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Abstract. Clustering and Disjoint Principal Component Analysis (CDP
CA) is a constrained principal component analysis recently proposed for
clustering of objects and partitioning of variables, simultaneously, which
we have implemented in R language. In this paper, we deal in detail with
the alternating least-squares algorithm for CDPCA and highlight its alge-
braic features for constructing both interpretable principal components
and clusters of objects. Two applications are given to illustrate the capa-
bilities of this new methodology.
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1 Introduction

Principal Component Analysis (PCA) is a widely used tool in applied statistics
for exploratory data analysis and dimensionality reduction. It has many impor-
tant applications in different fields, such as neuroscience, computer graphics,
image compression, meteorology, oceanography, and in gene expression [2].

In essence, PCA allows the reduction of the dimensionality of data by the
detection of a lower number of uncorrelated variables, called components, that
are able to explain the maximum variability of the data, i.e., the data com-
pression is done with minimum information loss. An orthogonal transformation
projects the data into a lower dimensional space along the directions where the
data presents the highest variability. This statistical technique is useful to rep-
resent data by drawing a low-dimensional graph (e.g., in biplots) in order to
find patterns hidden on data and to interpret relationships between samples and
variables. PCA can be performed via singular value decomposition of the data
matrix.

Since each principal component (PC) is a linear combination of all the orig-
inal variables, i.e., with nonzero loadings, this can be considered a tremendous
shortcoming for component interpretation. To overcome this difficulty, various
PCA-based methodologies have been proposed in the recent years, for instance,
based on rotation techniques or obtaining components with zero loadings. In this
latter context, several major papers have been published. In [9], it is proposed
a new methodology called Simple Principal Component Analysis, which idea is
to restrict the components’ loadings to be equal to −1, 0 or 1. In 2003, Jolliffe,
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Trendafinov and Uddin [3] introduced SCoTLASS, which is a maximal variance
approach that obtains components where a bound is introduced on the sum of
the absolute values of the loadings, and some become zero. Later, in 2006, Zou,
Hastie and Tibshirani [11] introduced the Sparse Principal Component Analy-
sis, which aims to obtain modified principal components with sparse loadings. In
[11], it is also proposed efficient algorithms to perform the new sparse PCA and
some numerical experiments with real and simulated data are reported. In 2007,
a new approach for sparse PCA via Semidefinite Programming was proposed
in [1], based on a convex semidefinite relaxation of the sparse PCA problem.
There are also reported numerical experiments for comparing that technique
with others. More recently, in 2013, it is proposed in [4] a new sparse PCA and
an iterative thresholding algorithm to estimate principal subspaces.

When dealing with real data sets, there may be the need of reducing not only
the dimension of the variable space, but also to reveal some patterns among the
objects. Obviously, this can be done by performing PCA on the variables and
applying a clustering technique on the objects. The desirable scenario for data
visualization and interpretation is to obtain non overlapping clusters of objects
and disjoint or sparse principal components.

A new methodology called Clustering and Disjoint Principal Component
Analysis (referred to hereafter as CDPCA) [8] was recently proposed for clus-
tering of objects and partitioning of variables, simultaneously. It permits to
cluster objects along a set of centroids and partition the variables into a reduced
set of components, simultaneously, in order to maximize the between cluster
deviance of the components in the reduced space. The CDPCA classification of
data consists of the construction of groups based on the closeness and similarity
among data.

In [8], the proposed CDPCA model is described as a joint model of K-means
applied on the data matrix and PCA applied on the matrix of centroids. Hence, it
depends on three parameter matrices: one matrix for allocating the objects into
the clusters, one other for identifying the centroids and another one for identify-
ing to the loading components. The least-squares estimators of these parameters
can be obtained by solving a quadratic mixed continuous and integer optimiza-
tion problem [8]. An alternating least-squares (ALS) algorithm based on four
steps is suggested in [8] to solve the problem. Notice that the ALS algorithm
can be considered as an heuristic that iteratively solves the optimization problem
based on two basic steps: allocation of objects via K-means ([10]) and reduction
of the variable space via application of PCA on the resulting centroids. In this
paper, we describe a detailed two-step-based scheme of the ALS algorithm pro-
posed in [8] for estimating the parameters of the CDPCA model. Unlike PCA,
in CDPCA disjoint components are returned, and thus, each original variable
contributes to a single component. It is worth mentioning that the obtained
CDPCA score components may be correlated, unlike in PCA where uncorre-
lated components are provided.

Recently, we have implemented the CDPCA in a easy-to-use software appli-
cation [5] using R language [6], which is available from the authors upon request.
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Beside returning an assignment matrix for the allocation of objects into clusters
and a component loading matrix which allows to allocate the variables into
disjoint subsets, the main features of our R-based implementation of CDPCA
include a plot of the data projected into the two dimensional space defined by
the first two CDPCA components, and also a pseudo-confusion matrix when
the real classification is known, permitting to summarize and visualize the
(mis)classification of the objects. The goal of this paper is to explain and illus-
trate the algebraic features of the two essential steps in each iteration of the ALS
algorithm. A toy example is included to show some transformations performed in
each step of the ALS algorithm. Additionally, a numerical experiment using real
data is presented. To execute these analyses we use our R-implemented function
of CDPCA. Since the goal of this work is not focused on our R-based imple-
mentation, only brief reference to this function will be given in the numerical
example.

The paper is organized as follows. Section 2 presents the theoretical back-
ground and tools needed for the CDPCA technique. Section 3 is devoted to
highlight the algebraic features behind the CDPCA detailing the ALS algorithm
step by step. In Sect. 4, application of CDPCA using data from a breast cancer
study is presented and the results are compared with those obtained using PCA.
Concluding remarks appear in Sect. 5.

2 The Methodology of CDPCA

In this section we describe the CDPCA, based on the paper [8].

2.1 Notation

First of all, let us introduce some notations and basic definitions that will be
used throughout this work.

X = (xij): Data matrix with I objects in rows and J variables in columns; X is
assumed to be standardized.

P , Q: Desired number of clusters of objects and subsets of variables, respectively.

U = (uip): Matrix defining an allocation of the I objects into P clusters; U is a
I × P binary and row stochastic matrix defined as

⎧
⎨

⎩

uip = 1, if the i-th object belongs to the cluster p,

uip = 0, otherwise.

V = (vjq) : Matrix defining a partition of the J variables into Q subsets; V is a
J × Q binary and row stochastic matrix defined as

⎧
⎨

⎩

vjq = 1, if the j-th variable belongs to the subset q,

vjq = 0, otherwise.
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X̄: Object centroid matrix in the original space; X̄ is a P × J matrix defined by
X̄ =

(
UTU

)−1
UTX.

Z = (zij): Centroid-based data matrix where each object is identified by the
corresponding centroid, i.e., each object is projected into the space defined
by the P clusters; Z is a I × J matrix given by Z = UX̄.

W(q) =
(
w

(q)
ik

)
: Submatrix extracted from the centroid-based data matrix Z

where only the original variables assigned into the q-th column of V are
considered; W(q) is a I × K(q) matrix defined as

w
(q)
ik = zij , if vjq = 1, with k = rankJ(q)(j),

where J (q) = {j : vjq = 1}, K(q) = #J (q) and k = 1, · · · ,K(q).

A = (ajq): Matrix of the component loadings; A is a J × Q matrix where the Q
columns are identifying the coefficients of Q linear combinations (i.e., the Q
principal components for CDPCA) such that rank(A) = Q, ATA = IQ and
J∑

j=1

(ajqajr)2 = 0, for any q and r (q �= r).

Y = (yiq): Component score matrix where yiq is the value of the i-th object for
the q-th CDPCA component; Y is a I × Q matrix given by Y = XA.

Ȳ: Object centroid matrix in the reduced space; Ȳ is a P × Q matrix defined
by Ȳ = X̄A.

2.2 Model

The CDPCA model results from the application of PCA on the transformed data
matrix, where each object is replaced by its centroid. By its turn, the centroids
are obtained by applying the K-means algorithm on the original data matrix [8].

Hence, the data matrix would be fitted by the model

X = UX̄ + E1 (K-means applied on X)
= UȲAT + E1 + E2 (PCA applied on UX̄) (1)
= UȲAT + E (CDPCA model)

where E, E1, E2 are I × J error matrices with E = E1 + E2.

2.3 Optimization Problem

From the CDPCA model (1), it is easy to see that E = X − UȲAT . There-
fore, the CDPCA problem intents to minimize the norm of the error matrix E,
resulting in the following optimization problem

min
U,Ȳ,A

‖X − UȲAT ‖2, (2)

subject to the above conditions for the matrices U (i.e., U is a binary and row
stochastic matrix), Ȳ (i.e., Ȳ is an object centroid matrix in the reduced space)
and A (i.e., A is a columnwise orthonormal matrix where each row contributes
to a single column).



The Alternating Least-Squares Algorithm for CDPCA 177

It can be proved that the problem (2) is equivalent to the maximization
of the between cluster deviance ‖UX̄A‖2 of the components in the reduced
space, subject to constraints on the matrices U and A. Since the decomposition
‖X − UȲAT ‖2 = ‖X‖2 − ‖UȲAT ‖2 holds [8], the above problem (2) is equiva-
lent to

max
U,Ȳ,A

‖UȲAT ‖2, (3)

subject to the same constraints of problem (2). Since Ȳ = X̄A and A has
orthonormal columns (i.e., ATA = I), then ‖UȲAT ‖2 = ‖UX̄A‖2. Hence,
problem (3) is equivalent to

max
U,X̄,A

‖UX̄A‖2. (4)

To solve this optimization problem, the authors of CDPCA proposed the
inclusion of the matrix V described in Sect. 2.1 which specifies the partition of J
variables into Q disjoint components. The positions of the nonzero elements of
the matrix A are identified by the positions of the one’s in the matrix V. Hence,
and since Ȳ = X̄A, the CDPCA problem can be formulated as the following
quadratic mixed continuous and integer problem:

max F = ‖UȲ‖2
s. t. uip ∈ {0, 1} , i = 1, ..., I; p = 1, ..., P

P∑

p=1
uip = 1, i = 1, ..., I

vjq ∈ {0, 1} , j = 1, ..., J ; q = 1, ..., Q
Q∑

q=1
vjq = 1, j = 1, ..., J

J∑

j=1

a2
jq = 1, q = 1, ..., Q

J∑

j=1

ajqajr = 0, q = 1, ..., Q − 1; r = q + 1, ..., Q

(5)

The first two constraints in (5) correspond to the allocation of I objects into
P clusters. The following two constraints represent the allocation of J variables
into Q disjoint subsets of variables (components). The remaining constraints are
associated to the PCA implementation. The objective function value is calculated
by ‖UȲ‖2 = tr

(
UȲ(UȲ)T

)
, corresponding to the between cluster distances.

Based on linear algebra properties, the objective function value F can also be
equivalently computed by tr

(
(UȲ)TUȲ

)
, representing the total variance of the

data in the reduced space, where the objects are identified by their centroids.
The main goal is the achievement of maximum dissimilarity or distance between
centroids (and objects) of different clusters. The idea of CDPCA is finding a
clustering of objects along a set of centroids and, simultaneously, a partition of
variables along a reduced set of disjoint components, in order to maximize the
between cluster deviance in the reduced space of the disjoint components.
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2.4 Algorithm

In [8], it is proposed an iterative algorithm called alternating least-squares algo-
rithm (ALS) to solve the optimization problem (5). Each iteration of the ALS
algorithm can be summarily described by two basic steps: allocation of objects
via K-means and reduction of the variable space via application of PCA on the
resulting centroids. Concretely,

– Step 1: Concerning to the objects:
allocate the I objects into P clusters (matrix U),
calculate the centroids in the space of the observed variables (matrix X̄)
identify the objects by its cluster centroids in the space of the observed
variables (matrix Z).

– Step 2: Concerning to the variables:
allocate the J variables into Q subsets (matrix V),
obtain the loadings of the CDPCA components (matrix A),
calculate the centroids in the reduced space of the Q CDPCA components
(matrix Ȳ),
identify the objects in the reduced space of the Q CDPCA components
(matrix Y).

These steps are summarized in Fig. 1. At the beginning, in Step 1 and with the
standardized data matrix X of I objects described by J variables, the I objects
are assigned into P clusters by means of the matrix U. Next, each row of the
data matrix is replaced by its corresponding object centroid resulting then in
the matrix Z. In Step 2, the allocation of the J variables into Q disjoint subsets
is specified in the matrix V and the CDPCA component loadings are specified
in the matrix A. To obtain these two matrices, an iterative process working row-
by-row and column-by-column of the matrices V and A is executed in order to
maximize the objective function F . At the end of Step 2, the component score
matrix, Y, and the object centroid matrix in the reduced space, Ȳ, are found as
well as the value of the objective function F . Thus, at the end of one iteration
of the algorithm, the I objects of the data matrix are allocated into P clusters,
and simultaneously displayed in a reduced space of Q disjoint components. The
value of the between cluster deviance is also calculated to evaluate the quality
of the clustering of the I objects in the reduced space. In the next iteration, the
process is repeated using Y as the input data matrix. The iterative procedure of
the algorithm stops when there is a difference between consecutive computations
of the values of the objective function F smaller than a specified tolerance.

Since the function F is bounded above, the algorithm converges to a station-
ary point, which is at least a local maximum of problem [8]. This procedure can
be considered as an heuristic and thus, to guarantee that the global maximum is
achieved, it has been suggested to run the algorithm several times for different
initial allocation matrices U and V, which are randomly chosen at the beginning
of each run.
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3 CDPCA: Step by Step

In this section, we present in detail the main algebraic features of the ALS
algorithm for performing CDPCA.

To show the main algebraic features of the CDPCA procedure, we have per-
formed CDPCA on a synthetic data matrix X constructed for satisfying the
model (1) and where the objects are partitioned along a set of three clusters
and the variables along a set of two components. For that purpose, we consider
I = 15, J = 3, P = 3, Q = 2, and the following matrices satisfying the conditions
mentioned in Sect. 2.1:

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ȳ =

⎡

⎣

√
2/3 −2√
2/3 1

−√
3/2 1

⎤

⎦ and A =

⎡

⎣
1 0
0

√
2/2

0
√

2/2

⎤

⎦ . (6)

It is easy to check that, under these circumstances, UȲAT is a standardized
matrix. An error E is added to obtain the model (1). Herein we considered the
matrix E with values randomly generated of a normal distribution with mean
zero and standard deviation equal to 0.8. Thus, we have

X = UȲAT + E

being

UȲAT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 0.707 0.707
0.816 0.707 0.707
0.816 0.707 0.707
0.816 0.707 0.707

−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.917 −1.093 −2.382
1.860 −1.767 −0.289
0.460 −1.509 −0.132
1.290 −0.412 −1.405
1.567 −1.812 −1.530
0.982 −0.167 1.531
0.832 1.710 0.334
2.461 1.315 1.203
0.697 1.520 1.519

−2.273 0.152 0.464
−1.603 1.483 −0.476
−1.003 −0.043 −0.840
−0.799 1.763 −0.770
−1.133 0.002 1.145
−2.599 0.473 0.393

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 1. The two basic steps of one iteration of the ALS algorithm for performing
CDPCA.

The dashed horizontal and vertical lines separate the three clusters of objects
and the set of variables, respectively, and in accordance with (6).

Using the synthetic data matrix X, we now focus on the algebraic features
behind the two basic steps of the CDPCA methodology and afterwards illustrate
some outputs obtained by our R-based application.

3.1 Initialization

Set k = 0. At the beginning, the data matrix X is standardized:

xij �→ xij − x̄j
√

I∑

i=1

(xij − x̄j)2/I

where x̄j =
I∑

i=1

xij/I. Next, the parameters of the ALS algorithm to perform

CDPCA are initialized as follows:

Step 1. Parameters associated to the objects:
- The matrix U0 is randomly generated such that there is only a nonzero

element per row and that element is equal to 1 (i.e., U0 is the initial
object assignment matrix).

- The object centroid matrix X̄0 is computed. For such, the mean of each
variable into each object cluster is calculated.
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- All the objects are identified by its cluster centroids. This information
is provided by the centroid-based data matrix Z.

Step 2. Parameters associated to the components:
- The matrix V0 is randomly generated such that there is only a nonzero

element per row and that element is equal to 1 (i.e., V0 is the initial
variable assignment matrix).

- The CDPCA component loading matrix A0 is constructed column-by-
column solving Q independent PCA subproblems, one by each column.
The nonzero elements of the q-th column of V0 identify the original vari-
ables belonging to the q-th CDPCA component. These elements will be
considered in the PCA subproblem to obtain the nonzero elements of
the q-th column of A0. Thus, the nonzero elements on the q-th column
of A0 correspond to the first principal component obtained from PCA
applied on the submatrix W(q)

0 which is extracted from the centroid-
based data matrix Z0 = U0X̄0 (i.e., the data matrix where each object
is identified by the corresponding centroid) and restricted to the origi-
nal variables assigned into the q-th column of V0. Therefore, the q-th
column of A0 provides the direction vector with maximum variability
among the centroids in the subspace defined by the original variables
assigned to the q-th column of V0.

3.2 General Iteration

At the beginning of the (k + 1)-th iteration of the algorithm, the matrices Uk,
X̄k Vk, Ak and Ȳk are known.

Step 1. Parameters associated to the objects:
The matrix Uk+1 is given by one run of the K-means algorithm on the
score matrix Yk = XAk starting from the object centroid matrix Ȳk in the
reduced space. The P new clusters are obtained finding the new centroids,
i.e., updating the centroid matrix by X̄k+1 =

(
UT

k+1Uk+1

)−1
UT

k+1X and
the object centroid-based matrix by Zk+1 = UkX̄k.

Every cluster should be assigned with at least one object. On the proce-
dure, if any cluster becomes empty, then a selection step is fulfilled: half of
the objects on the bigger cluster is assigned into one of the empty clusters,
and this process is repeated while there are empty clusters.

Step 2. Parameters associated to the components:
The updated matrices Vk+1 and Ak+1 are sequentially constructed row-by-
row, and in each row, the process is also sequentially performed column-by-
column, in a symbiotic relationship with the maximization of the objective
function F .

The matrix V specifies a partition of the original variables into Q disjoint
components. For updating Vk, each original variable will be evaluated in
order to find which component leads to a higher value of the objective func-
tion F , assuming that all remaining variables are fixed in the components in
accordance with Vk.
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Firstly, the first row of Vk is updated by detecting for which column j,
with j = 1, · · · , Q, the allocation of its nonzero element yields better results
in the sense of the maximization of the objective function. Concretely, for the
first row (variable) of Vk+1, the best column (component) among Q is selected
by solving Q PCA subproblems associated to the updated matrices W(q)

k+1, for
q = 1, 2, · · · , Q, respectively, assuming the Q possible positions of the nonzero
element into the first row of the potential updated matrix Vk+1. In the q-
th PCA subproblem, the first principal component is calculated determining
the update of the q-th column of Ak+1. At this point, the centroid matrix
on the reduced space, Ȳk+1, and the objective function value, Fk+1, can be
computed by Ȳk+1 = X̄k+1Ak+1 and Fk+1 = tr

(
(Uk+1Ȳk+1)TUk+1Ȳk+1

)
.

This process is done repeatedly to select the best component to allocate the
first row (variable) in Vk+1, which will coincide with the component that
yields the highest value of Fk+1.

The same process is now repeated for the remaining rows of Vk, and there-
fore, Vk+1 is updated row-by-row. Hence, for each original variable there
are solved Q assignment subproblems. In each subproblem, a subspace of
variables is considered and the best direction (eigenvector) with maximum
variability explained is obtained performing a PCA step. Each variable will
be included into a component associated to the subproblem that maximizes
the objective function.

Since there are J original variables, i.e., J rows on Vk, then there are J×Q
subproblems to be solved in order to obtain Vk+1 and Ak+1. At the end of
the Step 2, the best assignment will maximize the objective function, and
consequently, the between cluster deviance given by Fk+1/‖Yk+1‖2, where
Yk+1 = XAk+1.

Stopping Criterion. Evaluate solutions:
If the difference between Fk and Fk+1 is smaller than a specified tolerance,

then the algorithm stops and returns the current iterates. Otherwise, repeat
the iteration, setting k := k + 1.

At the end of the algorithm, say, for instance, at the k∗-th iteration, besides
returning the allocation matrices Uk∗ , for the objects, and Vk∗ , for the vari-
ables, the component loading matrix Ak∗ is also returned, which is a columnwise
orthonormal matrix whose elements are the loadings of the CDPCA components.
Moreover, the CDPCA component score matrix Yk∗ is obtained, as well as the
object centroid matrix in the reduced space Ȳk∗ . These matrices can be used to
obtain an approximation of the CDPCA model by

Uk∗Ȳk∗AT
k∗ ,

providing a partition of the objects along a set of clusters and the variables along
a set of disjoint components.

It is worth mentioning that, unlike in the PCA technique, the ALS algorithm
can not establish the CDPCA components decreasingly sorted by their explained
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variability. In order to be consistent with the classical form of representation
of the components, at the end of the algorithm the columns of the matrices
associated to the CDPCA components, namely, Vk∗ , Ak∗ , Yk∗ , and Ȳk∗ , will
be rearranged. Since the changes are performed in all of these matrices, the above
CDPCA model is trivially satisfied with the rearranged matrices.

3.3 Synthetic Data

In the following we illustrate an execution of the ALS algorithm described above
using the synthetic data. The data matrix is formed by I = 15 objects and
J = 3 variables. In order to evaluate the performance of the algorithm we will
also analyse the ability of the algorithm for detecting the P = 3 clusters of
objects and Q = 2 subsets of variables known in the synthetic data.

Considering the synthetic data, we set k = 0, specify the convergence toler-
ance as ε = 10−5, and initialize the parameters of the CDPCA model.

Initialization:
In the Step 1, we get

U0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X̄0 =

⎡
⎣

0.690 −0.416 −1.022
0.673 0.145 0.440

−0.779 0.154 0.332

⎤
⎦ , Z0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.690 −0.416 −1.022
0.673 0.145 0.440

−0.779 0.154 0.332
0.690 −0.416 −1.022
0.690 −0.416 −1.022
0.673 0.145 0.440
0.690 −0.416 −1.022
0.673 0.145 0.440

−0.779 0.154 0.332
−0.779 0.154 0.332
−0.779 0.154 0.332
−0.779 0.154 0.332
0.673 0.145 0.440

−0.779 0.154 0.332
−0.779 0.154 0.332

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the Step 2, it begins with

V0 =

⎡

⎣
1 0
0 1
1 0

⎤

⎦ .

Next, we determine A0. Fixing the first column of V0 (q = 1), the unit
normed eigenvector v

(1)
0 associated to the largest eigenvalue of the correlation

matrix of the submatrix W(1)
0 is selected and introduced in the nonzero entries

of the first column of A0. A similar procedure is performed for the remaining
columns of V0. Thus, for q = 1, K(1) = 2 and we get the 15 × 2 matrix
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W(1)
0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.690 −1.022
0.673 0.440

−0.779 0.332
0.690 −1.022
0.690 −1.022
0.673 0.440
0.690 −1.022
0.673 0.440

−0.779 0.332
−0.779 0.332
−0.779 0.332
−0.779 0.332

0.673 0.440
−0.779 0.332
−0.779 0.332

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The unit normed eigenvector associated to the largest eigenvalue of the 2×2

matrix
(
W(1)

0

)T

W(1)
0 is given by v

(1)
0 =

[−0.809
0.587

]

. Hence, for the nonzero

elements on the first column of A0, which correspond to the nonzero entries on
the first column of V0, we shall introduce v

(1)
0 . Similarly, considering now the

second column of V0, we have q = 2, K(2) = 1 and
(
W(2)

0

)T

W(2)
0 is a 1 × 1

matrix. Thus, we get

W(2)
0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.416
0.145
0.154

−0.416
−0.416

0.145
−0.416

0.145
0.154
0.154
0.154
0.154
0.145
0.154
0.154

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and v
(2)
0 = [1] ,

and the nonzero element on the second column of A0 will be 1. Therefore, the

CDPCA component loading matrix is given by

A0 =

⎡

⎣
−0.809 0

0 1
0.587 0

⎤

⎦ .
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At this point, the objects of the data matrix X can be assigned in the reduced
space of the CDPCA components by the object centroid matrix in the reduced
space, Ȳ0, and the objective function F should be evaluated for the current
matrices U0 and Ȳ0. Regarding our example, Y0 is a 15 × 2 matrix and Ȳ0 is
a 3 × 2 matrix given as follows.

Y0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.621 −0.981
−1.046 −1.533
−0.213 −1.322
−1.316 −0.425
−1.529 −1.570

0.365 −0.225
−0.172 1.310
−0.598 0.987

0.512 1.154
1.561 0.036
0.716 1.124
0.206 −0.123
0.132 1.353
1.302 −0.085
1.700 0.298

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ȳ0 =

⎡

⎣
−1.159 −0.416
−0.286 0.145

0.826 0.154

⎤

⎦ .

initial approximation of Y0 provides a partition of objects along a set of three
clusters (objects 1, 4, 5 and 7 are currently assigned into one cluster, objects
2, 6, 8 and 13 are assigned into another cluster, and the remaining objects are
currently belonging to a third cluster) and also a partition of variables along a
set of disjoint components (PC1 = −0.809X1 +0.587X3 and PC2 = X2). Notice
that the current partition does not correspond to the final solution, nor to the
real partition; this is the result after computing the initial step of the CDPCA
procedure. Additionally, the objective function value for the current iterates is
F0 = 11.438 and the corresponding between cluster deviance is F0/‖Y0‖22 =
36.63%.

First iteration:
Set k = 1. In Step 1, the matrix of the allocation of objects into P clusters and
the object centroid matrix are updated yielding the following matrices:

U1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X̄1 =

⎡
⎣

0.735 −1.166 −0.936
0.174 0.882 0.056

−0.728 0.384 0.743

⎤
⎦ , Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936

−0.728 0.384 0.743
0.174 0.882 0.056
0.174 0.882 0.056

−0.728 0.384 0.743
−0.728 0.384 0.743
−0.728 0.384 0.743

0.174 0.882 0.056
0.174 0.882 0.056

−0.728 0.384 0.743
−0.728 0.384 0.743

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Notice that U1 specifies a new allocation of the objects.
In Step 2, we get

V1 =

⎡

⎣
1 0
0 1
1 0

⎤

⎦ , A1 =

⎡

⎣
−0.660 0

0 1
0.750 0

⎤

⎦ ,

Y1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.870 −0.981
−0.903 −1.533
−0.186 −1.322
−1.389 −0.425
−1.593 −1.570

0.682 −0.225
−0.041 1.310
−0.182 0.987

0.799 1.154
1.405 0.036
0.491 1.124

−0.011 −0.123
−0.055 1.353

1.355 −0.085
1.502 0.298

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Ȳ1 =

⎡

⎣
−1.188 −1.166
−0.072 0.882

1.039 0.384

⎤

⎦ .

At the end of the first iteration, F1 = 24.374 and the corresponding between
cluster deviance is 77.93%. The following step is to check the stopping criterion.
Since |F1 − F0| = 12.936 > ε, another iteration should be computed.

Further iterations:
In order to refine the solutions, more iterations of the algorithm are needed. In
this example, the best solution was obtained after two iterations and it took
only 0.0 s to exhibit a solution. The obtained results are as follows. The object
allocation matrix U and the variable allocation matrix V, the component loading
matrix A, the component score matrix Y and the centroid matrix in the reduced
space Ȳ already rearranged by column (in decreasing order of the variability
explained by the CDPCA) are given by

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

V =

⎡

⎣
0 1
1 0
1 0

⎤

⎦ ,

A =

⎡

⎣
0 1

−0.734 0
−0.678 0

⎤

⎦ ,

Ȳ =

⎡

⎣
1.492 0.735

−1.325 0.751
−0.359 −1.113

⎤

⎦ ,

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.092 0.535
1.250 1.160
1.001 0.232
1.101 0.782
2.017 0.966

−0.796 0.578
−1.211 0.478
−1.492 1.559
−1.803 0.389
−0.352 −1.581
−0.591 −1.137

0.542 −0.738
−0.584 −0.603
−0.669 −0.825
−0.503 −1.797

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The maximum for the objective function is 31.357 and the corresponding
between cluster deviance is 85.63%.

Our R-based implementation of this new methodology provides the graphical
display of the CDPCA classification taking the first two CDPCA components,
as well as the real classification when it is known. For the synthetic data, the
plot is displayed in Fig. 2.

Fig. 2. Real and CDPCA classification for the synthetic data.

Clearly, the CDPCA was able to fulfil the classification and the objects were
correctly assigned to the clusters.

Besides that, our R function also returns a pseudo-confusion matrix, here
displayed in Table 1. The pseudo-confusion matrix allows one to easily verify
how many objects are correctly assigned into clusters, or how many objects are
misclassified.

Table 1. Pseudo-confusion matrix for the synthetic data set.

Real class CDPCA class

1 2 3

1 5 0 0

2 0 4 0

3 0 0 6

From Table 1, we can observe that 5 objects are assigned to a cluster, 4
objects are assigned into a second cluster and the remaining 6 objects belong
to another cluster. This table confirms the high accuracy classification produced
by CDPCA on the Synthetic data.
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4 Numerical Experiments

Here, we describe the numerical experiments of the CDPCA applied on a real
data set. Our experiments were run on a computer with an Intel Core i5-3317U
CPU @ 1.70 GHz, with Windows 7 (64 bits) and 6 GB RAM, using R version
3.0.0 (2013).

The CDPCA was implemented in R under the function CDpca [5]. This func-
tion is suitable for data matrices of numeric values.

Since the ALS algorithm can be considered as a heuristic, it is advisable to
run the algorithm several times, as it has been suggested in [8], in order to find
the global maximum. Therefore, all the presented numerical tests were run 1000
times and the tolerance for convergence purposes was set to 10−5.

Our R implementation of CDPCA starts by standardizing the data. Among
other outputs, the CDpca function returns the CDPCA component loading
matrix, the obtained between cluster deviance, the objects assignment matrix,
the variables assignment matrix, a pseudo-confusion matrix when the real clas-
sification is known a priori, the variance explained by the CDPCA components
and a plot of the data projected into the two dimensional space defined by the
first two components is displayed.

4.1 Breast Cancer Data

The Wisconsin Breast Cancer Database [7] contains 683 instances (originally,
there were 699 instances; however, 16 of them were excluded since they contain
missing values), where each of them is described by 9 attributes with integer
values in the range 1−10 and a real binary class label, which divides the instances
into two classes: benign or malignant. The list of variables is formed by clump
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and the
ninth variable mitoses describes an analysis of mitotic stages. These variables
are used in pathology reports for suggesting whether a lump in a breast is benign
or malignant.

The CDPCA was applied in this data set, by choosing P = 2 clusters of
objects and Q = 2 subsets of variables and executing our CDpca function in R.
It took only 6 iterations and 0.19 s to yield a solution approximation satisfying
the convergence tolerance. The results of CDPCA are displayed in Tables 2, 3
and Fig. 3.

The Table 2 reports the component loadings for both PCA and CDPCA.
Comparing the results in Table 2, performing an analysis of data from the

obtained results using the PCA technique can be complex. The resulting PCA
component loadings lead to components which do not seem interpretable. This
is due to all the original variables contribute to both PCA components and,
therefore, it is quite difficult to detect a pattern or relation among the variables
for each of the two first principal components. With CDPCA the interpretation
of the components becomes easier, since each variable contributes to a single
component.
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Table 2. Component loadings for PCA and CDPCA on the Breast Cancer Data.

Variables PCA loadings CDPCA loadings

Component 1 Component 2 Component 1 Component 2

Clump Thickness −0.296 −0.073 0.350 0

Uniformity of Cell Size −0.403 0.229 0.429 0

Uniformity of Cell Shape −0.392 0.164 0.426 0

Marginal Adhesion −0.331 −0.098 0 −0.710

Single Epithelial Cell Size −0.249 0.200 0 −0.703

Bare Nuclei −0.442 −0.780 0.415 0

Bland Chromatin −0.292 0.008 0.387 0

Normal Nucleoli −0.354 0.469 0.374 0

Mitoses −0.124 0.188 0.216 0

Explained variance (%) 69.05 7.20 51.71 17.74

The first PCA component explains 69, 05% of the total variance and is mainly
characterized by Bare Nuclei, Uniformity of Cell Size and Uniformity of Cell
Shape, while the second PCA component explains only 7, 20% of the total vari-
ance and is mainly characterized by Bare Nuclei and Normal Nucleoli. Notice
that the variable Bare Nuclei is the most contributing variable for both compo-
nents.

Considering now the CDPCA technique, it can be observed that the first
CDPCA component explains 51, 71% of the total variance and is mainly char-
acterized by Uniformity of Cell Size, Uniformity of Cell Shape and Bare Nuclei,
while the second CDPCA component is only characterized by the original vari-
ables Marginal Adhesion and Single Epithelial Cell Size, explaining 17, 74% of
the total variance.

Table 3. Pseudo-confusion matrix for the Breast Cancer data.

Real class Preditive CDPCA class

1 2

(benign) (malignant)

1 (benign) 434 10

2 (malignant) 19 220

Table 3 evaluates the predictive performance of CDPCA as a classification
technique on the Breast Cancer data. The real classification for this data set is
as follows: 444 objects into the benign class, and 239 into the malignant. Con-
sidering the pseudo-confusion matrix obtained with the results on the CDPCA
classification, we conclude that 453 objects are assigned to the benign class and
230 are included into the malignant class. This means that there are 29 mis-
classified objects, leading to a 4% of misclassification. Therefore, the CDPCA
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Fig. 3. Real and CDPCA classification for the Breast Cancer data.

classification presents an accuracy of 96% permitting to conclude that our imple-
mentation of the CDPCA performed very well in practice.

In Fig. 3, a graph representation of the data into the 2-dimensional reduced
space defined by the first two CDPCA components is depicted. This graph per-
mits to visualize the data in order to help on the detection of patterns hidden
in the data set. In the case of the Breast Cancer data, the graph shows that
positive value for the first CDPCA component is tendentiously attributed to
subjects (objects) with malignant lumps (class 2).

The obtained CDPCA between cluster deviance is 80,20 % of the total
deviance.

5 Conclusions

Applications of the recently developed methodology CDPCA to data reveal that
this method can be successful for classifying the samples and exploring relation-
ship between variables, as well as for visualizing data into a reduced space. This
paper is particularly focussed on detailing a two-step-based scheme of the ALS
algorithm used to perform CDPCA and on its algebraic features. A toy exam-
ple is included to illustrate the resulting transformations on the ALS algorithm
step by step. A final remark is that the ALS algorithm for CDPCA performed
very well and also revealed high accuracy in the clusterings for the presented
examples and several other not shown herein.
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