
Computational Comparison of Algorithms
for a Generalization of the Node-Weighted
Steiner Tree and Forest Problems

Raul Brás and J. Orestes Cerdeira

Abstract Habitat fragmentation is a serious threat for the sustainability of species.
Thus, the identification of effective linkages to connect valuable ecological units is
an important issue in conservation biology. The design of effective linkages should
take into account that areas which are adequately permeable for some species’
dispersal may act as obstructions for other species. The determination of minimum
cost effective linkages is a generalization of both node-weighted Steiner tree and
node-weighted Steiner forest problems. We compare the performance of different
procedures for this problem using large real and simulated instances.

1 Introduction

In conservation biology, habitat fragmentation is considered a key driver of bio-
diversity loss [4, 10]. To mitigate the impacts of fragmentation on biodiversity,
connectivity between otherwise isolated populations should be promoted [15]. To
effectively promote connectivity, there is need for procedures to identify linkages
(i.e., areas to establish the connection) between habitats of each of several species
(i) that take into account that linkage areas for a species might be barriers for
others, and (ii) that are cost-efficient, since placing linkage areas under conservation
compete with other land uses.

The problem can be formulated as follows. Consider a graph G D .V; E/ where
the nodes of V identify the cells (usually grid squares) in which the study region has
been divided, and which are considered suitable for conservation actions. The edges

R. Brás (�)
Instituto Superior de Economia e Gestão and Centro de Matemática Aplicada à Previsão e
Decisão Económica, Universidade de Lisboa, Portugal
e-mail: rbras@iseg.ulisboa.pt

J.O. Cerdeira
Departamento de Matemática & Centro de Matemática e Aplicações, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
e-mail: jo.cerdeira@fct.unl.pt

© Springer International Publishing Switzerland 2015
J.P. Almeida et al. (eds.), Operational Research, CIM Series in Mathematical
Sciences 4, DOI 10.1007/978-3-319-20328-7_5

67

mailto:rbras@iseg.ulisboa.pt
mailto:jo.cerdeira@fct.unl.pt

68 R. Brás and J.O. Cerdeira

of E define adjacencies between pairs of cells (usually two cells are adjacent if they
have a common border).

For each species (or group of “similar” species, i.e., sharing the same habitats and
suitable areas to disperse) k, k D 1; : : : ; m, let Tk be the set of nodes representing the
habitats of species k (terminals of type k), and Vk the set of nodes corresponding to
cells which can be used as linkage passages for species k. We assume that Tk � Vk,
and call k-barriers to the cells of V n Vk.

A feasible solution of the problem is a subset of nodes S � V that, for k D
1; : : : ; m, includes a path that only uses nodes of Vk between every pair of nodes
in Tk.

Suppose there is a (non negative) cost associated to every node, quantifying the
charge of allocating the corresponding cell to conservation purposes. The problem,
which we will call multi-type linkage problem (MTLinkP for short), seeks for a
minimum cost feasible solution (i.e., which minimizes the sum of the costs of the
nodes).

MTLinkP, that was independently considered by Lai et al. [13] and by Alagador
et al. [1], is a generalization of the node-weighted Steiner tree [20] and of the node-
weighted Steiner forest [8] problems. If V D Vk and m D 1 (i.e., only one species,
no barriers) MTLinkP is the node-weighted Steiner tree problem. If V D Vk, for k D
1; � � � ; m > 1 (i.e., different species, no barriers) MTLinkP is the node-weighted
Steiner forest problem.

Lai et al. [13] and Alagador et al. [1] proposed a heuristic procedure for MTLinkP
by solving a sequence of node-weighted Steiner tree problems, one for each type k,
and outcome the union of these m Steiner solutions. We call this approach type by
type. In the same paper Lai et al. [13] presented a heuristic for MTLinkP that is
a generalization of the primal-dual algorithm of Demaine et al. [5] for the node-
weighted Steiner forest problem, and report computational results on synthetic
instances of small size (up to 15�15 grids) and m up to 5, and a real instance
consisting of two species, 4514 cells and up to 17 terminals.

Brás et al. [2] developed a computer application, MulTyLink, implementing a
version of the type by type algorithm and a GRASP type heuristic. This software
was announced in Brás et al. [3], along with a brief description of the two algorithms
used by the program.

In this paper we compare the performances of the primal-dual algorithm of Lai
et al. [13] and the two heuristics in MulTyLink on real and simulated data sets.
We start giving in Sect. 2 a multiflow formulation for MTLinkP. In Sect. 3 we give
some details on the two heuristics of MulTyLink, and summarize the primal-dual
heuristic of Lai et al. [13]. In Sect. 4 we report results of computational experiments
to compare running times and quality of the solutions produced with the three
heuristics. We finish with some remarks in Sect. 5.

A Generalization of the Steiner Tree and Forest Problems 69

2 Multiflow Formulation

Flow formulations have been used to model Steiner tree problems (see, e.g., Wong
[21] for the standard edge-weighted Steiner tree problem; Segev [18] for a special
case of non negative costs on the edges and negative costs on the nodes and
Magnanti and Raghavan [14] for general network design problems with connectivity
requirements including the edge-weighted Steiner forest problem).

Here we give a multi-commodity flow based formulation of MTLinkP.
Let wv � 0 be a cost associated to each node v of graph G and let wv D 0 if

v 2 Tk, for some k D 1; � � � ; m. Denote by A the set of arcs obtained by assigning
two arcs of opposite directions to every edge of G.

For k D 1; 2 : : : ; m, let tk
1; tk

2; � � � ; tk
pk

, with pk D ˇ
ˇTk

ˇ
ˇ, be the terminals of Tk

taken by some arbitrary order. Node tk
1 will supply every other node in Tk (the

demanding nodes) with one unit of commodity. Variables f ki
.u;v/ on arcs indicate the

amount of commodity k (amount of flow of type k) along arc .u; v/ with origin tk
1

and destination tk
i ; i D 2; : : : ; pk. Connectivity of the nodes of Tk in solutions is

ensured by the mass balance constraints which state that the amount of commodity
k out of a node v minus the commodity k into v must equal the supply/demand
amount.

In addition to flow variables f ki
.u;v/, binary variables xv on nodes will be used to

indicate whether node v is included (xv D 1) or not (xv D 0) in the solution. With
these variables MTLinkP can be formulated as follows.

min
X

v2V

wvxv (1)

subject to:

X

fv2Vk W.tk1;v/2Ag
f ki
.tk1;v/

D 1;
k D 1; � � � ; m;

i D 2; � � � ; pk
(2)

X

fu2VkW.u;v/2Ag
f ki
.u;v/ D 1;

v 2 Tk n ftk
1g

k D 1; � � � ; m;

i D 2; � � � ; pk

(3)

X

fu2VkW.v;u/2Ag
f ki
.v;u/ �

X

fu2VkW.u;v/2Ag
f ki
.u;v/ D 0;

v 2 Vk n fTkg
k D 1; � � � ; m;

i D 2; � � � ; pk

(4)

X

fu2VkW.u;v/2Ag
f ki
.u;v/ � xv;

v 2 Vk n ˚

tk
1

�

;

k D 1; : : : ; m;

i D 2; � � � ; pk

(5)

xv 2 f0; 1g; v 2 V (6)

f ki
.u;v/ � 0; u; v 2 Vk; .u; v/ 2 A; k D 1; : : : ; m; i D 2; � � � ; pk: (7)

70 R. Brás and J.O. Cerdeira

The mass balance equations (2), (3) and (4) dictate that one unit of flow of type k
will be routed between the supply node tk

1 and each demanding node of Tk nftk
1g. The

“capacity” constraints (5) ensure there is no flow along the arcs entering nodes that
are not included in the solution. Constraints (2), (3), (4), (5), (6) and (7) guarantee
the existence of a directed path between tk

1 and every other node of Tk, thus ensuring
that all nodes of Tk will be in the same connected component of the solution.

We will use the compact formulation (1), (2), (3), (4), (5), (6) and (7) above
to derive, from a mixed integer programming solver, MTLinkP optimal values for
small size instances, to assess the quality of the solutions produced by the heuristic
algorithms of Sect. 3.

3 Heuristics

3.1 Type by Type Heuristic

Given a permutation i1; i2; : : : ; im of (integer) types 1; 2; : : : m, the type by type
heuristic computes in step k a Steiner solution with respect to < Vik >, the subgraph
of G induced by Vik , updates the costs of nodes v of that solution letting wv D 0,
and proceeds to the next step k C 1. The final MTLinkP solution results from
turning minimal feasible (with respect to inclusion) the union of nodes of the Steiner
solutions obtained in each step.

The process can be repeated for a number of different permutations of integers
1; 2; : : : ; m, and the best solution is returned (see Fig. 1).

To solve the node-weighted Steiner tree problem in each step, we use the fol-
lowing straightforward modification of the well known distance network heuristic
suggested by Kou et al. [12] for the edge-weighted Steiner tree. If H is a graph

1. Sol ← /0
2. w(Sol) ←
3. ← subset of permutations of {1; : : : ;m}.
4. For all P ∈

a. X ← /0
b. For all k ∈ P

i. Build graph <Vk > with weights: 0 if v ∈ X , wv otherwise.
ii. Xk ← Steiner solution w.r.t. <Vk > and Tk

iii. X ← X ∪Xk

c. Turn X minimal. For each v ∈ X \ k T k (randomly ordered) remove v from X if
X \{v} is MTLinkP feasible.

d. w(X) ← ∑v∈X wv
e. If w(X)< w(Sol) then

i. Sol ← X
ii. w(Sol) ← w(X)

5. Return Sol.

Fig. 1 TbT heuristic

A Generalization of the Steiner Tree and Forest Problems 71

with costs w on the nodes and terminal set S, we define the distance network D.S/

which is the complete graph with S as its node set, and where the weight of every
edge .u; v/ is the cost of the minimum cost path connecting terminal u to v on H.
Note that determining a node-weighted shortest path on undirected graph H between
nodes u and v, with wu D wv , reduces to finding an edge-weighted shortest path
from u to v in the digraph obtained assigning opposite directions to every edge of
H, and defining the cost of every arc .i; j/ as being equal to wj.

A minimum spanning tree of D.S/ is determined and a (node-weighted) Steiner
solution N is defined as the set of the nodes of the shortest paths corresponding to
the edges of the spanning tree.

In the final step the nodes of N are considered randomly and node j is removed
from N if all nodes of S belong to the same connected component of the subgraph
of H induced by N n f jg.

We use the above modification of the distance network heuristic since it is
fast and does not use large data structures. Procedures such as Klein and Ravi
[11] heuristic, based on the Rayward-Smith [16] algorithm, that perform well for
node-weighted Steiner problems, would be impractical for the large size instances
of MTLinkP we want to handle. Klein and Ravi [11] heuristic needs to compute
the minimum cost paths between all pairs of nodes, which is time consuming and
requires large amounts of memory.

Lai et al. [13] version of this heuristic uses the Dreyfus-Wagner (DW) algorithm
[7] to solve the Steiner problem at each step. DW is an exact dynamic programming
algorithm that runs in exponential time, not suitable to solve the instances that we
present in this paper.

3.2 Primal Dual Heuristic

Lai et al. [13] gave a modified version of the Demaine et al. [5] heuristic for
node-weighted Steiner forest problems. The heuristic operates on the following cut-
covering formulation of MTLinkP. Minimize (1) subject to (6), and

X

v2�k.S/

xv � f k.S/;
S � Vk

k D 1; : : : ; m
(8)

where f k.S/ D 1, if ; 6D S \ Tk 6D Tk (i.e., if S includes at least one terminal of
Tk, but not all), and f k.S/ D 0, otherwise, and �k.S/ is the set of nodes v 2 Vk n S
adjacent to at least one node in S.

The dual of the linear relaxation of (1), (6), (8) is:

max
mX

kD1

X

S�Vk

f k.S/yk.S/

72 R. Brás and J.O. Cerdeira

1. X ← k T k

2. For k = 1; : : : ;m calculate (Xk). yk(C) ← 0 for everyC ∈ (Xk)
3. While X is not MTLinkP feasible

a. Simultaneously increase yk(C) until, for some v, ∑m
k=1∑C⊆Vk :v∈Γk(C) yk(C) = wv.

b. X ← X ∪{v}
c. For k = 1; : : : ;m recalculate Xk and (Xk).

4. Turn X minimal. For each v ∈ X \ k T k (by reverse order of insertion) remove v from X
if X \{v} is feasible

5. Return X .

Fig. 2 PD heuristic

subject to:

mX

kD1

X

S�Vk Wv2�k.S/

yk.S/ � wv v 2 V

yk.S/ � 0
S � Vk

k D 1; : : : ; m

The heuristic maintains an infeasible primal solution X, and dual variables yk.S/.
The algorithm is described in Fig. 2, where C .

˝

Xk
˛

/ are the connected components
of the graph induced by Xk D X \ Vk.

3.3 GRASP Heuristic

The type by type (TbT) heuristic and the primal-dual heuristic (PD) of Lai et al.
[13] define a feasible solution adding in each step nodes to a current unfeasible
solution X. TbT heuristic adds to X a set of nodes that guarantee the connection of
all terminals from a certain predetermined type, and assigns costs equal to zero to
all the added nodes. PD heuristic adds to X one single node that belongs to Vk and is
adjacent to Xk, for at least one not previously determined type k. We present a kind
of greedy randomized adaptive search procedure (GRASP) [9] that hybridizes the
two heuristics.

GRASP starts with set X consisting of all terminals of Tk; k D 1 � � � ; m, and in
each step grows the current unfeasible solution X as follows. First, some type k, for
which not all terminals of Tk are connected, is uniformly selected. Next, a connected
component S of < Xk >, the subgraph induced by Xk, that includes terminals of type
k, is uniformly selected, and a minimum cost path P, among the minimum cost paths
connecting S with every other component of < Xk > that includes terminals of type
k, is determined. The nodes of P are added to X, and costs are updated letting wv D 0

to every node v of P. Note that, since the costs of nodes of X are all equal to zero,

A Generalization of the Steiner Tree and Forest Problems 73

1. w(Sol) ←
2. r ← number of repetitions
3. For i= 1; : : : ;r

a. X ← k T k

b. While X is not MTLinkP feasible
i. Xk = X ∩Vk. Calculate (Xk), k = 1,...,m
ii. Q= {k : not all terminals of Tk belong to the same S ∈ (Xk), k = 1; : : : ;m}
iii. If Q= elcycelihwehtdneneht0/
iv. p ← member of Q uniformly selected
v. S ← member of (X p) : S∩T p = detcelesylmrofinu0/
vi. P ← minimum cost path connecting S toU ∈ (X p)\S :U ∩T p = / 0
vii. X ← X ∪P, wv = 0, ∀v ∈ P

c. Turn X minimal. For each v ∈ X \ k T k (randomly ordered) remove v from X if
X \{v} is MTLinkP feasible.

d. w(X) ← ∑v∈X wv
e. If w(X)< w(Sol) then

i. Sol ← X
ii. w(Sol) ← w(X)

4. Return Sol.

Fig. 3 GRASP heuristic

P can be easily obtained with Dijkstra algorithm [6], choosing an arbitrary node in
S as the starting node and ending as soon as a node of a component of Xk, including
terminals of Tk and different from S, is added to the path.

The final GRASP solution is obtained by turning minimal feasible the solution
X obtained in the last step. Given its random behavior, repeating GRASP a number
of times with the same input is likely to produce different solutions, and the best
solution is outcome (see Fig. 3).

4 Computational Experiments

We performed computational tests to evaluate the quality of the solutions produced
by the heuristics, as well as the practicality of the flow formulation of Sect. 2.

4.1 General Case

Here we report results for the case where not all Vk coincide.

4.1.1 Data

We used real and simulated instances to test the heuristics.

1. Real Data.

74 R. Brás and J.O. Cerdeira

Real data concerns the linkage of climatically-similar protected areas (PA) in the
Iberian Peninsula (IP). IP is represented as 580,696 1 km � 1 km cells, from
which 80,871 cells intersecting the 681 existent PA in the IP were defined as
terminals. Terminals were clustered in four groups sharing similar climates (with
respect to four climatic variables which are considered important drivers of species’
distributions). Adjacency was considered in terms of common edges or corners of
the square cells.

Cells with considerable human intervention (values derived from Human Foot-
print Index data available from http://www.ciesin.columbia.edu/wild_areas greater
than 60 in a range from 0 to 100) were excluded as they were considered poorly
permeable to species’ movements. This has reduced the number of cells to 438,948
(which includes every protected cell).

Figure 4 (page 74) shows the location of protected cells from each class
(colored cells), and cells that were excluded due to presenting high levels of human
intervention (grey cells).

For k D 1; : : : ; 4, Vk was defined as the set of cells that do not significantly
differ from the mean climatic conditions of PA of class k. This was delineated as
follows. The centroid, in the climatic space, of the PA cells of each climatic class
was defined, and the Euclidean distances from the climate conditions of each cell

Fig. 4 Iberian Peninsula data (scenario 2). Protected cells are colored red, green, blue and
magenta. Grey areas represent cells not in V. Cells of the solution obtained with TbT heuristic
are colored yellow

http://www.ciesin.columbia.edu/wild_areas

A Generalization of the Steiner Tree and Forest Problems 75

to the centroid of each class were computed. This retrieved four values dk.v/, for
each cell v, expressing the dissimilarity of cell v to every climatic class k. Cell
v 2 Vk (i.e., v was not considered k-barrier) if dk.v/ is below a certain threshold
value Bk. Two scenarios were considered. In scenario 1, Bk was defined as the largest
dissimilarity dk.v/, among the protected cells v in every PA from class k. In scenario
2, Bk was set as the third quartile of the dk.v/ values for protected cells v of class k.
Cell u was included in Vk (i.e., u was not considered k-barrier) if u belongs to some
PA of class k, or dk.u/ < Bk.

The rational for the identification of linkages between climatically-similar
protected areas, free from climatic barriers, stands on the assumption advocated
by Alagador et al. [1] that species with similar ecological requirements occupy the
same environments. Thus, linking climatically-similar protected areas is an effective
way to promote the dispersal of species, counteracting in part the negative effects of
fragmentation.

A cost was assigned to every non protected cell that is proportional to the cell’s
fraction not covered by Natura 2000 Network (wv D .100�percentage of Natura
2000 Network covered by v/=100). The Natura 2000 network is a European scaled
conservation scheme designed to complement nationally-defined protected areas.
We assigned cost equal to zero to every protected cell.

Details on the IP data can be found in Alagador et al. [1].
We denote by IP1 and IP2 the IP instances under scenarios 1 and 2, respectively.

2. Simulated Data.

Simulated data were generated as follows. Each node of V is a cell from a n�n grid.
Two cells are adjacent if they have a common edge or corner.

To define Vk we start by uniformly selecting an integer s 2 Œ0; m� and assume that
species 1; : : : ; s are “specialist” (can only thrive in a narrow range of environmental
conditions) and species s C 1; : : : ; m are “generalist” (are able to thrive in a wide
variety of environmental conditions). Each node v of V is included in Vk with
probability 1=4 for each “specialist” species k � s, and with probability 3=4

for each “generalist” species k > s. The number of terminals of each type was
obtained from a discrete uniform distribution in interval Œ2; max fjVj =1000; 5g�, and
terminals chosen uniformly among the nodes of Vk.

We assigned to every node in V n .[kTk/ a cost from an uniform distribution in
Œ0; 1�, and cost zero to every node of Tk.

We generated small instances with n D 10; 20; 30; 40; 50 and m D
2; 3; 4; 6; 8; 10 and large instances with n D 100; 200; 300; 400; 500 and
m D 4; 6; 8; 10.

For the same values of n and m we generated 10 instances. This gave a total of
500 instances.

76 R. Brás and J.O. Cerdeira

4.1.2 Results

Here we report the main results of the computational tests that we carried out.
Heuristics were implemented in C++, using the Boost Graph Library [19]

to calculate spanning trees, shortest paths and connected components. Parallel
programming was not used and so they ran in a single thread. All times refer
to elapsed times. The computers were dedicated to running the instances, so that
elapsed time is close to CPU time. Solutions for the Iberian Peninsula data were
obtained with a Intel Core2 Quad CPU Q9450 @2.66 GHz and 4 GB of memory
machine, while for simulated data the solutions were obtained in a machine with 2
AMD Opteron 6172 processors (24 cores) @2.1 GHz and 64 GB of memory.

1. Real Data.

Table 1 displays results obtained for the Iberian Peninsula’s data with each of the
three heuristics. The first column identifies the problem instance (scenarios 1 and 2).
Each of the three pairs of the remaining columns contains the value of the solution
obtained with a heuristic: GRASP, type by type (TbT) and primal-dual (PD), and the
corresponding running time in seconds. The TbT heuristic ran for every permutation
of the m D 4 types, while GRASP was limited to 2 hours of execution. We let the
program finish the current repetition i, if it has started before the time expired, thus
computation times can exceed 7200 seconds. PD was not time-limited in order to
produce a solution.

GRASP obtained the best solutions. The costs of the solutions produced by TbT
were slightly higher, but the times to run the 24 permutations of the four types
were lower than the 2 hours that limited the execution of GRASP. PD had a poor
performance. Long computation times were necessary to obtain solutions with costs
that are greater than those of the solutions obtained with GRASP and with TbT.
This negative behavior of PD can be explained by the specific structure of these
graphs. Nodes which are far apart on the grid are connected by long paths. Thus, it
is likely that PD includes a large number of redundant nodes until a feasible solution
is reached. Solutions with many redundant nodes are difficult to turn minimal. The
process is time consuming and produces poor solutions. GRASP and TbT, in each
step, add to the solution that is being constructed the nodes of a minimum cost path
connecting a pair of terminals. Thus, the number of redundant nodes is likely to be
much less than that generated by PD.

Figure 4 shows a solution, obtained with the TbT heuristic, for the IP2 instance.
Protected cells are colored red, green, blue and magenta and the cells of the solution

Table 1 Results for the Iberian Peninsula

GRASP TbT PD

Instance Cost Time Cost Time Cost Time

IP1 2024.67 7782.55 2035.73 5012.39 2162.11 544,490.00

IP2 2121.03 7525.25 2148.49 7075.90 2167.62 347,003.00

A Generalization of the Steiner Tree and Forest Problems 77

are yellow. Grey areas represent cells not in V (human footprint over 60). For a
detailed interpretation of the solution, knowledge of the location of the barriers from
each type would be needed.

2. Simulated Data.

The main results derived with small and large instances for simulated data are given
in Tables 2 and 3, respectively. Recall that 10 instances with the same values of jVj
and m were considered and, therefore, each row of Tables 2 and 3 summarizes the
results of 10 instances.

Table 2 Results for small instances

jVj m #Opts GRASP TbT PD

% dev. from % dev. from % dev. from
Opt BestH Best Opt BestH Best Time Opt BestH Best Time

100 2 10 1.67 1.67 9 1.67 1.67 9 0.00 2.15 2.15 9 0.00
3 10 1.66 1.66 9 1.66 1.66 9 0.01 0.00 0.00 10 0.00
4 10 4.02 1.94 8 3.87 1.79 9 0.06 6.49 4.20 6 0.00
6 10 2.32 2.17 9 3.31 3.16 8 5.19 1.61 1.48 7 0.00
8 10 1.21 0.00 10 1.21 0.00 10 44.43 2.06 0.86 5 0.01

10 10 0.31 0.31 9 1.27 1.27 7 60.51 0.75 0.75 8 0.01

400 2 10 0.34 0.00 10 2.51 2.18 5 0.01 7.53 7.17 5 0.02
3 10 1.80 0.25 9 4.55 2.90 5 0.01 11.47 9.71 4 0.02
4 10 1.60 0.00 10 4.48 2.79 5 0.06 9.02 7.27 3 0.03
6 10 2.08 0.95 8 3.56 2.38 7 1.49 9.06 7.87 1 0.04
8 10 0.90 0.10 9 3.70 2.87 6 18.21 9.50 8.62 2 0.06

10 10 2.24 0.00 10 6.33 3.95 3 43.46 11.20 8.69 0 0.15

900 2 10 0.85 0.00 10 2.60 1.72 6 0.01 5.95 4.96 6 0.07
3 10 0.54 0.00 10 1.82 1.28 8 0.02 8.15 7.50 5 0.09
4 10 1.34 0.00 10 4.66 3.26 4 0.08 15.41 13.82 3 0.14
6 8 2.71 0.19 9 6.54 4.55 3 3.57 19.06 15.32 2 0.27
8 7 2.86 0.00 10 4.70 2.05 2 14.31 13.09 13.72 0 0.37

10 7 1.82 0.39 8 3.25 2.75 5 42.45 10.26 11.07 2 0.56

1600 2 7 1.49 0.22 9 1.92 1.34 4 0.02 7.93 7.66 3 0.22
3 5 0.09 0.00 10 0.49 4.01 4 0.05 0.65 8.51 4 0.36
4 6 0.69 0.20 8 1.17 2.38 5 0.21 5.92 10.07 5 0.53
6 5 1.52 0.43 8 1.93 1.13 5 4.33 4.39 16.84 3 0.74
8 5 0.29 0.00 10 1.49 2.80 3 12.44 10.56 11.81 2 0.77

10 1 0.00 0.06 9 1.47 4.27 1 36.13 3.32 15.09 0 1.96

2500 2 4 0.77 0.00 10 0.77 3.35 5 0.04 0.77 5.62 4 0.75
3 6 0.00 0.08 9 0.98 1.11 6 0.07 0.98 6.91 4 0.67
4 6 1.52 0.51 9 0.64 2.39 6 0.24 1.96 6.48 4 0.78
6 4 5.05 0.15 8 5.57 2.41 3 6.01 4.65 7.39 4 1.71
8 2 1.24 0.00 10 3.35 3.83 2 17.60 22.30 15.73 2 2.60

10 0 0.04 8 1.59 6 16.20 16.19 3 2.60

78 R. Brás and J.O. Cerdeira

Table 3 Results for large instances

jVj m GRASP TbT PD

%dev. Best %dev. Best Time %dev. Best Time

10,000 4 0.00 10 5.27 1 1.56 18.17 1 43.71
6 0.00 10 4.55 1 49.93 19.91 1 89.57
8 0.00 10 3.43 2 214.82 11.90 2 67.37

10 0.00 10 4.86 0 766.98 21.31 0 148.57

40,000 4 0.00 10 3.13 2 52.95 14.74 2 1292.83
6 0.00 10 3.50 0 732.16 7.55 0 1116.29
8 0.00 10 3.44 1 982.21 14.08 1 1709.82

10 0.00 10 3.59 1 1320.94 13.60 1 1998.23

90,000 4 0.00 10 2.46 3 185.65
6 0.00 10 2.21 2 1056.98
8 0.00 10 3.66 0 1654.99

10 0.13 9 3.73 1 1823.81

160,000 4 0.00 10 2.24 4 819.54
6 0.00 10 2.42 2 1325.13
8 0.03 9 2.34 2 1931.62

10 0.00 10 2.14 0 1947.12

250,000 4 0.00 10 3.26 0 1378.50
6 0.00 10 2.45 0 1821.26
8 0.00 10 2.76 0 2053.90

10 0.00 10 2.09 2 2297.54

We established common elapsed time limit values for the heuristics. One minute
for small instances and 30 minutes for large instances, but we allowed GRASP to
finish the current repetition i, and TbT to finish the current permutation P.

For most of small instances we were able to obtain optimal solutions from the
flow formulation (1), (2), (3), (4), (5), (6) and (7), using CPLEX 12.4, with parallel
mode set to opportunistic and 24 parallel threads (all other options used default
values). For each instance, CPLEX execution time-limit was set to 1 hour of elapsed
time, meaning up to 24 hours of CPU time since the machine has 24 cores.

In Table 2 column #Opts indicates the number of instances for which optimal
solutions were found. The two columns labeled % dev. from indicate, for each
heuristic, the mean of the relative deviations (in percentage) from the optimal
values (opt) and from the best values of the heuristic solutions (bestH). The relative
deviation is calculated by the expression 100.h � w�/=w�, where h is the value of
the heuristic solution, and w� is the optimal value (opt), or the minimum of the
values of the three heuristic solutions (bestH), respectively. The number of optimal
values with respect to which averages were computed is given in column #Opts.
Columns best report the number of instances for which the heuristic found the best
value among the values of the three solutions obtained for the same instance with
the three heuristics. Columns time indicate the mean computation times (in seconds)
for TbT and PD. The computation times are not reported for GRASP since it uses
all the amount of time allowed.

A Generalization of the Steiner Tree and Forest Problems 79

Table 3 is similar except that there are no columns regarding optimal values,
since CPLEX was unable to handle the large instances. Thus, columns % dev. and
best refer to comparisons with the best values of heuristic solutions.

GRASP was clearly superior for the instances considered, while PD had a poor
performance.

For small instances the average over the 30 values of column % dev. from opt
in Table 2 was 1.48 for GRASP, 2.81 for TbT and 7.11 for PD. Only four of these
30 values exceeded 2.5 % for GRASP, while six values exceeded 4.5 % for TbT.
GRASP was a best heuristic in at least eight instances out of the 10 with the same
jVj and m. Considering all the 300 small instances, GRASP was a best heuristic in
275, TbT in 161 and PD in 116.

For the large instances the superiority of GRASP was even more evident. It has
obtained the best results in 198 out of 200 instances. The mean relative deviations
between TbT results and the best heuristic values were always below 5.3 %, but it
attained the best result only on 24 instances.

Results on simulated data confirmed the bad behavior of PD with this kind of
instances. For jVj � 90;000, we were unable to find solutions within the time limit
of 30 minutes, except for a few instances. These were not considered in order to
not bias the analysis of the results. The corresponding entries are blank on Table 3.
In general, solutions were of poor quality. It seems that PD has difficulties dealing
with instances where graphs have the structures here considered. An explanation
was previously given when analyzing the results on the IP instances.

A fact that should be mentioned is that, several times, TbT succeeded to complete
its computations within the time limits established, despite the relative high values
of m (m D 8; 10). This is justified by the way instances were generated. Each cell of
the n � n grid belongs to Vk with probability 1/4 for “specialized” species k and 3/4
for “generalist” species k. Thus, it may happen that all components of the subgraph
induced by Vk, particularly for “specialized” species k, include at most one terminal
of Tk, i.e., every path connecting any two terminals of Tk include some k-barrier.
In this case there is no need to consider species k, as no two terminals of Tk can be
linked in Vk. Since “specialist” species were uniformly chosen among the m species,
the number of species that needs to be considered might be much smaller than m.

4.2 Case Where All Vk Coincide

MTLinkP is a generalization of the node-weighted Steiner tree and of the node-
weighted Steiner forest problems. Therefore, GRASP, TbT and PD can be used,
with no modification, to solve those problems.

We carried out some computational tests to assess how the heuristics perform on
solving node-weighted Steiner forest problem.

80 R. Brás and J.O. Cerdeira

For node-weighted forest problem, the PD heuristic is the Demaine et al. [5]
algorithm. Another heuristic, based on the Rayward-Smith algorithm [16, 17] that
performs well in practice for node-weighted Steiner forest is the Klein and Ravi [11]
heuristic.

Klein and Ravi heuristic (KR) begins by computing the matrix M of the costs
of minimum cost paths between every pair of nodes in V . Then, starting with X
consisting of all terminals of Tk; k D 1; � � � ; m, in each step, KR adds to X the
nodes of certain paths that connect a number of connected components of < X >,
the subgraph induced by X. The connected components to merge are selected from
the values of a function f that is calculated as follows, for every node v 2 V . Let S
be the set components of < X > that, for some k, includes at least one node of Tk

but not all, and let Sr be the family of all r sets of S (i.e., if Sr 2 Sr; jSrj D r). For
every v 2 V and Sr 2 Sr, let w.v; Sr/ be the sum of the costs of minimum cost paths
connecting v with each of the r components in Sr. For every v 2 V , define f .v; r/ D
minSr w.v; Sr/ � .r � 1/wv. The value f .v; r/ is the minimum cost of merging r
components of S with r paths rooted at v. Note that the computation of f .v; r/ can
be quickly achieved from matrix M. Finally, f .v/ D min2�r�jS j f .v; r/=r, which is
the minimum of the mean values of f .v; r/ with respect to r. In each step, KR adds
to X the nodes of the paths from v which minimizes f .v/, while S is not the empty
set. When there are no more components to merge, the heuristic proceeds turning
solution X minimal.

We compared the performances of GRASP, TbT, Demaine et al. [5] (PD) and
Klein and Ravi [11] (KR) heuristics on instances generated as above for simulated
data, except that Vk D V , for k D 1; : : : ; m. We considered n � n grid graphs
with n D 50; 100; 200 and m D 2; 4; 6; 8; 10 types of terminals. For each n and m
two instances were generated. Table 4 reports costs and times (in seconds) on each
instance. GRASP and TbT heuristics were restricted to 30 minutes of execution
time. Computations were processed with the same machine that was used for the
simulated data.

Results for GRASP and KR were very similar. KR obtained the best result in
56.7 % of the cases, while GRASP was the best heuristic in 40.0 % of the cases and
PD in one case (3.3 %). TbT never obtained the best result. The mean relative gap
between the value vH obtained by the heuristic H and the value vKR obtained with
KR, given by .vH �vKR/=vKR, was 0.5 % for H D GRASP, 4.4 % for H D TbT and
3.5 % for H D PD. Considering only the cases for which KR performed better than
heuristic H (vKR < vH), the mean of the relative gap was 3.1 % for H D GRASP,
5.2 % for H D TbT and 3.9 % for H D PD.

Results showed that GRASP performed better than KR in smaller instances,
while in general KR outperforms GRASP for larger ones. However, the relative
gap did not exceed 8.1 % (for an instance where n D 200 and m D 8). The values
obtained by TbT were slightly greater than those produced by GRASP. This was
more evident for larger instances (n D 200). PD obtains good results in the larger
instances. For n D 200 and m � 4 it obtains better results than GRASP with
relatively small times of execution. KR heuristic maintains in memory matrix M
of the costs of minimum cost paths between every pair of nodes in V . For n D 200

A Generalization of the Steiner Tree and Forest Problems 81

Table 4 Results for Steiner forest

jVj m GRASP TbT PD KR

Cost Time Cost Time Cost Time Cost Time

2500 2 19.32 1800.28 20.12 0.11 20.09 1.15 19.20 2.04

12.61 1800.37 13.01 0.08 15.92 2.34 14.67 1.92

4 24.45 1800.18 25.31 2.64 26.36 1.57 25.04 2.68

22.78 1800.48 23.23 2.46 25.53 1.87 22.98 2.33

6 24.39 1800.65 24.83 104.46 25.38 0.82 24.64 2.73

30.03 1800.47 30.74 98.04 31.56 1.47 30.44 2.85

8 36.56 1801.00 38.66 1800.60 38.32 1.67 36.86 4.58

29.65 1800.23 30.27 1800.37 30.50 0.81 29.97 3.57

10 34.30 1800.63 37.12 1801.13 36.90 1.82 35.51 3.82

33.46 1801.23 34.80 1800.23 33.51 1.01 33.30 4.71

10,000 2 46.64 1800.54 48.39 0.73 48.02 17.43 46.83 39.35

42.19 1800.91 43.96 0.78 43.16 25.60 41.97 48.66

4 62.06 1800.88 65.60 18.54 65.36 26.49 61.77 58.09

47.44 1801.16 50.20 12.94 49.05 22.79 47.35 48.61

6 78.49 1800.33 79.95 956.15 81.00 42.66 77.16 64.57

67.07 1801.34 68.97 655.02 68.02 18.02 67.31 60.66

8 74.07 1800.78 75.25 1801.68 75.34 17.31 71.36 72.82

79.73 1800.39 81.12 1801.94 82.17 22.02 78.56 82.25

10 100.02 1801.10 100.70 1802.77 99.83 59.72 98.07 96.04

90.77 1801.33 95.66 1802.23 92.31 32.39 89.00 96.32

40,000 2 178.80 1801.51 192.27 9.94 189.42 501.73 189.39 1541.14

83.15 1801.27 87.51 3.47 89.15 328.08 84.28 1154.73

4 257.27 1806.26 265.71 190.69 253.92 1155.15 273.20 2280.98

188.07 1800.93 197.61 151.75 187.33 349.34 182.06 1666.43

6 337.71 1813.55 348.49 1814.00 327.30 882.97 317.66 4884.35

225.93 1803.42 236.66 1806.29 228.74 829.09 218.27 2187.45

8 316.43 1815.54 327.89 1821.25 303.15 686.42 292.69 4239.43

305.71 1802.64 322.56 1812.95 300.84 515.96 291.56 3982.47

10 297.26 1813.47 310.58 1813.78 290.70 885.06 283.34 3827.51

372.83 1804.53 386.94 1817.54 360.27 597.45 345.79 6483.80

6 GB of memory are needed, and for n D 300 30 GB are needed. Thus, KR heuristic
could not be used for the real IP instances.

Given the above limitations of KR, GRASP and PD appear to be good options
to solve large node-weighted Steiner forest problems for the type of graphs here
considered.

82 R. Brás and J.O. Cerdeira

5 Conclusions

In this paper we considered a mixed integer flow formulation and three heuristics
for MTLinkP. The flow based formulation only permited to solve instances up to
2500 nodes, which is far below the size of the instances that occur in the context
of conservation biology. For the specific structure of graphs of the instances that
occur in conservation, GRASP seems to be a good option. Producing different
solutions from different runs, on reasonable times, is relevant since, rather than a
single solution, decision making needs to consider different options before proceed-
ing negotiations with stakeholders. There are many issues (e.g., socioeconomic)
involved in the analysis of conservation actions which are not easily quantifiable,
thus having different alternatives to choose is an important feature.

Acknowledgements We are grateful to Maria João Martins and Diogo Alagador for discussion
and assistance. Both authors were supported by the Portuguese Foundation for Science and Tech-
nology (FCT). R. Brás was funded by the project PEst-OE/EGE/UI0491/2013 and the CEMAPRE
(Centro de Matemática Aplicada à Previsão e Decisão Económica) under the FEDER/POCI
Programme. J. O. Cerdeira was funded through the projects UID/MAT/00297/2013, CMA (Centro
de Matemática e Aplicações) and PTDC/AAC-AMB/113394/2009.

References

1. Alagador, D., Triviño, M., Cerdeira, J.O., Brás, R., Cabeza, M., Araújo, M.B.: Linking like with
like: optimizing connectivity between environmentally-similar habitats. Landsc. Ecol. 27(2),
291–301 (2012)

2. Brás, R., Cerdeira, J.O., Alagador, D., Araújo, M.B.: Multylink, version 2.0.2 (2012).
(computer software http://purl.oclc.org/multylink)

3. Brás, R., Cerdeira, J.O., Alagador, D., Araújo, M.B.: Linking habitats for multiple species.
Env. Model. Softw. 40, 336–339 (2013)

4. Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Rylands, A.B., da Fonseca, G.A.B.,
Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G., Hilton-Taylor, C.: Habitat loss
and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002)

5. Demaine, E., Hajiaghayi, M., Klein, P.: Node-weighted steiner tree and group steiner tree in
planar graphs. In: Albers, S., et al. (eds.) Automata, Languages and Programming. Lecture
Notes in Computer Science, vol. 5555, pp. 328–340. Springer, Berlin/Heidelberg (2009)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271
(1959)

7. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1971)
8. Duin, C.W., Volgenant, A.: Some generalizations of the Steiner problem in graphs. Networks

17(3), 353–364 (1987)
9. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim.

6(2), 109–133 (1995)
10. Hanski, I.: The Shrinking World: Ecological Consequences of Habitat Loss. Excellence in

Ecology, vol. 14. International Ecology Institute, Oldendorf/Luhe (2005)
11. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner

trees. J. Algorithms 19(1), 104–115 (1995)

http://purl.oclc.org/multylink

A Generalization of the Steiner Tree and Forest Problems 83

12. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Inf. 15, 141–145
(1981)

13. Lai, K.J., Gomes, C.P., Schwartz, M.K., McKelvey, K.S., Calkin, D.E., Montgomery, C.A.:
The Steiner multigraph problem: wildlife corridor design for multiple species. In: Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, vol. 2, pp. 1357–1364 (2011)

14. Magnanti, T.L., Raghavan, S.: Strong formulations for network design problems with connec-
tivity requirements. Networks 45(2), 61–79 (2005)

15. Merriam, G.: Connectivity: a fundamental ecological characteristic of landscape pattern. In:
Brandt, J., Agger, P. (eds.) Proceedings of the 1st International Seminar on Methodology in
Landscape Ecological Research and Planning, pp. 5–15. Roskilde University, Denmark (1984)

16. Rayward-Smith, V.J.: The computation of nearly minimal Steiner trees in graphs. Int. J. Math.
Educ. Sci. Technol. 14(1), 15–23 (1983)

17. Rayward-Smith, V.J., Clare, A.: On finding Steiner vertices. Networks 16(3), 283–294 (1986)
18. Segev, A.: The node-weighted steiner tree problem. Networks 17, 1–17 (1987)
19. Siek, J.G., Lee, L., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference

Manual. Addison-Wesley Longman, Boston (2002)
20. Winter, P.: Steiner problem in networks: a survey. Networks 17, 129–167 (1987)
21. Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Progr.

28, 271–287 (1984)

	Computational Comparison of Algorithms for a Generalization of the Node-Weighted Steiner Tree and Forest Problems
	1 Introduction
	2 Multiflow Formulation
	3 Heuristics
	3.1 Type by Type Heuristic
	3.2 Primal Dual Heuristic
	3.3 GRASP Heuristic

	4 Computational Experiments
	4.1 General Case
	4.1.1 Data
	4.1.2 Results

	4.2 Case Where All Vk Coincide

	5 Conclusions
	References

