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Preface

This Springer volume of Communications in Computer and Information Science is
dedicated to the 30th EURO mini-conference on Optimization in the Natural Sciences
(EmC-ONS 2014), which was held during February 5–9, 2014, in Aveiro, Portugal.

The conference attracted more than 100 registered participants who represented
21 countries from four continents. More than 70 contributed talks were divided into
three streams—Optimization and Applications, Dynamical Systems, and Statistics,
Bioinformatics, and Health Sciences—and constituted 22 sessions. The participants
discussed recent achievements in optimization theory and related areas, exchanged
experiences in solving real-world problems, and reported on the latest developments of
appropriate models of optimization and their applications in the natural sciences. The
30th EURO mini-conference provided an excellent forum for researchers and practi-
tioners in optimization to promote their recent advances to the wider scientific com-
munity and to identify new research challenges in theory, methods, and applications.

The conference topics reflected the huge diversity of different lines of research in
optimization and its application in the natural sciences, including:

• Analysis of microarray data or next-generation sequencing
• Applications of modeling and optimization in physics, biology, chemistry, and

medicine
• Billiard theory and applications
• Biomedical engineering
• Design optimization
• Data visualization for optimal decisions
• Image processing
• Infinite and semi-infinite optimization with applications
• Inverse problems
• Linear and nonlinear optimization and applications
• Multi-criteria optimization with applications
• Multi-scale optimization with applications
• Optimal control applied to biological models
• Optimal mass transfer
• Optimization in bioinformatics and computational biology
• Shape optimization
• Solution of optimization problems using statistical methods
• Statistics in high-dimensional data
• Statistical methods and visualization
• Statistical and probabilistic modeling
• Wave scattering

Based on a rigorous reviewing process realized by the members of the Program
Committee, 13 papers were selected for publication in this volume. The keywords



of the selected papers reflect the diversity of different lines of research in optimization
and their applications in the natural sciences covered in this volume: optimal control,
data visualization, spatial data analysis, shape optimization, billiards, multi-objective
portfolio optimization, Markov chains, warehousing, multi-criteria optimization, sim-
ulation of information processing, principal component analysis in clustering,
Herglotz’s variational problems, multiple-response surface optimization, unreliable
queueing systems, inverse problems, optimization of the hyperbolic type systems,
suboptimal optimization, geometric optics, random access and others. The articles are
grouped into three sections: Optimization and Applications, Dynamical Systems, and
Modeling and Statistical Techniques for Data Analysis.

As guest editors, we would like to thank all the authors who contributed to this
volume and all the reviewers who accepted the invitation to provide their expertise and
give constructive comments. Our special thanks to the computer science editorial team
at Springer, in particular to Aliaksandr Birukou, Frank Holzwarth, and Leonie Kunz for
the opportunity to organize this volume, their expertise and coordination of the editorial
process, and the continuous support and assistance.

March 2015 Alexander Plakhov
Tatiana Tchemisova

Adelaide Freitas

VI Preface
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Motion of a Rough Disc in Newtonian
Aerodynamics

Sergey Kryzhevich1,2(B)

1 Department of Mathematics, Center for Research and Development
in Mathematics and Applications, University of Aveiro, Aveiro 3810-193, Portugal

2 Faculty of Mathematics and Mechanics, Saint-Petersburg State University,
28, Universitetskiy Pr., 198503 Peterhof, Saint-Petersburg, Russia

kryzhevicz@gmail.com, s.kryzhevich@spbu.ru

Abstract. Dynamics of a rough disc in a rarefied medium is considered.
We prove that any finite rectifiable curve can be approximated in the
Hausdorff metric by trajectories of centers of rough discs provided that
the parameters of the system are carefully chosen. To control the dynam-
ics of the disc, we use the so-called inverse Magnus effect which causes
deviation of the trajectory of a spinning body. We study the so-called
response laws for scattering billiards e.g. relationship between the veloc-
ity of incidence of a particle and that of reflection. We construct a special
family of such laws that is weakly dense in the set of symmetric Borel
measures. Then we find a shape of cavities that provides selected law of
reflections. We write down differential equations that describe motions
of rough discs. We demonstrate how a given curve can be approximated
by considered trajectories.

Keywords: Billiards · Shape optimization · Magnus effect · Rarified
medium · Retroreflectors

1 Introduction

Consider a body with a piecewise smooth boundary moving in a two-dimensional
rarefied homogeneous medium. The particles composing this medium are initially
at rest. They never interact, they collide elastically with the body and move freely
between consecutive reflections from the boundary of the body.

This simple aerodynamic model was first introduced by Newton in his Prin-
cipia (1687). He studied a particular case of this model where a convex axially
symmetric body translates along its axis of symmetry. Due to collisions with par-
ticles of the medium, the force of resistance slows down the motion of the body.
Newton studied the problem of finding the shape of the body that minimizes
the force of resistance. The solution looks like a truncated cone with a slightly
inflated lateral surface. Several generalizations of Newton’s problem related to
(generally) nonconvex and/or non-symmetric bodies have been studied in 1990s
and 2000s by various authors [1–10]. There are open problems in this area; for

c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-20352-2 1



4 S. Kryzhevich

instance, the shape of the convex and non-symmetric body of least resistance is
not understood.

These investigations are closely related to the so-called problem of invisibility.
One constructs a system of mirrors, invisible for an observer (observers), placed
in a fixed point (points) or looking from a fixed direction (directions). Though
the complete invisibility is impossible, some of related problems, for example,
invisibility from one point or invisibility from one direction have been already
solved [11,13].

Dynamics of a rarefied gas is a well-studied problem, see [14–19] and refer-
ences therein.

Even more difficult and diverse are problems related to combined transla-
tional and rotational motion of bodies in a rarefied medium. Some of these
problems are addressed in [20–27] under the assumption that the rotational
motion is much slower than the translational one. In this case interaction of
each individual particle with the body occurs as if there were no rotation at all:
the turn of the body during the time of interaction can be neglected. It is shown,
in particular, that the resistance of a convex body, in Euclidean space of arbi-
trary dimension, can be both increased and decreased by roughening its surface.
The rates of maximum increase and decrease are found to depend only on the
dimension and not on the original convex body; in the 3D case they are equal,
respectively, to 2 and (approx.) 0.969445.

The Newtonian dynamics of a body that performs both translational and
rotational motion is a very intriguing and completely unexplored subject even
in the 2D case. Even attempts to study dynamics of very simple bodies, like a
rod, not to say about an ellipse or a triangle, meet serious difficulties. The only
exception is a circle, whose dynamics is trivial: the path of its center is a straight
line. In this paper, we consider the so-called rough discs that represent the idea
of a set, close to a ball in the Hausdorff metrics (see the beginning of Sect. 2).
The principal goal of the article is the following.

We show that trajectories of centers of rough discs are dense in the set of
finite rectifiable plane curves endowed with the Hausdorff metrics.

The proof of this statement is based on the following idea. In the typical
case, if a disc rapidly rotates, say, counterclockwise, then the velocity vector of
its center of mass changes in the clockwise direction. This phenomenon is called
the inverse Magnus effect, see Fig. 1. The word “inverse” means this effect is
inverse to the Magnus effect proper for classical gas dynamics and well-known
for soccer or ping-pong players where a ball deviates at the direction of rotation.
There is no contradiction: influence of a classic gas is very different from one of
rarefied media.

The magnitude of the effect depends on the shape of cavities on the boundary
of the disc and on the relative angular velocity λ of the disc. In this paper we
construct a very special cavity in such a way that (i) the relative angular velocity
monotonously increases and (ii) the magnitude of the effect is nearly zero for
all values of λ except for several (relatively small) intervals of values. On these
intervals the effect is adjusted so as to ensure right turn of the velocity vector
to a certain angle.
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Fig. 1. Inverse Magnus effect.

Therefore, the basic idea of the proof of our main results is to use shapes of
cavities to control inverse Magnus effect. We believe that our construction can
be generalized to three dimensions, but postpone the 3D study to the future.

Structure of the Paper. In Sect. 2, we consider an immobile scattering billiard
which gives a simplified model for dynamics of a particle inside a hollow. In the
next section we formulate physical assumptions on a moving body and medium
and introduce some notions. We introduce the concept of δ – pseudotrajectory,
corresponding to immobile billiard system. We show that, for sufficiently precise
approximations to so-called perfect rough discs, scattering billiard model gives
a good approximation for relative motions of particles inside cavities. Then, in
Sect. 4, we can apply the model for motions of rough bodies [12]. We study some
special types of cavities and related reflection laws (Sects. 5–7). We formulate
the main result of the paper (Sect. 8) and prove it. The main idea of the proof is
approximation of a curve by broken lines, for which we can write down equations
of motions and shapes of cavities explicitly.

2 Laws of Scattering for Immobile Billiards

We start with the definition of a rough disc. Fix r > 0, take a regular n0-gon
(n0 ≥ 3) inscribed in a circle with radius r (let its center be O), and replace each
side of the n0-gon with a curve joining its endpoints. Each curve is piecewise
smooth, does not have any self-intersections, and is contained in the circular
sector with vertices at O and at the endpoints of the corresponding side. In
addition, all the curves are congruent: each curve can be obtained from another
one by rotation around O by 2πk/n0. For each integer n > n0 make a similar
procedure: take a regular n-gon inscribed in the same circle and replace its sides
with curves, so that the obtained sequence of sets tends to the circle in Hausdorff
metrics. The union of the curves in each n-gon bounds a domain Bn.

Definition 1. The sequence of domains Bn, n ≥ n0 is called a rough disc.

Thus, a rough disc is an idealized object. It is not a domain, but rather it can be
informally viewed as the “limit” of a sequence of domains Bn. Its “boundary” is
obtained by repetition of identical infinitesimal curves similar to the original one.
They are interpreted as infinitesimal hollows on the disc boundary. The billiard
scattering by the rough disc is uniquely defined by the shape of the curve.
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We assume that the dics moves in a medium where the mass is uniformly
distributed according to the measure m: dm = ρ dS, where S is the Lebesgue
measure in R

2. We treat particles as infinitesimal parts of the medium. We
neglect Brownian motion of particles when we calculate interactions between
particles and the body. However, we suppose that particles instantly fill in the
space after the body was passing. Let X = (X,Y ) be the current position of the
center of the body, φ be the current angle of rotation of the body with respect
to its initial position. Let V be the velocity of the center, |V | = V . Denote
by ω the angular velocity, by r be the radius of the disc and by I = κMr2 the
moment of inertia. For a regular disc with uniformly distributed mass we have
I = Mr2/2, and in any case κ ∈ [0, 1]. We introduce the angular coordinate ξ
on the boundary of the ordinary disc representing the smooth approximation of
the moving body, identifying this boundary with the unit circle S1 = [−π, π]/
{π = −π}. Recall the notion for the dimensionless relative angular velocity
λ = ωr/V . The force of resistance of the medium acting on the disc and the
moment of this force are defined as limits, when n → ∞, of the force and the
moment of force acting on Bn. Using these values, we derive the equations of
motion of a rough disc on the plane. These equations, and therefore the trajectory
of the disc, depend on the shape of the infinitesimal curve forming its boundary.
The natural question arises: which curves can be traversed by the disc center?

Description of scattering by a rough disc and equations of motions for such
discs can be found in [27], and in Chaps. 4 and 7 of the book [12]. We partly
reproduce them here.

Definition 2. A hollow is a piecewise smooth non self-intersecting curve con-
tained in a closed isosceles triangle whose base is the segment joining the end-
points of the curve. The segment is called the opening of the hollow.

We use the notion Ω for a hollow and I for its opening. Introduce the uniform
coordinate ξ ∈ [0, 1] on the opening I; the values ξ = 0 and ξ = 1 correspond
to its endpoints. Let n be the unit outer normal to I. Consider a particle that
enters a hollow Ω through its opening I. Fix the point ξ where it intersects the
opening and the angle ϕ ∈ (−π/2, π/2) formed by −n and the incidence velocity
v . If the particle makes a finite number of reflections from regular points of Ω,
intersects I again and leaves, we denote by ξ+ = ξ+

Ω (ϕ, ξ) the point of the second
intersection and by ϕ+ = ϕ+

Ω(ϕ, ξ) the angle formed by n and the velocity v+.
Almost all particles leave the hollow Ω after a finite number of reflections.

This follows from the measure-preserving property of billiard and from Poincaré’s
recurrence theorem. Thus for almost all initial conditions (ϕ, ξ) ∈ [−π/2, π/2]×
[0, 1] the values ϕ+

Ω(ϕ, ξ) and ξ+
Ω (ϕ, ξ) are well-defined. Introduce the probability

measure μ on [−π/2, π/2] × [0, 1] according to dμ(ϕ, ξ) = 1
2 cos ϕdϕdξ. The

map TΩ : (ϕ, ξ) �→ (ϕ+
Ω(ϕ, ξ), ξ+

Ω (ϕ, ξ)) is defined on a full-measure subset of
[−π/2, π/2] × [0, 1] and maps it bijectively onto itself. Moreover, it preserves
the measure μ and is involutive, TΩ = T−1

Ω .
Next introduce the Borel measure ηΩ on the square � := [−π/2, π/2] ×

[−π/2, π/2] as follows: ηΩ(A) = μ({(ϕ, ξ) : (ϕ, ϕ+
Ω(ϕ, ξ)) ∈ A}) for any Borel

set A ⊂ �.
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This measure can be defined in a different way: let σΩ be the mapping
(ϕ, ξ) �→ (ϕ, ϕ+

Ω(ϕ, ξ)) from [−π/2, π/2] × [0, 1] to �; then ηΩ is the measure
ηΩ = σ#

Ω μ. Here σ#
Ω is the mapping of measures induced by σΩ.

Definition 3. ηΩ is called the measure induced by the hollow Ω.

Define the probability measure γ on [−π/2, π/2] by dγ(ϕ) = 1
2 cos ϕdϕ. For a

set A ⊂ �, denote A∗ = {(ϕ,ϕ+) : (ϕ+, ϕ) ∈ A}. Denote by Υ the set of Borel
measures η on � such that for all Borel sets A ⊂ � and I ⊂ [−π/2, π/2] one has
η(A) = η(A∗) and η(I × [−π/2, π/2]) = γ(I). The fact that ηΩ ∈ Υ can be easily
deduced from the measure preserving and involutive properties of the map TΩ;
see [12] for details. The following important theorem states that, inversely, the
set of measures induced by hollows is weakly dense in Υ.

Density Theorem [12]. The set {ηΩ : Ω is a hollow} is weakly dense in Υ. In
other words, for any η ∈ Υ there exists a sequence of hollows Ωk such that

lim
k→∞

∫∫
�

f(ϕ,ϕ+) dηΩk
(ϕ,ϕ+) =

∫∫
�

f(ϕ,ϕ+) dη(ϕ,ϕ+)

for any continuous function f : � → R.

3 Pseudotrajectories

Given a δ > 0, we introduce the concept of a δ-pseudotrajectory for a billiard.

Definition 4. We say that a piecewise C1 smooth curve x (t) : t ∈ [t0, t̂0] is a
δ-pseudotrajectory for the exterior billiard corresponding to an immobile body
A if the following statements are true.

1. x (t) /∈ int A for all t ∈ [t0, t̂0].
2. The set of t such that x (t) ∈ ∂A is finite. Let it be {t1, . . . , tN} : N ∈ N

⋃{0}.
We also use the notation tN+1 = t̂0.

3. For all k ∈ {1, . . . , N} the velocities vr+ = v(tk + 0) = ẋ (tk + 0) and
vr− = v(tk − 0) = ẋ (tk − 0) of the corresponding impacts satisfy inequalities

|ve+ − ve− − 2〈ve−, n〉n | ≤ δ. (1)

If x(t) is a singularity point, we select one of two possible values for normal
vectors.

4. The function v(t) = ẋ (t) is piecewise smooth and |v(t) − v(tk + 0)| ≤ δ for
any k ∈ {0, . . . , N} and any t ∈ (tk, tk+1).

We use this notion to describe trajectories of particles of non-zero mass that
interact with a moving and rotating body.

Definition 5. A rough disc defined by a sequence Bn is perfect if there exist
m0 ∈ N, λ0 > 0, 0 < δ < π/2 and K > 0 such that for any m ≥ m0 all
δ-pseudotrajectories, entering the corresponding hollow with the incident angle
≥ λ0, have at most K impacts before they leave the hollow.

We make the following assumptions on interactions between the body and
particles.
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1. If a particle collides once with a point of the boundary of the body out of any
hollow, we neglect all later interactions between the particle and the body.

2. We assume that there is a number K > 0 such that all particles interacting
with a fixed hollow of the body, have at most K impacts and leave the hollow.

Direct calculations lead us to the following statement.

Lemma 1. Let {Bn} be a rough disc, hn be diameters of corresponding cavities.
Let a0, v0, v1 and ω0 be positive constants. Suppose that a body Bn translates
and rotates during a period [0, T ] so that |Ẋ(t)| ∈ [v0, v1], |Ẍ(t)| ≤ a0. Here
X(t) is the position of the center of the body, ω is the angular velocity. Then
there exist n0 ∈ N and C1, C2 > 0 such that any particle entering a cavity with
incidence angle ≤ λ0 spends at most C1hn units of time inside the cavity. The
part of the trajectory inside a cavity forms a C2hn pseudotrajectory.

4 Dynamics of Perfect Rough Bodies

The dynamics of the rough disc is described by the following system of ordinary
differential Eq. [12, Theorem 7.1, p. 203]:

MV̇ = R(η, ω,V ) =
8

3
rρV 2R(η, λ); Iω̇ = RI(η, ω,V ) =

8

3
rρV 2RI(η, λ). (2)

Here η is the billiard law corresponding to the selected rough disc. Formulae for
dimensionless resistances R depend on λ. Here we assume that λ > 1. Consider
the coordinate system associated with the vector V and the orthogonal vector
V ⊥. Functions R and RI can be found from the following formulae:

R(η, λ) = (RT (η, λ), RL(η, λ)); RT (η, λ) =
∫
�

cT (x, y, λ) dη(x, y);

RL(η, λ) =
∫
�

cL(x, y, λ) dη(x, y); RI(η, λ) =
∫
�

cI(x, y, λ) dη(x, y).
(3)

Here

cT (x, y, λ) =
3 cos x−y

2

sin ζ
((λ3 sin3 x + 3λ sin x sin2 ζ) cos ζ cos x−y

2 −
(3λ2 sin2 x sin ζ + sin3 ζ) sin ζ sin x−y

2 )χx≥x0(x, y);

cL(x, y, λ) = −3 cos x−y
2

sin ζ
((λ3 sin3 x + 3λ sin x sin2 ζ) cos ζ sin x−y

2 +

(3λ2 sin2 x sin ζ + sin3 ζ) sin ζ cos x−y
2 )χx≥x0(x, y);

cI(x, y, λ) = −3
2

λ3 sin3 x + 3λ sin x sin2 ζ

sin ζ
(sin x + sin y)χx≥x0(x, y);

(4)

ζ = arcsin
√

1 − λ2 cos2 x, x0 = arccos(1/λ); χ stands for the characteristic
function. Applying the mentionned Theorem 7.1, we use the result of Lemma 1.

Make a transformation of variables in Eq. (2). First of all, select τ so that:

dτ =
8rρV

3M
dt. (5)
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Then we define θ so that V = V (cos θ, sin θ). Let β = Mr2/I = κ−1 be the
inverse relative moment of inertia of the rough disc. It follows from Eq. (2) that

dλ

dτ
= βRI(λ) − λRL(λ),

dV

dτ
= −V RL(λ),

dθ

dτ
= −RT (λ). (6)

Observe that the variable τ is a natural parametrization of the trajectory of
the center of the disc. Namely, if S(t) is the path passed by the center of the
disc by the moment t then dS/dτ = 3M/(8ρr) = const.

In following three sections we provide a family of specially selected rough-
nesses and justify that the proposed model of dynamics is applicable for rough
discs with such shapes of cavities. First of all we need two types of auxiliary
scattering billiards.

5 Bunimovich Mushroom

Let us introduce the so-called retroreflectors. Consider a family of domains Θh ⊂
R

2 (h is a small positive parameter) with a piecewise smooth boundary ∂Θh

which can be represented as a disjoint union ∂Θh = Ωh

⋃
Ih where Ωh and Ih

satisfy following properties.

1. The arc Ωh is a hollow with the opening Ih.
2. Consider a uniform distribution of pairs (x−, ν−) ∈ Ih×[−π/2, π/2] that is the

point and the angle of incidence. Let ν+ be the angle of the last intersection
between the trajectory of a particle and the segment Ih, then for any σ > 0
the proportion of particles such that |ν++ν− −π| > σ tends to zero as h → 0.

In this paper we consider so-called “Bunimovich mushroom” [28,29], Fig. 2.
There exist other patterns of retroreflectors [12], Chap. 9].

The pattern of the mushroom, we use in this article is the following: a domain
Θh which is a union two domains: Θh1 and Θh2. The first one (“pileus” of the
mushroom) is a strictly convex domain which is the upper part of an ellipse,
whose principal axis is horizontal. The second part of the mushroom (call it
stipe) is a b12 × b13 rectangle. Let b11 be the length of the long axis of the ellipse
Θh1. We assume that the tops of the stipe coincide with the foci of the ellipse.
Suppose that

b12/b11 = 2h; b13/b12 = h. (7)

We call this value h imperfectness of the mushroom.
We claim that Ih = (PLPR) on Fig. 2 is the opening for the considered

scattering billiard. Consequently, we suppose that Ωh is the rest of the boundary
of the “mushroom”.

Let us prove that this mushroom is a retroreflector. Fixed σ > 0 we define
sets Σσ = {(x−, v−) ∈ X : |x+ − x−| ≤ σb22, |v+ + v−| ≤ σ}.

Lemma [12, Lemma 4.1, p. 115]. For any σ > 0 there exists a h0 > 0 such
that if h ∈ (0, h0) and conditions (7) are satisfied, the measure of the set Σσ is
greater than 1 − σ.
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Fig. 2. Mushroom billiard.

6 Amphora Billiard: A Quasi-Elastic Hollow

Select a small positive parameter h called imperfectness of the billiard. Consider
two arcs of confocal parabolas given by equations x = ±(1−y2)/2, y ∈ [0, 1]. Link
the lower ends of these arcs by a segment. We obtain a curvilinear triangle. Cut
the middle part FLFR of the base of this triangle corresponding to x ∈ [−h, h].
Construct two segments ALFL and ARFR of the length h2 at ends of the obtained
gap, which make angles ±π/4 with the axis Ox, Fig. 3(a)). The amphora domain
is constructed.

Later on we deal with modifications of amphora billiards. We take the para-
meter b21 so that

b21 = h; b22/b21 = 2h; b23/b22 = h (8)

where h is the imperfectness, b22 is the width of the entrance corridor of the
billiard domain, call it “neck”, b23 is the length if this corridor.

Let X = [−b22, b22] × (−π, 0) be endowed with the smooth measure ν with
the density dν = − sin v−/(4b22)dx dv−.

Next lemma demonstrates that this amphora hollow works like a smooth
mirror i.e. for “almost” all particles the angle of incidence “almost” equals to
the angle of reflection. Let Nσ be the set of initial conditions (x−, v−) ∈ X
of the entrance which correspond to billiard trajectories with two impacts such
that |x+ + x−| ≤ σb22, |v+ − Rv−| ≤ σ. Here R(vx, vy) = (vx,−vy) and, as
usually, unit vectors v± correspond to angles v±.

Lemma 2. For any σ > 0 there exists a h0 > 0 such that if h ∈ (0, h0) and
conditions (8) are satisfied, the Lebesgue measure of the set Nσ is greater than 1−σ.

Proof. Let (x−, v−) be the initial position and the angle of the initial velocity
of a particle. We identify v− with a point of the lower semicircle. Let (x+, v+)
correspond to the exit of the particle. Here v+ is a point of the upper semicircle.
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Fig. 3. Amphora billiard (a) and its modification (b).

Observe that any particle, corresponding to initial conditions (0, v−),
| tan v−| > 2h, is reflected back to the same point after two impacts (unless the
particle is moving strictly down). Moreover, after the first impact the motion
of the particle is strictly parallel to the axis Ox. Let v0 and v1 be such that
tan v0 = −2h, tan v1 = 2h. Then there exists a δ > 0 such that every trajec-
tory of the amphora billiard, corresponding to initial conditions (x, v): |x| < δ,
v ∈ (v−, v+), v �= −π/2 has exactly two impacts and both of them correspond
to points of “sides of the amphora” i.e. parabolas. It suffices to prove that

Dv =
∂(x+, v+)
∂(x−, v−)

(0, v) =
(

d11 d12

d21 d22

)
=

(±1 0
0 −1

)

for any v ∈ (Θ−,Θ+). The sign of the element d11 is not important for us.

Since every trajectory that passes via the focus comes back to the focus after
two reflections, we have d12 = 0. Due to symmetry reasons, d22 = −1, d11 = ±1.

Let n− and n+ be unit normal vectors for points of the first and the second
impact respectively. Let (x−, v−) be initial conditions for the trajectory. Then
n± are functions of x− and, moreover, grace to the structure of the considered
domain, the vector n− uniquely defines the point of the first impact and, conse-
quently, uniquely defines the vector n+. Let n± be the angles between n± and
Ox. Consider the angle α between the axis Ox and the trajectory of the particle
after the first impact. Clearly, α = 0 for all solutions, passing via the focus. Due
to reflection law, α = v− −2n−. Comparing the trajectory of a particle with one
obtained by reversion of time we get v− − 2n− + v+ − 2n+ = π.
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On the other hand, for all solutions, passing via the focus, one can easily see
that dn+/dn− = −1. This implies
(

∂n+

∂x−
+

∂n−
∂x−

)∣∣∣∣
x−=0

= 0 and
(

∂v+

∂x−
+

∂v−
∂x−

)∣∣∣∣
x−=0

= 0 ⇒ d21 = 0. �

Note also, that if a trajectory meets the neck of the amphora so that the absolute
value of the direction of the entrance velocity is less than π/4, the particle is
reflected upwards and does not interact with the boundary of the amphora any
more.

Amphora billiards have a disadvantage, similar to one of mushrooms: par-
ticles can get stuck there, having a big number of impacts until they leave the
amphora domain. We modify the amphora in the following way. Attach two tri-
angles BLCLFL and BRCRFR to horizontal parts of the boundary of the billiard
(Fig. 3(b)). We do it so that

1. |BLFL| = |BRFR| = h5/4 (= o(FLFR)),
2. ∠FLBLCL = ∠FRBRCR = π/6, ∠FLBLCL = ∠FRBRCR = π/4.

We introduce a coordinate Φ ∈ [−π/2, π/2] on boards of the amphora. This
coordinate corresponds to the inclination of the line, passing through the origin
and the selected point. Consider two symmetric points OL and OR that are
centers of segments [BLFL] and [BRFR] respectively. Replace parts of parabolas,
corresponding to Φ ∈ [−π/4, π/4] with arcs of ellipses EL and ER such that one
focus for both of these ellipses is O and another one is OL for ER and OR for
EL. The modified amphora domain is constructed, Fig. 3(b).

Now we study billiard trajectories for the modified amphora billiard. Suppose
that the angle between the initial velocity and the line is less than π/7.

If a particle hits the boundary at one of points of [ALBL] or [ARBR] it is
reflected upwards and does not have any other impacts. Otherwise, it interacts
twice with arcs of parabolas. After that, due to Lemma 2 there exist following
three alternatives, Fig. 3.

1. A particle leaves the amphora domain forever without having any more
impacts.

2. A particle hits [ALBL] or [ARBR] and leaves the amphora domain.
3. A particle hits [BLCL] or [BRCR] then maps to a point of EL or ER respec-

tively. After that, the trajectory crosses the 2h5/4 – vicinity of the origin and
leaves the amphora domain forever.

Lemma 2 guarantees that the “majority” of trajectories behave according to the
first scenario. Note that for any initial conditions of the considered type the
number of impacts cannot exceed 4.

7 Hybrid Hollows

Now we are ready to construct the rough element, i.e. the hollow, corresponding
to the rough disc with a prescribed law of reflection. We modify the amphora
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Fig. 4. Hybrid billiard.

billiard so that for some selected directions of incident particles it works as a
retroreflector and for some others it works as a quasielastic reflector.

Select two symmetric sets of non-intersecting segments JkL and JkR (k =
1, . . . m) given by JkR = [Φ0

k,Φ1
k], JkL = [−Φ1

k,−Φ0
k]. Assume that 5π/14 =

π/2 − π/7 < Φ0
1 < Φ1

1 < . . . < Φ0
m < Φ1

m < π/2.
Given a point DRR (the right edge of the hollow) we attach an arc of the

ellipse with the foci at FL and FR and corresponding to Φ ∈ (Φ0
m,Φ1

m). Then
we draw an arc of the parabola with a focus at the origin and the vertical axis
of symmetry through the free end of the constructed arc of the ellipse. We do
it for Φ ∈ (Φ1

m−1,Φ
0
m). We repeat similar constructions of arcs of ellipses with

same foci and parabolas with the same focus until we reach Φ = Φ1
1. Then we

attach the last arc of parabola, corresponding to Φ ∈ (π/4,Φ1
1). To finish the

construction we attach an arc of an ellipse, corresponding to (π/4, π/2) similarly
to what we did for modified amphora billiards (Figs. 3 and 4).

It may happen that a trajectory or a pseudotrajectory which hits a par-
abolic part of the boundary near its junction with an elliptic part, next hits
an elliptic part on the opposite side of the hollow. Generally, this means that
the corresponding billiard trajectory hits one of segments ΣL = [DLL,DLR] or
ΣR = [DRL,DRR] on the upper part of the boundary of the hollow (Fig. 4).
Let G1L, . . . , GmL and G1R, . . . , GmR be junctions between elliptic and par-
abolic sectors. Consider H1, . . . H2m that are points on the union ΣL

⋃
ΣR,

corresponding to “parabolic+elliptic” reflections from points GkL and GkR or
vice versa. We put a system of flat mirrors (segments) of sizes h5/4 centered
at Hj (j = 1, . . . , 2m) so that all h3/2 pseudotrajectories, hitting first par-
abolic, then elliptic sectors, are reflected via these mirrors to h9/8 neighbor-
hoods of points H ′

1, . . . H
′
2m such that H ′

j ∈ (−π/4,−π/7)
⋃

(π/7, π/4) for all j.
We put flat mirrors of lengths h9/8, centered at points H ′

j so that all consid-
ered trajectories and pseudotrajectories are reflected by these mirrors to the
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h17/16 neighborhood of the center of the entrance of the hollow (Fig. 4). That
size is still much less than the length of the entrance, equal to h. Trajectories
and pseudotrajectories corresponding to this hybrid billiard, with incident angles
v− ∈ (−π,−6π/7)

⋃
(−π/7, 0) are the following.

1. If a pseudotrajectory does not hit points, corresponding to one of segments
JkL or JkR, the behavior is the same as for the modified amphora billiard.

2. If it hits one of the mentioned segments, is reflected “almost back” (simi-
larly to what happens for Bunimovich mushrooms). Then the pseudotrajec-
tory leaves the domain without farther interactions with walls.

3. A small proportion of particles (which tends to 0 as h → 0) has a dis-
tinct behavior. However, all such particles leave the hollow, having at most 4
impacts.

So, the constructed hollow is perfect. Now we describe how it is possible to
cover almost all segment I ∈ Ox (we may also do the same if I is an arc of
the circle) with tops of hybrid billiards. Cut the middle part of I of the length
2h|I| and insert there a hybrid billiard of imperfectness h and the basis of the
neck equal to 2h|I|. Call this hollow one of the first generation. Let b1 be the
corresponding rescaling coefficient. Take b2 = �h2b1. Here � < 1 is the princi-
ple rescaling for smaller mushrooms of the “second generation”, Fig. 4). Then
we put N ∼ h−1|I| non-intersecting hollows of the second generation whose tops
correspond to subsegments of I. We repeat this procedure, creating hollows of
the third level and so on. On the step number L, the measure of the part of
the segment I, not covered by tops of already constructed hollows can be esti-
mated by the value |I|(1 − h̃/2)L. In the limit, we get a zero-measure Cantor
set. However, we stop after finitely many steps.

8 Main Result

Theorem 1. Let g : [a, b] → R
2 be a continuous rectifiable curve. Then for any

ς > 0 there exists a motion (X(τ), ϕ(τ)) of a rough disc of radius r > 0 such
that after a continuous and monotone increasing change of parameter τ = τ(t),
t ∈ [a, b] one has

|g(t) − X(τ(t))| < ς. (9)

Here X(τ) is the position of the center of the disc; ϕ(τ) is the turn of the disc.

Note that we the curve g is not necessarily injective: self-intersections and even
coincidence of some fragments of the curve are allowed.

The following auxiliary theorem states that any broken line can be approxi-
mated by trajectories of rough discs. Namely, let G(t), t ∈ [a, b] be a parame-
terized broken line with a finite number of segments, Γ = {G(t) : t ∈ [a, b]}.
Self-intersections are allowed, but we require that no vertex of the broken line
is a point of intersection. Moreover, we approximate broken lines so that incli-
nations of every segment with respect to the previous one varies from −π/4 to
0. For instance, instead a rotation by the angle π/4, we apply seven rotations
by −π/4.
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Theorem 2. For any ς > 0 there exists a motion of a rough disc of radius
r > 0 whose center is X(τ) such that after a continuous and monotone increasing
transformation τ = τ(t), t ∈ [a, b] inequality (9) is satisfied.

Theorem 1 is an obvious consequence of Theorem 2. Indeed, each rectifiable
curve can be uniformly approximated by broken lines, and each broken line can
be uniformly approximated by trajectories of rough discs.

Proof of Theorem 2. First we notice that a curve homothetic to a trajectory
of a rough disc is also a trajectory of a rough disc. Let X (t) be the motion
of the center of a rough disc of radius r. Let ω(t) be its angular velocity and
ε be a positive constant. Then the coordinate of the center of a disc of radius
νr homothetic to the original one moving in the same medium with the initial
velocity εX ′(0), the initial angular velocity ω(0), is given by εX (t), and its
angular velocity is ω(t).

This scaling argument allows one to reduce Theorem 2 to the problem of
approximation of a broken line 1

εg(t) where ε is a small parameter. Select a
splitting of the broken line into segments with ends, corresponding to a = T0 <
T1 < . . . < Tm−1 < Tm = b.

Take a disc Bnε
with the roughness of the considered form. Introduce the

measure in [−π/2, π/2] × [−π/2, π/2] associated with the cavity which has the
density

1
2

cos x{δ(x − y) · χJ∪J ′(x) + δ(x + y) · [1 − χJ∪J ′(x)]} dx dy. (10)

if |x|, |y| ≤ 5π/14. Here

J =
m⋃

i=1

JiR =
m⋃

i=1

[π/2 − e−Ti/ε, π/2 − e−(Ti+ΔTi)/ε] and J ′ = −J, (11)

i = 1, 2, . . . , m is a finite set of indices. We select JiR as “elliptic” segments on
the boundary of a cavity (see Sect. 7 and Fig. 4). The initial angular velocity
λ(0) = ω(0)/rV (0) is taken to be λ(0) = eT0/ε. Ti − Ti−1 is the length of the
i – th segment of the broken line, ΔTi = ϕie

−Ti/ε. Here ϕi are parameters, close
to angles ϕ0

i ∈ [−π/4, 0] between the i-th and (i + 1)-th segments of the broken
line. Now we note that ε > 0 is taken so small that all segments Ji are disjoint.

As the disc moves, the relative angular velocity increases and less of the part
of the cavity is “observable” by particles. Depending on the value of λ either
J

⋃
J ′ or completion of this set dominate in the “observable” part. Respectively,

we have rotation or “almost straight forward” motion. A small part ε of the
boundary is filled with cavities. The rest, 1 − ε, of the boundary is not filled,
that is, is just a union of arcs of the unit circumference. Both parts are uniformly
distributed along the boundary.

Consider the natural parametrization g(τ), τ ∈ [T0, Tm], where [Tj−1, Tj ]
parameterize segments of the broken line. We find a motion of a rough disc of
unit radius where X (τ) is the position of the center and values Sj (j = 0, . . . ,m),
τ ∈ [S0, Sm] so that

|g(τ)/ε − X (τ/ε)| < (m + 1)/
√

ε (12)
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or, equivalently, |g(τ) − εX (τ/ε)| < (m + 1)
√

ε. Given ς, we take ε so that
ς = (m + 1)

√
ε. Then we take the rescaling parameter κ = ε and easily obtain

inequality (9).
The motion of the disc is described in terms of the parameter τ proportional

to the natural one (see (5)). It can be deduced from Eqs. (6) and (12) and from
equations defining the measure (10), (11) that the differential equation for λ(τ)
takes the form λ′ = λu(λ, ε, τ) where u(λ, ε, τ) ⇒ 1 as ε → 0. So λ = ew(ε,τ)

where w is increasing with respect to τ and w(ε, τ)/τ ⇒ 1. Consider values Sj

defined by equalities w(ε, Sj) = Tj/ε.
Using Eqs. (3), (4) and (6), introduce the notation x0 = x0(λ) = arccos(1/λ),

and obtain the equality

1
2

∫ π/2

x0

cT (x,−x, λ) cos x dx = 0

(recall that the function cT is defined by (4)). This means that the component,
orthogonal to the current velocity, of the force acting on a smooth (without
roughness) disc is zero. So we obtain θ′(τ) = −εRT (λ(τ)) where

RT (λ) =
1
2

∫
[x0,π/2]∩J

(cT (x, x, λ) − cT (x,−x, λ)) cos x dx, (13)

with cT (x, x, λ) − cT (x,−x, λ) =

3 sin x

sin ζ
{(λ3 sin3 x+3λ sin x sin2 ζ) cos ζ sin x+(3λ2 sin2 x sin ζ+sin3 ζ) sin ζ cos x}

and ζ = ζ(x) = arccos(λ cos x). After some algebra we get

cT (x, x, λ)− cT (x,−x, λ) =
3 sin x cos ζ

λ sin ζ
{(λ2 − cos2 ζ)2 + 6 sin2 ζ(λ2 − cos2 ζ) + sin4 ζ}.

Making the change of variable x → ζ in the integral (13), we obtain

RT (λ) =
∫

[0,π/2]∩J̃

3
2λ3

{(λ2 − cos2 ζ)2 + 6 sin2 ζ(λ2 − cos2 ζ) + sin4 ζ} cos2 ζ dζ,

(14)
where

J̃ =
m−1⋃
j=0

[ζj , ζj + Δζj ],

with ζj = arccos(λe−Sj ), ζj + Δζj = arccos(λe−w−1((Tj+Δj)/ε). Notice that the
expression {. . .} in the integral in the right hand side of (14) can be estimated
as {. . .} = λ4 + O(λ3) for large values of λ.

Substituting λ = ew(ε,τ), one obtains

ζj = arccos(ew(ε,τ)−Tj/ε) and Δζj =
ew(ε,τ)−Tj/ε√

1 − e2w(ε,τ)−2Tj/ε

Δj

ε
(1 + oε(1))
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where oε(1) → 0 as ε → 0. The value of εRT (λ) can now be evaluated as

εRT (λ) = ε
3

2λ3
(λ4 cos2 ζjΔζj + R̂0

j (λ, ε)) =

ε
3λ

2
e2w(ε,τ)−2Tj/ε ew(ε,τ)−Tj/ε√

1 − e2w(ε,τ)−2Tj/ε

Δj

ε
+ R̂1

j (τ, ε)

=
3ϕj

2
e4w(ε,τ)−4Tj/ε√

1 − e2w(ε,τ)−2Tj/ε
+ R̂1

j (τ, ε).

Here |R̂0
j (λ, ε)| ≤ Cλ3 where C is a constant; R̂1

j (τ, ε) tends to zero as λ(τ) → ∞,
ε → 0. Thus, we come to the following differential equation for θ(τ),

dθ

dτ
=

3ϕj

2
e4w(ε,τ)−4Tj/ε√

1 − e2w(ε,τ)−2Tj/ε
+ R̂1

j (τ, ε), if τ ∈ [Sj , Sj+1 − 1/
√

ε].

Solutions for this equation are

θ(τ) = θ(Sj)+ϕj

[
1−

√
1 − e2w(ε,τ)−2Tj/ε

(
1+

1
2

e2w(ε,τ)−2Tj/ε
)]

+R̃(ε, τ), (15)

if τ ∈ [Sj , Sj+1]; j = 0, . . . ,m − 1.

Here |R̃(ε, τ)| ≤ √
ε if ε is sufficiently small. The function θ is increasing with

respect to τ and with respect to each parameter ϕj . So, we can select all ϕj so
that θ(Sj+1)−θ(Sj) = ϕ0

j . Thus, any part of the trajectory X ([Sj , Sj+1−1/
√

ε])
(j ≥ 1) is an arc, close to a line segment of length (Tj+1 − Tj)ε−1 − ε−1/2.

Let L be the length of the curve g , θ0(τ) be the piecewise constant function,
equal to 0 on [S0, S1) and equal to ϕ0

1 + . . . + ϕ0
j−1 on [Sj−1, Sj). Then for any

τ ∈ [0, L] we have
∣∣∣∣X (τ/ε) − 1

ε
g(τ)

∣∣∣∣ ≤
∫ τ/ε

S0

|ϕ(s) − ϕ0(s)| ds. (16)

For τ ∈ [εSj , εSj+1−
√

ε] the velocity vector X ′(t/ε) forms an angle O(e− 1
2

√
ε )

with the j –th segment of the broken line. This follows from representations (15).
On the other hand, contributions of any segment [εSj−

√
ε, εSj ] to the right hand

side of (16) are estimated by ε−1/2. So, we have inequality (12) satisfied if ε is
small. �

9 Conclusion and Discussion

The main results of this paper are the following. Two-dimensional trajectories
of bodies, whose boundaries are close to circles, may have (up to rescaling)
any shape. The same statement is true for flat curves in the three dimensional
real space. Also a description of amphora billiard (quasi-elastic reflector) and
its modifications with a wide variety of response functions have been given. All
these results are principally novel.



18 S. Kryzhevich

However, our construction while being mathematically correct cannot be
implemented in practice. First, we make some non-realistic assumptions that
the medium temperature is absolute zero, the particles of the medium do not
collide, and (even worse) the collisions of the particles with the boundary of the
body are perfectly elastic. Second, even if all these assumptions are satisfied,
each cavity should be fabricated with exceptionally high precision, the scale of
precision being much smaller than the size of atoms. Third, the path traversed
by a disc is proportional to the logarithm of time. Roughly speaking, it may
happen that the first meter of the trajectory is traversed in a second, the second
meter in a minute, the third meter in a hour, ..., the tenth meter in a billion of
years. The experimenter may just not survive the end of the experiment.

Imagine a football player who wants to send the ball so that the trajectory
goes round all the players of the rival team and finally gets into the gate. He can
indeed do so making use of our results, but the ball surface should be very special;
the pressure of the atmosphere should be very low; the Earth gravitation should
be negligible; the rival players should be asked not to prevent the (eventually
very small) motion of the ball. And it remains to wait. Oh, forgot to say that
all this should happen in two dimensions.
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Abstract. Here we study retroreflectors based on specular reflections.
Two kinds of asymptotically perfect specular retroreflectors in two dimen-
sions, Notched angle and Tube, are known at present. We conduct com-
parative study of their efficiency, assuming that the reflection coefficient
is slightly less than 1. We also compare their efficiency with the one of
the retroreflector Square corner (the 2D analogue of the well-known and
widely used Cube corner). The study is partly analytic and partly uses
numerical simulations. We conclude that the retro-reflectivity ratio of
Notched angle is normally much greater than those of Tube and the Square
corner. Additionally, simple Notched angle shapes are constructed, whose
efficiency is significantly higher than that of the Square corner.

Keywords: Retroreflectors · Geometric optics · Shape optimization ·
Billiards

Mathematics subject classifications: 49Q10, 49M25, 78A05.

1 Introduction

A retroreflector is an optical device that reverts the direction of incident beams
of light [9]. In the framework of geometric optics one deals with light rays that
propagate along straight lines (in a homogeneous space) or curves. The retrore-
flector is called to be perfect, if each incident light ray, as a result of interaction
with the device, changes its direction to the opposite (such rays are called retro-
reflecting).

Retroreflectors are widely used in economy, for example in road safety and
space exploration. Most retroreflectors used in practice are not perfect: only a
part of incident light rays are retro-reflected. The most used types of retroreflec-
tors are called cube corner and cat’s eye (see Fig. 1). The former one is based
on reflection from three mutually perpendicular planes, and the latter one, on
refraction in a lens (and possibly also reflection). Both are not perfect.

A well-known example of perfect retroreflector is Eaton lens, a transparent
ball with the varying refractive index [2–4,8]. More precisely, the refractive index
at a point of the ball equals n(r) =

√
2R/r − 1, where R denotes the radius of the

ball and r the distance from the point to the ball center. That is, the index equals
1 at the boundary of the ball and goes to infinity when the point approaches the
ball center. An incident light ray passes through the ball and then goes back in
the direction opposite to the original one (see Fig. 2).
c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 20–32, 2015.
DOI: 10.1007/978-3-319-20352-2 2



Comparative Study on Efficiency of Mirror Retroreflectors 21

(a) (b)

Fig. 1. The retroreflectors (a) Cube corner and (b) Cat’s eye.

Fig. 2. Eaton lens.

However, design of media with varying refractive index is not an easy task. It
seems to be much easier from technical viewpoint to design retroreflectors based
solely on mirror reflections, or billiard retroreflectors. Thus, one comes to the
problem of creating a perfect billiard retroreflector.

This problem is not solved until now. It is even not known if such retrore-
flectors really exist. What we know, however, is that there exist asymptotically
perfect families of retroreflectors [1,5,7]. For arbitrarily small ε > 0, one can
choose a retroreflector in such a family so that the portion of light rays reflected
from it in wrong directions is smaller than ε. At present, 2D asymptotically
perfect retroreflectors are studied in some detail, and almost nothing is known
about 3D ones. Notice that 2-dimensional devices may be of interest for practice,
especially if the light is supposed to propagate in a single plane. For instance,
one can imagine applications in road engineering, when the retroreflectors are
placed on the height corresponding to the level of the driver’s eyes.

In this paper we concentrate on 2-dimensional asymptotically perfect families
of retroreflectors. By a retroreflector we mean a bounded domain B with a marked
part of the boundary. The marked part is a line segment (the dashed line in Fig. 3);
it is called the inlet of the retroreflector. The retroreflector lies on one side of the
dashed line, and its boundary is a piecewise smooth curve with finite length.

The propagation of light is represented by the billiard in B. A light ray
comes through the inlet, makes several reflections from the boundary ∂B, and
finally leaves B through the inlet. The ray is retro-reflected, if the direction of
coming in is opposite to the direction of going away (ϕ = ϕ+ in Fig. 3). We
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ξ

ϕ

ϕ+

B

Fig. 3. Motion of light in a retroreflector.

parameterize the inlet by ξ ∈ [0, 1]; each incident ray is naturally labeled by the
angle of incidence ϕ varying from −ϕ/2 to ϕ/2 and by the point ξ where the
ray intersects the inlet.

For a retroreflector B, the retro-reflectivity ratio r(B) is the portion of the
incident light rays that are retro-reflected by the device. The ratio varies between
0 (no retro-reflection at all) and 1 (perfect retro-reflection). The amount of
incoming light is counted according to the natural billiard measure dμ(ϕ, ξ) =
1
2 cos ϕdϕdξ defined on [−π/2, π/2]× [0, 1]. It is a probability measure, that is,
μ([−π/2, π/2] × [0, 1]) = 1.

It is instructive to calculate the retro-reflectivity ratio of the square corner,
the 2-dimensional analogue of cube corner (see Fig. 4). Assume that the sides
of the corner are perfectly reflecting. Any light ray that makes 2 reflections from
the corner reverts its direction, and a ray that makes only 1 reflection goes away
in a wrong direction. A simple geometrical analysis allows one to calculate the
portion of rays that make double reflections (and therefore are retro-reflected);
see Fig. 4 for a graphical illustration. We find that for a fixed ϕ the portion of
retro-reflected rays equals

Rcq(ϕ) =
{

1 − | tan ϕ|, if |ϕ| < π/4;
0, if |ϕ| ≥ π/4

(and hence the portion of wrongly reflected rays is 1 − Rcq(ϕ)). Therefore the
retro-reflectivity ratio of the square corner equals

rsq =
∫ π/2

−π/2

Rcq(ϕ)
1
2

cos ϕdϕ =
∫ π/4

0

(cos ϕ − sin ϕ) dϕ =
√

2 − 1 ≈ 0.414.

Note that this analysis is not applicable to the second most popular type
of retroreflectors: cat’s eye. The point is that generally the direction of reversed
light rays in cat’s eyes does not precisely coincide with the direction of incidence,
but is slightly deviated. Thus the formal calculation of the retro-reflectivity ratio
would give zero.
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Fig. 4. Reflection of light in a square corner.

At present two asymptotically perfect retroreflectors, Tube and Notched angle,
are known. They are obtained by modifying a rectangle and an isosceles trian-
gle, respectively. Notice that both a rectangle with small q = (height)/(width)
and an isosceles triangle with small q = (base)/(height) can serve as retroreflec-
tors (see Fig. 5), and their retro-reflectivity ratios go to 1/2 as q → 0 (see [6],
Chap. 9).

(a) (b)

Fig. 5. (a) Rectangle-shaped and (b) triangle-shaped retroreflectors. In both cases the
retro-reflected ray is shown red, and the wrongly reflected ray is shown blue.

Tube is obtained by removing small periodically located segments parallel to
the inlet from a rectangle (see Fig. 6). More precisely, a Tube B(n, d, ε) is the
rectangle [0, (n+1)d]× [0, 1] with the segments {di}× [0, ε] and {di}× [1−ε, 1],
i = 1, . . . , n removed; that is,

B(n, d, ε) = [0, (n + 1)d] × [0, 1] \ ∪n
i=1({di} × ([0, ε] ∪ [1 − ε, 1])).

Here the inlet is {0}×[0, 1]. Thus, the retroreflector Tube depends on three para-
meters: n, d, and ε. It is proved in [1,5] that for a certain family of retroreflectors
B(n, d, ε) with ε → 0, n = n(ε) → ∞, and with d fixed, the retro-reflectivity
ratio r(B(n(ε), d, ε)) goes to 1 as ε → 0.

Notched angle is obtained by replacing the lateral sides of the rectangle with
a broken line whose segments are parallel and perpendicular to the inlet (see
Fig. 7). More precisely, take positive δ, α, β, consider the broken line composed
of alternating horizontal and vertical segments inscribed in the angle x tan α ≤
y ≤ x tan(α + β) and situated between the vertical lines x = δ and x = 1.
Further consider another broken line symmetric to the original one with respect
to the x-axis. The initial endpoints of the former and latter lines are (1, tan α)
and (1,− tan α), respectively.
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Fig. 6. The Tube B(5, 1, 0.12), with the number of segments n = 5, horizontal distance
between the segments d = 1, and the length of each segment ε = 0.12.

The Notched angle B(α, β, δ) is bounded by these broken lines and by the ver-
tical lines x = δ and x = 1. The inlet is the vertical segment {1}×[− tan α, tan α].
Thus, the retroreflector Notched angle depends on three parameters: α, β,
and δ. It is proved in [5] that for a certain family of retroreflectors B(α, β, δ)
with δ = δ(α) −−−→

α→0
0, β = β(α), β/α −−−→

α→0
0 the retro-reflectivity ratio

r(B(α, β(α), δ(α))) goes to 1 as α → 0.

Fig. 7. Notched angle.

Our aim in this paper is to evaluate and compare the efficiency of these
retroreflectors. It is supposed that a part of the light is lost after each reflection:
a portion k of the light is reflected according to the billiard law, and the portion
1 − k is absorbed by the device or scattered. Here 0 < k < 1. We are going to
evaluate the three parameters (a, b, ε in the former case and α, β, δ in the
latter case) that provide the maximal, or nearly maximal, retro-reflectivity ratio.
Obviously, when k goes to 1 (full reflection), the maximum retro-reflectivity ratio
goes to 1 in both cases. We will see, as a result of our study, that for each k the
retroreflector Notched angle is much more efficient than the Tube.

Another question we address here concerns creating a reflecting curve with
relatively simple shape and with the retro-reflectivity ratio significantly greater
than that of the square corner. We will see that such shapes do exist.
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Finding a 3D analogue of the Tube and (especially) the Notched angle are
challenging tasks for the future.

2 Notched Angle

2.1 Analytical Study

One of the advantages of Notched angle is that its efficiency can be evaluated
analytically. Here we provide analytical derivation of the retro-reflectivity ratio
r(α, k) in the limit when β → 0, δ → 0. It can be made rigorous with using
methods from [5]. However, here we limit ourselves by numerical verification of
our heuristics.

First consider two flows of particles with the angles of incidence ϕ and −ϕ,
with 0 < ϕ < α. Fix an indentation (the line ABC in Fig. 8) of our angle and
consider the part of the flow incident on it with the angle ϕ. The segment AB is
vertical and BC is horizontal. By unfolding the right triangle ABC one obtains
the isosceles triangle AEC. The point F on the side AC is chosen so that the
line EF forms the angle ϕ with EC.

Fig. 8. Particles reflected from an indentation when |ϕ| ≤ α. (a) A wrongly reflected
particle. (b) A retro-reflected particle.

If a particle comes through the segment AF , it makes a reflection and is
reflected in a wrong direction (see Fig. 8(a)). If it comes through FC, it makes
two reflections and is retro-reflected (see Fig. 8(b)).

The triangle AEF has the angles π − 2α, α − ϕ, α + ϕ, respectively. The
triangle CEF has the angles α, ϕ, π − α − ϕ, respectively. Applying the sine
law to these triangles, after a simple trigonometry one obtains

|FC|
|AC| =

2 tan ϕ

tan α + tan ϕ
. (1)
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Consider a vertical line (for example, the inlet of the notched angle). The
particles incident on the given indentation with the angle of incidence ϕ intersect
this line at points of a certain segment (the segment A′C ′ in Fig. 8 (a), (b)). Using
again the sine law, one easily finds the length of the segment,

|A′C ′| = |AC| sin(α + ϕ)
cos ϕ

.

The segment F ′C ′ (see Fig. 8 (b)) corresponds to the retro-reflected particles.
Using (1), one easily finds its length,

|F ′C ′| = |AC| · 2 tan ϕ cos α.

On the other hand, all the particles with the angle of incidence −ϕ (not
shown in the figure) are reflected from the indentation in a wrong direction. The
length of the corresponding vertical segment equals

|AC| sin(α − ϕ)
cos ϕ

.

Thus, the total length of the segments corresponding to the two flows equals

|AC| sin(α + ϕ)
cos ϕ

+ |AC| sin(α − ϕ)
cos ϕ

= |AC| · 2 sin α,

and only one segment with the length |AC| · 2 tan ϕ cos α corresponds to the
retro-reflected particles. That is, the portion of retro-reflected particles equals

|AC| · 2 tan ϕ cos α

|AC| · 2 sin α
=

tan ϕ

tan α
.

Note that it does not depend on the specific indentation. Integrating this value
over ϕ ∈ [−α, α] and taking into account the absorption, one finds the portion
(among all incident particles) of retro-reflected particles with the angles |ϕ| ≤ α,

r1(α, k) = k2

∫ α

−α

tan ϕ

tan α

1
2

cos ϕdϕ = k2 cos α(1 − cos α)
sin α

.

Let now ϕ > α. Consider the flow of particles incident on a fixed indentation
(the line ABC in Fig. 9) with the angle of incidence ϕ. Let the triangle EBC be
symmetric to the triangle ABC with respect to the line BC. Take the point F
on AC so that EF forms the angle ϕ with BC. If the particle comes through the
segment AF , it makes two reflections and goes back in the opposite direction. If
it comes through FC then after a single reflection it continues moving forward.

The triangle AEF has the angles π/2−α, π/2−ϕ, α+ϕ, respectively. The
triangle CEF has the angles 2α, ϕ − α, π − α − ϕ, respectively. Applying the
sine rule to these triangles, one comes to the relation

|FC|
|AC| =

tan ϕ − tan α

tan ϕ + tan α
=: λα(ϕ).
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Fig. 9. Particles reflected from an indentation when ϕ > α. (a) A retro-reflected par-
ticle. (b) A wrongly reflected particle.

This ratio is the portion of the flow that continues moving forward after being
reflected in the indentation. It does not depend on the specific indentation.

The process can be described as follows. The part 1 − λ (where λ = λα(ϕ))
of the flow is retro-reflected by the first indentation (after hitting it two times).
Thus, the retro-reflected part of the flow is k2(1 − λ). Notice that the first
indentation may be different for different particles.

The part of the flow retro-reflected by the second indentation is λ(1−λ). The
corresponding particles make one reflection while moving forward, two reflections
in the indentation, and one reflection on the way back — 4 reflections in the total.
The retro-reflected part of the flow is k4λ(1 − λ).

Continuing this process, one obtains the sequence k2m+2λm(1 − λ), m =
0, 1, 2, . . ., the sum of its terms being the portion of retro-reflected particles,

k2(1 − λ)[1 + k2λ + k4λ2 + . . .] =
k2(1 − λ)
1 − k2λ

.

Here λ = λα(ϕ). Notice that this portion is related to the flow with the angle of
incidence ϕ. The portion of retro-reflected particles corresponding to all angles
ϕ > α is obtained by integration,

r2(α, k) =

∫ π/2

α

k2(1 − λα(ϕ))

1 − k2λα(ϕ)
cos ϕ dϕ =

∫ ∞

tan α

2k2

t
tan α

(1 − k2) + (1 + k2)

dt

(1 + t2)3/2
.

Thus, the retro-reflectivity ratio equals

r(α, k) = r1(α, k) + r2(α, k)

= k2 cosα(1− cosα)

sinα
+

∫ ∞

tan α

2k2

t
tan α

(1− k2) + (1 + k2)

dt

(1 + t2)3/2
. (2)

The graphs of r(α, k) as functions of α for several values of k are shown in
Fig. 10. The optimum angle αmax = αmax(k) is indicated by a dot on each curve.
The values of the angles αmax and the corresponding retro-reflectivity ratios are
given in the table below.
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k 0.5 0.8 0.9 0.99
αmax 0.445 0.356 0.287 0.117
r(αmax, k) 0.146 0.421 0.582 0.864

Fig. 10. Retro-reflectivity ratio r(α, k) of Notched angle for several values of k.

2.2 Numerical Simulation

The number of light beams coming through the inlet was chosen to be 1000 in all
experiments. If r̄ is the estimate of the retro-reflectivity ratio in a simulation, then
the standard deviation of the estimate is less than 2%, as can be seen from the
formula for the deviation of Normal distribution

√
r̄(1 − r̄)/1000 for r̄ ∈ [0, 1].

In the case of positive β and δ there are no analytic formulas, so one needs
to proceed to numerical simulation. First we verify theoretical results for the
limiting case β → 0, δ → 0. To that end, we calculate the retro-reflectivity ratio
r(αmax, β, β, k) for the fixed values k = 0.9 and k = 0.99 and the corresponding
optimal values αmax = αmax(0.9) = 0.287 and αmax = αmax(0.99) = 0.117, and
consider the values β = δ varying from 0.01 to 0.1. One sees in Fig. 11 that the
retro-reflectivity ratio approaches the corresponding value r(αmax, k) (marked
by a point on the vertical axis) as β goes to 0.

The three graphs of maximum retro-reflectivity ratio versus k with fixed
values of β and δ are shown in Fig. 12. The two graphs are related to the values
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Fig. 11. The plot of the retro-reflectivity ratio vs β(= δ) for k = 0.9 and k = 0.99.

Fig. 12. The graphs of maximum retro-reflectivity ratio vs k in the three cases when
(a) β = δ = 0.1; (b) β = δ = 0.01; and (c) the theoretical limiting case for β = δ = 0.

β = δ = 0.1 and β = δ = 0.01, and the third graph plots the theoretical
maximum value maxα r(α, k), which corresponds to the limiting case β = δ = 0.
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Fig. 13. Three special shapes of Notched angle with k = 0.99 and α = αmax(k) = 0.117
and with high retro-reflectivity ratios.

Again, it is seen that the maximum retro-reflectivity approaches its theoretical
limit as β → 0, δ → 0, and is very close to this limit when β = 0.01, δ = 0.01.

A numerical work has been done on finding practical shapes with retro-
reflectivity ratio higher that that of the well-known shape Square corner. The
reflection coefficient was taken to be k = 0.99. We also took α = 0.117, the
optimal angle corresponding to the value k = 0.99. The results are presented in
Fig. 13.

There always is a tradeoff between simplicity of the shape and high retro-
reflectivity. The three shapes presented in the figure have the ratios r ≈ 0.6,
0.76, and 0.82, which are significantly greater than the ratio of the Square corner
k2(

√
2 − 1) ≈ 0.4. Naturally, the greater the ratio, the more complicated is the

shape: in the first case one has β = δ = 0.1, in the second case β = 0.02,
δ = 0.05, and in the third case β = δ = 0.01.
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Fig. 14. The plots of the retro-reflectivity ratio vs k for the retroreflectors (a) Tube
with n = 49, d = 0.2, ε = 0.05, (b) Notched angle with β = δ = 0.01 and with
α = αmax(k), (c) the square corner, and (d) r(αmax, k), the retro-reflectivity ratio of
Notched angle with β → 0, δ → 0.

3 Tube and Comparison with Notched Angle

It was proved in [1,5] that there exist Tube retroreflectors with retro-reflectivity
ratio arbitrarily close to 1. More precisely, suppose that the sides of the retrore-
flector are perfectly reflecting, k = 1; then we have r(B(n, d, ε)) −−−→

ε→0
1 for a

certain family of retroreflectors with the size of small segments going to zero,
ε → 0, and their number going to infinity, n = n(ε) → ∞, and with fixed
distance d between the segments.

There are no analytical formulas for the retro-reflectivity ratio of Tube with
positive values of the parameters ε, n, and d, so we did an extensive numeri-
cal simulation with ε taking the values in {0.01, 0.05, 0.1, 0.2} and with k < 1,
searching for the values of n and d that provide the best retro-reflectivity ratio.
We found that the retro-reflectivity ratio of Tube is generally much smaller
than that of Notched angle, and even of the square corner, as seen in Fig. 14.
The reason is that Tube requires a huge number of light reflections. As a result,
when k < 1, a large portion of light is absorbed, thus lowering the retro-
reflectivity ratio.

In Fig. 14 the retro-reflectivity ratios of three retroreflectors are compared:
(a) Tube with n = 49, d = 0.2, ε = 0.05; (b) Notched angle with β = δ = 0.01
and with α = αmax(k) taken to be optimal, (c) the square corner, and (d) the
function r(α, k) (2) with α = αmax(k) (recall that it defines the retro-reflectivity
ratio in the limiting case of Notched angle with β → 0, δ → 0).
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Abstract. This paper considers two common problems frequently found
in warehouses: slotting and picking. The former refers to the best
arrangement of items in the warehouse, while the latter concerns the
definition of the best route to pick up the selected objects. In most indus-
trial practice, the implementation of picking and slotting optimization
techniques uses information based on historical data that, in most cases,
would fail to work because of many factors affecting daily operations
in the warehouse. Simulation models have been employed to build vir-
tual scenarios in order to predict the outcomes of a specific operational
decision. Simulation models also fail because collected data is not fully
reliable. In order to overcome those problems, this paper proposes the use
of a hybrid simulation and optimization approach in which real-time data
is incorporated thanks to radio-frequency identification (RFID) technol-
ogy. Operational decisions are hence made in real-time. The approach is
validated using real data from a pharmaceutical manufacturer.

Keywords: Warehousing · Multi-criteria optimization · Simulation ·
Information processing · RFID

1 Introduction

Because of globalization of marketplaces, enterprises have completely reconfig-
ured their supply chains in order to increase customer service levels and respond
to demand variability. Warehouses play a pivotal role in the supply chain [1] and
requirements for warehousing operations have significantly increased. Specifi-
cally, the customer needs in terms of order accuracy and response time, order
frequency, order quantity and order size have dramatically changed with the
globalized economy and new demand behavior. The academic literature has
widely debated the issues of warehouse design and management, mainly focusing
c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 35–48, 2015.
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on minimizing operational costs and delivery times, contributing to supply chain
performance. The interested reader can refer to the comprehensive surveys on
warehouse and industrial storage system issues proposed in [2–4].

Warehousing problems have been considered a critical issue in the supply
chain. Its importance is mainly given by the fact that the efficiency of the
entire supply chain depends on how inventory is managed and stored [5]. In
order to guarantee this efficiency, it is necessary to optimize both inventory
management and storage. Management problems in warehouses includes stock
traceability as one of the most important issues. Most of the problems of inven-
tory management are based on where and how the product is stored. Storage is
becoming increasingly expensive and customers are demanding higher product
rotation, thus minimizing warehouse space and speeding purchasing and sup-
plying processes. However, this processes must be very effective and accurate so
that it does not produce unnecessary costs. Another issue to address in ware-
house management concerns the picking operation of orders. Picking is known as
the process of handling inventory inside the warehouse, involving the pick-up of
inventory that arrives to the warehouse and transportation to the corresponding
racks or shelves, the pick-up from these racks or shelves and transportation to
production or delivery areas.

This paper studies those two problems: inventory storage and picking. We
consider a classical configuration of a warehouse with multiple isle and mul-
tiple racks, organized in blocks, containing slots with uniform capacities. For
an optimal performance of the warehouse, a multicriteria optimization problem
is solved where criteria considered are [6]: (1) total occupation of the ware-
house, (2) total picking distances and (3) average stock rotation. To this end,
our solution approach hybridizes classical multicriteria models with computer
simulation and integrates radio-frequency identification (RFID) tools for better
information management. RFID, one of the Automatic Identification and Data
Capture (AIDC) technologies, is employed as information management tool. It
has attracted significant attention in the fields of supply chain and manufac-
turing, and more recently, in various service sectors thanks to the advantages
offered over other AIDC technologies such as barcodes [7,8]. The benefits of
information tracking and tracing through RFID are well-perceived by industry,
including retail, logistics, manufacturing, military, healthcare, pharmaceuticals
and the service sector [9].

This paper is organized as follows. The problem under study is explained in
detail in Sect. 2, while the review of related literature is given in Sect. 3. Section 4
presents the solution approach based on simulation, optimization and the imple-
mentation of RFID for data accuracy. The numerical validation inspired from a
real life case is presented in Sect. 5. Finally, some conclusions and opportunities
for further research are drawn in Sect. 6.

2 Problem Description

We consider a warehouse composed of multiple isles and racks with fixed capac-
ities. Each rack has multiple levels and in each level, several slots in depth. Each
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slot has a capacity of a Standard American Pallet (1×1.2m), as shown in Fig. 1.
Several authors have approached this type of warehouse [10–14]. Some specific
considerations are given to this problem:

– This warehouse only manages pallets of different families of products that
may have some location constraints given their special features.

– Products are only managed in pallets using a randomized policy. It is to note,
however, that a dedicated policy can easily be implemented in our proposed
approach.

– Several zones are considered in the warehouse: approved (ap), quarantine (qt),
rejected (r), retained (rt), returned (d) and picking (a) zones.

– The same velocity is considered by the vehicles that operate the picking
process.

– A small percentage of product located in the quarantine zone are finally
rejected or retained (this is defined by the experienced manager). The remain-
der set of products goes to approved zone.

– Distances between positions in the warehouse are determined from the
entrance to the central point in each rack, between racks, and from each rack
to the exit zone, thus, obtaining a network as shown in the figure. If there is
more than one route to the same position, the shortest path is considered.

Fig. 1. Global warehouse network for calculating distances

Studies developed in warehousing optimization indicate that the most criti-
cal problem concerns the picking operation. Thus, minimizing the total distance
traveled by the vehicle is one of the main objectives studied in warehousing. This
problem is approached as the TSP (Traveling Salesman Problem) and many solu-
tion approaches have been given through metaheuristics (e.g. [15–20]). These
approaches give good results, yet, they were not applicable to real industrial
cases. In real practice, simple heuristics have been applied in order to minimize
the distance traveled but they do not consider other aspects in the order routes.
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Another objective functios considered in picking optimization is the minimiza-
tion of order cycle time, as it is a measure of the rotation of the product and its
location in the warehouse.

Product arrangement in the specific locations, is another important problem
considered in warehouses. It is known as slotting optimization. Several objectives
may be considered: throughput maximization, space utilization minimization or
storage costs minimization. An important contribution to the slotting problem
was the Cube Per Order (CPO) rule [21]: an algorithm developed to minimize the
costs involved in the waiting time for the selection of products in a given order.
The application of CPO to optimally assign the picking area in a warehouse was
given by [22]. All the objectives mentioned above are important and each one
of them has been applied separately. The picking distances may be minimized
by one of the algorithms mentioned above, yet, it may be possible that the
throughput of the products with this algorithm decreased and is not maximized
as it should be, because some orders are priority and need to be considered for
its high rotation and special characteristics.

For an optimal performance of this warehouse, a multicriteria optimization
problem is considered, where the criteria considered are the following: (1) total
occupation of the warehouse, (2) total picking distances and (3) average inven-
tory stored at the warehouse. As a result, this multi-criteria optimization model
aims for the maximization of the first objective and the minimization of the
other two objects, as shown in the following mathematical formulation. Decision
variables are: yijt as a binary variable that equals 1 if the product is located
in the rack j at time t, or 0 otherwise; xit as a binary variables that equals 1
if the product is picked at the time t, and 0 otherwise; and uit as an integer
variable corresponding to the number of trips that the picking team picks up
product i at time t. The following parameters are defined: capjt corresponds to
the capacity of rack j at time t; qit is the quantity of product i requested at
time t; vi represents the volume of product i (in m3); Vtotal is the total volume
managed by the warehouse; dej is the distance from entrance to rack j; djk is
the distance from rack j to rack k; dsj is the distance from rack j to exit; eit
represents a binary matrix in which cells with value 1 indicating that product
i enters the warehouse at time t, and 0 otherwise; and sit is a binary matrix
with cells taking value of 1 if product i leaves the warehouse at time t, and 0
otherwise. The objective functions previously defined are respectively expressed
in mathematical form as follows:

2.1 Objective Functions

Zmin =
∑
t

∑
j

∑
i

qitviyijt
Vtotal
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Zmin =
∑
t

∑
j

∑
i

qityijt

Some constraints have to be defined. Constraints (1) indicate that an item
is picked from a given location at a given time t if it is actually located at this
location. The sets of Constraints (2) and (3) are capacity constraints. Finally,
Constraints (4) guarantee that each product is assigned to only one slot.

∑
j
capjtyijt ≥ xit,∀i, t (1)

∑
i
qixitu1j ≤ capjt,∀j, t (2)∑

i
zitu5j ≤ capjt,∀j, t (3)∑

i
yijt = 1,∀j, t (4)

3 Review of Related Literature

3.1 Optimization in Warehouses

Most of research in warehousing management is related to the minimization of
routing distances inside the warehouse [10,23]. One of the classic mathematical
models was developed by [24], based on a stock size and location problem in a
multi-dimensional warehouse that integrates inventory and picking costs. The
objective was the minimization of inventory storage costs and costs associated
to the picking operation, assuming both single and double deep pallet racking.
In a typical warehouse, composed of several parallel rows, a central depot and
two possibilities to change rows (for the front and rear of the warehouse), sev-
eral heuristics are known for the optimal routing of the picking operation. The
algorithm proposed in [14] has been recognized to be very efficient to find the
shortest path for picking. For more complex design, other types of heuristics have
been proposed, such as the S-shaped and the Largest Gap Heuristic. Dynamic
programming has also been applied [12]. The connection between blocks is made
such that the distance traveled is minimized across the rows. This heuristic
combines the S-shaped with the Largest Gap. The so called Aisle-by-Aisle (row
after row) heuristic was proposed in [13], in which the course is done in all the
rows that contain items, starting with the one that contains items. The Pick-
Path optimization algorithm is presented in [11], while an optimization approach
based on control systems is presented in [10]. Metaheuristics procedures have
also been considered, mainly to optimize the picking operation. Example of such
procedures are Ant Colony Optimization (ACO), Genetic Algorithms, Simulated
Annealing, and Particle Swarm Optimization [25]. For slotting optimization, sev-
eral heuristics can be found in the literature: Cube Per Order (CPO) [20], Direct
Search [26] and Gradient Search [24]. Metaheuristics can also be found. As an
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example, the item relocation problem is solved in [27] using Tabu Search by
considering it as a slotting problem.

In real industrial practice, most companies are looking for a methodology
to achieve optimal SKU placement without the need of expensive information
systems. [28] studied the effect in terms of travel distance and material handling
time reductions, of an optimal rather than a uniform item allocation in one-block
picking warehouses, both with and without the use of a simple picking heuristic.
It is possible to see that improvements due to a better slot-code optimization are
reduced when the heuristic is used. The importance of these results is crucial,
especially for manufacturing, distribution and retailing companies seeking an
efficient design for their warehouse.

The work carried out in [29] presents an Operations Research-oriented solu-
tion to provide a visible reduction of the overall required warehousing space. In
addition to develop an effective multi-product slot-code, these authors focused
on finding a cost-effective way to solve the storage location assignment problem
through a mathematical optimization approach. Results showed that, even using
a dedicated storage policy approach, the outcomes obtained with their model
reached the lower bound computed using a randomized policy which should
be unavoidably sustained by warehouse management system software. Finally,
the work in [30] was to minimize the required storage space while finding a
good slot-SKUs allocation in order to reduce handling times and distances. The
paper presented an original multi-product slot allocation heuristic developed by
approaching it as a vertex coloring problem [31,32]. The approach is evaluated
on a real industrial case and demonstrated its effectiveness since performances
were significantly close to this best conceivable case.

3.2 Multicriteria Optimization to Warehousing Models

Multi-criteria decision making (MCDM) is divided in two categories: multi-
ple attribute decision making (MADM) and multiple objective decision making
(MODM) [33]. One example of MADM, and perhaps the most employed, is the
Analytic Hierarchy Process (AHP) [34]. In warehouse management, AHP has
been employed to determine the relative weightings of alternative warehouses,
taking into account criteria such as delivery costs and customer service level.
On the other hand, MODM techniques have been employed in the literature.
One example is goal programming (GP) [35] in order to incorporate system
restrictions, resources and the AHP priority to select the best set of warehouses
without exceeding the available resources [33]. The AHP has also been applied to
the transshipment problems [36] by including financial and non-financial issues.
Nevertheless, some decision making problems cannot be directly solved by apply-
ing the AHP technique [36]; fuzziness can be introduced [37]. Another exam-
ple of application of the AHP method for the operational optimization process
in warehouses is presented in [38]. The goal was to reduce product handling
costs by minimizing the picking process and locating the products in the correct
position.
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4 Solution Approach

Considering all the aspects involved in the dynamics of an industrial warehouse
store, this paper presents a solution approach for the type of warehouse described
above, based on simulation and optimization models. In order to solve the three
objective functions, it is assuming that supplying process to the warehouse has
been adjusted and improved, so data can be taken in an automatic way through
Radio Frequency Identification (RFID) system [39]. Thus, it is considered as a
real-data modeling process, as the orders are made daily and those orders can
change with the market dynamics.

The methodology applied is an integration of simple heuristic models, mixed-
integer linear programming (MILP) optimization and discrete-event simulation
modeling in order to obtain the best scenarios of the operation in any warehouse
facility with the characteristics mentioned above. This section describes in detail
the proposed solution approach.

4.1 Phase 1. Heuristic for an Optimal Configuration of the Families
in the Racks

Step 0. Initialize decision vectors and mining on historical data. Set Counter = 0
Step 1. Select the picking zone based on historical data.
Step 2. Allocate of the families to the racks using a priority rule based on the
rotation of the product, subject to capacity constraints.
Step 3. Evaluate of the objective function based on the total distance traveled:

Z =
∑
i

∑
j

disEjXijY1jDemi +QidjjXijDemi +QidjjXijY3j′Demi + disEjY3jDemi

If Counter is greater than the number of available racks in Est
Alistamientoj , Then: choose the scenario that minimizes Z, the total distance
traveled in the picking operation; Else: Save scenario and objective function
value, Z; increase Counter = Counter + 1, and go to Step 2.

4.2 Phase 2. Optimal Allocation of Orders to Positions of the
Warehouse

Setup the configuration of the families assigned in Phase 1 to the simulation
model. Each order is assigned to the racks corresponding to each family and its
position is based on the minimization of the average time required to fulfill all
orders, according to the following mathematical model. Parameters are defined
to be Ri: annual rotation of item i; B: storage capacity of rack; V is the speed
of the vehicle (mt/min). Binary decision variables are: Posixyz = 1 if item i is
located in position (x, y, z), and 0 otherwise. The model is:

Zmin =
∑
i

∑
x

∑
y

∑
z

(x + y + z)PosixyzRi

V
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Subject to
∑

x

∑
y

∑
z
Posixyz = 1,∀i ∈ I (5)

∑
i
Posixyz ≤ 1,∀x, y, z (6)∑

i

∑
x

∑
y

∑
z
Posixyz ≤ B (7)

Posixyz ∈ {0, 1},∀x, y, z, i (8)

Each rack has a subproblem associated to this mathematical model. Opti-
mization in each rack will lead to a scenario becomes an input of the simulation
model.

4.3 Phase 3. Generation of Results Based on Each Scenario
Generated

Given the results in each scenario given in Phase 1 and obtaining the optimal allo-
cation of items in Phase 2, the discrete-event simulation model generates results
that measure: (1) total occupation of the warehouse, (2) total picking distances
and (3) average stock rotation. The Pareto Optimal Solutions are selected and
the scenarios are proposed for the final user to decide which one to implement
in the real-life situation.

5 Numerical Implementation and Analysis of Results

A case study was developed from the cosmetics and pharmaceutical industry.
We studied the packing and container warehouse. For the numerical implemen-
tation of the proposed approach, historical data was gathered for the last year
of operation. This historical data included the material entering and exiting the
warehouse, the value of the material managed, and the forecast of the demand
for a year of operation. Figure 2 shows the warehouse layout and the network
for the calculation of distances. Tables 1, 2, and 3 show the summary of the
historical data gathered for the implementation. Table 2 also presents the cost
of average inventory (CEn−CEx), which is the cost of product entering minus
the cost of product exiting the system.

Products are grouped by families, since the products of the same family are
very similar and are used for the same customer. For example, the packaging of
B family are only used for B customer orders; F-type customer orders are made
with the packaging of families F or Fc, according to the kind of product to be
delivered. This division is done to facilitate inventory management, because to
there are many types of packaging for the same product. Usually, when orders are
placed, several references of the same family are requested, varying amounts, and
depending on the season. Inventory replenishment takes place every fortnight.
So, the average inventory in the warehouse is the annual total divided by 24
periods (Quart Dem). There is a difference between the maximum inventory
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Fig. 2. Warehouse layout with network of rack positions

Table 1. Basic information per family

Id Name of family Annual dem Quart dem Max inv

1 A 194 8,08 7

2 B 72 3 3

3 Ca 834 34,75 28

4 Cb 1816 75,67 61

5 Cc 2918 121,58 98

6 D 11942 497,58 399

7 Ea 2440 101,67 82

8 Eb 236 9,83 8

9 F 426 17,75 15

10 Ec 594 24,75 20

Table 2. Cost of average inventory per family

Id Cost of prod entering Cost of prod exiting CEn-CEx

1 $ 12.145.435.823 $ 347.309.819 $ 11.798.126.004

2 $ 300.245.396 $ 10.549.921 $ 289.695.475

3 $ 6.718.999.386 $ 39.860.761 $ 6.679.138.626

4 $ 6.848.164.104 $ 201.863.151 $ 6.646.300.953

5 $ 2.465.259.803 $ 200.155.475 $ 2.265.104.328

6 $ 540.337.500 $ 140.647.500 $ 399.690.000

7 $ 3.558.216.498 $ 129.858.197 $ 3.428.358.301

8 $ 3.725.192.948 $ 142.611.620 $ 3.582.581.328

9 $ 3.693.482.868 $ 141.597.863 $ 3.551.885.005

10 $ 11.947.935.083 $ 343.402.902 $ 11.604.532.182
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Table 3. Frequency of orders (transactions) and total product managed per family per
zone

Transactions (i, k) Ordered quantities (i, k)

Id 1 2 3 4 5 6 1 2 3 4 5 6

1 303 243,4 134 1 0 0 8931946 7188908,8 217948 200 0 0

2 10 36 12 0 0 0 5245 15824 6524 0 0 0

3 582 465,6 14 0 0 0 15410614 12328491,2 3549 0 0 0

4 184 147,2 17 0 0 0 10427695 8342156 27141 0 0 0

5 145 142 207 0 0 0 642661 649728,8 86148 0 0 0

6 99 79,2 101 0 0 0 24015 19212 6251 0 0 0

7 73 193,4 32 1 0 0 4293772 3483401,6 7087 2376 0 0

8 51 52,8 59 1 0 0 370775 407575 4686 40 0 0

9 63 185,4 21 3 0 0 215426 172340,8 3210 2212 0 0

10 103 217,4 54 0 1 0 6149668 4919734,4 49795 0 8100 0

Total 46.471.817 37.527.372,60 412.339,00 4.828,00 8.100 0

P (k) 55,0454% 44,4508% 0,4884% 0,0057% 0,0096% 0,0%

stored in the warehouse (space restrictions) against the actual average inventory;
the warehouse has space problems.

Results generated as part of the implementation of the proposed methodology
indicated five Pareto Optimal Solutions. These solutions were evaluated in the
three objectives functions mentioned above, as shown in Table 4. From the five
scenarios, three were attractive for the operators of the warehouse S0*, S1* and
S2*. They were simulated and results were compared to the original scenario, as
shown in the three components (each objective function) of Fig. 3. These results
indicate the efficiency of the proposed solution method. These results not only
indicate a better efficiency of the warehouse, but also allows the decision maker
to implement the best decision based on a careful selection of the best scenarios.
By having these three scenarios, the decision maker is able to take into account,
possible S2 as the best scenario, although it is not the best among all three
objectives.

Table 4. Results for all three criteria analyzed per scenario

Total dist. traveled W. occupation Avg. inv. stored

S0 2.758.165 0,3147 384417,089

S1 2.187.116 0,5985 797406,4236

S2 2.867.968 0,5171 379408,0728

S3 2.123.826 0,6287 870084,044

S4 2.602.788 0,4216 554218,125
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Fig. 3. Results of scenario comparison for each objective function

6 Conclusions and Perspectives

Allocating and distributing the items in a warehouse is not an easy task, espe-
cially due to the diversity of the products managed and the characteristics they
may have when assigning a position inside the warehouse. Also, due to the large
quantities managed, at a daily basis, it is necessary that allocation is done in
a fast and efficient manner. Optimization models, on the one hand, offer this
efficiency in the allocation of products and the configuration of the warehouse.
Simulation models, on the other hand, offer flexibility and visibility in the exe-
cution of scenarios, as well as the generation of indicators that need to be taken
in consideration when making the best decision.

This paper approached a typical multi-isle warehouse with multiple racks, at
multiple levels, where only pallets are managed. This problem searches for the
optimal results in three criteria: (1) total occupation of the warehouse, (2) total
picking distances and (3) average inventory stored at the warehouse. The solu-
tion approach considered was a methodology that used both optimization and
simulation methods. Results obtained with the application on a case study from
the Cosmetics and Pharmaceutical Industry demonstrated a significant improve-
ment in the configuration of the warehouse. Although some scenarios appeared to
be better than others in total distance traveled, others had less occupation and a
higher levels of inventory stored. Under multicriteria optimization, the user has
several options that are all Pareto Optimal. In addition, performance indicators
generated by the simulation model give the user other aspects to consider in the
decision making process.

The warehousing optimization problems are very diverse and generalities to
this problem can become complex with regards to reaching an optimal approach
to solve this type of problems. This is positive because research directions in
the area remain open. In the first instance, it is not easily categorized and not
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easily compared to other solution approaches. Secondly, other configurations of
warehouses and material handling should be considered under this approach.
Finally, it is interesting to analyze warehouses that manage heterogeneous sizes
of products to be handled.
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Abstract. The problem of the identification of the surface heat flux for
a quasi-linear system of the hyperbolic type heat-conduction equations
is studied. An approach is proposed based on the stage-by-stage subop-
timal optimization of the cost functional and input data filtering using
the HuberTikhonov functional. Results are presented for the numerical
modeling of the identification problem in conditions of both standard
noisy data and noise emissions.

Keywords: Inverse problem · Heat flux · The hyperbolic type system ·
HuberTikhonov functional · Suboptimal optimization

1 Introduction

To control processes of heat transfer, mass transfer, etc., different methods of
mathematical modeling, the theory of optimal control and the theory of inverse
problems (IP) of mathematical physics are widely applied [1–4].

In particular, in scientific literature the classical IP theory of heat conduc-
tivity consisting in reconstruction of the time-varying heat fluxes is frequently
used (see [1–8] and the references therein).

As a rule, the mathematical model of transfer processes is based on the
parabolic type heat conductivity equation. At the same time, a number of fast
proceeding and intensive transfer processes can be described only within the
theory of the hyperbolic type equations and systems of the equations [9–16].

In this paper, we consider IP of reconstruction of the time-varying surface
heat flux for quasi-linear system of hyperbolic type differential equations [9,10].
The Dirichlet boundary conditions, initial conditions and time-varying temper-
ature at a given interior point are used as the additional data for reconstruction.

The system under consideration describes transfer processes in the nonlinear
mediums and takes into account both the heat flux relaxation time τ ≥ 0 and
the convective component of the heat transfer [9,10]. When τ = 0, this system
of equations can be reduced to the parabolic type heat conductivity equation.
Notice that generally, the system is not reducible to one equation [10].
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-20352-2 4



50 V. Borukhov and O. Kostyukova

As it is known, the heat fluxes reconstruction IP belongs to the class of ill-
posed problems. Currently, there are several approaches to solving such problems
[1–4,20,21]. However, there is no universal method among them that is caused
by both difficulties of solving the ill-posed problems and the requirements of an
effective realization and high speed of numerical procedures.

In this paper, we develop a method of stage-by-stage suboptimal optimization
(SSO) (see [17–19]) combined with a method of the robust estimation on the base
of the Huber loss function [22–25].

We consider the filtering procedure as an optimal control problem for the
simplest differential equation of the first order [19]. The cost functional for the
optimal control problem is the sum of the Huber functional for residuals and
the Tikhonov functional for control. Under a suitable choice of settings of the
filter, this procedure allows to smooth out and filter out both separate gross
measurement errors (“wild” data points, outliers) and standard random errors.
It should be mentioned here that the “wild” values of the measurements are
quite common in the high-temperature experiences in industry, in the thermal
protection methods, in the rocket engines testing, etc.

Notice that the SSO approach develops ideas of the sequential estimation
[1,26] that allows to realize data processing in real time. This is important, for
example, for the problems of the thermal processes’ control.

2 Problem Statement

Let us consider the following initial boundary value problem for the quasi-linear
system:

ρ(T )C(T )
DT

Dt
= − ∂q

∂x
,

τ
Dq

Dt
= −q − λ(T )

∂T

∂x
, (1)

T = T (x, t), q = q(x, t), x0 ≤ x ≤ x∗, t0 ≤ t ≤ t∗,

with initial and boundary conditions

T (x, t0) = Tin(x), q(x, t0) = qin(x), x0 ≤ x ≤ x∗, (2)

T (x∗, t) = T∗(t), t0 ≤ t ≤ t∗, (3)
q(x0, t) = q0(t), t0 ≤ t ≤ t∗. (4)

Here
D

Dt
=

∂

∂t
+ν(x)

∂

∂x
is the material derivative, ν(x)

∂

∂x
is convection term,

ν(x) is velocity, T = T (x, t), x ∈ [x0, x∗] ⊂ R, t ∈ [t0, t∗] ⊂ R, is a temperature
distribution, q = q(x, t), x ∈ [x0, x∗] ⊂ R, t ∈ [t0, t∗] ⊂ R, is a heat flux,
λ(T ) is the heat conduction coefficient, ρ(T ) is the material density, C(T ) is the
specific heat of the material, τ is a parameter describing the heat flux relaxation
time, Tin(x), qin(x), x ∈ [x0, x∗] are given initial conditions, T∗(t), t ∈ [t0, t∗],
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is a prescribed temperature at the point x∗, q0(t), t ∈ [t0, t∗], is a prescribed
heat flux at the point x0. All the functions λ(T ), C(T ), ρ(T ), T ∈ R, T∗(t), q0(t),
t ∈ [t0, t∗], and Tin(x), qin(x), ν(x), x ∈ [x0, x∗], are supposed to be sufficiently
smooth.

In the problem under consideration, there is a convective component of the
heat transfer. The presence of this component leads to instability of numerical
methods for solving the direct and inverse problems. In particular, the standard
pdepe -program of the computational MATLAB package doesn’t allow to obtain
the numerical solution of the direct problem with large values of parameter ν.

Notice that in the case ν(x) ≡ 0, problem (1) can be reduced to a nonlinear
heat conduction equation of the hyperbolic type

τ
∂

∂t

(
C(T )ρ(T )

∂T

∂t

)
+ ρ(T )C(T )

∂T

∂t
=

∂

∂x

(
λ(T )

∂T

∂x

)

with initial and boundary conditions that can be determined on the base of
(2)–(4).

In the paper, for the case ν(x) �≡ 0, we consider the problem of reconstruction
of the heat flux q0(t) := q(x0, t), t ∈ [t0, t∗], at the point x = x0 on the base of
the known measurements

y(t) = T (x∗
1, t) + v(t), t ∈ [t0, t∗], (5)

of the temperature field at a given point x∗
1, x0 ≤ x∗

1 ≤ x∗. Here function v(t)
describes a measurement error.

Following [1,2], to model function v(·) we will apply the statistical descrip-
tion. Taking into account the discrete representation of the temperature mea-
surements, this description takes the form

y(ti) = T (x∗
1, ti) + w(ti)σ, i = 0, 1, ...,M ; (6)

where
ti = t0 + iΔt, Δt = (t∗ − t0)/M, (7)

σ is the standard deviation of the measurement errors, w(ti) is a realization of
the random variable w with the normal distribution. Here we consider that the
noisy measurements were carried out for the time stepsize Δt > 0 (see (6)).

In the nonstandard case, we assume that the probability density function of
the measurement error has the form [22]

f(w) =
1 − ε√

2π
exp

(
−w2

2

)
+ εg(w), (8)

where ε is a weight parameter and g(w) is an unknown function that perturbs
the Gaussian density function. Note that the error probability density function
of form (8) can be regarded as a model of large errors [22] in the measurement
data. Having assumed in (8) that ε = 0, one gets the standard situation.
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Let the thermophysical parameters ρ(T ), λ(T ), C(T ), τ , ν(x), the tempera-
tures Tin(x), x ∈ [x0, x∗], T∗(t), t ∈ [t0, t∗], the heat flux qin(x), x ∈ [x0, x∗], the
weight parameter ε, and the values of the error deviation σ be known. Then,
the general problem of identifying the heat flux at the point x = x0 consists in
reconstruction of the function q0(t) := q(x0, t), t ∈ [t0, t∗], from the data (6),
system (1) and conditions (2) and (3).

One of the distinguishing characteristics of the proposed approach is that,
before solving the posed problem of reconstructing the heat flux from the given
inaccurate measurements y(t), t ∈ [t0, t∗], a filtering procedure is employed. This
procedure yields estimates y∗(t) of the data (5), and the heat flux q(x0, t), t ∈
[t0, t∗], is reconstructed on the basis of these estimates. The filtering procedure is
described in Sect. 3. The second specific feature of the proposed approach is that
the problem of reconstructing the heat flux q(x0, t), t ∈ [t0, t∗], is solved by the
SSO method [18,19]. The essence and advantages of the method are described
in Sect. 4. It should be noted that the ideas of this method are also used in the
prefiltering procedure.

3 Preliminary Filtering Procedure Using the Huber
Function and Tikhonov Regularization

Let a given function y(t), t ∈ [t0, t∗], be representable in the form

y(t) = y0(t) + v(t), t ∈ [t0, t∗], (9)

where y0(t), t ∈ T, is some unknown smooth function, v(t), t ∈ [t0, t∗], is a
function of unknown disturbances (a noise). It is required, to find a continuous
smooth function y∗(t), t ∈ [t0, t∗], which approximates the function y0(t), t ∈
[t0, t∗], on the basis of the given noisy function (9).

To solve this problem, taking into account the smoothness of the recon-
structed function y0(t), t ∈ [t0, t∗], we formulate the simplest optimal control
problem ∫ t∗

t0

f(x(t) − y(t))dt + R(u(·)) → min
z,u(·)

(10)

s.t. ẋ(t) = u(t), x(0) = z.

Here f(z) is some function that characterizes the deviation of |z| from zero,
R(u(·)) is a regularizing term. The particular choice of the functions f(z)
and R(u(·)) depends on the a priori information about the restored function
y0(t), t ∈ [t0, t∗], and the nature of the unknown noise v(t), t ∈ [t0, t∗]. Most
often the l1- and l2-norms are used as f(z) and the functional β

∫ t∗
t0

u2(t)dt is
used as the regularizing term R(u(·)) [21].

In this paper (see also [19]), we propose to use the Huber loss function as the
deviation function f(z) [22]. This function is a combination of l1- and l2- norms.
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It is known that the Huber function is robust in the sense that it can reduce the
influence of “wild” data points (outliers). The Huber function has the form

fγ(z) =
{

z2/2 if |z| ≤ γ,
γ|z| − γ2/2 if |z| > γ.

It is quadratic if the module of the deviation z is smaller than a given constant
γ > 0 and has an absolute value term if the module of the deviation is greater
than γ.

As it is known (see [22]), the tuning parameter γ is related with the perturb-
ing parameter ε by means of the implicit equation

1
1 − ε

=
1
γ

√
2
π

exp
[
−γ2

2

]
+ erf

(
γ√
2

)
.

The Huber function is more robust than the l2-function in the sense that it is
less sensitive to the outliers in the measurement data.

The functional

Rα∗,β∗(u(·)) := β∗
∫ t∗

t0

u2(t)dt + η∗
∫ t∗

t0

u̇2(t)dt

can be used as a regularizing term. Here α∗ ≥ 0, β∗ ≥ 0 are the weight coeffi-
cients.

Thus, in order to generate the estimate y∗(t), t ∈ [t0, t∗], of the unknown
function y0(t), t ∈ [t0, t∗], on the basis of the noisy function y∗(t), t ∈ [t0, t∗], we
solve the following optimal control problem:

∫ t∗

t0

fγ(x(t) − y(t))dt + β∗
∫ t∗

t0

u2(t)dt + η∗
∫ t∗

t0

u̇2(t)dt,→ min
z,u(·)

, (11)

ẋ(t) = u(t), x(0) = z.

Let z0, u0(t), t ∈ [t0, t∗], be an optimal solution of problem (11).
Then the function

y∗(t) = z0 +
∫ t

t0

u0(τ)dτ, t ∈ [t0, t∗],

is considered as an approximation of the unknown function y0(t), t ∈ [t0, t∗].
To solve problem (11), we apply a method of a stage-by-stage optimization.

The idea of the method is identical to that of the method described in [17–19].
The essence of the method consists in the reduction of the filtering procedure
over the entire time interval t ∈ [t0, t∗] to the consecutive solution of p filtering
problems on small time intervals t ∈ [τj , τj+1], j = 0, 1, ..., p − 1, where τj =
t0 + jLΔt, is a time instant from the set {ti, i = 0, 1, ...,M} ⊂ [t0, t∗], L > 0,
p > 0 are integers. Here LΔt is the length of the stage defined by the parameter
L and a time stepsize Δt > 0. The time stepsize Δt > 0 is a step with which the
noisy measurements were carried out (see (6)).
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Given j (j = 0, ..., p − 1), to find an approximation y∗(t) of the unknown
function y0(t) at the interval t ∈ [τj , τj+1], on the base of the noisy data
y(ti), ti ∈ [τj , τj+1], i = jL, ..., (j + 1)L, the following optimal control prob-
lem is solved.

ProblemFj: It is required to find a control u(t), t ∈ [τj , τj+1], that solves
the problem

(j+1)L∑
i=jL

fγ(x(ti) − y(ti)) + β∗

τj+1∫

τj

u2(t)dt + η∗

τj+1∫

τj

u̇2(t)dt +

η̄∗(z − y∗(τj − 0))2 → min
z,u(·)

s.t. ẋ(t) = u(t), x(τj) = z.

Here, in the cost functional, we add one additional term (z − y∗(τj −0))2, where
y∗(τj − 0) := lim

t→τj ,t<τj
y∗(t), with the weighting coefficient η̄∗ ≥ 0. This term

is responsible for “continuous matching” of the functions y∗(t), t ∈ [τj−1, τj ],
and y∗(t), t ∈ [τj , τj+1], being the optimal trajectories in problems Fj−1 and Fj

respectively, at the boundary point τj for two adjacent subintervals. For j = 0,
we set y∗(τj − 0) = y(t0).

Let u0(t), t ∈ [τj , τj+1], z0j be an optimal solution in problem Fj. Then we
set

y∗(t) = z0j +
∫ t

τj

u0(τ)dτ, t ∈ [τj , τj+1],

and consider y∗(t), t ∈ [τj , τj+1], as a result of filtering the noisy data y(t) at
the j-th state.

For the numerical purposes, we consider the problem Fj in a class of the
piecewise constant controls

u(t) = ui, t ∈ [ti, ti+1], i = jL, jL + 1, ..., (j + 1)L − 1, (12)

ti = t0 + iΔt, Δt = (t∗ − t0)/M, M = (p − 1)L.

In that case, the problem Fj is equivalent to a quadratic programming problem
that can be easy solved by a standard quadratic programming solver.

4 Heat Flux Reconstruction by the SSO Method

The problem of reconstructing the heat flux q(x0, t), t ∈ [t0, t∗], is formulated
as an optimal control problem in which the role of the sought control is played
by the reconstructed heat flux and the purpose of optimization is to minimize
the functional of the squared deviation between the calculated states T (x∗

1, ti)
of system (1) and the data y∗(ti), i = 1, ...,M. The optimal control problem is
solved by the SSO method.

As it was already mentioned above, the idea of the method consists in reduc-
ing the single problem of reconstructing the heat flux q(x0, t) over the entire
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time interval t ∈ [t0, t∗] to the succession of p problems of reconstructing this
flux on the small intervals t ∈ [τj , τj+1], j = 0, 1, ..., p − 1, where τj = t0 + jLΔt
and integers L > 0, p > 0, M > 0 are the same as in Sect. 3.

Let us describe the main steps of the method.
Given j (j = 0, ..., p−1), let us suppose that the heat flux q0(t) := q(x0, t) has

been restored for t ∈ [t0, τj ] and the noisy data y(ti), ti ∈ [t0, τj ], i = 1, ..., jL,
have been filtered. Hence we know the function q∗

0(t), t ∈ [t0, τj ], approximating
the heat flux q0(t), t ∈ [t0, τj ], and the function y∗(t), t ∈ [t0, τj ]. This gives us
opportunity to find the solution T ∗(x, t), q∗(x, t), x ∈ [x0, x

∗], t ∈ [t0, τj ], of
system (1)–(4) with q0(t), t ∈ [t0, τj ], replaced by q∗

0(t), t ∈ [t0, τj ].
Using the known number y∗(τj − 0) and the functions T ∗(x, τj), q∗(x, τj),

x ∈ [x0, x
∗], we consider the problem of reconstructing the heat flux q(x0, t) on

the interval t ∈ [τj , τj+1].
For this purpose, first of all, we apply the filtering procedure described in

Sect. 3 to the known number y∗(τj − 0) and the known noisy data y(ti), ti ∈
[τj , τj+1], i = jL + 1, ..., (j + 1)L. To do this, we have to solve problem Fj . As a
result, we obtain the estimates y∗(t), t ∈ [tj , tj+1], of the noisy measurements.

In order to reconstruct the heat flux q(x0, t), t ∈ [τj , τj+1], from the new
data y∗(t), t ∈ [τj , τj+1], and the known function T ∗(x, τj − 0), q∗(x, τj − 0),
x ∈ [x0, x∗], the following optimal control problem is solved.

Problem Pj: find a control U(t), t ∈ [τj , τj+1], which minimizes the cost
functional

(j+1)L∑
i=jL+1

(T (x∗
1, ti) − y∗(ti))2 + ηj

∫ τj+1

τj

(
dU(t)

dt

)2

dt +

γj(U∗(τj − 0) − U(τj + 0))2 → min (13)

on the trajectories T (x, t), q(x, t), x ∈ [x0, x∗], t ∈ [τj , τj+1], of the system

ρ(T )C(T )
DT

Dt
= − ∂q

∂x
,

τ
Dq

Dt
= −q − λ(T )

∂T

∂x
, (14)

T = T (x, t), q = q(x, t), x0 ≤ x ≤ x∗, τj ≤ t ≤ τj+1,

T (x, τj) = T ∗(x, τj − 0), q(x, τj) = q∗(x, τj − 0), x0 ≤ x ≤ x∗, (15)

T (x∗, t) = T∗(t), q(x0, t) = U(t), τj ≤ t ≤ τj+1. (16)

Here, in the cost functional (13), the second term is a Tikhonov type regulator
with a weighting coefficient ηj > 0. The third term γj(U∗(τj − 0) − U(τj + 0))2

is the penalty term (with a weighting coefficient γj > 0) which is responsible
for matching the boundary values U∗(τj − 0) and U∗(τj + 0) of the controls
obtained at the neighboring (j−1)-th and j-th stages; U∗(t), T ∗(x, t), q∗(x, t), t ∈
[τj−1, τj ], x ∈ [x0, x∗], are the optimal control, the corresponding temperature
and the heat flux obtained on the previous (j−1)-th stage. For j = 0 we consider
γ0 = 0 and T ∗(x, τ0 − 0) = Tin(x),q∗(x, τ0 − 0) = qin(x), x ∈ [x0, x∗].
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Let U∗(t) and T ∗(x, t), q∗(x, t), t ∈ [τj , τj+1], x ∈ [x0, x∗], be an optimal
control and the corresponding trajectory in the problem Pj. Then we set

q∗
0(t) = q∗(x0, t), t ∈ [τj , τj+1], (17)

and consider q∗
0(t), t ∈ [τj , τj+1], as an approximation of the recoverable heat

flux q(x0, t) at the j-th state.
To solve problem Pj numerically, the nonlinear system of partial differential

equations (14)–(16) is approximated by a system of ordinary differential equa-
tions. For this purpose, let us partition the interval [x0, x∗] into N parts by the
points

xi = x0 + iΔx, i = 0, 1, ..., N, Δx = (x∗ − x0)/N, (18)

x∗
1 = xi∗ = x0 + i∗Δx.

Here and in what follows, without loss of generality, we consider that the point
x∗
1, at which the temperature’s measurements were performed, is a node of the

grid (18).
Denote

z1(t) = T1(t) = T (x1, t), z2i = Ti+1(t) = T (xi+1, t), i = 1, N − 2;
z2i−1(t) = qi(t) = q(xi, t), i = 2, N − 1; z2N−2(t) = qN (t) = q(xN , t),

and consider a vector-function Z(t) = (z1(t), ..., z2N−2(t)), t ∈ [τj , τj+1]. Then
the cost functional (13) takes the form

(j+1)L∑
i=jL+1

(zk(ti) − y∗(ti))2 + ηj

∫ τj+1

τj

(
dU(t)

dt

)2

dt +

γj(U∗(τj − 0) − U(τj + 0))2 → min, (19)

where k = 2(i∗ − 1) if 1 < i∗ ≤ N − 1, and k = 1 if i∗ = 1.
If N is a rather large number, the system (14)–(16) can be approximated by

the following nonlinear system of ordinary differential equations:

dZ(t)
dt

= F̄ (Z(t), T∗(t), U(t)), Z(t0) = Z0 = (z01 , ..., z
0
2N−2), (20)

with
z01 = T ∗(x1, τj), z02i = T ∗(xi+1, τj), i = 1, . . . , N − 2;
z02i−1 = q∗(xi, τj), i = 2, . . . , N − 1; z02N−2 = q∗(xN , τj);

(21)

F̄ (Z, T∗(t), U) = F (Z,U, t) = (Fi(Z,U, t), i = 1, . . . , 2(N − 1)),

F1(Z,U, t) = −ν1
z2 − z1

Δx
− z3 − U

ΔxC(z1)ρ(z1)
;

F2i(Z,U, t) = −νi+1

z2(i+1) − z2i

Δx
− z2i+3 − z2i+1

ΔxC(z2i)ρ(z2i)
; i = 1, . . . , N − 3;
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F2(N−2)(Z,U, t) = −νN−1

T∗(t) − z2(N−2)

Δx
− z2N−2 − z2N−3

ΔxC(z2(N−2))ρ(z2(N−2))
;

F3(Z,U, t) = −ν2
z3 − u

Δx
−

(
z3 + λ(z2)

z2 − z1
Δx

)
1
τ

;

F2i−1(Z,U, t)=−νi
z2i−1 − z2i−3

Δx
−

(
z2i−1 + λ(z2(i−1))

z2(i−1) − z2(i−2)

Δx

)
1
τ

,

i = 3, ..., N − 1;

F2N−2(Z,U, t)=−νN
z2N−2 − z2N−3

Δx
−

(
z2N−2 + λ(T ∗(t))

T∗(t) − z2(N−2)

Δx

)
1
τ

,

where νi = ν(xi−1), i = 1, 2, ..., N.
Problem (19)–(21) is an optimal control problem for the nonlinear

dynamic system (20) with a (2N − 2)−dimensional state vector Z(t) =
(z1(t), ..., z2N−2(t)), t ∈ [τj , τj+1], and a scalar control U(t), t ∈ [τj , τj+1]. This
problem has a number of specific features, which make it impossible to use
the standard computing packages meant for solving “standard” optimal control
problems. Therefore we will make some simplifications.

First of all, taking into account that the interval [τj , τj+1] is small, we linearize
system (20) on the interval [τj , τj+1], having replaced λ(zi(t)), C(zi(t)), ρ(zi(t)),
i = 1, ..., 2N − 2, by λ(z0i ), C(z0i ), ρ(z0i ), i = 1, ..., 2N − 2. Remind that here
the vector Z(t0) = Z0 = (z01 , ..., z

0
2N−2) is defined according to (21), i.e. it is

considered to be known at the moment τj .
Besides, we will solve this problem in a class of piecewise constant admissible

controls

U(t) = Ui = const, t ∈ [ti, ti+1], i = jL, ..., (j + 1)L − 1. (22)

Denote the linearized problem (19)–(21) with additional conditions (22) by
Plinear
j . The problem Plinear

j can be easily reduced (see, for example, [17]) to
a quadratic programming problem and solved by standard methods.

Let U(t) = U∗(t), t ∈ [τj , τj+1], be an optimal control in linear quadratic
problem Plinear

j . Using this control we integrate the system of partial differential
equations (14)–(16) with U(t) = U∗(t), t ∈∈ [τj , τj+1]. As a result we obtain
the trajectory T ∗(x, t), q∗(x, t), x ∈ [x0, x∗], t ∈ [τj , τj+1]. Knowing the tra-
jectory, we set q∗

0(t) = q∗(x0, t), t ∈ [τj , τj+1], and consider this function as an
approximation of the heat flux q(x0, t), t ∈ [τj , τj+1], obtained at the jth stage.

Using new vector and functions

y∗(τj+1 − 0), T ∗(x, τj+1 − 0), q∗(x, τj+1 − 0), x ∈ [x0, x∗], (23)

we go to the next (j + 1)th stage whose aim is to reconstruct the heat flux
q(x0, t), t ∈ [τj+1, τj+2], on the base of data (23) and the noisy temperature
measurements y(ti) at the time instants ti ∈ [τj+1, τj+2], i = (j + 1)L + 1, ...,
(j + 2)L.
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As it was shown in [17,18], for the optimal control problem Plinear
j , the value

of index i∗ (see relation (18)) is of great significance since it defines the index k
of the cost functional of the problem. Notice that i∗ = N(x∗

1 − x0)/(x∗ − x0) is
uniquely defined by the given values x0, x∗

1, x∗ and a chosen parameter N .
We recall [27] that the index of the cost functional

b∫

a

f(Z(t), U(t), t)dt

is the smallest integer number k such that ∂
∂U

dk

dtk
f(Z(t), U(t), t) �= 0. Here the

derivatives dkZ(t)
dtk

are calculated taking into account a specified system of differ-
ential equations. In the case under consideration this system coincides with the
linearized system (20).

The index k characterizes the degree of the direct influence of a control U(t),
t ∈ [τj , τj+1], on the cost functional. The higher the value of the index k, the
weaker the influence of U(t), t ∈ [τj , τj+1], on the cost functional (or rather
on its first term that is responsible for the restoration’s quality) and the more
“irregular” the restoration problem becomes. For the problem Plinear

j , the indices
i∗ and k are related as follows:

k = 2(i∗ − 1) if 1 < i∗ and k = 1, if i∗ = 1.

Notice that for the problems considered in papers [17,18] the values of the
indices i∗ and k coincide: k = i∗. It illustrates once again that the identification
problems considered in this paper are more difficult than the ones studied in
[17,18].

The study of the problem Plinear
j , for large index i∗ values, shows that the

values of the control function U(t) = U (j)(t), t ∈ [τj , τj+1], that are situated
closer to the end of the interval [τj , τj+1], exert the smallest influence on the
first term

∑(j+1)L
i=jL+1(zk(ti)−y∗(ti))2 of the cost function: the closer control to the

end of the interval, the weaker its influence. The choice of these control values
is carried out mainly just for the purpose of minimization of the regularizing
term

∫ τj+1

τj
(dU(t)/dt)2dt in the cost functional (19). It is clear that these control

values will be “regular”, but far from the values of the restored function.
To overcome the specified difficulties arising for large values of the index i∗,

it is necessary to insert the following changes to the described above algorithm.
Let us select one more integer parameter Lb, 0 ≤ Lb ≤ L. The value of

Lb specifies the part [τj , τj + LbΔt] (called confidence interval) of the interval
[τj , τj+1] where the obtained control actions are supposed to be restored cor-
rectly. Only this part, U∗(t), t ∈ [τj , τj + LbΔt], of the obtained control function
U∗(t), t ∈ [τj , τj + LΔt], defined on the confidence interval will be used on the
subsequent steps of the algorithm.

Taking into account these changes, the algorithm becomes as follows.
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Step 0 (Initialization). Set j = 0, τ̄0 = t0, T ∗(x, τ̄0−0) = Tin(x), q∗(x, τ̄0−
0) = qin(x), x ∈ [x0, x∗], y∗(τ̄0 − 0) = y(t0).
Step 1. Using the known vector y∗(τ̄j − 0), apply filtering procedures to
the noisy data y(t), t ∈ [τ̄j , τ

∗
j+1], where τ∗

j+1 = min{τ̄j + LΔt, t∗}, and get
function y∗(t), t ∈ [τ̄j , τ

∗
j+1].

Step 2. Set

z01 = T ∗(x1, τ̄j), z02i = T ∗(xi+1, τ̄j), i = 1, . . . , N − 2;
z02i−1 = q∗(xi, τ̄j), i = 2, . . . , N − 1 z02N−2 = q∗(xN , τ̄j).

(24)

Using the filtered data y∗(t), t ∈ [τ̄j , τ
∗
j+1], solve the optimal control prob-

lem Plinear
j on the interval [τ̄j , τ

∗
j+1]. Notice that in (19) one should replace

τj , τj+1 by τ̄j , τ∗
j+1 and

∑(j+1)L
i=jL+1 by

∑m(τ∗
j+1)

i=m(τ̄j)
where m(τ) ∈ {0, 1, ...,M}

with τ ∈ {tj , j = 0, 1, ...,M} is such integer number that τ = tm(τ). Let
U∗(t), t ∈ [τ̄j , τ

∗
j+1], be the optimal control of the problem.

Step 3. Set τ̄j+1 := τ̄j + LbΔt. Integrate the nonlinear system of partial
differential equations (14)–(16) on the interval [τ̄j , τ̄j+1] ⊂ [τ̄j , τ

∗
j+1] replacing

τj , τj+1 and U(t), t ∈ [τj , τj+1], by τ̄j , τ̄j+1 and U∗(t), t ∈ [τ̄j , τ̄j+1]. This
yields the trajectory T ∗(x, t), q∗(x, t), x ∈ [x0, x∗], t ∈ [τ̄j , τ̄j+1].
Step 4. Set q∗

0(t) = q∗(x0, t), t ∈ [τ̄j , τ̄j+1].
Step 5. If τ̄j+1 = t∗, go to Step 7, otherwise go to Step 6.
Step 6. Set j := j + 1 and go to Step 1.
Step 7. The Algorithm stops the work.

The constructed function q∗
0(t), t ∈ [t0, t∗], is taken as the restored heat flux

q(x0, t), t ∈ [t0, t∗] at the point x0. The described algorithm is consistent
with the approach based on the sequential estimation [1,26].

Thus, in the proposed method, the process of solving a single reconstruc-
tion problem for nonlinear system (1)–(4) on the large interval is reduced to the
process of solving a succession of p optimal control problems Plinear

j for linear
systems on small intervals t ∈ [τj , τj+1], j = 0, ..., p − 1. It should be noted
that, for a one-stage reconstruction procedure, i.e., when p = 1, only one prob-
lem of the optimal control is solved on the entire interval [t0, t∗]. However, the
dimensionality of this problem grows up as the discretization steps Δt and Δx
decrease, which makes it impossible to solve this problem with high accuracy.
In the proposed approach for arbitrarily small values of the steps Δt and Δx,
the dimensions of the quadratic programming problems to be solved at each
stage may take any prescribed values. For fixed values of dimensionality of these
problems, the reduction of the discretization steps Δt and Δx results only in the
increase of the number p of stages.

Note also that the small lengths of the intervals [τj , τj+1], j = 0, 1, ..., p − 1,
(determined by the parameters L and M) and the stage-by-stage character of the
SSO method enable the user to circumvent effectively the difficulties associated
with the nonlinearity of the system. The fact that the algorithm includes the
confidence interval determined by the parameter Lb allows one to reduce the
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difficulties associated with the irregularity of the problem for large values of the
index i∗.

Besides, at each stage it is possible to analyze the quality of restoration and
to correct the regularization parameters at the next stage on the basis of the
results of this analysis.

5 Numerical Modeling

First of all, to evaluate the quality of approximation of the system of partial
differential equations (1)–(4) by the system of ordinary differential equations
(20), we solve two direct problems.

The first problem consists in constructing the functions

T (x, t), q(x, t), x0 ≤ x ≤ x∗, t0 ≤ t ≤ t∗, (25)

that satisfy system (1) and the given initial and boundary conditions (2)–(4)
with the following parameter’s values

C(T ) = 1, τ = 2, λ(T )= 1, ρ(T )= 5, ν(x) = 0.1,

x0 = 0, x∗ = 5, t0 = 0, t∗ = 50, (26)

and functions qin(x), Tin(x), x ∈ [x0, x∗], and q0(t), T∗(t), t ∈ [t0, t∗], that are
presented in Fig. 1(a) and (b), respectively. Here the plots of the functions qin(x)
and q0(t) are denoted by the continuous lines and the plots of the functions Tin(x)
and T∗(t) are denoted by the dotes.

Notice that the initial and boundary conditions (2)–(4) satisfy the following
consistency constraints:

Tin(x∗) = T∗(t0), qin(x0) = q0(t0), (27)

ρ(T∗(t0))C(T∗(t0))
(

dT∗(t0)
dt

+ ν(x∗)
dTin(x∗)

dx

)
= −dqin(x∗)

dx
(28)

τ

(
dq0(t0)

dt
+ ν(x0)

dqin(x0)
dx

)
= −qin(x0) − λ(Tin(x0))

dTin(x0)
dx

. (29)

To solve the first direct problem, the standard pdepe-program of the com-
puting package MATLAB was used.

For the given data, the plots of functions (25) are shown in Fig. 2.
After that, for the same set of parameters (26) and functions qin(x), Tin(x),

x ∈ [x0, x∗], q0(t), T∗(t), t ∈ [t0, t∗], we have solved the initial value problem for
system (20) in which the state vector Z(t) = (z1(t), ..., z2N−2(t)) (with N = 11)
had the form

z1(t) = T1(t) = T (x1, t), z2i = Ti+1(t) = T (xi+1, t), i = 1, . . . , N − 2;
z2i−1(t) = qi(t) = q(xi, t), i = 2, . . . , N − 1; z2N−2(t) = qN (t) = q(xN , t).
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Fig. 1. (a) Functions qin(x), Tin(x), x ∈ [x0, x∗]; (b) functions q0(t), T∗(t), t ∈ [t0, t∗].
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Fig. 2. Functions T (x, t), q(x, t), t ∈ [t0, t∗], x ∈ [x0, x∗].
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Fig. 3. Functions Ti(t), qi(t), t ∈ [t0, t∗], i = 1, ..., N.

The plots of the functions

Ti(t) = T (xi, t), qi(t) = q(xi, t), i = 1, . . . , N, t0 ≤ t ≤ t∗,

are presented in Fig. 3.
The carried out numerical calculations showed that for a rather large value

of the parameter N , the system of the ordinary differential equations (20) well
approximates the initial system of partial differential equations (1)–(4).
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The main attention in the experiment was paid to solving the inverse prob-
lems, i.e. problems of reconstruction of the function q0(t) = q(x0, t), t ∈ [t0, t∗],
on the base of the given noisy temperature measurements (6) at a given point
x∗
1, x0 ≤ x∗

1 ≤ x∗.
Two types of functions v(t), t ∈ [t0, t∗], modeling noises were considered:
(A) noises of the type v(t) = σw(t), t ∈ [t0, t∗], where σ is the standard

value of the measurement errors deviation, and w(t) is a random variable with
a normal distribution, zero mean, a unit standard deviation, and uncorrelated
values for various time instants;

(B) noises with outliers (spike noises).
The examples of functions v(t) = σw(t), t ∈ [t0, t∗], of types (A) and (B) are

presented in Fig. 4.
As it was mentioned before, without loss of generality one can consider that

the point x∗
1, at which the temperature measurements were performed, belongs

to the nodes of the grid (18), namely,

x∗
1 = xi∗ = x0 + i∗Δx, where i∗ ∈ {1, ..., N − 1}. (30)
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Fig. 4. (a) Examples of the function σw(t), t ∈ [t0, t∗]: (a) of type (A) with σ = 100;
and (b) of type (B) with σ = 400

For solving the reconstruction problem the described method of SSO was
applied.

For different levels and types of noise σ and different values of the point
x∗
1 = xi∗ , the results of reconstruction of the function q0(t), t ∈ [t0, t∗], are

presented in Figs. 5, 6, 7 and 8. Here the model function q0(t), t ∈ [t0, t∗], and
functions q∗

0(t), t ∈ [t0, t∗], obtained as a result of application of the described
reconstruction method are shown. The parameter N was chosen to be equal
to 11.

In the top parts of Figs. 5, 6, 7 and 8, the functions of the model heat
flux q0(t) = q(x0, t), t ∈ [t0, t∗], (the dashed line) and the reconstructed fluxes
q∗
0(t), t ∈ [t0, t∗], (the dot line) are represented.
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Fig. 5. The results of numerical modeling for reconstruction of heat flux with i∗ = 1
(L = 30, αu = 1.5, α1 = 2) and noise of type (A) (σ = 100)
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Fig. 6. The results of numerical modeling for reconstruction of heat flux with i∗ = 5
(L = 10, ηj = 4, γj = 4) and noise of type (A) (σ = 100)
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Fig. 7. The results of numerical modeling for reconstruction of heat flux with i∗ = 5
(L = 30, ηj = 1, γj = 1) and noise of type (A) (σ = 100)
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Fig. 8. The results of numerical modeling for reconstruction of heat flux with i∗ = 3
(L = 30, ηj = 0.25, γj = 0.25) and noise of type (B) (σ = 400)
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In the lower parts of these figures, the following functions are presented:

– function of temperature T (x∗
1, t), t ∈ [t0, t∗], obtained as a result of solving

the direct problem with data (26) and the functions presented on Fig. 1 (this
function is denoted by the dashed lines);

– function of temperature obtained as a result of solving the direct problem with
the same data in which the model function of q0(t), t ∈ [t0, t∗], is replaced
by the function of q∗

0(t), t ∈ [t0, t∗], constructed by the offered restoration
procedure (this function is denoted by the dot line);

– and also function y(t), t ∈ [t0, t∗], (5) (it is denoted by the continuous line).

The performed experiment shows that for systems (1)–(4) the method of stage-
by-stage optimization is effective.

The analysis of the obtained results shows that the quality of reconstruction
significantly depends on the value of the point x∗

1, in which the temperature’s
measurements are performed (i.e. on a relation of the parameters i∗ and N) and
on the noise level σ.

6 Conclusion

In the paper, we have developed the method of the stage-by-stage suboptimal
optimization (SSO method) for solving the inverse heat conduction problems.
The problem of reconstruction of the time-varying surface heat flux on the base
of the temperature measurements in an internal point was studied. We considered
the hyperbolic type systems taking into account the heat flux relaxation time,
conductive and convective components of the heat distribution processes. Such
systems generalize the studied earlier ones and are rather difficult.

The mathematical model of the heat transmission takes into account the
medium nonlinearity, the speed of heat convection, and the heat flux relaxation
time. For filtering the noisy input data, the method of robust estimation, based
on the Tikhonov-Huber cost functional, was applied.

The numerical experiments performed have confirmed the effectiveness of
the proposed approach for solving reconstruction problems on the base of both
standard noise and noise with outliers.
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Abstract. This paper revisits the study of wireless carrier-sense multi-
ple access (CSMA) protocols enabled with multi-packet reception (MPR)
capabilities. This study employs a new paradigm in the literature of ran-
dom access based on multi-objective and financial portfolio optimization
tools. Under this new optimization framework, each packet transmis-
sion is regarded not only as a network resource, but also as a financial
asset with different values of return and risk (or variance of the return).
The objective of this network-financial optimization is to find the trans-
mission policy that simultaneously optimizes network metrics (such as
throughput and efficient power consumption), as well as economic met-
rics (such as fairness, return and risk). Two transmission models are
considered for performance evaluation: a Bernoulli transmission model
that facilitates analytic derivations, and a Markov model that considers
the backlog states of the network and that facilitates dynamic stability
analysis. This work is focused on the characterization of the boundary
(envelope) or the Pareto optimal frontier of different types of trade-off
performance region. These regions include the conventional throughput
and stability regions, as well as new trade-off regions such as sum-
throughput vs. fairness, sum-throughput vs. power consumption, and
return vs. risk. Fairness is evaluated by means of the Gini-index, which
is used in the field of economics to measure population income inequal-
ity. Transmit power is directly linked to the global transmission attempt
rate. In scenarios with weak MPR capabilities, the system has problems
in achieving simultaneously good values of fairness and high values of
sum-throughput. This is because of an underlying non-convex through-
put region which is typical of protocols dominated by unresolvable colli-
sions. On the contrary, in scenarios with strong MPR capabilities, good
fairness, higher energy consumption efficiency, and high sum-throughput
performances can be simultaneously achieved. Carrier-sensing is shown to
improve the convexity of the throughput region in scenarios with weak
MPR, thereby achieving a better trade-off between metrics, including
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return and risk. However, the effects of carrier-sensing are shown to dis-
appear in scenarios with strong MPR capabilities or with underlying con-
vex throughput regions. The combination of MPR with carrier-sensing
tools helps in reducing risk in the network and to fight issues of wireless
random access such as the hidden/exposed terminal problems.

Keywords: S-ALOHA · Random access · Multi-objective portfolio opti-
mization · Pareto optimal trade-off curve

1 Introduction

1.1 Background, Motivations and Open Issues

The demand for wireless connectivity is rapidly increasing, particularly with
the advent of the Internet-of-everything (IoE) and 5G networks. However, the
scarcity of spectrum resources impedes the allocation of a dedicated channel to
each device connecting to the network. New access technologies are necessary
to solve this resource scarcity problem. Over the last two decades, it has been
observed that large portions of licensed spectrum allocated to legacy applications
remain underutilized for considerably long periods of time. This means that the
dedicated spectrum assignment paradigm is obsolete. Cognitive radio (e.g., [1]),
self organized networks (e.g., [2]), and software defined radio solutions attempt to
provide opportunistic sharing, dynamic organization and efficient access to both
licensed and unlicensed portions of spectrum. This means that future access will
combine aspects and benefits of decentralized (random) and centralized (dedi-
cated) resource allocation. This new resource sharing paradigm is expected to
alleviate the issue of high spectrum demand for future applications.

Another example of the convergence of centralized and decentralized allo-
cation can be found in the area of wireless local and personal area net-
works (WLANs and WPANs, respectively). The number of WLAN and WPAN
hotspots has considerably increased over the last few years. This fact has raised
the issue of severe interference inside buildings and in high dense urban sce-
narios. WLAN and WPAN decentralized technology needs to incorporate more
centralized coordination algorithms due to the increasing traffic demands and
higher levels of interference. It is thus clear that future wireless access networks
must combine aspects of decentralized with centralized allocation to manage
more efficiently network resources. This leads to the convergence of technologies
such as WiFi and LTE (long term evolution) in one single solution or standard
with cognitive radio and self organized features. This framework highlights the
importance of the study of random access protocols using modern optimization
and signal processing tools compatible with the literature of centralized net-
works. This is in view of future synergies and the potential convergence of both
domains.

Random access protocols represent one of the cornerstones of any wireless
multi-user communication system. In centralized networks such as UMTS (uni-
versal mobile telecommunication systems) and LTE, random access protocols
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are used whenever terminals request initial access to network resources. In wire-
less local and personal area networks, random access protocols are the core of
the dominant technology standards (e.g., IEEE 802.1 and IEEE 802.15.4). The
ALOHA protocol is the text book example of theory of random access. Since its
proposal in the seminal work of Abramson in [3], ALOHA has been target of
multiple reinterpretations and improvements. Recent approaches have revisited
the analysis of ALOHA with advanced schemes such as multi-packet reception
(MPR) [4], cooperative diversity [5], and multi-hop ad-hoc features [6]. Perhaps
the most significant, effective and widely implemented variation of ALOHA is
the carrier-sense multiple access (CSMA) protocol. In CSMA, terminals with a
packet ready to be transmitted sense the channel before deciding to engage in
transmission [7]. The gain provided by CSMA depends on how often the sensing
operation is performed along the duration of a packet transmission. This carrier-
sensing scheme is efficient in wire-line solutions, evolving to the current Ethernet
IEEE 802.3 standards, which also employ collision detection mechanisms to fur-
ther improve channel utilization. However, in wireless settings, CSMA is affected
by the hidden and exposed terminal problems. Practical solutions implemented
by current WLAN and WPAN standards to counteract this impairment include
collision avoidance and resource reservation schemes. Another potential solution
to the hidden/exposed terminal problems is the use of multi-packet reception
capabilities1 via multiple reception antennas (e.g. [8]) and retransmission diver-
sity (e.g. [9]). Even when terminals incur in errors of carrier-sensing due to
hidden or exposed settings, collisions can still be resolved by means of a strong
physical (PHY) layer.

ALOHA and its carrier-sense version have been mainly subject to conven-
tional single objective optimization approaches (e.g., [7,10]). To the best of our
knowledge there are no previous works that address the multi-objective optimiza-
tion of these protocols and in general in the field of random access. In addition
to this, the use of multiple-input multiple-output (MIMO) tools, which is wide-
spread in the literature of centralized networks, is not as rich and diverse in the
field of random or decentralized resource allocation. This gap needs to be filled in
view of a future convergence of the fields of random and dedicated resource allo-
cation using multiple antennas or multi-packet reception. This paper attempts
to partially address these issues as explained in more detail in the following
sections.

1.2 Paper Objectives and Contributions

This paper addresses the multi-objective and financial portfolio optimization of
a p-persistent CSMA protocol with MPR capabilities. To achieve this goal we use
the conditional probabilistic reception model proposed in [4] and the p-persistent
transmission model presented in [11]. The analysis assumes fixed-length packets.

1 Multi-packet reception is the ability of the PHY-layer to correctly decode concurrent
or contending transmissions, mainly by using signal processing tools for multiple-
input multiple-output (MIMO) systems.
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The derivation of the boundary (envelope) of the throughput region is reformu-
lated here as the simultaneous optimization of the individual terminal through-
put functions. The Pareto optimal curve (surface) is identified as the envelope
of the throughput region. The remaining trade-off regions analysed are the fol-
lowing: stability region, sum-throughput vs. fairness, sum-throughput vs. power,
and return vs. risk regions. Power consumption is measured as the total trans-
mission attempt rate, which is an assumption commonly used in the study of
energy consumption of random access protocols (e.g. [11]). Fairness is evaluated
in this paper by means of the Gini-index, which is used in economics to mea-
sure income inequality [12,13]. Finally, the characterization of the return vs. risk
trade-off region employs concepts borrowed from the theory of financial portfolio
optimization (see [14]). Each network transmission will be also considered as a
financial asset, whose allocation will attempt to simultaneously maximize return
and minimize risk (variance of the return).

Economic optimization tools have been widely used in wireless networks,
using, for example, financial stock market tools and game theory. However, these
works have been mainly used in cellular resource allocation, cognitive radio net-
works, and for operator price estimation scenarios. This work attempts to pioneer
the use of financial portfolio optimization in the particular case of random access.
Summarizing, the contributions of this paper are as follows:

1. Multi-objective optimization of a p-persistent CSMA-MPR protocol, which
allows for a trade-off analysis of different objective functions.

2. Derivation of Pareto optimal front curves for different performance trade-off
regions: the conventional throughput and stability regions, sum-throughput
vs. power, sum-throughput vs. fairness, and return vs. risk regions.

3. Geometric interpretation of some Pareto optimal trade-off curves, and
4. Innovative use of financial terms (return and risk) in the context of random

access networks.

1.3 Related Works

The ALOHA protocol was originally proposed in the seminal work of Abramson
in [3]. With a relatively poor performance in terms of channel efficiency (18%),
improvements were soon proposed using slotted transmission [15] and carrier-
sensing (CSMA) [10]. The protocol was also found to be inherently unstable (or
bistable) [16]. Since then, improved dynamic stability analysis and stabilization
schemes have been proposed (e.g., [7]). The power capture effect has been proved
to be helpful in stabilization of ALOHA [17,18]. The first cross-layer optimization
approach for the ALOHA protocol with MPR was provided in [19]. A stochastic
MPR matrix was used in the sum-throughput optimization of a symmetrical
system using an infinite population model. Dynamic allocation schemes for this
MPR model were proposed in [20–22]. An extension to the asymmetrical case
was provided in [4] using a conditional probabilistic reception model and a finite
buffered population.

Optimization of other types of symmetrical S-ALOHA systems can be found
in [5] for systems with cooperative diversity, in [7,10,11] for CSMA protocols,
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and in [8,19] for systems with MPR. More recently, the works in [23,24] have
addressed the optimization with decentralized channel state information (CSI).
Optimization of S-ALOHA with MPR using game theory was presented in [25].
The present work is complementary to these recent approaches. The aim of this
paper is to explore all the range of Pareto optimal solutions (i.e., Pareto frontier)
and the different trade-offs between Pareto solutions. This full trade-off analysis
provides a useful engineering design perspective of wireless networks and leads to
a better understanding of complex systems and the different variables involved
in their design. By contrast, game theory only searches for solutions that comply
with the Nash equilibrium condition, thus representing a more limited approach.

In terms of asymmetrical settings2, the literature of random access is rela-
tively scarce. It is known that closed-form expressions for the optimization of
certain random access protocols and networks in asymmetrical settings only exist
for limited number of terminals, in general only for J = 2 and a few cases with
J = 3 terminals. The stability region of ALOHA with MPR has been proved
to be identical to the throughput region for the case of J = 2 in [26]. The
exact non-parametric closed-form expression of the stability region for a two-
user ALOHA-MPR system was derived in [4]3. Approximate stability conditions
for higher numbers of users (J > 2) are given in [4] for the MPR channel and in
[27] for the conventional ALOHA using a queuing rank analysis. The optimum
transmission policy for conventional ALOHA that characterizes the throughput
region has been derived in [16], and in [5] for CSMA protocols assisted by coop-
erative diversity. The throughput region of a p-persistent CSMA protocol with
only two terminals has been derived analytically in [28]. However, closed-form
expressions for other systems remain elusive in the literature, particularly when
considering an arbitrary numbers of terminals.

The optimization approach used in this work addresses fully asymmetrical
settings focusing on the derivation of complex Pareto front curves for arbitrary
numbers of terminals. However, for convenience, this paper addresses in more
detail the particular case of two terminals, for which closed-form expressions and
exact sketches of the different regions are relatively easier to obtain and which
provide an idea of the main relationships between metrics. Based on the results
for two-user systems, the case with more than two terminals is addressed by
approximate analytic expressions that can be solved numerically or which can
be explained using simplified sketches of the different trade-off regions under
investigation.

Regarding techno-economic analysis of wireless networks, several works exist
in the literature. The conventional approach is the use of a techno-economic
performance model to evaluate the revenue of an operator under a given set
of resource allocation assumptions. The main objective is to find the optimum

2 Asymmetrical settings is used to refer to network models where users are explicitly
modelled with different channel and queuing statistics.

3 Stability region is loosely defined here as the set of arrival rates for which the queues
of all users remain bounded or empty within an finite period of time. Throughput
region can also be loosely defined as the set of achievable throughput terminal values.
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resource allocation that provides the highest revenue and that satisfies the users
of the network [29]. In the context of cognitive radio, research efforts have been
intensive over the last ten years due to the relevance of the understanding of the
potential gains of opportunistic spectrum access. A review of different approaches
for the use of economic optimization tools in cognitive radio can be found in [30],
where the authors have proposed a market equilibrium approach where primary
and secondary users implement a learning algorithm so that they can adapt the
amount of spectrum used, their pricing and the optimum demand that achieve
equilibrium. Most of the existing works are based on game theoretic concepts
(see [31–35]). The work in [34] has used an atomic congestion game theoretic
approach in a wireless network with spatial reuse and inter-user interference.
The work in [35] addresses the problem of calculating the optimum spectrum
pricing in a dynamic spectrum market. Another related approach for the use of
economics in cognitive radio can be found in works such as [36,37] and references
therein, which are based on the concepts of auction theory.

This paper uses multi-objective portfolio optimization under the assumption
that each packet transmission is also a financial asset. Our work explicitly intro-
duces the concept of risk in the resource allocation problem of random access
and derives relevant expressions that allow for an interpretation of the resource
allocation problem as a financial stock market. The work in [38] has used the
concept of return and variance of the return in the context of spectrum pricing
and copyright. Our approach is different from these previous works regarding the
explicit use of multi-objective optimization and the exploration of the bound-
aries of different Pareto optimal trade-off curves. This allows us to visualize geo-
metrical attributes and the potential trade-offs between network and economic
performance metrics. In other words, instead of deriving a resource allocation
policy that achieves a Nash or market equilibrium as in previous works, here
we explicitly explore the boundaries of different trade-off performance regions
or the Pareto frontier curve (surface). In this sense, our approach complements
previous works in the literature by providing a framework for trade-off analysis
and explicit interpretation of financial market stock tools in wireless networks.

Strictly speaking the framework presented in this paper can be used for
higher dimensionality Pareto frontier analysis. However, the trade-off regions
analysed are two-dimensional, as this facilitates analysis via sketches that provide
more useful information than a higher dimensional representation. All the results
provide also the projections of the different trade-off regions, which provides all
the necessary information of the remaining dimensions of the Pareto frontier.

1.4 Paper Organization

The structure of this paper is as follows. Section 2 describes the system model.
Section 3 defines the trade-off performance regions to be investigated. Section 4
addresses the multi-objective optimization. Section 6 presents sketches of the
different trade-off Pareto optimal front curves, and finally Sect. 7 presents the
conclusions.
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2 System Model

2.1 Scenario Description

Consider the slotted random-access network depicted in Fig. 1 with one base
station (BS) and J user terminals. The BS is provided with multiple antennas
which enable MPR, defined as the ability of the physical layer to correctly receive
concurrent transmissions. Users have only one antenna and are assumed to have
their own buffer with incoming packets always available to be transmitted (dom-
inant system or full-queue assumption). At the beginning of every time-slot, each
user j will sense the channel. If the result of this sensing operation is idle, then
the terminal will start a random packet transmission process (see next subsec-
tion for the description of this randomized transmission process). Multi-packet
reception is evaluated using the conditional probabilistic reception model pro-
posed in [4]. The authors have defined the marginal probabilities of reception for
user j, conditional on the transmission of a set of active users (T ) as follows:

qj|T =
∑
j∈R

qR;T, R ⊂ T , j ∈ T , (1)

where qR;T is the probability of decoding packets only from the set of users
R conditional on the set of transmitting users T . This marginal conditional
reception model describes several statistical features found in wireless networks,
particularly their asymmetric nature. Now suppose that U , S, and Ŝ are three
groups of terminals. The MPR channel is standard when the following inequality
holds for all U ⊂ S ⊂ Ŝ [26]:

∑
R;U⊂R⊂Ŝ

qR;S ≥
∑

R;U⊂R⊂Ŝ
qR;Ŝ .

This condition states that collisions of higher numbers of users will be always
more destructive and thus less likely to be resolved than those collisions with less
users. A packet is assumed to have a fixed length (in time-slots or packet units)
denoted by L, which also denotes the number of times the sensing operation is
performed along the duration of a packet. For convenience in the analysis, the
random variable l will denote the length of a transmission or renewal interval
[11]. Two transmission models will be used for the study of the protocol that
will help in revealing different aspects of the system, and which are described in
the following subsections.

2.2 Bernoulli Transmission Model

In the Bernoulli transmission model, all traffic streams either backlogged4 or
new incoming are not differentiated. Therefore, at the beginning of every time-
slot and provided the channel was sensed as idle, each user j will be assumed
4 A user is said to be in the backlog state when having previously transmitted a packet,

the transmission was lost in a collision and the packet needs to be re-transmitted in
subsequent time-slots.



Multi-Objective and Financial Portfolio Optimization 75

Fig. 1. Random access network with MPR capabilities and carrier-sensing.

to attempt a packet transmission controlled by a Bernoulli random experiment
with parameter pj , which is also the transmission probability. The advantage
of the Bernoulli transmission model is that it facilitates analytic derivations.
However, backlog and incoming traffic streams are not differentiated, and thus
it is not possible to evaluate in detail the dynamics and stability properties of
the protocol.

2.3 Dynamic State Model

To overcome the limitations of the Bernoulli transmission model, the operation of
the protocol can be reformulated to consider incoming and backlog traffic being
scheduled in different manner. Each terminal is assumed to be in two possible
states (see Fig. 2): idle (with probability pi,j), or backlog (with probability pb,j).
In the idle state, a terminal attempts the transmission of a new incoming packet
with probability pa,j . In the case of collision and upon the reception of the feed-
back signal from the BS confirming the collision event, each user is driven into
the backlog state. In the backlog state, each user will attempt the re-transmission
of the packet previously lost with probability pr,j . Not new incoming traffic is
allowed to be transmitted by any user while being in the backlog state.

3 Trade-off Performance Regions

3.1 Throughput Region

Under CSMA operation, the throughput of each terminal is given by the ratio
of the average number of correctly received packet units to the average length
of a renewal interval [11]. In our setting, this can be expressed as follows:

Tj =
Lps,j

E[l]
, (2)
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Fig. 2. Terminal states.

where ps,j is the probability of correct packet reception of a packet of user j and
E[l] is the average length of a renewal interval or epoch-slot (E[·] is the statistical
average operator). Using the reception model defined in (1), the term ps,j in the
numerator of (2) can be calculated as the expectation over the probability space
of all possible realizations of the set of contending users T that include user j
(j ∈ T ):

ps,j =
∑

T ;j∈T
Pr{T }qj|T , j ∈ T , (3)

where Pr{T } indicates the probability of occurrence of a particular set of trans-
mitting users T , and which can be written, under the assumption of independent
queues5, as follows

Pr{T } =
∏
i∈T

pi

∏
j �∈T

p̄j ,

where ā = 1 − a, for any a. We can also obtain an expression for the average
length of an epoch E[l] by using the formula for a finite-user CSMA protocol
with constant packet length [11]:

E[l] = L(1 − Pr{T = ∅}) + Pr{T = ∅},
where Pr{T = ∅} is the probability that no user transmits, i.e. the probability
that the set of of transmitting users is empty. This expression simply denotes
that the length of the epoch is L whenever there is a packet transmission with
probability 1 − Pr{T = ∅} plus the contribution of only one time-slot whenever
there is no user transmitting with probability Pr{T = ∅}. Now, let us rewrite
the above expression for E[l] as follows:

E[l] = L + (1 − L)Pr{T = ∅},

and, assuming again independence of queues, it finally reduces to:

E[l] = L + L̄
J∏

j=1

p̄j (4)

5 Queues in a random access in general are not statistically independent, particularly
in the presence of collisions. However, at low and medium traffic loads it is a good
approximation commonly used in the literature [9,16].
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Having defined the throughput expressions per terminal, let us now turn
our attention to the throughput region of the protocol. Consider the vector
T = [T1, T2, . . . TJ ]T of stacked throughput values, and the vector p =
[p1, p2, . . . pJ ]T of stacked transmission probabilities. The throughput region,
can be defined as the union of all achievable values [T1, T2, . . . TJ ] for all poten-
tial realizations of transmission policies (0 < pj < 1) [26]:

CT = {T̃|T̃j = Tj(p), 0 ≤ pj ≤ 1}. (5)

The throughput region is one of the main metrics in the study of random access
in asymmetrical settings [26].

3.2 Sum-throughput vs. Fairness Region

Considering the individual throughput expressions in (2), sum-throughput can
be simply defined as follows:

T =
J∑

j=1

Tj . (6)

Fairness will be evaluated in this paper by means of the Gini-index, which is
commonly used in the area of economics to measure income inequality [13]. The
Gini-index can be defined mathematically as follows [13]:

FG =

∑J
j=1

∑J
k=1 |Tj − Tk|
2J2μ

=

∑J
j=1

∑J
k=1 aj,k(Tj − Tk)

2JT
, (7)

where μ =
∑J

j=1 Tj/J is the mean, and aj,k is defined as aj,k =
{

1, Tj ≥ Tk

−1, Tj < Tk
.

A value of Gini-index of zero (FG = 0) is equivalent to the maximum fairness
case where all users are statistically identical. On the contrary, a value of one
(FG = 1) indicates the worst fairness scenario with one user overtaking all the
resources of the system. Consider the vector F = [T FG]T of stacked values of
sum-throughput and fairness. The sum-throughput vs. fairness trade-off region
can be defined as the union of all achievable values [T FG]T for all potential
realizations of transmission policies (0 < pj < 1):

CF = {F̃|T̃ = T (p), F̃G = FG(p), 0 ≤ pj ≤ 1}. (8)

3.3 Sum-throughput vs. Transmit Power Region

In this paper, average power consumption will be considered as proportional to
the transmission attempt rate of the system, which is a common assumption
used in the literature of random access (i.e. [11]). Therefore, we can define the
average consumed power as follows:

P = α

J∑
j=1

pj , (9)
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where α is a proportionality constant that relates each transmission with a spe-
cific energy consumption. Consider the vector P = [T P ]T of stacked values
of sum-throughput and power. The sum-throughput vs. power trade-off region
can be defined as the union of all achievable values [T P ]T for all potential
realizations of transmission policies (0 < pj < 1):

CP = {P̃|T̃ = T (p), P̃ = P (p), 0 ≤ pj ≤ 1}. (10)

3.4 Return vs. Risk Trade-off Region

Let us define the instantaneous return per correctly transmitted packet of user
j as rj , and the average return as E[rj ] = r̂j . The average return of the network
can be written as:

R =
J∑

j=1

E[rjtj ] =
J∑

j=1

r̂jTj , (11)

where tj is a binary random variable that indicates whether the packet of user j
was correctly received (tj = 1) or not (tj = 0). Note that because tj is a binary
random variable, E[tj ] = E[t2j ] = Tj . In this paper we consider that the return
of different users is statistically independent. The risk is defined the variance of
the instantaneous return:

S = E[(
J∑

j=1

rjtj)2] − R2 =
J∑

j=1

E[r2j ]Tj − R2. (12)

Consider the vector R = [R S]T of stacked values of return and risk. The
return vs.risk trade-off region can be defined as the union of all achievable values
[R S]T for all potential realizations of transmission policies (0 < pj < 1):

CR = {R̃|R̃ = R(p), S̃ = S(p), 0 ≤ pj ≤ 1}. (13)

4 Optimization

4.1 Multi-objective Optimization

To derive the envelope of the different trade-off regions, a multi-objective opti-
mization scheme is here proposed, where M objective functions Fm (m =
1, . . . ,M) can be simultaneously optimized:

popt = arg max
p

[F1, F2 . . . FM ], 0 < pj < 1. (14)

Since this vector optimization usually lacks a unique solution [39], the concept of
Pareto optimal trade-off front is commonly employed. A Pareto optimal solution
can be loosely defined here as the point that is at least optimum for one or
more of the elements of the vector objective function [F1, F2 . . . FM ], or
in other words when none of the objective functions can be improved in value
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without degrading some of the other objective values (see [39] for a complete
definition). The multi-objective optimization problem can be transformed into
a single objective optimization problem using the method of scalarization [39]:

popt = arg max
p

M∑
m=1

μmFm, 0 < pj < 1, (15)

where μm is the relative weight given to the mth objective function. Differ-
entiating the objective function in (15) we obtain a set of equations given by∑M

m=1 μm
∂Fm

∂pk
= 0, k = 1.., J . The solution of this set of linear equations

independent from the values of the weighting factors μk can be easily proved,
in our context, to be equivalent to setting the following Jacobian determinant
equal to zero [9]:

|Ja| = 0, 0 < pj < 1, (16)

where Ja(m, k) = ∂Fm

∂pk
is the (m, k) element of the Jacobian matrix Ja.

4.2 Throughput Region

In the case of the throughput region, the M objective functions to be optimized
are given by the throughput functions Tj of each user. Let us expand the term
ps,j in (3) explicitly in terms of the transmission probabilities pj as follows:

ps,j = pj(qj|{j} +
J−1∑
k=1

∑
Tk,j �∈T

∏
i∈T

piQj,Tk
) (17)

where:

Qj,Tk
= qj|{j} +

k∑
n=1

(−1)n
∑

T̂n⊆Tk

qj|T̂n
, j �∈ Tk, (18)

and Tn and T̂n denote sets of n terminals (|Tn| = n, where |U| denotes the
cardinality of U). The optimum transmission policy can be obtained by solving
the Jacobian determinant equation in (16) using the expressions of throughput
and the expressions in (17) and (18). A closed-form solution of this problem
is in general difficult to obtain. This paper proposes a method that provides a
solution in closed-form by considering that the desired solution is a deviation
from the solution of an equivalent collision model protocol. The solution for
the optimization of the throughput region of random access protocols under
the collision model results in Jacobian J̃a matrices (following the lines of the
derivation of the expression in (16)) that have the following quasi-symmetrical
property:

J̃a(j, k) =
{

αj , k = j
βj , k �= j

(19)

which means that all the elements of a row j are all the same except for the
element of the main diagonal. Under this structure, the Jacobian determinant
|J̃a| has been proved in ([9]) to be equal to
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|J̃a| = 1 −
∑

j

{
βj

αj − βj

}
.

The structure of the Jacobian matrix for the MPR case in general does not
have the same structure as in the case of the collision model protocols. However,
the elements can be arranged in a way that is quasi-symmetrical or slightly
approximate to a collision model matrix, and then propose complement that
produces the desired quasi-symmetrical property. This can be mathematically
expressed as follows:

J̃a(j, k) = Ja(j, k) + J̇a(j, k),

where J̇a(j, k) is the element of Jacobian matrix J̇a that complements the orig-
inal Jacobian matrix Ja to acquire the desired symmetrical property defined in
(19). The Jacobian determinant can be now calculated (using the well known
co-factors formula) as the determinant of the symmetrical collision model matrix
component J̃a minus the deviation component that can be obtained by analysing
each one of the components (co-factors) of the complement matrix J̇a. This can
be mathematically expressed as follows:

|Ja| = |J̃a| −
J∑

j=1

(−1)j{Ja(1, j)(|J̃1,j
a | − |J1,j

a |) + J̇a(1, j)|J̃1,j
a |}, (20)

where Bk,j denotes the submatrix that is formed by removing the k-th row and
the jth column of matrix B. Details of the derivation of this formula have been
omitted as they are out of the general scope of this paper. In the case of two
users, this expression can be proved to reduce to [8]:

1 − p1Q2|{1}/q2|{2} − p2Q1|{2}/q1|{1} − L̄p̄1p̄2Q̄ = 0, (21)

where Q̄ = 1 − Q1|{2}/q1|{1} − Q2|{1}/q2|{2}. Note that when using L = 1 in
the previous expression, the expression is identical to the result for the sta-
bility region derived in [4] for the ALOHA protocol with MPR capabilities
(p1Q2|{1}/q2|{2} + p2Q1|{2}/q1|{1} = 1).

4.3 Sum-throughput vs. Fairness Region

Consider that the two objective functions to be optimized are F1 = FG in (7)
and F2 = T in (6). For the multi-user case, the solution boils down to a set of
Jacobian determinants using the general expression in (16) for all combinations
of two terminals. The dimension of each determinant matrix is 2× 2. As it wil be
observed later, this set of expressions describes several frontiers in the solution
space. Only one of these solutions will represent the desired Pareto frontier,
which is in general the part of the solution corresponding to the user with the
best reception performance. This will be explained in more detail later in the
section of results as a consequence of the analysis of the solution of the two-
user case. In the case of two users, the Jacobian determinant equation in (16)
reduces to:
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1 − p1Q2|{1}/q2|{2} − p2Q1|{2}/q1|{1} − L̄p̄1p̄2Q̄ = 0, (22)

which is identical to the solution for the throughput region in (21). Therefore,
the Pareto frontier in both trade-off regions is described by the same functional
expression.

4.4 Sum-throughput vs. Transmit Power Region

Consider that the two objective functions to be optimized are now given by
F1 = P in (9) and F2 = T in (6). Similar to the previous case of the fairness
region, the solution is described by a set of Jacobian determinant equations for
all combinations of two terminals. The desired frontier will be described by the
part of the solution corresponding to the user with the best performance in terms
of throughput, as it will be analysed in detail in subsequent sections. For the
two user case, the expression in (16) becomes:

∂T

∂p1
− ∂T

∂p2
= 0, (23)

which after substituting the expression for T in (6) and a few algebraic operations
can be rewritten as follows:

L[q1|{1} + p1(Q1|{2} + Q2|{1})] + L̄p̄2 + L[q2|{2} + p2(Q1|{2} + Q2|{1})] + L̄p̄1 = 0.
(24)

Further details are given in the section of results.

4.5 Return vs. Risk

Consider that the two objective functions to be optimized are given by F1 = R
in (11) and F2 = S in (12). The analysis of the multi-user case is similar to the
two previous trade-off regions. For the two user case, (16) becomes

∂R

∂p1

∂S

∂p2
=

∂R

∂p2

∂S

∂p1
. (25)

Simplifying and using the explicit formula for return and risk in (11) and (12),
respectively, (25) can be proved to reduce to:

1 − p1Q2|{1}/q2|{2} − p2Q1|{2}/q1|{1} − L̄p̄1p̄2Q̄ = 0, (26)

which is identical to the solution for the cases of throughput and sum-throughput
vs. fairness regions in (21) and (22), respectively. It is worth pointing out that
despite the equivalence of the equations that describe the Pareto front curve
of different trade-off regions, their actual shape and interpretation can actually
differ in some aspects that will be discussed in the section of results.
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5 Markov Model

For a more detailed analysis of the stability properties of the protocol, this section
makes clear distinction between incoming and backlog traffic streams. Each user
is assumed to be in one of two states: idle or backlog. All the J2 possible backlog
states of the network are rearranged in a linear array. The vector of backlog state
probabilities in the steady state is denoted here by x = [x1, . . . , xJ2 ]T , where
xk is the probability of the network being in the backlog state k. The transition
probabilities between the different states of the network can be arranged in a
J2 × J2 matrix denoted here by Me. Therefore, the element k, l of matrix Me,
denoted by Me(k, l), indicates the transition probability between the lth and
the kth state. The transition probabilities can be obtained by simply adding the
probabilities of possible conflict or no conflict between users. This can be written
as the transition probability between the backlog state of the network at time t
and the backlog state at time t + 1. The backlog state of the network at time t
is defined as the set of users in backlog state at time t, which is denoted by Ut.
The transition probability between the two consecutive states is defined as the
probability of occurrence of the set of backlogged users Ut+1 at time-slot t + 1
conditional on the occurrence of the set of backlogged users Ut in the previous
time-slot t. This can be written as:

Pr{Ut+1|Ut} =
∑

Ta,Tb

Pr{Ta; Tb}qR;T , Tb ⊂ Ut, Ta ⊂ Ut, (27)

where Ta and Tb are the subsets of users in idle and backlog states, respectively,
that engage in a packet transmission, R = Ut+1 ∩ T ∩ T is the subset of active
users correctly decoded, S denotes the complement of set S, and T = Ta ∪ Tb

is the total set of users engaged in transmission. The term Pr{Ta; Tb} denotes
the probability of occurrence of the set of active users Ta and backlogged users
Tb engaged in transmission. The steady state probabilities can be obtained by
solving the characteristic equation of the Markov model:

Mex = x, (28)

which can be identified as an eigenvalue problem with a particular eigenvalue
equal to one (ν = 1). Throughput functions can be reformulated by averaging
the contributions over the calculated backlog probability space as follows:

Tj =
∑
U

Pr{U}
∑

Ta;Tb

Pr{Ta; Tb}qj|T , T = Ta ∪ Tb, j ∈ T ,

where the summation is over all possible sets of users in backlog state and over all
possible combinations of users engaged in transmission either in the idle (Ta) or
in the backlog states (Tb). Similarly, the average power consumption is given by:

P =
∑
U

Pr{U}
∑

Ta;Tb

Pr{Ta; Tb}
∑

j∈Ta,k∈Tb

(pa,j + pb,k)
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The probabilities of each user being in the idle state can be also obtained by
averaging over the calculated probability space:

pb,j =
∑

U,j∈U
Pr{U} (29)

while the offered load of each user can be written as the average accepted traffic:

λj =
∑

U ;j �∈U
Pr{U}pa,jE[l] (30)

The expressions for the sum-throughput, fairness indicator, return and risk
remain as in the previous section, except that they must be calculated as the
average over the probability space obtained using the Markov model tools.

5.1 Stability Region

Let us now define stability region. For the sake of subsequent calculations, let−→
λ = [λ1, λ2 . . . , λJ ]T be the vector of stacked arrival rate values of all termi-
nals. The stability region Cλ is the union over all possible realizations of arrival
rates for which the output traffic is larger than the backlog and incoming traffic
streams for all users:

Cλ = {
−→̃
λ |λ̃j , pa,jpi,j + pr,jpb,j ≤ ps,j}. (31)

The boundaries of the stability region can be obtained by means of a multi-
objective optimization in terms of the probabilities of transmission in idle and
backlog states. The objective is to find the operational points where the balance
between incoming, backlog and outgoing traffic is achieved. This defines the
Pareto frontier or the boundary of the stability region.

6 Results and Discussion

This section presents sketches of the different trade-off performance regions. Each
figure is dedicated to one of the trade-off regions. For purposes of comparison,
each figure also includes the projections of the other types of trade-off region
being analysed. Two cases for the selection of the reception parameters are here
presented with weak and strong MPR capabilities. The reception parameters for
the weak MPR case are: q1 = 0.9, q2 = 0.7, q1|{1,2} = 0.1, and q2|{1,2} = 0.1.
In the case of strong MPR the following parameters have been used: q1 = 0.9,
q2 = 0.7, q1|{1,2} = 0.6, and q2|{1,2} = 0.4.

6.1 Throughput Region

Figures 3, 4 and 5 present the sketches of the throughput region. Figures 3 and 4
show the results for weak MPR using, respectively, L = 1 (which is equivalent
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to an ALOHA system without carrier-sensing), and L = 8 which is the CSMA
system. Figure 5 shows the results with strong MPR. The envelope of these
regions is given by boundary conditions and by the expression for the optimum
transmission probabilities in (21). It can be observed that in the case of weak
MPR (Figs. 3 and 4) the throughput region has a non-convex shape. Note that by
using carrier sensing the throughput region reduces its non-convexity, while the
use of strong MPR produces convex region due to improved reception conditions.
In the strong MPR case (Fig. 5), the results are identical for different values of
packet length L. This means that effects of carrier-sensing disappear. The top
envelope of the throughput region in the weak MPR case6 has a three sections
given by boundary conditions and the curve tagged as p1Q2

q2
+ p2Q1

q1
= 1− p̄1p̄2Q̄.

The strong MPR case has only two sections given only by boundary conditions
(p1 = 1 or p2 = 1). The equal throughput line at 45 degrees is tagged as T1 = T2.

6.2 Sum-throughput vs. Fairness Region

Figures 6, 7 and 8 present the sketches of the CF region in (8). Figures 6 and 7
show the results for weak MPR using, respectively, L = 1 and L = 8. Figure 8
shows the results with strong MPR. The envelope is given by boundary condi-
tions and by the expression for the optimum transmission probabilities in (22).
The CF regions are shown to be upper bounded by one portion of the curve that
defines the upper bound of the throughput region, which corresponds to the user
with better reception capabilities. This property extends to the multi-user case
too. The point with maximum sum-throughput with the worst Gini-index at the

Fig. 3. Throughput region (weak MPR) with L = 1 (ALOHA).

6 Strong MPR is defined as the scenario where the throughput region becomes convex.
The exact definition can be found in [19].
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Fig. 4. Throughput region (weak MPR) with L = 8 (CSMA).

Fig. 5. Throughput region (strong MPR).

top right corner of the figure is given by the point where the user with best
reception statistics transmits with probability one while the other is idle (trans-
mission probability zero). We recall that a value of Gini-index FG = 1 indicates
the worst fairness situation where one of the users occupies all transmission
resources. On the other hand, a value of Gini-index FG = 0 indicates the max-
imum fairness between the users who achieve identical statistical performance.
The point with the best fairness and maximum sum-throughput at the top left
corner of the figure is given by the case where both users experience the same
throughput. The left side boundary of the region, given by the best fairness indi-
cator, corresponds to the curve with equal throughput in (T1 = T2). The case
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of weak MPR in Figs. 6 and 7 show that an improvement of fairness is trans-
lated into a reduction of the sum-throughput, which is consequence of the non-
convexity of the throughput region. When using CSMA (Fig. 7) we can observe
that this transition is smoother than the ALOHA case (Fig. 6), which means
that CSMA helps in achieving a better trade-off between throughput and fair-
ness. The strong MPR case in Fig. 8 shows that higher levels of sum-throughput
can be achieved with very good levels of fairness, which is consequence of the
convexity of the throughput region. This means that strong MPR capabilities
help in achieving simultaneously higher levels of sum-throughput and improved
fairness between the users without the need of carrier sensing. The overall max-
imum sum-throughput in the case of strong MPR in Fig. 8 is achieved when
both users transmit simultaneously, in contrast to the weak MPR case where
the maximum sum-throughput was achieved when the user with best reception
parameters is the only active transmitter.

6.3 Sum-throughput vs. Power Region

Figures 9, 10 and 11 present the sketches of the CP region. Figures 9 and 10 show
the results for weak MPR using, respectively, L = 1 and L = 8. Figure 11 shows
the results with strong MPR. The envelope is given by boundary conditions
((p1, p2) ∈ {0, 1}) and by the expression for the optimum transmission proba-
bilities in (23). All the results assume a unitary value for the proportionality
constant α = 1 in (9). The region is defined by three points. The first one is the
origin which corresponds to the case where none of the users transmits informa-
tion (p1 = p2 = 0). The second point corresponds to the case where the user
with the best reception parameters transmits with probability one and the other
transmits with zero probability. The third point is the solution with maximum

Fig. 6. Sum-throughput vs. fairness (weak MPR) with L = 1 (ALOHA).
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Fig. 7. Sum-throughput vs. fairness (weak MPR) with L = 8 (CSMA).

Fig. 8. Sum-throughput vs. fairness (strong MPR).

power consumption (P = 2), which is given by the case where both users trans-
mit with probability one (p1 = p2 = 1). The bottom boundary of the region is
defined by the curve in (23). The line that defines the top left boundary of the
region is defined by the case where the user with the worst reception parameters
remains silent (zero transmission probability), while the other user increases its
transmission probability. The line that defines the right top boundary is given by
the case where the user with the lowest reception parameters starts increasing
its transmission probability while the other user keeps transmitting with proba-
bility equal to one. This leads either to a gradual reduction (in the case of weak
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MPR in Figs. 9 and 10) or a gradual increase (in case of strong MPR in Fig. 11)
of sum-throughput until the line reaches the maximum power consumption value
P = 2 at the right hand side of the region. Note that in the case of weak MPR in
Figs. 9 and 10, the point of maximum power transmission yields a relatively low
value of sum-throughput. By contrast, in the case of strong MPR this situation
is changed, as maximum power yields also maximum sum-throughput.

6.4 Return vs. Risk Region

Figures 12, 13 and 14 present the sketches of the return vs. risk trade-off region
whose envelope is given in parametric form by the expressions for return in (11),
risk in (12), and the expression for the optimum transmission probabilities in
(26). The curves were obtained by using the following economic values: r̂1 = 0.4,
E[(r1−r̂1)2] = 0.1, r̂2 = 0.55, and E[(r2−r̂2)2] = 0.5. These values correspond to
a scenario where the transmissions with highest return are also the transmissions
with the highest financial risk. The region in the weak MPR case in Figs. 12 and
13 is defined by three points. The origin, which corresponds to the case where
none of the users transmits information (p1 = p2 = 0), and which yields zero
return and also zero risk (R = S = 0). The second point is the solution with
maximum return which corresponds to the transmission of the user with the
maximum average return transmitting with probability one (p2 = 1) while the
remaining user is idle (no transmission, p1 = 0). The third point is the solution
with minimum return which is given by the transmission with probability one
of the user with minimum return (p2 = 1) while the other user remains idle
(p1 = 0). The curve that connects the points of maximum return and maximum
risk is given by the expression in (26) which is identical to the solution for the
throughput and sum-throughput vs. fairness region p1Q2

q2
+ p2Q1

q1
= 1 − p̄1p̄2Q̄.

Fig. 9. Sum-throughput vs. power (weak MPR) with L = 1 (ALOHA).
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Fig. 10. Sum-throughput vs. power (weak MPR) with L = 8 (CSMA).

Fig. 11. Sum-throughput vs. power (strong MPR).

We can conclude then that for ALOHA systems with two users, the Pareto
optimal trade-off front of the return vs. risk region is projected exactly over the
Pareto optimal trade-off front of the throughput region. This does not mean,
however, that the trade-off fronts are identical. It can be observed that the
transmissions of the user with the higher risk make the trade-off front to be
enlarged towards the right side of the figure, which means that risk grows faster
and thus in terms of trade-off it becomes different to the trade-off provided by
the envelope of the throughput region. The curve that connects the origin with
the point of maximum return can be obtained by keeping the user with lower
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Fig. 12. Return vs. risk (weak MPR) with L = 1 (ALOHA).

Fig. 13. Return vs. risk (weak MPR) with L = 8 (CSMA).

return with zero transmission probability (p2 = 0) and the user with maximum
return with variable transmission probability. Similarly, the curve that connects
the origin with the point of minimum return is obtained by keeping the user
with minimum return with zero transmission probability (p1 = 0) and the user
with maximum risk with variable transmission probability. The effects of carrier
sense in the weak MPR case can be observed in Fig. 13 where the Pareto trade-off
curve provides a better trade-off between return and risk than in Fig. 12. Note
that it is possible to obtain higher values of return with lower values of risk. The
strong MPR case displayed in Fig. 14 shows that the convex throughput region
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Fig. 14. Return vs. risk (strong MPR).

is translated into a considerable increase of the area of the return vs. risk region,
which means that higher values of return can be achieved with considerable lower
values of risk. The region is now defined by the three points described for the
weak MPR case plus the maximum point of sum-throughput which is achieved
when both users transmit and can be decoded simultaneously most of the time
thanks to the MPR capabilities of the system.

Fig. 15. Stability region
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6.5 Stability Region

The stability region displayed in Fig. 15 shows the similarity with the throughput
region displayed in Fig. 3, which is a result expected from previous analysis in the
literature. The non-convexity of the stability region indicates a strong contention
when the users collide with each other or when they experience simultaneously
high traffic loads. The optimization method and the analysis provided in the
previous subsection for the stability region can be used to obtain the envelope
of the stability region for systems with more than two users too.

7 Conclusions

This paper has presented a trade-off analysis of different types of metrics
of a CSMA protocol with MPR using multi-objective and financial portfolio
optimization tools. The trade-off regions investigated were: the conventional
throughput and stability regions, sum-throughput vs. fairness, sum-throughput
vs. power, and return vs. risk. The throughput region was found to be non-convex
in the case of weak MPR and convex in the case of strong MPR. Carrier sensing
was found to reduce the non-convexity of the region in the weak MPR case. The
projection of the curve that describes the top boundary of the throughput region
was found to also describe the top boundary of the fairness region and the return-
risk region. The non-convexity of the weak MPR case causes the system not to
achieve simultaneously good levels of fairness and maximum sum-throughput,
or higher levels of return with low levels of risk. This means that when we
desire to increase sum-throughput, fairness has to be necessarily sacrificed by
providing more resources to one of the users. A similar situation arises in the
return vs. risk region, where higher values of return cannot be obtained without
increasing risk or affecting fairness. In addition, a weak MPR system shows low
levels of sum-throughput when both users transmit simultaneously (high power
consumption) due to the unresolvable conflicts between them. However, in the
case of strong MPR, the throughput region becomes convex, which means that
users can transmit simultaneously all the time with no major conflict between
them, thus leading simultaneously to high levels of fairness, high levels of sum-
throughput, high levels of return, low levels of risk, but also to high levels of
power consumption. However, the ratio of throughput performance to consumed
power can be shown to yield much higher energetic efficiency. These results show
that a strong physical layer can help in achieving a better trade-off in the Pareto
optimal sense of different metrics of the medium access control (MAC) layer.
The results can be applied to a variety of systems such as WiFi, and wireless
sensor networks based on IEEE 802.15.4 standard working in contention mode.

Acknowledgments. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement no. 621353, the Portuguese
National Science Foundation FCT, and by the North Portugal Regional Operational
Programme (ON.2 O Novo Norte), under the National Strategic Reference Framework



Multi-Objective and Financial Portfolio Optimization 93

(NSRF), through the European Regional Development Fund (ERDF), and by FCT,
within project ref. NORTE-07-0124-FEDER-000063 (BEST-CASE, New Frontiers).

References

1. Deliverable D6.5.1: Specification of cognitive and opportunistic functions of the
spectrum management framework, FP7 QoSMOS: Quality of Service and MObility
driven cognitive radio Systems. http://www.ict-qosmos.eu

2. Karla, I.: Resolving SON interactions via self-learning prediction in cellular wireless
networks. In: WICOM, Shangai (2012)

3. Abramson N.: The ALOHA system - another alternative for computer communi-
cations. In: Proceedings of the 1970 Fall Joint Computer Conference. AFIPS Press
(1970)

4. Naware, V., Mergen, G., Tong, L.: Stability and delay of finite-user slotted ALOHA
with multipacket reception. IEEE Trans. Inf. Theory 51(7), 2636–2656 (2005)

5. Samano-Robles, R., Gameiro, A.: A Slotted-ALOHA protocol with cooperative
diversity. In: 4th Annual Wireless Internet Conference WICON 2008, Maui, Hawai,
21 (2008)

6. Baccelli, F.: Stochastic analysis of spatial and opportunistic aloha. IEEE J. Sel.
Areas Commun. 27(7), 1105–1119 (2009)

7. Tobagi, F.A., Kleinrock, L.: Packet switching in radio channels: part IV-stability
considerations and dynamic control in carrier sense multiple access. IEEE Trans.
Commun. 25(10), 1103–1119 (1977)

8. Samano-Robles, R., Gameiro, A.: The throughput region of wireless random access
protocols with multipacket reception. In: Proceedings of the International Work-
shop on Telecommunications, Sao Paulo, Brazil, vol. 1, pp. 207–212 (2009)

9. Samano-Robles, R., Ghogho, M., McLernon, D.C.: Wireless networks with retrans-
mission diversity and carrier sense multiple access. IEEE Trans. Sig. Proc. 57(9),
3722–3726 (2009)

10. Kleinrock, L., Tobagi, F.A.: Packet switching in radio channels: Part I : carrier sense
multiple access modes and their throughput-delay characteristics. IEEE Trans.
Commun. 23(12), 1400–1416 (1975)

11. Bruno, R., Conti, M., Gregori, E.: Optimization of efficiency and energy consump-
tion in p-persistent CSMA-based wireless LANs. IEEE Trans. Mob. Comput. 1(1),
10–31 (2002)

12. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applica-
tions. Academic Press, New York (1979)

13. Sen, A.: On Economic Inequality. Clarendon Press, Oxford (1973)
14. Elton, E.J., Gruber, M.J., Brown, S.J., Goetzmann, W.N.: Modern Portfolio The-

ory and Investment Analysis. Wiley, Hoboken (2004)
15. Roberts, L.G.: ALOHA packet system with and without slots and capture. Com-

put. Commun. Rev. 5(2), 28–42 (1975)
16. Rao, R., Ephremides, A.: On the stability of interacting queues in a multiple-access

system. IEEE Trans. Inf. Theory 4(5), 918–930 (1988)
17. Zorzi, M., Rao, R.: Capture and retransmission control in mobile radio. IEEE J.

Sel. Areas Commun. 12(8), 1289–1298 (1994)
18. Yu, Y., Cai, X., Giannakis, G.B.: On the stability of slotted ALOHA with capture.

IEEE Trans. Wirel. Comm. 5(2), 257–261 (2006)
19. Ghez, S., Verdu, S., Schwartz, S.: Stability properties of slotted Aloha with multi-

packet reception capability. IEEE Trans. Autom. Control 33(7), 640–649 (1988)

http://www.ict-qosmos.eu
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Abstract. We consider an optimal control problem for a large-scale
dynamical system represented by a team of objects with linear time-
varying decoupled dynamics subject to disturbances and coupling con-
straints. It is assumed that centralized control is impossible and a delay
in the communication network between systems is present. An algorithm
for distributed feedback control is proposed. The algorithm breaks the
large scale optimal control problem into sub-problems optimizing only
for the inputs of the associated system. Feasibility and suboptimality of
distributed control for the overall system is established and relevant data
to be exchanged between the systems is analyzed.

Keywords: Optimal control · Large-scale system · Multi-agent system ·
Distributed feedback · Uncertainty · Algorithm

1 Introduction

Control problems for interacting dynamical systems has received a significant
attention over the recent years. This is motivated by permanent progress of con-
trol techniques and computing power that allow to tackle complex large-scale
problems. In various applications centralized control of such systems is impracti-
cal or impossible due to, e.g., communication restrictions. Besides specific proper-
ties of the network are not adequately addressed by a general centralized control
algorithm. In these cases distributed control techniques are employed.

Many approaches have been proposed for control of linear and nonlinear
systems with coupled or decoupled dynamics within distributed model predic-
tive control (DMPC) framework (see, e.g., [1] and the references therein). In
particular, in [2] for a class of discrete-time systems with coupled linear time-
invariant dynamics sufficient conditions for stability of the closed-loop using
stability constraints and assuming one-step communication delay are given. In
[3] a distributed control strategy is obtained by solving local min-max optimiza-
tion problems that treat states of the neighboring systems as disturbances and
therefore minimize the worst-case local performance. In [4] an iterative cooper-
ating distributed algorithm for linear discrete-time systems interconnected by
their inputs is presented that is equivalent to the centralized controller at the
limit of iterations.
c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 95–106, 2015.
DOI: 10.1007/978-3-319-20352-2 6
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Other than stabilization cooperative tasks such as consensus and synchro-
nization are handled, e.g., by a general DMPC framework reported in [5].

Most DMPC schemes, when defining the local optimal control problems for
each system, do not take into account disturbances acting on the dynamical sys-
tems. The notable exception is [6] where linear time-invariant systems subject
to coupling constraints and bounded disturbances are considered and a robust
DMPC scheme is proposed that implies sequential solution of local optimal con-
trol problems at each step.

In this paper we consider an optimal control problem for continuous time
systems with decoupled linear time-varying dynamics subject to unknown but
bounded disturbances. The systems are coupled by state constraints. The control
objective on a finite control interval is to minimize the worst-case value of a given
terminal penalty, though, as will be shown below, other types of performance
index can be handled within the proposed approach. The idea is to incorporate
distributed feedback control design into the classical optimal control problem,
obtaining suboptimality of some degree and guaranteeing satisfaction of the hard
constraints at each time instant. The approach presented here follows the ideas of
[7,8], where dynamically coupled systems are considered. In contrast to the latter
here we are able to prove recursive feasibility and suboptimality of distributed
inputs.

The overall paper is structured as follows. In Sect. 2 we outline the mathemat-
ical problem formulation and the control objective for a set of linear time-varying
systems subject to coupling constraints and unknown but bounded disturbances.
Section 3 reviews centralized solution to this problem that guarantees robust
constraint satisfaction and minimizes the worst-case performance for all possi-
ble disturbances. Section 4 presents an algorithm for robust distributed control.
Feasibility and suboptimality of the distributed inputs with respect to the over-
all system behavior as well as communication data and requirements for the
distributed algorithm are analyzed. The effectiveness of the proposed scheme is
demonstrated in Sect. 5 with an illustrative example comparing performance of
centralized and distributed controls. Section 6 provides some conclusions.

2 Problem Formulation

We consider a team of q continuous-time linear time-varying systems with decou-
pled dynamics

ẋi = Ai(t)xi + Bi(t)ui + Mi(t)wi, xi(t0) = xi0, t ∈ [t0, tf ], (1)

where xi = xi(t) ∈ IRni denotes the state of the i-th system at time t, ui =
ui(t) ∈ Ui ⊂ IRri denotes the bounded control input to system i and wi = wi(t) ∈
Wi ⊂ IRpi is the unknown piecewise continuous disturbance acting upon system
i, Ai(t) ∈ IRni×ni , Bi(t) ∈ IRni×ri , Mi(t) ∈ IRni×pi , t ∈ [t0, tf ], are piecewise
continuous matrix functions, i ∈ I = {1, 2, . . . , q}. The input constraint set Ui

and the disturbance set Wi are given convex polytopes containing the origin and
independent across the systems.
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The input ui is a sampled-data control that changes its value at fixed sam-
pling instants and is constant in between. Sampling instants are in the following
denoted by τ , where τ ∈ Th = {t0 + kh, k = 0, N − 1}. Here h denotes the con-
stant sampling time defined in terms of the discretization N ∈ IN of the finite
control interval [t0, tf ]: h = (tf − t0)/N . Thus, the input ui in (1) is given by:

ui(t) ≡ ui(τ), t ∈ [τ, τ + h[, τ ∈ Th,

where ui(τ) depends on the current state of system i and some exchanged infor-
mation from other systems.

At time instants s ∈ Tc ⊆ Th ∪ tf the team is subject to coupling state
constraints

∑
k∈Kl

H l
k(s)xk(s) ≤ αl(s), l ∈ L = {1, . . . , l∗}, (2)

where Kl ⊆ I, |Kl| ≥ 2; H l
k(s) ∈ IRml×nk , H l

k(s) 	= 0 for all k ∈ Kl; αl(s) ∈
IRml

.
The control objective is to minimize the worst-case value of a linear terminal

penalty
max

wk,k∈I

∑
k∈I

cT
k xk(tf ), (3)

while satisfying the decoupled input and coupling state constraints (2).
In the following we have to distinguish between the variables used in the

optimal control problems for predictions and the real system/plant variables. To
this end the latter will be denoted by a superscript ∗. Thus, u∗

i and x∗
i denote

the input and the state trajectory which realize in a particular control process,
and w∗

i denotes a realized unknown disturbance. It is assumed that at all time
instants τ ∈ Th ∪ tf the current state x∗

i (τ) is completely measured by system i.

3 Centralized Optimal Control

In this section we review some results from [9] on centralized optimal feedback
control of dynamical systems subject to bounded disturbances that are needed
in the later sections.

When centralized control is implemented, one central controller chooses the
inputs for all systems (1) in the team, treating the problem under considera-
tion as a large-scale optimal control problem without taking into account its
decoupled dynamics or a specific interconnection structure. The overall system
dynamics is then represented in concatenated form

ẋ = A(t)x + B(t)u + M(t)w, x(t0) = x0, (4)

where x(t) ∈ IRn, u(t) ∈ IRr and w(t) ∈ IRp with n =
∑

k∈I nk, r =
∑

k∈I rk,
p =

∑
k∈I pk, denote the state, the input and the disturbance of the overall

system at time t, i.e. x(t) = (x1(t), . . . , xq(t)), u(t) = (u1(t), . . . , uq(t)), w(t) =
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(w1(t), . . . , wq(t)); A(t) ∈ IRn×n, B(t) ∈ IRn×r, M(t) ∈ IRn×p, t ∈ [t0, tf ], are
the corresponding block diagonal matrices.

In this paper, both in centralized and distributed control schemes, we use only
one type of feedback that can be defined for uncertain systems (see e.g. [9,10]),
namely the open-loop optimal feedback, which refers to the fact that a feedback
strategy is obtained via repetitive (for every time instant τ ∈ Th) solution of
an open-loop min-max optimal control problem subject to a shrinking control
interval [τ, tf ] and a current overall state x∗(τ).

The open-loop min-max optimal control problem (centralized) that is solved
at time τ is denoted by P(τ) and has the form

P(τ) : J0(τ) = min
u

max
w

cT x(tf ), (5)

subject to
ẋ = A(t)x + B(t)u + M(t)w, x(τ) = x∗(τ),

H(s)x(s) ≤ α(s), s ∈ Tc(τ) = Tc ∩ [τ, tf ], u(t) ∈ U, w(t) ∈ W, t ∈ [τ, tf ],

where c = (c1, ..., cq); H(s) =
(

H l
k(s), k ∈ I

l ∈ L

)
∈ IRm×n, m =

∑
l∈L ml, with

H l
k(s) being zero for k 	∈ Kl; α(s) = (αl(s), l ∈ L); U = U1 × . . . × Uq, W =

W1 × . . . × Wq.
The optimal open-loop control of P(τ) is an input u0(t|τ), t ∈ [τ, tf ], such

that for every realization of the disturbance w(t) ∈ W , t ∈ [τ, tf ], the state
constraints are satisfied and the worst-case cost is minimized.

Assumption 1. Problem (5) is feasible for τ = t0.

Under Assumption 1 problem P(τ) is feasible for all τ ∈ Th and the centralized
optimal feedback control algorithm is specified as follows [9]:

Algorithm 1. (centralized)

(1) Set τ = t0, x∗(τ) = x0.
(2) Find a solution u0(t|τ), t ∈ [τ, tf ], to the centralized problem P (τ).
(3) Apply input u∗(t) ≡ u∗(τ) = u0(τ |τ), t ∈ [τ, τ + h[, to the overall system.
(4) Set τ := τ + h. If τ < tf return to step 2, else stop.

Now we briefly review how the min-max problem P (τ) is solved. Following [9],
problem (5) can be reduced to a deterministic optimal control problem for nom-
inal system (i.e. system (4) without the disturbance term) which constraints are
tightened to ensure robust feasibility of the inputs in (5).

Denote by F (t) ∈ IRn×n, t ∈ [t0, tf ], the fundamental matrix of the overall
system (4): Ḟ (t) = A(t)F (t), F (t0) = In, where In ∈ IRn×n is an identity
matrix.

For a given input u(t), t ∈ [τ, tf ], and disturbance w(t), t ∈ [τ, tf ], the overall
output y(s) = H(s)x(s) at time instant s ∈ Tc(τ), can be found as

y(s) = H(s)F (s)F−1(τ)x∗(τ) +
∫ s

τ

H(s)F (s)F−1(t)[B(t)u(t) + M(t)w(t)]dt.
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Introduce matrix functions Φ(s, t) ∈ Rm×n, t ∈ [t0, s], k ∈ I, such that
Φ(s, t) = H(s)F (s)F−1(t). Obviously, ∂Φ(s, t)/∂t = −Φ(s, t)A(t), Φ(s, s) =
H(s). Then

y(s) = Φ(s, τ)x∗(τ) +
∫ s

τ

Φ(s, t)[B(t)u(t) + M(t)w(t)]dt.

The input u(t), t ∈ [τ, tf ], is feasible in (5) for every possible realization of
the disturbance w, if and only if y(s) ≤ α(s) for all s ∈ Tc(τ) which translate
into the inequalities

Φ(s, τ)x∗(τ) +
∫ s

τ

Φ(s, t)B(t)u(t)dt + γ(s|τ) ≤ α(s), s ∈ Tc(τ).

Here the first two terms are the output of the overall nominal system (4) and
the term γ(s|τ) ∈ IRm, s ∈ Tc(τ), corresponds to the worst-case realization of
the disturbances: γ(s|τ) = (γj(s|τ), j = 1,m),

γj(s|τ) =
∫ s

τ

max
w∈W

φj(s, t)T M(t)wdt,

where φj(s, t)T is the j-th row of the matrix Φ(s, t).
Concluding, the optimal open-loop control u0(t|τ), t ∈ [τ, tf ], of problem

P(τ) is obtained by the solution of the deterministic optimal control problem

min
u

cT x(tf ), (6)

subject to
ẋ = A(t)x + B(t)u, x(τ) = x∗(τ),

H(s)x(s) ≤ α(s) − γ(s|τ), s ∈ Tc(τ), u(t) ∈ U, t ∈ [τ, tf ].

The resulting cost of problem P(τ) is given by

J0(τ) = γ0(τ) + cT x0(tf |τ) = γ0(τ) + φ0(τ)T x∗(τ) +
∫ tf

τ

φ0(t)T B(t)u0(t|τ)dt,

where x0(t|τ), t ∈ [τ, tf ], is the optimal overall trajectory of (6) and γ0(τ) =∫ tf
τ

maxw∈W φ0(t)T M(t)wdt, φ0(t)T = cT F (tf )F−1(t), t ∈ [t0, tf ].

4 Distributed Optimal Control

In this section an algorithm for distributed optimal feedback control of a team
of systems (1) is developed. Each system predicts its future control inputs on
the base of its own current state x∗

i (τ) and some information received from
neighboring systems, where neighbors are defined by the coupling constraints.
It is assumed that there is a communication delay equal to the sampling time h.
A centralized controller described in Sect. 3 is employed offline at initialization
stage and is not available for any online computations.
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4.1 Local Optimal Control Problem

To achieve control of systems (1) in a distributed fashion we associate an optimal
control problem Pi(τ) with each system i, minimizing over only local inputs ui

subject to local and coupling constraints. To formulate such a local optimal
control problem we first define the interconnection topology for the multi-agent
system under consideration.

Systems i and j are coupled by the constraints and are called neighbors if
they enter the same constraint in (2). Denote by Li all indices of the constraints
(2) containing a term for system i, i.e. Li = {l ∈ L : i ∈ Kl}. Then Ni =
∪l∈Li

Kl \ {i} is a set of indices of all neighbors of system i. Note that the
interconnection topology here is time-invariant. It is assumed that system i can
communicate only to its neighbors k ∈ Ni. The information that is exchanged
over the communication network will be specified in Sect. 4.2.

In the following the ud
i (·|τ) = (ud

i (t|τ), t ∈ [τ, tf ]) denotes the distributed
input predicted by system i at time τ , i.e. the optimal open-loop control of local
problem Pi(τ). Concatenated distributed input ud(·|τ) = (ud

k(·|τ), k ∈ I) will be
also referred to as the optimal distributed open-loop control. The corresponding
state trajectory of the nominal system (1) with the initial state xi(τ) = x∗

i (τ) is
denoted by xd

i (·|τ) = (xd
i (t|τ), t ∈ [τ, tf ]). Furthermore, yl

i(s|τ) = H l
i(s)x

d
i (s|τ),

s ∈ Tc(τ), l ∈ Li, denote the outputs of system i predicted at time τ . The overall
distributed output corresponding to the l-th constraint (2) at time instant s ∈ Tc

is yl(s|τ) =
∑

k∈Kl yl
k(s|τ).

Following [8], define the open-loop min-max optimal control problem Pi(τ)
for system i at time instant τ ∈ Th \ t0:

Pi(τ) : Ji(τ) = min
ui

max
wi

∑
k∈I

cT
k xk(tf ),

subject to

ẋi = Ai(t)xi + Bi(t)ui + Mi(t)wi, xi(τ) = x∗
i (τ),

ẋk = Ak(t)xk + Bk(t)ud
k(t|τ − h), xk(τ) = xd

k(τ |τ − h), k ∈ Ni,∑
k∈Kl

H l
k(s)xk(s) ≤ αl

i(s|τ), s ∈ Tc(τ), l ∈ Li,

ui(t) ∈ Ui, wi(t) ∈ Wi, t ∈ [τ, tf ]. (7)

Here the input ui of the i-th system is the optimization variable, and the inputs
uk of systems k ∈ Ii are held as fixed parameters equal to their distributed
inputs ud

k(·|τ − h) predicted at the previous time τ − h. Thus, system i assumes
that its neighbors keep controls predicted at time τ −h also for the current time
τ and besides they follow nominal trajectories, i.e. wk(t) ≡ 0, t ∈ [τ − h, tf ],
k ∈ Ni. Then their predicted states xd

k(τ |τ −h) are used in Pi(τ) as initial states
at time instant τ . The initial state of system i is its current state x∗

i (τ).
In Pi(τ) the coupling state constraints have a modified right hand side

αl
i(s|τ) = yl(s|τ − h) + Ωl

i(s|τ)[αl − yl(s|τ − h)], l ∈ Li, (8)
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where Ωl
i(τ) ∈ IRml×ml

is a diagonal matrix of weight parameters for system i

in constraint l,
∑

k∈Kl Ωl
k(s|τ) = Iml

for all s ∈ Tc(τ), l ∈ L.
The idea behind constraints modifications (8) is to guarantee feasibility of the

optimal distributed open-loop control ud(·|τ) with respect to the overall system.
This feasibility result is proved in Sect. 4.3.

In can be seen from (7) and (8) that in order to construct problem Pi(τ) system
i needs to know the dynamics of the neighboring systems, their predicted states
xd

k(τ |τ − h), whole input trajectories ud
k(·|τ − h), and the outputs yl

k(s|τ − h),
s ∈ Tc(τ), k ∈ Ni. However, in contrast to [8], where systems with coupled
dynamics are studied, some information here is abundant. In the next section
we derive an equivalent formulation of problem Pi(τ) that compared to (7) has
a reduced dimension and requires less data from other systems.

4.2 An Equivalent Formulation of Pi(τ ) and the Algorithm

Since in problem Pi(τ) dynamics of systems k ∈ Ni is deterministic and doesn’t
depend on input ui, their trajectories xd

k(·|τ − h) are known parameters. They
can be excluded from the dynamics (7) and embedded into the modified state
constraints. The latter take the form

H l
i(s)xi(s) +

∑
k∈Kl\i

H l
k(s)xd

k(s|τ − h) =

= H l
i(s)xi(s) +

∑
k∈Kl\i

yl
k(s|τ − h) ≤ αl

i(τ), s ∈ Tc(τ), l ∈ Li.

Denote ᾱl
i(τ) = αl

i(τ) − ∑
k∈Kl\i yl

k(s|τ − h) = yl
i(s|τ − h) + Ωl

i(s|τ)(αl(s) −
yl(s|τ − h)) to obtain the new state constraints

H l
i(s)xi(s) ≤ ᾱl

i(s|τ), s ∈ Tc(τ), l ∈ Li.

The resulting local optimal control problem for system i at time τ ∈ Th \ t0 is

Pd
i (τ) : Jd

i (τ) = min
ui

max
wi

cT
i xi(tf ),

subject to
ẋi = Ai(t)xi + Bi(t)ui + Mi(t)wi, xi(τ) = x∗

i (τ),

H l
i(s)xi(s) ≤ ᾱl

i(s|τ), s ∈ Tc(τ), l ∈ Li,

ui(t) ∈ Ui, wi(t) ∈ Wi, t ∈ [τ, tf ].

Similarly to Sect. 3, problem Pd
i (τ) can be reduced to a deterministic problem

for the nominal system (1) with the tightened constraints:

min
ui

cT
i xi(tf ),

subject to
ẋi = Ai(t)xi + Bi(t)ui, xi(τ) = x∗

i (τ),
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H l
i(s)xi(s) ≤ ᾱl

i(s|τ) − γl
i(s|τ), s ∈ Tc(τ), l ∈ Li, ui(t) ∈ Ui, t ∈ [τ, tf ].

where γl
i(s|τ) = (γl

i,j(s|τ), j = 1,ml): γl
i,j(s|τ) =

∫ s

τ

max
wi∈Wi

φl
i,j(s, t)

T Mi(t)widt,

and φl
i,j(s, t)

T is the j-th row of the matrix Φl
i(s, t) = H l

i(s)Fi(s)F−1
i (t), and

Fi(t) ∈ IRni×ni , t ∈ [t0, tf ], denotes the fundamental matrix of system (1):
Ḟi(t) = Ai(t)Fi(t), Fi(t0) = Ini .

The cost of problem Pd
i (τ) is equal to

Jd
i (τ) = γ0

i (τ) + φ0
i (τ)T x∗

i (τ) +
∫ tf

τ

φ0
i (t)

T Bi(t)ud
i (t|τ)dt, (9)

where γ0
i (τ) =

∫ tf
τ

maxwi∈Wi
φ0

i (t)
T Mi(t)widt, φ0

i (t)
T = cT

i Fi(tf )F−1
i (t).

Analyzing problem Pd
i (τ) we conclude that system i needs the following

information at time τ ∈ Th \ t0:

(1) its complete current state x∗
i (τ);

(2) from all neighboring systems k ∈ Ni delayed by h
the outputs yl

k(s|τ − h) = H l
k(s)xd

k(s|τ − h), l ∈ Li, corresponding to the
distributed input ud

k(·|τ − h) predicted at time τ − h.

The distributed optimal feedback control algorithm is specified as follows:

Algorithm 2. (distributed)

(1) Set τ = t0, x∗(τ) = x0.
(2) Find a solution u0(·|t0) to the centralized problem P (t0) and set ud

i (t|t0) =
u0

i (t|t0), t ∈ [t0, tf ], i ∈ I.
For each system i ∈ I (in parallel):

(3) Apply input u∗
i (t) ≡ u∗

i (τ) = ud
i (τ |τ), t ∈ [τ, τ + h[.

(4) Communicate the outputs yl
i(τ) to neighbors k ∈ Kl \ i, l ∈ Li.

(5) Set τ := τ + h. If τ = tf stop.
(6) Solve problem Pd

i (τ) to find ud
i (t|τ), t ∈ [τ, tf ]. Return to step 3.

4.3 Properties of Distributed Control

The important properties that a distributed control scheme should possess are
feasibility of distributed inputs with respect to coupling constraints (2), subopti-
mality of the distributed input with respect to a centralized one, and a recursive
feasibility of the optimal control problems Pd

i (τ) solved at each sampling time
τ ∈ Th \ t0. In this section we prove these properties for Algorithm 2.

Theorem 1. For any τ ∈ Th \ t0 the optimal distributed open-loop control
ud(·|τ) = (uk(·|τ), k ∈ I) is a feasible input in the centralized optimal control
problem P(τ).

Proof. Let instant τ be fixed. We have to prove that the overall distributed
trajectory xd(·|τ), corresponding to the input ud(·|τ) satisfies the inequalities

H(s)xd(s|τ) ≤ α − γ(s|τ), s ∈ Tc(τ), (10)

as defined by problem (6) equivalent to P(τ).



Robust Optimal Control of Dynamically Decoupled Systems 103

Consider problem Pd
k (τ). Its optimal open-loop control ud

k(·|τ) is feasible,
therefore the corresponding optimal trajectory xd

k(·|τ) satisfies the inequalities

H l
k(s)xd

k(s|τ) ≤ ᾱl
k(s|τ) − γl

k(s|τ), s ∈ Tc(τ), l ∈ Li. (11)

Summing (11) over all k ∈ Kl for a fixed l ∈ L and taking into account that
∑

k∈Kl

ᾱl
k(s|τ) =

∑
k∈Kl

[
yl

k(s|τ − h) + Ωl
k(s|τ)(αl(s) − yl(s|τ − h))

]
= αl(s),

γ(s|τ) = (γl(s|τ), l ∈ L), γl(s|τ) =
∑
i∈Kl

γl
i(s|τ), l ∈ L,

obtain ∑
k∈Kl

H l
k(s)xd

k(s|τ) ≤ αl(s) − γl(s|τ), l ∈ L.

The latter in concatenated form is given by (10), therefore ud(·|τ) is feasible in
the centralized problem P(τ). �
To guarantee recursive feasibility of the distributed algorithm, i.e. existence of
solution of problem Pd

i (τ) for all τ ∈ Th \ t0, we assume:

Assumption 2. Ωl
i(s|τ) is such that γl

i(s|τ − h) = Ωl
i(s|τ)γl(s|τ − h).

The following theorem implies that if a centralized solution for τ = t0 exists and
the weights are properly chosen, then Algorithm 2 can indeed be implemented
for distributed feedback control.

Theorem 2. Under Assumptions 1,2 problem Pd
i (τ) is feasible for all τ ∈ Th\ t0.

Proof. To prove the assertion it is sufficient to show that the distributed input
ud

i (·|τ − h), predicted by system i at time τ − h, is feasible in problem Pd
i (τ).

Then according to optimal control existence theorems there exists a solution
ud

i (·|τ) to problem Pd
i (τ).

For the trajectory xi(·|τ) of nominal system (1) corresponding to the control
ud

i (·|τ − h) the following is true

H l
i(s)xi(s|τ) = Φl

i(s, τ)x∗
i (τ) +

∫ s

τ

Φl
i(s, t)Bi(t)ud

i (t|τ − h)dt = yl
i(s|τ − h)+

+Φl
i(s, τ)(x∗

i (τ) − xd
i (τ |τ − h)) = yl

i(s|τ − h) +
∫ τ

τ−h

Φl
i(s, t)Mi(t)w∗

i (t)dt,

where, due to Assumption 2,∫ τ

τ−h

Φl
i(s, t)Mi(t)w∗

i (t)dt ≤ γl
i(s|τ − h) − γl

i(s|τ) = Ωl
i(s|τ)γl(s|τ − h) − γl

i(s|τ).

Theorem 1 implies that

yl(s|τ − h) =
∑

k∈Kl

H l
k(s)xd

k(s|τ − h) ≤ αl(s) − γl(s|τ − h),

therefore γl(s|τ − h) ≤ αl(s) − yl(s|τ − h).
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Concluding,

H l
i(s)xi(s|τ) ≤ yl

i(s|τ − h) + Ωl
i(s|τ)γl(s|τ − h) − γl

i(s|τ) ≤

≤ yl
i(s|τ − h) + Ωl

i(s|τ)[αl(s) − yl(s|τ − h)] − γi(s|τ) = ᾱl
i(s|τ) − γl

i(s|τ).

Thus, ud
i (·|τ − h) satisfies the constraints of Pd

i (τ) and the latter is feasible. �
Note that the feasibility results do not use optimality of distributed inputs and
therefore hold for any type of performance index, not only for (3). Its linearity is,
however, important for deriving the suboptimality properties of the distributed
scheme.

Since according to Theorem 1 the optimal distributed open-loop control ud(·|τ)
is a feasible input in problem P(τ), one can calculate its resulting worst-case cost
(3) as

∑
k∈I Jd

k (τ), where Jd
i (τ) is the optimal value of the performance index

of problem Pd
i (τ) as defined by (9).

The following theorem asserts that the cost, corresponding to the optimal
distributed open-loop control ud(·|τ), is a nonincreasing function of τ .

Theorem 3. Under Assumptions 1,2 the inequalities hold

J0(τ) ≤
∑

k∈I
Jd

k (τ) ≤
∑

k∈I
Jd

k (τ − h) ≤ J0(t0).

Proof. The first inequality is a consequence of the fact, that ud(·|τ) is feasible,
but not necessarily optimal in P(τ).

The second inequality is obtained via the following arguments. Since, accord-
ing to Theorem 2, ud

k(·|τ − h) is feasible in problem Pd
k (τ), its resulting cost is

not less that the optimal value Jd
k (τ):

Jd
k (τ) ≤ φ0

k(τ)T x∗
k(τ) +

∫ tf

τ

φ0
k(t)T Bk(t)ud

k(t|τ − h) + γ0
k(τ).

Summing over all k ∈ I, obtain

∑
k∈I

Jd
k (τ) ≤ φ0(τ)T x∗(τ) +

∫ tf

τ

φ0(t)T B(t)ud(t|τ − h) + γ0(τ)

= φ0(τ)T [x∗(τ)−xd(τ |τ −h)]+
∑
k∈I

Jd
k (τ −h)−γ0(τ −h)+γ0(τ) ≤

∑
k∈I

Jd
k (τ −h).

The third inequality results from initialization of the distributed algorithm with
the centralized optimal open-loop control u0(·|t0). �
An important consequence of Theorem 3 is that the performance of the overall
system under the distributed feedback tends to centralized closed-loop perfor-
mance under open-loop optimal feedback when maxw∈W ||w|| → 0 for all i ∈ I
and, as a result, J0(τ) → J0(t0). Therefore, for small disturbances the distrib-
uted scheme produces a suboptimal feedback.
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5 Example

As an illustrative example consider an optimal control of five identical point
masses moving in the plane under disturbances and coupled only by the con-
straints. The dynamics of the systems is given by the equations

mẍi,k + k1ẋi,k = ui,k + wi,k, k = 1, 2,

where i ∈ I = {1, . . . , 5} and all systems have same parameters: m = 1, k1 = 1,
k2 = 2. For all i ∈ I and t ≥ 0 the input ui = (ui,1, ui,2) has to satisfy a local
constraint of the form ||ui(t)||1 ≤ 1 and the disturbance wi = (wi,1, wi,2) is
bounded: ||wi(t)||∞ ≤ w∗, where w∗ = 0.05.

The interconnection topology is given by a circle, i.e. every system i = 2, 3, 4
has systems i + 1 and i − 1 as their neighbors (Ni = {i − 1, i + 1}) and the
first and the last systems are coupled to their closest neighbor and each other:
N1 = {2, 5}, N5 = {4, 1}.

The control objective is to drive in finite time tf = 10 all systems closer to
their neighbors

|xi,k(tf ) − xj,k(tf )| ≤ 1, k = 1, 2, j ∈ Ni, i ∈ I,

while maximizing the worst-case terminal velocity along the vertical axes:

max
ui

min
wi

ẋi,2(tf ), i ∈ I.

Figure 1 shows simulation results when applying the distributed Algorithm 2
in comparison with centralized optimal control by Algorithm 1. In the simula-
tion presented at time t = 0 all masses were stationary at different positions
and for t ∈ [0, tf ] subjected to the following constant disturbances: w1(t) =
w∗(−0.5,−1)T , w2(t) = −w1(t), w3(t) = w∗(0.5, 0.5)T , w4(t) = w∗(0, 1)T ,
w5(t) = w∗(0.5,−1)T . The weights in (8) were all equal to 1/2.

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

x1

x
2

Fig. 1. State trajectories under centralized (solid), distributed (dash) and open-loop
(grey) inputs
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It can be seen from Fig. 1 that distributed control recovers the behavior of
the centralized controller. The performance index of the centralized open-loop
optimal feedback was 2.39263225 while the one of the distributed feedback was
2.36410018, which constitutes a loss in performance of only 1.1925 per cent. In
other simulations for dynamically coupled [8] and decoupled systems the per-
centage error was not over five per cent.

For the reference the disturbed optimal open-loop trajectories calculated at
the initial time t = 0 and used for initialization of the distributed algorithm
are also presented in Fig. 1. It can be seen that the distributed trajectories can
deviate quite far from the initial centralized plan.

6 Conclusions

This paper presents a robust distributed control scheme for optimal control of
linear dynamically decoupled systems with coupling constraints. The key advan-
tages of the algorithm are (1) parallel solutions of local optimization problems
without interactions during iterations, (2) small amount of communication data,
(3) robust constraint satisfaction, (4) less conservatism due to an assumption of
the nominal and not worst-case performance of the neighbor systems. Future
research will focus on obtaining suboptimality estimates for robust distributed
feedbacks and development of the scheme for weakly interconnected systems.
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Abstract. We address the generalized variational problem of Herglotz
from an optimal control point of view. Using the theory of optimal con-
trol, we derive a generalized Euler–Lagrange equation, a transversal-
ity condition, a DuBois–Reymond necessary optimality condition and
Noether’s theorem for Herglotz’s fundamental problem, valid for piece-
wise smooth functions.

Keywords: Herglotz’s variational problems · Optimal control · Euler–
Lagrange equations · Invariance · Dubois–Reymond condition ·
Noether’s theorem

1 Introduction

The generalized variational problem proposed by Herglotz in 1930 [3,4] can be
formulated as follows:

z(b) −→ extr
with ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b], (PH)
subject to x(a) = α, z(a) = γ, α, γ ∈ R.

It consists in the determination of trajectories x(·) and corresponding tra-
jectories z(·) that extremize (maximize or minimize) the value z(b), where
L ∈ C1([a, b] × R

2n × R;R). While in [3,4,6] the admissible functions are
x(·) ∈ C2([a, b];Rn) and z(·) ∈ C1([a, b];R), here we consider (PH) in the wider
class of functions x(·) ∈ PC1([a, b];Rn) and z(·) ∈ PC1([a, b];R).

It is obvious that Herglotz’s problem (PH) reduces to the classical funda-
mental problem of the calculus of variations (see, e.g., [13]) if the Lagrangian L
does not depend on the z variable: if ż(t) = L(t, x(t), ẋ(t)), t ∈ [a, b], then (PH)
is equivalent to the classical variational problem

∫ b

a

L(t, x(t), ẋ(t))dt −→ extr, x(a) = α. (1)

Part of first author’s Ph.D. project, which is carried out under the Doctoral Pro-
gramme in Mathematics (PDMat) of University of Aveiro.
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Herglotz proved that an Euler–Lagrange optimality condition for a pair (x(·), z(·))
to be an extremizer of the generalized variational problem (PH) is given by

∂L

∂x
(t, x(t), ẋ(t), z(t)) − d

dt

∂L

∂ẋ
(t, x(t), ẋ(t), z(t))

+
∂L

∂z
(t, x(t), ẋ(t), z(t))

∂L

∂ẋ
(t, x(t), ẋ(t), z(t)) = 0, (2)

t ∈ [a, b]. The Eq. (2) is known as the generalized Euler–Lagrange equation.
Observe that for the fundamental problem of the calculus of variations (1) one
has ∂L

∂z = 0 and the differential Eq. (2) reduces to the classical Euler–Lagrange
equation

∂L

∂x
(t, x(t), ẋ(t)) − d

dt

∂L

∂ẋ
(t, x(t), ẋ(t)) = 0.

Since the celebrated work [5] by Pontryagin et al., the calculus of variations is
seen as part of optimal control. One of the simplest problems of optimal control,
in Bolza form, is the following one:

J (x(·), u(·)) =
∫ b

a

f(t, x(t), u(t))dt + φ(x(b)) −→ extr

subject to ẋ(t) = g(t, x(t), u(t)) and x(a) = α, α ∈ R,
(P)

where f ∈ C1([a, b] × R
n × Ω;R), φ ∈ C1(Rn;R), g ∈ C1([a, b] × R

n × Ω;Rn),
x ∈ PC1([a, b];Rn) and u ∈ PC([a, b];Ω), with Ω ⊆ R

r an open set. In the
literature of optimal control, x and u are called the state and control variables,
respectively, while φ is known as the payoff or salvage term. Note that the
classical problem of the calculus of variations (1) is a particular case of problem
(P) with φ(x) ≡ 0, g(t, x, u) = u and Ω = R

n. In this work we show how the
results on Herglotz’s problem of the calculus of variations (PH) obtained in [2,6]
can be generalized by using the theory of optimal control. The main idea is
simple and consists in rewriting the generalized variational problem of Herglotz
(PH) as a standard optimal control problem (P), and then to apply available
results of optimal control theory.

The paper is organized as follows. In Sect. 2 we briefly review the necessary
concepts and results from optimal control theory. In particular, we make use
of Pontryagin’s maximum principle (Theorem1); the DuBois–Reymond condi-
tion of optimal control (Theorem 2); and the Noether theorem of optimal con-
trol proved in [8] (cf. Theorem 3). Our contributions are then given in Sect. 3:
we generalize the Euler–Lagrange equation and the transversality condition for
problem (PH) found in [6] to admissible functions x(·) ∈ PC1([a, b];Rn) and
z(·) ∈ PC1([a, b];R) (Theorem 4); we obtain a DuBois–Reymond necessary opti-
mality condition for problem (PH) (Theorem 5); and a generalization of the
Noether theorem [2] (Theorem 6) as a corollary of the optimal control results of
Torres [7–9]. We end with Sect. 4 of conclusions and future work.
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2 Preliminaries

The central result in optimal control theory is given by Pontryagin’s maximum
principle, which is a first-order necessary optimality condition.

Theorem 1 (Pontryagin’s Maximum Principle for Problem (P) [5]). If
a pair (x(·), u(·)) with x ∈ PC1([a, b];Rn) and u ∈ PC([a, b];Ω) is a solution
to problem (P), then there exists ψ ∈ PC1([a, b];Rn) such that the following
conditions hold:

– the optimality condition

∂H

∂u
(t, x(t), u(t), ψ(t)) = 0; (3)

– the adjoint system
{

ẋ(t) = ∂H
∂ψ (t, x(t), u(t), ψ(t))

ψ̇(t) = −∂H
∂x (t, x(t), u(t), ψ(t));

(4)

– and the transversality condition

ψ(b) = ∇φ(x(b)); (5)

where the Hamiltonian H is defined by

H(t, x, u, ψ) = f(t, x, u) + ψ · g(t, x, u). (6)

Definition 1 (Pontryagin Extremal to (P)). A triplet (x(·), u(·), ψ(·)) with
x ∈ PC1([a, b];Rn), u ∈ PC([a, b];Ω) and ψ ∈ PC1([a, b];Rn) is called a Pon-
tryagin extremal to problem (P) if it satisfies the optimality condition (3), the
adjoint system (4) and the transversality condition (5).

Theorem 2 (DuBois–Reymond Condition of Optimal Control [5]). If
(x(·), u(·), ψ(·)) is a Pontryagin extremal to problem (P), then the Hamiltonian
(6) satisfies the equality

dH

dt
(t, x(t), u(t), ψ(t)) =

∂H

∂t
(t, x(t), u(t), ψ(t)),

t ∈ [a, b].

Noether’s theorem has become a fundamental tool of modern theoretical physics
[1], the calculus of variations [10,11], and optimal control [7–9]. It states that
when an optimal control problem is invariant under a one parameter family of
transformations, then there exists a corresponding conservation law: an expres-
sion that is conserved along all the Pontryagin extremals of the problem [7–9,12].
Here we use Noether’s theorem as found in [8], which is formulated for prob-
lems of optimal control in Lagrange form, that is, for problem (P) with φ ≡ 0.
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In order to apply the results of [8] to the Bolza problem (P), we rewrite it in the
following equivalent Lagrange form:

I(x0(·), x(·), u(·)) =
∫ b

a

[f(t, x(t), u(t)) + x0(t)] dt −→ extr,
{

ẋ0(t) = 0,
ẋ(t) = g (t, x(t), u(t)) ,

(7)

x0(a) =
φ(x(b))
b − a

, x(a) = α.

The notion of invariance for problem (P) is obtained by applying the notion of
invariance found in [8] to the equivalent optimal control problem (7). In Defini-
tion 2 we use the little-o notation.

Definition 2 (Invariance of Problem (P)). Let hs be a one-parameter fam-
ily of C1 invertible maps

hs : [a, b] × R
n × Ω → R × R

n × R
r,

hs(t, x, u) = (T s(t, x, u),X s(t, x, u),Us(t, x, u)) ,

h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b] × R
n × Ω.

Problem (P) is said to be invariant under transformations hs if for all (x(·), u(·))
the following two conditions hold:

(i)
[
f ◦ hs(t, x(t), u(t)) +

φ(x(b))
b − a

+ ξs + o(s)
]dT s

dt
(t, x(t), u(t))

= f(t, x(t), u(t)) +
φ(x(b))
b − a

(8)

for some constant ξ;
(ii)

dX s

dt
(t, x(t), u(t)) = g ◦ hs(t, x(t), u(t))

dT s

dt
(t, x(t), u(t)). (9)

Theorem 3 (Noether’s Theorem for the Optimal Control Problem
(P)). If problem (P) is invariant in the sense of Definition 2, then the quan-
tity

(b− t)ξ+ψ(t) ·X(t, x(t), u(t))−
[
H(t, x(t), u(t), ψ(t)) +

φ(x(b))
b − a

]
·T (t, x(t), u(t))

is constant in t along every Pontryagin extremal (x(·), u(·), ψ(·)) of problem (P),
where

T (t, x(t), u(t)) =
∂T s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

,

X(t, x(t), u(t)) =
∂X s

∂s
(t, x(t), u(t))

∣∣∣∣
s=0

,

and H is defined by (6).
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Proof. The result is a simple exercise obtained by applying the Noether theorem
of [8] and the Pontryagin maximum principle (Theorem1) to the equivalent opti-
mal control problem (7) (in particular using the adjoint equation correspond-
ing to the multiplier associated with the state variable x0 and the respective
transversality condition).

3 Main Results

We begin by introducing some basic definitions for the generalized variational
problem of Herglotz (PH).

Definition 3 (Admissible Pair to Problem (PH)). We say that (x(·), z(·))
with x(·) ∈ PC1([a, b];Rn) and z(·) ∈ PC1([a, b];R) is an admissible pair to
problem (PH) if it satisfies the equation

ż(t) = L(t, x(t), ẋ(t), z(t)), t ∈ [a, b],

and the initial conditions x(a) = α and z(a) = γ, α, γ ∈ R.

Definition 4 (Extremizer to Problem (PH)). We say that an admissible
pair (x∗(·), z∗(·)) is an extremizer to problem (PH) if z(b) − z∗(b) has the same
signal for all admissible pairs (x(·), z(·)) that satisfy ‖z−z∗‖0 < ε and ‖x−x∗‖0 <
ε for some positive real ε, where ‖y‖0 = max

a≤t≤b
|y(t)|.

We now present a necessary condition for a pair (x(·), z(·)) to be a solution
(extremizer) to problem (PH). The following result generalizes [3,4,6] by consid-
ering a more general class of functions. To simplify notation, we use the operator
〈·, ·〉 defined by

〈x, z〉(t) := (t, x(t), ẋ(t), z(t)).

When there is no possibility of ambiguity, we sometimes suppress arguments.

Theorem 4 (Euler–Lagrange Equation and Transversality Condition
for Problem (PH)). If (x(·), z(·)) is an extremizer to problem (PH), then the
Euler–Lagrange equation

∂L

∂x
〈x, z〉(t) − d

dt

(
∂L

∂ẋ

)
〈x, z〉(t) +

∂L

∂z
〈x, z〉(t)∂L

∂ẋ
〈x, z〉(t) = 0 (10)

holds, t ∈ [a, b]. Moreover, the following transversality condition holds:

∂L

∂ẋ
〈x, z〉(b) = 0. (11)

Proof. Observe that Herglotz’s problem (PH) is a particular case of problem
(P) obtained by considering x and z as state variables (two components of one
vectorial state variable), ẋ as the control variable u, and by choosing f ≡ 0 and
φ(x, z) = z. Note that since x(t) ∈ R

n, we have u(t) ∈ R
n (i.e., for Herglotz’s
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problem (PH) one has r = n). In this way, the problem of Herglotz, described
as an optimal control problem, takes the form

z(b) −→ extr,{
ẋ(t) = u(t),
ż(t) = L(t, x(t), u(t), z(t)),

(12)

x(a) = α, z(a) = γ, α, γ ∈ R.

It follows from Pontryagin’s maximum principle (Theorem1) that there exists
ψx ∈ PC1([a, b];Rn) and ψz ∈ PC1([a, b];R) such that the following conditions
hold:

– the optimality condition

∂H

∂u
(t, x(t), u(t), z(t), ψx(t), ψz(t)) = 0; (13)

– the adjoint system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = ∂H
∂ψx

(t, x(t), u(t), z(t), ψx(t), ψz(t))
ż(t) = ∂H

∂ψz
(t, x(t), u(t), z(t), ψx(t), ψz(t))

ψ̇x(t) = −∂H
∂x (t, x(t), u(t), z(t), ψx(t), ψz(t))

ψ̇z(t) = −∂H
∂z (t, x(t), u(t), z(t), ψx(t), ψz(t));

(14)

– and the transversality conditions
{

ψx(b) = 0,
ψz(b) = 1,

(15)

where the Hamiltonian H is defined by

H(t, x, u, z, ψx, ψz) = ψx · u + ψz · L(t, x, u, z).

Observe that the adjoint system (14) implies that
{

ψ̇x = −ψz
∂L
∂x

ψ̇z = −ψz
∂L
∂z .

(16)

This means that ψz is solution of a first-order linear differential equation, which is
solved using an integrand factor to find that ψz = ke− ∫ t

a
∂L
∂z dθ with k a constant.

From the second transversality condition in (15), we obtain that k = e
∫ b

a
∂L
∂z dθ

and, consequently,
ψz = e

∫ b
t

∂L
∂z dθ.

The optimality condition (13) is equivalent to ψx + ψz
∂L
∂u = 0 and, after deriva-

tion, we obtain that

ψ̇x = − d

dt

(
ψz

∂L

∂u

)
= −ψ̇z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
= ψz

∂L

∂z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
.
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Now, comparing with (16), we have

−ψz
∂L

∂x
= ψz

∂L

∂z

∂L

∂u
− ψz

d

dt

(
∂L

∂u

)
.

Since ψz(t) �= 0 for all t ∈ [a, b] and ẋ = u, we obtain the Euler–Lagrange
Eq. (10):

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
+

∂L

∂z

∂L

∂ẋ
= 0.

Note that from the optimality condition (13) we obtain that ψx = −ψz
∂L
∂u =

−ψz
∂L
∂ẋ , which together with transversality condition (15) for ψx leads to the

transversality condition (11):

∂L

∂ẋ
(b, x(b), ẋ(b), z(b)) = 0.

This concludes the proof.

Definition 5 (Extremal to Problem (PH)). We say that an admissible pair
(x(·), z(·)) is an extremal to problem (PH) if it satisfies the Euler–Lagrange
Eq. (10) and the transversality condition (11).

Theorem 5 (DuBois–Reymond Condition for Problem (PH)). If
(x(·), z(·)) is an extremal to problem (PH), then

d

dt

(
−ψz(t)

∂L

∂ẋ
〈x, z〉(t)ẋ(t) + ψz(t)L〈x, z〉(t)

)
= ψz(t)

∂L

∂t
〈x, z〉(t),

t ∈ [a, b], where ψz(t) = e
∫ b

t
∂L
∂z 〈x,z〉(θ)dθ.

Proof. The result follows from Theorem 2, rewriting problem (PH) as the optimal
control problem (12).

We define invariance for (PH) using Definition 2 for the equivalent optimal con-
trol problem (12).

Definition 6 (Invariance of Problem (PH)). Let hs be a one-parameter
family of C1 invertible maps

hs : [a, b] × R
n × R → R × R

n × R,

hs(t, x(t), z(t)) = (T s〈x, z〉(t),X s〈x, z〉(t),Zs〈x, z〉(t)),
h0(t, x, z) = (t, x, z), ∀(t, x, z) ∈ [a, b] × R

n × R.

Problem (PH) is said to be invariant under the transformations hs if for all
admissible pairs (x(·), z(·)) the following two conditions hold:

(i) (
z(b)
b − a

+ ξs + o(s)
)

dT s

dt
〈x, z〉(t) =

z(b)
b − a

(17)

for some constant ξ;
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(ii)

dZs

dt
〈x, z〉(t)

= L

(
T s〈x, z〉(t),X s〈x, z〉(t), dX s

dT s
〈x, z〉(t),Zs〈x, z〉(t)

)
dT s

dt
〈x, z〉(t),

(18)

where
dX s

dT s
〈x, z〉(t) =

dX s

dt 〈x, z〉(t)
dT s

dt 〈x, z〉(t) .

Follows the main result of the paper.

Theorem 6 (Noether’s Theorem for Problem (PH)). If problem (PH) is
invariant in the sense of Definition 6, then the quantity

ψz(t)
[
∂L

∂ẋ
〈x, z〉(t)X〈x, z〉(t) − Z〈x, z〉(t)

+
(

L〈x, z〉(t) − ∂L

∂ẋ
〈x, z〉(t)ẋ(t)

)
T 〈x, z〉(t)

]
(19)

is constant in t along every extremal of problem (PH), where

T 〈x, z〉(t) =
∂T s

∂s
〈x, z〉(t)

∣∣∣∣
s=0

,

X〈x, z〉(t) =
∂X s

∂s
〈x, z〉(t)

∣∣∣∣
s=0

,

Z〈x, z〉(t) =
∂Zs

∂s
〈x, z〉(t)

∣∣∣∣
s=0

and ψz(t) = e
∫ b

t
∂L
∂z 〈x,z〉(θ)dθ.

Proof. As before, we rewrite problem (PH) in the equivalent optimal control form
(12), where x and z are the state variables and u the control. We prove that if
problem (PH) is invariant in the sense of Definition 6, then (12) is invariant in the
sense of Definition 2. First, observe that if Eq. (17) holds, then (8) holds for (12):
here f ≡ 0, φ(x, z) = z and (8) simplifies to

[
z(b)
b−a + ξs + o(s)

]
dT s

dt 〈x, z〉(t) =
z(b)
b−a . Note that the first equation of the control system of problem (12) (u(t) =
ẋ(t)) defines Us := dX s

dT s , that is,

dX s

dt
〈x, z〉(t) = Us〈x, z〉(t)dT s

dt
〈x, z〉(t). (20)

Hence, if Eqs. (18) and (20) holds, then there is also invariance of the control
system of (12) in the sense of (9) and consequently problem (12) is invariant
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in the sense of Definition 2. We are now in conditions to apply Theorem3 to
problem (12), which guarantees that the quantity

(b − t)ξ + ψx(t) · X(t, x(t), u(t), z(t)) + ψz(t) · Z(t, x(t), u(t), z(t))

−
(

H(t, x(t), u(t), z(t), ψx(t), ψz(t)) +
z(b)
b − a

)
· T (t, x(t), u(t), z(t))

is constant in t along every Pontryagin extremal of problem (12), where

H(t, x, u, z, ψx, ψz) = ψxu + ψzL(t, x, u, z).

This means that the quantity

(b − t)ξ + ψx(t)X〈x, z〉(t) + ψz(t)Z〈x, z〉(t)

−
(

ψx(t)ẋ(t) + ψz(t)L〈x, z〉(t) +
z(b)
b − a

)
T 〈x, z〉(t)

is constant in t along all extremals of problem (PH), where

ψx(t) = −ψz(t)
∂L

∂u
〈x, z〉(t) = −ψz(t)

∂L

∂ẋ
〈x, z〉(t).

Equivalently,

(b − t)ξ − z(b)
b − a

T 〈x, z〉(t) − ψz(t)
[
∂L

∂ẋ
〈x, z〉(t)X〈x, z〉(t) − Z〈x, z〉(t)

+
(

L〈x, z〉(t) − ∂L

∂ẋ
〈x, z〉(t)ẋ(t)

)
T 〈x, z〉(t)

]

is a constant along the extremals. To conclude the proof, we just need to prove
that the quantity

(b − t)ξ − z(b)
b − a

T 〈x, z〉(t) (21)

is a constant. From the invariance condition (17) we know that

(z(b) + ξ(b − a)s + o(s))
dT s

dt
〈x, z〉(t) = z(b).

Integrating from a to t, we conclude that
(
z(b) + ξ(b − a)s + o(s)

)
T s〈x, z〉(t)

= z(b)(t − a) + (z(b) + ξ(b − a)s + o(s)) T s〈x, z〉(a). (22)

Differentiating (22) with respect to s, and then putting s = 0, we obtain

ξ(b − a)t + z(b)T 〈x, z〉(t) = ξ(b − a)a + z(b)T 〈x, z〉(a). (23)

We conclude from (23) that expression (21) is the constant (b − a)ξ − z(b)
b−a

T 〈x, z〉(a).
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4 Conclusion

We introduced a different approach to the generalized variational principle of
Herglotz, by looking to Herglotz’s problem as an optimal control problem.
A Noether type theorem for Herglotz’s problem was first proved by Georgieva
and Guenther in [2]: under the condition of invariance

d

ds

[
L

(
T s〈x, z〉(t),X s〈x, z〉(t), dX s

dT s
〈x, z〉(t), z(t)

)
dT s

dt
〈x, z〉(t)

] ∣∣∣∣
s=0

= 0,

(24)
they obtained

λ(t)

[
∂L

∂ẋ
〈x, z〉(t)X〈x, z〉(t) +

(
L〈x, z〉(t) − ∂L

∂ẋ
〈x, z〉(t)ẋ(t)

)
T 〈x, z〉(t)

]
, (25)

where λ(t) = e− ∫ t
a

∂L
∂z 〈x,z〉(θ)dθ, as a conserved quantity along the extremals of

problem (PH). Our results improve those of [2] in three ways: (i) we consider
a wider class of piecewise admissible functions; (ii) we consider a more general
notion of invariance whose transformations T s, X s and Zs may also depend on
velocities, i.e., on ẋ(t) (note that if (18) holds with Zs〈x, z〉 = z, then (24) also
holds); (iii) the conserved quantity (25), up to multiplication by a constant, is a
particular case of (19) when there is no transformation in z (Z = ∂Zs

∂s

∣∣
s=0

= 0).
The results here obtained can be generalized to higher-order variational problems
of Herglotz type. This is under investigation and will be addressed elsewhere.
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Abstract. The paper continues the research of the applied optimization prob-
lem of the lowering toxic concentrations in the exhaust gases of diesel. The
solution of the problem is based on multivariate statistical modeling and
optimization technique. The novelty of the approach is in formation of multi-
objective function connecting the concentrations of the toxic components with
diesel mode parameters on the basis of the vector autoregression model. The
advance angle of fuel injection is considered to be the main mode parameter to
control toxicants. Taking this into account the multi-objective function is
reduced to the scalar objective function.

Keywords: Optimization � Vector autoregression � Diesel exhaust gas �
Advance angle of fuel injection

1 Introduction

The paper continues the research of the problem of the lowering toxic concentrations in
the exhaust gas of diesel which was mentioned in [1]. The solution of the problem is
based on modeling and optimization technique. The special algorithm is created to
calculate optimal values of the parameters, determining the minimal toxic concentra-
tions in the exhaust gases and consumed fuel, at different diesel regimes. The reali-
zation of the calculated parameters provides the characteristics of cyclic fuel feed and
advance angle of fuel injection that allow to improve the economical characteristics of
diesels and to decrease their toxicity. This way is considered to be important and
economical compared with others (for instance, constructive).

For diesels, the lowering toxicity and smoke without increasing fuel consumption
can be only achieved on the basis of the optimal systems for exhaust gas recirculation,
injection of the water into intake manifold, optimal design of the fuel system elements
and fuel system adjustments [2]. Last component of the solution is the most perspective
and important, because it can be implemented not only for new diesels, but also for
exploited ones. In addition, this solution does not require additional cost to upgrade
technical production and capacity of enterprises.

In the earlier publications [2, 3] it was established that it is possible to optimize
diesel working processes by optimizing fuel system adjustments, including the injec-
tion control system, and models reflecting the relationships between the advances angle
of fuel injection, injection pressure, injection timing, as well as parameters
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characterizing the toxicity of diesel and its mode. But the question of choice of the most
suitable objective function and its structure still exists.

The paper continues the study of the problem of the lowering toxic concentrations in
the exhaust gas of diesel through calculating the values of the fuel injection advance
angle, minimizing the concentrations of toxic components in the exhaust gases without
increasing fuel consumption. In [1] the values of the parameters were calculated through
two optimizing procedures. The first one was to define more exact concentration values
of the main toxic components in the exhaust gases by using their dependence on the
mode parameters. The quality criterion was the Kulback-Leibler information divergence
between distribution parameters of estimations and real variables. The second opti-
mizing procedure was directly used to calculate the advance angle of fuel injection
which corresponds to the minimum values of toxic concentrations. Here we are con-
structing more complicated multiplicative and multi-objective function. It uses the
principal of relative compensation and is connected with the concentrations of the major
toxic components in diesel exhaust gases. Then we develop the strategy of control of the
fuel combustion in the combustion chamber, providing the minimum value of the
objective function. The novelty of the approach is also in the empirical relationships
between non-stationary random processes, which reflect the changes in the concentra-
tion of toxic components in the combustion products, and mode parameters.

The paper is organized as follows. In the second section we study the applied
physical problem namely an opportunity to reduce the concentration by changing
the mode parameters and adjusting the advanced angle of injection that is by control
of the combusting. The third section is devoted to constructing the objective function.
In the fourth section the numerical example is considered.

2 The Analysis of the Methods to Lower Toxicity

The composition of the exhaust gases of diesel depends not only on the type of fuel
used, but also on the type of organization and efficiency of the diesel workflow.
Volume concentration of toxic substances in the exhaust gas is relatively small (0.2…
2 %). Five main components: NOx, CO, CHx, aldehydes RCHO, and sulfur dioxide S02
– comprise 80… 95 % of the total mass of toxic exhaust gas components. The 3 of
these components are subject to current regulations.

Comparison of the relative aggressiveness of the exhaust gas constituents (the
aggressiveness of carbon monoxide is a unit of aggressiveness) [4, 5]:

CO : CnHm : SOX: NOX: C: RCHO: C20H12 = 1 : 3,16 : 16,5 : 41,1 : 41,1 : 41,5 :
1260000,0.

By aggressiveness of separate toxic component we mean the degree of its negative
influence on biomolecules of the cell membranes of a human being, causing various
diseases [5].

The main reason for the formation of CO in the diesel combustion chamber is
unequal distribution of fuel in the combustion zone which leads to the emergence of
separate areas with low ratio of air excess, where part of the fuel has not been burnt. In
these local areas volume concentration of CO can reach 5… 6 %. Another source of
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CO is high-temperature zones of a fuel plume, in which the chemical equilibrium is
shifted towards the dissociation of carbon dioxide CO2 with forming CO and O2.

One of the main causes of CH formation is the availability of the cold wall surface
layers in the combustion chamber. During the combustion the flame spreads to the wall,
from which the heat is taken away, and formed radicals are arranged on the cold walls.
Thus, light hydrocarbons are constituted from the radicals of not completely combusted
fuel in the wall cold layers of cylinder which is of 0.005… 0.3 mm thick [2]. Another
reason of CH formation is the availability of zones with low ratio of air excess, mainly
of the core zone and zone of the torch flame in combustion chamber.

Solid particles mainly consist of soot, metal oxides, sulfates, and water, as well as
not burnt fuel parts and the engine oil [4]. Soot, in turn, is mainly composed of carbon
C (95… 98 %) and chemically bound hydrogen H (1… 3 %).

One of the main methods to reduce the concentration of the toxic components in the
exhaust gas is adjusting the advance angle of the start timing for the fuel injection (θ).
This is because the change in the advance angle of fuel injection causes the change of
the period for the ignition delay. The changing of period of ignition delay changes the
rate of the cylinder pressure, heat release rate in the beginning of combustion and hence
the maximum temperature gas in the combustion chamber [6]. Decreasing the advanced
angle of fuel injection results in lowering the maximum temperature in the combustion
chamber and reduces the nitrogen oxides emissions. However, the reduction of nitrogen
oxides takes place only in a certain range since the reduction of the advance angle of
fuel injection simultaneously increases the opacity of diesel and reduces its fuel
economy.

The influence of the advance angle of fuel injection on the toxicity and fuel effi-
ciency mostly appears when diesel functions at the modes with low ratio of air excess.
This is due to the fact that for the modes with a higher ratio of air excess, the time taken
for the combustion process is sufficient for complete combustion. Therefore, at part-
load mode there is an opportunity to reduce the advance angle of fuel injection in order
to lower the concentration of nitrogen oxides in exhaust gas without the increase of fuel
consumption and opacity [8]. In other words, for each mode of diesel there is the
optimal value of the advance angle of fuel injection which corresponds to the minimum
of toxicity and maximum of fuel efficiency.

It is known [2, 5, 7] that, for example, for the diesel D-240 the decrease of the
advance angle of fuel injection by 6-8 degrees of rotation of crankshaft with respect to
its nominal value allows to reduce the NOx concentration by two times. The increase of
the solid particle concentration by 1.6 – 0.3 times and reducing the fuel efficiency by
5 – 3 % are also observed.

3 Optimization Criterion

Considering that the aim of the research is to lower exhaust gases’ toxicity without fuel
consumption increase, we formalize the problem to be solved in terms of multiobjective
optimization:
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f1 xð Þ ! min
x2D

; f2 xð Þ ! min
x2D

; . . .fm xð Þ ! min
x2D

; ð1Þ

where m is a number of toxic parameters, xt = (Speedt, Loadt, θt)
T is a vector of

parameters characterizing the operating mode, Speed denotes a rotational speed of
crankshaft, Load indicates a load applied to crankshaft, D indicates a set of possible
values of xt.

The restriction of the consumed fuel volume is entered. The maximal increasing the
specific fuel consumption should not exceed 3–5 % of the initial or maximal permis-
sible fuel consumption which is specified in the technical conditions.

The best solution of the problem of lowering the diesel toxicity through the
selection of the optimal values of the advance angle of fuel injection for the given mode
parameters is a vector x*, for which the conditions (1) are performed for all functions
fj xð Þ; j ¼ 1. . .m simultaneously.

Each function has a minimum corresponding to different values of the vector x.
However, in practice such solution cannot be obtained. Each function reaches extreme
for single value x. It is impossible to find x*, for which the conditions (1) are carried out
for all objective functions simultaneously. The way is to find such solution x**, for
which the rational compromise of given goals (1) is provided. Multi-objective opti-
mization problem is reduced to a typical problem with one criterion.

Based on the principle of relative compensation we use generalized multiplicative
criterion

KðxÞ ¼
Ym
i¼1

fiðxÞ: ð2Þ

Disparities of the partial criteria in the expression (2) can be introduced through
weights λi. Then the criterion (2) takes the form

KðxÞ ¼
Ym
i¼1

f kii ðxÞ: ð3Þ

It is assumed that the coefficients λi, reflecting the importance of appropriate
objective function (partial criterion), are normalized and meet the condition

X3
j¼1

kj ¼ 1:

Numerical values of the coefficients λi are stated by experts on the basis of the
significance level of the objective functions for a partial model regarding the existing
ecological standards.

The novelty is in determination of functions fiðxÞ connecting toxic concentrations
with mode parameters. We explain the procedure in the next section.
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4 The Vector Autoregression Model Based on Empirical
Information

We utilize empirical information describing the test results of the low-power single-
cylinder four-stroke injection diesel used to drive the generators from [9] and firstly
analyzed by authors in [6]. The rated power of diesel is 3.5 kW. Three time series with
48 values characterize the changes of the three parameters of the diesel modes at
the rotational speed of the crankshaft 3000 rpm (revolutions per minute). These are the
crankshaft rotational speed, denoted like Speed, the antitorque moment, Load, the
advance angle of fuel injection θ. Three time series with the same number of values
characterize the changes of diesel toxicity: concentrations of hydrocarbons CH,
nitrogen oxides NOx, and particulates with the main component carbon-black Smoke.
The time series are plotted on Fig. 1.

At any time the first three parameters form a vector ut ¼ ð ne Mc s Þ of mode
parameters, the latter three parameters form the state vector of the system being studied
xt ¼ CHt; NOxt; Smoketð ÞT .

The state vector values for each realization of the vector of mode parameters for the
same fuel specification and the same adjustments of the fuel equipment (fuel pressure
and injection timing) at each time moment are defined by the advance angle of fuel
injection. Based on this fact we formalize the following aim.

It is necessary to determine the values of advance angle of fuel injection which
provide the minimum of criterion (3) for given values of the vector of mode param-
eters. For the example considered the criterion (3) is as follows:

KðuÞ ¼ NOxðuÞ
NOx½ �

0:5

� CHðuÞ0:3
CH½ � � SmokeðuÞ

0:2

Smoke½ � ! min: ð4Þ

Fig. 1. Time series under studied
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In the Eq. (4) any degree having a meaning of the weight coefficient λi has been
determined by the experts on the basis of the aggressive importance of the partial
component. Symbol [*] denotes the maximum acceptable value. The minimization of
the diesel toxicity through the adjustment of the advance angle of fuel injection θ
depends on the increase of the average effective specific fuel consumption ge, the
values of θ should be selected only from the acceptable range hmin � � � hmax½ �.

In previous papers, for example [8], it is stated that the dependences
NOxðuÞ;CHðuÞ; SmokeðuÞ with sufficient accuracy (modeling errors are less than 15 –

10 %) can be described by the regression equations:

NOxt ¼ c1 þ bo � NOxt�1 þ b1 � Speedt þ b2 � Loadt þ b3 � ht þ et ð5Þ

CHt ¼ c2 þ /0 � CHt�1 þ /1 � Speedt þ /2 � Loadt þ /3 � ht þ et ð6Þ

Smoket ¼ c3 þ n0 � Smoket�1 þ n1 � Speedt þ n2 � Loadt þ n3 � ht þ et ð7Þ

Here β, c, ϕ, and ς are the model coefficients.
For the considered diesel the Eqs. (5)–(7) are the following

NOxt ¼ �0; 152NOxt�1 � 0; 0119 � Speedt þ 40; 82 � Loadt þ 71; 50 � ht þ 1601; 48þ et

ð8Þ

CHt ¼ �0; 0755 � CHt�1 þ 12:20� 0; 0276 � Speedt þ 0; 523 � Loadt þ 1:882 � ht þ et
ð9Þ

Smoket ¼ �0; 023 � Smoket�1 þ 2:5� 0; 015 � Speedt þ 6; 49 � Loadt þ 0; 078 � ht þ et
ð10Þ

The models (8)–(10) describe the changes of the diesel toxicity indicators in the
vicinity of the working points with some limitations. Models (8)–(10) can be used only
to describe the parameters in the vicinity of the working points selected in advance.
In this case, the deviations from the working points should not exceed 10 % which
makes it difficult to use the above mentioned models to describe the changes in all
required velocities of the crankshaft rotation and loads.

In other words, when we use the models (8)–(10) we have to calculate the coef-
ficients at least for 10 points every 30-35 s−1 that leads to the necessity to utilize at least
30 equations to describe dependencies for the most probable modes of the diesel. The
models (8)–(10) do not take into account the non-stationary character of the random
processes reflecting the changes of the mode parameters.

The random nature of the parameters is explained by functional dependency of their
values from the values of structural parameters. The structural parameters, in turn, are
random that are in the so-called tolerance extent due to location errors and deviations
from specification parameters of the cutting part of the cutting tool, the presence of
undesired vibration of metal working equipment, etc. [9].

To overcome these drawbacks, numerical values of the coefficients of Eqs. (8)–(10)
were identified by multivariate analysis [9, 10].
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Different parameters characterizing diesel toxicity are united into the vector. The
vector autoregression model is built up [10]:

xt ¼ A0 þ
Xp

j¼1

Ajxt�j þ ej; t ¼ 1; . . .; T ð11Þ

where xt ¼ ðX1;t; . . .;Xn;tÞT is the vector of parameters, A0 is (n� 1)-matrix of the
coefficients, A0 is constant (n� 1)-matrix. et ¼ ðe1t; . . .; entÞT is the vector of estimation
errors. n is a number of parameters, p is the model order. For example, for the function
NOx ¼ f1 Speed; Load; hð Þ reflected by the model (8) the autoregression model (11) can
be written as:

NOx
Speed
Load
h

2
664

3
775 ¼

806
�1171
4:45
8:15

2
664

3
775þ

1:05 �0:045 �2:48 �38:5
�0:065 1:07 �32:95 68:6

0 0 0:51 �0:077
0:001 0 0:14 0:63

2
664

3
775

NOxt�1

Speedt�1

Loadt�1

ht�1

2
664

3
775

þ et

ð12Þ

Coefficients are calculated by the least square method. To estimate modeling
residuals (Fig. 2) we use the software RATS [11].

To determine the cause and effect relationships (possible linear combinations)
between the studied parameters we use the vector autoregression model for differences
of the initial non-stationary processes of the parameter changes:

Dxt ¼ aþ lt þPxt�1 þ
Xp�1

j¼1

CjDxt�j þ ej; t ¼ 1; . . .; T ð13Þ

where Δ the difference operator: Dxt ¼ xt � xt�1,

P ¼ I � A1 � A2 � . . .� Ap;

Cj ¼ �
Xp

t¼jþ1

Pi:

Due to the Granger theorem rank r of the matrix P ¼ ab0 equals the number of
linear dependencies [9]. The rows of the matrix b= represent the different vectors,
reflecting stable statistical relationships between the studied parameters.

For parameter vector Xt ¼ NOx Speed Load h½ �T the matrix P ¼ abT has the
following form:
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P ¼
11:44
5:092
�26:33
4:59

2
664

3
775 1; 00 �0; 005

ð0;174Þ
38; 34
ð0;220Þ

þ76; 30 � 1700; 15
ð60;761Þ

h i
¼ abT ð14Þ

Thus, the vector of the coefficients β in the expression (14) defines relation between
the parameters NOx; Speed; Load; and h :

NOxt ¼ �0; 005 � Speedt þ 38; 345 � Loadt þ 76; 308 � ht � 1700; 153þ et ð15Þ

We obtain also the following relations

CHt ¼ �0; 004 � Speedt � 0; 612 � Loadt þ 2:17 � ht � 3; 75þ et ð16Þ

Smoket ¼ �0; 012 � Speedt þ 6; 035 � Loadt þ 0; 227 � ht � 2; 65þ et ð17Þ

Estimation errors show the adequacy of models (18) – (20). The correspondent
graphs are in Fig. 3.

Fig. 2. Analysis of residuals: (a) autocorrelation function of residues; (b) distribution of
residuals, 1 – the normal distribution, 2 – the distribution law of the residuals
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Having assumed that for every functioning mode the values of the speed and load
remain constant in the vicinity of the working points, substitution of the Eqs. (5)–(7) in
the Eq. (4), allows to reduce the problem of multicriteria optimization to the optimi-
zation with single criterion, that is to the choice of the values of parameter θ, when the
following criterion is minimum:

KðhÞ ¼ aþ b3 � hð Þ0:5� bþ /3 � hð Þ0:3� cþ g3hð Þ0:2! min ð18Þ

As a result of calculation the Table 1 shows the values of the advance angle of fuel
injection, which corresponds to the minimal concentration of toxic components in the
exhaust gases for the studied diesel.

Fig. 3. Analysis of result of modeling

Table 1. The values of the advance angle of fuel injection for the different diesel mode

Speed Load, Hм
10.00 7,50 6,50 5,50

1500 17.80 19.23 19.80 20.26
2000 17.92 19.31 19.88 20.34
2500 18.00 19.40 19.97 20.43
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The results of the use of new values of the advance angle of fuel injection are
presented in Table 2.

Table 2 shows that for the diesel with the fixed design parameters at the given
characteristics of the fuel equipment (for instance, injection pressure) the proposed
approach allows to lower the concentration of toxic components in the diesel exhaust
gases without significant increase of the fuel consumption. For example, the maximum
increase of the average fuel efficiency compared to the initial value is 2 % (see the
column 7 in the Table 2). Moreover, the proposed algorithm of the lowering diesel
toxicity, alternatively to the algorithm proposed in [1] allows lowering the concen-
tration of toxic components not only for the steady modes, but also for unsteady modes:
during acceleration and deceleration. The advantages of the proposed approach for
stationary modes diesel engine at constant load 7.50 Nm are presented in Table 3.

Table 2. The results
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NOx 450 29 93 500 47 90 520 65 88

CH 50 35 30 48 36 25 47 35 12

Smoke 26 25 10 20 22 -10 20 17 15

ge 325 327 -0,6 323 330 2 320 320 0

Table 3. The results

Speed 1500 2000 2500

Parameters Old
method

New
method

Difference,
%

Old
method

New
method

Difference,
%

Old
method

New
method

Difference,
%

NOx 85 29 65 73 47 36 127 65 49
CH 39 35 10 38 36 5 34 35 -3
Smoke 28 25 10 22 22 0 17 17 0
ge 330 327 0,9 350 330 6 335 320 4

Lowering Toxic Concentrations in the Diesel Exhaust Gases 127



Acknowledgements. The authors express their deep gratitude to the Department of Information
Systems of the Sevastopol National Technical University for the support of this research.

References

1. Pervukhina, E., Osipov, K.: Reducing toxicants in the diesel exhaust gas based on optimal
fuel injection timing. In: Proceedings Volume of the EURO Mini-Conference on
Optimization in the Natural Sciences, Aveiro, Portugal, February 5–9, h.25 (2014)

2. Markov, V.A., Furman, V.V., Mironov, V.A.: Experimental studies of the electronic system
of locomotive diesel fuel control. In: Proceedings of Higher Educational Institutions.
Machine Building, vol. 1, pp. 38–48 (2012) (in Russian)

3. Wang, X., Stone, C.R.: A study of combustion, instantaneous heat transfer, and emissions in
a spark ignition engine during warm-up. In: Proceedings Institution of Mechanical
Engineers, vol. 222 Part D, pp. 607–618 (2008)

4. Mollenhauer, K., Tschoeke, H.: Handbook of Diesel Engines, p. 636. Springer, Heidelberg
(2010)

5. Salov, T.Y., Tursunov, A.A., Mazhitov, B.J.: Environmental performance evaluation diesel
at mountain operation. www.ttu.tj/userfiles/vestnik/vn13.pdf (in Russian)

6. Pervukhina, E., Osipov, K., Rapatski, Y.: Calculating the duration of fuel injection to reduce
the concentration of toxic components in the combustion products. Int. Combust. Engines 1,
80–83 (2013). (in Russian)

7. Orlin, A., Kruglov, M.G.: Internal Combustion Engines: Theory and combined piston
engines, p. 372. Mechanical Engineering, Moscow (1983). (in Russian)

8. Pervukhina, E., Osipov, K., Rapatskiy, Y.: Improvement of the acceptance test procedure for
the external combustion engine after assembly by using the relationship between diagnostic
parameters. J. Mach. Manuf. Reliab. 40(2), 171–175 (2011). © Allerton Press, Inc. (in
Russian)

9. Golikova, V., Pervukhina, E., Sopin, P.: Statistical modeling of machines on diagnostic
parameters. J. Mach. Manuf. Reliab. 37(6), 612–617 (2008). (in Russian)

10. Turner, J.D., Austin, L.: A review of current sensor technologies and applications within
automotive and traffic control systems. In: Proceedings of the Institution of Mechanical
Engineers, vol. 2014, Part D, pp. 589–614 (2000)

11. Doan, T.A.: RATS software package, User’s manual, Version 8.0, Illinois: ESTIMA (2010)

128 E. Pervukhina et al.

http://www.ttu.tj/userfiles/vestnik/vn13.pdf


Desirability Functions in Multiresponse
Optimization
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Abstract. Desirability functions (DFs) play an increasing role for solv-
ing the optimization of process or product quality problems having var-
ious quality characteristics to obtain a good compromise between these
characteristics. There are many alternative formulations to these func-
tions and solution strategies suggested for handling their weaknesses and
improving their strength. Although the DFs of Derringer and Suich are
the most popular ones in multiple-response optimization literature, there
is a limited number of solution strategies to their optimization which need
to be updated with new research results obtained in the area of nonlinear
optimization.

1 Introduction

Most industrial processes and products have more than one quality response;
they are usually conflicting but should be optimized concurrently and concert-
edly. For quality improvement, optimal levels of continuous variables (input
variables, or factors) are searched which give the best trade-off of these qual-
ity characteristics (output variables, or responses). This is a multi-objective
optimization problem having a special name i.e., multi-response optimization
(MRO). Most commonly used approaches to solve the multi-response (sur-
face) optimization problems utilize response surface methodology (RSM )Taguchi
method, loss functions, Mahalanobis distance, and desirability function approach
(Khuri 1996; Logothetis and Wynn 1989; Miettinen 1999; Montgomery 2000).
Each of these approaches has its own limitations.

In multi-response (surface) optimization problems, statistical design of exper-
iments is commonly used to collect data (Montgomery 2000). In an experimental
design, the first step consists of defining the problem. Then, the factors together
with their ranges and specific levels are chosen at which experimental runs will
be made. The next step is the estimation of the response models that relate the
factors to the responses. Finally, an appropriate experimental design layout is
designed which is robust to different sources of variability in the data so that
the most desirable process and product parameter settings are found. The most
common way of obtaining the response models is regression by means of polyno-
mial fitting or spline fitting. For the cases where polynomial fitting is not capable
c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 129–146, 2015.
DOI: 10.1007/978-3-319-20352-2 9
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of modeling the quantitative and qualitative responses, artificial neural networks
also used in the literature.

1.1 Desirability Function (DF) Approach

Optimization of multiple responses at the same time has the challenge that each
of them may have a different measurement scale. When we use DF approach, a
scale-free value between 0 and 1 is assigned to all responses in the problem by
the so-called individual DFs, and then combine these values by taking usually
their arithmetic or geometric mean yielding a single objective to obtain an over-
all DF having a value in the interval [0, 1]. There are different versions DFs in
the literature. However, many software programs such as Minitab, JMP, Pack-
age Desirability and Design-Expert that are employed in industrial applications
adopt DFs of Derringer and Suich type in their multi-response optimization
support.

The philosophy behind the DF approach is that when one of the quality
characteristics of an industrial process or product with many characteristics is
not in the desired limits, then the overall quality is not desirable. DF approach
has originally been introduced by Harrington (1965) with exponential individual
DFs which are aggregated by geometric mean to obtain the overall DF. Der-
ringer and Suich (1980) has proposed the version of individual DFs described
in Eqs. (2) and (3) below, offering more shape alternatives. DFs of Derringer
and Suich (1980) may be nondifferentiable at a target value between the lower
and upper acceptable bounds of the response based on the values of the shape
parameter of the function. Derringer (1994) develops the weighted case of these
DFs as an improvement of the approach for assigning relative importance (or
priorities) to the individual responses. The approach of Ch’ng et al. (2005) is
based on the arithmetic mean aggregation of the proposed linear individual DFs
that are continuously differentiable everywhere within their domains by defin-
ition and having desirability in the interval [0, 2]. In Wu and Hamada (2000),
so-called double-exponential DFs are proposed to avoid the difficulty of choosing
proper lower and upper bound values of responses of Derringer and Suich formu-
lation of DFs. An interactive DFs approach is introduced recently in Jeong and
Kim (2008) which takes into account the preference of the decision maker(s) on
the trade-offs among the responses or on the shape, bound and target of a DF.

1.2 Correlated Responses in DFs

Kim and Lin (2000) suggests a MRO approach which uses DFs of exponential
structure for maximizing the degree of overall satisfaction with respect to all
the responses and show that their approach is robust to possible dependencies
between responses. Although possible statistical and preferential dependencies
of responses are usually ignored in DF approach Fuller and Scherer (1998), there
are some improvements in considering possible correlations between responses
and variances of them. Chen et al. (2012) augments the DFs of Harrington
to add this capability by minimizing the variances of the predicted responses.
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Double-exponential DFs are also improved in this respect in Wu (2004). Double-
exponential DFs based on Taguchi’s loss function are redefined to extend the DF
model for correlated multiple quality characteristics. The approach presented in
Wu (2009) takes into account correlated responses by inserting correlated desir-
ability value into the overall DF formulation. The literature on DFs continues to
extend with different modifications in the formulations, aggregation techniques
and optimization criteria. A detailed review of DFs is also provided in Murphy
et al. (2005) and Fogliatto (1998).

1.3 Variance Information in MRO

Robust design (RD) of multiple responses focus on developing a fitted-response
(surface) model that accurately reflects the true variability of a system (static or
dynamic), noise factors (uncontrollable variables) and the appropriate quality
characteristics (or responses) of interest. The uncertainty associated with the
fitted-response (surface) model is known as response model uncertainty. There
are two aspects related with this: responses’ models differ in terms of the quality
of predictions (variance due to uncertainty in the regression coefficients i.e., a
response model predicts/performs better) or responses’ models are characterized
by unequal sensitivity to uncontrollable variables (robustness i.e., a response
model is insensitive to noise) (Costa and Loureno 2011; Kovach and Cho 2008).

2 DFs of Derringer and Suich Type

In a multi-response optimization problem, response Y (x) is a function Y :
R

n → R of vector of independent variables x = (x1, x2, . . . , xn)T , where
xi ∈ R (i = 1, 2, . . . , n). An individual DF d(Y (x)) scales a response into the
interval [0, 1], i.e., d : R → [0, 1]. This means that the function d becomes 0
for completely undesirable values of the response, and it becomes 1 for totally
desirable values of it. We notice that DFs are composite functions of response
functions which depend on independent variables (or factors). In this study, we
denote an individual DF by d as a function of y and dY as a function of x.

dY (x) := d(Y (x)) = d(y), (1)

where y := Y (x) with y ∈ R and dY : Rn → [0, 1]. There are two types of these
functions, one-sided and two-sided ones according to Derringer and Suich (1980):

d(y) :=

⎧⎨
⎩

0, if y ≤ l,

( y−l
u−l )

r, if l < y ≤ u,

1, if y > u,

(2) d(y) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if y ≤ l,

(y−l
t−l )

s1 , if l < y ≤ t,

(y−u
t−u )s2 , if t < y ≤ u,

0, if y > u.

(3)

Here, l is the minimum and u is the maximum acceptable value of y, and t is
the most desirable value of y. The value of r used in Eq. (2) should be decided
by the user. The larger the r, the more desirable are the y values closer to
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u, and vice versa. We note that s1 and s2 in Eq. (3) have a similar meaning
to r. There can be three different types of optimization task for a response:
smaller-the-better, larger-the-better or nominal-the-best (see Fig. 1). Definition
of individual DFs for the larger-the-better (one-sided DF) case responses is given
in Eq. (2). A similar definition can be given for the smaller-the better (one-sided
DF) case. Equation (3) corresponds to the DFs of nominal-the best (two-sided
DF) type responses. DFs are flexible in the sense that a wide variety of shapes
and asymmetric specifications are possible according to the decisions of a decision
maker (usually problem owners and experts) of the problem (see Fig. 2).

Fig. 1. One-sided and two-sided individual DFs of Derringer and Suich’s type.

Assessing desirability of a response means to choose a suitable piecewise-
smooth function d(y) (y = Y (x)) by deciding the bounds and targets of the
DF. Usually most simplistic functions, i.e., piecewise-linear functions including
a single nondifferentiable point are preferred. In general, a one-sided individual
DF can be either linear or nonlinear but smooth and monotone (i.e., convex
or concave) on its domain. A two-sided individual DF can be either piecewise-
linear or nonlinear which has at least one nondifferentiable point occuring at its
target. In fact, these functions belong to an abstract class of piecewise-smooth
functions, i.e., min-type functions.

We assume that there are m many responses in a multi-response optimization
problem. After calculating the desirabilities of all responses by corresponding
functions given in (2) and (3), overall DF D(y) : Rm → [0, 1] is calculated using
the geometric mean (Derringer and Suich 1980):

D(y) := (d1(y1) · d2(y2) · . . . · dm(ym))
1
m , (4)

where y := Y(x) and Y(·) := (Y1, Y2, . . . , Ym)T (·). Here, it is obvious that
D(y) will have a value in [0, 1]. We denote the overall desirability as a function
of x by DY : Rn → [0, 1] and define it by DY (x) := D(Y(x)), i.e., DY (x) :=(
dY
1 (x) · dY

2 (x) · . . . · dY
m(x)

) 1
m . The function given in (4) is a nonlinear composite

objective function including signomial terms.
Employing geometric mean to compute the overall desirability from indi-

vidual desirabilities gives rise to the main property of DFs as an approach. If a
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Fig. 2. Asymmetric individual DF

desirability d of a response y becomes 0 at a factor value x̄, the overall desirability
becomes 0 at this x̄, independently from the values of other individual desirabil-
ities at that point. In this formulation of DFs, possible correlations between the
responses are not taken into account and hence, it is assumed that the responses
are independent of each other.

When the importance of individual DFs may differ in computing the overall
DFs, a weighting strategy is possible (Derringer 1994):

D(y) :=

⎛
⎝ m∏

j=1

dj(yj)wj

⎞
⎠

1
m∑

j=1
wj

. (5)

Weighted overall desirability has similar properties to the non-weighted one.
Again, if one of the responses is undesirable at a factor vector x̄, then the overall
desirability is zero at that point, i.e., D(Y(x̄)) = 0, without considering desir-
abilities of other responses at that point. These weights can be specified by the
decision maker next to the shapes of the curves of DFs. Obviously, when deciding
about the weights it would be better to take into account relative importance of
the product and process responses with respect to each other.

2.1 Optimization of Overall DF

The overall DF D(y) is a continuous function of the individual desirabilities
dj(y) from Eq. (4) and we see that each function d is continuous up to y from
(2) and (3). In this study, a response Y is assumed to be a continuous function
of the vector of factors, x. Therefore, the overall DF DY is a continuous function
of the factor vector x.
Herewith, the problem takes the following form:

maximize D(Y(x))
subject to

i. bounds of the factors xi (i = 1, 2, . . . , n),
ii. bounds and targets of the responses Yj(x) (j = 1, 2, . . . ,m),

(6)
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Here, x = (x1, x2, . . . , xn)T is the vector of factors. The constraint set is a
parallelepiped

[lx,ux] :=
n

X
i=1

[lxi
, uxi

], (7)

where lxi
is the lower limit and uxi

is the upper limit of xi (i = 1, 2, . . . , n).
First constraint group of the problem (6), i.e., the bounds for the factors, are
decided during the experimental design, and hence, they are known during the
optimization procedure. In computation, the bounds for the factor levels are
usually standardized to [−1, 1].

Second constraint group, i.e., bounds and targets of the responses Y =
(Y1, Y2, . . . , Ym)T are decided during experimental design and don’t change. We
assume a static system in this study. These bounds lj and uj for Yj(x) are in
fact functions of x, usually as 95% confidence interval. In computations, non-
negativity constraints for the individual DFs are added to prevent the algorithm
from stopping at values quite near to 0 from below.

Problem (6) can be expressed implicitly by combining bound constraints:

maximize DY(x) =
(
dY
1 (x)

)w1 · (
dY
2 (x)

)w2 · . . . · (
dY

m(x)
)wm

subject to x ∈ X ∩ I
X .

(8)

Here, we assume that w1 + w2 + . . . + wm = 1 without loss of generality not all
zero at the same time (j = 1, 2, . . . , m). If all weights were zero at same time,
then any yj ∈ R would become a solution of problem (8). We notice that any
sum of weights, say ω1 + ω2 + . . . + ωm = r for some r > 0, can be reduced to 1
by defining wj := ωj/r (j = 1, 2, . . . ,m).

We have x ∈ X ⊂ R
n and xi ∈ Xi where X is the Cartesian product of regions

Xi ⊂ R (i ∈ I = {1, 2, . . . , n}):

X = X
i∈I

Xi (= X1 × X2 × . . . × Xn) . (9)

We remember that every response yj = Yj(x) is desired in some interval Ij =
[lj , uj ] (j = 1, 2 . . . ,m). Now, we define

I
X := {x ∈ R

n | Yj(x) ∈ Ij (j = 1, 2, . . . ,m)} =
m⋂

j=1

(
Y −1 ([lj , uj ])

)
. (10)

Here, IX is closed as it is the finite intersection of the closed sets Y −1 ([lj , uj ]) ⊂
R

n. Similarly, X is closed. Hence, X
⋂

I
X is compact and DY (x), the objective

function of (8), is continuous. We conclude that a globally optimal point to
problem (8) always exists, but it may not be unique (Ozdaglar and Tseng 2006).

Optimization of overall DF given in Eq. (4) using gradient-based approaches
becomes a complicated task when there are nondifferentiable two-sided indi-
vidual DFs in the problem. In the two-sided DFs formulation (3), the target
value may be attained at a nondifferentiable point, and hence, the function is
not smooth at this point. It follows that a suitable single objective optimization
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method shall be chosen to solve the optimization problem of maximizing the
continuous but nondifferentiable overall DF, i.e., we want D(y) as close to unity
as possible. In Derringer and Suich (1980), a univariate search technique that do
not employ derivative information is implemented in FORTRAN on the overall
desirability values evaluated at all factor levels of the response surface design
to solve the overall optimization problem. Other derivative free optimization
techniques suitable for this problem are pattern search, direct search methods
(Derringer and Suich 1980) and mesh-adaptive direct search methods (Conn
et al. 2009). Castillo et al. (1996) demonstrates a modification of piecewise-
linear individual DF of Derringer and Suich as a function of a response. This
modification is based on a polynomial approximation to smoothen individual
DFs at their nondifferentiable points. Hence, the optimization problem of the
DF becomes a nonlinear continuously differentiable problem and is solved by the
generalized reduced gradient method (GRG2 of MS Excel) (Lasdon et al. 1978).
It is possible to apply other gradient-based methods to this modified DFs.

In Akteke-Öztürk et al. (2014), we show how to use nonsmooth and global
optimization approaches. We suggest some transformation strategies in combi-
nation with a reformulation of individual DFs. Our main software environment
is GAMS and its solvers (CONOPT and BARON). Nonsmooth optimization
approaches continue to develop in generalizing notions of differential optimiza-
tion such as gradient, convexity, and Lagrangian to solve problems including non-
differentiable functions (Clarke 1983; Demyanov and Rubinov 1986; Dutta 2005;
Gasimov and Ustun 2007; Lemarechal 1978). Global optimization approaches
solve nonlinear optimization problems to global optima in case of existency of
global solution(s) (Pardalos and Romeijn 2002; Gershon and Shaked 2012). One
of our strategies is to use MSG algorithm to obtain sharp augmented Lagrangian
of the problem. Other strategy is to obtain the continuous relaxation of the prob-
lem which is originally a signomial geometric programming problem (Ryoo and
Sahinidis 1996; Tawarmalani 2002; Gershon and Shaked 2012).

3 Additive Overall DF

A two-sided individual desirability function (DF) can be expressed as:

d(y) =

⎧⎪⎪⎨
⎪⎪⎩

0, if y ≤ l,
d1(y), if l < y ≤ t,
d2(y), if t < y ≤ u,
0, if y > u,

where d1(y) := (
y − l

t − l
)s1 and d2(y) := (

y − u

t − u
)s2 .

(11)

Here, l is the minimum and u is the maximum acceptable value of y, and t is the
most desirable value of y. The value of s1 and s2 should be specified by the user.
We can express each individual function d with a mixed-integer formulation by
taking a convex combination of sides d1 and d2, using the binary integer variable
z (= zj) (j = 1, 2, . . . , p), z = 0, 1:

d(y, z) = zd1(y) + (1 − z)d2(y). (12)
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Here, the binary coefficient z becomes 1 when d1(y) is active (on). By using
Eqs. (1) and (12), we can reach the mixed-integer formulation in x of a two-
sided individual DF:

dY (x, z) = zdY
1 (x) + (1 − z)dY

2 (x). (13)

Let us assume that there are m many responses in a multi-response optimization
problem, we denote by p the number of responses having two-sided desirabilities
and by m − p the number of responses having one-sided DFs, where 0 < p ≤ m.
We can define adjusted overall DF DY (·) as follows:

DY (x, z) :=

⎡
⎣ p∏

j=1

dY
j (x, zj)wj ·

m∏
j=p+1

dY
j (x)wj

⎤
⎦

1
m∑

j=1
wj

, (14)

where wj ≥ 0 (j = 1, 2, . . . ,m), x := (x1, x2, . . . , xn)T and z := (z1, z2, . . . , zp)T .
The optimization problem of the adjusted overall DF can be stated as follows:

(P)

⎧⎨
⎩

maximize DY (x, z)
subject to x ∈ X ∩ I

X ,
h(z) = 0p.

(15)

We apply negative logarithm to the overall DF from Eq. (14), i.e., F (Y(·)) :=
− log(D(Y(·))) and obtain an additive expression with respect to the individual
desirabilities fj(Yj(·)) = − log dj :

F (Y(·)) :=
m∑

j=1

wjfj(Yj(·)), (16)

for wj ≥ 0 (j = 1, 2, . . . ,m), and not all being zero at the same time (j =
1, 2, . . . ,m). We may assume that w1 + w2 + . . . + wm = 1 without loss of
generality. If all weights were zero at same time, i.e., wj = 0 (j = 1, 2, . . . ,m),
then any yj ∈ R would become a solution of the problem (P). Any sum of
weights, say ω1 + ω2 + . . . + ωm = r for some r > 0, can be reduced to 1
by defining wj := ωj/r (j = 1, 2, . . . ,m). The additive (separable) overall DF
FY (·) = F (Y(·)) = F (y), where F : R

m → R and FY : R
n → R is the

weighted sum of individual fj(Yj(x)) (j = 1, 2, . . . ,m). The individual functions
fj : R → R (j = 1, 2, . . . ,m) are again composite functions and always positive.
Since dj becomes zero at the lower and upper bound of a response, we can
consider applying following techniques to make sure that the logarithm becomes
always defined.

Cutting-off the Interval of y (Technique 1 ): We introduce lower bounds
δl > 0 and δu > 0 (arbitrarily small numbers) for Y (x) − l and u − Y (x),
respectively. This can be interpreted as cutting-off of a piece of the interval of
Y (x) at l of length δl and at u of length δu. By cutting-off the half neighborhoods
[l, l + δl) and (u − δu, u], which are mapped into the intervals [0, εl] and [0, εu]
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(εl := d(l + δl) and εu := d(u − δu) are arbitrarily small numbers), respectively,
the function is prevented from entering these intervals and desirabilities never
become zero as shown in Fig. 3.

The new DF will be defined on the interval [l + δl, u − δu] and we always
have d(Y (x)) > 0, whereas it will not be defined on the intervals [l, l + δl) and
(u − δu, u]. We may add two more constraints to the optimization problem from
(P) which will not affect the solution but ensure that the two-sided desirabilities
never vanish for all j = 1, 2, . . . ,m:

(Y (x) − l)2 ≥ (δl)2, and
(u − Y (x))2 ≥ (δu)2. (17)

Fig. 3. Cutting-off of individual desirability functions dj(yj) (j = 1, 2, . . . ,m).

Shifting the DFs (Technique 2 ): We introduce ε-individual two-sided DFs
with dε(Y (x)) := (d+ ε)(Y (x)), where ε := εY (x) > 0 (arbitrarily small number)
to be a lower bound for ε-individual desirabilities, dε(Y (x)) ≥ ε. This can be
interpreted as a shift in the function values from [0, 1] to [ε, 1 + ε]. Hence, at
Y (x) = l and Y (x) = u, we prevent DF being zero as shown in Fig. 4.

By doing this, we change the definition of the individual DFs with respect
to ε as follows:

dε(y) :=

⎧⎪⎪⎨
⎪⎪⎩

ε, if y ≤ l,

(y−l
t−l )

s1 + ε, if l < y ≤ t,

(y−u
t−u )s2 + ε, if t < y ≤ u,

ε, if y > u.

(18)

Remark 1. Our Techniques 1 and 2 are suitable for both linear and nonlinear
versions of individual DFs. The small numbers δl, δu, εl, εu and ε should be
chosen according to this shape of the DF near l and u. Moreover, we note that
our original problem is a maximization one optimal solution of which will not
be affected by this cutting-off and shifting.
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Fig. 4. Shifting individual desirability functions dj(yj) (j = 1, 2, . . . ,m).

Among those techniques, we use the shifted DFs (dε(y)):

f(y) := − log(dε(y)) and f(Y (·)) = − log(dε(Y (·))), (19)

The optimization problem of additive overall objective function given in (16) is
a minimization problem:

minimize
x

F (Y(x))

subject to x ∈ X,
Yj(x) ∈ Ij (j = 1, 2, . . . ,m).

(20)

Here, x ∈ X ⊂ R
n, where the parallelepiped X given in Eq. (9) is implicitly

defined by a finite number of inequality constraints and Yj(x) ∈ Ij ⊆ R, where
Ij is an interval.

Remark 2. We note that this reformulation of the overall problem does not cause
any change in the global optimal solution, i.e., the solution of the original prob-
lem (P) of Eq. 15 and the one of Eq. (20) are the same. However, we could not
say the same thing for the solution if F (Y(x)) were the weighted sum of the
individual DFs dj(Yj(x)). For a review of different reformulations similar to the
DF optimization and their solution characteristics, we refer to the study of Conn
et al. (2009).

3.1 A Finite Number of Nondifferentiable Points in DFs

Although in practice two-sided DFs typically include only one nondifferentiable
point each, there can be more than one nondifferentiable points in a two-sided
individual DF reflecting the desired behavior of the function around its target
point. Individual DFs including a finite number of nondifferentiable point are
especially useful for approximation of nonlinear conventional DFs by linear or
affine functions.
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Fig. 5. An individual DF with 3 nondifferentiable points dj(yj) and fj(yj) after nega-
tive logarithm is applied.

Regarding its shape, we see that the DF shown in Fig. 4. has a similar ten-
dency to target value as in s1 < 1 and s2 > 1 case of a conventional two-sided
individual DF defined in Eq. (11). Let us assume that there are ζj − 1 (ζj ∈ R)
(j = 1, 2, . . . , m) many nondifferentiable points and hence, ζj “pieces” in indi-
vidual DFs of a multi-response optimization problem. Here, we name the part
of the function lying between consecutive nondifferentiable points by the word
“piece”. A “side” is the part of the function between lower and target values
of the response where in between there can be a finite number of nondifferen-
tiable points. In DFs including a single nondifferentiable point the meanings of
these notions coincide. In Fig. 5, an example of individual DF having 2 sides
but 4 pieces because of 3 nondifferentiable points and its possible outcome with
applying negative logarithm is shown. A response value corresponds to a unique
combination of the factor values which means one ‘piece’ of the function becomes
active (on) while the remaining ones are inactive (off). This makes introduc-
tion of adjusted DFs given in Eq. (12) to the related optimization problem a
suitable approach. An individual DF fY

j (x, zj) including ζj − 1 many nondif-

ferentiable points can be expressed as follows for zj = (zj,1, zj,2, . . . , z
ζj

j )T with
ζj∑

ζ=1

zζ
j = 1 (j = 1, 2, . . . , m) and zζ

j ∈ {0, 1} (ζ = 1, 2, . . . , ζj ; j = 1, 2, . . . ,m):

fY
j (x, zj) =

ζj∑
ζ=1

zζ
j fY,ζ

j (x) (j = 1, 2, . . . , m). (21)
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Hence, the overall problem (P) turns into a minimization problem:

minimize
m∑

j=1

wjf
Y
j (x, zj)

subject to x ∈ [lx,ux],
fY,ζ

j (x) ≥ 0 (ζ = 1, 2 . . . ζj ; j = 1, 2, . . . ,m),
ζj∑

ζ=1

zζ
j = 1 (j = 1, 2, . . . ,m),

zζ
j ∈ {0, 1} (ζ = 1, 2, . . . , ζj ; j = 1, 2, . . . ,m).

(22)

where wj ≥ 0 (j = 1, 2, . . . , m) are given weights and
m∑

j=1

wj = 1. We note that

each function fY,ζ
j : Rn → R is assumed to be a C2-function. Here, zζ

j is the
indicator of the active piece fY,ζ

j of fY
j :

zζ
j =

{
1, if fY

j (x) = fY,ζ
j (x),

0, otherwise.
(23)

The constraint zζ
j ∈ {0, 1} can equivalently be stated as zζ

j − (zζ
j )2 = 0 and zj =

(zj,1, zj,2, . . . , z
ζj

j )T is a unit vector of length ζj . Problem (22) is a nonconvex
global optimization problem of a nonsmooth objective function with possibly
many local minima and maxima. By using max-type functions, we can state a
special case of problem (22) as follows:

minimize FY (x) (=
m∑

j=1

wj max
ζ=1,2,...,ζj

fY,ζ
j (x))

subject to x ∈ [lx,ux],
FY (x) ≥ 0,

(24)

where x = (x1, x2, . . . , xm)T and the objective function is a convex combination
of the max-type functions fY,ζ

j .

3.2 Separation of Parameters as y-Space and x-Space

The overall function F (·) of the vector y = (y1, y2, . . . , ym)T , where y = Y(x)

satisfies F (y) :=
m∑

j=1

wjfj(yj) for fj : Ij → R (j = 1, 2 . . . , m). The intervals

Ij := [lj , uj ] (j = 1, 2 . . . , m) can be disjoint for all j, intersecting or even the
same for some or all j. We notice that the graph of F in y can be connected
or disconnected according to the positions of these intervals; usually it is dis-
connected, and it can be connected only if all responses have the same interval
for all j. If we consider the optimization of F with respect to y, we have the
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following constrained minimization problem:

minimize
y

F (y) = w1f1(y1) + w2f2(y2) + . . . + wmfm(ym)

subject to yj ∈ Ij (j = 1, 2, . . . ,m),
(25)

where w1 + w2 + . . . + wm = 1 with wj ≥ 0 (j = 1, 2, . . . ,m) representing the
convex combinations of the individual DFs f . By the additive structure of the
objective function, the optimal (global) solution of this problem t is a vector
of the (global) optimal solutions of fj(y), say tj (j ∈ J): t := (t1, t2, . . . , tm)T ,
i.e., the vector of what we called the target point. This vector t is usually named
as the ideal point of the overall problem in Eq. (22); it lies in the m-dimensional
cube I ⊂ R

m:
I = X

j∈J
Ij (= I1 × I2 × . . . × Im). (26)

3.3 Structural Configuration of DF

It is possible to have an equivalent formulation of Eq. (22) by using piece-
wise max-type functions to express individual functions fj over their interval
Ij := [lj , uj ] partitioned suitably into a κj number of subintervals Ij,κ (κ =
1, 2, . . . , κj). We mean by a “suitable” partitioning of the interval that at each
subinterval corresponding function is of max-type (Fig. 6).

Fig. 6. Min-type and max-type piecewise-differentiable functions

It is obvious that the number of subintervals κj could be less than or equal
to ζj . Let us define the index sets that are used throughout this chapter:
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– for the number of individual functions fj and intervals Ij :
J = {1, 2 . . . ,m} with elements j ∈ J ,

– for the number of subintervals of Ij :
Kj = {1, 2, . . . , κj} with elements κ ∈ Kj ,

– for the number of function pieces at each subinterval κ:
Zj,κ = {1, 2, . . . , ζj,κ} with elements ζ ∈ Zj,κ,

– for the total number of function pieces for each j:
Zj = {1, 2, . . . , ζj} with elements ς ∈ Zj .

Here, Ij =
κj⋃

κ=1
Ij,κ where Ij,κ := [lj,κ, uj,κ] is the interval with lower bound lj,κ

and upper bound uj,κ (κ ∈ Kj , j ∈ J). Furthermore, we assume that neighboring
subintervals have just boundary points in common: uj,κ = lj,κ−1 (κ ∈ Kj \
{1}, j ∈ J). At each subinterval Ij,κ, the max-type function is called fj,κ, i.e.,

fj,κ := fj |Ij,κ
(κ ∈ Kj , j ∈ J)where fj,κ := max

ζ=1,2,...,ζj

fζ
j,κ. (27)

The minimization of functions fj,κ in y for a fixed κ ∈ Kj and for a fixed j ∈ J
is a finitely constrained nonsmooth minimax problem:

minimize
y

fj,κ(y)

subject to y ∈ Ij,κ,
(28)

and, in other words,

minimize
y∈Ij,κ

maximize
ζ∈Zj,κ

fζ
j,κ(y). (29)

Let the solution of (28) be called tj,κ (κ ∈ Kj) for each j ∈ J . Now, the minimiza-
tion of individual functions fj(y) is a discrete optimization problem, actually,
an enumeration problem, over all κ, for each regarded j:

min
y∈Ij

fj(y) := min{fj,1(tj,1), fj,2(tj,2), . . . , fj,κj
(tj,κj

)} = min
κ∈Kj

fj,κ(tj,κ). (30)

By solving these problems to find the minimum of fj(y) per given j ∈ J , we
obtain a set of solutions, say tj , which are, in fact, tj := tj,κ̄j

at a certain
κ̄j ∈ Kj . These solutions are the target points as we discuss in Sect. 3.2. Hence,
the vector t := (t1, t2, . . . , tm)T is the ideal point of the overall problem that lies
in the m-dimensional cube I.

The piecewise smooth structure of the functions fj(·) together with the addi-
tive separability (also called linearity) of the regarded overall function F (·)
enables us to be concerned about the local properties of the max-type func-
tions fj,κ(·) and their optimization problem (28), to achieve results and gain
qualitative insights into the full-dimensional problem (25) in y.
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4 A New Approach for Multi-objective Optimization:
Two-Stage (Bilevel) Method

If we consider the optimization problem (25) (in y only), its solution will be the
ideal solution t := (t1, t2, . . . , tm)T . We suggest as one of various approaches of
this study: (i) First to find the factor levels xt

j := ((xt
j)1, (x

t
j)2, . . . , (x

t
j)n)T (j =

1, 2, . . . ,m) corresponding to the ideal solutions tj , i.e., tj := Yj(xt
j) for each

individual function f , (ii) then to compute the convex hull of these optimal
solutions xt

j (j = 1, 2, . . . ,m) and determine some compromised solution x̄ :=
(x̄1, x̄2, . . . , x̄n)T which may not be the global one for the overall problem given
in the previous chapter but a close one.

In other words, we firstly solve a representation problem of searching for an
m × n design matrix

Xt := (xt
1,x

t
2, . . . ,x

t
m)T (31)

by finding the zero of the system of Y(Xt) − t, where Y = (Y1, Y2, . . . , Ym)T .
Then we take the convex hull to obtain a compromised factor level x̄ :=
(x̄1, x̄2, . . . , x̄n)T , i.e., the solution of ȳ := Y(x̄), where ȳ := (ȳ1, ȳ2, . . . , ȳm)T is
a compromised solution in y-space. We call this approach a two-stage method,
because it is similar to the other bilevel approaches (Dempe 2002): First, we
consider the optimization problem only in y as the lower level problem stated in
Sect. 3; then, by introducing x into our analysis, we pass to the upper level of
this problem, which contains a representation problem.

Let us recall that per yj , we are in a compact interval Ij = [lj , uj ] (j =
1, 2, . . . ,m), i.e., feasible sets of the lower level problem and the individual func-
tions fj(yj) are continuous and nonsmooth. By the following assumption, we may
think that the space X ⊂ R

n of the factor variable x is compact, in fact, of the

Cartesian product form X = [lx,ux] =
n

X
i=1

Xi with Xi := [lxi
, uxi

] (i = 1, 2, . . . , n)

being compact intervals. In this case, X is a parallelepiped and, hence, for each
j = 1, 2, . . . ,m, the image Yj(X) is again an interval which can be defined as our
interval Ij , i.e., Yj(X) := I. We introduce

X
appr := co{xt

1,x
t
2, . . . ,x

t
m}, (32)

where the pointsxt
j (j = 1, 2, . . . ,m) are solutions of the zero problemsYj(x)−tj =

0 (j = 1, 2, . . . , m) together with the vector-valued condition x ∈ X, which can be
represented further by 2n linear inequality constraints. Altogether, we arrive at
2n + m scalar-valued constraints. We note that Xappr is convex, in fact, a polytope
and, hence, because of the convexity of X, it holds X

appr ⊆ X. Here, we have a
discrete structure in the entire x-space, given by the vertices of Xappr, and could
further optimize (select) over the full polytope X

appr in that space. The weights
may, e.g., come from the exponents given in the conventional DF. Indeed, we could

choose x̄ =
m∑

j=1

wjxt
j . The main advantage of this coupling is that we would get

an optimizer in that polytope within the full dimensions of Rn. However, since
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still the variables are treated in a separated way, this new approach is just an
approximation to our original problem. This approximation can be simplifying
very much, because of the joint dependence of all the yj = Yj(x) (j = 1, 2, . . . ,m)
on x and because of the nonlinearity and nonconvexity of the function fj and Yj

(j = 1, 2, . . . ,m). It can be motivated by game theory and introduces Xappr as a
set of compromise solutions.

Another new opportunity is to further look for conditions to apply versions
of the Intermediate Value Theorem directly in the full dimensions of the vector
variable y, rather than in each dimension with the difficulty of selecting the suit-
able optimizer in the x-space then. In more general terms, we may also speak
of the Implicit Function Theorem. Here, the structure of the functions Yj , e.g.,
the relations between the xi (i = 1, 2, . . . , n) and the yj (j = 1, 2, . . . ,m), is an
important issue. We must have an (arcwise) connected domain of the vector-
valued function Y(x) (= (Y1(x), Y2(x), . . . , Ym(x))T ), which we equate with
(ȳ1, ȳ2, . . . , ȳm)T , and hence, of each of its components Yj(x) (j = 1, 2, . . . ,m).

Let us summarize that this initial, pioneering and approximative approach
has consisted of a separate consideration of the components yj , combined with
an enumeration (minimizing in a set of finitely many indices) along the pieces
in each of these components, of a possible application of the Intermediate Value
Theorem on the corresponding Yj(x) and, finally, of a polytope and selection
argument in X

appr, in order to find a compromise solution x̄ of the given problem.
In any case, what can be done is:

i. define a weighed sum of the components Yj(x), e.g., by the exponents that
we can take from the DF as the weights, and to apply the Intermediate Value
Theorem on corresponding real-valued function, then our zero problem of finding
x = x̄ looks, e.g., as follows:

(
m∑

j=1

wjYj)(x) =
m∑

j=1

wj ȳj . (33)

ii. approach the system of 2n + m equations: Yj(x) − ȳj = 0 (j = 1, 2, . . . ,m)
and x ∈ X, and treat it with the help of the theory of Inverse Problems, e.g., by
the Inverse Function Theorem or the Implicit Function Theorem. We select

x̄ =
m∑

j=1

ŵjxt
j (where ŵj ≥ 0 (j = 1, 2, . . . ,m) and

m∑
j=1

ŵj = 1), (34)

e.g.,

x̄ =
m∑

j=1

wjxt
j , (where ŵj = wj (j = 1, 2, . . . ,m)) or, especially

x̄ = 1
m

m∑
j=1

xt
j , (where ŵj = 1 for all (j = 1, 2, . . . , m)).

(35)

5 Concluding Remarks

Many optimizaion approaches presented for DFs can be utilized in practice to
find the root desirable solutions to multi-response optimization problems. Other
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approaches present opportunities for researches to improve performances. In this
bookchapter, we elaborate the nondifferentiability issues of DFs of Derringer and
Suich with a structural approach. A new multi-objective optimization method
is suggested which is motivated by more than one nonddiferentiable point case
of DFs. The We present the improvements in the MRO literature related with
the response dependencies and robustness issues.
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Abstract. In this paper, we analyze an unreliable queueing system con-
sisting of an infinite buffer and two heterogeneous servers. The main
server (server 1) is unreliable, while the server 2 is considered as the
reserve server and is assumed to be absolutely reliable. The service times
have the PH-type (Phase-type) distribution. If both servers are able to
provide the service, they serve a customer independently of each other.
The service of a customer is completed when his/her service by any of
two servers is finished. After the service completion, both servers imme-
diately start the service of the next customer, if he/she presents in the
system. If the system is idle, the servers wait for arrival of the new cus-
tomer. The input flow is described by the BMAP (Batch Markovian
Arrival Process). Breakdowns arrive to the server 1 according to a MAP
(Markovian Arrival Process). After breakdown occurrence, repair of the
server starts. The repair time also has the PH-type (Phase-type) distri-
bution. The customers, which meet the servers busy upon arrival, join a
buffer. They will be picked up for the service according to the First-In-
First-Out discipline. The customers arrived at the same batch are picked
up for the service in random order. If a customer arriving from outside
or from a buffer sees only server 2 ready for service while the server 1
is under repair, only server 2 starts the service of this customer. But
if server 1 is repaired before service completion of this customer, server
1 immediately begins the service of this customer. For this model, we
derive ergodicity condition, calculate the key performance measures of
the system and derive an expression for the Laplace-Stieltjes transform
of the sojourn time distribution of an arbitrary customer.

Keywords: Unreliable queueing system · Batch Markovian Arrival
Process · Phase-type distribution · Stationary state distribution ·
Sojourn time distribution

1 Introduction

Queueing theory is an important branch of operations research. It provides
a powerful mathematical tool for solving various problems of statical and
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dynamical optimization of operation of real-life systems and processes. The most
impressive applications of queueing theory are in the field of telecommunications.
Early papers by A.K. Erlang at the beginning of the 20th century were inspired
by the needs of statical control of telephone networks as the problems of min-
imization of equipment and staff of telephone companies subject to the fixed
restrictions imposed on the indicators of quality of customers service (proba-
bility of dropping a call, waiting time, etc.). As an example of application of
queueing theory to solution of the problem of dynamic control by the system
operation (control by the robots (crawlers) that traverse the web and bring web
pages to the indexing engine that updates the data base of a web search engine),
the paper [1] can be mentioned.

During the last few years, intensive studies towards to improving the perfor-
mance of wireless communication have been conducted within the development
of the next generation (5G) networks. As it is mentioned in [2], one of the main
directions of creating the ultra-high speed (up to 10 Gbit/s) and reliable wireless
means of communication is the development of hybrid communication systems
based on laser and radio-wave technologies. Because of the high practical need
for hybrid communication systems, a considerable amount of studies of this class
of systems have appeared recently. Some results of these studies are presented in
[3–5]. Papers from [3] are focused mainly on the study of stationary reliability
characteristics, methods and algorithms for optimal channel switching in hybrid
systems by means of simulation.

Papers [4] and [5] are devoted to formulation and study of mathematical
models of communication hybrid systems, consisting of a laser channel and a
redundant IEEE 802.11n channel (“cold” or “hot” standby). Paper [4] deals
with the so-called “cold” redundancy, in which the radio-wave link is assumed
absolutely reliable (its work does not depend on the weather conditions) and
it backs up the atmospheric optical (laser) communication link only in cases
when the latter interrupts its functioning because of the unfavorable weather
conditions. Upon the occurrence of favorable weather conditions the data pack-
ets begin to be transmitted over the FSO (Free Space Optical) channel. In the
paper a statistical analysis of meteorological data for duration of the periods of
favorable and unfavorable weather conditions is also carried out. In paper [5],
the model of a hybrid communication channel with “hot” redundancy is con-
sidered, where the backup IEEE 802.11n channel is not idle and continuously
transmits data along with the FSO channel, but, unlike the latter, at low
speeds. The mathematical model of such hybrid channel is represented by a two-
channel queuing system with a single unreliable server. The paper [2] presents
results a further development of this study when a millimeter-wave (71–76 GHz,
81–86 GHz) radio channel is used as a backup one.

In the present paper, we consider queueing system suitable to model a hybrid
communication channel with “hot” reserve under more general, in comparison
with [5], assumptions about the pattern of arrival processes of customers and
breakdowns and distribution of service times.

The rest of the paper consists of the following. In the next section,
the mathematical model is described. The process of the system states as
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multi-dimensional continuous time Markov chain is described in Sect. 3. The
generator of this Markov chain is presented. Section 4 is devoted to derivation of
the ergodicity condition for this Markov chain and the brief description of the
algorithm for computation of its stationary distribution. The vector probability
generating function of this distribution and formulas for computation of some
performance measures are obtained in Sect. 5. The sojourn time distribution in
terms of Laplace-Stieltjes transform is obtained in Sect. 6. Section 7 concludes
the paper.

2 Mathematical Model

We consider a queueing system consisting of an infinite buffer and two servers:
the main working server (server 1) and the back-up (reserve) server (server 2).
By default, we assume that the server 1 is high-speed but unreliable while the
server 2 is low-speed but absolutely reliable. However, it should be mentioned
that the presented analysis is implemented without any use of the fact that
service rate at server 1 is higher than at the service rate at server 2.

Customers arrive into the system in accordance with the Batch Markovian
Arrival Process (BMAP ). The BMAP is defined by the underlying process
νt, t ≥ 0, which is an irreducible continuous-time Markov chain with the finite
state space {0, . . . , W}, and the matrix generating function

D(z) =
∞∑
k=0

Dkz
k, |z| ≤ 1.

The batches of customers enter the system only at the epochs of the chain νt, t ≥ 0,
transitions. The (W + 1) × (W + 1) matrices Dk, k ≥ 1, (non-diagonal entries
of the matrix D0) define the intensities of the process νt, t ≥ 0, transitions which
are accompanied by generating the k-size batch of customers. The matrix D(1)
is an infinitesimal generator of the process νt, t ≥ 0. The intensity (fundamental
rate) of the BMAP is defined as

λ = θD′(1)e

where θ is the unique solution of the system

θD(1) = 0, θe = 1,

and the intensity of batch arrivals is defined as λb = θ(−D0)e. Here and in the
sequel e(0) is a column (row) vector of appropriate size consisting of 1’s (0’s).
The coefficient of variation, cvar, of intervals between batch arrivals is given by

c2var = 2λbθ(−D0)−1e − 1

while the coefficient of correlation, ccor, of intervals between successive batch
arrivals is calculated as

ccor = (λbθ(−D0)−1(D(1) − D0)(−D0)−1e − 1)/c2var.
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For more information about the BMAP, its history, properties, special cases
and related research see [6] and the survey paper by S. Chakravarthy [7].

If the servers are busy at an arrival epoch or the server 2 is busy while the
server 1 is under repair, the customer is placed at the end of the queue in the
buffer and is picked-up for a service later on, according the FIFO discipline. If an
arriving customer or the first customer from the queue sees two servers idle and
ready for service, he/she begins service at both servers. If server 1 is under repair
and the server 2 is idle, the latter server begins the service of the customer. If
the service of a customer is not finished until the end of repair period, server
1 immediately starts the service of the customer. The service of a customer is
considered be completed when his/her service by any of two servers is finished.

The flow of breakdowns is defined as the MAP with an underlying process
ζt, t ≥ 0, which takes values in the set {0, 1, . . . , Z} and is defined by the matrices
F0 F1. The fundamental rate of this MAP is

ϕ = φF1e

where the row vector φ is the unique solution of the system

φ(F0 + F1) = 0, φe = 1.

When the server fails, the repair period starts immediately. Duration of this
period has PH type distribution with an irreducible representation (τ ,T). It
means the following. Repair time is interpreted as the time until the continuous
time Markov chain ηt, t ≥ 0, with the state space {1, . . . , R+1} reaches the single
absorbing state R + 1. Transitions of the chain ηt, t ≥ 0, within the state space
{1, . . . , R} are defined by the sub-generator T while the intensities of transitions
into the absorbing state are defined by the vector T0 = −Te. At the service
beginning epoch, the state of the process mt, t ≥ 0, is chosen within the state
space {1, . . . , R} according to the probabilistic row vector τ . It is assumed that
the matrix T + T0τ is an irreducible one. The repair rate is calculated as

æ = −(τT−1e)−1.

For more information about the PH type distribution, its properties, partial
cases, and suitability for approximation of a variety of probability distributions
arising in modelling real-life systems see, e.g., [8].

Breakdowns arriving during the repair time are ignored by the system.
The service time of a customer by the kth server, k = 1, 2, has PH type

distribution with an irreducible representation (β(k),S(k)). The service process
on the kth server is directed by the Markov chain m

(k)
t , t ≥ 0, with the state

space {1, . . . , M (k),M (k)+1} where M (k)+1 is an absorbing state. The intensities
of transitions into the absorbing state are defined by the vector S(k)

0 = −S(k)e.
The service rates are calculated as

μ(k) = −[β(k)(S(k))−1e]−1, k = 1, 2.



Analysis of Unreliable Single Server Queueing System 153

3 Process of the System States

Let

• it be the number of customers in the system at the moment t, it ≥ 0;
• rt = 0, if server 1 is under repair at the moment t, rt = 1, if server 1 is not

broken, i.e., both the servers are fault-free at the moment t;
• m

(k)
t be the state of the directing process of the service at the k-th busy server,

m
(k)
t = 1,M (k), k = 1, 2;

• ηt be the state of the directing process of the repair time at the server 1,
ηt = 1, R, if rt = 0;

• νt and ζt be the states of the directing process of the BMAP of customers
and the MAP of breakdowns, correspondingly, νt = 0,W , ζt = 0, Z, at the
epoch t, t ≥ 0.

The process of the system states is described by the regular irreducible contin-
uous time Markov chain, ξt, t ≥ 0, with the state space

X = {(0, 0, η, ζ, ν)}
⋃

{(0, 1, ζ, ν)}
⋃

{(i, 0, η,m(2), ζ, ν)}
⋃

{(i, 1,m(1),m(2), ζ, ν)}, i ≥ 1, η = 1, R, m(k) = 1,M (k), k = 1, 2,

ζ = 0, Z, ν = 0,W .

In the following, we will assume that the states of the chain ξt, t ≥ 0, are
ordered as follows. Under fixed values of (i, r), the states of the chain are enu-
merated in the lexicographic order. Denote the obtained ranked sets as Ωi,r, and
arrange the state space X as follows:

Ω0,0, Ω0,1, Ω1,0, Ω1,1, Ω2,0, Ω2,1, Ω3,0, Ω3,1, . . . .

Let Qij , i, j ≥ 0, be the matrices formed by intensities of the chain transition
from the state corresponding to the value i of the component in to the state
corresponding to the value j of this component. The following statement is true.

Lemma 1. Infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the
block structure

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 Q0,2 Q0,3 · · ·
Q1,0 Q1 Q2 Q3 · · ·
O Q0 Q1 Q2 · · ·
O O Q0 Q1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

where the non-zero blocks of generator are of the following form:

Q0,0 =
(

T ⊕ (F0 + F1) ⊕ D0 T0 ⊗ IZ̄ ⊗ IW̄
τ ⊗ F1 ⊗ IW̄ F0 ⊕ D0

)
,
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Q0,k =

(
IR ⊗ β(2) ⊗ IZ̄ ⊗ Dk O

O β(1) ⊗ β(2) ⊗ IZ̄ ⊗ Dk

)
, k ≥ 1,

Q1,0 =

(
IR ⊗ S(2)

0 ⊗ IZ̄ ⊗ IW̄ O
O (S(1)

0 ⊗ eM(2) + eM(1) ⊗ S(2)
0 ) ⊗ IZ̄ ⊗ IW̄

)
,

Q0 =

(
IR ⊗ S(2)

0 β(2) ⊗ IZ̄ ⊗ IW̄ O
O S̃ ⊗ IZ̄ ⊗ IW̄

)
,

Q1 =
(

T ⊕ S(2) ⊕ (F0 + F1) ⊕ D0 T0β
(1) ⊗ IM(2) ⊗ IZ̄ ⊗ IW̄

eM(1)τ ⊗ IM(2) ⊗ F1 ⊗ IW̄ S(1) ⊕ S(2) ⊕ F0 ⊕ D0

)
,

Qk =
(

IR ⊗ IM(2) ⊗ IZ̄ ⊗ Dk−1 O
O IM(1) ⊗ IM(2) ⊗ IZ̄ ⊗ Dk−1

)
, k ≥ 2,

where

S̃ = S(1)
0 β(1) ⊗ eM(2)β(2) + eM(1)β(1) ⊗ S(2)

0 β(2),

W̄ = W + 1, Z̄ = Z + 1, ⊗ and ⊕ are the symbols of Kronecker product and
sum of matrices, see, e.g., [9].

The proof of the lemma is implemented by means of calculation of probabilities
of transitions of the components of the Markov chain during a time interval
having infinitesimal length.

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of continuous
time quasi-Toeplitz Markov chains, see [10].

Denote Q̃(z) =
∞∑
k=1

Q0,kz
k, Q(z) =

∞∑
k=0

Qkz
k, |z| ≤ 1.

Corollary 2. The matrix generating functions Q̃(z), Q(z) are of the form

Q̃(z) = z

(
IR ⊗ β(2) ⊗ IZ̄ ⊗ IW̄ O

O β(1) ⊗ β(2) ⊗ IZ̄ ⊗ IW̄

)
+

diag{IRZ̄ ⊗ (D(z) − D0), IZ̄ ⊗ (D(z) − D0)}, (1)

Q(z) = Q0 + z

(
T ⊕ S(2) ⊕ (F0 + F1) ⊗ IW̄ T0β

(1) ⊗ IM(2) ⊗ IZ̄ ⊗ IW̄
eM(1)τ ⊗ IM(2) ⊗ F1 ⊗ IW̄ S(1) ⊕ S(2) ⊕ F0 ⊗ IW̄

)

+ zdiag{IRM(2)Z̄ ⊗ D(z), IM(1)M(2)Z̄ ⊗ D(z)}. (2)

Here diag{•, •} denotes the diagonal matrix with the diagonal blocks listed in the
brackets.
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4 Ergodicity Condition. Stationary Distribution
of the System States

Theorem 1. The necessary and sufficient condition for ergodicity of the Markov
chain ξt, t ≥ 0, is the fulfillment of the inequality

λ < x diag{eR ⊗ S(2)
0 ⊗ eZ̄ , (S(1)

0 ⊗ eM(2) + eM(1) ⊗ S(2)
0 ) ⊗ eZ̄}e (3)

where the vector x is the unique solution of the system of linear algebraic equa-
tions

xA = 0, xe = 1 (4)

where

A =

(
T ⊕ S(2) ⊕ (F0 + F1) + IR ⊗ S

(2)
0 β(2) ⊗ IZ̄ T0β

(1) ⊗ IM(2) ⊗ IZ̄
eM(1)τ ⊗ IM(2) ⊗ F1 S̃ ⊗ IZ̄ + S(1) ⊕ S(2) ⊕ F0

)
.

Proof. It follows from [10], that a necessary and sufficient condition for existence
of the stationary distribution of the chain ξt, t ≥ 0, can be formulated in terms
of the matrix generating function Q(z) and has the form of the inequality

yQ
′
(1)e < 1, (5)

where the row vector y is the unique solution of the system of linear algebraic
equations

yQ(1) = 0, ye = 1. (6)

Let the vector y be of the form

y = x ⊗ θ (7)

where θ is the vector of the stationary distribution of the BMAP underlying
process νt, t ≥ 0, and x is a stochastic vector. Substituting expression (7) into
(6), we verify that y is the unique solution of system (6) if the vector x satisfies
system (4).

Substituting the vector y in the form (7) into (5) and using expression (2)
to calculate the derivative Q′(1), we reduce inequality (5) to the form (3).

The theorem is proved.

Remark 1. Intuitive explanation of stability condition (3) is as follows. The left
hand side of inequality (3) is the rate of customers arriving into the system. The
right hand side of the inequality is a rate of customers leaving the system after
service under overload condition. It is obvious that in steady state the former
rate must be less that the latter one.

Corollary 3. In the case of stationary Poisson flow of breakdowns and expo-
nential distribution of service and repair times, ergodicity condition (3)-(4) is
reduced to the following inequality:
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λ < μ2 +
æ

æ + ϕ
μ1. (8)

Proof. In the case under consideration, the vector x consists of two components,
say,x = (x1, x2). It is easy to see that inequality (3) is reduced to the following one:

λ < x1μ2 + x2(μ1 + μ2). (9)

System (4) is written as
⎧⎨
⎩

−x1æ + x2ϕ = 0,
x1æ − x2ϕ = 0,

x1 + x2 = 1.
(10)

Relations (9)-(10) imply inequality (8). The corollary is proved.

In what follows we assume inequality (3) be fulfilled.
Denote the stationary state probabilities of the chain ξt, t ≥ 0, by

p(0, 0, η, ζ, ν), p(0, 1, ζ, ν), p(i, 0, η,m(2), ζ, ν),

p(i, 1,m(1),m(2), ζ, ν), i ≥ 1, η = 1, R, m(k) = 1,M (k), k = 1, 2,

ζ = 0, Z, ν = 0,W .

Let us enumerate the steady state probabilities in accordance with the intro-
duced above order of the states of the chain and form the row vectors pi of
steady state probabilities corresponding the value i of the first component of the
Markov chain, i ≥ 0.

To calculate the vectors pi, i ≥ 0, we use the numerically stable algorithm,
see [10], which has been elaborated for calculating the stationary distribution of
multi-dimensional continuous time quasi-Toeplitz Markov chains. The derivation
of this algorithm is based on censoring technique and the algorithm consists of
the next principal steps.

Algorithm.

1. Calculate the matrix G as the minimal nonnegative solution of the non-linear
matrix equation

∞∑
n=0

QnGn = O.

2. Calculate the matrix G0 from the equation

Q1,0 +
∞∑

n=1

Q1,nGn−1G0 = O

whence it follows that

G0 = −(
∞∑

n=1

Q1,nGn−1)−1Q1,0.
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3. Calculate the matrices Q̄i,l, l ≥ i, i ≥ 0, using the formulae

Q̄i,l =

⎧⎪⎪⎨
⎪⎪⎩

Q0,l +
∞∑

n=l+1

Q0,nGn−1Gn−2 . . .Gl, i = 0, l ≥ 0,

Ql−i +
∞∑

n=l+1

Qn−iGn−1Gn−2 . . .Gl, i ≥ 1, l ≥ i,

where Gi = G, i ≥ 1.
4. Calculate the matrices Φl using the recurrent formulae

Φ0 = I,Φl =
l−1∑
i=0

ΦiQ̄i,l(−Q̄l,l)−1, l ≥ 1.

5. Calculate the vector p0 as the unique solution of the system

p0(−Q̄0,0) = 0, p0

∞∑
l=0

Φle = 1.

6. Calculate the vectors pl, l ≥ 1, as follows:

pl = p0Φl, l ≥ 1.

The proposed algorithm is numerically stable because all matrices involved into
the algorithm are non-negative.

5 Vector Generating Function of the Stationary
Distribution. Performance Measures

Having the stationary distribution of the system states pi, i ≥ 0, been calculated
we can find a number of stationary performance measures of the considered
system. When calculating the performance measures, the following result will be
useful, especially in the case when the distribution pi, i ≥ 0, is heavy tailed.

Lemma 2. The vector generating function P(z) =
∞∑
i=1

piz
i, |z| ≤ 1, satisfies

the following equation:

P(z)Q(z) = z[p1Q0 − p0Q̃(z)]. (11)

Remark 2. Equation (11) is indeed the functional-differential equation because
it is equivalent to equation

P(z)Q(z) = z

[
dP(z)

dz
|z=0Q0 − p0Q̃(z)

]
.

In particular, formula (11) can be used to calculate the value of the generating
function P(z) and its derivatives at the point z = 1 without the calculation
of infinite sums. Having these derivatives been calculated, we will able to find
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moments of the number of customers in the system and some others performance
measures of the system. The problem of calculating the value of the vector
generating function P(z) and its derivatives at the point z = 1 from Eq. (11) is
non-trivial one because the matrix Q(z) is singular at the point z = 1.

Let us denote f (n)(z) the nth derivative of the function f(z), n ≥ 1, and
f (0)(z) = f(z).

Corollary 4. The mth, m ≥ 0, derivatives of the vector generating function

P(z) =
∞∑
i=1

piz
i, |z| ≤ 1, at the point z = 1 (so called vector factorial moments)

are recursively calculated as the solution of the system of linear algebraic equations
⎧⎪⎪⎨
⎪⎪⎩

P(m)(1)Q(1) = H(m)(1) −
m−1∑
l=0

Cl
mP(l)(1)Q(m−l)(1),

P(m)(1)Q′(1)e = 1
m+1 [H(m+1)(1) −

m−1∑
l=0

Cl
m+1P

(l)(1)Q(m+1−l)(1)]e.

(12)

where

H(m)(1) =

⎧⎨
⎩

p1Q0 − p0Q̃(1), m = 0,

p1Q0 − p0Q̃(1) − p0Q̃′(1), m = 1,

−p0[mQ̃(m−1)(1) + Q(m)(1)], m > 1,

and the derivatives Q(m)(1), Q̃(m)(1) are easily calculated using formulas (1)-(2).

The proof of the corollary is based on the technique very similar to the one
outlined in paper [11] and is omitted here.

Further, we list some performance measures of the system under consideration.

• Throughput of the system (maximal number of the customers that can
be processed during an unit of time) is defined by the right hand side of
inequality (3).

• Mean number of customers in the system

L = P(1)(1)e.

• Variance of the number of customers in the system

V = P(2)(1)e + L − L2.

• The share of time when the server 1 is fault-free

P1 = P(1)diag{ORM(2)Z̄W̄ , IM(1)M(2)Z̄W̄ }e + p0diag{ORZ̄W̄ , IZ̄W̄ }e.

• The share of time when the server 1 is under repair

P0 = P(1)diag{IRM(2)Z̄W̄ ,OM(1)M(2)Z̄W̄ }e + p0diag{IRZ̄W̄ ,OZ̄W̄ }e.
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6 Sojourn Time Distribution

Let V (x) be the stationary distribution function of the sojourn time of an arbi-
trary customer in the system. Denote the Laplace - Stieltjes transform of this

function as v(s) =
∞∫
0

e−sxdV (x), Re s ≥ 0.

Theorem 2. The Laplace - Stieltjes transform of the sojourn time stationary
distribution is calculated as

v(s) = λ−1{p0

∞∑
k=1

Q0,k

k∑
l=1

Ψl(s) +
∞∑
i=1

pi

∞∑
k=2

Qk

k−1∑
l=1

Ψi+l(s)}e (13)

where

Ψ(s) = (sI − Q̂)−1Q0, Q̂ = Q(1) − Q0. (14)

Proof. The proof is based on the probabilistic interpretation of the Laplace-
Stieltjes transform. We assume that, independently on the system operation,
the stationary Poisson input of so called catastrophes arrives. Let s, s > 0
be the intensity of this flow. Then, the Laplace-Stieltjes transform v(s) can be
interpreted as the probability of no catastrophe arrival during the sojourn time
of an arbitrary customer. It allows to derive the expression for v(s) by means of
probabilistic reasonings.

Let us assume that at the moment of the beginning of a customer service the
initial phases of service time at the servers are already determined. Then the
matrix of probabilities of no catastrophes arrival during the service time of this
customer (and corresponding transitions of the finite components of the Markov
chain ξt, t ≥ 0,) is evidently calculated as

Ψ̃(s) =

∞∫

0

e(−sI+Q̂)tQ1,0dt = (sI − Q̂)−1Q1,0, (15)

if at the departure epoch there are no customers in the queue, and

Ψ(s) =

∞∫

0

e(−sI+Q̂)tQ0dt = (sI − Q̂)−1Q0, (16)

if at the departure epoch there are customers in the queue.
Note, that Ψ̃(s)e = Ψ(s)e because Q1,0e = Q0e. So, the matrix Ψ̃(s) does

not appear in the formula (13).
Assuming that an arbitrary customer arriving in a group of size k is placed

on the jth position, j = 1, k, with probability 1/k and using the law of total
probability, we obtain the following expression

v(s) = p0

∞∑
k=1

k

λ
Q0,k

k∑
l=1

1
k
Ψl(s)e +

∞∑
i=1

pi

∞∑
k=2

k − 1
λ

Qk

k−1∑
l=1

1
k − 1

Ψi+l(s)e. (17)

Formula (13) immediately follows from formula (17). The theorem is proved.
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Remark 3. Expression (13) contains the infinite sums. But, it can be further
simplified. E.g. expression

∞∑
k=1

Q0,k

k∑
l=1

Ψl(s)

can be transformed as

∞∑
k=1

Q0,k

k∑
l=1

Ψl(s) = (Q̃(1) − Q̃(Ψ(s)))Ψ(s)(I − Ψ(s))−1.

However, formula (13) is quite suitable for direct computations, especially if
the BMAP has a final support, i.e., only a finite number of matrices Dk are
non-zero.

Corollary 5. Mean sojourn time v̄ of an arbitrary customer in the system is
calculated as

v̄ = −λ−1[p0

∞∑
k=1

Q0,k

k∑
l=1

l−1∑
m=0

Ψm(0)+

∞∑
i=1

pi

∞∑
k=2

Qk

k−1∑
l=1

i+l−1∑
m=0

Ψm(0)]Ψ′(0)e (18)

where
Ψ′(0) = −[Q̂(1)]−2Q0.

Proof. To obtain formula (18), we differentiate Eq. (16) at the point s = 0 and use
the well-known relation v̄ = −v′(0). Further, we reduce the obtained expression
to the form (18) using the fact that the matrix Ψ(0) is a stochastic one.

7 Conclusion

We considered queueing model having two heterogeneous servers. One server is
the main server, another one is reserved (back-up) server. The main, high speed,
server is unreliable. The reserved, low speed, server is reliable. When the main
server is available, it provides the service in parallel with the reserved server (this
means that the reserved server is in a hot reserve). When the main server is bro-
ken, the service is performed only by the reserved server. Under quite general
assumptions about arrival processes of customers and breakdowns and about
distribution of service and repair times, we described behavior of the system by
the multi-dimensional Markov chain that is a quasi-Toeplitz chain. Using known
results for such a type of chains, we derived stability condition of this system,
computed stationary distribution of the system states, presented expression for
the vector generating function of this distribution and the recursive procedure
for calculation of factorial moments of this distribution, as well as expressions
for some performance measures of the system, obtained Laplace-Stieltjes distri-
bution of sojourn time of an arbitrary customer and the average sojourn time.
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Results can be used for development of software useful for performance evalu-
ation and capacity planning of hybrid communication systems having high-speed
laser channel as the main one and a radio-channel as the reserved one. Optimiza-
tion problems related to the suitable choice of a bandwidth of a laser channel and
a radio-channel, taking into account various service level objectives and energy
saving issues, can be solved based on the presented results.
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Abstract. In this study we set to explore the potentialities of the inter-
genomic symbols distance for finding CpG islands in DNA sequences. We
explore the distance distributions of the inter CpG and SS distance in
the independent nucleotide context (reference). We confront the empiri-
cal results from the complete human genome, CpG islands and non CpG
islands, with the corresponding reference results.

We propose a model to discriminate CpG islands based on some statis-
tical properties of the inter-dinucleotide distances distributions in DNA
sequences. The results of this exploratory study suggest that inter-SS
symbols distance has high ability to discriminate CpG islands.

1 Introduction

CpG islands (CGIs) are relatively small segments (ranging from a few hundred
bases to several kilobases in length) of high CpG density where cytosines are
generally unmethylated.

In this work we focus our analysis in CpG dinucleotide distance distribution
vs all CG dinucleotide distance distributions.

For CpG islands detection there are several published algorithms/software.
Many of the current software applications for CpG islands detection implement
the definition of Gardiner-Garden and Frommer [4]. An extension was proposed
by Takai and Jones [10] and several authors consider this algorithm one of the
gold standard algorithms for CpG detection [8]. There are other well known algo-
rithms for CpG islands detection. For example, CpGcluster identifies clusters of
CpG dinucleotides with statistical significance, and this approach presents very
good results [6,7]. The algorithms based on HMM (Hidden Markov Models) also

c© Springer International Publishing Switzerland 2015
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show good performance for CpG island detection [2] and are implemented, for
example, in Geneious (Biomatters, available from www.geneious.com) sequence
analysis software.

CpG dinucleotides are very frequent in CpG islands. Why is so important to
detect CpG islands? CpG islands are usually associated with DNA regulation.
In particular, many genes in mammalian genomes have CpG islands associated
with the start of the gene (promoter regions) and transcription initiation.

What is so special about CpGs relative to the other 15 possible dinucleotides
in DNA? CpGs are the sites where methylation takes place, and ∼80 % of them
are methylated at position 5 of the cytosine ring in humans and mice.

However, CpGs may remain nonmethylated at CpG islands, despite their
local abundance. For example, in mammals, methylating the cytosine of a CpG
island can turn off expression of the associated gene (silenced), a mechanism
that is part of a larger field of science studying gene regulation that is called
epigenetics. In some human cancers, some “normal” genes are silenced in this
way. In contrast, the hypomethylation of CpG sites has been associated with the
over-expression of oncogenes within cancer cells [1,3].

In this paper, we focus on the CpG island properties in the context of inter-
CpG/inter-SS distance distributions comparing the results with non CpG island
and independent symbol model scenario. We apply stochastic process concepts to
drive SS and CpG distance distributions in random sequence with independent
symbols. The paper is divided into four sections. Section 2 presents the proposed
methods: the inter-CpG/inter-SS distances and the corresponding reference dis-
tributions. Section 3 deals with the characterization of CpG islands, of non CpG
islands and of the complete genome in Homo sapiens by inter-symbols distance
distribution. Finally, Sect. 4 draws the conclusions of the paper.

2 Methods

2.1 Inter CpG Distance

We start by extracting the distance sequences. Consider, for example, the follow-
ing sequence CGATGCGACCGAATT . . .. To obtain the inter CpG distance:
the nucleotide sequences are scanned for CpG dinucleotide CG−−−CG−−CG−
−−− . . .; the positions occupied by ‘C’ are recorded x1 = 1, x2 = 6, x3 = 10, . . .;
and the CpG distance sequence is computed as the difference between those
positions d = 5, 4, . . . (di = xi+1 − xi). From the CpG distance sequence we can
obtain the empirical distance distribution.

To evaluate the exceptional behavior of CpG distances we derive the distance
distribution under the assumption of independence between nucleotides. In par-
ticular, we will explore the probability distribution of the inter CpG distances
under the independence of nucleotides. Note that, the dinucleotide counts are
not independent even when we are under the independent nucleotide model (two
adjacent dinucleotides share one nucleotide in common).

www.geneious.com
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Under the nucleotide independence assumption the distance distribution can
be found by analysing the state diagram in Fig. 1. Note that each distance is
related with the number of steps to achieve success (CpG).

Fig. 1. State diagram for inter CpG distance.

Consider D the random variable which represents the inter CpG distance
under the nucleotide independence assumption. Suppose that we are interested
in characterizing the distance five (the first distance of our previous example).
The probability of obtaining a distance equal to five is equal to the probability
of arriving at the final state in 5 steps after starting in state 0. We can obtain
the distance 5 using different paths. And the probability of distance 5 is the
sum of the probabilities of all different paths. However, this approach results in
a cumbersome description of the probability distribution. We explore a recur-
sive form attending to the law of total probability, note that the probability of
obtaining the distance 5 can be described by a sum: the probability of occurrence
of a C (pC) multiplied by the probability of obtaining the distance 4 plus the
probability of not appearing a C multiplied by the probability of obtaining the
distance 4.

In general, the probability of obtaining distance d is equal to the probability
of occurrence of a C multiplied by the probability of obtain the distance d − 1
plus the probability of not appearing a C times the probability of obtaining the
distance d − 1. The probability of obtain distance 1, i.e. obtaining the success
(CpG) in one step, is zero.

P (D = d|E0) =

{
0 , d = 1
pC P (D = d − 1|E1) + (1 − pC) P (D = d − 1|E0) , d ≥ 2

(1)

If we are in state E1 we can define also a recursive expression to obtain the
distance probability

P (D= d|E1)=

{
pG , d=1
pC P (D= d − 1|E1) + (1 − pC − pG) P (D= d − 1|E0) , d ≥ 2

(2)

where pG represents the probability of occurrence of a G.
The state diagram can be described by the following transition matrix of

states E0, E1 and EF

P =

⎡
⎣ 1 − pC pC 0

1 − pC − pG pC pG
0 0 1

⎤
⎦ =

[
Q R
0 I

]
(3)
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Recalling some concepts of Markov chains we can find the expected value of
variable D and a closed form to the probability function. If we have an absorbing
Markov chain we can obtain the corresponding fundamental matrix and the mean
time to absorption [5]. P is an absorbing Markov chain for which the fundamental
matrix is given by

F = Q−1

[
1 − (1 − pC) −pC

−(1 − pC − pG) 1 − pC

]−1

(4)

For computing the distance distribution we must consider E0 as the first
state. Thus, the time to absorption is the sum of values of F first row: F11+F12 =
1/(pC pG). This value is, naturally, the average of variable D.

Under an independent symbol model the probability distribution of the CpG
distances can be written in matrix form as,

[
P (D = 1|E0)
P (D = 1|E1)

]
=

[
0
pG

]
(5)

[
P (D = d|E0)
P (D = d|E1)

]
= Q

[
P (D = d − 1|E0)
P (D = d − 1|E1)

]
, d > 1. (6)

And we can also present the closed form, concluding a kind of geometric distri-
bution, [

P (D = d|E0)
P (D = d|E1)

]
= Qd−1

[
0
pG

]
. (7)

2.2 Inter SS Distance

In a procedure similar to that used to find the inter CpG distance distribution,
we can also define the inter SS distance. Here, we follow the standard IUPAC
(International Union of Pure and Applied Chemistry) nucleotide codes, where
S = {C,G} and SS = {CC,CG,GC,GG}. The nucleotide sequences are scanned
for SS dinucleotide, the positions occupied by the first S are recorded and the SS
sequence distance is computed, which we call SS sequence distance (Fig. 2 presents
the corresponding state diagram). The random variable which represents the inter
SS distance is denoted by DS .

Fig. 2. State diagram for inter SS distance.



166 V. Afreixo et al.

The state diagram can be described by the following transition matrix of
states E0, E1 and EF

PS =

⎡
⎣1 − pS pS 0

1 − pS 0 pS
0 0 1

⎤
⎦ =

[
QS RS

0 I

]
(8)

where pS is the probability of occurrence of S (= pC + pG).
In similar way to the previous subsection the expected value of variable DS is

the 1/(pSpS). Under an independent symbol model the probability distribution
of the CG distances can be written as a closed matrix form,

[
P (DS = dS |E0)
P (DS = dS |E1)

]
= Qd−1

S

[
0
pS

]
. (9)

Naturally, for computing the inter SS distance distribution we must consider E1

as the first state.

3 Experimental Procedure and Results

3.1 Materials

We analyze the human genome and use the reference assembly build 37.1 avail-
able from the website of the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/). All chromosomes of the human genome were
processed as separate sequences.

We also use the Takai and Jones criterion to identify CpG island sequences
and non CpG island sequences. We divided the chromosome sequences in 500 bp
blocks, and we apply Takai and Jones criterion to determine if a block is a CpG
island. In this work, we use this algorithm as the golden standard for finding
CpG islands.

To evaluate performance on an independent data set, we used the set of CpG
islands reported in Illingworth et al. [2, Supporting information]. We extracted
each reported CpG island segment from the NCBI36 assembly build, release 54,
unmasked human genomic sequences available from ftp://ftp.ensembl.org/.

3.2 Exploratory Analysis

In this work we analyzed the complete human genome, each chromosome, CpG
islands and non CpG islands. We extracted the empirical inter CpG and SS
distance sequence, we computed the corresponding distributions and we obtained
the reference distribution under independent nucleotide (symbol) model.

Figure 3 shows the plot of the inter CpG distance distribution for the com-
plete human genome and plot of the reference distribution (under independent
symbol model). We can observe several differences between both distributions,
but the most notable difference is that for distances lower than about 50 the

http://www.ncbi.nlm.nih.gov/
ftp://ftp.ensembl.org/
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Fig. 3. Inter CpG distance distribution for the complete human genome and reference
values.

Fig. 4. Inter CpG distance distribution for chromosomes. The chromosome Y is high-
lighted.

empirical distances are under represented and for distances higher than about
50 the empirical distances are over represented.

To compare the inter CpG distances distribution profile between chromo-
somes, we used the empirical CpG distance distribution for each chromosome.
Figure 4 presents all the chromosomes profiles together and we observe that
there is a high correlation between profiles (min = 0.9395 and max = 0.9998). We
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emphasize the Y chromosome because the distances between 10 and 100 present
a distinct profile compared to the other chromosomes (for the Y chromosome
the correlation varies between 0.9390 and 0.9778, while for other chromosomes
it varies between 0.9790 and 0.9998). It is known that in the Y chromosome
there are some specific features related to methylation which may be associated
with the Y chromosome profile differentiation. In particular, the lower CG con-
tent and less transcriptionally active genes. However, the X chromosome also
present high levels of methylation but its profile is strongly correlated with the
other chromosomes (chromosome X: min = 0.9790 and max = 0.9998; and other
chromosomes excluding X and Y: min = 0.9803 and max = 0.9998).

To explore the differences between CpG islands, non CpG islands and global
empirical distributions we also computed the empirical distance distribution for
CpG island sequences and non CpG island sequences. In the inter CpG distance
distribution profile the short distances present higher frequencies than all the
other regions under analysis (see Fig. 5).

Fig. 5. Inter CpG distance distribution for the complete human genome, CpG islands,
non CpG islands and the reference distribution.

To compare the complete human genome, CpG islands and non CpG islands
we extract some statistics: the percentage of distances less than the reference
mean (24) and the median (17). Table 1 presents the results obtained and we
can observe different statistics values according to the type of sequence.

We also explored the inter CG distance distribution and the corresponding
reference distribution, the differences between the distance distributions of the
complete human genome and the reference are significant (p-values< 0.000, chi-
square test) but strongly correlated (correlation coefficient is 0.9988). Table 2
presents the results for some statistics in the SS distance context. The CpG
islands presented the most dissimilar statistic values.
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Table 1. Some statistics for inter CpG distances for the reference, the complete human
genome, the CpG islands and the non CpG islands in human genome.

Reference Human genome

Complete CpG island Non CpG island

Mean value 23.9 97.3 10.8 106.0

Median value 17 42 7 50

% < 8 23 13 50 1

% < 9 27 16 56 12

% < 10 30 18 61 13

% < reference median 49 27 80 22

% < reference mean 63 35 90 30

Table 2. Some statistics for inter SS distances for the reference, the complete human
genome, the CpG islands and the non CpG islands in human genome.

Reference Human genome

Complete CpG island Non CpG island

Mean value 6.0 6.4 2.3 6.5

Median value 3 3 1 3

P80 10 10 3 10

P90 15 16 5 16

%< reference median 41 39 66 38

%< reference mean 62 65 91 64

From the observation of the results presented in Tables 1 and 2, we propose
a procedure for CpG detection. We define a cutpoint (k0) to categorize the CpG
distances in long and short distances, the value of the median CpG distance in
CpG islands can motivate the potential values for the cutpoint (Table 1). We
define also two new criteria to identify CpG islands:

– dS < k1;

–
n(d < k0)

E[N(d < k0)]
> k2,

where E[N(d < k0)] = nb ∗ P (C) ∗ P (G) ∗ P (D < k0) is the expected number
of occurrences of short inter CpG distances in the block, and nb is the length of
the sequence block.

The first criterion (k1) was motivated by the exploratory analysis of SS dis-
tances where the mean value in the CpG islands is much lower than the other
sequences under study (Table 2). The second criterion was motivated by the
exploratory analysis of CpG distances where the quantiles in the CpG islands
are much higher than in the other sequences under study (Table 1).
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We trained the criteria on chromosome 1 (human genome) and the values of
ki, i = 0, 1, 2, that lead to better results (in terms of accuracy, sensitivity and
specificity) are:

– k0 ∈ {7, 8, 9, 10}
– k1 ∈ [3.0; 5.0]
– k2 ∈ [1.20; 2.39]

In chromosome 1, a compromise solution was obtained for k0 = 9, k1 = 4 and
k2 = 1.91. We applied these criteria values to the other human chromosomes
and the results obtained are shown in Table 3. The results reveal high accuracy,
sensitivity and specificity. In order to compare our results with those of an inde-
pendent algorithm, we also applied an algorithm based on HMM [2, chap. 3] to
the same data. We analyzed the decoded state sequence for each 500 bp block,
and classified the block as CpG island if more than 50% of the states were
island states. In the context of 500 bp block division, the global results using the
inter-symbols distances are better than the HMM based algorithm.

Table 3. Performances, in relation to Takai and Jones criterion, of the proposed inter
distances criterion, and of the HMM-based algorithm [2], measured for each chromo-
some of the human genome.

Inter distances criterion HMM with a posteriori probability cutoff of 0.5

Chr Accuracy (%) Sensibility (%) Specificity(%) Accuracy (%) Sensibility (%) Specificity(%)

1 0.9863 0.9928 0.9862 0.9562 0.9909 0.9559

2 0.9911 0.9916 0.9911 0.9672 0.9846 0.9671

3 0.9922 0.9911 0.9923 0.9750 0.9900 0.9749

4 0.9924 0.9844 0.9924 0.9734 0.9860 0.9733

5 0.9912 0.9881 0.9912 0.9719 0.9891 0.9718

6 0.9909 0.9884 0.9909 0.9715 0.9878 0.9714

7 0.9854 0.9826 0.9854 0.9546 0.9825 0.9544

8 0.9901 0.9749 0.9902 0.9645 0.9701 0.9644

9 0.9848 0.9851 0.9848 0.9479 0.9862 0.9476

10 0.9884 0.9838 0.9884 0.9613 0.9822 0.9611

11 0.9862 0.9915 0.9862 0.9525 0.9904 0.9522

12 0.9866 0.9820 0.9866 0.9609 0.9814 0.9607

13 0.9916 0.9853 0.9916 0.9714 0.9789 0.9714

14 0.9876 0.9842 0.9878 0.9575 0.9873 0.9573

15 0.9879 0.9871 0.9879 0.9601 0.9906 0.9599

16 0.9723 0.9783 0.9722 0.9165 0.9771 0.9157

17 0.9704 0.9822 0.9702 0.9089 0.9861 0.9076

18 0.9910 0.9844 0.9911 0.9693 0.9831 0.9692

19 0.9417 0.9856 0.9404 0.8507 0.9865 0.8469

20 0.9815 0.9856 0.9815 0.9395 0.9864 0.9390

21 0.9831 0.9787 0.9831 0.9366 0.9748 0.9363

22 0.9685 0.9884 0.9681 0.8721 0.9865 0.8703

X 0.9909 0.9789 0.9910 0.9753 0.9901 0.9752

Y 0.9922 1.0000 0.9922 0.9786 0.9848 0.9786
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We also evaluated the performance of the inter distances criterion using the
CpG islands data set published by Illingworth et al. [9, Supporting information].
We applied three methods to the CpG island segments reported in the data set:
the inter distances criterion, the Takai and Jones criterion and the HMM based
algorithm [2]. Table 4 shows the success rates for all the methods used.

Table 4. CpG islands success rates in a set of experimentally obtained islands from
[9] using the proposed algorithm (inter distances criterion); Takai and Jones criterion;
and HMM [2].

Criterion

Takai and Jones Inter distances HMM

Success rate 70.9% 97.8% 82.4%

From the observation of the results shown in Table 4 we can conclude that
for the set of experimentally obtained islands published in [9] the inter distances
criterion has the best success rate.

4 Conclusion and Future Work

We found the reference distance distribution for CpG and SS dinucleotides
(under independence nucleotide assumption). Almost all chromosomes present
similar CpG distance profiles, but chromosome Y presents a distinct CpG dis-
tance profile. The CpG islands sequences present the highest frequencies of short
distances. Based on inter CpG and inter SS distances, we proposed the inter dis-
tance criterion to classify DNA segments as CpG island (or not).

We conclude that the inter CpG and inter SS distances have the potential
for contributing to the discrimination of CpG islands within DNA.

We expect that the inter CpG and inter SS symbol distances will be able to
complement existing methods to increase the overall performance of CpG islands
finding algorithms.
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Abstract. Clustering and Disjoint Principal Component Analysis (CDP
CA) is a constrained principal component analysis recently proposed for
clustering of objects and partitioning of variables, simultaneously, which
we have implemented in R language. In this paper, we deal in detail with
the alternating least-squares algorithm for CDPCA and highlight its alge-
braic features for constructing both interpretable principal components
and clusters of objects. Two applications are given to illustrate the capa-
bilities of this new methodology.

Keywords: Principal Component Analysis · Clustering · K-means

1 Introduction

Principal Component Analysis (PCA) is a widely used tool in applied statistics
for exploratory data analysis and dimensionality reduction. It has many impor-
tant applications in different fields, such as neuroscience, computer graphics,
image compression, meteorology, oceanography, and in gene expression [2].

In essence, PCA allows the reduction of the dimensionality of data by the
detection of a lower number of uncorrelated variables, called components, that
are able to explain the maximum variability of the data, i.e., the data com-
pression is done with minimum information loss. An orthogonal transformation
projects the data into a lower dimensional space along the directions where the
data presents the highest variability. This statistical technique is useful to rep-
resent data by drawing a low-dimensional graph (e.g., in biplots) in order to
find patterns hidden on data and to interpret relationships between samples and
variables. PCA can be performed via singular value decomposition of the data
matrix.

Since each principal component (PC) is a linear combination of all the orig-
inal variables, i.e., with nonzero loadings, this can be considered a tremendous
shortcoming for component interpretation. To overcome this difficulty, various
PCA-based methodologies have been proposed in the recent years, for instance,
based on rotation techniques or obtaining components with zero loadings. In this
latter context, several major papers have been published. In [9], it is proposed
a new methodology called Simple Principal Component Analysis, which idea is
to restrict the components’ loadings to be equal to −1, 0 or 1. In 2003, Jolliffe,
c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 173–191, 2015.
DOI: 10.1007/978-3-319-20352-2 12
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Trendafinov and Uddin [3] introduced SCoTLASS, which is a maximal variance
approach that obtains components where a bound is introduced on the sum of
the absolute values of the loadings, and some become zero. Later, in 2006, Zou,
Hastie and Tibshirani [11] introduced the Sparse Principal Component Analy-
sis, which aims to obtain modified principal components with sparse loadings. In
[11], it is also proposed efficient algorithms to perform the new sparse PCA and
some numerical experiments with real and simulated data are reported. In 2007,
a new approach for sparse PCA via Semidefinite Programming was proposed
in [1], based on a convex semidefinite relaxation of the sparse PCA problem.
There are also reported numerical experiments for comparing that technique
with others. More recently, in 2013, it is proposed in [4] a new sparse PCA and
an iterative thresholding algorithm to estimate principal subspaces.

When dealing with real data sets, there may be the need of reducing not only
the dimension of the variable space, but also to reveal some patterns among the
objects. Obviously, this can be done by performing PCA on the variables and
applying a clustering technique on the objects. The desirable scenario for data
visualization and interpretation is to obtain non overlapping clusters of objects
and disjoint or sparse principal components.

A new methodology called Clustering and Disjoint Principal Component
Analysis (referred to hereafter as CDPCA) [8] was recently proposed for clus-
tering of objects and partitioning of variables, simultaneously. It permits to
cluster objects along a set of centroids and partition the variables into a reduced
set of components, simultaneously, in order to maximize the between cluster
deviance of the components in the reduced space. The CDPCA classification of
data consists of the construction of groups based on the closeness and similarity
among data.

In [8], the proposed CDPCA model is described as a joint model of K-means
applied on the data matrix and PCA applied on the matrix of centroids. Hence, it
depends on three parameter matrices: one matrix for allocating the objects into
the clusters, one other for identifying the centroids and another one for identify-
ing to the loading components. The least-squares estimators of these parameters
can be obtained by solving a quadratic mixed continuous and integer optimiza-
tion problem [8]. An alternating least-squares (ALS) algorithm based on four
steps is suggested in [8] to solve the problem. Notice that the ALS algorithm
can be considered as an heuristic that iteratively solves the optimization problem
based on two basic steps: allocation of objects via K-means ([10]) and reduction
of the variable space via application of PCA on the resulting centroids. In this
paper, we describe a detailed two-step-based scheme of the ALS algorithm pro-
posed in [8] for estimating the parameters of the CDPCA model. Unlike PCA,
in CDPCA disjoint components are returned, and thus, each original variable
contributes to a single component. It is worth mentioning that the obtained
CDPCA score components may be correlated, unlike in PCA where uncorre-
lated components are provided.

Recently, we have implemented the CDPCA in a easy-to-use software appli-
cation [5] using R language [6], which is available from the authors upon request.
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Beside returning an assignment matrix for the allocation of objects into clusters
and a component loading matrix which allows to allocate the variables into
disjoint subsets, the main features of our R-based implementation of CDPCA
include a plot of the data projected into the two dimensional space defined by
the first two CDPCA components, and also a pseudo-confusion matrix when
the real classification is known, permitting to summarize and visualize the
(mis)classification of the objects. The goal of this paper is to explain and illus-
trate the algebraic features of the two essential steps in each iteration of the ALS
algorithm. A toy example is included to show some transformations performed in
each step of the ALS algorithm. Additionally, a numerical experiment using real
data is presented. To execute these analyses we use our R-implemented function
of CDPCA. Since the goal of this work is not focused on our R-based imple-
mentation, only brief reference to this function will be given in the numerical
example.

The paper is organized as follows. Section 2 presents the theoretical back-
ground and tools needed for the CDPCA technique. Section 3 is devoted to
highlight the algebraic features behind the CDPCA detailing the ALS algorithm
step by step. In Sect. 4, application of CDPCA using data from a breast cancer
study is presented and the results are compared with those obtained using PCA.
Concluding remarks appear in Sect. 5.

2 The Methodology of CDPCA

In this section we describe the CDPCA, based on the paper [8].

2.1 Notation

First of all, let us introduce some notations and basic definitions that will be
used throughout this work.

X = (xij): Data matrix with I objects in rows and J variables in columns; X is
assumed to be standardized.

P , Q: Desired number of clusters of objects and subsets of variables, respectively.

U = (uip): Matrix defining an allocation of the I objects into P clusters; U is a
I × P binary and row stochastic matrix defined as⎧⎨

⎩
uip = 1, if the i-th object belongs to the cluster p,

uip = 0, otherwise.

V = (vjq) : Matrix defining a partition of the J variables into Q subsets; V is a
J × Q binary and row stochastic matrix defined as⎧⎨

⎩
vjq = 1, if the j-th variable belongs to the subset q,

vjq = 0, otherwise.
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X̄: Object centroid matrix in the original space; X̄ is a P × J matrix defined by
X̄ =

(
UTU

)−1
UTX.

Z = (zij): Centroid-based data matrix where each object is identified by the
corresponding centroid, i.e., each object is projected into the space defined
by the P clusters; Z is a I × J matrix given by Z = UX̄.

W(q) =
(
w

(q)
ik

)
: Submatrix extracted from the centroid-based data matrix Z

where only the original variables assigned into the q-th column of V are
considered; W(q) is a I × K(q) matrix defined as

w
(q)
ik = zij , if vjq = 1, with k = rankJ(q)(j),

where J (q) = {j : vjq = 1}, K(q) = #J (q) and k = 1, · · · ,K(q).

A = (ajq): Matrix of the component loadings; A is a J × Q matrix where the Q
columns are identifying the coefficients of Q linear combinations (i.e., the Q
principal components for CDPCA) such that rank(A) = Q, ATA = IQ and
J∑

j=1

(ajqajr)2 = 0, for any q and r (q �= r).

Y = (yiq): Component score matrix where yiq is the value of the i-th object for
the q-th CDPCA component; Y is a I × Q matrix given by Y = XA.

Ȳ: Object centroid matrix in the reduced space; Ȳ is a P × Q matrix defined
by Ȳ = X̄A.

2.2 Model

The CDPCA model results from the application of PCA on the transformed data
matrix, where each object is replaced by its centroid. By its turn, the centroids
are obtained by applying the K-means algorithm on the original data matrix [8].

Hence, the data matrix would be fitted by the model

X = UX̄ + E1 (K-means applied on X)
= UȲAT + E1 + E2 (PCA applied on UX̄) (1)
= UȲAT + E (CDPCA model)

where E, E1, E2 are I × J error matrices with E = E1 + E2.

2.3 Optimization Problem

From the CDPCA model (1), it is easy to see that E = X − UȲAT . There-
fore, the CDPCA problem intents to minimize the norm of the error matrix E,
resulting in the following optimization problem

min
U,Ȳ,A

‖X − UȲAT ‖2, (2)

subject to the above conditions for the matrices U (i.e., U is a binary and row
stochastic matrix), Ȳ (i.e., Ȳ is an object centroid matrix in the reduced space)
and A (i.e., A is a columnwise orthonormal matrix where each row contributes
to a single column).
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It can be proved that the problem (2) is equivalent to the maximization
of the between cluster deviance ‖UX̄A‖2 of the components in the reduced
space, subject to constraints on the matrices U and A. Since the decomposition
‖X − UȲAT ‖2 = ‖X‖2 − ‖UȲAT ‖2 holds [8], the above problem (2) is equiva-
lent to

max
U,Ȳ,A

‖UȲAT ‖2, (3)

subject to the same constraints of problem (2). Since Ȳ = X̄A and A has
orthonormal columns (i.e., ATA = I), then ‖UȲAT ‖2 = ‖UX̄A‖2. Hence,
problem (3) is equivalent to

max
U,X̄,A

‖UX̄A‖2. (4)

To solve this optimization problem, the authors of CDPCA proposed the
inclusion of the matrix V described in Sect. 2.1 which specifies the partition of J
variables into Q disjoint components. The positions of the nonzero elements of
the matrix A are identified by the positions of the one’s in the matrix V. Hence,
and since Ȳ = X̄A, the CDPCA problem can be formulated as the following
quadratic mixed continuous and integer problem:

max F = ‖UȲ‖2
s. t. uip ∈ {0, 1} , i = 1, ..., I; p = 1, ..., P

P∑
p=1

uip = 1, i = 1, ..., I

vjq ∈ {0, 1} , j = 1, ..., J ; q = 1, ..., Q
Q∑

q=1
vjq = 1, j = 1, ..., J

J∑
j=1

a2
jq = 1, q = 1, ..., Q

J∑
j=1

ajqajr = 0, q = 1, ..., Q − 1; r = q + 1, ..., Q

(5)

The first two constraints in (5) correspond to the allocation of I objects into
P clusters. The following two constraints represent the allocation of J variables
into Q disjoint subsets of variables (components). The remaining constraints are
associated to the PCA implementation. The objective function value is calculated
by ‖UȲ‖2 = tr

(
UȲ(UȲ)T

)
, corresponding to the between cluster distances.

Based on linear algebra properties, the objective function value F can also be
equivalently computed by tr

(
(UȲ)TUȲ

)
, representing the total variance of the

data in the reduced space, where the objects are identified by their centroids.
The main goal is the achievement of maximum dissimilarity or distance between
centroids (and objects) of different clusters. The idea of CDPCA is finding a
clustering of objects along a set of centroids and, simultaneously, a partition of
variables along a reduced set of disjoint components, in order to maximize the
between cluster deviance in the reduced space of the disjoint components.
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2.4 Algorithm

In [8], it is proposed an iterative algorithm called alternating least-squares algo-
rithm (ALS) to solve the optimization problem (5). Each iteration of the ALS
algorithm can be summarily described by two basic steps: allocation of objects
via K-means and reduction of the variable space via application of PCA on the
resulting centroids. Concretely,

– Step 1: Concerning to the objects:
allocate the I objects into P clusters (matrix U),
calculate the centroids in the space of the observed variables (matrix X̄)
identify the objects by its cluster centroids in the space of the observed
variables (matrix Z).

– Step 2: Concerning to the variables:
allocate the J variables into Q subsets (matrix V),
obtain the loadings of the CDPCA components (matrix A),
calculate the centroids in the reduced space of the Q CDPCA components
(matrix Ȳ),
identify the objects in the reduced space of the Q CDPCA components
(matrix Y).

These steps are summarized in Fig. 1. At the beginning, in Step 1 and with the
standardized data matrix X of I objects described by J variables, the I objects
are assigned into P clusters by means of the matrix U. Next, each row of the
data matrix is replaced by its corresponding object centroid resulting then in
the matrix Z. In Step 2, the allocation of the J variables into Q disjoint subsets
is specified in the matrix V and the CDPCA component loadings are specified
in the matrix A. To obtain these two matrices, an iterative process working row-
by-row and column-by-column of the matrices V and A is executed in order to
maximize the objective function F . At the end of Step 2, the component score
matrix, Y, and the object centroid matrix in the reduced space, Ȳ, are found as
well as the value of the objective function F . Thus, at the end of one iteration
of the algorithm, the I objects of the data matrix are allocated into P clusters,
and simultaneously displayed in a reduced space of Q disjoint components. The
value of the between cluster deviance is also calculated to evaluate the quality
of the clustering of the I objects in the reduced space. In the next iteration, the
process is repeated using Y as the input data matrix. The iterative procedure of
the algorithm stops when there is a difference between consecutive computations
of the values of the objective function F smaller than a specified tolerance.

Since the function F is bounded above, the algorithm converges to a station-
ary point, which is at least a local maximum of problem [8]. This procedure can
be considered as an heuristic and thus, to guarantee that the global maximum is
achieved, it has been suggested to run the algorithm several times for different
initial allocation matrices U and V, which are randomly chosen at the beginning
of each run.
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3 CDPCA: Step by Step

In this section, we present in detail the main algebraic features of the ALS
algorithm for performing CDPCA.

To show the main algebraic features of the CDPCA procedure, we have per-
formed CDPCA on a synthetic data matrix X constructed for satisfying the
model (1) and where the objects are partitioned along a set of three clusters
and the variables along a set of two components. For that purpose, we consider
I = 15, J = 3, P = 3, Q = 2, and the following matrices satisfying the conditions
mentioned in Sect. 2.1:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ȳ =

⎡
⎣

√
2/3 −2√
2/3 1

−√
3/2 1

⎤
⎦ and A =

⎡
⎣1 0

0
√

2/2
0

√
2/2

⎤
⎦ . (6)

It is easy to check that, under these circumstances, UȲAT is a standardized
matrix. An error E is added to obtain the model (1). Herein we considered the
matrix E with values randomly generated of a normal distribution with mean
zero and standard deviation equal to 0.8. Thus, we have

X = UȲAT + E

being

UȲAT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 −1.414 −1.414
0.816 0.707 0.707
0.816 0.707 0.707
0.816 0.707 0.707
0.816 0.707 0.707

−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707
−1.224 0.707 0.707

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.917 −1.093 −2.382
1.860 −1.767 −0.289
0.460 −1.509 −0.132
1.290 −0.412 −1.405
1.567 −1.812 −1.530
0.982 −0.167 1.531
0.832 1.710 0.334
2.461 1.315 1.203
0.697 1.520 1.519

−2.273 0.152 0.464
−1.603 1.483 −0.476
−1.003 −0.043 −0.840
−0.799 1.763 −0.770
−1.133 0.002 1.145
−2.599 0.473 0.393

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 1. The two basic steps of one iteration of the ALS algorithm for performing
CDPCA.

The dashed horizontal and vertical lines separate the three clusters of objects
and the set of variables, respectively, and in accordance with (6).

Using the synthetic data matrix X, we now focus on the algebraic features
behind the two basic steps of the CDPCA methodology and afterwards illustrate
some outputs obtained by our R-based application.

3.1 Initialization

Set k = 0. At the beginning, the data matrix X is standardized:

xij �→ xij − x̄j√
I∑

i=1

(xij − x̄j)2/I

where x̄j =
I∑

i=1

xij/I. Next, the parameters of the ALS algorithm to perform

CDPCA are initialized as follows:

Step 1. Parameters associated to the objects:
- The matrix U0 is randomly generated such that there is only a nonzero

element per row and that element is equal to 1 (i.e., U0 is the initial
object assignment matrix).

- The object centroid matrix X̄0 is computed. For such, the mean of each
variable into each object cluster is calculated.
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- All the objects are identified by its cluster centroids. This information
is provided by the centroid-based data matrix Z.

Step 2. Parameters associated to the components:
- The matrix V0 is randomly generated such that there is only a nonzero

element per row and that element is equal to 1 (i.e., V0 is the initial
variable assignment matrix).

- The CDPCA component loading matrix A0 is constructed column-by-
column solving Q independent PCA subproblems, one by each column.
The nonzero elements of the q-th column of V0 identify the original vari-
ables belonging to the q-th CDPCA component. These elements will be
considered in the PCA subproblem to obtain the nonzero elements of
the q-th column of A0. Thus, the nonzero elements on the q-th column
of A0 correspond to the first principal component obtained from PCA
applied on the submatrix W(q)

0 which is extracted from the centroid-
based data matrix Z0 = U0X̄0 (i.e., the data matrix where each object
is identified by the corresponding centroid) and restricted to the origi-
nal variables assigned into the q-th column of V0. Therefore, the q-th
column of A0 provides the direction vector with maximum variability
among the centroids in the subspace defined by the original variables
assigned to the q-th column of V0.

3.2 General Iteration

At the beginning of the (k + 1)-th iteration of the algorithm, the matrices Uk,
X̄k Vk, Ak and Ȳk are known.

Step 1. Parameters associated to the objects:
The matrix Uk+1 is given by one run of the K-means algorithm on the
score matrix Yk = XAk starting from the object centroid matrix Ȳk in the
reduced space. The P new clusters are obtained finding the new centroids,
i.e., updating the centroid matrix by X̄k+1 =

(
UT

k+1Uk+1

)−1
UT

k+1X and
the object centroid-based matrix by Zk+1 = UkX̄k.

Every cluster should be assigned with at least one object. On the proce-
dure, if any cluster becomes empty, then a selection step is fulfilled: half of
the objects on the bigger cluster is assigned into one of the empty clusters,
and this process is repeated while there are empty clusters.

Step 2. Parameters associated to the components:
The updated matrices Vk+1 and Ak+1 are sequentially constructed row-by-
row, and in each row, the process is also sequentially performed column-by-
column, in a symbiotic relationship with the maximization of the objective
function F .

The matrix V specifies a partition of the original variables into Q disjoint
components. For updating Vk, each original variable will be evaluated in
order to find which component leads to a higher value of the objective func-
tion F , assuming that all remaining variables are fixed in the components in
accordance with Vk.
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Firstly, the first row of Vk is updated by detecting for which column j,
with j = 1, · · · , Q, the allocation of its nonzero element yields better results
in the sense of the maximization of the objective function. Concretely, for the
first row (variable) of Vk+1, the best column (component) among Q is selected
by solving Q PCA subproblems associated to the updated matrices W(q)

k+1, for
q = 1, 2, · · · , Q, respectively, assuming the Q possible positions of the nonzero
element into the first row of the potential updated matrix Vk+1. In the q-
th PCA subproblem, the first principal component is calculated determining
the update of the q-th column of Ak+1. At this point, the centroid matrix
on the reduced space, Ȳk+1, and the objective function value, Fk+1, can be
computed by Ȳk+1 = X̄k+1Ak+1 and Fk+1 = tr

(
(Uk+1Ȳk+1)TUk+1Ȳk+1

)
.

This process is done repeatedly to select the best component to allocate the
first row (variable) in Vk+1, which will coincide with the component that
yields the highest value of Fk+1.

The same process is now repeated for the remaining rows of Vk, and there-
fore, Vk+1 is updated row-by-row. Hence, for each original variable there
are solved Q assignment subproblems. In each subproblem, a subspace of
variables is considered and the best direction (eigenvector) with maximum
variability explained is obtained performing a PCA step. Each variable will
be included into a component associated to the subproblem that maximizes
the objective function.

Since there are J original variables, i.e., J rows on Vk, then there are J×Q
subproblems to be solved in order to obtain Vk+1 and Ak+1. At the end of
the Step 2, the best assignment will maximize the objective function, and
consequently, the between cluster deviance given by Fk+1/‖Yk+1‖2, where
Yk+1 = XAk+1.

Stopping Criterion. Evaluate solutions:
If the difference between Fk and Fk+1 is smaller than a specified tolerance,

then the algorithm stops and returns the current iterates. Otherwise, repeat
the iteration, setting k := k + 1.

At the end of the algorithm, say, for instance, at the k∗-th iteration, besides
returning the allocation matrices Uk∗ , for the objects, and Vk∗ , for the vari-
ables, the component loading matrix Ak∗ is also returned, which is a columnwise
orthonormal matrix whose elements are the loadings of the CDPCA components.
Moreover, the CDPCA component score matrix Yk∗ is obtained, as well as the
object centroid matrix in the reduced space Ȳk∗ . These matrices can be used to
obtain an approximation of the CDPCA model by

Uk∗Ȳk∗AT
k∗ ,

providing a partition of the objects along a set of clusters and the variables along
a set of disjoint components.

It is worth mentioning that, unlike in the PCA technique, the ALS algorithm
can not establish the CDPCA components decreasingly sorted by their explained
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variability. In order to be consistent with the classical form of representation
of the components, at the end of the algorithm the columns of the matrices
associated to the CDPCA components, namely, Vk∗ , Ak∗ , Yk∗ , and Ȳk∗ , will
be rearranged. Since the changes are performed in all of these matrices, the above
CDPCA model is trivially satisfied with the rearranged matrices.

3.3 Synthetic Data

In the following we illustrate an execution of the ALS algorithm described above
using the synthetic data. The data matrix is formed by I = 15 objects and
J = 3 variables. In order to evaluate the performance of the algorithm we will
also analyse the ability of the algorithm for detecting the P = 3 clusters of
objects and Q = 2 subsets of variables known in the synthetic data.

Considering the synthetic data, we set k = 0, specify the convergence toler-
ance as ε = 10−5, and initialize the parameters of the CDPCA model.

Initialization:
In the Step 1, we get

U0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X̄0 =

⎡
⎣ 0.690 −0.416 −1.022

0.673 0.145 0.440
−0.779 0.154 0.332

⎤
⎦ , Z0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.690 −0.416 −1.022
0.673 0.145 0.440

−0.779 0.154 0.332
0.690 −0.416 −1.022
0.690 −0.416 −1.022
0.673 0.145 0.440
0.690 −0.416 −1.022
0.673 0.145 0.440

−0.779 0.154 0.332
−0.779 0.154 0.332
−0.779 0.154 0.332
−0.779 0.154 0.332
0.673 0.145 0.440

−0.779 0.154 0.332
−0.779 0.154 0.332

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the Step 2, it begins with

V0 =

⎡
⎣1 0

0 1
1 0

⎤
⎦ .

Next, we determine A0. Fixing the first column of V0 (q = 1), the unit
normed eigenvector v

(1)
0 associated to the largest eigenvalue of the correlation

matrix of the submatrix W(1)
0 is selected and introduced in the nonzero entries

of the first column of A0. A similar procedure is performed for the remaining
columns of V0. Thus, for q = 1, K(1) = 2 and we get the 15 × 2 matrix
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W(1)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.690 −1.022
0.673 0.440

−0.779 0.332
0.690 −1.022
0.690 −1.022
0.673 0.440
0.690 −1.022
0.673 0.440

−0.779 0.332
−0.779 0.332
−0.779 0.332
−0.779 0.332

0.673 0.440
−0.779 0.332
−0.779 0.332

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The unit normed eigenvector associated to the largest eigenvalue of the 2×2

matrix
(
W(1)

0

)T

W(1)
0 is given by v

(1)
0 =

[−0.809
0.587

]
. Hence, for the nonzero

elements on the first column of A0, which correspond to the nonzero entries on
the first column of V0, we shall introduce v

(1)
0 . Similarly, considering now the

second column of V0, we have q = 2, K(2) = 1 and
(
W(2)

0

)T

W(2)
0 is a 1 × 1

matrix. Thus, we get

W(2)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.416
0.145
0.154

−0.416
−0.416

0.145
−0.416

0.145
0.154
0.154
0.154
0.154
0.145
0.154
0.154

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and v
(2)
0 = [1] ,

and the nonzero element on the second column of A0 will be 1. Therefore, the

CDPCA component loading matrix is given by

A0 =

⎡
⎣−0.809 0

0 1
0.587 0

⎤
⎦ .



The Alternating Least-Squares Algorithm for CDPCA 185

At this point, the objects of the data matrix X can be assigned in the reduced
space of the CDPCA components by the object centroid matrix in the reduced
space, Ȳ0, and the objective function F should be evaluated for the current
matrices U0 and Ȳ0. Regarding our example, Y0 is a 15 × 2 matrix and Ȳ0 is
a 3 × 2 matrix given as follows.

Y0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.621 −0.981
−1.046 −1.533
−0.213 −1.322
−1.316 −0.425
−1.529 −1.570

0.365 −0.225
−0.172 1.310
−0.598 0.987

0.512 1.154
1.561 0.036
0.716 1.124
0.206 −0.123
0.132 1.353
1.302 −0.085
1.700 0.298

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ȳ0 =

⎡
⎣−1.159 −0.416

−0.286 0.145
0.826 0.154

⎤
⎦ .

initial approximation of Y0 provides a partition of objects along a set of three
clusters (objects 1, 4, 5 and 7 are currently assigned into one cluster, objects
2, 6, 8 and 13 are assigned into another cluster, and the remaining objects are
currently belonging to a third cluster) and also a partition of variables along a
set of disjoint components (PC1 = −0.809X1 +0.587X3 and PC2 = X2). Notice
that the current partition does not correspond to the final solution, nor to the
real partition; this is the result after computing the initial step of the CDPCA
procedure. Additionally, the objective function value for the current iterates is
F0 = 11.438 and the corresponding between cluster deviance is F0/‖Y0‖22 =
36.63%.

First iteration:
Set k = 1. In Step 1, the matrix of the allocation of objects into P clusters and
the object centroid matrix are updated yielding the following matrices:

U1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X̄1 =

⎡
⎣ 0.735 −1.166 −0.936

0.174 0.882 0.056
−0.728 0.384 0.743

⎤
⎦ , Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936
0.735 −1.166 −0.936

−0.728 0.384 0.743
0.174 0.882 0.056
0.174 0.882 0.056

−0.728 0.384 0.743
−0.728 0.384 0.743
−0.728 0.384 0.743

0.174 0.882 0.056
0.174 0.882 0.056

−0.728 0.384 0.743
−0.728 0.384 0.743

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Notice that U1 specifies a new allocation of the objects.
In Step 2, we get

V1 =

⎡
⎣1 0

0 1
1 0

⎤
⎦ , A1 =

⎡
⎣−0.660 0

0 1
0.750 0

⎤
⎦ ,

Y1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.870 −0.981
−0.903 −1.533
−0.186 −1.322
−1.389 −0.425
−1.593 −1.570

0.682 −0.225
−0.041 1.310
−0.182 0.987

0.799 1.154
1.405 0.036
0.491 1.124

−0.011 −0.123
−0.055 1.353

1.355 −0.085
1.502 0.298

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Ȳ1 =

⎡
⎣−1.188 −1.166

−0.072 0.882
1.039 0.384

⎤
⎦ .

At the end of the first iteration, F1 = 24.374 and the corresponding between
cluster deviance is 77.93%. The following step is to check the stopping criterion.
Since |F1 − F0| = 12.936 > ε, another iteration should be computed.

Further iterations:
In order to refine the solutions, more iterations of the algorithm are needed. In
this example, the best solution was obtained after two iterations and it took
only 0.0 s to exhibit a solution. The obtained results are as follows. The object
allocation matrix U and the variable allocation matrix V, the component loading
matrix A, the component score matrix Y and the centroid matrix in the reduced
space Ȳ already rearranged by column (in decreasing order of the variability
explained by the CDPCA) are given by

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡
⎣0 1

1 0
1 0

⎤
⎦ ,

A =

⎡
⎣ 0 1

−0.734 0
−0.678 0

⎤
⎦ ,

Ȳ =

⎡
⎣ 1.492 0.735

−1.325 0.751
−0.359 −1.113

⎤
⎦ ,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.092 0.535
1.250 1.160
1.001 0.232
1.101 0.782
2.017 0.966

−0.796 0.578
−1.211 0.478
−1.492 1.559
−1.803 0.389
−0.352 −1.581
−0.591 −1.137

0.542 −0.738
−0.584 −0.603
−0.669 −0.825
−0.503 −1.797

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



The Alternating Least-Squares Algorithm for CDPCA 187

The maximum for the objective function is 31.357 and the corresponding
between cluster deviance is 85.63%.

Our R-based implementation of this new methodology provides the graphical
display of the CDPCA classification taking the first two CDPCA components,
as well as the real classification when it is known. For the synthetic data, the
plot is displayed in Fig. 2.

Fig. 2. Real and CDPCA classification for the synthetic data.

Clearly, the CDPCA was able to fulfil the classification and the objects were
correctly assigned to the clusters.

Besides that, our R function also returns a pseudo-confusion matrix, here
displayed in Table 1. The pseudo-confusion matrix allows one to easily verify
how many objects are correctly assigned into clusters, or how many objects are
misclassified.

Table 1. Pseudo-confusion matrix for the synthetic data set.

Real class CDPCA class

1 2 3

1 5 0 0

2 0 4 0

3 0 0 6

From Table 1, we can observe that 5 objects are assigned to a cluster, 4
objects are assigned into a second cluster and the remaining 6 objects belong
to another cluster. This table confirms the high accuracy classification produced
by CDPCA on the Synthetic data.
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4 Numerical Experiments

Here, we describe the numerical experiments of the CDPCA applied on a real
data set. Our experiments were run on a computer with an Intel Core i5-3317U
CPU @ 1.70 GHz, with Windows 7 (64 bits) and 6 GB RAM, using R version
3.0.0 (2013).

The CDPCA was implemented in R under the function CDpca [5]. This func-
tion is suitable for data matrices of numeric values.

Since the ALS algorithm can be considered as a heuristic, it is advisable to
run the algorithm several times, as it has been suggested in [8], in order to find
the global maximum. Therefore, all the presented numerical tests were run 1000
times and the tolerance for convergence purposes was set to 10−5.

Our R implementation of CDPCA starts by standardizing the data. Among
other outputs, the CDpca function returns the CDPCA component loading
matrix, the obtained between cluster deviance, the objects assignment matrix,
the variables assignment matrix, a pseudo-confusion matrix when the real clas-
sification is known a priori, the variance explained by the CDPCA components
and a plot of the data projected into the two dimensional space defined by the
first two components is displayed.

4.1 Breast Cancer Data

The Wisconsin Breast Cancer Database [7] contains 683 instances (originally,
there were 699 instances; however, 16 of them were excluded since they contain
missing values), where each of them is described by 9 attributes with integer
values in the range 1−10 and a real binary class label, which divides the instances
into two classes: benign or malignant. The list of variables is formed by clump
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and the
ninth variable mitoses describes an analysis of mitotic stages. These variables
are used in pathology reports for suggesting whether a lump in a breast is benign
or malignant.

The CDPCA was applied in this data set, by choosing P = 2 clusters of
objects and Q = 2 subsets of variables and executing our CDpca function in R.
It took only 6 iterations and 0.19 s to yield a solution approximation satisfying
the convergence tolerance. The results of CDPCA are displayed in Tables 2, 3
and Fig. 3.

The Table 2 reports the component loadings for both PCA and CDPCA.
Comparing the results in Table 2, performing an analysis of data from the

obtained results using the PCA technique can be complex. The resulting PCA
component loadings lead to components which do not seem interpretable. This
is due to all the original variables contribute to both PCA components and,
therefore, it is quite difficult to detect a pattern or relation among the variables
for each of the two first principal components. With CDPCA the interpretation
of the components becomes easier, since each variable contributes to a single
component.
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Table 2. Component loadings for PCA and CDPCA on the Breast Cancer Data.

Variables PCA loadings CDPCA loadings

Component 1 Component 2 Component 1 Component 2

Clump Thickness −0.296 −0.073 0.350 0

Uniformity of Cell Size −0.403 0.229 0.429 0

Uniformity of Cell Shape −0.392 0.164 0.426 0

Marginal Adhesion −0.331 −0.098 0 −0.710

Single Epithelial Cell Size −0.249 0.200 0 −0.703

Bare Nuclei −0.442 −0.780 0.415 0

Bland Chromatin −0.292 0.008 0.387 0

Normal Nucleoli −0.354 0.469 0.374 0

Mitoses −0.124 0.188 0.216 0

Explained variance (%) 69.05 7.20 51.71 17.74

The first PCA component explains 69, 05% of the total variance and is mainly
characterized by Bare Nuclei, Uniformity of Cell Size and Uniformity of Cell
Shape, while the second PCA component explains only 7, 20% of the total vari-
ance and is mainly characterized by Bare Nuclei and Normal Nucleoli. Notice
that the variable Bare Nuclei is the most contributing variable for both compo-
nents.

Considering now the CDPCA technique, it can be observed that the first
CDPCA component explains 51, 71% of the total variance and is mainly char-
acterized by Uniformity of Cell Size, Uniformity of Cell Shape and Bare Nuclei,
while the second CDPCA component is only characterized by the original vari-
ables Marginal Adhesion and Single Epithelial Cell Size, explaining 17, 74% of
the total variance.

Table 3. Pseudo-confusion matrix for the Breast Cancer data.

Real class Preditive CDPCA class

1 2

(benign) (malignant)

1 (benign) 434 10

2 (malignant) 19 220

Table 3 evaluates the predictive performance of CDPCA as a classification
technique on the Breast Cancer data. The real classification for this data set is
as follows: 444 objects into the benign class, and 239 into the malignant. Con-
sidering the pseudo-confusion matrix obtained with the results on the CDPCA
classification, we conclude that 453 objects are assigned to the benign class and
230 are included into the malignant class. This means that there are 29 mis-
classified objects, leading to a 4% of misclassification. Therefore, the CDPCA
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Fig. 3. Real and CDPCA classification for the Breast Cancer data.

classification presents an accuracy of 96% permitting to conclude that our imple-
mentation of the CDPCA performed very well in practice.

In Fig. 3, a graph representation of the data into the 2-dimensional reduced
space defined by the first two CDPCA components is depicted. This graph per-
mits to visualize the data in order to help on the detection of patterns hidden
in the data set. In the case of the Breast Cancer data, the graph shows that
positive value for the first CDPCA component is tendentiously attributed to
subjects (objects) with malignant lumps (class 2).

The obtained CDPCA between cluster deviance is 80,20 % of the total
deviance.

5 Conclusions

Applications of the recently developed methodology CDPCA to data reveal that
this method can be successful for classifying the samples and exploring relation-
ship between variables, as well as for visualizing data into a reduced space. This
paper is particularly focussed on detailing a two-step-based scheme of the ALS
algorithm used to perform CDPCA and on its algebraic features. A toy exam-
ple is included to illustrate the resulting transformations on the ALS algorithm
step by step. A final remark is that the ALS algorithm for CDPCA performed
very well and also revealed high accuracy in the clusterings for the presented
examples and several other not shown herein.
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Abstract. Data visualization is an important component of spatial data
analysis. We demonstrate the visualization of spatial/spatio-temporal
data on map tiles as implemented in the R package RgoogleMaps. We
argue that extremely large spatial or location data sets can lead to clutter
and information overload necessitating aggregation to higher geographi-
cal identities. Such aggregation requires associating each coordinate point
from the set to a particular spatial polygon in the search space. Exam-
ples for such polygon-based spatial partitions would be zip codes, census
blocks, or school districts. Unless efficient data structures are used, this
can be a computationally expensive task involving an exhaustive search
across all prospective polygons. In this paper, we propose a methodology
that exploits kd-trees as an efficient nearest neighbour search algorithm
to significantly reduce the effective number of polygons being searched
and expedite the lookup process. The kd-tree is built from either the
polygon centroids and/or carefully chosen other points within the poly-
gons. We further demonstrate a successful hybrid strategy by combining
a range search with the tree based ranking. Our code has been made
publicly available as the R package RapidPolygonLookup.

Keywords: Polygon lookup · r · Spatial · kd-tree · Visualization

1 Introduction

Finding underlying patterns in spatial data is a challenging task and often
requires visual inspection of the data points. Typically, such spatial visualizations
are created on some sort of a reference background, e.g., if the data are demo-
graphic then they are overlayed on maps of corresponding geographical entities
like cities, states, or regions. Contextualizing the points in such a way helps
derive insights regarding the data generation process and better understand the
underlying spatial structure.

Consider, as an example, the data shown in Fig. 1. The figure on the left
shows the zinc concentration levels in a flood plain of the Meuse river close to
the village of Stein [14,16]. While such a graph with minimal clutter showcases
the locations of interest neatly, it lacks a spatial context that would otherwise
be useful for deriving actionable insights. A lot of modern data sets are now
geo-tagged and contain location information at a latitude-longitude level. Cell
phone usages, vehicle tracks, demographics, crime, and flu outbreaks are some
c© Springer International Publishing Switzerland 2015
A. Plakhov et al. (Eds.): EmC-ONS 2014, CCIS 499, pp. 192–206, 2015.
DOI: 10.1007/978-3-319-20352-2 13



Rapid Spatial Aggregation 193

examples of data that have a spatial attribute attached to them. While in certain
cases the scenario on the left panel of Fig. 1 may be preferred, the rather limiting
nature of such an exploration can be overcome by graphing the same points on
the associated map background as shown in the right panel of the same figure.

Fig. 1. (a) zinc concentration levels in the Meuse river from [14,16], (b) contextualizes
the same information with a background of the surrounding areas as generated by the
package RgoogleMaps [7]

Though such preliminary visualizations of spatially dispersed points are a
great starting point, they need to be supplemented with additional graphical
infrastructure for more robust analyses. For example, in many cases we are
faced with the task of evaluating spatial patterns with respect to a reference
point, e.g., variation of crime patterns across the blocks of a city, traffic density
around major intersections, real estate prices across school districts etc. Analyz-
ing spatial data with such context proves to be a useful tool for making informed
decisions, designing public policies, and efficiently allocating resources.

We claim that even the formulation and generation of statistical hypothesis
to test can be greatly facilitated by the additional layer of information provided
by a map.

1.1 Spatial Aggregation

A concise overview of the relevance of the spatial aggregation problem in general,
and specially in economics, is given in [5]. In empirical spatial data analysis, this
problem is often referred to as the modifiable areal unit problem (MAUP)[10,12].
In this paper, we ignore the statistical consequences of coarsening the resolution
of spatial data (see, e..g. [11]) and instead focus on the algorithms that can be
used to efficiently map spatially dispersed data points to higher geographical
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entities like zip codes, Census blocks, or districts. Once associated with a partic-
ular spatial region, information from all points within a region can be aggregated
to search for patterns and derive meaningful insights.

The particular type of aggregation we have in mind pertains to (stratified)
counting of spatially referenced points that fall within arbitrarily shaped poly-
gons that form a complete spatial partition, i.e. leave no holes nor overlap in any
way. Without loss of generality we assume that every search point lies within a
unique polygon. In case these assumptions are not met, it should be straightfor-
ward to either augment the search area with polygons or eliminate intersections.

The case of rectangular regularly shaped polygons is easily achieved and
poses no computational challenges. However, mapping arbitrary points to irreg-
ularly shaped polygons can be a computationally expensive exercise that typi-
cally involves looking up each data point in multiple spatial polygons until the
search criteria are met. This can become a daunting task if the number points
to be mapped, which we denote by N , go beyond a few thousand. In particular,
the overall computational cost is expected to be of O(N · M) for M polygons,
with a very high multiplicative constant.

Throughout this text we will use US Census block polygons [1] as a well-
suited example for the spatial partitions that our proposed algorithm is tailored
to. Figure 2b illustrates an overlay of these census polygons for the city of San
Francisco.

Fig. 2. (a) Crime incidents in San Francisco; the red points indicate violent crimes and
the green ones denote non-violent crimes, (b) Overlay of the US 2010 Census blocks
on crime incidents in San Francisco (Color figure online).

The Figure also shows 10, 000 crime incidents that occurred in San Fran-
cisco in 2012 [17]. The red points on the figure denote violent crimes, which we
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have defined as assault, robbery, rape, kidnapping, and purse snatching. The
green points are non-violent crimes. The left plot in this figure shows the spa-
tial distribution of crime across the entire city. The plot on the right (b) adds
more context to the crime incidents by visually mapping each incident to a Cen-
sus block. Both panels were generated by the package RgoogleMaps [7]. This
association can aid efficient allocation of policing resources and provide insights
required for formulating demographic policies.

In this paper, we propose a methodology to expedite the search process using
efficient data structures by exploiting k-d trees as a fast nearest neighbours algo-
rithm to dramatically reduce the number of prospective polygons in the search
space. Leveraging k-d trees, we compute a list of polygons that are most likely
to contain each data point. The provision of such a list, ordered by likelihood,
reduces the number of effective polygons that need to be exhaustively searched
to determine the inclusion of the point in consideration.

Note that we neither compare our method with R-trees [6] nor do we claim
algorithmic superiority over those data-structures that are specifically designed
to deal with objects of spatial extent. Our reasoning is more pragmatic and
motivated by code maturity and availability: well-tested, well-documented, eas-
ily usable and fast open source k-d tree libraries exist in several programming
languages. R-trees on the other hand are more recent and have been embraced
by a smaller community which has resulted in much sparser code availability. In
addition, searches on trees that are based on hierarchical partitioning of rectan-
gles would still necessitate the point-in-polygon operation on the remaining can-
didates. We speculate that R-trees could potentially speed up our range search
which we describe in Sect. 3.2.

1.2 Point in Polygon

Determining the inclusion of a point q in a 2D planar polygon P is a geometric
problem that has been studied in detail. Two commonly used methods are [13,18]:

– The Winding Number (Zwn) method, which counts the number of times the
polygon winds around the point q. The point is outside only when this “wind-
ing number”Zwn = 0; otherwise, the total turn must be a whole number of
revolutions, Zwn = 2nπ, and the point is inferred to be inside.

– The Crossing Number (Zcn) method, which counts the number of times a ray
starting from the point q crosses the polygon boundary edges. The point is
outside when this “crossing number” is even; otherwise, when it is odd, the
point is inside. This method is sometimes referred to as the “even-odd”test or
the “ray casting” method.

It should be easy to see that both algorithms scale linearly in the number of
vertices n of the respective polygon, i.e. O(n). The claim made in [13] that the
ray crossing algorithm is more than twenty times faster than the winding number
method is refuted in [18] (Fig. 3).
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Fig. 3. Illustration of (a) the winding number concept: at a given point q “watch”another
point p completely traverse the polygon boundary ∂P and keep facing point p. If q ∈ P ,
the total angular turn would be a multiple of 2π otherwise it would be exactly zero; and
(b) the crossing number idea: we draw a “ray” R from the point in question q in an
arbitrary direction and count the number of intersections of R with ∂P . The point q is
in or out of P if the number of crossings is odd or even, respectively [13].

1.3 Polygon Ranking

Execution of point-in-polygon can be expensive if the number of prospective
polygons is large. One way economize on this is to reduce the number of prospec-
tive polygons by ordering them based on the likelihood of inclusion of the point.
The motivation behind our paper lies around exploring methods for rank order-
ing polygons. Here we provide a brief description of some “simpler”rank ordering
methods that will help lay the stage for our methodology explained later.

Exhaustive Search: Randomly pick the polygons and check until a match is
found. This process is “exhaustive” in the sense that the search is executed
across the entire polygon space until the success criteria are met.

Area Based Ranking: Order the polygons based on the polygon area. This
could prove to be a fast and effective method if the points are evenly spread
out and the polygons are regularly shaped.

Prior Assignments: Rank the polygons based on the number of points that
have already been mapped to them. If the data generation process of the
points is consistent, then the previous mappings can be “cached”for the
remaining points.

Least Number of Vertices: The cost of executing point-in-polygon increases
with the number of vertices of the polygon. Rank ordering the polygons
starting with those with the least number of vertices can then help reduce
the overall execution time.

While the methods mentioned above do provide a starting point, they fail to
scale and generalize if the number of data points to be mapped is large and if the
polygons are irregularly shaped. Our paper tries to address these problems. This
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paper is organized as follows: in the next section we lay the background of our
methodology by providing a brief description of k-d trees and related concepts.
Section 3 details our approach and Sect. 3.4 provides the testing benchmarks.
Section 4 discusses a few potential examples where our algorithm can be applied
and Sect. 5 concludes the paper.

2 K-D Trees

K-D trees are data structures that partition a k-dimensional space to store a set
of finite points [3]. K-d trees are binary trees such that each node has a maximum
of two child nodes. The entire tree has a guaranteed depth of log2(N) where N
is the number of points in the set. They provide an efficient mechanism to search
a point in a k-dimensional space by hierarchically decomposing the space into
smaller and smaller partitions. This hierarchical decomposition is achieved by
recursively partitioning the space using only one dimension at a time and then
recycling once the kth dimension is reached. A point to be looked up can then be
dropped down the tree starting at the root node and the condition for inclusion
can then be checked at each node that falls on the designated path.

A popular and useful application of k-d trees is searching for the nearest
neighbours by leveraging the structure of a tree. This is possible because the
structure allows for quick checking and elimination of large partitions in the
search space.

For example, a quick first approximation can be found by traversing the
point down the tree until a leaf node is reached. This first approximation can be
described as the “current best”. Consequently, if there is any point that is closer
to the search point, it has to lie within the hypersphere drawn with the search
point at the center and the distance between the search point and the current
best as the radius. Given that the hyperplanes partitioning the space are axis
aligned, it can easily be checked if the hypersphere and the hyperplane intersect.
If not, the partition on the other side of the hyperplane can be entirely eliminated
from the search space. On average, such a procedure is at least O(log(N)), where
N is the number of nodes in the tree, since at least one leaf of the tree needs to
be visited. At max, this value can be N such that each node is visited at most
once [9].

3 Methodology

Our methodology relies on the efficient data structures that k-d trees produce.
We use these structures to compute nearest polygon neighbours for any given
search point and then check which of these polygon neighbours contains the
search point. We economize on the computation time by significantly reducing
the number of effective polygons that need to be searched to determine the
parent polygon of the data point.
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3.1 Polygon Centroid Method

Consider a search point s in a k-dimensional space that can be represented
by (s1, s2, . . . , sk). Additionally, consider P polygons in a similar k-dimensional
space. We determine the centroid for each of these P polygons such that we
effectively have P points in the k-dimensional space which can be represented
as (p1, p2, . . . , pk).

Using the centroids of the polygons we construct a k-d tree and then use the
tree to compute M (typically M is chosen to be around 10) nearest neigbours for
the search point [2]. This computation provides an ordered list of M polygons
which are most likely to include the search point. We run an exhaustive check on
this ordered list to find the polygon which contains the point in consideration.
Exploiting k-d trees in such a manner allows us to significantly reduce the number
of effective polygons that need to be exhaustively searched to determine which
polygon does the point belong to. Figure 4 suggests that indeed for the vast
majority of search we needed to test only 1 − 2 polygons.

Fig. 4. Distribution of the number of polygons tested to check for inclusion of search
points.

However, we also notice a (small) percentage of cases where the nearest 4−10
centroids turned out to not include the correct polygon. Such exceptions war-
rant closer inspection and Fig. 5a shows a few of these cases. It can be seen
that many points lie on the edges of the candidate polygons thereby making it
less likely for the closest centroid to belong to the parent polygon. These excep-
tions, however, can be minimized by increasing the number of nearest neighbours
being computed. Increasing the number of neighbours provides a longer list of
candidate polygons for exhaustive search, which typically leads to more points
being mapped to polygons at the cost of a modest increase in computation time.
Figure 6 shows the proportion of points left unmapped in this process. We see
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that as the number of contender polygons is increased by computing more nearest
neighbours, the proportion of search points left unmapped gradually declines.
The current code [8] employs a hybrid strategy by executing a range search
(described in the next section) on the remaining unmapped points such that no
point remains unassigned.

Fig. 5. (a) Crime incidents that could not be mapped to the ten “closest” polygons - as
measured by the distance to the centroids. The lower and upper cluster of points appear
inside larger polygons that are surrounded by several smaller ones. (b) Polygons with
their centroids (green) as well as an overlay of the Voronoi cells (red) of the polygon
centroids (Color figure online).

3.2 Range Search

For each polygon we initially compute the minimum bounding rectangle (MBR).
The main search idea then is simply to rule out those polygons whose MBR
does not contain the search point. The ranking within the remaining polygon
candidates can be chosen among the following heuristics: (i) closest centroid, (ii)
closest vertex or (iii) largest area. We note in passing that R-trees [6] also utilize
the idea of bounding box intersection with search objects.

Whether the range search is slower or faster than the closest-centroid order-
ing depends very much on the number of polygons searched before inclusion is
decided. Currently, the user chooses the maximum number of nearest centroids
k (returned by the k-d tree) to search before reverting to the range search. Each
data set will likely possess a unique optimal value for k which can be estimated
by experimenting with a small sample; we therefore do not offer strong recom-
mendations for choices for k. The next section introdudes an alternative search
strategy which suggests a maximum value of k = 4.
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Fig. 6. Proportion of points left unmapped as the number of nearest neighbours com-
puted is changed for a given set of search points

3.3 Closest Vertex

We believe that representing polygons by their centroids and searching for the
nearest centroid(s) for each earch point s can be improved upon. To motivate
the next idea, we inspect those points for which the 10 nearest polygon centroids
did not lead to a succcessful match as graphed in Fig. 5a.

It is evident that points closer to the edges of a polygon are less likely to be
associated with the correct centroid than interior points. Constellations of large
polygons surrounded by many small ones lead to regions where the “correct”
centroid is not even in the list of the ten closest; the two clusters of unmapped
points in Fig. 5a exemplify that situation.

To better understand which search points are associated with which polygons,
we compute and overlay the Voronoi tesselation for the set of polygon centroids as
shown in Fig. 5b. Ideally, the Voronoi cells would coincide closely with the actual
polygons, in which case the closest centroid would be the correct match. However,
we notice frequent substantial mismatch between these geometric entities. Let us
define the “Voronoi coverage”of a polygon as the fraction of its area covered by
its own Voronoi cell. Figure 7a shows its distribution which is very heterogenous.

Summing up the weighted proportions yields a total area covered of 60.5%.
Given a random point from a spatially uniform distribution (rarely true for real
data sets, of course), the closest centroid is correct if and only if that point
happens to be inside the “Voronoi coverage”. Hence, the probability that the
nearest centroid is a successful match should be about 60.5%.
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Fig. 7. (a) For each polygon we define the “Voronoi coverage” as the fraction of its area
covered by its own Voronoi cell. For values close to 1 the nearest centroid to a search
point would (almost) always indicate its enclosing polygon. Note the large fraction
of polygons with coverage less than 80 % which leads to the observed inefficiencies in
the centroid based algorithm. (b) “Voronoi recall rate”(true positives) defined as the
fraction of its area covered by its respective polygon.

A related, and perhaps more relevant, measure is the conditional probability
of point q belonging to polygon pi given that q is inside its Voroni cell Vi:
P (q ∈ pi|q ∈ Vi). In a Bayesian setting this would be the posterior probability
resulting from updating existing prior probabilities P (q ∈ pi). We compute this
“Voronoi recall rate”as the fraction of its area covered by its respective polygon
and graph its distribution in Fig. 7b. Again, we see a greatly varying distribution.

One idea to improve these odds is to augment the set of centroids with addi-
tional representative points, either randomly chosen or in an adaptive fashion
where the falsely classified regions would be preferentially selected. Note, how-
ever, that this is a difficult global optimization problem in which local improve-
ments of coverage in one polygon can have a detrimental effect on its neighbours.

Instead, we propose to represent the polygons not by their centroids but
their vertices. It should be intuitively clear that a search point is closest to those
vertices “surrounding it”, i.e., those that belong to the enclosing polygon. Note
that we are now relying strongly on our initial assumption that the given set
of polygons constitutes a complete partition of the area of interest; the poly-
gons neither overlap nor leave holes. In that case most vertices are shared by
at least two polygons. In the case of corners, they can be shared by three or
more. Experiments with the Census block polygons from the US Census 2010
[1] confirm this expected behavior resulting in an average number of about 1.6
polygons tested per point. While this is already a notable improvement over the
closest-centroids method, we can further improve the ranking within the list of
equidistant vertices and their corresponding polygons by the following heuris-
tic. We hypothesize that for most combinations of polygons and search points
the correct centroid lies “on the other side”of the point than the closest vertex
whereas the centroid of the incorrect, neighbouring polygon tends to be on “same
side”. Figure 8 visualizes this idea via two examples from the census blocks.
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Fig. 8. Two examples for the direction of the vectors originating from a randomly
chosen search point s (black dot, origin of all three arrows) to (i) the closest vertex
(red point, black -shortest- arrow), (ii) the centroid of the enclosing polygon (blue
arrow, second shortest) and (iii) the centroid of the neighboring polygon (green arrow
-longest). Both examples support the proposed heuristic that the angle between black-
blue vectors tend to be larger than between black-green vectors (Color figure online).

In both cases the closest vertex (red point) to the search point (black point)
belongs to the two polygons drawn. We would like to rank the matching polygons
(blue centroids) ahead of the “wrong” polygons (green centroids). The notion
of “other/same side” is measured by the angles between the black vector and
the blue/green vectors respectively. Our heuristic is simply to break the rank tie
between the two polygons by increasing the prior probability of the one with the
larger angle.
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Fig. 9. Distribution of the number of times the point.in.polygon() function must be
executed before a match is found for 10, 000 randomly selected crime locations in
San Francisco. Ties in vertex-point distance are broken: (a) via the described angular
heuristic and (b) randomly.

Figure 9a shows the successful application of this simple idea: the polygons
ranked number one are correct in about 90% of the cases for a test set of 104 points.
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Breaking ties among the polygons randomly instead of the “angular heuris-
tic”leads to an approximately 50% chance of choosing correctly between the two
candidates, as shown in Fig. 9b.

We speculate that for arbitrary sets of polygons the simple strategy of clos-
est vertex/centroid must likely be modified to retain its efficiency. The current
termination of the search upon the first successful match needs to be refined
in case of overlapping polygons which would allow for multiple assignments to
the respective enclosing geometries. Limiting the polygon candidates with the
above mentioned range search (that we do not explain in detail here) and ranking
the polygons within that subset would likely be a near optimal hybrid algorithm.
A violation of our second assumption – the existence of “holes”, i.e. regions in
space that are not covered by any polygon – can be dealt with by this same
approach or by a pre-processing step which would create additional space-filling
polygons.

We use crime incidents from San Francisco [17] to benchmark our algorithm.
For polygons, we use Census blocks from the US Census 2010 [1]. The results of
the benchmarks are provided in Fig. 10. For all three proposed methods Fig. 10
shows a near linear scaling in computation time as the number of search points
are increased. These results were produced after averaging the run times over 5
iterations. Additionally, for each point in the data set, we record the number of
polygons that were exhaustively searched before the parent polygon was found.
This was done for each of the three methods.
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Fig. 10. CPU time taken to map SF crime incidents to Census block polygons for the
three algorithms proposed in the paper: (i) closest-centroid method as well as closest
vertex with (ii) angle heuristic and (iii) random ranking.

3.4 Benchmarks

On average, we had to execute the point-in-polygon check:

1. 1.7 times for the closest-centroid method,
2. 1.6 times for the closest-vertex, random tie breaking method,
3. 1.12 times for the closest-vertex, angular heuristic method.
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These results show a considerable reduction in the number of effective polygons
searched, highlighting the efficiency gains proposed by our methodology. Sur-
prisingly, the method with the lowest average execution of the polygon inclusion
test emerges as the slowest so far as Fig. 10 suggests. We speculate that the time
taken be the computation of the necessary angles exceeds the small overhead of
more polygon tests.

In forthcoming work, we will provide benchmarks for a larger variety of data
sets in combination with different types of polygonal partitions.

All analyses were performed using the open source R statistical programming
language [15].

4 Further Examples

The aggregation of spatial points to higher geographic entities is a generic com-
putational task that finds applicability in various domains. Consider, as an exam-
ple, the case of conflict outbreaks, events that have both spatial and temporal
characteristics much like point processes. For example, Weidmann and Ward [19]
try to predict conflict in Bosnia at a municipality level using a spatio-temporal
regression model. It is easy to see how this process can be easily generalized to
a different hierarchical structure as required by the governing bodies using the
spatial aggregation methodology we present in this paper. Historical geocoded
data of conflict outbreaks can be mapped to any spatial polygon structure that
can further be joined with local demographic, social, and economic variables to
gain deeper insights.

A more practical application in an era of social media and real-time data
collection could include estimation of demand for taxi services at a grid or block
level. Such estimation would involve aggregating historical pickup locations to
most relevant spatial partitions, combining them with more contextual informa-
tion like proximity to commercial establishments, residence spaces, larger travel
stations, and generating in-situ predictions for different time divisions of the day.

Another example where aggregating spatial points could prove helpful is pre-
dicting forest fires. Forest fire locations can be combined with information on
temperature, wind, humidity, and vegetation along with variables such as the fire
weather index [4] to find fire hot-spots (areas that are more prone to destructive
fires), and consequently facilitate proactive intervention where relevant.

5 Conclusion

In this paper, we explore an efficient spatial aggregation technique that can be
used to assign spatially dispersed points to common geographical entities. We
exploit k-d tree data structures to compute approximate nearest neighbours for
search points by computing distances between the coordinates of the points and
a set of fixed points which represent the polygons. Choices for the latter inves-
tigated in this paper are (i) the polygon centroids and (ii) the vertices. Such a
procedure provides efficiency gains as the results from nearest neighbours search
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significantly reduce the number of point.in.polygon() function calls. Combining
these tree based methods with a range search as pre- or post- processor makes
our method widely applicable even when the polygons do not provide a complete
spatial partition. Our code has been made publicly available as an R package [8].

In future work we plan to augment the polygons with auxiliary information
such as convexity, largest enclosing circle, and/or rectangle, all of which can lead
to even more efficient point to polygon mappings.
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