when the available bias voltage is, for some reasons, low. Practical studies
highlight that up to tens of volts of bias may be needed for optimal operation [1].
However, the initial charge can only be obtained by a low voltage battery existing
in the system, or by a complementary piezoelectric VEH as proposed in [11] (or
maybe, by a solar cell), and the generated initial voltage will be not greater than few
volts. A low bias voltage means a low output power, since the latter is proportional
to the square of the voltage. A similar problem is when the electret layer is weakly
biased, for example, because of the depolarization due to the aging.
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Fig. 8.6 Functional diagram
of a conditioning circuit
allowing an accumulation of
the converted energy on the
reservoir capacitor bias

High bias voltage
generation

Transducer/resonator
AC−DC

DC−DC

HV

• If the bias voltage is generated by a large pre-charged capacitor, the leakage reduces
its charges with time, and the circuit becomes inactive. Similar problems have been
reported with electret layers, which tend to depolarize with time.

The last two points are related to the impossibility of the continuous conditioning
circuit to accumulate the energy converted from the mechanical domain, in order
to increase its biasing. One of the possible functional diagrams required for a con-
ditioning circuit is presented in Fig. 8.6: there should be a mechanism allowing a
generation of a high voltage by using the energy converted from the mechanical
domain. This voltage should then be used for biasing of the transducer. Since the
biasing does not consume energy (under hypothesis of low leakage of capacitors),
the circuit will be able to operate at high biasing, while the start-up may be done
from a low voltage. Obviously, at the initial stage, the energy converted from the
mechanical domain should be used for generation of the high voltage biasing, and
only after the biasing is established, the converted energy can be provided to the
load with a high power due to a high voltage biasing. We call the mode in which
the conditioning circuit accumulate its energy in order to increase its biasing “the
auto-accumulative” or “self-increasing” mode.

The circuits presented in the next sections are free from the drawback of the
continuous conditioning circuit, and all provide the possibility to accumulate the
converted energy on a storage capacitor, which then can be used for the load supply.

8.3 Conditioning Circuits Implementing Triangular QV
Cycles

Two triangular QV cycles are known for conditioning of capacitive transducers in
energy converters: a constant voltage QV cycle (OAB in Fig. 8.1), and a constant
charge QV cycle (OCB in Fig. 8.1). The two cycles have a very important common
property: a discontinuity in time of the voltage on the variable capacitors. It can be
obvious from their QV diagrams: the latter include paths on segments corresponding
to a fixed value of the transducer capacitances (the lines OA, OC, and OB). Since the
transducer capacitance varies in a continuous way (for instance, following the law
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given by (8.7)), these lines correspond to instantaneous, and hence, discontinuous
variation of the charge and of the voltage. That is physically impossible; in practice,
an implementation of such an operation supposes a fast variation of the transducer
voltage, in comparison with the evolution speed of Ct (t). It can be shown that only
inductive DC–DC conversion allows a very fast voltage change on a capacitor without
substantial loss of energy. As a consequence, conditioning circuits implementing
triangular QV cycles need inductive DC–DC conversion stages synchronized with
the variation of the variable capacitance.

8.3.1 Constant Voltage Conditioning Circuit

The constant voltage QV cycle was discussed in Sect. 4.1.5. We showed that the
constant voltage QV cycle provides the best energy yield achievable with a given
transducer having a given dynamics, supporting a given maximum voltage.

In this subsection, we propose a discussion about how to implement practically a
circuit achieving a constant voltage QV cycle on a capacitive transducer. We high-
light fundamental difficulties of implementation, and explain the reasons of very
limited use of the constant voltage scenario and as a consequence, the motivation for
exploring alternative suboptimal solutions.

We summarize the scenario corresponding to the constant voltage QV cycle, and
propose a corresponding electrical network (Fig. 8.7). We suppose that a voltage
source Vmax is available. This can be a large fixed capacitance pre-charged to this
voltage. At the beginning of the cycle, Ct is discharged, SW is OFF.

(1) When Ct is at its maximum, the transducer is pre-charged to a voltage Vmax and
immediately after that the transducer is connected to the source of voltage Vmax .
Note that the transducer cannot be directly connected to the voltage source, if
their voltages are not equal. The only way to avoid losses when chargingCt from
0 to Vmax is to use an inductive DC–DC converter. This conversion is denoted
“Conversion 1” in Fig. 8.7

Fig. 8.7 Diagram
illustrating the principle of
operation of a conditioning
circuit implementing a
constant voltage QV cycle

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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(2) WhenCt decreases fromCmax toCmin , the transducer is connected to the voltage
source (SW is ON). During this time, the voltage source receives charges and
energy from Ct . Indeed, the variable capacitor loses charges ΔQ = (Cmax −
Cmin)Vmax , and the source receives the energy ΔQVmax .

(3) When Ct is at its minimum, the switch becomes OFF, the remaining charges
of Ct are transferred to Vmax , so that the voltage of Ct is zero. The transfer is
achieved by an inductive DC–DC conversion denoted as “Conversion 2.”

(4) Since at each cycle Vres receives more energy that it delivers, the average energy
of Vres increases with time. If the voltage source is implemented as a large
capacitor, its voltage increases with time: that is not desirable, since, by initial
hypothesis, Vmax is the maximum voltage allowed in the given technology. The
circuit should contain a mechanism removing energy from Vmax , for example,
by supplying a load. Since the load is supplied by a low voltage, an inductive
DC–DC converter should be implemented, which is denoted as “Conversion 3.”

We note that this operation must be precisely synchronized with the variation of
Ct . In this description we do not consider how to implement such a synchronization.

Summarizing, an implementation of a constant voltage scenario requires:

• a high voltage source,
• three inductive DC–DC conversions at each cycle,
• a switch connecting the transducer and the Vmax source,
• precise synchronization of the DC–DC conversions with the variation of Ct .

The challenges of implementation of such a circuit are obvious, especially because
of very small available energy for the operation of the control electronics.

An example of a successful implementation of a constant voltage conditioning
circuit has been reported in [25], by a research group of Georgia Tech University.

8.3.2 Constant Charge Conditioning Circuits

The constant charge energy conversion scenario is similar to the constant voltage
scenario, except when the transducer capacitance decreases, the circuit fixes the
charge of the transducer, and not the voltage. The corresponding aspect of QV cycle
is given in Fig. 8.1, cycle OCB. The energy converted by the cycle is given by the
formula:

ΔW = 1

2
V 2

0 Cmax

(
Cmax

Cmin
− 1

)
= 1

2
V 2
max

Cmin

Cmax
(Cmax − Cmin). (8.8)

where V0 is the voltage on Ct when Ct = Cmax .
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Fig. 8.8 Circuit
implementing a
constant-charge QV cycle

If one compares this formula with Eq. (4.19), it is evident that at the same Vmax ,
Cmax and Cmin , the constant charge QV cycle converts Cmax/Cmin times less energy
than the constant voltage QV cycle. This can also be seen from the plot of Fig. 8.1.

However, a conditioning circuit implementing a constant charge QV cycle is
simpler than for a constant voltage QV cycle. A schematic of such a circuit is given
in Fig. 8.8. The circuit is composed of a large capacitor Cres initially pre-charged to
the voltage Vres , or of a voltage source generating the same voltage, of an inductor
and of two externally controlled switches. The operation scenario is the following:

• whenCt is at its maximum and discharged, an inductive DC–DC converter transfers
charges from a reservoir capacitor Cres to Ct , so that Ct has a charge Q0 and a
corresponding voltage V0 = Q0Cmax . Note that the initial voltage V0 is determined
by the timing of the DC–DC conversion (namely, by the ON time of the switch
SW1), and not by the voltage Vres . An appropriate command of the switches SW1
and SW2 is required, as described in [18].

• both switches are off, the transducer capacitance reduces while the charge of the
transducer remains constant. The internal electrical energy of Ct increases.

• when Ct is at its minimum, the DC-DC converter transfers the charge back from
Ct to Cres , without energy losses. The capacitor Cres receives a greater energy that
it initially has given to Ct .

• the transducer capacitance increases while its charge is zero (the switches are off),
until it reaches the maximum, and the cycle repeats.

In this way, the conditioning circuit operates as a bidirectional DC–DC converter.
Two advantages over the constant voltage circuit should be noted:

(1) The voltage Vres may be a low voltage, easy to generate. Nevertheless, the used
DC–DC converter is able to generate a higher initial voltage V0 on Ct , if it is
required for optimal energy conversion by the transducer.

(2) The voltage Vres being low, it is compatible with the requirement of the load
supply. In this way, one DC–DC conversion is removed (the Conversion 3 in
Fig. 8.7).

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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A need of a precise synchronization of the DC–DC conversion with the motion
of the mobile mass is a strong negative point of the constant-charge conditioning
scenario, which makes the implementation of the control electronics complex and
energy consuming. Study of practical implementation of this solution can be found
in [5, 6, 16, 18].

8.4 Circuits Implementing Rectangular QV Cycles

In this section, we propose to study a class of circuits implementing rectangular
QV cycle (DFBE in Fig. 8.1). We present here two subfamilies of such circuits: one
based on a charge pump firstly proposed by Roundy et al. [22], and one based on
the Bennet’s doubler [3]. Other circuits which implement such a QV cycle are full
wave and half wave diode rectifiers loaded by a reservoir capacitor. They are used
with transducer biased by electret layer [20], and are not discussed in this book.

Priorly, to study the circuit topologies, we propose a discussion on the common
properties of these circuits, which are due to the geometry of the implemented QV
cycle.

8.4.1 Study of the Rectangular QV Cycle

Let us consider a rectangular QV cycle having the following parameters related to
the cycle geometry (Fig. 8.9):

• The extreme voltages of the cycle which we call Vres , Vst , such as Vres < Vst

• The extreme charges of the cycle which we call Q1, Q2, such as Q1 > Q2

Fig. 8.9 Geometry of an
ideal rectangular QV cycle
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• The four values of the transducer capacitance corresponding to four points of the
rectangle2:
Cmax = Q1/Vres (corresponds to the point D)
Cmin = Q2/Vst (corresponds to the point B)
C∗ = Q1/Vst (corresponds to the point F)
C∗∗ = Q2/Vres (corresponds to the point E)

If a capacitive transducer is biased so as to follow the electrical state defined by
such a cycle, the energy converted in one cycle is easily calculated as the area of the
cycle

ΔW = (Vst − Vres)(Q1 − Q2) = V 2
resCmax

(
Vst
Vres

− 1

) (
1 − Vst/Vres

Cmax/Cmin

)
(8.9)

To have a physical meaning, this quantity must be positive. Hence, it is required
that

Cmax

Cmin
≥ Vst

Vres
. (8.10)

The expression ΔW is a quadratic form of the variables Vres , Vst . As a conse-
quence, if one of these voltages is fixed, there is an optimal value of other voltage
maximizing ΔW . Also, if there is some limitation applied on the voltages Vres and Vst

(for instance, a maximum allowed value), there is an optimal ratio Vres/Vst , which
is a function of the Cmax/Cmin ratio [13].

How practically a rectangular QV cycle can be implemented? It was said in
Chap. 1, that a conditioning circuit can be seen as a dipole (Fig. 1.3). We now propose
a discussion on main properties of the dipole implementing a conditioning cycle with
a rectangular QV cycle, and we define its current-voltage characteristic.

By analyzing the QV diagram (8.9), it can be seen that when Vres < Vt < Vst , the
transducer current is zero (since Qt = const). We conclude, that at this operation
stage, the conditioning circuit presents a high impedance (an open circuit).

As the transducer voltage reaches Vst when the transducer capacitance decreases
(the segment DF), the voltage of the transducer is fixed to Vst (the segment FB),
i.e., the conditioning circuit presents a voltage source Vst . Note that the current of
transducer is

it = dQt

dt
= Vst

dCt

dt
< 0 (8.11)

since Ct (t) decreases. As a consequence, the transducer gives its charges (and hence
its energy) to the conditioning circuit.

2Each point (V, Q) on a QV diagram defines an unique value of the variable capacitor given by
Q/V , otherwise, by the slope of the line connecting the point (V, Q) and the origin.

http://dx.doi.org/10.1007/978-3-319-20355-3_1
http://dx.doi.org/10.1007/978-3-319-20355-3_1
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A similar process happens when the transducer capacitance increases and its
voltage reduces to Vres (the segment BE), while the capacitance continues to increase.
In this case, the conditioning circuit behaves as a voltage source Vres (the segment
ED). In this case

it = dQt

dt
= Vres

dCt

dt
> 0 (8.12)

since Ct increases, and as a consequence, the transducer takes charges and energy
from the conditioning circuit.

We can define the current-voltage characteristic (relating it and Vt ) of the condi-
tioning circuit as follows:

• if Vres < Vt < Vst , it = 0; (open circuit)
• if it > 0, Vt = Vres ; (voltage source Vres)
• if it < 0, Vt = Vst ; (voltage source Vst )

Figure 8.10a presents the plot of the corresponding current-voltage characteristic.
It can be seen that such a characteristic corresponds to a voltage limiter implemented
by the network given in Fig. 8.10b, often used for the ESD protection of integrated
circuits, and known as “voltage limiter.” The use of this circuit for implementation of
a rectangular QV cycle in capacitive energy harvesters was first proposed by Roundy
[22]. In the literature addressing the energy harvesting, this circuit is usually drawn
as in Fig. 8.11a, and is called “charge pump.” Indeed, as follows from our discussion,
when this circuit is connected to a variable capacitor with periodic variation of the

(a) (b)

Fig. 8.10 Implementation of an ideal rectangular QV cycle: a Current-voltage characteristic of a
dipole which, when connected to a variable capacitor, implements a rectangular QV cycle, b An
electrical network having such a characteristic
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(a) (b)

Fig. 8.11 Schematic of a charge pump implementing a rectangular QV cycle: a ideal charge pump,
b practical implementation

capacitance, the low voltage source Vres gives charges, whereas the high voltage
source Vst receives charges. In such a way, the circuit creates a charge flow from
a low potential (Vres) to a high potential (Vst ). The additional energy necessary for
such an operation comes from the mechanical domain, thanks to the variation of the
transducer capacitor.

The advantage of this circuit with comparison to a constant voltage or constant
charge circuit is obvious: the automatic synchronization of the phases of the biasing
with the variation of the transducer capacitance, without any need of external control.
However, practical use of the charge pump in capacitive energy harvesters requires
to answer the following questions:

• How to generate the voltages Vres and Vst ,
• How to transfer periodically the energy gained by the source Vst to some low

voltage storage device (a large capacitor or a battery).

In this section, we consider two families of circuit implementing rectangular QV
cycle solving these problems.

8.4.2 Practical Implementation of the Charge Pump

An implementation of the charge pump close to the described idealized circuit is
obtained with the network of Fig. 8.11b. The voltage sources are implemented by
charged fixed capacitances of large values. The values of Cres and Cst should be
chosen so that

Cmax � Cst � Cres . (8.13)

Cres capacitor is initially charged to a voltage Vres = Vres0, and so are Cst and Ct

capacitors, because of the charge sharing through the diodes D1 and D2.
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Fig. 8.12 Succession of charge-voltage cycles as the charge pump operates starting from the state
when Vst = Vres : the first cycle DBE , the subsequent cycles DF1B1E1, DF2B2E2, . . ., DFnBnEn .
If n → ∞, the cycle is degenerated to a line passing through the points D, F1, F2 . . . Fn

By initially precharging the circuit to a voltage Vres0, we implement the configu-
ration of Fig. 8.11a with Vres = Vst , in which the converted energy per cycle is zero,
according to (8.9). However, since the Vst voltage source is implemented by a capac-
itor Cst , the charge transfer from Cres to Cst during the first cycle slightly increases
the voltage across Cst . Hence, the corresponding QV cycle is actually triangular,
as shown in Fig. 8.12, cycle DBE . The next cycle starts in a configuration with a
slightly larger Vst , yielding a trapezoidal QV cycle. After each cycle, Vst increases,
so that all further cycles are different. It can be shown that the slope of the line
DB, F1B1, . . . , FnBn is −Cst (steeper than Cmax , but exaggerated in the figure): the
shape of the cycles is close to rectangular, asCst � Cmax . The QV trajectory follows
a succession of cycles, starting from Vst ≈ Vres and asymptotically approaching a
degenerated cycle represented by a trapeze with a zero area (a horizontal line) cor-
responding to the Vst voltage given by:

Vst sat = VresCmax/Cmin. (8.14)

This value is called the “saturation voltage” of the charge pump.
As a result of the operation of this circuit, the capacitor Cst receives energy from

Cres , and in addition, it receives energy converted from the mechanical domain (the
harvested energy). At every QV cycle of the charge pump operation, the overall
electrical energy of the circuit increases. In what follows, we present a quantitative
analysis of this process.
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The voltage Vst at the end of the nth cycle evolves following the recursive equation
[26]:

Vst n = αVst n−1 + β, (8.15)

where

α = Cst

Cst + Cmin
, and β = Vres

Cmax

Cst + Cmin
. (8.16)

The solution of the discrete equation (8.15) is

Vst n =
(
Vst0 − Vres

Cmax

Cmin

)(
Cst

Cst + Cmin

)n

+ Vres
Cmax

Cmin
, (8.17)

where Vst0 is the voltage on Cst capacitor at the zeroth cycle. In this example, it is
assumed Vst0 = Vres0.

Note that if Ct variations are periodic, the variable n is the operating time of the
charge pump divided by the period of Ct variation, Te. From (8.17) it can be derived
that the asymptotic value of Vst n as n → ∞ is Vst sat is given by (8.14).

As Vst increases, the voltage Vres slowly decreases, as the amount of charges on
Cres and Cst is constant (as one neglects the charges on Ct ). The evolution of Vn is
given by:

Vres n ≈ [if Cst � Cmax ] ≈ Vres0 − Cst

Cres
· (Vst n − Vres0) ≈ [if Cres � Cst ] ≈ Vres0.

(8.18)

An example of the evolution of Vres and Vst is given in Fig. 8.13a, where the
charge pump starts from the state Vres = Vst = Vt = Vres0. From formula (8.15) and
(8.16) it can be seen that if Cst � Cmax , the increment of Vst during every cycle is
small, and the charge pump runs through cycles for all possible Vst , from Vres0 to
the saturation value Vst sat .

8.4.3 Evolution of the Harvested Energy

Neglecting the energy in the transducer capacitance since it is small, and supposing
that the Cst voltage is initially Vres0, the energy harvested during the n first Ct

variation periods is stored in the capacitors Cres and Cst , and is given as

Wn = 1

2
Cst V

2
st n + 1

2
CresV

2
res n − 1

2
(Cres + Cst )V

2
res0, (8.19)
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Fig. 8.13 Evolution of the
electrical state of the charge
pump without flyback. a
Evolution of Vst and Vres
voltages, b evolution of the
total converted energy (Wn)
and of the energy converted
at one cycle (ΔWn). The
simulation was done with
Cmin = 200 pF,
Cmax = 400 pF,
Cst = 3.3 nF, Cres = 10 µF,
frequency of Ct variation is
300 Hz

where Vres n is the Cres voltage after n vibration cycles and Vres0 is the initial voltage
of Cres . At the same time, the sum of charges of Cst and Cres is constant, so, the
following relation holds (neglecting the charge shared with Ct ):

Cst Vres0 + CresVres0 = Cst Vst n + CresVres n. (8.20)

Using (8.20), Eq. (8.19) can be simplified

Wn = CstCres

Cst + Cres
(Vst n − Vres n)

2/2. (8.21)

This equation suggests that the harvested energy is stored in the capacitor composed
of Cst and Cres connected in series. This formula can be further simplified if Cst �
Cres and if Cres is large, so that Vres n ≈ Vres0. In this case, we can write

Wn ≈ Cst (Vst n − Vres0)
2/2. (8.22)

This equation suggests that the converted energy is mainly stored in theCst capacitor.
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The value
ΔWn = Wn − Wn−1, (8.23)

gives the energy converted during one cycle. For the case when Cst � Cmax , ΔWn

is equal to ΔW given by Eq. (8.9), if in (8.9) Vst and Vres are replaced by Vres0 and
Vst n corresponding to the cycle.

In the formula (8.22) expressing the energy converted from the state where Vst =
Vres0, there is no explicit dependence on discrete time n (the cycle number). If
Cst � Cmax , the variation of the voltage Vst is negligible at the time scale of one
cycle. For this reason, we can state that Vst evolves continuously, and consider it as
“macroscopic state parameters” defining the energy of the charge pump. It allows us
to remove the indices n in the Eq. (8.22) and to define the total harvested energy W
as

W (Vres0, Vst ) = Cst (Vst − Vres0)
2/2. (8.24)

If, during the operation of the charge pump, the Vst voltage increases from some
V1 to some V2, the corresponding converted energy is given by

ΔW (Vres0, V1, V2) = W (Vres0, V2) − W (Vres0, V1) =
Cst (V2 − V1)(V2 + V1 − Vres0)/2.

(8.25)

Figure 8.13b presents the plots characterizing the evolution of the energy in the
charge pump as a function of the cycle number. During each cycle n, the total energy
(square dots) increases by the value given by (8.9) calculated for the Vst resulting the
previous cycle (triangular dots). Only a few cycles convert a significant amount of
energy: those corresponding to Vst values close to the optimal Vst opt , (cf. the analysis
of Sect. 8.4.1 for fixed Vres). This value is situated in-between the extreme values of
Vst , and a freely running charge pump finishes by entering into the saturation mode,
in which Vst ≈ Vst sat and ΔWn ≈ 0.

8.4.4 Shortcomings of the Single Charge Pump

Because of a dynamic evolution of Vst voltage leading to a saturation, the charge
pump alone is not useful for capacitive VEHs. Practical conditioning circuits should
be able to (i) ensure a sustainable energy conversion by fixing the Vst/Vres ratio to
the optimal value as mentioned in Sect. 8.4.1, (ii) accumulate the converted energy.
These two very important points are discussed in this subsection.

Need for a Flyback

The plot ΔWn in Fig. 8.13b can be seen as the average power converted in a cycle.
The goal of a harvester is to permanently maintain the converted power close to a
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Fig. 8.14 Principle of
operation of a charge pump
with a mechanism of return
of charges from Cres to Cst ,
called “flyback”

maximum level. For this reason, a charge pump needs periodic flyback: a mechanism
returning some of charges from Cst to Cres so as to keep Vst close to the optimal
value and to prevent the charge pump from saturation. Possible implementations of
the flyback will be discussed in Sect. 8.5.

The action of the charge pump can be seen as the generation of an average current
flowing from a low potential (Vres) to a higher potential Vst (Fig. 8.14). This current
is roughly equal to

ich pump = Q1 − Q2

Te
= VresCmax − VstCmin

Te
. (8.26)

The flyback must create an opposite current from Cst to Cres i f ly , preventing the
accumulation of charges on Cst , and so, avoiding the charge pump saturation. This
current, flowing from the high-to-low potential, removes the electrical energy from
the charge pump, and in a practical application, this energy should be transferred to
a useful load. In the steady-state mode, the rate at which the energy is removed from
the charge pump is equal to the power of the electromechanical conversion.

Auto-Increasing of the Internal Energy

From (8.9) and further analysis of Sect. 8.4.2, it can be seen that the energy converted
by a charge pump is proportional to the square of the voltage Vst and Vres , i.e., pro-
portional to the internal energy of the circuit in Fig. 8.11b. Practical studies highlight
that up to tens of volts may be needed for optimal operation [1]. However, the initial
charge can only be obtained by a low voltage battery existing in the system, or by
a complementary piezoelectric VEH as proposed in [11]. In both cases, the initial
voltage generated in this way will certainly be low (few volts).

As a consequence, the conditioning circuit should be able to use a part of the
converted energy in order to increase its biasing: its internal energy represented
by the voltage on the largest capacitor, Vres . This is the “accumulative” or “self-
increasing” mode discussed in Sect. 8.4.4.

The auto-increasing capability is not offered by the basic charge pump.
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8.5 Circuits Derived from the Primitive Charge Pump

In this section, we discuss more sophisticated conditioning circuits which are derived
from the architecture of the basic charge pump considered above. All of them imple-
ment a rectangular QV cycle. In all these circuits, the basic topology of the charge
pump presented in Fig. 8.11 is complemented by networks allowing a return of the
charges, so to allow a steady operation providing a fixed ratio Vst/Vres . Here, we
present a short discussion of these solutions.

8.5.1 Resistive Flyback

The simplest way to implement a flyback is to connect a load between Cres and Cst

(Fig. 8.15), originally proposed in [11]. Here, the load is represented with a resistance
Rload whose current is

i f ly = Vst − Vres

Rload
. (8.27)

A simplified analysis may be done by analyzing independently the charge flows of
the charge pump and of the resistor, and then by superimposing them. The point at
which both currents are equal to each other (ich pump = i f ly) corresponds to steady-
state operation. Although it is an approximation based on the averaging method [19],
it gives good analytical results.

In the steady state, the average Vst voltage on a period Te is the same for all
cycles. The stability of this mode can be easily proven by supposing a perturbation
which yields, for example, ich pump < i f ly . In this case, the load current consumption
outweighs the current due to the charge generation by the pump, and Vst decreases.
This results in decreasing of i f ly , and so in reducing the initial perturbation.

Under these considerations, the average steady-state voltage Vst with resistive
flyback can be predetermined by equating (8.26) and (8.27). Conversely, the value
of Rload yielding a desired Vst (for example, that yielding a maximum ΔW ) can be
calculated.

Fig. 8.15 Charge pump with
resistive flyback
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The resistive flyback configuration provides a sustainable energy conversion by
preventing the charge pump from the saturation. This is an efficient solution from
the point of view of the simplicity of implementation. However, it does not allow
an auto-increasing of its internal energy (cf. Sect. 8.4.4), and for this reason, is not
usable in practical applications.

8.5.2 Inductive Flyback

The inductive flyback is a Buck DC–DC converter, transferring energy from Cst to
Cres (Fig. 8.16a). The flyback operates in two steps

(i) When Vst is high so that the efficiency of the charge pump decreases, some
external control device (cf. the explanation below) activates the switch SW , and
the current in the inductor L starts to increase. This results in: (i) charges being
transferred from Cst to Cres , so that Vst decreases, (ii) the energy previously
generated by the charge pump on Cst is transferred to L .

(ii) As the magnitude of Vst decreases, it becomes close to Vres , and the same external
device cuts the switch, so that the inductor discharges through the flyback diode
D3 onto Cres . This results in a transfer of the inductor energy to Cres , and an
increase of the Cres voltage, since the diode D3 is connected to the ground. In
this way, the converted energy is used to extract charges from the ground and to
inject new charges into the charge pump.

It can be seen that Cres receives charges twice: in the first phase, it receives the
charges previously given to Cst during the pump operation, and in a second phase,
it receives new charges from the ground. In this way, Cres receives the energy it
has given to Cst during the operation of the charge pump, and it receives the energy
converted from the mechanical domain. If such an operation is cyclic, the average
voltage and energy of Cres will grow. In this way, two problems are solved: (i) even if

Fig. 8.16 Conditioning
circuit with inductive
flyback. a The architecture
of the circuit: the basic
charge pump (as presented in
Sect. 8.4.2) and the inductive
flyback (grey background)

Flyback control

D1 D2

D3

RL Vst

Flyback

SwVres
Cres Cst

Ct

Vt

L
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the capacitors are leaky, the losses are compensated by the charges extracted from the
ground, (ii) a large capacitorCres contains the harvested energy available for the load
(represented by dotted lines in Fig. 8.16a). If no load is present, Cres accumulates the
converted energy, and so implements an “auto-increasing” or “accumulative” mode.

The advantage of the charge pump with inductive flyback is the possibility of
a precise control of the QV cycle corresponding to the energy conversion. This is
achieved by a modulation of the average Vst voltage so as to remain in the optimal
mode for energy conversion.

A drawback of the circuit is the need of an external command for the switch.
However, this command is synchronized not with the mobile mass vibrations, but
with the evolution speed of the voltage Vst : first, a voltage can easily be measured, and
second, the evolution is low compared to the frequency of the capacitance variation.
Hence, the cost of such a command is smaller than for circuits implementing constant
voltage or constant charge QV cycles (see Sects. 8.3.1 and 8.3.2).

Practical implementation of adaptive architecture in Fig. 8.16 is challenged by the
relatively low power available for the control circuitry, and by the need to manage
high voltages in the conditioning circuit. Most studies have used an “old” CMOS
technology supporting high voltages (e.g., 0.7 µm CMOS in [14]). The work [9]
used a mixed high-voltage/low-voltage 0.35 µm CMOS technology, where high
voltage circuits are used for the interface with the charge pump, and the processing
is done by low voltage parts. This allows a minimization of the power overhead
of the control electronics. Implementation of a high-side high voltage MOS switch
for the flyback control with a low voltage control interface represented a particular
difficulty. An advanced study of a fully integrated CMOS implementation of the
control architecture, as in Fig. 8.16, was presented in [9, 10]. To date, implementation
of a working IC prototype of this architecture is still a subject of ongoing work in
several research groups.

8.6 Conditioning Circuits Based on the Bennet’s Doubler

8.6.1 Introduction of the Principle

Introduced at the end of the eighteenth century [2], the Bennet’s electricity doubler
is one of the first devices allowing a measure of a voltage, by amplifying the induced
charge. It has recently been proposed by de Queiroz [3] for capacitive kinetic energy
harvesters. Since then, several works have further developed this concept, adapting
it to microscale VEH [7, 8, 15, 21].

The Bennet’s doubler is a switched capacitor network, whose goal is a steady
separation of the electrical charges and an accumulation of the separated charges in
the capacitors. A steady accumulation of the charges may lead to very high (the-
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(a) (b)

(c)

Fig. 8.17 Principle of the charge doubling in Bennet’s doubler: a series configuration of capacitors
when the current is positive, b parallel configuration of capacitors when the current is negative, c a
diode network allowing an automatic switching between the configurations, depending on the sign
of the current

oretically unlimited) voltages. Before analyzing conditioning circuit based on the
Bennet’s doubler, we propose an analysis of a more simple network widely used as a
serial-parallel switched capacitors DC–DC converters. The purpose of the proposed
discussion is to help the reader to acquire an intuitive understanding of the operation
of the Bennet’s doubler based conditioning circuit, whose more detailed analysis will
be given in Sects. 8.6.2 and 8.6.3.

Consider an AC current source providing at the first half period a charge ΔQ,
and pulling at the second half period the same charge. If during the first half period
such a source is connected to a series capacitive network composed of two identical
capacitors initially charged to identical voltages (Fig. 8.17a, V1 = V2), each capac-
itor receives a charge ΔQ. However, if during the second half period, the network
topology is reconfigured and the previously charged capacitors are connected in par-
allel (Fig. 8.17b), the current source takes a charge ΔQ/2 from each capacitors. At
the end, each capacitor receives a charge ΔQ/2, which is added to the preexisting
charges of the capacitors. The cyclic reconfiguration of the circuit topology from
series to parallel is usually achieved by externally controlled switches. In this case,
the circuit can be seen as an AC-DC converter, since the AC current with finite max-
imum and minimum values is converted to a DC voltage, whose value is controlled
by the number of operation cycles.
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In order to achieve an automatic cyclic reconfiguration of the circuit between the
topologies of Fig. 8.17a and b (i.e., without use of an external control), one may bene-
fit from the fact that in each topology the current has a specific direction. Figure 8.17c
presents a topology in which this reconfiguration is automatic thanks to a diode net-
work. When the current is positive, the diode D2 is ON (series configuration), and
when the current is negative, the diodes D1 and D3 are ON (parallel configuration).
The use of the diodes introduces a new feature to the network: the voltages across
C1 and C2 may be different (for example, because of the initial charging). In this
case, when the current is negative, all the current passes through the branch with the
maximum voltage, and the current source generates a voltage max(V1, V2).

The requirement applied to the current source is to be able to generate a voltage3

V1 + V2 during the positive current phase, and a voltage max(V1, V2) during the
negative current phase. This is always possible for an ideal current source, which, by
definition, can generates any voltage necessary to ensure the required current value.
This is not the case of a real current source, and it leads to significant consequences
when the current source is implemented by a transducer, as it will be discussed later
in this chapter.

It can be noticed that on the time scale of one period, the network in Fig. 8.17c
implements a voltage limiter with the characteristic as in Fig. 8.10a if C1 and C2 are
large, and if ΔQ is small comparing to the charges of these capacitors. Indeed, in this
case the variation of the charges and hence of the voltages onC1 andC2 are negligible
at the time scale of one period, and the current source voltage is max(V1, V2) when
the current is negative, and V1 + V2 when the current is positive. If, for some reason,
the voltage applied to the terminals 1 and 2 of the network in Fig. 8.17c is in-between
these limits, all diodes are blocked and the current is zero.

A similarity of the considered network (Fig. 8.17c) with a voltage limiter suggests
that it can be used for implementation of a conditioning circuit achieving a rectangular
QV cycle. Such a configuration is shown in Fig. 8.18, and was originally proposed by
de Queiroz [3]. Its operation principle can be understood if one consider a functional
similarity between a variable capacitorCt (t) and a current source. Consider a variable
capacitor whose capacitance Ct (t) reduces in time. When connected to a voltage
source V , it generates a positive current i = V dCt/dt : the similarity with a positive
current source is obvious. When such a variable capacitor is connected to a open
circuit, it generates an increasing voltage Qt/C(t), where Qt is the charge of the
transducer (which is constant in time, since the current is zero). If the Ct decrease is
bounded by some Cmin , the voltage increase is bounded by Qt/Cmin , and if Cmin →
∞, the voltage tends to become infinite. A current source connected to a open circuit
generates an infinite voltage if the source is ideal, or a voltage limited by I RS if the
source is real, i.e., having an internal resistance RS . There is hence a similarity in the

3We remind that an ideal current source generates in the external network connected to it a current
of a given intensity. For that, it generates a voltage necessary to fix such a current. The value of
this voltage is determined by the external circuits. For instance, if a resistance R is connected to a
current source generating a current I , the source generates a voltage RI .
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Fig. 8.18 Bennet’s doubler
used as a conditioning circuit
for a capacitive VEH, as
proposed in [4]

electrical behavior between a capacitor having an decreasing/increasing capacitance
and a positive/negative current source correspondingly.

As a conclusion, a Bennett’s doubler conditioning circuit is a series-parallel
switched capacitors AC–DC converter, where the input AC current is generated
by a variable capacitor. As the analysis presented in the next section will show, this
circuit does not experience a saturation like the charge pump in Fig. 8.11b, and as a
consequence, doesn’t need any external control for steady generation of electricity.

8.6.2 Operation of a Bennet’s Doubler in the Electrical
Domain

We propose to consider the operation of the Bennet’s doubler starting from a state at
which one of the capacitors is initially charged to a voltageV0, and the other capacitors
are discharged. The Bennet’s doubler will first experience a transient process during
which the voltage of the second fixed capacitor will rise till V0, and then, the circuit
enters into the steady-state, in which the both voltages increase exponentially with
time.

In order to illustrate the operation of the circuit, we performed an Eldo simulation
of the circuit with the following configuration:C1 = 10 nF,C2 = 1 nF, the transducer
is a gap closing transducer as presented in Sect. 4.1.1 with d0 = 50µm and S =
10−4 m2. Capacitor C1 is initially charged to V0 = 5 V. The mobile electrode of the
transducer moves according to sinusoidal law, with amplitude of X0 = 30 µm and
frequency f = 100 Hz. In that way, the transducer capacitance Ct varies according
to Eq. (8.7). From this equation we calculate Cmin = 11.05 pF and Cmax = 44.2 pF.
The listing of the used Eldo model is given in Listing 8.1, and the time evolutions of
V1 and V2 obtained by simulation are given in plots of Fig. 8.19. The plot Fig. 8.19a
presents a long-term evolution of the voltages on capacitors C1 and C2, and the
plot Fig. 8.19b presents a zoom of the time interval covering the transient and the
beginning of the steady-state mode.

http://dx.doi.org/10.1007/978-3-319-20355-3_4
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Listing 8.1 Bennet’s doubler with variable capacitance: Eldo netlist
***** The first line is ignored in spice netlists******

.model diode1 d level=1

**** The parameter definition *****
*The transducer gap
.param d=50e-6
*The transducer area
.param S=1e-4
*Permittivity of vacuum
.param eps0=8.85e-12
*Simulation time
.param simtime=30
*Amplitude of the mobile plane motion
.param X0=30e-6
*Frequency of the mobile plane motion
.param f=100

*The voltage source defining the trajectory of the mobile electrode
Vx x_value 0 sin 0 X0 f
*The voltage controlled voltage source
*defining the variation of the transducer capacitance
ECt Ct_value 0 value={eps0*S/(d-v(x_value))}

*The transducer
Ct b3 0 value={v(Ct_value)}

*The two fixed capacitances C1 and C2, initially charged
*to 10V and to 0V respectively
C1 b1 0 10e-9 ic=10
C2 b3 b2 1e-9 ic=0

*The three diodes
db1 0 b2 diode1
db2 b2 b1 diode1
db3 b1 b3 diode1

*Transient simulation command,
*with option uic (Use Initial Conditions)
.tran {simtime} {simtime} uic
*Plotting commands
.plot V(b1) V(b2) V(b3)
.plot V(b3,b2)
.plot V(b1,0)
.plot V(Ct_value)
*Writing of waveforms to text files, for the plot drawing
.printfile tran v(b1) file=V2.txt start=0 stop={simtime} step=5e-6
.printfile tran v(b3, b2) file=V1.txt start=0 stop={simtime} step=5e-6
.printfile tran v(Ct_value) file=Ct.txt start=0 stop={simtime} step=5e

-6
.printfile tran v(b3) file=Vt.txt start=0 stop={simtime} step=5e-6

*simulator options
.options hmax=10e-6
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(a) (b)

Fig. 8.19 Evolution of voltages in the Bennet’s doubler: a long-term evolution of the voltages V1
and V2, b zoom on the time interval covering the end of the transient process and the beginning of
the steady-state

Note that in this configuration the values of the fixed capacitors are much larger
that the value of the maximum transducer capacitance. It means that the variation of
the voltages on C1 and C2 at the time scale of one period are small comparing to the
voltage variation on Ct .

The analysis of starts from Ct = Cmax at t = 0. We consider that thanks to the
diode D1, the transducer is pre-charged to the same voltage as C1. As Ct decreases,
diode D2 is on and both C1 and C2 receive charges from the transducer. In this way,
the voltage on C2 increases slightly. As Ct stars to decrease, the capacitor having
the highest voltage becomes in parallel with the transducer. Since C1 was initially
charged to 5 V and C2 experienced a small voltage increase, C1 is the one becoming
in parallel toC1 through the diode D1, andC1 gives the charges it previously received
from Ct . At the end of this cycle, C1 has the same voltage as in the beginning, and
C2 voltage increased.

The same process continues in the next cycles, till the voltages on the both fixed
capacitors become equal. In the presented simulation, it happens at t = 0.4 s. Start-
ing from that cycle, the network enters in the steady-state operation, in which the
both voltages increase exponentially, and in average, they are equal. Since the diode
network switch so that the voltage applied on the transducer is max(V1, V2) and
V1 + V2, the max-to-min ratio of the voltage on the transducer in the steady-state
mode is 2. The voltage on C1 displays a very low ripple, comparing with the voltage
on C2. This is because of the difference between the value of the capacitances C1

and C2: the charge variation is the approximately the same on both, but the voltage
variation given by Q/C is greater on the smaller capacitor.
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8.6.3 QV Cycle of the Bennet’s Doubler and Approximated
Analysis in Steady State

Figure 8.20a present the simulated plot of QV cycle that the Bennet’s doubler with the
presented configuration achieves in the steady state. The QV diagram is drawn for the
cycle corresponding to the time instant 0.8 s (the simulation shown in Fig. 8.19). The
vertical segment of the QV cycle correspond to the phases at which the transducer
is connected to

• The both fixed capacitors in series (the right segment, D2 is on)
• The smallest of the fixed capacitor of the fixed capacitors (the lower left segment,

only diode D3 is on)
• The both fixed capacitors in parallel (the upper left segment, both diodes D1 and

D3 are on)

Each of this segment has a slope 1/C , where C is the total equivalent capacitance of
the capacitive network connected to the transducer by the diodes in each case. It can
be noticed a non-infinite slope of the vertical segments of the QV cycle, however, the
shape is very close to be rectangular. This is because the fixed capacitors are very large
comparing to Cmax . In order to provide an insight into the operation of the circuit, the
same network was simulated with smaller capacitors C1 and C2 (Fig. 8.20b), whose
values are now of the same order of magnitude as the transducer capacitance. It can
clearly be seen that

• The three non-horizontal sections have different and non-infinite slopes,
• The cycle is not closed: the values of Qt and Vt at Ct = Cmax at the beginning of

the cycle are smaller that at the end of the cycle; this highlights the increase of the
internal energy of the network.

(a) (b)

Fig. 8.20 QV diagram of Bennet’s doubler obtained by simulation with the netlist given in Listing
8.1, with different values of capacitors C1 and C2: a C1 = 10 nF, C2 = 1 nF, as in the netlist given
in Listing 8.1, b C1 = 500 pF, C2 = 100 pF. The corresponding Cmin and Cmax are 11.05 pF and
44.2 pF, respectively. It can be seen that when min(C1,C2) � Cmax , the cycle is very close to
be rectangular (a). As the fixed capacitances are of the same order of magnitude as the transducer
capacitance, the cycle is not exactly rectangular and highlight different stages of the circuit operation
corresponding to different states of the diodes
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Considering the QV cycle of the Bennet’s doubler, it is possible to give an approx-
imated expression of the energy converted in one cycle in the steady-state mode. If
Cmax � C1 and Cmax � C2, the voltage on C1 and C2 may be considered fixed at
the time scale of one cycle, and according to (8.9), we have:

ΔWss ≈ (2V − V )(VCmax − 2VCmin) = V 2 (Cmax − 2Cmin) (8.28)

Here, V is the voltage on one of the capacitors C1 and C2: in the steady state these
voltages are roughly equal.

The energy ΔWss is positive if Cmax − 2Cmin > 0. This is a necessary and suf-
ficient condition allowing the Bennet’s doubler to highlight an accumulative mode
with exponentially increasing voltages on the fixed capacitors. If this condition is
not fulfilled, the Bennet’s doubler is still able to generate electricity (i.e., to convert
energy) in the transient mode, as far as the following condition holds:

Cmax

Cmin
>

V1 + V2

max(V1 + V2)
(8.29)

In this case, the energy converted at each cycle is

ΔWtran ≈ (V1 + V2 − max(V1, V2))(max(V1, V2)Cmax − (V1 + V2)Cmin) (8.30)

As shows the plot Fig. 8.19a, in all this energy is accumulated in the capacitor with
the smallest voltage, so that at some moment the condition (8.29) is not fulfilled since
the smaller voltage increases. Then, the Bennet’s doubler saturates, similarly with a
classical charge pump of Fig. 8.11b, the voltages on C1 and C2 do not increase, the
QV cycle is degenerated into a line and no energy conversion is achieved.

8.7 Dynamic behavior and Electromechanical Coupling of
Rectangular QV Cycle Conditioning Circuits

Analysis of a conditioning circuit in the electrical domain assumes that the variation
of the transducer capacitance is independent from the electrical state of the trans-
ducer. As we mentioned in Chap. 4, in practice, this does not hold for real electrostatic
transducers connected to microscale mechanical resonators. Indeed, as it was said in
Sect. 4.1.6, the electromechanical coupling impacts the dynamic of the mobile mass
vibrations. As a consequence, the extreme values of the transducer capacitance Cmax

and Cmin can also vary with time. As show on the example of charge pump and Ben-
net’s doubler conditioning circuits, the electrical dynamic of the circuits depends

http://dx.doi.org/10.1007/978-3-319-20355-3_4
http://dx.doi.org/10.1007/978-3-319-20355-3_4
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on Cmax and Cmin which, in turn, depends on the electrical force generated by a
dynamically biased transducer. Such a coupled behavior, to be described formally,
requires advanced mathematical tools such as nonlinear differential equations, per-
turbation techniques, etc., which were introduced in Chap. 3. In this paragraph, we
only present an example of how electromechanical coupling impacts the operation
of a conditioning circuit, by studying the case of the Bennet’s doubler.

We chose the example of Bennet’s doubler since the difference between its oper-
ation in electrical domain and in a context where a real transducer/resonator are
connected is flagrant. Indeed, without mechanical coupling, the output voltage of the
Bennet’s doubler (e.g., the voltage V1 or V2, Fig. 8.18) increases exponentially with-
out any limit. If the variation of the capacitance is due to the motion of a mechanical
system, one cannot expect an exponential evolution of the voltages and the energy
converted at one cycle, because of the fundamental limit of the power which can be
absorbed from the external vibrations, given by Eq. (3.92) from Chap. 3. The mecha-
nism practically limiting the increase of the voltage is the presence of the electrostatic
force generated transducer, which impacts the amplitude of the mobile mass vibra-
tions so to reduce Cmax/Cmin and to limit the power converted by the transducer.
Simulation and experiments highlight two possible behaviors of the system

• a “smooth” saturation. In this case, as the energy of the Bennet’s doubler increases,
the amplitude of the mobile mass decreases smoothly, and the ratio Cmax/Cmin

asymptotically approaches 2. That stops the energy conversion by the circuit.
Such a behavior was experimentally observed in study [7]. Figure 8.21 presents
simulation curves highlighting such a behavior. As the voltages V1 and V2 grow,
the amplitude of the mobile mass vibration changes in a sophisticated manner: it
increases first, reaches a peak and decreases. This mechanical dynamics impacts
the variation of the transducer’s capacitance. The evolution of the voltages is, in
turn, impacted by the Cmax/Cmin ratio evolution: the rate is slow at the beginning,
increases near the peak of the amplitude, decreases after the peak, and becomes
zero as Cmax/Cmin approaches 2 after time t = 10 s. The presence of a peak of
amplitude at 2.4 s reminds a resonance phenomenon: indeed, we obtain a similar
amplitude envelope if a linear resonator is excited by a sinusoidal signal with
a frequency sweep. In our model, the frequency of the external acceleration is
fixed, but the resonance frequency of the resonator is continuously modified by
the voltages V1 and V2 responsible for the QV cycle definition. The drift of the
resonance frequency is clearly observed in the plot for the displacement x .

• an “abrupt” saturation. In this case, the increase of the output voltage does not
produce the reduction of the amplitude of the mobile mass, but creates conditions
for a pull-in phenomenon proper to the gap closing transducer (cf. [23]). In this
case, as the bias voltage of the circuit increases, the mobile mass sticks to the
stoppers, and does not display any significant motion, so that Cmax/Cmin ratio is
close to 1. This abruptly stops the increase of the output voltage. The resulting
evolution is given in Fig. 8.22.

http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_3
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Fig. 8.21 Simulation results
demonstrating a smooth
saturation of a Bennet’s
doubler (Fig. 8.18), where
the variation of the
transducer capacitance is
done by a gap closing
transducer connected to a
resonator. The variation of
the transducer capacitance is
achieved by a gap closing
transducer with
S = 1 × 10−4 m2, d0 = 70
µm, a resonator with
m = 57 × 10−6 kg, k = 30.8
Nm−1 and Q = 10,
frequency of the external
vibrations is 110 Hz,
acceleration amplitude is
0.4g, C1 = 10 nF, C2 = 1 nF,
initial voltage V1 is 5 V

As a consequence, in practice, the Bennet’s doubler based conditioning circuit
highlights a saturation of the output voltage, similarly with the charge pump consid-
ered in Sect. 8.4.2. Hence, for all circuits is it possible to find the value of the output
voltage yielding a maximum energy conversion rate. A realistic design requires to
take into account the mechanical coupling, which modify the optimal values of the
output voltages calculated by the analysis in the electrical domain. This is discussed
in the next section.
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Fig. 8.22 Simulation results
demonstrating an abrupt
saturation of a Bennet’s
doubler (Fig. 8.18), where
the variation of the
transducer capacitance is
done by a gap closing
transducer connected to a
resonator, with the same
parameters as for the plots of
Fig. 8.21, except the
acceleration amplitude is
0.45 g, a stopper is placed at
3 µm from the fixed
electrode

8.8 Practical Use of Conditioning Circuits
with Rectangular QV Cycle

The last question we would like to discuss is the following: how it is possible to
maintain the output voltage of a conditioning circuit at the optimal level? The most
straightforward and generic technique is presented in Fig. 8.23.
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Fig. 8.23 Architecture implementing the control of the internal energy (the output voltage) of the
vibration energy harvester in order to maximize the converted power

This architecture is based on a DC–DC converter which interfaces the output
capacitance of the conditioning circuit (CS or Cres in the case of the charge pump
with flyback) with a low voltage energy reservoir available for the load supply.
The output voltage of the harvester is defined by two energy flows: (i) the energy
converted from the mechanical domain which tends to increase the output voltage,
(ii) the DC–DC conversion removing energy from the conditioning circuit to the load
reservoir. By controlling the second flow, it is possible to control the average level of
the output voltage, and to guarantee that it corresponds to the optimal value for the
maximum power conversion. The technique is very similar with what we proposed
for the control of the voltage Vst of the charge pump in Sect. 8.5.2 [9]: the definition
of the optimal voltage Vst opt , the definition of the acceptable interval for the output
voltage variation, the control of a DC–DC converter in order to remove the extra
energy from the output capacitor, when necessary. The energy is accumulated on the
load capacitor CL and when there is enough energy for accomplishing some useful
operation, the load is supplied. The most critical block is the one implementing the
control of the DC–DC converter (represented as a gray cloud in the diagram), since
an complex analog information processing is required, as discussed in Sect. 8.5.2. A
simplified version of such an interface with the load is proposed in [3].

The implementation of this technique is a very challenging task, mainly because
of the low level of power available for the implementation of the control algorithm.
Ultra-low power analog integrated circuits is required to make it possible. This issue
is currently being studied in several research groups.
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8.9 Conclusion on Conditioning Circuits for eVEHs

This chapter presented essential information about the electrical conditioning of elec-
trostatic transducers for vibration energy conversion. Such use of the capacitive trans-
ducer is relatively recent (not more than 10–15 years), and the associated practical
knowledge is relatively small. To the date of this book’s writing, most of the presented
concepts have been essentially validated by prototypes issued from research projects
and by simulation. Substantial efforts from the community of researchers and engi-
neers are still necessary in order to elevate the maturity level of these techniques so
to employ them into commercial applications.

In many existing studies, the conditioning circuits of vibration energy harvesters
have been analyzed without accounting for the mechanical coupling. However, both
experiment and the theory emphasize that the electromechanical coupling deeply
modifies the behavior of the circuit. In particular, whereas the electrical analysis
claims that the bias voltage must be the largest possible in order to maximize the
converted power (cf. for instance formulae (8.9) and (8.28)), analysis of the full
system, simulations and experiment highlights the existence of an optimal value of
the bias voltage [7]. Chapter 3 introduces analytical tools which can be used for
the study of the coupling phenomena in capacitive energy harvesters, and provide
some examples. The used mathematical tools are quite involved even for simple
configurations, and to date, more investigation is required to have a comprehensive
and handful representation of the effects of the electromechanical coupling.

Implementation of smart and adaptive behavior of capacitive VEHs like repre-
sented in diagrams Figs. 8.16a and 8.23, is mainly impeded by the low amount of
power available from a microscale capacitive energy harvester. However, this lim-
itation is specific to the technologies of integrated circuits (IC) which have been
available for the studies carried out to date. Future evolutions of the IC technologies
will allow the implementation of the control circuitry with an acceptable power over-
head. From this standpoint, electrostatic vibration energy harvesting may be seen as
an emerging technology, having a strong potential for tomorrow’s applications.
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Chapter 9
Analysis and Modelling of Nonlinearties
in Vibration Energy Harvesters

Peter Harte, Dimitri Galayko, Orla Feely and Elena Blokhina

9.1 Introduction

There are many ways of modelling, simulating and analysing the behaviour of elec-
trostatic vibration energy harvesters (eVEHs) and this is the focus of this chapter.
A common way of studying many engineering, biological and financial systems
(amongst others) is to develop a mathematical model for them. These mathematical
models can take any form, from very simple one-dimensional maps to highly com-
plex and nonlinear differential equations. To simulate such complex equations can
be very time consuming and computationally intensive. They also give very little
information about the stability of systems and their bifurcation parameters. This is
why we need analytical and semi-analytical techniques similar to the ones outlined
in the following sections.

9.2 Mathematical Model of an eVEH

9.2.1 Basis of Mathematical Model

An eVEH, as seen in Fig. 9.1, consists of a high-Q linear or nonlinear oscillator, a
capacitive transducer and a conditioning circuit that implements an energy conversion
cycle [1]. Capacitive (or electrostatic) transducers consist of a parallel plate capacitor
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x
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Fig. 9.1 Generic schematic for an eVEH. The mechanical resonator can be described by the mass-
spring-damper equation. The external driving force, from which the mechanical energy is harvested,
is assumed to be sinusoidal. The transducer force ftran depends on the architecture of the conditioning
circuitry. The direction of the forces Ftran, kx and bẋ depend on x

with mobile electrodes. These transducers can have different geometries, e.g. Gap
Closing or Area Overlap. The capacitance, C(x), of such a transducer depends upon
its mobile displacement and the transducer dynamics depends upon the state of the
conditioning circuit. The operation of the conditioning circuit depends on the state
of the transducer (i.e. the transducer displacement x(t) and/or velocity v(t)). As a
result, the two domains (electrical and mechanical) are coupled.

To mathematically model an eVEH in the electromechanical domain, all mechani-
cal forces acting upon the system must be taken into account, i.e. the force of the non-
linear resonator, the external driving force and the transducer force. The mechanical
nonlinear resonator, including the mechanical nonlinearity terms, can be represented
as a mass-spring-damper system. The resonator is driven by some form of external
mechanical vibrations, from which the system is harvesting energy. In all examples
throughout this chapter this external driving force, Fext, is assumed to be sinusoidal
with amplitude Aext. Thus, the effect of the nonlinear resonator, the driving force and
the transducer force Ftran can be written mathematically as follows

ẍ + b

m
ẋ + ω2

0x +
N∑

n=2

kn

m
xn

︸ ︷︷ ︸
Nonlinear resonator

= Aext cos(ωextt)︸ ︷︷ ︸
Mechanical vibrations

+ Ftran(x, ẋ)/m︸ ︷︷ ︸
Transducer force

(9.1)

where the meanings of the various variables can be found in Table 9.1. This is a stan-
dard mathematical model of an eVEH operated with a nonlinear resonator. This can
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Table 9.1 Definitions of dimensional and normalised parameters

Dimensional Meaning Normalised

x Displacement (m) y = x/d

t Time (s) τ = ω0t

v = ẋ Velocity (ms−1) y′ = v/(dω0)

m Resonator mass (kg) –

d Transducer gap at rest (m) –

k1 Linear spring stiffness (Nm−1) –

kn nth-order mechanical nonlinearity (Nm−n) κn = (kndn−1)/(mω2
0)

b Damping factor (Nsm−1) β = b/(2mω0)

ω0 = √
k1/m The natural frequency of the resonator (rad s−1) –

ωext Frequency of external vibrations (rad s−1) � = ωext/ω0 = 1 + σ

Aext Acceleration of external vibrations (ms−2) α = Aext/(dω2
0)

Ftran Transducer force (N) ftran = Ftran/(d m ω2
0)

W0 Energy placed on transducer (J) νW = W0/(d2mω2
0)

also be used to model an eVEH with a linear resonator by setting all of the mechanical
nonlinearity coefficients, kn, to zero. The only expression that will differ depending
on the topology of the eVEH is that of Ftran since the transducer force depends on
the geometry of the transducer and how the conditioning circuitry operates. Thus, to
complete the mathematical model an expression for Ftran must be found.

9.2.2 The Transducer Force

The mechanical force of the transducer, Ftran, is generated by the voltage/current in
the electrical domain. The instantaneous electrical power flowing to the transducer
is

Pe = Vtran(t)Itran(t) (9.2)

where Vtran is the voltage across the transducer and Itran is the current flowing into
the transducer. The instantaneous mechanical power at the output is

Pm = Ftran
dx

dt
(9.3)

where Ftran is the mechanical force generated by the transducer and dx /dt is the
velocity v(t). Electrical power Pe at the input of the transducer is spent on changing
the energy of the transducer, Wtran, and on generating mechanical power Pm at the
output of the transducer:
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Pe = dWtran

dt
+ Pm (9.4)

Using the relationship between transducer charge and voltage

Qtran(t) = Ctran(x(t))Vtran(t) (9.5)

where Ctran is the transducer capacitance, a function of the transducer displacement
and defined by its geometry, the current flowing through the transducer can be defined
as

Itran = d Qtran

dt
= d(Ctran(x(t))Vtran(t))

dt
= Ctran(x)

dVtran

dt
+ Vtran

dCtran

dx

dx

dt
(9.6)

Combining (9.2) and (9.6), the instantaneous electrical power can now be written as

Pe = Ctran(x)Vtran
dVtran

dt
+ V 2

tran
dCtran

dx

dx

dt

= Ctran(x)Vtran
dVtran

dt
+ 1

2
V 2

tran
dCtran

dx

dx

dt
+ 1

2
V 2

tran
dCtran

dx

dx

dt

= d

dt

[
Ctran(x)V 2

tran

2

]
+ 1

2
V 2

tran
dCtran

dx

dx

dt

(9.7)

Since we assume that the system is lossless and following on from (9.4) it is clear to
see that

Pm(t) = V 2
tran

2

dCtran

dx

dx

dt
= V 2

tran

2

dCtran

dx
v (9.8)

and

Wtran = Ctran(x)V 2
tran

2
(9.9)

By definition from (9.3)

Pm = Ftran
dx

dt
= Ftranv (9.10)

Comparing (9.8) and (9.10) it is clear that the mechanical force generated by the
electromechanical transducer is

Ftran = 1

2
V 2

tran
dCtran

dx
(9.11)

Thus, the voltage generated by the conditioning electronics causes an additional force
Ftran on the mechanical resonator and the magnitude of this force is given by (9.11).
This derivation methodology can be applied to any VEH transducer.
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Fig. 9.2 This is a generic QV cycle for an eVEH. Here the transducer capacitance varies between
two known values, Cmax and Cmin. Vmax is the maximal voltage allowed by the technology. The
area of the cycle is equal to the net energy converted by the transducer during the cycle

9.2.3 The Constant Charge Energy Conversion Cycle

Even in the absence of electromechanical coupling, i.e. when the mobile mass vibra-
tion amplitude of the resonator does not depend on the electrical processes, the
analysis of even the simplest conditioning circuits is very difficult. Suchsystems can
be described by a linear ordinary differential equation with time variable coeffi-
cients, which cannot be integrated in closed form even for a simple Ctran(x) func-
tion. Charge–voltage (QV ) diagrams are used to give a graphical representation
of the state evolution of a variable capacitor in the (V, Q) plane. For the study of
an energy harvester, QV diagrams are plotted in the steady-state mode when the
mobile electrode of a transducer is assumed to oscillate with the given sinusoidal
law: x(t) = X cos(�t). A typical QV diagram is a closed cycle (See Fig. 9.2). The
area of the cycle is equal to the net energy converted by the transducer during that
cycle.

If one assumes a small displacement, dx , of the mobile electrodes, then the work
done, dWtran, by the transducer force Ftran from (9.11) is

dWtran = Ftrandx = 1

2
V 2

tran
dCtran

dx
dx = 1

2
V 2

trandCtran (9.12)
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If dWtran is positive, energy is converted from the electrical domain to the mechan-
ical domain. If dWtran is negative then energy is converted from the mechanical
domain to the electrical domain. Therefore, eVEHs generate electricity when Ctran

is decreasing. Thus, in order to optimally convert mechanical energy to electrical
energy using an eVEH, the voltage Vtran should be maximised when Ctran is decreas-
ing and minimised when Ctran is increasing. Therefore the ideal scenario would set
Vtran = 0 V when Ctran is increasing and Vtran = Vmax when Ctran is decreasing (where
Vmax is the maximal voltage allowed by the technology). This is the basis of the con-
stant voltage conversion cycle, more details of which can be found in [1]. For the
remainder of this chapter, we will present and analyse a mathematical model of an
eVEH with a gap closing transducer and conditioning circuitry that implements the
constant charge energy conversion cycle [1]. The reason for focusing on this partic-
ular eVEH implementation is because it displays every type of nonlinear behaviour
that can be seen in VEHs, e.g. multistability, period-doubling bifurcations, chaos
and sliding phenomena, and as a result is a very good general example. The non-
linear behaviour present in the gap closing, constant charge circuit (GCT-CQ) is
typical of both continuous and discontinuous circuits (sliding phenomena can only
be seen in discontinuous systems). The capacitance of a gap closing transducer, with
a hyperbolic dependence on displacement, is defined as

Ctran(x) = C0

(1 − x/d)
(9.13)

where C0 is the rest capacitance of the transducer and d is its rest gap. The constant
charge energy conversion cycle for an eVEH was first presented in [1]. The QV
diagram for the conversion cycle can be seen in Fig. 9.3. When an eVEH is operating
in this “constant charge” mode, the conditioning circuit discharges the transducer to
zero when the transducer capacitance is at a local minimum and charges it to a charge
Q0 when its capacitance is at a local maximum. The conversion from mechanical
energy to electrical energy happens when the transducer capacitance decreases, due to
the movement of the capacitor plates, from Cmax to Cmin, whilst during this movement
the charge Q0 on the capacitor remains constant. During this process, the transducer
essentially acts as a damper in the mechanical domain. Realising a peak detector
for a system such as this is quite difficult since there should be no charge on the
transducer whilst its capacitance varies from Cmin to Cmax and thus one cannot just
simply measure the voltage Vtran to determine when these local maxima and minima
occur. In practice though, techniques such as optically detecting the resonator position
or measuring Vtran by keeping some residual charge on the transducer are used. A
schematic of the system can be seen in Fig. 9.4 and a detailed description of the
conversion cycle of the system can be found in [2].

Thus, it is clear from the description and from (9.11) that the dimensional trans-
ducer force Ftran for an eVEH operating in constant charge mode is defined as
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Fig. 9.3 QV cycle for the constant charge energy conversion cycle. The conditioning circuit dis-
charges the transducer to zero when the transducer capacitance is at a local minimum (B→0) and
charges it to a charge Q0 when its capacitance is at a local maximum (0→A). As the capacitance
decreases from Cmax to Cmin (A→B), the charge is held constant on the capacitor at Q0. It is from
A→B that the mechanical energy is converted to electricity

(a) (b)

Fig. 9.4 a Schematic of the electronic oscillator which models a vibration electrostatic energy
harvester. Note the mass-spring-damper resonator which makes up part of the capacitive transducer
(also note the direction of the displacement axis). The switches SW1 and SW2 along with inductor
L control the transfer of the harvested energy from capacitor Ctran to the reservoir capacitor Cres.
b Schematic example of a digital detector of local maxima. It samples a signal with a very high
frequency and holds three values. By comparing the middle value with the others, it detects an event
(peak of the signal). Similarly a local minima detector compares three values and detects a trough
of the signal

Ftran(x, v) =
{

V 2
tran
2

dCtran(x)

dx v < 0

0 v > 0
(9.14)
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As discussed earlier, the formulation of Ftran depends on the architecture of the condi-
tioning circuit. There are two expressions that tie together the voltage V0, the charge
Q0 and the energy W0 of the transducer: Q0 = CmaxV0 and W0 = Q2

0/(2Cmax), where
Cmax is a local maximum of the variable transducer capacitance Ctran(x) and is a
dynamic quantity which can vary from one period to another. Therefore, by choos-
ing to fix the value of one of the three quantities V0, W0 or Q0 we will obtain one of
three different expressions for the force Ftran from the general expression (9.14). The
system can display different dynamics depending on which quantity is selected to be
fixed. For our analysis, energy W0 is the quantity that has been fixed since this is the
most common case described in [1]. Thus, for a GCT-CQ eVEH, that fixes energy at
every period, Vtran = √

2W0Cmax/2. This means (9.14) can now be written as:

Ftran(x, v) =
{

W0
d(1−xmax/d)

v < 0

0 v > 0
(9.15)

In this case, the force (9.15) depends upon a local maximum of the resonator displace-
ment xmax and therefore is fundamentally nonlinear. This is irrespective of whether
a linear or a nonlinear resonator is being utilised. The value of Ftran is set at the
local maximum of the capacitance Ctran and this value is then held until another local
maximum is detected. We call this property the ‘hold-on effect’ and it causes more
nonlinear phenomena in the system.

9.2.4 The Complete Normalised Mathematical Model

Now that we have an expression (9.15) for the transducer force Ftran, we can now use
(9.1) to numerically model a GCT-CQ eVEH in its dimensional form. To make our
analysis easier by reducing the number of variables in the system, and to make the
application of the semi-analytical methods studied in the latter half of this chapter
more straightforward, we can normalise (9.1):

y′′ + 2βy′ + y +
N∑

n=2

κn yn = α cos(�τ) + ftran(y, y′) (9.16)

where y is the normalised displacement and the prime denotes the derivative with
respect to normalised time τ . Normalising (9.15), the dimensionless transducer force
ftran can be represented as:

ftran(y, y′) =
{

νW
1−ymax

y′ < 0

0 y′ > 0
(9.17)
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where we introduced the normalised coefficient νW = W0/(d2mω2
0). This normalised

coefficient νW defines the magnitude of electrical damping in the system. All of
the normalised parameters of the system are defined in Table 9.1. Equations (9.1)
and (9.16), both represent mathematical models of an eVEH. Depending on the
form of the oscillator, whether it is linear or nonlinear, there may be none or many
κn(n ≥ 2) terms in the equation. As seen in Sect. 9.2.3, the form that the transducer
force Ftran takes depends upon which energy conversion cycle is being implemented.
A mathematical model like the one in (9.16) is a very important tool for studying
the behaviour of a system. It allows one, through computer simulation, to determine
very accurately the local behaviour of a system at various different control parameter
values. With regards to an eVEH, (9.1) or (9.16) can be used to understand funda-
mental properties of the system, e.g. how the displacement, velocity and capacitance
of the transducer vary with time. Sample steady-state results from simulations of a
GCT-CQ eVEH, with a linear resonator, found using (9.1) can be seen in Fig. 9.5.

Such a mathematical model, although a very accurate representation of the dynam-
ics of an eVEH, has its limitations. First, despite the obvious improvements in com-
puting power over the past few decades, such numerical simulations can still be very
computationally intensive and as result, particularly if the system is stiff or depends
upon frequent event detections, they can be very time consuming too. Conversely, if
the system can be described analytically, then its dynamics, in a steady-state period-1
regime at least, can be determined very quickly.

Secondly, a stand-alone numerical simulation tells us nothing about the stability
of the system. Once again, if the system can be described analytically (or semi-
analytically), there are techniques like the ones outlined in Sect. 9.3 that allow us to
quantify how stable a system is at particular values of its control parameters. Never-
theless, to apply these analytical or semi-analytical techniques, a good mathematical
model of a system is required.

9.3 Semi-analytical Methods

Conversely to the mathematical model presented in the previous section, in this
section, some semi-analytical techniques that can be used to determine the behaviour
of an eVEH are discussed. There is no general closed form solution of nonlinear
equations like (9.16) but there are various approaches one can take such as:

• Taylor series expansion [3]
• Harmonic Balance Method [4, 5]
• Multiple Scales Method [6, 7]
• Mechanical Impedance Method [2]
• Projection method [3]
• Averaging/Van der Pol method [6]

Semi-analytical methods are very useful for eVEHs. Firstly, they can be used to
simulate the behaviour of the system, both very quickly and accurately, and are not
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Fig. 9.5 Here we can see an example of the normal operating cycles of a GCT-CQ eVEH
in dimensional form. These results were found using a linear resonator with W0 = 10 nJ,
Aext = 5 ms−2 and fext = 189 Hz. Resonator displacement and velocity along with transducer
capacitance, voltage and force can be seen

computationally intensive. They give an approximate solution to the mathematical
model of the system but this approximate solution is generally very accurate provided
the system being studied is operating in a steady-state, period-1 regime. “Steady-state,
period-1” means that the response of the system is periodic for some period T . For
eVEHs, this response is assumed to be sinusoidal due to the inclusion of an assumed
high-Q resonator in the model. When performing numerical integration of an ODE,
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Fig. 9.6 Normalised displacement of the resonator found through numerical integration. In the
solid box (marked ‘1’), the transient region of the response can be seen. After a number of cycles,
the response eventually settles a steady-state, period-1 regime as can be seen in the broken box
(marked ‘2’)

for example (9.16), which describes the behaviour of an eVEH, depending on initial
conditions, the response will have some form of transient behaviour before it settles
to steady-state behaviour. Both the transient element and the steady-state period-1
region of a response found through numerical integration of (9.16) can be seen in
Fig. 9.6. All semi-analytical methods covered in this chapter are applied to eVEHs
assumed to be operating with steady-state period-1 behaviour.

A steady-state theory for eVEHs with high-Q linear resonators and resonators with
squared and cubic nonlinear terms first appeared in [8]. Such a steady-state theory is
essential since numerical analysis of these eVEH systems can be quite time consum-
ing and the desired region of operation of the systems is one of “quasi-harmonic”
oscillations. This steady-state analysis allows for certain practical properties of the
circuit, e.g. converted power, to be examined with relative ease [9]. The following
subsections will give the reader a brief introduction in applying the harmonic bal-
ance method, the mechanical impedance method and the multiple scales method to
a GCT-CQ eVEH configuration.
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9.3.1 Harmonic Balance Method

The harmonic balance method is a semi-analytical technique for the steady-state
analysis of nonlinear differential equations [4, 5]. The application of this method
to an eVEH operated with an area overlap transducer can be seen in [5]. It has
advantages over other steady-state analysis techniques for eVEHs since it is better
suited for larger parameter ranges (e.g. a large transducer displacement range).

The steady-state response of an eVEH, in either the mechanical or electrical
domain, can be found using the harmonic balance method. One assumes that a solu-
tion of the system can be represented by a linear combination of sinusoids. After
substituting this assumed solution into a system of equations describing an eVEH
(e.g. equations of motion or Kirchoff’s current law), one then finds the steady-state
solution by “balancing” the various harmonics, hence the name “harmonic balance”
method is descriptive of the method.

First Harmonic Method

If the external acceleration is periodic, it can be assumed that all mechanical quantities
of the harvester are periodic as well. Although this is not exactly true on large
timescales for complex conditioning circuits [10], where the electric parameters of
the conditioning circuit change slowly in time, at a timescale of several vibration
periods, Ftran can still be considered periodic, though it is not necessarily sinusoidal.
For example, a quasi-linear piezoelectric transducer associated with a sinusoidally
vibrating resonator generates a sinusoidal force if connected with a linear resistor,
but the force is non-sinusoidal if the conditioning circuit includes a diode bridge and
a reservoir capacitor in parallel with the load resistance [11]. It can be seen from
Fig. 9.5 that the transducer force for a GCT-CQ eVEH is also non-sinusoidal.

The narrowband hypothesis stated in Sect. 9.3 implies that if a resonator is excited
with a non-sinusoidal periodic external force and if this force has the first (funda-
mental) harmonic inside the passband of the resonator, the upper harmonics of the
force are attenuated by the resonator frequency response, and the oscillations of the
resonator can be considered as sinusoidal at the fundamental frequency of the exter-
nal excitation. In this case, the higher harmonics of the force can be neglected. This
assumption is the basis of the first harmonic method, which is a simplified version
of the harmonic balance method [12]. This assumption is explained graphically in
Fig. 9.7. The hormonic balance analysis outlined in this chapter is only valid for the
cases where this assumption is true, i.e. where the energy injected in the mechanical
system by the fundamental harmonic of the nonlinear force is much greater than the
energy injected by the higher harmonics.

Since it can be assumed that the displacement of an eVEH resonator moves sinu-
soidally, when implementing the harmonic balance method, a solution of the nor-
malised displacement y from (9.16) can be written as
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Fig. 9.7 The High-Q
assumption which forms the
basis of the presented
analytical methods. This is
the typical response of an
GCT-CQ eVEH operated
using a linear resonator.
Clearly the amplitude of
oscillations decreases
dramatically when the
frequency of operation
deviates even slightly from
the resonant frequency ω0. It
is this characteristic that
allows one to neglect any
harmonics of the force
higher than the fundamental

x

0 2 0

x( 0)

x(2 0)

x(2 0) << x( 0)

y = Y0 cos(�τ + ϕ0) (9.18)

Y0 corresponds to the normalised amplitude of oscillations and ϕ0 the phase. The
index ’0’ is used to emphasize that this amplitude and phase are steady-state charac-
teristics. Following on from (9.18), clearly

y′ = −�Y0 sin(�τ + ϕ0)

y′′ = −�2Y0 cos(�τ + ϕ0)
(9.19)

By substituting (9.18) and (9.19) into (9.16), and assuming the use of a linear res-
onator for ease of analysis, i.e. (κn = 0, ∀ n > 2), one is left with an equation in
terms of Y0, cos(�τ + ϕ0) and sin(�τ + ϕ0).

− �2Y0 cos(�τ + ϕ0) − 2β�Y0 sin(�τ + ϕ0) + Y0 cos(�τ + ϕ0)

= α cos(�τ) + ftran(y, y′)
(9.20)

It is clear to see from Fig. 9.5 that a GCT-CQ eVEH has a non-sinusoidal ftran.
Noting that y = Y0 cos(�τ + ϕ0) can be written as y = Y0 cos θ , then ftran can be
described using a Fourier series as follows

ftran(Y0 cos θ,−Y0 sin θ) = atran
0 (Y0)

2
+

N∑
n=1

(
atran

n (Y0) cos nθ + btran
n (Y0) sin nθ

)
(9.21)
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where

atran
n (Y0) = 1

π

∫ 2π

0
ftran(Y0 cos θ,−Y0 sin θ) cos(nθ)dθ

btran
n (Y0) = 1

π

∫ 2π

0
ftran(Y0 cos θ,−Y0 sin θ) sin(nθ)dθ

(9.22)

So by taking this Fourier series expansion of ftran, limited to the first harmonic
(i.e. the first harmonic method), and remembering that θ = �τ + ϕ0, (9.20) can now
be written as

− �2Y0 cos(�τ + ϕ0) − 2β�Y0 sin(�τ + ϕ0) + Y0 cos(�τ + ϕ0)

= α cos(�τ) + atran
1 (Y0) cos(�τ + ϕ0) + btran

1 (Y0) sin(�τ + ϕ0)
(9.23)

Making use of well known trigonometric identities cos(A + B) = cos(A) cos(B)

− sin(A) sin(B) and sin(A + B) = sin(A) cos(B) + cos(A) sin(B) two equations
can be found from “balancing” the harmonics in (9.23), i.e. by equating the cos(�τ)

terms and also by equating the sin(�τ) terms. This leaves two equations in terms of
the two unknown quantities of our assumed solution (9.18), Y0 and ϕ0

α = P(Y0) cos ϕ0 − Q(Y0) sin ϕ0

0 = Q(Y0) cos ϕ0 + P(Y0) sin ϕ0
(9.24)

where P(Y0) = (Y0(1 − �2) − atran
1 (Y0)

)
and Q(Y0) = (2β�Y0 + btran

1 (Y0)
)
. Squar-

ing both equations in (9.24), adding them together and then using another trigono-
metric identity, sin2 ϕ0 + cos2 ϕ0 = 1, one is left with one equation in Y0

P(Y0)
2 + Q(Y0)

2 − α2 = 0 (9.25)

In its most general form (9.25) can be written as

(
Y0(1 − �2) − atran

1 (Y0)
)2 + (2β�Y0 + btran

1 (Y0)
)2 = α2 (9.26)

Since the transducer force ftran in a GCT-CQ eVEH is a piecewise function, one
must be most careful when calculating the Fourier coefficients an and bn . It is known
from (9.15) that when y′ > 0, ftran = 0 and, considering the assumed solution for the
normalised displacement, y = Y0 cos θ , that when y′ < 0, ftran has a non-zero value
of νW/(1 − Y0). Thus, since steady-state, sinusoidal behaviour with a period 2π is
assumed, it can be said that for half of the period [0 → π ], ftran = νW/(1 − Y0) and
for the other half of the period [π → 2π ], ftran = 0. Taking only the first harmonic
of the Fourier Series we find that the Fourier series coefficients of ftran for a GCT
operating in CQ mode are
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Fig. 9.8 The results of the first harmonic method (broken red line) compared with a numerical
simulation (solid blue line). A severe descrepancy can be seen between the nuumerical and first
harmonic method results at the troughs of the oscillations. This descrepancy is a result of neglect-
ing the DC offset in the first harmonic solution. Here Y0 = 0.66329 and ϕ0 = −1.81555. These
simultaions were done with Aext = 5 ms−2, W0 = 10 nJ, d = 20 µm, σ = 0.03, y(0) = y′(0) = 0

atran
1 (Y0) = 1

π

∫ π

0
ftran cos(θ)dθ + 1

π

∫ 2π

π

(0) cos(θ)dθ = 0

btran
1 (Y0) = 1

π

∫ π

0
ftran sin(θ)dθ + 1

π

∫ 2π

π

(0) sin(θ)dθ = 2νW

π(1 − Y0)

(9.27)

Substituting the Fourier series coefficients (9.27) into (9.26) results in the follow-
ing equation in Y0 specifically for a GCT-CQ eVEH:

(Y0(1 − �2))2 +
(

2

(
β�Y0 + νW

π(1 − Y0)

))2

= α2 (9.28)

Solving for Y0 using (9.28) one is left with multiple solutions but in the case of
an eVEH with a linear resonator, a GCT and operating in the CQ mode, there can
only be one realistic solution for Y0. In some other cases, for example, using an AOT
or nonlinear resonators, multistability appears in the system and there can be more
than one realistic solution for Y0. After a realistic value for Y0 has been found from
(9.28), a corresponding value for ϕ0 can then be found from either of the equations
in (9.24).

To investigate the accuracy of the harmonic balance method, a comparison can
be made between numerical simulations of (9.16) and the analytical result obtained
using (9.18), (9.24) and (9.28). In Fig. 9.8 such a comparison can be seen. A quick
look at this figure will immediately suggest to the reader that there is something
incorrect with the analytical solution.

It is clear to see from Fig. 9.8 and from (9.18) that the analytical solution oscillates
around zero. It is also clear to see from the numerical results in Fig. 9.8 that the
transducer does not actually oscillate around zero but rather some non-zero point.
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As a result, we must take into account the effect of the zeroth harmonic of the
Fourier series expansion of the transducer force ftran. Note that for some transducer
geometries and operation modes the effect of the zeroth harmonic of ftran is negligible
and can be neglected but in the case of a GCT operating in the CQ mode this is not
the case.

The Effect of the Zeroth Harmonic

To extend our harmonic balance analysis to include the effect of the zeroth harmonic
of ftran we must now assume that the solution of the system takes the form

y = yav,0 + Y0 cos(�τ + ϕ0) (9.29)

where yav,0 represents the average shift caused by the zeroth harmonic of ftran. Noting
now that ymax = yav,0 + Y0, the Fourier series coefficients of ftran for a GCT-CQ
eVEH are now functions of not only Y0 but the average shift yav,0 too.

atran
0 (yav,0, Y0) = νW

1 − yav,0 − Y0

atran
1 (yav,0, Y0) = 0

btran
1 (yav,0, Y0) = 2νW

π(1 − yav,0 − Y0)

(9.30)

Taking the new assumed solution (9.29) and the updated Fourier series coefficients
(9.30), and following the procedure outlined previously, (9.16) can now be written
as

− �2Y0 cos(�τ + ϕ0) − 2β�Y0 sin(�τ + ϕ0) + yav,0 + Y0 cos(�τ + ϕ0) = α cos(�τ)+
atran

0 (yav,0, Y0)

2
+ atran

1 (yav,0, Y0) cos(�τ + ϕ0) + btran
1 (yav,0, Y0) sin(�τ + ϕ0)

(9.31)

By balancing the harmonics of (9.31), and by incorporating the same trigonometric
identities used previously, all that remains are three equations with three unknown
quantities yav,0, Y0 and ϕ0.

α = P(yav,0, Y0) cos ϕ0 − Q(yav,0, Y0) sin ϕ0

0 = Q(yav,0, Y0) cos ϕ0 + P(yav,0, Y0) sin ϕ0

yav,0 = atran
0 (yav,0, Y0)

2

(9.32)

where, P(yav,0, Y0) = (Y0(1 − �2) − atran
1 (yav,0, Y0)

)
and Q(yav,0, Y0) = (2β�Y0 +

btran
1 (yav,0, Y0)). Using the system of equations (9.32) to solve for yav,0, Y0 and ϕ0,
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one can then use (9.29) to gain an insight into the behaviour of an eVEH. In Fig. 9.9 a
comparison can be seen between results found from a numerical simulation of (9.16)
and analytical results found using the updated harmonic balance method. These
simulations were done for the same parameter values as Fig. 9.8 but it is clear to see
that in this instance there is nearly perfect correspondence between the numerical
and analytical results.

9.3.2 The Multiple Scales Method (MSM)

The only semi-analytical method studied in detail thus far, the harmonic balance
method, can be described as a non-perturbation technique. On the other hand, the
multiple scales method (MSM), can be described as a perturbation technique. A per-
turbation technique is a semi-analytical method for finding approximate solutions to
problems that cannot be solved exactly. Using a perturbation method to solve a prob-
lem leads to an approximate solution in the form of a power series in terms of some
small perturbation parameter, called ε here. ε is a small positive dimensionless para-
meter that is artificially introduced to establish the different orders of magnitude. The
results obtained are independent of this parameter, and ε is ultimately absorbed back
into the solution [4]. The multiple scales method (MSM) is a perturbation technique
used to find approximate analytical solutions to weakly nonlinear oscillators. It was
applied to free and forced nonlinear oscillators in Sects. 3.2.1 and 3.2.2 respectively.
The MSM introduces different time scales Tk = εkτ where ε is the small arbitrary
perturbation parameter, alluded to earlier, that appears in the method and k = 0, 1,

Fig. 9.9 The results of the harmonic balance method including the effect of the DC offset (bro-
ken red line) compared with a numerical simulation (solid blue line). This shows great corre-
spondence between the numerical and semi-analytical methods and the descrepancy seen when
using the first harmonic method, caused by the absence of the DC component, no longer exists.
Here yav,0 = 0.125603, Y0 = 0.542797 and ϕ0 = −1.77042. These simultaions were done with
Aext = 5ms−2, W0 = 10 nJ, d = 20 µm, σ = 0.03, y(0) = y′(0) = 0

http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_3


296 P. Harte et al.

2, 3 . . .. Applying the MSM to Eq. (9.16), one determines the behaviour of y, not
as a function of τ but rather as a function of these different scales T0, T1, T2, T3 . . ..
This method has been applied to eVEHs with linear oscillators in [7] and to eVEHs
with nonlinear oscillators in [8, 13] and has proven to be very accurate and useful in
describing the behaviour of these eVEHs. In the following section, the application
of the MSM to a GCT-CQ eVEH with a nonlinear oscillator is described in detail.

Applying the MSM to an eVEH

Following on from the application of the MSM to free and forced nonlinear oscillators
in Sects. 3.2.1 and 3.2.2, the MSM is now applied to a GCT-CQ eVEH operated with
a nonlinear oscillator.

In order to apply the MSM, the terms in (9.16) are arranged in appropriate order
of the small arbitrary parameter ε that appears in the method.

y′′ + 2εβ̃ y′ + y + ε

N∑
n=2

f̃NL,n(y) = ε f̃tran(y, y′) + εα̃ cos(τ + εσ̃ τ ) (9.33)

where the tilde over the parameters denotes the original parameters divided by ε and
f̃NL,n(y) = κ̃n yn is a nonlinear force.

For displacement y, a standard perturbation technique is to assume that

y = y0(T0, T1) + εy1(T0, T1),
d

dτ
= D0 + εD1,

d2

dτ 2
= D2

0 + 2εD0 D1

(9.34)
where Tk = εkτ are time scales introduced by the MSM and where Dk = ∂/∂Tk.

Now, (9.33) can be written as

(D2
0 + 2εD0 D1)(y0 + εy1) + 2εβ̃(D0 + εD1)(y0 + εy1)

+ y0 + εy1 + ε

N∑
n=2

f̃NL,n[y0 + εy1] =

ε f̃tran [y0 + εy1, (D0 + εD1)(y0 + εy1)] + εβ̃ cos(T0 + σ̃ T1)

(9.35)

Collecting orders 0 and 1 of the parameter ε, and neglecting order 2 and higher, two
equations are obtained:

D2
0 y0 + y0 = 0 (9.36a)

D2
0 y1 + y1 = −2D0 D1 y0 − 2β̃D0 y0 −

N∑
n=2

f̃NL,n (9.36b)

+ f̃tran(y0, D0 y0) + α̃ cos(T0 + σ̃ T1)

http://dx.doi.org/10.1007/978-3-319-20355-3_3
http://dx.doi.org/10.1007/978-3-319-20355-3_3
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Note that in (9.35) the terms with ε in the arguments of f̃tran and
N∑

n=2
f̃NL,n give second

order terms in their respective expansions over the powers of ε, hence they have been
neglected in (9.36b). The general solution of the expression in (9.36a) can be written
as

y0 = A(T1)e
iT0 + c.c. = Y (T1) cos(τ + ϕ(T1)) (9.37)

where the slow complex amplitude A = (Y/2) exp( jϕ) is expressed through the
amplitude and phase, Y and ϕ, both of which are real. Note also that c.c. stands for
the complex conjugate.

In (9.36b), the forces f̃tran and
N∑

n=2
f̃NL,n are periodic functions of T0 with period

2π . Similarly to the harmonic balance method outlined in Sect. 9.3.1, a Fourier series
limited to the first harmonic (since the system is high-Q resonant) is used to represent
these forces. The complex representation of the Fourier series seen in (9.38) is used:

f̃ (Y ) = ã0(Y )

2
+ [c̃1(Y )e j (T0+ϕ)] + c.c.

c̃1(Y ) = ã1(Y ) − j b̃1(Y )

2

(9.38)

The Fourier series coefficients are calculated in the same way as the coefficients in
(9.27). Substituting the solution for y0 from (9.37) into (9.36b) we collect the terms
that contain e jT0 since these are the terms that lead to resonance of the undamped
system. Thus, Eq. (9.36b) yields one equation for y1 and another for the slow complex
amplitude A(T1):

D2
0 y1 + y1 = f̃ tran

0 (Y ) −
N∑

n=2

f̃ NL,n
0 (Y ) (9.39a)

− 2 Ȧ j − 2β̃ Aj −
N∑

n=2

c̃NL,n
1 (Y )e jϕ + c̃tran

1 (Y )e jϕ + α̃

2
e j (σ̃ T1+θ0) + c.c. = 0

(9.39b)

Here in equations (9.39a) and (9.39b), the superscripts tran and NL,n are used to label
the Fourier coefficients belonging to the transducer force and the nth mechanical
nonlinearity force respectively.

From expression (9.39a), it follows that y1 = f̃ tran
0 (Y ) −

N∑
n=2

f̃ NL,n
0 (Y ) and thus,

εy1 represents the average shift of the mobile mass displacement due to the transducer
force and the force of the mechanical nonlinearities. This is denoted as:

yav = εy1 = f tran
0 (Y ) −

N∑
n=2

f NL,n
0 (Y ) (9.40)
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Therefore, the total solution will take the form

y(τ ) = y0 + εy1 = yav + Y cos(τ + ϕ) (9.41)

Similar to the first harmonic method outlined in Sect. 9.3.1, the theory described
above works very well when the average shift yav is relatively small in comparison
to the amplitude of oscillations Y . However, when using a gap closing transducer,
the constant shift in oscillations yav can be non-negligible, as seen in Fig. 9.8 when
comparing the first harmonic method with a numerical simulation. So just as was
done in the harmonic balance analysis, when analysing a GCT-CQ eVEH using the
MSM, the effect of average shift, yav, must be taken into account. Otherwise, the
forces ftran and fNL,n will be underestimated. By incorporating the fact that these
forces depend on yav as well as Y , then we must note that the Fourier coefficients of
these forces are also functions of both yav and Y .

Taking this into account and noting that Ȧ = 1
2

(
Ẏ + jY ϕ̇

)
e jϕ , one obtains equa-

tions for the slow amplitude Y and the phase ψ = σ̃ T1 − ϕ, by dividing (9.39b) into
its real and imaginary parts

ψ̇a = σ̃Y + ãtran
1 (yav, Y )

2
−

N∑
n=2

ãNL,n
1 (yav, Y )

2
+ α̃

2
cos ψ

Ẏ = −β̃Y − b̃tran
1 (yav, Y )

2
+

N∑
n=2

b̃NL,n
1 (yav, Y )

2
+ α̃

2
sin ψ

(9.42)

where ψ̇ = σ̃ − ϕ̇. It is important to note that this system of differential equations
(9.42) provides information about the transient dynamics of the system, and allows
one to explore the dynamics around multiple stable points and identify different pos-
sible stable modes. This ability to study multistability in the system is very important
when it comes to seeing the effect of mechanical nonlinearities on the effective band-
width.

The steady-state solution Y0 and ψ0 can be found from the condition Ẏ = 0 and
ψ̇ = 0. For the phase ψ0 one obtains a set of equations (assuming only non-zero
harmonic coefficients)

α̃

2
cos ψ0 = −Y0σ̃ − ãtran

1 (yav,0 , Y0)

2
+

N∑
n=2

ãNL,n
1 (yav,0 , Y0)

2

α̃

2
sin ψ0 = β̃Y0 + b̃tran

1 (yav,0 , Y0)

2
−

N∑
n=2

b̃NL,n
1 (yav,0 , Y0)

2

(9.43)

The equation for the amplitude Y0 can now be found from (9.43)
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α̃2

4
=
(

Y0σ̃ + ãtran
1 (yav,0, Y0)

2
−

N∑
n=2

ãNL,n
1 (yav,0, Y0)

2

)2

+
(

β̃Y0 + b̃tran
1 (yav,0, Y0)

2
−

N∑
n=2

b̃NL,n
1 (yav,0, Y0)

2

)2
(9.44)

where the index ’0’ is used to emphasize that yav, Y and ψ are steady-state charac-
teristics.

Note, by multiplying both sides of (9.44) by ε2, the equation can be written in the
same form but with the original values of the parameters.

It must be noted that Eq. (9.44) is a very general equation describing the system.
It is not a transcendental equation and thus it can be reduced to a polynomial which
can be solved analytically to give a closed form solution or it can be reduced to a
nonlinear equation and solved numerically.

The Fourier coefficients for ftran were already calculated in Sect. 9.3.1 and can
be seen in (9.30). Similarly, using (9.22), the Fourier coefficients for the nonlinear
spring forces, fNL,n = κn yn, can also be calculated. Unlike the transducer force, these
forces are not piecewise. It is noted that in this chapter the nonlinear oscillators that
are studied only have κ2 and κ3 terms and so below, only the respective Fourier
coefficients for these terms are shown. If one needed to calculate Fourier coefficients
for more κn terms then it can be done in the same way using (9.22).

For κ2 the Fourier coefficients are:

aNL,2
0 (yav, Y ) = κ2(Y

2 + 2y2
av), aNL,2

1 (yav, Y ) = 2κ2 yavY, bNL,2
1 (yav, Y ) = 0

and for κ3:

aNL,3
0 (yav, Y ) = κ3(3Y 2 yav + 2y3

av), aNL,3
1 (yav, Y ) = 3

4
κ3(Y

3 + 4Y y2
av), bNL,3

1 (yav, Y ) = 0

Interestingly, since atran
1 and bNL,n

1 always equal 0 for a GCT-CQ eVEH we can
simplify (9.43) to

α̃

2
cos ψ0 = −Y0σ̃ +

N∑
n=2

ãNL,n
1 (yav,0, Y0)

2

α̃

2
sin ψ0 = β̃Y0 + b̃tran

1 (yav,0, Y0)

2

(9.45)

and so (9.44) simplifies to

α̃2

4
=
(

Y0σ̃ −
N∑

n=2

ãNL,n
1 (yav,0, Y0)

2

)2

+
(

β̃Y0 + b̃tran
1 (yav,0, Y0)

2

)2

(9.46)
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Thus, expressions (9.41), (9.45) and (9.46) define the steady-state response of the
nonlinear oscillator (9.33) to both the external driving and the nonlinear force ftran.
The steady-state solution therefore is

y(τ ) = yav,0 + Y0 cos(�τ − ψ0) (9.47)

9.3.3 Mechanical Impedance Method

So far, the mathematical model presented in Sect. 9.2, the harmonic balance analy-
sis presented in Sect. 9.3.1 and the multiple scales method presented in Sect. 9.3.2,
though they are all coupled electromechanical models, focused on the mechanical
displacement of the resonator. It is possible though to study this electromechanical
system from an electrical viewpoint. One method of doing this is via the mechanical
impedance method. Note, that this method is presented using dimensional parameters
rather than the normalised parameters used throughout Sects. 9.3.1 and 9.3.2.

Figure 9.10 shows the transducer as a nonlinear operator which receives a sinu-
soidal signal at the input (the transducers mobile mechanical terminal displacement)
and outputs a non-sinusoidal periodic force. Since the resonator in the system is
assumed to be high-Q, and similar to the HB and MSM analyses, only the funda-
mental harmonic of the system quantities are considered here. This means that the
transducer must be represented by a model which reproduces a summarised contri-
bution of the nonlinear properties of the transducer. This model is only characterized
by a ratio between the amplitudes of the input and output quantities and by the phase
shift, i.e. by a complex transmission coefficient which is redefined for each amplitude
value of the input signal. Therefore, the equivalent model is not linear, but it can be
viewed as being linear when the input amplitude is constant, i.e. when the eVEH is
operating in a steady-state, period-1 regime (see Fig. 9.6). Thus, in the type of analy-
sis outlined here, the nonlinear element of the network in Fig. 9.11 is replaced by a
dipole which takes a sinusoidal current (velocity) at its input and outputs a sinusoidal
voltage (transduce’s force): Such an element can be characterized by a mechanical
impedance, and the whole network can be analysed as linear. Table 9.2 contains the
equivalent mechanical and electrical quantities present in the model.

The mechanical impedance method for analysis of a vibration energy harvester
was proposed in [2]. It is a variation on the first harmonic method presented in
Sect. 9.3.1. Similarly to the first harmonic method, when using the mechanical

Transducer
x(t) Ftran(t)

Fig. 9.10 Representation of a nonlinear electromechanical transducer in the first harmonic method
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−mAext

b m 1/k1

−Ftran

v(t)

Energy source: external vibrations

Resonator

Transducer +
conditioning circuit

Fig. 9.11 Equivalent electrical representation of the harvester in the mechanical domain

impedance method, it is assumed that the mobile mass of an eVEH moves sinu-
soidally, i.e. it is assumed that the displacement, and velocity of the resonator in their
dimensional forms can be expressed as:

x(t) = x0 cos(ωextt)

v(t) = v0 sin(ωextt)
(9.48)

where x0 and v0 = −ωextx0 are the amplitudes of dimensional displacement and
velocity oscillations respectively. When applying the mechanical impedance method,
all forces applied to the mass are represented by mechanical impedances � equal to
the ratio between minus the first (fundamental) harmonic of the force expressed in
its phasor (complex amplitude) form (F̄) and the phasor of the velocity of the mass
motion (v̄0), where a bar, ,̄ is used to represent a phasor. Therefore, the impedance
and the power of mechanical energy conversion, related to a force with impedance
�, are given by:

� = −F̄/v̄0

P = |v̄0|Re{�} (9.49)

The power P is positive if energy leaves the mechanical domain. The imaginary part
of the impedance provides important information about the resonance frequency shift
due to the nonlinearity of the resonator/transducer. As explained in [2], the mechan-
ical impedance of a transducer, �tran, depends on the amplitude of the displacement
x0. Knowing the �tran(x0) function, it is possible to find the amplitude of mobile mass
vibration in the coupled electromechanical mode. It is important to understand that
although the transducer impedance relates two mechanical quantities, it is obtained
by analysing the electrical side of the system.



302 P. Harte et al.

Table 9.2 Equivalent
mechanical and electrical
quantities

Mechanical quantity Electrical quantity

Force (F) Minus voltage (−V )

Displacement (x) Charge (q)

Velocity (v) Current (i)

Mass (m) Inductance (L)

Spring stiffness (k1) Reciprocal of capacitance (1/C)

Damping factor (b) Resistance (R)

Mechanical Impedance of a Nonlinear Transducer in an eVEH

Usually, an impedance is defined for linear electrical systems submitted to sinusoidal
excitations. As can be seen from (9.49), the mechanical impedance is defined equiv-
alently to its electrical counterpart as minus the ratio of the complex amplitudes
of the sinusoidal force and velocity of the point of force application. The complex
amplitude of the fundamental harmonic of Ftran is given by

F̄tran = ωext

π

∫ T

0
Ftran(t)e

− jωextt dt (9.50)

The expression in (9.50) can be used to find the complex amplitude of any quantity in
the equivalent circuit model by replacing Ftran by the relevant quantity. Because of the
nonlinear relationship between the force and the resonator displacement, the mechan-
ical transducer’s impedance depends on the mobile terminal displacement amplitude
x0. The transducer’s force depends on the transducer’s electrical state defined by the
conditioning circuit. Hence, the definition of the mechanical impedance of a trans-
ducer can only be done for the whole system composed of the transducer and of the
conditioning circuit operating in some specific mode. Calculation of the transducer’s
mechanical impedance is quite complex even for simple harvesting systems and, in
many cases, can only be obtained numerically. The following general procedure is
proposed, which is applicable to VEHs with any nature of electromechanical trans-
ducer. First, since the energy harvester is assumed to be operating in a steady-state
period-1 regime, then the value of the normalised velocity amplitude for which the
transducer’s impedance is calculated is assumed to be fixed at v0 (from (9.48)). Then,
under this hypothesis of the mobile mass displacement, the electrical quantities defin-
ing the transducer’s force are calculated using the model of the transducer and of
the conditioning circuit. From these quantities, the force generated by the transducer
on one mobile mass vibration period is calculated. The mechanical impedance of
the transducer is then calculated using (9.49), with F̄tran. The calculation of Ftran

is the most complex step of this procedure. It depends on the entire system, i.e. the
transducer+conditioning circuit as seen in Sect. 9.2.3. For eVEHs, a detailed descrip-
tion of the transducer’s impedance calculation can be seen in [2]. It is clear to see
that the second Newtonian law for the mobile mass displacement of the resonator is
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equivalent to the mesh equation for the network in Fig. 9.11:

− m Āext = (�tran(x0) + �r ) v̄0 (9.51)

where v̄0 = jωextx0 and �r is the mechanical impedance of the resonator given by

�r = b + k1

jωext
+ jωextm (9.52)

and Āext is the complex amplitude of the external vibration’s acceleration. Since v̄0

and �tran both depend on x0, (9.51) is a nonlinear equation. Its solution can be found
by simply equating the absolute values of both sides of it:

m Aext = |(�tran(x0) + �r )|ωextx0 (9.53)

The amplitude of the resonator displacement, x0, can now be found from (9.53).

9.3.4 Comparison of the Semi-analytical Methods

Having covered three different semi-analytical techniques for the study of eVEHs, it
is now time to compare the relative merits and disadvantages of the three methods.
The harmonic balance method is a non-perturbation technique (i.e. it does not need
the small perturbation parameter ε outlined in Sect. 9.3.2) and gives very accurate
results even when limited to the fundamental harmonic (and DC offset). When adding
higher harmonics, the method can become very complicated, although this is not a
concern when analysing VEHs with high-Q resonators. The multiple scales method,
though initially very daunting to look at for some engineers, is, once understood,
very well suited to the addition of “hardening” mechanical nonlinearities and higher
harmonics. It is a perturbation-based technique though and that requires an under-
standing of the perturbation parameter ε. The mechanical impedance method, similar
to the harmonic balance method, is also a non-perturbation technique and is a very
accessible technique for users versed in circuit analysis. Unfortunately though, it is
not suitable when analysing an eVEH operated with a nonlinear mechanical resonator
and the calculation of the transducer mechanical impedance �t can be very compli-
cated for particular transducer geometries and conditioning circuitry combinations.
It also cannot account for the constant displacement shift present in the dynamics of
an GCT-CQ eVEH.

An interesting comparison can be made between the general equations (9.26) and
(9.44) found from both the harmonic balance and multiple scales methods respec-
tively. In its most general form, for an eVEH operated with a linear resonator, (9.44)
can be written as

(
2Y0σ + atran

1 (yav,0, Y0)
)2 + (2βY0 + btran

1 (Y0)
)2 = α2 (9.54)
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The similarities between these two general solutions, (9.26) and (9.54) are imme-
diately clear but so too are the slight differences between them. It must be noted
that some information about the effect of the small frequency mismatch σ on the
dynamics of the system is lost when using the MSM. This loss of information should
be negligible since σ is generally quite small due to the high-Q nature of the VEHs
under analysis here (see Fig. 9.7). Both of these general equations, (9.26) and (9.54)
are very general equations, applicable to any eVEH.

9.4 Visualisation of Results

In the previous sections of this chapter, some of the possible semi-analytical methods
that can be used to analyse the steady-state behaviour of an eVEH have been outlined.
But why do we want to study this behaviour? As previously mentioned, eVEHs can
display many nonlinear phenomena in their dynamics and semi-analytical techniques
allow one to study the dynamics both quickly and accurately. A simple way to
show the nonlinear effects in a GCT-CQ is by applying a slowly growing ramp of
acceleration amplitude Aext to the system and investigating the system’s response to
this changing acceleration amplitude using the original, normalised, mathematical
model (9.16). This process can be considered to be quasistatic since the ramp of Aext

changes very slowly. It is clear from Fig. 9.12 that the system’s dynamics undergo
various changes as a result of varying Aext. Figure 9.12 can be seen as an analogue of a
bifurcation diagram with Aext being the bifurcation parameter. Bifurcation diagrams
are explained in more detail in the following subsection. By examining Fig. 9.12, the
following qualitative changes (bifurcations) can be seen, as a result of changing Aext:
(i) the appearance of steady-state harmonic oscillations (fragment 1 in the figure); (ii)
period-doubling bifurcation (fragment 2) and (iii) transition to chaos (fragment 3).

9.4.1 Bifurcation Diagrams

It is desirable when studying a nonlinear dynamical system to understand what dif-
ferent types of behaviour can occur as a function of the system’s control parameters.
It is beneficial to be able to qualify how the dynamics of a system change and evolve
as control parameters are varied. Obviously, for an eVEH there are an infinite number
of control parameter values, but by taking discrete steps of one of these values over
a specified range and monitoring the system dynamics at each one of these steps,
conclusions can be drawn on the global evolution of the behaviour of an eVEH. A
bifurcation diagram is a useful way of presenting this evolution. An analogue of a
bifurcation diagram can be seen in Fig. 9.12.

To construct a one-dimensional bifurcation diagram, a control parameter is chosen
to be varied across a particular range. This chosen parameter can be referred to as
the bifurcation parameter. All other parameters of the system remain fixed. Some
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Fig. 9.12 The response of a GCT-CQ eVEH, where W0 = 20 nJ, to a growing external acceleration
amplitude. In the top subfigure, a slowly growing ramp of Aext can be seen along with the normalised
resonator displacemnt y. The different changes that the system’s dynamics undergo have been
highlighted and magnified. In fragment 1, the appearance of steady-state harmonic oscillations can
be seen. In fragment 2, period-doubling bifurcation; and in fragment 3, the transition to chaos. This
figure is analagous to a bifurcation diagram
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output of the system is recorded for an initial value of the bifurcation parameter. The
bifurcation parameter is then changed, and the same output is recorded again. This
process is repeated until the final value of the bifurcation parameter is found. Every
recording or measure of the output quantity in question is completely independent
of every other one. For example, in the case of an eVEH modelled by (9.16), Aext

can be chosen as the bifurcation parameter. Choosing the resonator displacement y
to be the measured output quantity, and fixing the initial conditions of displacement
and velocity to be y0 and y′

0, then (9.16) is evaluated for a particular value of Aext.
A discrete measurement of y is then recorded, after y has reached steady-state, i.e.
the transient dynamics are neglected. This procedure is then repeated for different
values of Aext but with every other quantity fixed and with the initial conditions reset
to y0 and y′

0 on each iteration. It is the fact that the output quantity does not reach
steady-state before it is recorded, which makes the trace in Fig. 9.12 analogous to a
bifurcation diagram rather than a true bifurcation diagram.

How the discrete measurement of the output quantity is undertaken in a true bifur-
cation diagram can differ depending on the system in question or what information
is being sought. A rule or a mapping is outlined and when the conditions for this
mapping are met, a value of the output quantity is recorded. These mappings can
be, for example, based on characteristic events that occur in a system’s dynamics,
when a system quantity reaches an extremum, or periodic. A very common periodic
mapping used in the construction of bifurcation diagrams is a Poincaré section.

Poincaré Sections

A Poincaré section is a periodic mapping that can be used to construct bifurcation
diagrams for nonlinear oscillators. It is named after French mathematician Jules
Henri Poincaré. To construct a Poincaré section for a three-dimensional system like
an eVEH, a two-dimensional surface called a Poincaré plane is chosen. When a tra-
jectory evolving in three-dimensional space intersects this plane, then a measurement
of the quantity of interest is recorded.

Take for example a three-dimensional autonomous system that consists of three
variables X , Y and Z . If the XY plane is chosen as the Poincaré plane, the value
of Z is recorded every time a trajectory crosses the plane. Depending again on the
information desired from such a measurement, this recording may be limited to every
occasion the trajectory crosses the plane from +Z to −Z or vice versa.

In the case of a non-autonomous system like the eVEH system studied here, which
has a natural period associated with it, i.e. the normalised period T0 = 2π/� of the
external mechanical vibrations, then the plane could be a surface corresponding to
a definite (but perhaps arbitrarily chosen) phase of the external vibrations. This is
sometimes also called a “stroboscopic mapping” [14]. The principle of the mapping
is presented visually in Fig. 9.13.

In the case of eVEHs, if the system is displaying steady-state period-1 behaviour
for a particular value of Aext and a stroboscopic mapping is performed, then for
whichever quantity is being recorded (either y or y′), each recording should give the
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Fig. 9.13 Stroboscopic mapping. A Poincaré plane (the grey rectangle) is constructed once per
period and the values of y and y’ where the trajectory intersects the Poincaré plane are recorded.
These intersections are marked by the red crosses. Since the system is operating in a period-1 regime
in this figure, the intersection occurs at the same values of y and y’ every period.

same value. This is the nature of the forced oscillatory behaviour of the system and
an example of this can be seen in Fig. 9.14. If for another value of Aext the system
displays period-2 behaviour, then the stroboscopic mapping will record two different
values, alternating on each period. If for yet another value of Aext the system displays
period-4 behaviour, then the stroboscopic mapping will record four different values
that repeat every four periods/recordings. Thus, if the system displays period-N
behaviour, the stroboscopic mapping will record N different values that repeat every
N periods/recordings. If the system displays chaotic behaviour then the stroboscopic
mapping will record many different values that show no discernible repetition. All of
these recordings assume that the transient of the trajectory has been neglected (see
Fig. 9.14).

EVEH Bifurcation Diagrams

To construct a bifurcation diagram for an eVEH, the stroboscopic mapping must
first be defined. Recalling that the period of the external vibrations is T0 = 2π/�, its
phase can be introduced as θ = 2πτ/T0 (mod 2π ) ∈ S. Starting from a point in time
τ0 after transient behaviour has died down, the Poincaré section can be constructed
by stroboscopically monitoring the state variables y and y′ in the time interval of
length T0. Therefore the mapping can be written as
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Fig. 9.14 Bifurcation diagram for a GCT-CQ eVEH operated with a linear resonator for W0 = 10
nJ. In this instance the bifurcation parameter is Aext and y is the parameter being plotted. The values
of y are found through numerical integration with the same set of initial conditions y = y′ = 0 for
every value of Aext. A bifurcation diagram like this gives a lot of information about the global
dynamics of a system. Different regions of periodic behaviour can be seen along with the system’s
transitioning to chaos. Windows of periodicity can even be seen within the chaos at higher values
of Aext

P =
{
(y, y′, θ) ∈ R × R × S | θ = θ0 = 2πτ0

T0

}
(9.55)

The diagram constructed using (9.55), the bifurcation diagram for the system,
although very time-consuming to produce, gives a lot of very useful information
about the global dynamics of the system, regions of steady-state behaviour, bifurca-
tion points and tells us how the system transitions to chaos. An example of such a
bifurcation diagram for an eVEH can be seen in Fig. 9.14. In this instance, the accel-
eration of the external vibrations, Aext, is the chosen bifurcation parameter and it is
the evolution of the normalised displacement y that is being observed as Aext is being
varied. It is clear to see the benefits of numerically constructed bifurcation diagrams
from Fig. 9.14. A quick glance at the figure allows us to determine the global dynam-
ical behaviour of the system, how it transitions to chaos and approximate bifurcation
points.
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Fig. 9.15 Envelope plot—Comparing the envelope of oscillations (the ymax and ymin values) calcu-
lated using the steady-state theory (the solid lines) against numerically obtained values (the squares)
for three different values of Aext: line a (blue)—Aext = 3 ms−2, line b (green)—Aext = 5 ms−2 and
line c (red)—Aext = 7 ms−2

9.4.2 Results of the MSM

The MSM steady-state theory will now be validated by comparing results found from
(9.41), (9.45) and (9.46) with results found through numerical simulations of (9.16).
A GCT-CQ eVEH with a linear oscillator, first presented in [7, 15], will be examined
and some differences that appear in nonlinear oscillator cases are reviewed. Finally,
the effect of electrical damping on the system is examined.

The application of the developed theory to the linear and nonlinear spring cases
of a GCT-CQ eVEH have been well examined in [7, 13, 15]. Noting that ymax =
yav,0 + Y0 and ymin = yav,0 − Y0, one can use (9.40) and (9.46) to find the maximum
and minimum values of the steady-state displacement of the resonator. We call ymax

and ymin, for a particular combination of Aext and W0, the “envelope” of the steady-
state oscillations. In Fig. 9.15, one can see a plot comparing analytically calculated
values of the envelope with numerically calculated ones for three different values
of Aext and varying W0. The analytical values are represented by the solid lines and
the numerical values are represented using the squares. It is clear that for the linear
oscillator case there is great correspondence between the numerical simulations and
the theory developed in Sect. 9.3.2. The same is also true of the nonlinear oscillator
cases, as can be seen in [13].
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Fig. 9.16 W0-Aext plane of parameters for linear case—Region 1 (red) corresponds to the area
where no oscillations occur, i.e. no stable roots were found. Region 2 (green—between red region
and blue/purple lines) corresponds to areas where single stable roots were found. The doubling
bifurcation line is also presented: blue line (analytical) and black dots (numerical)

Using equations (9.40) and (9.46), and by choosing Aext and W0 as the control
parameters to be varied, a plane of parameters can be created for the system. Such a
plane, like the one in Fig. 9.16 for a linear oscillator, displays the number of realistic
roots for the various combinations of these aforementioned control parameters (Aext

and W0). The red region (region ‘1’) corresponds to W0-Aext combinations where
no oscillations occur, i.e. there are no stable roots found from (9.46). If one tries to
operate the system under the conditions covered by region ‘1’, no oscillations will
occur and thus the system will not work. The green region (marked ‘2’ on the figure)
shows where one stable (and realistic) root was found for the parameter pairing. This
region has an upper bound formed by the combination of a pull-in line (at very low
values of W0) and a doubling bifurcation line. Pull-in is a characteristic phenomenon
of electrostatic MEMS devices where the capacitor plates “snap” together. This hap-
pens in the eVEH studied here when y = 1. The purple pull-in line on display in the
plane of parameters in Fig. 9.16 was found numerically. The doubling bifurcation
line marks the onset of period-doubling oscillations in the system. The blue line in
the plane represents the doubling bifurcation points that were calculated analytically
using the stability theory developed in Sect. 9.5 whereas the black dots represent
the doubling bifurcation points that were found numerically; there is great corre-
spondence between these two methods. At low values of W0, pull-in actually occurs
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before a doubling bifurcation happens. For any points on the plane above either the
pull-in or doubling bifurcation line the steady-state theory no longer holds. Numeri-
cal analysis in the region bounded by both the doubling bifurcation and pull-in lines
produces period doubling bifurcations, sliding and chaos which are characteristic
phenomena of GCT-CQ eVEHs.

In Fig. 9.17, we can see a plane of parameters, found once again using the MSM,
but this time for a nonlinear oscillator rather than a linear one. This nonlinear oscil-
lator, with κ2 = 0, κ3 = 0.3 and κn (n > 3) = 0, can be described as a “hardening”
spring since it causes the system to display well known hardening characteristics. The
plane of parameters for this hardening case once again has red (marked as ‘1’) and
green (marked as ‘2’) regions similar to those found in the linear plane of parameters
representing the areas where no roots and one stable root are found respectively. One
will also notice though that there now appears a small purple region (marked as ‘3’)
that was not on display in the linear plane of parameters. This region corresponds
to control parameter value combinations that cause multistability, i.e. the existence
of two or more stable solutions in the system. This is the effect of the nonlinear
oscillator. The pull-in line (calculated numerically) can also be seen along with the
doubling bifurcation line (calculated both analytically and numerically). Comparing
these pull-in and bifurcation lines with the ones found in the linear plane of para-
meters, it is clear to see that they occur at higher values of Aext for the nonlinear
case than they do in the linear case. The nonlinearities have a stabilising effect on
the system allowing it to remain operating in the steady-state region at higher values
of Aext. This also means that the amplitude of the steady-state displacement can be
larger which is an important factor in the value of the maximum convertible power
of the system [13].

Using the MSM, it is also possible to obtain an analytical frequency response of an
eVEH. Figure 9.18a, shows the evolution of ymax versus σ (the normalised frequency
mismatch) for the linear system. Note the similarity with the high-Q representation
in Fig. 9.7. This is an expected frequency response for a high-Q system that clearly
displays no multistability in its plane of parameters (Fig. 9.16). The frequency sweep
for the hardening case, as seen in Fig. 9.18b, is a bifurcation diagram that allows us to
trace the amplitude of coexisting stable oscillations as a function of the normalised
frequency mismatch σ . At certain values of σ > 0 three roots were found using
(9.46). This multistability is caused by the nonlinear resonator, though not all of
the solutions are stable. In the figure, the blue points represent stable solutions and
the red points, unstable solutions. In this frequency sweep one can observe the well
known hysteresis frequency response typical of nonlinear driven oscillators. The
effective bandwidth has been increased in comparison to the linear response which
is the desired effect of using a nonlinear resonator in an eVEH.

Surprisingly though, if one examines the plane of parameters for the nonlinear
case in Fig. 9.17, we do not see a very large area of multistabilty. This purple area
(labelled ‘3’) is relatively small considering how large the value of the nonlinearities
being used are. If the nonlinear case being studied here was used in the standard
Duffing equation one would expect to see a much larger area of multistability than is
on display in Fig. 9.17. The only difference between (9.16) and the Duffing equation
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Fig. 9.17 W0-Aext plane of parameters for hardening case—Region 1 (red) corresponds to the
area where no oscillations occur, i.e. no stable roots were found. Region 2 (green—between red
region and blue/purple lines) corresponds to areas where single stable roots were found. Region 3
(purple—seen in the two nonlinear cases) are areas where the system displays multistability, i.e.
more than one stable root was found. The doubling bifurcation line is also presented: blue line
(analytical) and black dots (numerical)

is the addition of the transducer force ftran. Thus, if ftran was set to equal 0, (9.16)
reduces to the Duffing equation.

So by examining (9.17), it can be noted that ftran is directly proportional to the
fixed energy of the system W0. Thus, if W0 is increased then the transducer force
increases. Increasing W0 in the system results in a “flattening” of the frequency
response of the system. This can be clearly seen in Fig. 9.19 where Aext = 0.4 ms−2

and a softening spring with coefficients κ2 = 0.3, κ3 = −0.1 and κn (n > 3) = 0 have
been used. Four frequency responses are shown in the figure for four different values
of W0. One can clearly observe that as energy is increased, the frequency response is
flattened. Thus, the force ftran which is proportional to W0, is analogous to electrical
damping in the system, and so νW can be seen as the dimensionless coefficient of
electrical damping.

This electrical damping compensates the hysteresis effect which is caused by the
nonlinear oscillator, and so, this widening of the frequency response is only observed
at low values of W0. As has been noted seen in [9, 13], the optimum region for power
conversion is close to the doubling bifurcation line and it is clear to see from the
plane of parameters plot in Fig. 9.17 that multistability never appears near this line.
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Fig. 9.18 Frequency response of a GCT-CQ eVEH found using multiple scales method for a a
linear resonator and b a nonlinear resonator. It is clear that there is no multistability in the linear
case but that multistability can be found in the hardening (nonlinear) case for some positive values
of σ

As a result GCT-CQ eVEHs cannot fully exploit the benefits of adding nonlinearities
to the system.

9.5 Stability Analysis

It was first noted in [16] that eVEHs implementing the constant charge energy conver-
sion cycle display irregular and chaotic behaviour. Considering this, it is important
that we know when these regimes occur so, when using the steady-state theories
developed in Sect. 9.3, that they are only used for parameter values located within
the steady-state region (marked ‘2’ on the planes of parameters plots in Figs. 9.16
and 9.17). This requires some form of stability analysis to determine an upper bound
on the steady-state region.

In smooth systems, the stability analysis of periodic orbits is based upon adding
a small perturbation to the orbit and if this perturbed solution converges back to the
original orbit then the orbit is said to be stable (See Fig. 9.20). This is typically carried
out by employing fundamental and monodromy matrices and Floquet multipliers
that are the eigenvalues of the monodromy matrix [4, 17]. Briefly, the monodromy
matrix shows the local rate of convergence/divergence of small perturbations around
the analysed periodic orbit. For the nonlinear dynamical system in the form ẋ =
F(x, t), x ∈ R

n that has a periodic solution x0, the perturbed solution is x = x0 + x̃.
This small perturbation x̃ is described by ˙̃x = ∂F

∂x x̃ where ∂F
∂x is the Jacobian matrix.

This n dimensional linear system (with time-varying coefficients) has n independent
solutions {x̃i } that are called the fundamental set of solutions. These can be expressed
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Fig. 9.19 The effect of electrical damping in the system. Four frequency responses are shown for
four different values of W0: 0.2, 0.6, 1 and 1.5 nJ. As W0 is increased the response of the system is
‘flattened’ due to electrical damping. This electrical damping (which is proportional to W0) limits
the appearance of multistability in the system. In the calculations for this plot Aext = 0.4 ms−2 and
a softening oscillator with oefficients κ2 = 0.3, κ3 = –0.1 and κn (n > 3) = 0 was used

in the form of a square matrix that is called the fundamental solution matrix: �(t) =
[x̃1, x̃2, . . . , x̃n, ]. The fundamental solution matrix calculated over the period T =
2π/� of the periodic orbit is called the monodromy matrix and its eigenvalues are
called the Floquet multipliers [4].
By contrast though, it is clear by examination of (9.16) and (9.17) that an eVEH
operating in constant charge mode is not a smooth system but rather a piecewise
smooth system since it is governed by different vector fields in domains of state space
separated by a switching surface � given by the expression y′ = 0. This makes a GCT-
CQ eVEH a Filippov type system [18]. As a result, when performing stability analysis
on the system, it is more convenient to present the system in its standard dynamical
form. By introducing the variable vector x = (x1, x2, x3) where x1 = y, x2 = y′,
x3 = τ and the vector representing the parameters P = (β, α,�, νW, K), (where
K = (κ2, κ3,…κN) is a vector of mechanical nonlinearities depending on resonator
architecture) we can write the second-order differential equation in a standard form:

ẋ =
{
F1(x,P), H(x) > 0
F2(x,P), H(x) < 0

(9.56)

where F1 and F2 are the vector functions
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Fig. 9.20 The evolution of a perturbed stable orbit. If a trajectory is dynamically stable this means
that even if a trajectory is perturbed, it will settle back to the original unperturbed orbit. This can be
seen in the above figures. The solid line represents the original unperturbed orbit, whereas the broken
line represents the perturbed solution. In (a), it is clear to see that the perturbed solution returns to
the original solution after a few cycles of dimensionless time. The equivalent phase portrait for the
perturbed and unperturbed solutions can be seen in (b)
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F1(x,P) =

⎧⎪⎪⎨
⎪⎪⎩

x2

−2βx2 − x1 −
N∑

n=2
κnxn

1 + α cos �x3 + ftran

1

(9.57)

and

F2(x,P) =

⎧⎪⎪⎨
⎪⎪⎩

x2

−2βx2 − x1 −
N∑

n=2
κnxn

1 + α cos �x3

1

(9.58)

The scalar function H(x) given by the switching condition

H(x) = −x2 = 0 (9.59)

defines the switching surface � (or the switching manifold) in the state space. Now
we can write that the switching surface � is

� = {x ∈ R3 | H(x) = 0
}

(9.60)

System (9.56) belongs to the class of Filippov systems in which the two smooth
functions that define the behaviour of the system in the two sub-spaces are not equal to
each other on the switching manifold, i.e. F1 �= F2 on �. In order to avoid ambiguity
in the definition of solutions, Filippov suggested that the function Fs that defines the
system behaviour exactly on the switching surface when H(x) = 0 must be a set
valued function [18], whose limits are the values of F1 and F2 immediately before
and after the switching event. Therefore, formally, Eq. (9.56) must be supplied with
an additional expression: ẋ = Fs(x,P) if H(x) = 0. Here Fs is the closed convex
set containing both F1 and F2. The function Fs governing the sliding flow can be
constructed using either Filippov’s convex method [18] or Utkin’s equivalent control
method [19]. Given the piecewise smooth nature of the system, the approach used
for stability analysis in smooth systems must be modified for an eVEH since the
original and perturbed orbits may not cross the switching manifold at the same time.
This possibility must be accounted for when determining the monodromy matrix of
a discontinuous system like the one presented here [17, 18].

Figure 9.21 shows an example of the evolution of a trajectory of the studied sys-
tem on the (y, y′) phase plane. It is clear to see that the switching manifold � is
represented in this figure by the x axis, i.e. the switching condition y′ = 0 and the
times τ0 and τ1 mark the points when the orbit crosses the manifold at y = ymax and
y = ymin respectively.

The approach described in [18] considers small perturbations to the initial con-
ditions of an orbit and examines how these perturbations evolve over a period T .
To account for the discontinuity in the system, a map is required that will describe
the evolution of the fundamental matrix at the switching manifold and thus relate
the perturbation vectors before and after the switching event. This map is called a
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Fig. 9.21 A representation of a trajectory on the (y,y′) phase plane. The trajectory moves through
two different vector fields F1 and F2 which are separated by the switching manifold � (given by the
expression y′ =0). F1 and F2 are described by expressions (9.57) and (9.58) respectively. The time
instants τ0 and τ1 correspond to the moments when the trajectory crosses the switching manifold
(y-axis)

saltation matrix S [20] and is defined as

�(τ+
0 ) = S�(τ−

0 ). (9.61)

where

S = I + (F+ − F−)nT

nTF−
(9.62)

and I is the identity matrix. Note that the trajectory spends an infinitesimally small
time at the switching manifold �. The vector n is a normal vector directed as shown:

nT = [∇H(x)]T = [∂ H(x)/∂x1, . . . , ∂ H(x)/∂xn] (9.63)

The functionF− denotes the governing vector field just before (symbolically denoted
as τ−) a trajectory crosses the switching manifold and F+ denotes the governing
vector field just after (symbolically denoted as τ+) a trajectory crosses the switching
manifold.

Therefore, if one starts the analysis of the orbit from Fig. 9.21 at the moment τ+
0 ,

the monodromy matrix for one cycle of oscillations takes the form:
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M = �(τ0, τ0 + 2π/�) = Smax�(τ+
1 , τ−

0 + 2π/�)Smin�(τ+
0 , τ−

1 ) (9.64)

where Smax = S(τ = τ0 + T ) and Smin = S(τ = τ1) are the saltation matrices (9.62).
Since the discontinuity boundary does not depend on time in this instance, x3 can
be neglected from the stability analysis and this reduces the systems of equations in
(9.57) and (9.58). This in turns simplifies the stability analysis and the calculation
of the saltation and monodromy matrices.

The normal vector (directed towards the subspace governed by the vector field
F1 is nT = [0,−1]. At the time instant τ = t0 according to Fig. 9.21, F− = F2 and
F+ = F1.
Therefore

Smax = I + (F1 − F2)nT

nTF2

∣∣∣∣
τ=τ0+T

=
⎛
⎝1 0

0 1 − νW

(1−x1,max)(x1,max−α cos(�(τ0+T ))+
N∑

n=2
κnxn

1,max)

⎞
⎠

(9.65)

Note that x1 is replaced by x1,max and x2 = 0 since τ0 + T is the moment when the
velocity is zero and the displacement passes its maximum.

At the time instant τ = τ1, according to Fig. 9.21, F− = F1 and F+ = F2.
Therefore

Smin = I + (F2 − F1)nT

nTF1

∣∣∣∣
τ=τ1

=
⎛
⎝1 0

0 1 + νW

(1−x1,max)(x1,min+
N∑

n=2
κnxn

1,min−α cos(�τ0)− νW
(1−x1,max)

)

⎞
⎠

(9.66)

In this case, x1 is replaced by x1,min and x2 = 0 since τ1 is the moment when the
velocity is zero and the displacement passes its minimum. However, the term ftran =
νW /(1 − x1,max) still has the same value as it had at τ = τ0 since the value of ftran

is fixed for the whole period when displacement is at its maximum, i.e. this is the
hold-on term.

Finally, the variation equation that is used to find the fundamental matrix �i at
τ1 < τ < τ0 + 2π/� is obtained simply from the perturbation equation

˙̃x = D(F2)x̃ ⇒
(

ẋ1 ẋ2

v̇1 v̇2

)
=
⎛
⎜⎝

∂F21

∂x1

∂F21

∂x2
∂F22

∂x1

∂F22

∂x2

⎞
⎟⎠
(

x1 x2

v1 v2

)
(9.67)

and, therefore, for the fundamental system of solutions one obtains

(
ẋ1 ẋ2

v̇1 v̇2

)
=
⎛
⎝ 0 1

−(1 +
N∑

n=2
nκnxn−1

1 ) −2β

⎞
⎠
(

x1 x2

v1 v2

)
(9.68)
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where the following initial conditions are used:

(
x1 x2

v1 v2

)
= I (9.69)

where I is the identity matrix as in the formulas above. Solving the system of equa-
tions (9.68) on the interval (τ1, τ0 + 2π/�) one obtains �(τ+

1 , τ−
0 + 2π/�).

The perturbation equation for τ0 < τ < τ1, is ˙̃x = D(F1)x̃. In order to obtain this,
F1 is presented as F1 = F∗

1 + Ft . Here F∗
1 is a differentiable part of F1 with respect

to x, and Ft = (0, ftran)
T can be seen as an operator since it contains x1,max and is

not differentiable with respect to x. The perturbation of F∗
1 can be easily found and

happens to give the same result as the one for F2 (see expression (9.68)). Assuming
the original orbit being analysed is x0(τ0), then the perturbed trajectory will be
x(t0) = x0 + x̃. Thus, the perturbation equation for τ0 < τ < τ1 is

(
ẋ1 ẋ2

v̇1 v̇2

)
=
⎛
⎝ 0 1

−(1 +
N∑

n=2
nκnxn−1

1 ) −2β

⎞
⎠(x1 x2

v1 v2

)
+
(

0 0
νW

[1−x1,0(τ0)]2 0

) (
x1 x2

v1 v2

)∣∣∣∣
τ=τ0

(9.70)

It must be noted that (9.70) is linear and contains time dependent periodic coefficients
with T = 2π/�.

Using (9.65), (9.66), (9.68) and (9.70), the mondoromy matrix in (9.64) can be
formed. Upon obtaining the monodromy matrix, M , its eigenvalues can be found.
These eigenvalues are called Floquet multipliers [4] and they allow the stability of
the orbit to be determined. If even one of these Floquet multipliers exists outside the
unit circle for a set of parameter values then that particular orbit is unstable.

Floquet multipliers can also give us information about what type of bifurcation
occurs when an orbit leaves the steady-state region. If a Floquet multiplier leaves
the unit circle through −1, the original fixed point or orbit undergoes a doubling
bifurcation; if it leaves through +1, a transcritical, symmetry breaking or cyclic fold
bifurcation occurs, and, finally, if two complex conjugate multipliers leave the circle,
a Hopf bifurcation takes place in the system.

By performing this stability analysis on orbits in a GCT-CQ eVEH one will
note that the Floquet multipliers in these results leave the unit circle through −1
and so the steady-state region of oscillations is limited by a doubling bifurcation.
The monodromy matrix (9.64) was used to calculate the blue doubling bifurcation
lines that appear in the planes of parameters plots in Figs. 9.16 and 9.17 and thus
any roots that appear above this doubling bifurcation boundary in these plots are
no longer steady-state. The stability theory developed here generally shows great
correspondence with numerical simulations of when the doubling bifurcation occurs
as can be seen by the black dots in the plane of parameters plots in Figs. 9.16 and
9.17.
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Chapter 10
Nonlinear Conditioning Circuits
for Piezoelectric Energy Harvesters

Adrien Badel and Elie Lefeuvre

10.1 Introduction

Design and analysis of piezoelectric vibration energy harvesters is a complex multi-
physics problem related to mechanics, materials science, and electronics. The analy-
sis of works published in the field of piezoelectric energy harvesting over the last
decade shows that numerous papers focused on mechanical optimization without
taking into account the actual constraints and requirements on the electrical side of
the systems (i.e., the electric circuit was often modeled as a simple resistor). Con-
versely, other works aimed at optimizing systems from the electrical point of view
without taking into account the mechanical effects induced by the energy conversion
process. Consequently, in both cases the solutions proposed were not truly optimal
or remained very far from practical applications.

To highlight the main aspects of this multi-physics problem, this chapter begins
with general considerations about harvested power based on the simple and well-
known model proposed by William and Yates [1]. Starting from this model, the
maximal power and the frequency bandwidth of the system is analyzed, and a figure
ofmerit taking into account both the power and the bandwidth of the energy harvester
is proposed.

This model is then refined to include the description of piezoelectric electro-
mechanical coupling, leading to accurate and reliable behavioral representation of
most linear inertial piezoelectric vibration energy harvesters.

Using the classical analogies between electrical and mechanical figures, an equiv-
alent electrical circuit representing the whole electromechanical system is described.
Such circuit may be very convenient to study the system associated to its electronic
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interface using SPICE-type simulations. In order to get the model parameters rep-
resenting an actual vibration energy harvester, an identification procedure based on
the measurement of the complex admittance is presented.

The performances of the system using optimal impedance matching approach is
then analyzed, followed by a brief outline of a possible implementation using a PWM
inverter circuit.

The association of the piezoelectric vibration energy harvester with the classical
rectifier circuit is then analyzed, showing the need for an additional maximum power
point tracking system.

After a short description of themain nonlinear interface circuits developed over the
last decade, a detailed analysis of the so-called OSECE interface circuit is exposed.

Finally, this chapter discusses the possibility of tuning the resonant frequency of
the piezoelectric energy harvester through its interface circuit. The theoretical analy-
sis of a new interface developed for this purpose and termed FTSECE is presented.

10.2 A First Very Simple Model for Kinetic Energy
Harvesters

The power generated by a vibration energy harvester depends on the transducer
used for the electromechanical energy conversion and on the way the transducer is
implemented in a mechanical structure that is suitable to capture ambient mechanical
energy.

In most vibration energy harvesters (VEH) an inertial mass driven by the ambient
acceleration is used to transmit mechanical energy to the electromechanical trans-
ducer. A simple {mass–spring–damper} system, initially proposed in. [1] can be used
to model this behavior. A schematic of such an inertial vibration energy harvester is
shown in Fig. 10.1, where DL is a damper that embodies mechanical and electrical
losses and DH is a damper that corresponds to the electromechanical transducer.
The assumption of modeling the transducer by a simple damper is valid in the case
of sinusoidal motion of the inertial mass, choosing the value of DH such as the
energy dissipated into the damper during one mechanical period corresponds to the
harvested energy.

10.2.1 Consideration on the Harvested Power

The equation governing the motion of the inertial mass is given by (10.2.1), where
γ = ÿ is the ambient acceleration.

Mẍ + (DH + DL)ẋ + Kx = −Mγ (10.2.1)
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Fig. 10.1 Inertial vibration
energy harvester
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The relative motion x of the mass with respect to the housing can then be expressed
in the frequency domain as

x = −
γ

ω2
0(

1 − �2
) + 2 j�(ξL + ξH )

with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω0 =
√

K
M

ξL = DL
2

√
1

KM

ξH = DH
2

√
1

KM

� = ω
ω0

(10.2.2)

where ω is the operation angular frequency, ω0 is the mechanical oscillator natural
angular frequency, � is the normalized operation frequency and ξL and ξH are the
damping ratios due to intrinsic losses and energy harvesting, respectively.

Normalizing x with respect to γM/ω2
0 (which is the ambient displacement mag-

nitude) leads

x ′ = − 1(
1 − �2

) + 2 j�(ξL + ξH )
(10.2.3)

The harvested power, calculated as the power dissipated in the damper DH is then

P = DHω2x2M
2

= ξH�2

(
1 − �2

)2 + 4�2 (ξL + ξH )2

Mγ 2
M

ω0
(10.2.4)

This power reaches a maximum at the resonant frequency (� = 1) and when the
damping ratios are equals (ξH = ξL ):

Plim = DHω2x2M
2

= Mγ 2
M

16ω0ξL
(10.2.5)
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The maximal power that can be harvested is proportional to the inertial mass and
to the square of the ambient acceleration magnitude. It is also inversely proportional
to the losses (mechanical and electrical) in the harvester and to the natural angular
frequency.

This power limit is independent from the transduction principle itself. This means
that whatever the transduction mechanism, the maximal power can be harvested
provided that the electromechanical coupling is high enough to reach the intrinsic
damping ratio [2].

The harvested power can be normalized as shown in (10.2.6). This allows to
compare the performances of different energy harvesters independently from their
resonant frequencies inertial masses and from the ambient acceleration magnitude.
The normalized power cannot exceed 1/(2ξL) = QM which is the quality factor of
the mechanical oscillator.

P ′ = P
8ω0

Mγ 2
M

= 8ξH�2

(
1 − �2

)2 + 4�2 (ξL + ξH )2
(10.2.6)

It is worthy of note that this result is only valid for inertial linear vibration energy
harvesters driven around their resonance frequencies by sinusoidal vibrations.

10.2.2 Consideration on the Frequency Bandwidth

When considering an inertial vibration energy harvester, not only the maximal power
but also the frequency bandwidth has to be studied. Equation (10.2.5) shows that
intrinsic losses represented by ξL should be minimized to increase the maximal
power. The goal of this subsection is to highlight the effect of ξL on the frequency
response of the VEH.

We consider here the case in which the damping ratio due to energy harvesting
ξH is equal to ξL in order to maximize the power at the resonance frequency. In a
first consideration, ξH is kept constant over the frequency. The normalized power is
then given by:

P ′ = 8ξL�2

(
1 − �2

)2 + 16�2ξ 2
L

(10.2.7)

we define the angular frequency bandwidth�ω as the angular frequency rangewhere
the power is at least 50% of its maximal value (P ′

lim = QM ). It is obtained seeking
�1 and �2 so that P ′(�1) = P ′(�2) = P ′

max/2. The normalized bandwidth �� is
then given by (10.2.8), and the bandwidth by �ω = �� · ω0.
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Fig. 10.2 Normalized power versus frequency for different values of QM = 1/(2ξL )when ξH = ξL

⎧⎪⎪⎨
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√
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4ξ 2

L + 1
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8ξ 2

L + 1 + 4ξL
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L + 1
⇒ �� = �2 − �1 = 4ξL (10.2.8)

Figure10.2 shows the normalized power as a function of the frequency, for three
different values of the intrinsic losses. It is clearly shown that decreasing the intrinsic
losses increases the maximal power but decreases the bandwidth.

It is possible to increase the bandwidth if ξH can be adjusted as a function of
the frequency. An ideal case is now considered, where ξH can be tuned without
any limitation. The optimal value of ξH that maximizes the harvested power can be
obtained as a function of � by looking for the roots of the derivative of Eq. (10.2.6)
with respect to ξH . It is given by:

ξHopt =
√

�4 + 4�2ξ 2
L − 2� + 1

2�
(10.2.9)

And the expression of the normalized power is then

P ′ (ξHopt
) =

4�
√

�4 + 4�2ξ 2
L − 2� + 1

4�2

(
ξL +

√
�4+4�2ξ 2

L−2�+1
2�

)2

+ (
�2 − 1

)2 (10.2.10)
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Fig. 10.3 Upper plot normalized power versus frequency for different values of QM = 1/(2ξL )

when ξH = ξHopt (�) (plain line) and when ξH = ξL (dotted line), Lower plot optimal value of ξH

The new expressions of the half-power normalized angular frequencies are given
by (10.2.11), together with the normalized bandwidth, which is shown to be

√
2

times larger than the case where ξH is kept equal to ξL .
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16ξ 2
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16ξ 2

L + 2
⇒ �� = �2 − �1 = 4

√
2ξL (10.2.11)

An interesting result is shown here: whatever the strategy used to tune ξH , the
bandwidth is proportional to ξL , whereas themaximal power is inversely proportional
to it.

Figure10.3 exhibits the normalizedpower and theoptimal valueof ξH as a function
of the frequency, for different values of QM = 1/(2ξL). It is shown that the bandwidth
can be enlarged provided that ξHcan be adequately increased while � gets away
from 1.

10.2.3 Figure of Merit

An ideal VEH would exhibit a large output power over a wide frequency range. For
a given VEH, a relevant figure of merit can then be obtained multiplying its maximal
normalized power by its normalized bandwidth.
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Using Williams and Yates model, this figure of merit equals a constant, as shown
in (10.2.12).

FoM = P ′
max · �� =

{
2 if ξH = ξL

2
√
2 if ξH = ξHopt (�)

(10.2.12)

From this analysis based onWilliams and Yates simple model, some general rules
for VEHs can be drawn:

• Increasing the intrinsic losses implies that higher damping induced by energy
harvesting is required to reach the maximal power. This means that the electro-
mechanical coupling has to be larger for VEH exhibiting large intrinsic losses.

• Lowering the intrinsic losses of the VEH increases the maximal power but
decreases the frequency bandwidth. The FoM is, however, unchanged provided
that the optimal energy harvesting damping can be reached.

• The performances can be increased by tuning the damping induced by energy
harvesting as a function of the frequency. Higher electromechanical coupling is
then required out of the resonance frequency.

Figure10.4 (upper plot) shows the normalized maximal power and bandwidth that
can be derived from Williams and Yates model as a function of the damping ratio
ξHmax/ξL , where ξHmax is the maximal energy harvesting induced damping. It is
shown that for ξHmax < ξL , the normalized power limit (QM) cannot be obtained. If
ξHmax ≥ ξL , the power limit is reached at the resonance frequency and for ξH = ξL .

Fig. 10.4 Upper plot normalized power and bandwidth as a function of the ratio ξHmax/ξL (for
ξL = 0.025). Lower plot FoM as a function of the ratio ξHmax/ξL (this plot is independent on ξL )
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The normalized bandwidth limit (4
√
2ξL) is reached for ξHmax ≥ 3ξL . In this case,

ξH has to be set equal to ξL for � = 1, and has to be increased for � larger lower
than 1. ξH will thus be equal to 3ξL for � = �1 and � = �2 Eq. (10.2.11).

In conclusion of this subsection, Williams and Yates model is very simple but
allows understanding the relationship between the maximal power, the bandwidth
and the damping induced by both the energy harvesting process and the intrinsic
losses. It however exhibits a major limitation: In this model, the electrical load has
no effect on the natural frequency of the VEH; it only affects the damping. Yet, in
practical VEH, especially in the case of piezoelectric VEH, the electrical side of
energy harvesting (i.e., the interface circuit) also impacts the resonance frequency.
This effect will be further evidenced in the next sections of this chapter.

10.3 Modeling and Parameter Identification
for Piezoelectric VEH

10.3.1 Model for Piezoelectric Vibration Energy Harvester

Based on electromechanical transduction principles and the electrical andmechanical
equations of equilibrium, lumped electromechanical modeling of electromechanical
transducers is known as a very effective method [3, 4]. In theory, such models are
exact with no restrictions other than linearity, within the limits of the assumptions
on boundary conditions and within the frequency range covered by the modeled
resonant frequencies.

Most inertial piezoelectric vibration energy harvesters are based on a linear
mechanical oscillator (a cantilever beam with a tip mass for instance) including
one or several piezoelectric patches.

The very simple PVEH lumped model presented in Fig. 10.5 then provides an
accurate and reliable behavioral representation of such PVEH excited around one of
their resonant frequencies, as described in [2].

M

y(t)

D K

x(t)

v(t)
i(t)

v(t)

i(t)

Electrical
Circuit

x

CP RP

(a)

(b)

Fig. 10.5 Schematic of a PVEH, a mechanical point of view, b electrical point of view
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A piezoelectric element represents the piezoelectric transducer(s) (electrically
connected together in series or parallel if several are used). It is characterized by
its electromechanical force factor α, its clamped capacitance CP and its parasitic
resistance RP ; AP = 1/RP is the parasitic conductance.M is the equivalent dynamic
mass, D is the damping coefficient corresponding to the mechanical losses and
K represents the stiffness of the system when the piezoelectric element is short-
circuited.

An external vibration y(t) is applied to the system, inducing a relative displace-
ment x(t) between the mass and the housing. As a consequence of the mechanical
stress variation, an AC voltage v appears between the piezoelectric electrodes and
a current i is generated if an electrical load is connected. Since most applications
require a DC voltage, the electrical load usually implements an AC/DC conversion
stage.

The governing equations of such an electromechanical system are given by
Eq. (10.3.1), where γ is the ambient acceleration.

{
Mẍ + Kx + Dẋ + αV = Mγ

I = α ẋ − CP V̇ − APV
(10.3.1)

ω0, the natural frequency of the short-circuited PVEH is given by:

ω0 =
√

K

M
(10.3.2)

Three dimensionless parameters are used for the characterization of PVEH: the
electromechanical coupling coefficient squared k2, the mechanical losses damping
ratio ξM and the resistive losses coefficient ξE , whose expressions are

k2 = α2

KC0 + α2
ξM = D

2
√
KM

ξE = 1

2RPCPω0
(10.3.3)

k2 describes the effectiveness of quasi-static energy conversion between electrical
and mechanical forms. For a PVEH in open-circuit subjected to a quasi-static stress,
it is equal to the electrostatic energy divided by the total energy in the system.
A modified coupling coefficient k2m , defined as (10.3.4), is introduced to simplify
theoretical expressions. It is, too, an indicator for the electromechanical coupling,
insofar as it represents the quotient between the electrostatic energy and the elastic
energy in the generator (also in quasi-static operation). Note that despite k2 remains
always lower than 1 (k2 = 1meaning that all the input mechanical energy is converted
into electrostatic energy), k2m is not limited. Forweakly coupled generators, the values
of k2 and k2m are close one to the other.

k2m = α2

KCP
= k2

1 − k2
(10.3.4)
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Fig. 10.6 Equivalent electrical network for a PVEH

10.3.2 Electrical Model for SPICE-Type Simulations

Using the classical analogies between electrical and mechanical figures (force and
voltage; velocity, and current), the equivalent electrical network shown in Fig. 10.6
can be derived for the modeling of PVEH. The αV voltage source and the α ẋ current
sources correspond to the electromechanical transduction. The mechanical power
absorbed in the voltage source equals the electrical power provided by the current
source, reflecting a lossless energy conversion. The mechanical branch includes an
electrical oscillator {Lm , Cm , Rm} that represents the mechanical resonance. The
electrical branch is the same as the one depicted in Fig. 10.5b). The governing equa-
tions from this electrical network are identical to Eq. (10.3.1) provided that Lm = M ,
Cm = K−1 and Rm = D.

This model can be easily implemented in SPICE-based software (SPICE: Simu-
lation Program with Integrated Circuit Emphasis) and can then be used for efficient
simulation of PVEH with various electrical interface and ambient acceleration pro-
files.

As an example, Fig. 10.7 is a screenshot of a schematic implemented in the
LTSPICETM Software (Linear Technologies Corporation), where a classical full
bridge rectifier is used as an AC/DC electrical interface between the PVEH and
the resistor RL , which models the input resistance of the circuit to be powered.

Fig. 10.7 PVEH combined with the classical full bridge rectifier interface (detailed in
Sect. 10.5.1)—modeling using LTSPICETM Software
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10.3.3 Model Identification Procedure

The parameters of themodel presented in the previous subsection can be derived from
a given PVEH structure using analytical or finite elementmodeling approaches [5, 6],
provided that the characteristics and dimensions of the usedmaterials are knownwith
sufficient accuracy. In practice, themechanical losses related tomechanical assembly
of the different parts of a PVEH are not easy to predict (i.e., bonding, clamping,
etc.). The piezoelectric characteristics provided by manufacturers may also exhibit
important uncertainty and variability. This explains why significant discrepancies are
usually observed between theoretical PVEH characteristics and experimental ones.

This subsection details a very convenient procedure to determine experimentally
the actual electromechanical parameters of themodel based on a simplemeasurement
of the PVEH complex admittance. The measurement of the complex admittance of
the PVEH has to be performed around its natural frequency. This can be done using
an impedance analyzer. During this measurement, the PVEH should not be excited
by ambient acceleration.

Using Eq. (10.3.1) written in the frequency domain, and the dimensionless para-
meters k2m , ξE and ξM , the expression of the PVEH admittance can be obtained

YP = − I

V
= jCPω

(
1 + k2m

1 − �2 + 2 jξM�
− 2 jξE

�

)
(10.3.5)

It is shown that the admittance is the one of aCP capacitormultiplied by a dimension-
less factor only function of �, k2m , k

2
m , ξE and ξM . Figure10.8 shows the comparison

Fig. 10.8 An example of the experimental and modeled admittance of a PVEH
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Table 10.1 PVEH identified parameters

C0 51.7 nF ξE 2.86 10−3

ω0 547 rad/s ξM 4.14 10−3

k2m 3.97% M 10.2 g

of the experimental and modeled admittance of a real PVEH. The identification of
the parameters has been performed using optimization methods to get the best match
between the measurements and the model.

Five parameters can be obtained from the measurement of the admittance: CPω0,
k2m , ξE , and ξM . From them, it is not possible to get all the six parameters of the
constitutive equations (10.3.1). To get M , K , D, and α, an additional measurement
is indeed required. For instance, the ratio in the frequency domain of the open-circuit
voltage V0 to the displacement of the dynamic mass x can be used to determine α, as
shown by Eq. (10.3.6). From Eqs (10.3.2) and (10.3.3), M , K , and D can eventually
be calculated.

V0

x
= α

CP

1

1 − 2 j ξE
�

≈ α

CP
(10.3.6)

Finally, the six independent identified parameters for the considered PVEHmodel
are listed in Table10.1.

Among other identification procedure which can be found in the literature, a
classical one consists in determining the coupling coefficient k2 from the open-circuit
and short-circuit resonance frequencies of the PVEH, and the mechanical damping
ratio ξM from the -3dB frequency bandwidth of the displacement x of the PVEH
with piezoelement short-circuited as electrical boundary condition [7].

The electrical losses coefficient ξE is usually much lower than 0.01 and its effect
on the admittance and more generally on the PVEH performances is weak in most
cases. Consequently, ξE is neglected in most of the literature.

10.4 Optimal Impedance Matching

Several works used the well-known optimal impedance matching strategy to maxi-
mize the power output of PVEH [5, 8]. In this section the optimal linear electrical
load that maximizes the PVEH power generation will be analytically determined. As
a first approach, no technical limitation will be taken into account. Results that are
not achievable in practice may be obtained, but this study will theoretically define
the PVEH performance upper boundary.
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Fig. 10.9 Electrical network
using the matching
impedance strategy v

i

CP RP YL=AL+jB

10.4.1 Theory

An electrical load modeled by the complex admittance YL = AL + j B is connected
to the PVEH, as shown in Fig. 10.9.

The piezoelectric voltage V can then be expressed in the frequency domain as

V = α jωx

AP + AL + j (CPω + B)
(10.4.1)

which can be rewritten as Eq. (10.4.2), where ν and υ are two dimensionless coeffi-
cient, respectively corresponding to the in-phase and the quadrature-phase compo-
nents of the voltage with respect to the displacement.

V = α
CP

(ν + jυ) x with

⎧⎨
⎩

ν = CPω(B+CPω)

(AP+AC )2+(B+CPω)2

υ = CPω(AP+AC )

(AP+AC )2+(B+CPω)2

(10.4.2)

Substituting Eq. (10.4.2) in the mechanical constitutive equation (10.3.1) written
in the frequency domain leads to the expression of the displacement

x = Mγ

K − Mω2 + α2

CP
ν + j

(
Cω + α2

CP
υ
) (10.4.3)

Normalizing the displacement with respect to γm/ω2
0 (the ambient displacement

magnitude) gives

x ′ = 1

1 − �2 + k2mν + j
(
2ξm� + k2mυ

) (10.4.4)

This expression shows that the natural frequency of the PVEH can be tuned
through ν and that the damping induced by energy harvesting can be tuned through
υ(υ > 0). The larger k2m , the larger the effect of ν and υ variations.

The harvested energy is considered to be the energy dissipated in the real com-
ponent of the electrical load (AL). Of course, this does not correspond to a realistic
energy harvesting circuit since the voltage would need to be rectified. AL can, how-
ever, be considered as the equivalent input conductance of the circuit to be supplied.
This approach aims at providing an upper limit to the performance of a PVEH.
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In these conditions, the harvested power can be expressed as

P =
∣∣V ∣∣2
2

AL (10.4.5)

In the case where ξE is neglected (AP = 0), intrinsic losses in the PVEH are mod-
eled by ξM only. It follows from Williams and Yates analysis and from Eq. (10.4.4)
that the power is maximized when ν is chosen so that the natural frequency of the
PVEH matches the operation frequency and υ so that the damping induces by the
energy harvesting equals the intrinsic damping, which gives:

⎧⎨
⎩

ν = �2−1
k2m

υ = 2ξM�

k2m

(10.4.6)

If no technical constraint is taken into account, ν can take any positive or negative
value and υ can take any positive value, whichmeans that Eq. (10.4.6) can be verified
whatever the value of �. In this case, the power limit Plim given by Eq. (10.2.5) is
obtained, whatever the operation frequency.

If ξE is not neglected (AP �= 0), the optimal values of AL and B that maximize
the harvested power are obtained as a function of � by looking for the roots of the
derivatives of the harvested power with respect to AL and B, respectively. They are
given by

⎧⎨
⎩
ALopt = CPω

(
2ξE
�

+ 2K 2
mξm�

4�2ξ 2
m+(�2−1)2

)

Bopt = CPω
(

K 2
m (�2−1)

4�2ξ 2
m+(�2−1)2 − 1

) (10.4.7)

And the maximal power that can be harvested at a given operation frequency by

Popt = P|AL=ALopt and B=Bopt
= Mγ 2

M

16ω0

k2m�2

k2mξM�2 + ξE

(
4ξ 2

M�2 + (
�2 − 1

)2)
(10.4.8)

The normalized optimal power is then

P ′
opt = 1

2ξM + 2ξE
k2m

(
4ξ 2

M + (�2−1)
2

�2

) (10.4.9)

As previously mentioned if ξE = 0, the optimal power reaches Plim whatever
the operation frequency, provided that AL and B are adequately tuned. If ξE is
not neglected, it is shown that the optimal power reached a maximum for � = 1.
Equation (10.4.10) gives the normalized maximal power.
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P ′
max = 1

2ξM
(
1 + 4 ξE ξM

k2m

) (10.4.10)

The PVEH bandwidth can be obtained finding�1 and�2 so that. The normalized
bandwidth is then given by (10.4.11), and the bandwidth by �ω = �� · ω0.

�� = �2 − �1 = 2ξM

√
1 + k2m

4ξEξM
(10.4.11)

The normalized power and displacement are plotted in Fig. 10.10 as a function
of the operating frequency for different values of ξE . The corresponding real and
complex parts of the optimal electrical load admittance are shown in Fig. 10.11. It is
clearly shown that ξE drastically affects the bandwidth of the PVEH. FromFig. 10.11,
it can be seen that the optimal complex part of the load admittance is independent
on ξE and that its sign is mainly negative in the frequency range but can also be
positive. This concretely means that the optimal load is a resistor in parallel with an
inductor in most of the frequency range but that it is sometimes a resistor in parallel
with a capacitor (for operation frequency slightly above the natural frequency of the
PVEH).

Figure10.12 exhibits the voltage on the piezoelectric element when the optimal
complex electrical load is selected as a function of the operating frequency. It is
clearly shown that increasing the bandwidth lead to very high piezoelectric voltage

Fig. 10.10 Normalized harvested power (upper plot) and displacement magnitude (lower plot) as
a function of the operation frequency for different values of ξE (k2m = 3%, ξM = 0.005)
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Fig. 10.11 Real (upper plot) and complex (lower plot) parts of the optimal electrical load admit-
tance as a function of the operation frequency for different values of ξE (k2m = 3%, ξM = 0.005)

Fig. 10.12 Ratio of the optimal piezoelectric voltage to the maximal open-circuit voltage as a
function of the operation frequency for different values of ξE (k2m = 3%, ξM = 0.005)
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when the operating frequency is shifted away from the resonance frequency (up to
six times the maximal open-circuit voltage in the considered cases). This is due to
the increase of reactive power alternatively flowing between the capacitance of the
piezoelectric element and the complex part of the optimal admittance.

Finally the figure of merit that is equals to the product of the maximal normalized
power by the normalized product is given by:

FoM = P ′
max · �� =

k2m
4ξE ξM√

1 + k2m
4ξE ξM

= χ√
1 + χ

with χ = k2m
4ξEξM

= α2RP

D

(10.4.12)

where χ is dimensionless parameter that can be seen as an indicator of the perfor-
mance of the PVEH (it increases with the coupling coefficient and decreases with
the electrical and mechanical losses).

The normalized power and bandwidth, as well as the FoM are plotted in Fig. 10.13
as a function of χ an be seen that the FoM can largely exceed 2

√
2, which was the

upper limit obtained from the Williams and Yates model. This is because of the
frequency tuning mechanism induced by the complex part of the load admittance.
For typical PVEH, the order ofmagnitude for k2m is around 10−2,whereas it is between
10−2 and 10−3 ξE ξM . This means that χ typical values ranges from 10 to 100 about.
In this case, the figure of merit can be approximated by FoM ≈ √

χ .
In practice, this impedance matching strategy can hardly be implemented because

it requires the realization of complex electrical load with tuning mechanisms. One

Fig. 10.13 Upper plot normalized power and bandwidth as a function ofχ (for ξL = 0.025). Lower
plot FoM as a function of ξHmax/ξL (this plot is independent on ξL )
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could think about using active gyrator circuits to emulate large tunable inductors.
Such synthetic inductors based on operational amplifiers, capacitances, and resis-
tances however consume a lot of power and are not a viable option for energy har-
vesting applications.

Another limitation of this approach can be inferred from Fig. 10.12: the voltage
increase due to the reactive part of the complex optimal load may lead to very
high piezoelectric voltage for which depoling effect or at least nonlinearities in the
piezoelectric coefficients may be observed.

Possible practical solution for implementing this impedance matching strategy
will be discussed in the next section

10.4.2 Practical Implementation

Modern power electronics offersmany solutions based on switching-mode converters
enabling high-efficiency electrical power conversion. Input and output voltages can
exhibit various shapes and polarities, and the power transfer can be unidirectional or
bi-directional, depending on the considered circuits [9].

In practice, electric loads powered by energy harvesters—such as wireless sensor
nodes for instance—do not behave at all like the “optimal matching impedance”
defined in the previous subsection. Indeed, such electric loads require DC voltage-
regulated power supply, and their consumption may be extremely variable in time.
Thus, AC–DC power conversion, energy storage, and voltage regulation are the
minimum requirements for the electronic interface, which will be used to transfer
the electrical energy produced by the piezoelectric material to the electric load.

Passive AC–DC converters, such as diode rectifiers, are very simple to implement
but the shape of their AC input voltage and current is not similar to that of linear
impedances. Emulation of linear impedance is however possible using PWM recti-
fiers. The proposed implementation of the optimal impedance matching strategy is
based on the interface circuit represented in Fig. 10.14, which is presented in [10].
In this circuit, the AC input of the PWM rectifier is connected to the piezoelectric
element. Through the PWM control of the switches of the active rectifier, it is the-

RL VL
CR

x

CP

v
CS

VDC

IDC

DC voltage
regulator

IL

Fig. 10.14 Interface circuit for practical implementation of the optimal impedance matching
strategy
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oretically possible to emulate any linear or nonlinear load, including the optimal
impedance defined previously. The DC output of the active rectifier is connected
to and energy storage element (a capacitor or a supercapacitor) whose voltage may
vary, depending on the energy stored. The output DC voltage delivered to the electric
load can be then regulated using a buck-boost converter. This sub-circuit enables to
ensure output voltage regulation whether the output DC voltage VL is lower or higher
than the input DC voltage VDC .

The control strategy of this interface circuit is not very complicated, but it is out
of the scope of this chapter and it will not be detailed here. Among important ideas to
have in mind, practical implementation of the optimal impedance matching strategy
is possible. However, in case of very low harvested power level, typically in the
range of a few tenths of microwatts or below, the available power may be too low
to implement sophisticated control circuits. Therefore, “less optimal” approaches
based on simpler control principles and simpler circuits may turn out to be much
more efficient in practice. This is the objective of the various techniques developed
in the next sections.

10.5 The Classical Rectifier Followed by a Resistive Load

In this section, the classical rectifier circuit followedby a storage/smoothing capacitor
is studied. This circuit is shown in Fig. 10.15, where RL represents the equivalent
input resistance of the device to be supplied. The harvested power is then calculated
as the power dissipated into RL .

For simplicity, it will be assumed that the electrical losses can be neglected ξE =
0). This assumption is valid in most of practical cases where RL is much lower than
RP .

10.5.1 Power and Bandwidth

This circuit has been studied in details by Shu and Lien in [11]. Sinusoidal ambient
accelerations around the resonance frequency of the PVEH are considered, and it is
assumed that the smoothing capacitor is large enough so that VDC is ripple free. The
value of VDC can then be obtained as a function of the magnitude xM of the dynamic
mass relative displacement:

Fig. 10.15 Electrical
network using the classical
rectifier circuit RL VDC

CR

x

CP

v
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VDC = αωRL

CPωRL + π
2

xM (10.5.1)

Because of the nonlinear behavior of the full-wave rectifier, the piezoelectric volt-
age V is periodic but not sinusoidal. However, since only its fundamental harmonic
frequency is close from the resonance frequency of the VEH, it can be assumed that
only this fundamental component V1, given in the frequency domain by (10.5.2),
impacts the displacement of the VEH dynamic mass.

V1 = α
CP

(ν + jυ) x with

⎧⎨
⎩

ν = ωRLCP
ωRLCP+ π

2

υ = 2ωRLCP

(ωRLCP+ π
2 )

2

(10.5.2)

The expression in the frequency domain of the displacement and the normal-
ized displacement are then the same as in Sect. 10.4.1, Eqs. (10.4.3) and (10.4.4),
respectively, except that the expressions of ν and υ are different.

r ′ = RLCPω0 (10.5.3)

Let r be the normalized load as given by (3.3), ν and υ can also be expressed as

⎧⎨
⎩

ν = r ′�
r ′�+ π

2

υ = 2r ′�
(r ′�+ π

2 )
2

(10.5.4)

It can be seen from (10.5.4) that ν is between 0 (when r ’= 0) and 1 (when r ’
tends to infinite). From (10.4.4), this means that the resonance frequency of the
PVEH is between ω0 (short-circuit resonance frequency) and ω0

√
1 + K 2

m (open-
circuit resonance frequency).

It can also be seen that υ is between 0 (when r ’= 0 or when r ’ tends to infinite)
and 1/π (when r ′� = π/2 From Eq. (10.4.6), this means that the optimal damping
cannot be obtained if k2m < 2�ξMπ .

The harvested power can be expressed as

P = V 2
DC

RL
(10.5.5)

And the normalized harvested power is finally given by Eq. (10.5.6), where the
expression of x ′ is the same as in Eq. (10.4.4)

P ′ = 8k2m
r ′�2

(
r ′� + π

2

)2
∣∣x ′∣∣2 (10.5.6)

The maximal normalized power and the corresponding optimal normalized load
are plotted as a function of the frequency in Fig. 10.16, for different values of k2m .
When k2m increases, it can be seen that whereas the bandwidth keeps on increasing,
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Fig. 10.16 Upper plot normalized power as a function of � for ξL = 0.005 (QM = 100) and
different values of k2m . Lower plot normalized optimal load as a function of � (areas corresponds
to the load domain for which the power is at least 50% of the maximal power)

the maximal normalized power first increases and then saturates at QM . It is worthy
of note that a continuous tuning of the electrical load as a function of the operation
frequency is required to get the best performance. The colored areas represent the
load domains for which at least 50% of the maximal power is harvested.

The normalized power, bandwidth, and the figure of merit defined in (10.2.12) are
plotted in Fig. 10.17 as a function of k2m for different values of QM . The black curve
in Figure10.17a corresponds to k2mQM = π . It is shown that the normalized power
equals QM for k2mQM > π . Figure10.17b shows that the bandwidth is quasi-linearly

Fig. 10.17 a Normalized power versus k2m , b normalized bandwidth versus k2m , c FoM versus k2m
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increasing with k2m . For very large values of k2m , the bandwidth however decreases
because the power in the well between the twomaxima (cf. Fig. 10.16 with k2m >6%)
becomes less than half of the maximal power.

For typical PVEH, k2m is in the order of a few percent and QM is between 10 and a
few hundreds. The figure of merit is then usually lower than 5. Figure10.17c clearly
shows that PVEH with high k2m and high QM exhibit higher performance.

It is worthy of note that results presented in Fig. 10.17 imply a continuous tuning
of the electrical load as a function of the operation frequency, which requires spe-
cific power conversion interface and dedicated MPPT control circuit for practical
implementation.

10.5.2 Practical Implementation

Several interface circuit based on the classical rectifier circuit principle have been
proposed for maximizing the power transfer from the piezoelectric device to the
load. In this optimization approach, the main function of the interface circuit is to
emulate the optimal load resistance defined in the previous section. Ottman et al.
studied one of the first interface circuits [12]. This circuit was based on the buck
DC–DC converter represented in Fig. 10.18. Using the appropriate control law of
the DC-DC converter, it was shown that the performances of the system could be
greatly improved. In order to reduce the power consumption of the control circuit so
that it can be self-powered, the authors proposed a new control principle of the buck
converter that exhibited similar performances, with much simpler implementation
[13].

Following the same approach, Lefeuvre et al. [14] proposed an interface circuit
based on a buck-boost DC–DC converter depicted in Fig. 10.19. In discontinuous
current mode, this circuit exhibits a constant input resistance for a given duty-cycle
control of the electronic switch, making possible the implementation of the interface
using only an oscillator with constant duty-cycle as control circuit (IC1 in Fig. 10.19).

Fig. 10.18 Experimental setup including a buck DC–DC converter (from [12])
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Fig. 10.19 Experimental circuit and setup including a buck-boost DC–DC converter (from [14])

For output powers ranging from 200 µW to 1.5 mW, experimental results showed
more than 70% overall efficiency of this circuit, including the control circuit con-
sumption. In this practical example, the input resistance of the interface circuit was
predetermined to be as close as possible to the optimal value at the resonant fre-
quency. Consequently, the robustness was relatively weak with respect to variations
of electromechanical characteristics.

To overcome this drawback, maximum power point tracking (MPPT) circuits
with ultra-low power consumption were implemented. Yi et al. proposed a low-
power interface circuit, based on a switched capacitor DC-DC converter, integrated
in a 0.35 µm CMOS process ASIC [15]. In this ASIC, an energy-adaptive MPPT
allowed to activate different operation modes according to the available power. Kong
et al. presented an interface circuit based on a flyback DC–DC converter [16]. The
MPPT algorithm was implemented using a low-power microcontroller unit MSP430
from Texas Instruments. Experimental results indicated that the proposed interface
circuit achieved 72% efficiency around the resonant frequency and around 8.4 mW
output power.

In this domain, the current trends are clearly to improve the efficiency of low-
power DC–DC converters and to design fast and effective MPPT control circuits
with ultra-low power consumption [17, 18].

10.6 Nonlinear Energy Harvesting Circuits

10.6.1 Principle

Nonlinear energy extraction approaches have been developed to optimize the energy
extracted from PVEH. From the simple model presented in Sect. 10.3.1, the energy
equation (10.6.1) is obtained multiplying both terms of the dynamical mechanical
equilibrium equation by the velocity and integrating over the time variable. It shows
that the energy provided by the ambient acceleration is divided into kinetic energy,
potential elastic energy, mechanical losses and the energy extracted from the piezo-
electric element. Nonlinear energy extraction circuits aim at increasing this last term.
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Fig. 10.20 a Basic electronic element for nonlinear energy extraction b Corresponding typical
waveforms
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∫
Dẋ2 dt +

∫
αV ẋ dt (10.6.1)

The basic electronic element for nonlinear energy extraction circuit is shown in
Fig. 10.20a. It consists of connecting a coil in series with an electronic switch par-
allel to the piezoelectric element. The switch is almost always open, except when a
minimum or maximum of the dynamic mass displacement occurs. At this moment,
the switch is closed and CP in parallel with L forms an electrical oscillating circuit.
The switch is kept closed during half of the oscillating period TI , so that the voltage
is reversed. Because there are some electrical losses in the {L ,CP} network, char-
acterized by the quality factor QI , the absolute value of the voltage after inversion
is slightly reduced compared to the one before the switch is closed. Correspond-
ing waveforms for the voltage, displacement, and velocity of the dynamic mass are
shown in Fig. 10.20b.

This simple circuit has two effects: First, for constant displacement amplitude,
the amplitude of the voltage is largely increased; second voltage and velocity are of
the same sign. These two effects clearly induce the increase of the energy extraction
term of Eq. (10.6.1).

This very simple circuit alone is, however, not suitable for energy harvesting
purpose, since the extracted power is not converted into useful power: It is actually
dissipated as heat in the coil and the piezoelectric element. This circuit was in fact
initially developed for vibration damping purpose and called SSDI (Synchronized
Switch Damping on Inductor) [19].

Adding AC/DC and energy storage stages to this elementary circuit has been the
basis of the further developments of nonlinear energy harvesting approaches. For
instance, the SSHI (Synchronized Switch Harvesting on Inductor) simply consists
in combining this switch-coil circuit to the classical full-wave rectifier approach,
connecting them in parallel to the piezoelectric element [7].
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10.6.2 Comparison of Various Nonlinear Circuits

Based on the general principle exposed previously, several nonlinear energy harvest-
ing circuits with different features have been proposed over the last decade. This
subsection outlines the main properties of each circuit. They have in common to
increase the last term of Eq. (10.6.1), that is to say they increase the mechanical
damping induced by energy conversion. Low-coupling PVEH particularly benefit
from these circuits. Indeed, such increase of the electromechanical energy conver-
sion effectiveness allows getting closer to the optimal damping (see Sect. 10.2.1).
This beneficial effect also increases the PVEH performances in case of out-of reso-
nance and pulsed excitation [20]. In the case of strongly coupled PVEH excited at
resonant frequency, no gain can be expected if optimal damping is already attained.
Specific features of the main nonlinear circuits are detailed hereafter.

Theparallel SSHI circuit depicted onFig. 10.21 is one of the first nonlinear PVEH
interfaces based on the principle of “synchronized switching” [7, 20, 21]. This circuit
is a straightforward association of the classical rectifier circuit of Fig. 10.15 and the
circuit of Fig. 10.20a. Compared to the classical rectifier circuit, the parallel SSHI
circuit tends to increase the piezoelectric voltage. The optimal load resistance tends
also to be higher than with the classical rectifier circuit. This voltage magnification
property may be used to get high voltages, or to reduce the energy losses related to
the voltage drop of the diodes in the rectifier bridge. This is particularly interesting in
the case of low-voltage PVEHmicrosystems, whose open-circuit voltage is typically
lower than 1 V. Shu et al. studied in detail the effect of this circuit on PVEH as a
function of the excitation frequency [22].

In case of the series SSHI circuit (Fig. 10.22), the coil-switch dipole is connected
in series with the PVEH instead of being connected in parallel. This induces slight
changes on the piezoelectric voltage waveform, and significant differences on the
circuit output voltage and the optimal load resistance. Indeed, in this case the output
voltage and the optimal load resistance are smaller than those of the classical rectifier
circuit [23]. Therefore, the series SSHI circuit is particularly interesting to get an
output voltage lower than the piezoelectric voltage. This circuit was first proposed
for this voltage reduction property by Taylor et al. [24].

(a) (b)

Piezo
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L
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Cr

R

Fig. 10.21 a Parallel SSHI circuit schematic and b typical waveforms (from [23])
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Fig. 10.22 a Series SSHI circuit schematic and b typical waveforms (from [23])

Fig. 10.23 a SECE circuit schematic and b typical waveforms (from [25])

The principle of the SECE circuit consists in extracting promptly and entirely
the electric energy converted by the piezoelectric element on each extremum of
the piezoelectric voltage. In the SECE circuit represented on Fig. 10.23, the energy
transfer is achievedby aflyback-typeDC–DCpower converter [25].Alternatively, the
flyback circuit can be replaced by a buck-boost DC–DC converter [26]. In theory, the
harvested power is independent of the load. This unique property enables to harvest
the maximum power without MPPT system.

Several works focused on efficiency improvement of the previous circuits for low-
voltage applications. A way for reducing the voltage drops consisted in reducing the
number of diodes used for voltage rectification. In this domain, Makihara et al. [27]
proposed a half-bridge circuit for the Parallel SSHI circuit. Lallart et al. proposed
another half-bridge circuit for low-voltage implementation of the series SSHI inter-
face [28].

The SSHI-MR circuit proposed by Garbuio et al. [29] (Fig. 10.24) brought an
ultimate reduction of the losses due to the threshold voltage of the diodes. The typical
waveforms of this circuit are very similar to those of the series SSHI circuit. The
main difference comes from the magnetic transformer, which replaces the coil of
the series SSHI circuit. The voltage gain of the transformer in association with the
single-diode rectifier enables operation toward ultra-low-voltage PVEH: experimen-
tal results showed effective energy harvesting from piezoelectric voltages as low as
30 mV.

The single-supply pre-biasing circuit presented by Elliott et al. [30] has piezo-
electric waveforms identical to that of the parallel SSHI circuit. The use of MOSFET
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Fig. 10.24 SSHI-MR circuit schematic (from [29])

electronic switches instead of diodes enables efficient operation even with ultra-low
PVEH voltages.

The DSSH circuit proposed by Lallart et al. is an association of the Series SSHI
circuit and the buck-boost DC–DC converter of the SECE circuit [31] (Fig. 10.25).
The intermediate energy storage capacitor Cint brings an additional degree of free-
dom to control the energy conversion. This intermediate energy tank is used here
for optimizing the trade-off between energy harvesting and mechanical damping.
In addition, the buck–boost DC–DC converter makes the harvested power optimal
whatever the load characteristics (i.e., no influence of the load equivalent resistance).
The DSSH circuit implementation is a little bit more complicated than that of the
SECEor the SSHI circuits. Despite the cumulated losses of the two conversion stages,
experimental results exhibited much better performances than that of the standard
and SECE techniques in the case of PVEH with small k2Qm. The so-called ESSH
circuit proposed by Shen et al. [32] can be considered as an improvement of the
DSSH circuit, which allows a finer control of the mechanical damping, induced by
energy conversion.

Based on this general nonlinear approach, several other interface circuits have
been proposed. Wu et al. proposed the so-called SSDCI circuit, based on a circuit
similar to the series SSHI, butwith amodified switch control [33]. The principle of the
method consists of transferring the electrostatic energy available on the piezoelectric
element to a storage capacitor through an inductance.

Fig. 10.25 a DSSH circuit schematic, and b power versus k2Qm at resonant frequency (from [31])
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Dicken et al. proposed the so-called Pre-Biasing circuit [34], which enables to
pre-bias the piezoelectric element with the appropriate voltage to finely optimize
the harvested power. However, the complexity of the circuit, which includes numer-
ous switches and two different power supplies, may be an obstacle to low-power
standalone implementation.

Energy conversion cycles can be actively controlled using PWM inverters [10].
This technique was named “active energy harvesting” by Liu et al. [35], and further
analyzed for blood-pressure energy harvesting [36]. Such active principle theoret-
ically enables to give any shape to the piezoelectric voltage waveform, including
for instance the “optimal impedance emulation” described in Sect. 3.1, yielding out-
standing power level in theory. However, power consumption of the PWM control
and energy losses of the circuit may limit the actual performances.

In summary, this subsection presented an overview of the main nonlinear circuits
proposed until now. The reader will find more detailed analysis of these circuits
in the original articles given in the References list. The next subsection presents
a detailed analysis of the so-called OSECE circuit [37], which is one of the last
proposed nonlinear circuits. It can be seen as a variant of the SSHI-MR circuit,
but with simplified control principle, making much easier low-power standalone
implementation.

10.6.3 The OSECE Approach

The OSECE (Optimized Synchronous Electrical Charge Extraction) has been devel-
oped as an improvement of the SECE approach. It allows to keep its main feature,
namely the low dependency of the performance on the electrical load, while simpli-
fying the electronic switches driving signals and enhancing the energy conversion
[37].

The OSECE interface is shown in Fig. 10.26. A transformer with two primary and
one secondary windings divides this circuit into two parts: the left part is very similar
to the SSDI circuit [19], including the switch control signal; the right part is similar
to the secondary of a typical flyback DC/DC converter (smoothing capacitor Cr plus
equivalent load resistor RL).

The switch S1 and S2 are complementary driven: S1 is closed and S2 opened after
the displacement (voltage) reaches a maximum and S1 is opened and S2 closed after

Fig. 10.26 Electrical
network using the OSECE
strategy
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Fig. 10.27 Typical waveforms for the OSECE approach (from [38])

the displacement (voltage) reaches a minimum. This switching strategy allows the
voltage to be partly inverted two times a period of vibration.

The voltage is only partly inverted because the inversion phase is stopped as soon
as the voltage on the secondary reaches VDC (at this moment, the diode in series with
the closed switch becomes reversed biased). A detailed description and the modeling
of this interface circuit can be found in [37].

Figure10.27 shows the typicalOSECEwaveforms for the displacement, the piezo-
electric voltage and the switch control signal for several periods. Details of voltages
and currents close to the energy extraction moments are also shown. VM and Vm are
the piezoelectric voltage values just before and just after the energy extraction phase
whose duration is tm .

For the calculation of the performance of the OSECE approach, several assump-
tions are made: the magnetic circuit is linear; the coupling between the primary and
secondary windings is ideal; the on-state voltage induced by the switches and the
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diodes are neglected; the output voltage VDC is ripple-free; and sinusoidal ambient
accelerations around the resonance frequency of the PVEH are considered.

The value of VDC can be obtained as a function of the magnitude xM of the
dynamic mass relative displacement:

VDC = −2m
α

CP

cos (θ) e
−θ
2QI

1 + cos (θ) e
−θ
2QI

xM (VDC ≥ 0) (10.6.2)

where QI is the quality factor of the primary {L1,CP} oscillating circuit, m is the
turns ratio of the transformer, and θ is the phase angle corresponding to the duration
of the inversion phase, given by:

θ = π − arctan

(
m

√
2π

RLCPω

)
= π − arctan

(
m

√
2π

r ′�

)
(10.6.3)

As for the classical rectifier approach, only the fundamental component V1 of the
piezoelectric voltage, given by (10.6.4), is considered to impact the motion of the
dynamic mass.

V 1 = α
CP

(ν + jυ) x with

⎧⎨
⎩

ν = 1

υ = 4
π

1−cos(θ)e
−θ
2QI

1+cos(θ)e
−θ
2QI

(10.6.4)

The expression in the frequency domain of the displacement and the normalized
displacement are still the same as in Sect. 10.4.1, Eqs. (10.4.3) and (10.4.4), respec-
tively.

Since ν = 1, the natural angular frequency of the PVEH is the open-circuit angular
resonance frequency ω0

√
1 + k2m . It can also be seen that v is always larger that 4/υ

(since θ is between π /2 and π ) and depends on θ and QI . Compared to the classical
rectifier case where υ is lower than 1/π it is clear that the OSECE approach induces
more damping.As for the classical approach, the harvested power can be expressed as
(10.5.5), and the normalized harvested power is finally given by Eq. (10.6.5); where
the expression of x ′ is the same as in Eq. (10.4.4)

P ′ = 16

π
k2m

� sin (θ) e− θ
QI(

1 + cos (θ) e− θ
2QI

)2

∣∣x ′∣∣2 (10.6.5)

The maximal normalized power and the corresponding optimal normalized load
are plotted as a function of the frequency in Fig. 10.28, for different values of k2m .
When k2m increases, it can be seen that whereas the bandwidth keeps on increasing,
the maximal normalized power first increases and then decreases. This decrease is
due to the too large damping effect induced by the OSECE approach in the case
of highly coupled PVEH. Consequently comparing the power using the OSECE
approach and the classical rectifier approach, it is found that OSECE leads to better
performance for structures with low coupling coefficients or structures driven out of
their resonance frequency.
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Fig. 10.28 Upper plot normalized power as a function of � for ξL = 0.005 (QM = 100) and
different values of k2m (plain line OSECE, dashed line: simple rectifier). Lower plot normalized
optimal load as a function of � (areas corresponds to the load domain for which the power is at
least 50% of the maximal power)

The colored areas in the lower plot represent the load domains for which at least
50% of the maximal power is harvested. It is shown that the dependency on the load
is much lower than when using the classical rectifier approach.

The normalized power, bandwidth, and the figure of merit defined in (1.12) are
plotted in Sect. 10.7 as a function of k2m for different values of QM . Results using the
OSECE circuit are plotted as plain lines, and can be compared with results from the
classical approach, which are plotted as dashed lines. Figure10.29a shows that the
power using the OSECE approach is larger when k2mQM is lower than approximately
0.7 (k2mQM = 0.7 corresponds to the black curve). This particular value depends on
QI ,which was set to 5 in this calculation. Figure10.29b shows that the bandwidth
using the OSECE approach is always larger, confirming the interest of this approach
for PVEHs exited out of their resonances. Finally, Fig. 10.29c shows that the figure of
merit is higher using the OSECE approach when k2mQM is lower than approximately
2.8 (k2mQM = 2.8 corresponds to the black line).

It is worthy of note that the performances plotted in Fig. 10.29 are given for the
optimal electrical load. Practical implementations of the classical approach may lead
to significantly poorer results than theoretical ones because of the strong dependency
of the harvested power on the load, which imply the mandatory use of a complex
MPPT (Maximum Power Point Tracking) strategy. On the other hand, the OSECE
approach is much more tolerant to the load variations, which makes its practical
performance closer from theory [38].
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Fig. 10.29 a Normalized power versus k2m , b normalized bandwidth versus k2m , c) FoM versus k2m
Plain lines OSECE (QI=5, m=1), dotted lines simple rectifier

10.7 Electrical Frequency tuning

10.7.1 The Need for Wideband PEH

Most of PEHs reported in the literature exhibit squared coupling coefficient k2m lower
than 5%. As shown in the previous sections, their bandwidth can be increased using
nonlinear energy extraction circuits, but are still limited to a few percent of their
resonance frequency. Such PEH can thus efficiently operate in a narrow frequency
band tuned to match the excitation frequency.

However, environmental excitations have broadband or time-dependent charac-
teristics in which the energy is distributed over a spread spectrum of frequencies.
Two strategies have been investigated: Developing nonlinear wideband oscillators
and developing linear oscillator with resonance frequency tuning mechanisms. Non-
linear oscillators (hardening, softening or bistable) are well suited for broadband
vibration spectrum [39], whereas resonance frequency tuning is more appropriated
for narrow band but time-dependent vibrations (which can be found on a motor
whose rotation speed is varying). Nonlinear oscillators approaches are beyond the
scope of this chapter since they are not related to the energy extraction circuit but to
the architecture of the PEH. Resonance frequency tuning is usually done through an
additional mechanical component that passively or actively changes the stiffness or
inertia of a linear mechanical oscillator [40]. These mechanical approaches will also
not be detailed here.

This section reports a theoretical nonlinear energy extraction approach to tune
the resonant frequency of linear inertial PEH through the control strategy of the
associated electronic interface circuit. When associated with piezoelectric devices
exhibiting high electromechanical coupling, it enables to vary the resonant frequency
in large proportions without any additional component.

Seddik et al. previously proposed a principle of control through the electronic
interface circuit [41]. It consisted in connecting shunt capacitors to the piezoelectric
device. Consequently, the electromechanical structure stiffness was varied, and the
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resonant frequency was changed accordingly. They showed that it was possible to
significantly vary the resonant frequency of highly coupled piezoelectric energy
harvesters. However, because the shunt capacitance was varied step by step, the
resonant frequency could not be continuously tuned. With the proposed technique,
it is expected that a continuous tuning is achievable on a noticeably larger frequency
range.

10.7.2 Frequency Tuning SECE (FTSECE)

The FTSECE approach is also derived from the previously developed SECE (Syn-
chronizedElectrical ChargeExtraction) approach. It is called FTSECE for Frequency
Tuning SECE [42]. It consists in letting the PEH in open-circuit conditionmost of the
time, and to extract the generated electrical charges two times a period of vibration.
In contrast to the SECE technique, the FTSECE circuit does not extract energy at
the piezoelectric voltage extremum, but with a phase shift φ. Moreover, whereas the
piezoelectric voltage is null after each energy extraction phase in the SECE approach
(all the electrical charges are extracted), it can be tuned with the FTSECE technique.

The FTSECE approach has not been practically demonstrated yet, but a possible
electronic interface circuit for its realization is schematically depicted in Fig. 10.30.
This circuit includes an electronic switch S, whose control is synchronized with the
piezoelectric voltage. Two parameters of S are varied through the control circuit:
the on-state time duration (tON ) and the lag time duration (tlag) between the voltage
extrema and the instant where S is turned on. The phase shiftφ =�tlag can be positive
(S is closed after the voltage extremum) or negative (S is closed before the voltage
extremum). If VM is the piezoelectric voltage at the moment where S is turned on,
varying tON will allow to set the voltage to βVM after the energy extraction phase. If
QI is the quality factor of the {L ,CP} circuit, βbe tuned between 1 (tON = 0) and
−e−π/(2QI ) (tON � π (LCP)1/2)

The load resistance value has no influence on the harvested power provided that
the DC load voltage is larger than the piezoelectric voltage amplitude. In this way,
energy transfers from the inductor to the rectifier only occur right after S is turned
off. Varying tON enables to tune the amount of electrical energy extracted from the
piezoelectric elements, and, if needed, to reverse the polarity of the piezoelectric
voltage. Varying tlag enables to modify the electromechanical structure stiffness

Fig. 10.30 Schematic
representation of the
FTSECE electronic interface
circuit

RL VDC
CR

x

CP

v
L

S

Control 
circuit
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Fig. 10.31 Typical
waveforms for the FTSECE
approach

by tuning the phase shift between the piezoelectric voltage and the strain in the
piezoelectric element.

Typical waveforms for the FTSECE approach are given in Fig. 10.31. Using the
same procedure as in previous sections, the fundamental component V1 of the piezo-
electric voltage is calculated:

V 1 = α
CP

(ν + jυ) x with

{
ν = 1 + 2

π

1−β

1+β
sin (2φ)

υ = 4
π

1−β

1+β
cos2 (φ)

(10.7.1)

Equation (10.7.1) confirm that φ and β (tlag and tON ) affect both the resonance
frequency of the system and its damping. Frequency tuning as well as optimization
of the energy transfer is then achievable using the FTSECE approach.

The power extracted from the PEH is calculated from the energy extracted two
times a period of the ambient vibration

PEX = ω

2π
CPV

2
M

(
1 − β2

)
(10.7.2)

The expression of VM is given by (10.7.3) where xM is the magnitude of the
dynamic mass displacement.

VM = α

CP
xM cos (φ)

2

1 + β
(10.7.3)

Taking into account the losses in the inductor L the normalized harvested power
can then be approximated by Eq. (10.7.4), where the expression of x ′ is given by
Eq. (10.4.4)

P ′ = 16

π
k2m� cos2 (φ)

(1 − β)
(
e−π/(2QI ) + β

)
(1 + β)2

∣∣x ′∣∣2 (10.7.4)
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Fig. 10.32 Upper plot normalized power as a function of � for ξL = 0.005 (QM = 100) and
different values of k2m (plain line FTSECE, dashed line: simple rectifier).Middle plot optimal φ as
a function of �. Lower plot optimal β as a function of �.

The normalized power as well as the optimal φ and β are plotted in Fig. 10.32 as a
function of the operating frequency, for different values of k2m . High coupling coeffi-
cients have been considered because the FTSECEapproach is especially promising in
this case. Such coupling coefficients can be practically obtained using single crystals
piezoelectric materials. For instance, a PEH for which k2 equals 53% (k2m = 112%)
was presented in [42].

From the evolution of φ and β, it can be seen that the extraction times coincide
with the voltage extrema (φ=0) only at the open-circuit resonance frequency of the
PEH. In this case, if the coupling coefficient is high (typically larger than 5%), only a
small amount of the generated electrical charges are extracted (β tends to 1) to prevent
too large damping of the PEH.When the vibration frequency is slightly shifted away
from the open-circuit resonance frequency, the switching phase shift φ is adjusted to
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Fig. 10.33 a Normalized power versus k2m , b normalized bandwidth versus k2m , c FoM versus k2m
Plain lines FTSECE (QI=5, m=1), dotted lines simple rectifier

tune the resonance frequency of the PEH. This phase shift induces a decrease of the
generated electrical charges, which is compensated by extracting a larger percentage
of them. If the vibration frequency is shifted further, β becomes negative, which
means that a portion of the generated electrical charges is injected back to the PEH
with a reversed polarity. This effect increases the piezoelectric voltage amplitude and
enhances the energy extraction.

The normalized power, bandwidth, and the figure of merit are plotted in Fig. 10.33
as a function of k2m for different values of QM . Results using the FTSECE circuit are
plotted as plain lines, and can be compared with results from the classical approach
plotted as dashed lines.

Figure10.33a shows that comparing to the classical rectifier approach the power
using the FTSECE approach is larger when k2mQM < 0.9 and slightly lower when
k2mQM > 0.9 (the black curve corresponds to k2mQM = 0.9). Figure10.33b confirms
the bandwidth enhancement induced by the FTSECE circuit. Finally, Fig. 10.33c
shows that the FTSECE approach gives higher figure of merit whatever the value of
k2m .

The FTSECE circuit has not been practically implemented yet. The real-time
tuning of two parameters (ton and tlag) requires the development of a dedicated switch
control circuit, whose complexity may hinder the overall performances. Moreover,
the effect of the piezoelectric voltage switching on highly coupled PEHmay generate
non-sinusoidal displacement of the dynamic mass, in which case the theoretical
calculation detailed above become inaccurate. Because of the lack of experimental
demonstration, this last section should then be considered with caution. It however
suggests that resonant piezoelectric structures with high electromechanical coupling
coefficient combined with dedicated nonlinear energy extraction circuit could lead
to large bandwidth PEH (up to 20% of the resonance frequency could reasonably be
obtained).

To compare the FTSECE approach and the ideal impedance matching strategy
(cf. Sect. 10.3), it is assumed that ξE = 0.005. Taking k2m = 100% and ξM = 0.005
(QM = 100) leads to χ . The FoM using the impedance matching strategy would then
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be
√

χ = 200, whereas it is only 20 using FTSECE (see red curve at k2m = 100% in
Fig. 10.33c). This result confirms that the ideal impedance matching gives an upper
limit for a PVEHperformance. It also suggests that some advanced energy harvesting
circuits with enhanced bandwidth capability might be developed by further research.

10.8 Conclusion

This chapter presents a broad analysis of the existing power conditioning techniques
for piezoelectric energy harvesting devices and the related circuits enabling practical
implementation.

The classical impedance matching technique would enable in theory to get the
best performances in terms of power and frequency bandwidth. However, practi-
cal implementation of this technique would require complicated, power consuming
control algorithms. To date, very few experimental results can be found about this
technique [8], confirming difficult implementation.

Overall, the so-called nonlinear interfaces bring several advantages. One of their
most remarkable properties is the drastic power improvement of PVEH exhibiting
low k2Qm . For PVEHwith higher k2Qm , they give enhanced performance for pulsed
excitation or out of resonance excitation.

Another advantage is that some of these nonlinear interfaces, such as SECE and
OSECE, tend to minimize the effect of the electrical load on the energy conversion,
which is a very interesting property when supplying a device with time varying
electrical characteristics.

Finally, nonlinear interfaces, such as the FTCECE, may be used to electronically
tune the PVEH resonant frequency, which could be used to drastically enhance their
bandwidth.

Current trends in the domain of power conditioning circuits for piezoelectric
vibration energy harvesting tend to push the limits towards “high” voltages (above
50 V) and “low” voltages (below 1 V) with ultra-low harvested power, typically in
the range of 10 nW to 10µW. Such developments raise new challenges in the domain
of ultra-low power AC–DC and DC–DC converters, and in the design of ultra-low
power ASICs.
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