
A Column Generation Approach to the Discrete
Lot Sizing and Scheduling Problem on Parallel
Machines

António J.S.T. Duarte and J.M.V. Valério de Carvalho

Abstract In this work, we study the discrete lot sizing and scheduling problem
(DSLP) in identical parallel resources with (sequence-independent) setup costs and
inventory holding costs. We propose a Dantzig-Wolfe decomposition of a known
formulation and describe a branch-and-price and column generation procedure to
solve the problem to optimality. The results show that the lower bounds provided by
the reformulated model are stronger than the lower bounds provided by the linear
programming (LP) relaxation of the original model.

1 Introduction

Since the introductory work of Wagner and Whitin [12] a great amount of research
has been done on the discrete lot sizing and scheduling problem (DLSP). The
original model has been extended from single-item to multiple-item and from
single resource to multiple-resource configurations. Also, additional constraints and
different cost structures have been studied. Other studies aim at proposing and/or
strengthening compact mixed integer linear (MILP) formulations in order to solve
larger and more complex instances. Examples of relevant research works on this
problem are [4, 5, 9–11]. Most of the published research for problems with parallel
resources is devoted to heuristics.

In this work we propose a Dantzig-Wolfe decomposition to a common integer
linear (ILP) formulation and a branch-and-price algorithm to solve the problem to
optimality. For the single resource problem a similar column generation approach is
presented in [2].

A.J.S.T. Duarte (�)
UNIAG – Applied Management Research Unit and School of Technology and Management,
Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1134, 5301-857
Bragança, Portugal
e-mail: aduarte@ipb.pt

J.M.V.V. de Carvalho
Departamento de Produção e Sistemas, Campus de Gualtar, Universidade do Minho, 4710-057
Braga, Portugal
e-mail: vc@dps.uminho.pt

© Springer International Publishing Switzerland 2015
J.P. Almeida et al. (eds.), Operational Research, CIM Series in Mathematical
Sciences 4, DOI 10.1007/978-3-319-20328-7_10

157

mailto:aduarte@ipb.pt
mailto:vc@dps.uminho.pt


158 A.J.S.T. Duarte and J.M.V.V. de Carvalho

For the parallel resource configurations the authors are not aware of similar
approaches, although the used decomposition is very close the one used in[7, 8].
However, on those works, the problem of finding the optimal integer solution was
not addressed. Also, the problem does have some similarities with the capacitated
lot sizing and scheduling problem for which there is also some published research
involving column generation, such as [1, 3]. A relatively recent review of methods
for this problem can be found in [6].

In Sect. 2 we provide a formal description of the problem. In Sect. 3 we present
a compact original ILP formulation. In Sect. 4 we present a minimum cost flow
model that can be used to readily compute upper bounds. In Sect. 5 a Dantzig-
Wolfe decomposition for the ILP formulation is proposed along with the resulting
master problem and subproblem. In Sect. 6 a dynamic programming approach to the
resulting subproblem is presented. Three different branching schemes to solve the
problem to optimality are presented in Sect. 7. Finally we present some results show-
ing that the lower bounds provided by the reformulated model are stronger than the
lower bounds provided by the linear programming relaxation of the original model.

2 Problem Description

There are R identical parallel resources, indexed with r D 1; : : : ; R, I items to be
processed, indexed with i D 1; : : : ; I, and T discrete and equal periods of time,
indexed with t D 1; : : : ; T. In each time period, any given machine will be producing
one demand unit of a given item or will be idle.

Without loss of generality, we define the demand unit for a given item as the
quantity of that item that is possible to process in one machine during one time
period. In practice, this can be seen as a minimum lot size for each item. From this
point on, demands will be expressed in integer demand units.

Each item has the following associated coefficients: a vector of demands along
the planning horizon, di D fdi1; : : : ; diTg; a startup cost, si, which is the cost of
starting the production of a different item in a given resource, which is resource and
time independent; an inventory holding cost, hi, defined as the cost of holding one
demand unit of item i over one time period (time independent).

The objective is to decide a production schedule (assigning machines to items
over the different time periods) that minimizes the sum of startup and holding costs
while meeting the required demands (back-orders are not allowed).

3 ILP Formulation

Because the resources are identical, in our formulation, we use the aggregate
variables, as defined in [5]. The complete set of variables is:

xit : number of resources producing item i on period t. Variables xi0 are defined in
order to account for the number of startups in period 1 and should be made equal
to a value that reflects the state of the various resources at the start of period 1;



A Column Generation Approach to DLSP on Parallel Machines 159

yit : number of resources where production of item i is started on period t and a
startup cost is incurred;
zit : number of demand units of item i carried as inventory from period t to period
t C 1. Variables zi0 are defined and should be fixed to reflect the inventory level
at the start of period 1.

The complete ILP formulation is the following:

min
IX

iD1

TX

tD1

.siyit C hizit/ (1)

s: t: zi.t�1/ C xit D dit C zit i D f1; : : : ; Ig; t D f1; : : : ; Tg (2)

yit � xit � xi.t�1/ i D f1; : : : ; Ig; t D f1; : : : ; Tg (3)

IX

iD1

xit � R t D f1; : : : ; Tg (4)

xit � 0 and integer i D f1; : : : ; Ig; t D f1; : : : ; Tg (5)

yit � 0 and integer i D f1; : : : ; Ig; t D f1; : : : ; Tg (6)

zit � 0 and integer i D f1; : : : ; Ig; t D f1; : : : ; Tg (7)

Note that xi0 and zi0 are actually constants that reflect the initial state of the
resources and the initial inventory levels. From this point on, for simplicity and
without loss of generality we will assume these constants to be 0.

The objective function (1) sums the startup costs and the holding inventory costs.
Constraints (2) express the inventory balance at each period. Constraints (3) ensure
that a startup cost is incurred whenever the number of resources used for a given item
increases. Finally, constraints (4) limit the number of resources used in each time
period, and constraints (5), (6) and (7) specify the type and limits of the variables.

Using a similar formulation and a standard optimization package on a personal
computer, the authors of [5] reported that they could not solve instances with I D 10,
R D 2 and T D 50 within 30 minutes of computation. It is clear that solving this
formulation directly is not practical, even for small instances.

4 Minimum Cost Flow Formulation

When performing branch-and-bound it is important to be able to compute upper
bounds. In this section we propose a minimum cost flow formulation for the DLSP.
The formulation is incomplete in the sense that inventory costs are accounted but
not the startup costs, which means that the optimal solutions of the network flow
problem, when they exist, are feasible to the DLSP, but not guaranteed to be optimal.
A similar network for single item problems appears on [13].

Consider the following acyclic directed network. There is one supply node, S,
whose supply is equal to RT. Consider also a set of T transshipment nodes, one for



160 A.J.S.T. Duarte and J.M.V.V. de Carvalho

Fig. 1 Minimum cost flow network representation

each time period, named T1; : : : ; TT . There are arcs from S to Tt with cost 0 and
capacity equal to R.

Each of the Tt nodes will be connected to I demand nodes named D1t; : : : ; DIt.
The demand on the Dit nodes will be equal to dit and the arcs from Tt to Dit have a
cost of 0 and unlimited capacity (in practice, the limit will be R). The flow on these
arcs has the same meaning as variables xit of the ILP formulation.

Another set of directed arcs will depart from each Dit node to the node Di.tC1/.
These arcs have a cost equal to hi and unlimited capacity. The flow on these arcs has
the same meaning as variables zit of the ILP formulation.

Finally, in order to balance the supply and the demand, consider an additional
demand node, Didle, whose demand, didle, is computed as1

didle D RT �
IX

iD1

TX

tD1

dit

Finally, an arc with cost equal to zero and unlimited capacity, should connect S
and Didle. The flow on this arc represents the global capacity excess on the resources.

The complete network is represented on Fig. 1. Note that zi0 and ziT can be used
to account for, respectively, initial and final inventory levels, if there is need for them
to be non-zero.

1Note that, if didle is negative, the problem is infeasible due to a global lack of resource capacity.
If didle is non-negative, the problem can still be infeasible due to demand imbalances over time. A
trivial way to check feasibility is to use the same principle to compute the idle capacity at every

time period t0, i.e., dt0
idle D Rt0 �PI

iD1

Pt0

tD1 dit:



A Column Generation Approach to DLSP on Parallel Machines 161

Because the flow in arcs .Tt; Dit/ has the same meaning as variables xit of the ILP
formulation, this network can be used to compute feasible solutions to the DLSP that
can be used as upper bounds, taking advantage of fast and widely available state-of-
the-art minimum cost flow algorithms.

5 Dantzig-Wolfe Decomposition

In this section we apply and present a standard Dantzig-Wolfe decomposition to the
ILP formulation presented in Sect. 3.

The ILP formulation has a block angular structure. With the exception of (4),
which are coupling constraints, all other constraints can be grouped into I blocks,
one for each product item. In our decomposition we will leave constraints (4) in the
master problem and group all the constraints that refer to item i to a polyhedron
named Pi.

Because any polyhedron Pi is a convex region, any point belonging to Pi can be
represented as a convex combination of extreme points. Let pik be such points. For
any Pi polyhedron there will be Ki extreme points, so that k D 1; : : : ; Ki. Let �ik � 0

be the weight of each extreme point in a given combination such that, for any given
i,
PKi

kD1 �ik D 1. After variable substitution, the master problem will be:

min
IX

iD1

KiX

kD1

cik�ik (8)

s: t:
IX

iD1

KiX

kD1

aikt�ik � R t D f1; : : : ; Tg (9)

KiX

kD1

�ik D 1 i D f1; : : : ; Ig (10)

�ik � 0 and integer i D f1; : : : ; Ig; k D f1; : : : ; Kig (11)

In this reformulated model, columns can be interpreted as potential schedules for
a single item, i, where cik is the cost of the schedule (including startup and inventory
holding costs) and aikt is number of resources used by the schedule in period t.

Because it is not practical to enumerate all the potential single item schedules,
they have to be dynamically generated. Based on the dual solution of the master
problem, the subproblems will generate valid and cost attractive schedules to be
included in the solution of the master problem.

Each Pi polyhedron will give origin to a different subproblem. Let �t and �i be
the dual variables associated with constraints (9) and (10), respectively. Subproblem



162 A.J.S.T. Duarte and J.M.V.V. de Carvalho

i will have the following formulation:

min
TX

tD1

.siyit C hizit � �txit/ � �i (12)

s: t: zi.t�1/ C xit D dit C zit t D f1; : : : ; Tg (13)

yit � xit � xi.t�1/ t D f1; : : : ; Tg (14)

0 � xit � R and integer t D f1; : : : ; Tg (15)

yit � 0 and integer t D f1; : : : ; Tg (16)

zit � 0 and integer t D f1; : : : ; Tg (17)

The subproblem is a single item DLSP on parallel resources. Note that the bounds
on xit in constraints (15) are included to avoid the generation of invalid schedules
that will never be part of an optimal integer solution to the master problem.

After optimization, for a new column, cik D PT
tD1 .siyit C hizit/ and, hence, the

subproblem optimal objective function value is the reduced cost of that column. A
generated column is added to the master problem, only if its reduced cost is negative.
Also, coefficients aikt of the new column are equal to xit.

Clearly, if the solution of the reformulated model has only integer variables,
then an integer solution to DLSP can be computed. Nevertheless, one relevant
characteristic of this problem is that an integer solution to DLSP can also be
computed from non-integer variables of the reformulated model, whenever the
solution of the reformulated model corresponds to an integer solution in the space
of the original variables. This is fully exploited in the branch-and-price algorithm,
because the solution in the space of the original variables has to be computed to
derive the branching constraints; the branching scheme is presented in Sect. 7.

The following proposition defines the set of conditions that a solution to the
master problem must possess in order to be an integer solution to the DLSP:

Proposition 1 For a solution to the DLSP problem to be integer, it is sufficient that
all �ik variables are integer or that all xit variables are integer, with

xit D
KiX

kD1

aikt�ik (18)

Proof The variables �ik are binary variables that represent a single item schedule
among all the resources, and, if they are all integer, they represent a valid solution.
Variables xit are the original formulation variables that represent the number of
resources used by item i in time period t. Thus, if all xit are integer, they represent a
valid solution.

Consider a new free decision variable, y0
it defined as y0

it D xit � xi.t�1/. This
decision variable represents the change in the number of resources producing item i



A Column Generation Approach to DLSP on Parallel Machines 163

from period t � 1 to period t. If there is an increase in the number of resources used,
y0

it will be positive (equal to the formerly defined yit) and, if there is a decrease, it
will be negative. Given this definition, the following proposition is also true:

Proposition 2 Given the sets of variables xit, y0
it and zit, if one of those sets is

integer, then, the others must also be integer.

Proof Variables y0
it represent the variation in the number of used resources for a

given item and can be computed from xit as stated above. Hence if one of the sets
is integer the other is also integer. Variables zit are inventory levels and so zit D
zi.t�1/ C xit � dit. Because dit are integer values, the previous reasoning still applies.

6 Subproblem Optimization

In this section we present a dynamic programming algorithm to solve the subprob-
lem, a single item DLSP. The algorithm evaluates function Ft.z; r/ that represents
the minimum cost to get z inventory level at the end of period t with r resources
setup for the production of the considered item. If we assume that all resources are
idle at instant 0, and the initial inventory is 0, then, F0.0; 0/ D 0. At each stage
transition, we must decide how many resources will be allocated to the production
of the considered item, i. Let xit 2 f0; : : : ; Rg be that value. Then, from state .z; r/ at
stage t � 1 we can reach, at stage t, states .z0z � dit C xit; r0 D xit/ as long as z0 � 0,
because inventory can not be negative. The objective function will be computed in
the following way:

Ft.z
0; r0/ D

(
Ft�1.z; r/ � �tr0 C hiz0 C si.r0 � r/ if r0 > r

Ft�1.z; r/ � �tr0 C hiz0 if r0 � r
(19)

At each stage, the maximum theoretical number of states will be equal to .R C
1/.zC

t � z�
t C 1/, where z�

t and zC
t are bounds on the inventory level at the end of

period t and can be computed as follows:

z�
t D max

�
0; di.tC1/ � R C z�

tC1

�
(20)

zC
t D min

 
tX

lD1

.R � dil/;

TX

lDtC1

dil

!
(21)

In Eq. (20) computation is recursive and should be initialized with z�
T D 0, stating

that the minimum inventory at the end of period T should be 0 (see discussion on
Sect. 4). The computations reflect the fact that, when the demand exceeds R, there
will be need for inventory at the end of the previous period or periods.

Concerning the Eq. (21), the maximum inventory is the minimum value between
the achievable inventory at the end of period t using maximum capacity and the
maximum inventory needs to satisfy demand from inventory for the rest of the
planning horizon (once again, assuming that the final inventory should be 0).



164 A.J.S.T. Duarte and J.M.V.V. de Carvalho

Note that these bounds can be used to improve (7) in the ILP formulation and (17)
in the subproblem formulation and can be easily modified in the presence of initial
and final inventories.

The above mentioned number of states is the theoretical maximum because if,
for some state, Ft.z; r/ equals or exceeds �i, further transitions from that state can
be ignored, because the reduced cost of the new column would not be negative and,
hence, the column would not be attractive.

7 Branching

Solving the relaxed master problem to optimality does not guarantee an integer
solution. For that reason, in order to find an integer optimal solution it is necessary
to identify and eliminate fractional solutions. Branching is a standard procedure to
achieve that goal.

As it is widely known, when performing column generation, branching on the
master problem variables (�ik) is not a good idea, because it leads to column
regeneration whenever a branching decision of the type �ik � 0 is made.

Given Proposition 2, presented in Sect. 5, the sets xit, y0
it and zit are natural

candidates for branching. The choice should be made based on the results of
computational performance tests.

Note that the original variables yit cannot be used for branching because, although
integrality on xit implies integrality on yit, the converse is not true. For example,
consider the number of resources used (aikt vectors) in two four-period schedules for
a given item: (0,4,4,4) and (4,4,3,1). Suppose that, in the optimal solution of a given
node, both �ik are at a level of 0.5. As it can be easily seen, xik D .2; 4; 3:5; 2:5/

while yik D .2; 2; 0; 0/. This solution would be fractional, while the yit vector would
be integer. In this case, the vector y0

it would be .2; 2; �0:5; �1/ and, hence, not
integer.

The following subsections present the 3 possible branching schemes along with
the adjustments to the subproblem structure.

7.1 Branching on xit

When branching upon the xit variables, in node j, two branches of the problem are
created. On one branch (the left branch) the constraint

xit � bx�
j c (22)

is added, where x�
j represents some non-integer value. On the other branch (the right

branch) the following constraint is added instead:

xit � dx�
j e (23)



A Column Generation Approach to DLSP on Parallel Machines 165

With respect to finding the optimal solution of the model at a given node j; it
is necessary to call the subproblems for attractive columns not yet included in the
master problem. In node j; besides the initial constraints, the master problem has
other sets of constraints, denoted as Pj

it, with i D 1; : : : ; I and t D 1; : : : ; T, resulting
from all the branching decisions imposed on each different variable xit:

Let �
p
it;j be the dual variable associated with constraint p, with p 2 Pj

it: Thus, in
order for the subproblem to correctly identify the attractive columns, in the objective
function (12) and in the recursive equation (19), �t must be replaced with .�t C�

j
it/,

where �
j
it is the sum of all dual variables, �

p
it;j, associated with constraints p 2 Pj

it;

which are imposed on the variable xit at node j; i.e., �
j
it D P

p2P
j
it

�
p
it;j.

7.2 Branching on zit

Branching on the zit variables requires some additional manipulations. Developing
zit D zi.t�1/ C xit � dit recursively yields the following (assuming the starting
inventory is 0):

zit D
tX

lD1

.xil � dil/ (24)

To translate zit to the master problem space, once again, Eq. (18) should be used.
Using the same approach as before, on node j we want to branch on variable
zit, whose fractional value is z�

j . The left and right branching constraints will be,
respectively:

zit � bz�
j c (25)

zit � dz�
j e (26)

Using the same notation as in Sect. 7.1, if �
j
it is the sum of the dual variables

that refer to constraints imposed on the variable zit, the modification to objective
function (12) and to the recursive equation (19) is the replacement of hi by .hi ��

j
it/.

7.3 Branching on y0it

Let y0
j
� be the fractional value of y0

it that we wish to branch upon on node j. The
constraints to impose on the left and right branches are, respectively,

y0
it � by0

j
�c (27)

y0
it � dy0

j
�e (28)



166 A.J.S.T. Duarte and J.M.V.V. de Carvalho

On these equations, y0
it can be replaced with xit � xi.t�1/ and projected to the

master problem space using Eq. (18). Once again, as in the previous sections, let �
j
it

be the sum of the dual variables whose associated constraints refer to variable y0
it.

In this case, the modifications to the subproblem structure are more complex than
in the previous branching schemes presented on Sects. 7.1 and 7.2.

In the case of the ILP formulation there is the need of creating a set of variables
to account for decreases in the number of used resources. Let’s name those variables
y�

it . In the objective function (12) a new term associated with this new variables must
be included rendering the following objective function:

TX

tD1

�
.si � �

j
it/yit C hizit � �txit C �

j
ity

�
it

�
� �i (29)

Also, an additional set of constraints must be included (similar to con-
straints (14)):

y�
it � xi.t�1/ � xit t D f1; : : : ; Tg (30)

Also, in the subproblem formulation that resulted from the decomposition, the yit

variables have no upper bound because it is implicitly assumed that their coefficients
on the objective function are always positive. Because this last assumption is no
longer true, an upper bound on yit equal to max

�
0; xit � xi.t�1/

�
must be enforced

in the ILP subproblem formulation. The same logic applies to the y�
it variables: an

upper bound equal to max
�
0; xi.t�1/ � xit

�
must be enforced. For simplicity, the

necessary additional constraints are omitted here.
The recursive equation (19) needs also to be modified and, after the necessary

modifications, it will be:

Ft.z
0; r0/ D

(
Ft�1.z; r/ � �tr0 C hiz0 C .si � �

j
it/.r

0 � r/ if r0 > r

Ft�1.z; r/ � �tr0 C hiz0 C �
j
it.r � r0/ if r0 � r

(31)

With this changes, the subproblem will correctly process the additional dual
information.

8 Computational Results

In order to access the quality of our approach, an implementation was developed in
C# (Microsoft .NET framework 4.5) using ILOG CPLEX 12.5.0.1 for optimization,
with the default parameters. All tests were run in a laptop with a Intel Core i7
3610QM @ 2.30 GHz CPU. The branching scheme is based on the xit variables,
as described in Sect. 7.1. This choice was made based on the performance results



A Column Generation Approach to DLSP on Parallel Machines 167

of a limited set of preliminary computational tests, which pointed towards a better
performance of the partition scheme based on the xit variables.

The test instances were generated randomly, using the procedure described in [5].
Namely, the inventory holding costs (hi) come from an integer Uniform distribution
between 5 and 10, the startup costs (si) come from an integer Uniform distribution
between 100 and 200 and the demands for a randomly chosen set of .i; t/ pairs
(dit), come from an integer Uniform distribution between 1 and R. Furthermore, the
instances have similar characteristics, namely, there are 4 sets of instances:

• set A: small instances (R D 2, I D 10 and T D 50);
• set B: instances with a large number of periods (R D 2, I D 10 and T D 150);
• set C: instances with a large number of items (R D 2, I D 25 and T D 50);
• set D: instances with a large number of resources (R D 10, I D 10 and T D 50).

These sets were combined with 5 levels of used capacity (75 %, 80 %, 85 %, 90 %
and 95 %). For each combination, 3 instances were generated, resulting in a total of
60 instances.

The computational results are shown in Table 1, where each line contains
aggregate results for the 3 instances in each combination described above, and
the columns have the following meaning: column UC refers to the used capacity;
columns Nodes and Cols are the average number of nodes in the branch-and-price
tree and the average number of columns generated, respectively; columns TMIP
and TBP are average times (in seconds) to solve to optimality the ILP formulation
presented in Sect. 3 (TMIP) using the CPLEX MIP Solver and the proposed branch-
and-price framework (TBP), respectively; columns SMIP and SBP show the number
of instances solved to optimality using each procedure within a time limit of
30 minutes; column LBInc shows the average increase, in percentage of the ILP
formulation LP relaxation bound, to the LP relaxation of the reformulated model2;
finally, column Gap shows the average gap, in percentage, between the LP relaxation
of the root node and the optimal (or best) integer solution found.3

In addition to this set of results, we also tested our approach with the instances
used in [5]. These results appear in Table 2. The instances are similar to the
generated ones with the exception that, instead of 3 instances per combination of
parameters, there are 5 instances per combination.4

The most noticeable result in the presented tables is that, for every set of
instances, except for set D, the computational times are faster than the ones obtained
with the CPLEX MIP solver. As noticeable, only for the instances in set D, has our
approach a poorer performance, which seems to indicate that it is not so well suited

2 Let ILPRel be the optimal objective value for the ILP relaxation and RMRel be the optimal
objective value for the linear relaxation of the reformulated model (relaxation of the search tree
root node). Using the above notation, LBInc D 100 � .RMRel � ILPRel/ =ILPRel.
3If Best represents the optimal or best integer solution found, Gap D 100 �
.Best � RMRel/ =RMRel.
4Except for set C (instances with 75 % used capacity) where only 4 instances were available.



168 A.J.S.T. Duarte and J.M.V.V. de Carvalho

Table 1 Computational results

Instance set UC Nodes Cols TMIP SMIP TBP SBP LBInc Gap

A: R D 2, I D 10 75 1.7 602.3 2.36 3 0.39 3 89.4 0.01
and T D 50 80 3.0 512.0 0.90 3 0.55 3 70.0 0.06

85 1.0 774.0 4.09 3 0.45 3 85.6 0.00
90 5.7 1031.0 1.20 3 0.41 3 67.0 0.16
95 34.0 1686.0 4.85 3 0.66 3 69.0 0.32

B: R D 2, I D 10 75 251.3 4795.7 219.47 2 14.42 3 87.3 0.30
and T D 150 80 3844.3 22,495.0 – 0 255.79 3 96.4 0.26

85 2051.3 35,514.0 – 0 19.07 2 75.9 0.43
90 617.0 18,415.7 – 0 91.90 3 78.8 0.32
95 2624.0 78,555.7 – 0 1046.95 2 75.6 0.48

C: R D 2, I D 25 75 3.7 583.0 1.20 3 0.52 3 88.0 0.03
and T D 50 80 1.0 716.0 3.20 3 0.57 3 90.9 0.00

85 35.7 1040.7 5.44 3 0.53 3 105.3 0.05
90 55.7 1010.7 5.09 3 0.50 3 85.9 0.13
95 700.3 1710.7 4.73 3 1.10 3 71.5 0.18

D: R D 10, I D 10 75 30.3 573.0 0.99 3 5.60 3 8.9 0.29
and T D 50 80 5.7 858.3 1.44 3 5.90 3 10.2 0.03

85 1228.3 3080.0 1.97 3 50.21 3 6.3 0.37
90 465.3 5410.0 1.94 3 144.79 3 7.8 0.28
95 3185.0 12,928.3 6.85 3 214.27 2 9.3 0.67

for problems with a high number of resources to be scheduled. On the other hand,
for the instances in set B, our approach solved to optimality 32 of the 40 instances,
while the MIP solver only solved 2 instances to optimality.

Another important result is the linear relaxation improvement that our decom-
position achieves. This improvement is consistent across all instances tested and
clearly shows the merits of this approach. The instances in set D are the ones with
the lowest increase in the linear relaxation bound, which seems to indicate that,
when the number of resources increases, the decomposition is not as effective. This
is consistent with the previous paragraph comment.

Another interesting point to notice is the small Gap values in the last column of
the tables. It means that the linear programming relaxation at the root node provides
a very tight lower bound on the optimal integer solution. Even for the cases when our
approach fails to solve all the instances to optimality, there is a small gap between
the lower bound and the best known solution (e.g. set B with 95 % used capacity).

The computational results in Tables 1 and 2 should be similar and, in fact,
they show congruency, although the instances in Table 2 seem to be slightly
harder to solve. This could be due to some difference in our interpretation or our
implementation of the random generation procedure detailed in [5].



A Column Generation Approach to DLSP on Parallel Machines 169

Table 2 Computational results for instances in the literature 2

Instance set UC Nodes Cols TMIP SMIP TBP SBP LBInc Gap

A: R D 2, I D 10 75 5.2 479.0 2.14 5 0.66 5 95.8 0.26
and T D 50 80 8.4 572.4 2.35 5 0.72 5 82.0 0.18

85 29.6 795.6 5.13 5 0.72 5 87.3 0.41
90 17.8 1124.0 3.25 5 0.80 5 73.2 0.26
95 30.0 1667.4 16.44 5 0.96 5 70.2 0.45

B: R D 2, I D 10 75 124.6 3518.2 – 0 25.33 5 116.0 0.18
and T D 150 80 664.8 10,665.8 – 0 88.03 5 111.9 0.15

85 1047.4 15,794.2 – 0 116.42 5 102.3 0.44
90 2704.4 56,567.4 – 0 486.86 4 103.7 0.73
95 2656.2 86,827.2 – 0 – 0 88.2 1.23

C: R D 2, I D 25 75 18.0 695.0 5.07 4 0.85 4 122.5 0.09
and T D 50 80 19.4 772.4 6.28 5 0.90 5 126.3 0.12

85 89.2 943.6 7.94 5 0.96 5 123.2 0.13
90 82.0 1213.0 33.58 5 1.09 5 135.2 0.21
95 320.8 1598.6 19.18 5 1.35 5 112.6 0.54

D: R D 10, I D 10 75 14.0 421.4 0.65 5 3.14 5 11.4 0.12
and T D 50 80 30.0 847.2 1.16 5 5.50 5 8.8 0.13

85 54.8 1208.4 1.08 5 6.72 5 9.7 0.19
90 2105.2 4618.8 5.53 5 170.97 4 10.2 0.29
95 5815.0 22,939.4 7.85 5 442.06 1 11.3 0.68

9 Conclusions and Future Work

In this work we presented a column generation approach to a known problem. The
computational results show that the presented algorithm can be used with success to
solve many real word size instances in very short times. They also show that, when
optimality is not achieved, the objective value of the best solution is close to the
lower bound provided by our column generation approach.

On the other hand, for some types of instances, with a high number of resources
to be scheduled, the results are not so good. Future research efforts should try to fully
understand those results and to improve the performance for that set of instances,
probably with the help of additional cuts, different branching schemes and/or with
an heuristic approach.

Acknowledgements The authors want to thank the anonymous reviewers of the IO2013 confer-
ence for the insightful comments to the first version of this paper and the authors of [5] for kindly
providing the problem instances they used in their work. This work has been partially supported by
FCT – Fundação para a Ciência e Tecnologia within the Project Scope: PEst-OE/EEI/UI0319/2014.



170 A.J.S.T. Duarte and J.M.V.V. de Carvalho

References

1. Caserta, M., Voß, S.: A math-heuristic Dantzig-Wolfe algorithm for capacitated lot sizing. Ann.
Math. Artif. Intell. 69(2), 207–224 (2013)

2. Cattrysse, D., Salomon, M., Kuik, R., van Wassenhove, L.N.: A dual ascent and column
generation heuristic for the discrete lotsizing and scheduling problem with setup times. Manag.
Sci. 39(4), 477–486 (1993)

3. Degraeve, Z., Jans, R.: A new Dantzig-Wolfe reformulation and branch-and-price algorithm
for the capacitated lot-sizing problem with setup times. Oper. Res. 55(5), 909–920 (2007)

4. Gicquel, C., Minoux, M., Dallery, Y.: Exact solution approaches for the discrete lot-sizing and
scheduling problem with parallel resources. Int. J. Prod. Res. 49(9), 2587–2603 (2011)

5. Gicquel, C., Wolsey, L.A., Minoux, M.: On discrete lot-sizing and scheduling on identical
parallel machines. Optim. Lett. 6(3), 545–557 (2012)

6. Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M.: The capacitated lot sizing problem: a review
of models and algorithms. Omega 31(5), 365–378 (2003)

7. Lasdon, L.S., Terjung, R.C.: An efficient algorithm for multi-item scheduling. Oper. Res. 19(4),
946–969 (1971)

8. Manne, A.S.: Programming of economic lot sizes. Manag. Sci. 4(2):115–135 (1958)
9. van Eijl, C.A., van Hoesel, C.P.M.: On the discrete lot-sizing and scheduling problem with

Wagner-Whitin costs. Oper. Res. Lett. 20(1), 7–13 (1997)
10. van Hoesel, S., Kolen, A.: A linear description of the discrete lot-sizing and scheduling

problem. Eur. J. Oper. Res. 75(2), 342–353 (1994)
11. van Hoesel, S., Wagelmans, A., Kolen, A.: A dual algorithm for the economic lot-sizing

problem. Eur. J. Oper. Res. 52(3), 315–325 (1991)
12. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci.

5(1), 89–96 (1958)
13. Zangwill, W.I.: Minimum concave cost flows in certain networks. Manag. Sci. 14(7), 429–450

(1968)


	A Column Generation Approach to the Discrete Lot Sizing and Scheduling Problem on Parallel Machines
	1 Introduction
	2 Problem Description
	3 ILP Formulation
	4 Minimum Cost Flow Formulation
	5 Dantzig-Wolfe Decomposition
	6 Subproblem Optimization
	7 Branching
	7.1 Branching on xit
	7.2 Branching on zit
	7.3 Branching on y'it

	8 Computational Results
	9 Conclusions and Future Work
	References


