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Abstract. We address the generalized variational problem of Herglotz
from an optimal control point of view. Using the theory of optimal con-
trol, we derive a generalized Euler–Lagrange equation, a transversal-
ity condition, a DuBois–Reymond necessary optimality condition and
Noether’s theorem for Herglotz’s fundamental problem, valid for piece-
wise smooth functions.
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1 Introduction

The generalized variational problem proposed by Herglotz in 1930 [3,4] can be
formulated as follows:

z(b) −→ extr
with ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b], (PH)
subject to x(a) = α, z(a) = γ, α, γ ∈ R.

It consists in the determination of trajectories x(·) and corresponding tra-
jectories z(·) that extremize (maximize or minimize) the value z(b), where
L ∈ C1([a, b] × R

2n × R;R). While in [3,4,6] the admissible functions are
x(·) ∈ C2([a, b];Rn) and z(·) ∈ C1([a, b];R), here we consider (PH) in the wider
class of functions x(·) ∈ PC1([a, b];Rn) and z(·) ∈ PC1([a, b];R).

It is obvious that Herglotz’s problem (PH) reduces to the classical funda-
mental problem of the calculus of variations (see, e.g., [13]) if the Lagrangian L
does not depend on the z variable: if ż(t) = L(t, x(t), ẋ(t)), t ∈ [a, b], then (PH)
is equivalent to the classical variational problem

∫ b

a

L(t, x(t), ẋ(t))dt −→ extr, x(a) = α. (1)
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Herglotz proved that an Euler–Lagrange optimality condition for a pair (x(·), z(·))
to be an extremizer of the generalized variational problem (PH) is given by

∂L

∂x
(t, x(t), ẋ(t), z(t)) − d

dt

∂L

∂ẋ
(t, x(t), ẋ(t), z(t))

+
∂L

∂z
(t, x(t), ẋ(t), z(t))

∂L

∂ẋ
(t, x(t), ẋ(t), z(t)) = 0, (2)

t ∈ [a, b]. The Eq. (2) is known as the generalized Euler–Lagrange equation.
Observe that for the fundamental problem of the calculus of variations (1) one
has ∂L

∂z = 0 and the differential Eq. (2) reduces to the classical Euler–Lagrange
equation

∂L

∂x
(t, x(t), ẋ(t)) − d

dt

∂L

∂ẋ
(t, x(t), ẋ(t)) = 0.

Since the celebrated work [5] by Pontryagin et al., the calculus of variations is
seen as part of optimal control. One of the simplest problems of optimal control,
in Bolza form, is the following one:

J (x(·), u(·)) =
∫ b

a

f(t, x(t), u(t))dt + φ(x(b)) −→ extr

subject to ẋ(t) = g(t, x(t), u(t)) and x(a) = α, α ∈ R,
(P)

where f ∈ C1([a, b] × R
n × Ω;R), φ ∈ C1(Rn;R), g ∈ C1([a, b] × R

n × Ω;Rn),
x ∈ PC1([a, b];Rn) and u ∈ PC([a, b];Ω), with Ω ⊆ R

r an open set. In the
literature of optimal control, x and u are called the state and control variables,
respectively, while φ is known as the payoff or salvage term. Note that the
classical problem of the calculus of variations (1) is a particular case of problem
(P) with φ(x) ≡ 0, g(t, x, u) = u and Ω = R

n. In this work we show how the
results on Herglotz’s problem of the calculus of variations (PH) obtained in [2,6]
can be generalized by using the theory of optimal control. The main idea is
simple and consists in rewriting the generalized variational problem of Herglotz
(PH) as a standard optimal control problem (P), and then to apply available
results of optimal control theory.

The paper is organized as follows. In Sect. 2 we briefly review the necessary
concepts and results from optimal control theory. In particular, we make use
of Pontryagin’s maximum principle (Theorem1); the DuBois–Reymond condi-
tion of optimal control (Theorem 2); and the Noether theorem of optimal con-
trol proved in [8] (cf. Theorem 3). Our contributions are then given in Sect. 3:
we generalize the Euler–Lagrange equation and the transversality condition for
problem (PH) found in [6] to admissible functions x(·) ∈ PC1([a, b];Rn) and
z(·) ∈ PC1([a, b];R) (Theorem 4); we obtain a DuBois–Reymond necessary opti-
mality condition for problem (PH) (Theorem 5); and a generalization of the
Noether theorem [2] (Theorem 6) as a corollary of the optimal control results of
Torres [7–9]. We end with Sect. 4 of conclusions and future work.
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2 Preliminaries

The central result in optimal control theory is given by Pontryagin’s maximum
principle, which is a first-order necessary optimality condition.

Theorem 1 (Pontryagin’s Maximum Principle for Problem (P) [5]). If
a pair (x(·), u(·)) with x ∈ PC1([a, b];Rn) and u ∈ PC([a, b];Ω) is a solution
to problem (P), then there exists ψ ∈ PC1([a, b];Rn) such that the following
conditions hold:

– the optimality condition

∂H

∂u
(t, x(t), u(t), ψ(t)) = 0; (3)

– the adjoint system
{

ẋ(t) = ∂H
∂ψ (t, x(t), u(t), ψ(t))

ψ̇(t) = −∂H
∂x (t, x(t), u(t), ψ(t));

(4)

– and the transversality condition

ψ(b) = ∇φ(x(b)); (5)

where the Hamiltonian H is defined by

H(t, x, u, ψ) = f(t, x, u) + ψ · g(t, x, u). (6)

Definition 1 (Pontryagin Extremal to (P)). A triplet (x(·), u(·), ψ(·)) with
x ∈ PC1([a, b];Rn), u ∈ PC([a, b];Ω) and ψ ∈ PC1([a, b];Rn) is called a Pon-
tryagin extremal to problem (P) if it satisfies the optimality condition (3), the
adjoint system (4) and the transversality condition (5).

Theorem 2 (DuBois–Reymond Condition of Optimal Control [5]). If
(x(·), u(·), ψ(·)) is a Pontryagin extremal to problem (P), then the Hamiltonian
(6) satisfies the equality

dH

dt
(t, x(t), u(t), ψ(t)) =

∂H

∂t
(t, x(t), u(t), ψ(t)),

t ∈ [a, b].

Noether’s theorem has become a fundamental tool of modern theoretical physics
[1], the calculus of variations [10,11], and optimal control [7–9]. It states that
when an optimal control problem is invariant under a one parameter family of
transformations, then there exists a corresponding conservation law: an expres-
sion that is conserved along all the Pontryagin extremals of the problem [7–9,12].
Here we use Noether’s theorem as found in [8], which is formulated for prob-
lems of optimal control in Lagrange form, that is, for problem (P) with φ ≡ 0.
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In order to apply the results of [8] to the Bolza problem (P), we rewrite it in the
following equivalent Lagrange form:

I(x0(·), x(·), u(·)) =
∫ b

a

[f(t, x(t), u(t)) + x0(t)] dt −→ extr,
{

ẋ0(t) = 0,
ẋ(t) = g (t, x(t), u(t)) ,

(7)

x0(a) =
φ(x(b))
b − a

, x(a) = α.

The notion of invariance for problem (P) is obtained by applying the notion of
invariance found in [8] to the equivalent optimal control problem (7). In Defini-
tion 2 we use the little-o notation.

Definition 2 (Invariance of Problem (P)). Let hs be a one-parameter fam-
ily of C1 invertible maps

hs : [a, b] × R
n × Ω → R × R

n × R
r,

hs(t, x, u) = (T s(t, x, u),X s(t, x, u),Us(t, x, u)) ,

h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b] × R
n × Ω.

Problem (P) is said to be invariant under transformations hs if for all (x(·), u(·))
the following two conditions hold:

(i)
[
f ◦ hs(t, x(t), u(t)) +

φ(x(b))
b − a

+ ξs + o(s)
]dT s

dt
(t, x(t), u(t))

= f(t, x(t), u(t)) +
φ(x(b))
b − a

(8)

for some constant ξ;
(ii)

dX s

dt
(t, x(t), u(t)) = g ◦ hs(t, x(t), u(t))

dT s

dt
(t, x(t), u(t)). (9)

Theorem 3 (Noether’s Theorem for the Optimal Control Problem
(P)). If problem (P) is invariant in the sense of Definition 2, then the quan-
tity

(b− t)ξ+ψ(t) ·X(t, x(t), u(t))−
[
H(t, x(t), u(t), ψ(t)) +

φ(x(b))
b − a

]
·T (t, x(t), u(t))

is constant in t along every Pontryagin extremal (x(·), u(·), ψ(·)) of problem (P),
where

T (t, x(t), u(t)) =
∂T s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

,

X(t, x(t), u(t)) =
∂X s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

,

and H is defined by (6).
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Proof. The result is a simple exercise obtained by applying the Noether theorem
of [8] and the Pontryagin maximum principle (Theorem1) to the equivalent opti-
mal control problem (7) (in particular using the adjoint equation correspond-
ing to the multiplier associated with the state variable x0 and the respective
transversality condition).

3 Main Results

We begin by introducing some basic definitions for the generalized variational
problem of Herglotz (PH).

Definition 3 (Admissible Pair to Problem (PH)). We say that (x(·), z(·))
with x(·) ∈ PC1([a, b];Rn) and z(·) ∈ PC1([a, b];R) is an admissible pair to
problem (PH) if it satisfies the equation

ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

and the initial conditions x(a) = α and z(a) = γ, α, γ ∈ R.

Definition 4 (Extremizer to Problem (PH)). We say that an admissible
pair (x∗(·), z∗(·)) is an extremizer to problem (PH) if z(b) − z∗(b) has the same
signal for all admissible pairs (x(·), z(·)) that satisfy ‖z−z∗‖0 < ε and ‖x−x∗‖0 <
ε for some positive real ε, where ‖y‖0 = max

a≤t≤b
|y(t)|.

We now present a necessary condition for a pair (x(·), z(·)) to be a solution
(extremizer) to problem (PH). The following result generalizes [3,4,6] by consid-
ering a more general class of functions. To simplify notation, we use the operator
〈·, ·〉 defined by

〈x, z〉(t) := (t, x(t), ẋ(t), z(t)).

When there is no possibility of ambiguity, we sometimes suppress arguments.

Theorem 4 (Euler–Lagrange Equation and Transversality Condition
for Problem (PH)). If (x(·), z(·)) is an extremizer to problem (PH), then the
Euler–Lagrange equation

∂L

∂x
〈x, z〉(t) − d

dt

(
∂L

∂ẋ

)
〈x, z〉(t) +

∂L

∂z
〈x, z〉(t)∂L

∂ẋ
〈x, z〉(t) = 0 (10)

holds, t ∈ [a, b]. Moreover, the following transversality condition holds:

∂L

∂ẋ
〈x, z〉(b) = 0. (11)

Proof. Observe that Herglotz’s problem (PH) is a particular case of problem
(P) obtained by considering x and z as state variables (two components of one
vectorial state variable), ẋ as the control variable u, and by choosing f ≡ 0 and
φ(x, z) = z. Note that since x(t) ∈ R

n, we have u(t) ∈ R
n (i.e., for Herglotz’s
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problem (PH) one has r = n). In this way, the problem of Herglotz, described
as an optimal control problem, takes the form

z(b) −→ extr,{
ẋ(t) = u(t),
ż(t) = L(t, x(t), u(t), z(t)),

(12)

x(a) = α, z(a) = γ, α, γ ∈ R.

It follows from Pontryagin’s maximum principle (Theorem1) that there exists
ψx ∈ PC1([a, b];Rn) and ψz ∈ PC1([a, b];R) such that the following conditions
hold:

– the optimality condition

∂H

∂u
(t, x(t), u(t), z(t), ψx(t), ψz(t)) = 0; (13)

– the adjoint system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = ∂H
∂ψx

(t, x(t), u(t), z(t), ψx(t), ψz(t))
ż(t) = ∂H

∂ψz
(t, x(t), u(t), z(t), ψx(t), ψz(t))

ψ̇x(t) = −∂H
∂x (t, x(t), u(t), z(t), ψx(t), ψz(t))

ψ̇z(t) = −∂H
∂z (t, x(t), u(t), z(t), ψx(t), ψz(t));

(14)

– and the transversality conditions
{

ψx(b) = 0,
ψz(b) = 1,

(15)

where the Hamiltonian H is defined by

H(t, x, u, z, ψx, ψz) = ψx · u + ψz · L(t, x, u, z).

Observe that the adjoint system (14) implies that
{

ψ̇x = −ψz
∂L
∂x

ψ̇z = −ψz
∂L
∂z .

(16)

This means that ψz is solution of a first-order linear differential equation, which is
solved using an integrand factor to find that ψz = ke−

∫ t
a

∂L
∂z dθ with k a constant.

From the second transversality condition in (15), we obtain that k = e
∫ b

a
∂L
∂z dθ

and, consequently,
ψz = e

∫ b
t

∂L
∂z dθ.

The optimality condition (13) is equivalent to ψx + ψz
∂L
∂u = 0 and, after deriva-

tion, we obtain that

ψ̇x = − d

dt

(
ψz

∂L

∂u

)
= −ψ̇z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
= ψz

∂L

∂z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
.
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Now, comparing with (16), we have

−ψz
∂L

∂x
= ψz

∂L

∂z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
.

Since ψz(t) �= 0 for all t ∈ [a, b] and ẋ = u, we obtain the Euler–Lagrange
Eq. (10):

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
+

∂L

∂z

∂L

∂ẋ
= 0.

Note that from the optimality condition (13) we obtain that ψx = −ψz
∂L
∂u =

−ψz
∂L
∂ẋ , which together with transversality condition (15) for ψx leads to the

transversality condition (11):

∂L

∂ẋ
(b, x(b), ẋ(b), z(b)) = 0.

This concludes the proof.

Definition 5 (Extremal to Problem (PH)). We say that an admissible pair
(x(·), z(·)) is an extremal to problem (PH) if it satisfies the Euler–Lagrange
Eq. (10) and the transversality condition (11).

Theorem 5 (DuBois–Reymond Condition for Problem (PH)). If
(x(·), z(·)) is an extremal to problem (PH), then

d

dt

(
−ψz(t)

∂L

∂ẋ
〈x, z〉(t)ẋ(t) + ψz(t)L〈x, z〉(t)

)
= ψz(t)

∂L

∂t
〈x, z〉(t),

t ∈ [a, b], where ψz(t) = e
∫ b

t
∂L
∂z 〈x,z〉(θ)dθ.

Proof. The result follows from Theorem 2, rewriting problem (PH) as the optimal
control problem (12).

We define invariance for (PH) using Definition 2 for the equivalent optimal con-
trol problem (12).

Definition 6 (Invariance of Problem (PH)). Let hs be a one-parameter
family of C1 invertible maps

hs : [a, b] × R
n × R → R × R

n × R,

hs(t, x(t), z(t)) = (T s〈x, z〉(t),X s〈x, z〉(t),Zs〈x, z〉(t)),
h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a, b] × R

n × R.

Problem (PH) is said to be invariant under the transformations hs if for all
admissible pairs (x(·), z(·)) the following two conditions hold:

(i) (
z(b)
b − a

+ ξs + o(s)
)

dT s

dt
〈x, z〉(t) =

z(b)
b − a

(17)

for some constant ξ;
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(ii)

dZs

dt
〈x, z〉(t)

= L

(
T s〈x, z〉(t),X s〈x, z〉(t), dX s

dT s
〈x, z〉(t),Zs〈x, z〉(t)

)
dT s

dt
〈x, z〉(t),

(18)

where
dX s

dT s
〈x, z〉(t) =

dX s

dt 〈x, z〉(t)
dT s

dt 〈x, z〉(t)
.

Follows the main result of the paper.

Theorem 6 (Noether’s Theorem for Problem (PH)). If problem (PH) is
invariant in the sense of Definition 6, then the quantity

ψz(t)
[
∂L

∂ẋ
〈x, z〉(t)X〈x, z〉(t) − Z〈x, z〉(t)

+
(

L〈x, z〉(t) − ∂L

∂ẋ
〈x, z〉(t)ẋ(t)

)
T 〈x, z〉(t)

]
(19)

is constant in t along every extremal of problem (PH), where

T 〈x, z〉(t) =
∂T s

∂s
〈x, z〉(t)

∣∣∣∣
s=0

,

X〈x, z〉(t) =
∂X s

∂s
〈x, z〉(t)

∣∣∣∣
s=0

,

Z〈x, z〉(t) =
∂Zs

∂s
〈x, z〉(t)

∣∣∣∣
s=0

and ψz(t) = e
∫ b

t
∂L
∂z 〈x,z〉(θ)dθ.

Proof. As before, we rewrite problem (PH) in the equivalent optimal control form
(12), where x and z are the state variables and u the control. We prove that if
problem (PH) is invariant in the sense of Definition 6, then (12) is invariant in the
sense of Definition 2. First, observe that if Eq. (17) holds, then (8) holds for (12):
here f ≡ 0, φ(x, z) = z and (8) simplifies to

[
z(b)
b−a + ξs + o(s)

]
dT s

dt 〈x, z〉(t) =
z(b)
b−a . Note that the first equation of the control system of problem (12) (u(t) =
ẋ(t)) defines Us := dX s

dT s , that is,

dX s

dt
〈x, z〉(t) = Us〈x, z〉(t)dT s

dt
〈x, z〉(t). (20)

Hence, if Eqs. (18) and (20) holds, then there is also invariance of the control
system of (12) in the sense of (9) and consequently problem (12) is invariant
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in the sense of Definition 2. We are now in conditions to apply Theorem3 to
problem (12), which guarantees that the quantity

(b − t)ξ + ψx(t) · X(t, x(t), u(t), z(t)) + ψz(t) · Z(t, x(t), u(t), z(t))

−
(

H(t, x(t), u(t), z(t), ψx(t), ψz(t)) +
z(b)
b − a

)
· T (t, x(t), u(t), z(t))

is constant in t along every Pontryagin extremal of problem (12), where

H(t, x, u, z, ψx, ψz) = ψxu + ψzL(t, x, u, z).

This means that the quantity

(b − t)ξ + ψx(t)X〈x, z〉(t) + ψz(t)Z〈x, z〉(t)

−
(

ψx(t)ẋ(t) + ψz(t)L〈x, z〉(t) +
z(b)
b − a

)
T 〈x, z〉(t)

is constant in t along all extremals of problem (PH), where

ψx(t) = −ψz(t)
∂L

∂u
〈x, z〉(t) = −ψz(t)

∂L

∂ẋ
〈x, z〉(t).

Equivalently,

(b − t)ξ − z(b)
b − a

T 〈x, z〉(t) − ψz(t)
[
∂L

∂ẋ
〈x, z〉(t)X〈x, z〉(t) − Z〈x, z〉(t)

+
(

L〈x, z〉(t) − ∂L

∂ẋ
〈x, z〉(t)ẋ(t)

)
T 〈x, z〉(t)

]

is a constant along the extremals. To conclude the proof, we just need to prove
that the quantity

(b − t)ξ − z(b)
b − a

T 〈x, z〉(t) (21)

is a constant. From the invariance condition (17) we know that

(z(b) + ξ(b − a)s + o(s))
dT s

dt
〈x, z〉(t) = z(b).

Integrating from a to t, we conclude that
(
z(b) + ξ(b − a)s + o(s)

)
T s〈x, z〉(t)

= z(b)(t − a) + (z(b) + ξ(b − a)s + o(s)) T s〈x, z〉(a). (22)

Differentiating (22) with respect to s, and then putting s = 0, we obtain

ξ(b − a)t + z(b)T 〈x, z〉(t) = ξ(b − a)a + z(b)T 〈x, z〉(a). (23)

We conclude from (23) that expression (21) is the constant (b − a)ξ − z(b)
b−a

T 〈x, z〉(a).
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4 Conclusion

We introduced a different approach to the generalized variational principle of
Herglotz, by looking to Herglotz’s problem as an optimal control problem.
A Noether type theorem for Herglotz’s problem was first proved by Georgieva
and Guenther in [2]: under the condition of invariance

d

ds

[
L

(
T s〈x, z〉(t),X s〈x, z〉(t), dX s

dT s
〈x, z〉(t), z(t)

)
dT s

dt
〈x, z〉(t)

] ∣∣∣∣
s=0

= 0,

(24)
they obtained

λ(t)

[
∂L

∂ẋ
〈x, z〉(t)X〈x, z〉(t) +

(
L〈x, z〉(t) − ∂L

∂ẋ
〈x, z〉(t)ẋ(t)

)
T 〈x, z〉(t)

]
, (25)

where λ(t) = e−
∫ t

a
∂L
∂z 〈x,z〉(θ)dθ, as a conserved quantity along the extremals of

problem (PH). Our results improve those of [2] in three ways: (i) we consider
a wider class of piecewise admissible functions; (ii) we consider a more general
notion of invariance whose transformations T s, X s and Zs may also depend on
velocities, i.e., on ẋ(t) (note that if (18) holds with Zs〈x, z〉 = z, then (24) also
holds); (iii) the conserved quantity (25), up to multiplication by a constant, is a
particular case of (19) when there is no transformation in z (Z = ∂Zs

∂s

∣∣
s=0

= 0).
The results here obtained can be generalized to higher-order variational problems
of Herglotz type. This is under investigation and will be addressed elsewhere.
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