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Foreword

The main objectives of the APDIO — the Portuguese OR Society (in Portuguese:
Associag@o Portuguesa de Investigacdo Operacional) are to disseminate the latest
advances in Operational Research, its best practices, and, furthermore, to foster the
bonds within the OR Community, helping it to pursue its research interests and
meet future challenges. Accordingly, the APDIO promotes Operational Research
through courses, seminars, workshops, and conferences, while also providing
editorial support for scientific publications (e.g., scientific journals, newsletters,
and books). The APDIO is a scientific society that brings together Portugal’s
Operational Research Community. It was created in 1978 by 140 founding members,
including university researchers, industrial practitioners, and several Portuguese
institutes and companies as institutional associates. The APDIO has been a member
of the International Federation of Operational Research Societies (IFORS) and
International Federation of Automatic Control (IFAC) since its inception. It has
gone on to become a member of the Association of European Operational Research
Societies (EURO) and was involved in the creation of the Association of Latin-
Iberoamerican Operational Research Societies (ALIO) in 1982. Over the years, the
APDIO has organized a total of 16 National Conferences: Lisbon, 1982; Porto,
1984: Coimbra, 1987; Lisbon, 1989; Evora, 1992; Braga, 1994; Aveiro, 1996; Faro,
1998; Setibal, 2000; Guimaraes, 2002; Porto, 2004; Lisbon, 2006; Vila Real, 2008;
Caparica, 2009; Coimbra, 2011; and Braganca, 2013. The next National Conference
will be held in Portalegre in September 2015.

The publication of this volume, with a selection of papers from 102013 — the 16th
National Conference of the APDIO, held in Braganga, Portugal, June 3-5, 2013 —is
in keeping with the society’s main purposes. We hope that it will be the first volume
in a Springer Edition Series devoted to the main findings presented at our National
Conferences.

We are very much indebted to the Editors of this volume, Professors Jodo Paulo
Almeida, José Fernando Oliveira, and Alberto Adrego Pinto, to whom I express
my gratitude for having embraced this project and brought it to fruition. I am also
grateful to the authors who contributed to this volume; their papers are excellent
examples of the current research activities of the Portuguese OR Community
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members. Lastly, I would also like to thank the reviewers, whose anonymous work
was essential to guaranteeing the publication’s high quality.

Aveiro, Portugal Domingos Moreira Cardoso
May 25, 2015 (President of the Directive Committee of the APDIO)
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Performance Evaluation of Parfois Retailing
Stores

Maria Emilia Dias Alves and Maria C.A. Silva Portela

Abstract This study describes a method for the assessment of retail store perfor-
mance using Data Envelopment Analysis (DEA). The method is applied to the
Portuguese company, Parfois, operating in retail fashion accessories, where we
analyze the efficiency of 63 stores operating in Portugal. Firstly, we present a
literature review on the subject, followed by a description of the company and the
DEA method applied to the Parfois stores. Then, some of the factors potentially
affecting the efficiency of Parfois stores are also analyzed, and the implications of
using this method are discussed. The main intention of the study is to show how
DEA can be used as a support tool to the management of Parfois stores at a national
level and to help the company, through the identification of areas of potential growth,
to define objectives, to increase its performance and achieve excellence.

1 Introduction

Companies that manage a large number of stores, such as bank branches, travel
agencies, supermarkets, or other sales outlets typically assess their performance
through productivity and financial ratios. Based on these ratios periodic performance
targets are established. Ratios, however, have several limitations. Firstly they cannot
take into account trade-offs that may happen between factors (e.g. a high level of
productivity per worker, may not be compatible with large service times, which may
be perceived by customers as a dimension of the quality of the service provided), and
secondly they only take into account one dimension of performance at a time (for
details see [5]). Data Envelopment Analysis (DEA) is a method that can overcome
some of the limitations of performance analysis based on ratios, and therefore is
a good alternative for assessing the performance of retail stores. Several authors

M.E.D. Alves (b<)
Parfois, Rua do Sistelo 755, 4435-429 Rio Tinto, Portugal
e-mail: Maria.Alves @parfois.com

M.C.A.S. Portela

Faculdade de Economia e Gestao, Universidade Cat6lica no Porto, Rua Diogo Botelho 1327,
4169-005 Porto, Portugal

e-mail: csilva@porto.ucp.pt

© Springer International Publishing Switzerland 2015 1
J.P. Almeida et al. (eds.), Operational Research, CIM Series in Mathematical
Sciences 4, DOI 10.1007/978-3-319-20328-7_1


mailto:Maria.Alves@parfois.com
mailto:csilva@porto.ucp.pt

2 M.E.D. Alves and M.C.A.S. Portela

have applied this technique to retail stores, since the first application by Norman
and Stocker [12]. Most existing retail applications have focused on the food retail
sector, but there are some examples of non-food retail stores analysis, as we will see
in Sect. 3.

In this paper we contribute to expand the literature on the non-food retail
applications, through an application of DEA to Parfois retail stores. We assess the
technical efficiency of a set of 63 stores (using data from 2011). The applied model
incorporates restrictions on the weights assigned to each output, as we wanted to
reflect in the DEA model the importance of each item for the company’s sales as a
whole. To the authors’ knowledge there is only one study in the literature of retail
stores’ efficiency assessment that has applied weight constraints to the DEA models:
The study of Thomas et al. [14] who assessed 520 furniture stores through a DEA
weight restricted model.

In addition, we also analyse the impact of some factors, such as the location
of the store, the concept of the store, or the quality of service on the efficiency of
the stores. Our conclusions point for some inefficiencies identified in the Parfois
stores, with some output items having a greater potential for improvement than
others. In addition we conclude that the measure of service quality used by the store
seems to be unrelated with efficiency, and this should be a matter of concern for the
management of this organization.

This paper is organized as follows. In the next section we present the DEA model
used in the assessment, and in Sect.3 we present a brief review of the previous
studies which applied the DEA technique to evaluate the efficiency of retail stores.
Section 4 provides a brief description of the company used as a case study and the
inputs and outputs selected. Then, the results obtained are discussed in Sects. 5 and
6 concludes.

2 Data Envelopment Analysis

The methodology employed to analyse the performance of Parfois retail stores was
DEA. Consider for each Decision Making Unit (DMU) j (j = 1,...,n) a vector
Xj = (X1j, X2, . . . , Xmj) reflecting m inputs consumed for producing a vector of s
outputs yj = (¥1j, ¥2j; - - - ¥sj)-

The technical efficiency for unit o is obtained from the solution of model (1) (see
e.g. Charnes, Cooper and Rhodes [6]), as the inverse of §, where constant returns to
scale (CRS) are assumed.

n n
Ta,sx{ﬂl DA S Xign i =1m Y Ay = By, r =15 A2 0
s

Jj=1 j=1
(1)
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Note that model (1) is defined in the envelopment form of DEA models, The
weights formulation is dual to the envelopment formulation and considers a different
perspective of efficiency: that efficiency is obtained from a relative productivity
measure defined as the ratio between the weighted sum of outputs and the weighted
sum of inputs (or in fact the inverse of this ratio when an output oriented model is
used). The weight’s formulation for the output orientation is shown in model (2),
where u, and v;, the weights assigned to outputs and inputs, respectively, are the
decision variables.

m m S S
Iglin{ > vixio | D vig— Y wyy; =0.j=1.....n Y wy,=1. viu >0}
iU
T i=1 i=1 r=1 r=1
(2)

The weights formulation is usually employed when additional restrictions on
factor weights are imposed. This may be justified by several reasons: (i) the need to
improve discrimination between efficient units; (ii) the need to avoid the placement
of zero weights on some factors; (iii) the need to capture certain relationships
between inputs and outputs, etc. (see for details, [13]). In our application to retail
stores weight constraints were needed to avoid allowing units placing zero weights
on some outputs. The type of weight constraints that were added to model (1) were
assurance regions of type I, which take the form in (3), where o and § are user
specified constants (see for details, [13]) and the indices k and p indicate one of the
outputs r. The choice for AR type restrictions is related to the fact that these behave
better than other type of constraints, that may cause unfeasibility to the model (like
absolute weight restrictions), or may cause non-frontier units to act as benchmarks
(as the case of virtual weight restrictions).

@<t <p 3)

up

3 Previous Studies on Retail Stores

The number of studies applying DEA to retail stores are not many, particularly when
we consider non-food retail. In this section we present some examples of studies
that influenced our modelling choices, focusing on the type of stores analysed, on
the set of inputs and outputs used, on the evaluation methodology applied and on
the inclusion of non-discretionary factors

The study of Norman and Stocker [12] was the first study to apply DEA to the
retail sector. Most existing studies applied DEA to food-retail stores, like [11] who
analyzed 25 Finnish supermarkets, Vaz [15], Vaz et al. [17] or Barros and Alves [4]
who analyzed Portuguese supermarkets, Korhonen and Syrjanen [9] who evaluated
the efficiency of 13 supermarkets, and Athanassopoulos and Ballantine [1], who
evaluated the efficiency of several supermarket chains in the UK. Some studies
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applied DEA to the non-food retail, like Grewal et al. [8], who evaluated the
efficiency of 59 stores selling car components, and Thomas et al. [14] who
developed a model to evaluate the efficiency of a furniture chain constituted by 520
stores. Koksal and Aksu [10] measured and compared the technical efficiency of 24
travel agencies in Turkey.

Although DEA has been the base methodology in the above studies, the modeling
choices have been different. For example, Norman and Stocker [12] used three
distinct models to evaluate the efficiency of 45 retail stores through different
perspectives of store management: Cost efficiency, Market efficiency, and Revenue
Efficiency, but traditional DEA models have been applied. Another example of the
use of several models/perspectives of evaluation is that of Koksal and Aksu [9], who
evaluated the efficiency of 13 supermarkets during 10 years through a 3 stage model.

Regarding modelling choices, some authors have used more complex DEA
models to allow the re-allocation of some inputs within the stores (like in [4, 15, 17]
and [11]) or between stores [1]. Vaz [15] used DEA to evaluate the performance
of 70 stores of a Portuguese retail company including hypermarkets, supermarkets
and small supermarkets (see also [17]). Each of these store layouts have different
sets of products, different merchandising areas, different prices, and are usually
located differently too. Each store was considered as a set of sections (meat, fruit and
vegetables, hygiene articles, etc.) with autonomous management, and these sections
were compared between stores rather than the whole store. For comparing the whole
store, Vaz [15] and Vaz et al. [17] used the network DEA model of Fire et al. [7] for
identifying objectives for each section, and for allowing re-allocation of resources
between sections, that were compatible with the objective of the store as a whole
(the maximisation of sales). Korhonen and Syrjénen [11] also used re-allocation
models and applied them to a chain of Finnish supermarkets. Their objective was
to define the allocation of total resources of the company to its 25 supermarkets, in
a way that the total resources allocated (number of working hours, and total area)
were constraint by a certain threshold.

Some authors have also used Malmquist indices to analyse the evolution of
efficiency over time (e.g. [4] who assessed 47 supermarkets for the years of 1999
and 2000) or to compare different groups of stores (e.g. [16] compared supermarket
and hypermarket’s performance using a Malmquist type-index).

Most of existing studies of retail stores use models that seek output expansion
rather than input contraction. Outputs are in general related to sales, where sales
can be taken in value or in quantity and aggregated or disaggregated. For example,
Banker et al. [3] considered aggregate sales (see also [9] or [1]), and [8] considered
sales disaggregated by category of product as a way to understand the role of product
diversity in the performance of the stores (see also [2]). The inputs considered in
most of existing applications are similar. Generally there is an input associated to
workforce, which can be the number of hours of work (as in [3]), number of full time
or full time equivalent workers (as in [14] or [4]), or the costs with the workforce (as
in [9] or [4] who considered both the number and cost of workforce as inputs of the
model); another associated to the area of the store (e.g. [15, 17] or [3]); and another
input associated to the average stock available for selling (e.g. [15, 17], and [3]).
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Less conventional inputs relate to the value of damaged products used in Vaz [15],
and Vaz et al. [17] (this is considered an undesirable output and treated within the
DEA models as an input), or in Barros and Alves [4] an input relating to the number
of teller machines.

When considering the set of inputs to include in the DEA models to assess
retail stores’ efficiency, it is common to consider a set of non-discretionary factors
that also affect efficiency, like the age of the store, its location, the dimension of
the population that it serves, the competition in the area, etc. Some authors have
considered these factors as additional inputs of the DEA model, while others have
considered them in second stage analysis. Examples of the former type of approach
can be found in Thomas et al. [14], Grewal et al. [8] and Norman and Stoker [12].
Examples of the latter type of approach can be found in Ket and Chu (2003) [9], or
Banker et al. [3]. Ket and Chu [9] compared efficiency scores with environmental
variables to conclude that the bad performance of some stores can indeed be
attributed to the environment where they are located, whereas Banker et al. [3]
used a more sophisticated logarithmic regression model to analyse the impact of
environmental factors like location, average family income of the population in
the area, number of competitors in the area, number of supervisors per salesman,
amongst others.

In our application to 63 Parfois stores, we took into account the existing literature
on the subject regarding the choice of the input and output factors, the orientation of
the models, the disaggregation of outputs into the categories of products sold, and
incorporating non-discretionary factors into the analysis, like age, and area of the
store, which were considered to impact directly on the sales values. Regarding other
factors, such as location, store concept and the service quality, their relationship
with efficiency was evaluated a posteriori.

4 The Company and the Variables Used

Parfois is a Portuguese company that was founded in 1994 and is currently owned
by the group Barhold, SGPS, S.A. The company specializes in fashion accessories,
and is responsible for the design and sales a great variety of fashion products from
textile accessories, non-textile accessories, hair accessories, bijou, handbags, shoes
and travel items. The company operates mainly through own stores in Portugal,
Spain, France and Poland, and through franchised stores in other countries (Parfois
operates in a total of 31 countries). At the end of 2011, Parfois had 109 stores in
Portugal (68 of which are own stores), and owned 31 stores in Spain, 3 in France
and 27 in Poland. The company employs about 1000 employees, and at the end of
2011 the sales of the group Barhold, SGPS, S.A. reached 58 million euros.

The aim of this paper is to report a evaluation exercise for 63 Parfois stores
situated in Portugal, from which 16 are located in traditional commercial streets and
the remaining are located in shopping centers. The evaluation exercise uses data
from the year 2011. In selecting the set of stores to analyse we were careful to
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Table 1 Inputs and Outputs

Inputs Outputs
used Area of the store Sales of textiles
Age Sales of non-textiles
FTE Sales hair products
Average Stock Sales of bijou
Sales of Shoes
Sales of Handbags
Sales of party bags

Sales of evening bags
Sales of wallets
Sales of travel bags

include stores that were homogeneous and could be compared (e.g., stores located
in airports or stores where some of the data were not available were excluded
from the analysis). The set of inputs and outputs used in the technical efficiency of
Parfois retail stores is shown in Table 1. The inputs considered include discretionary
and non-discretionary factors. Discretionary inputs include full time equivalent
personnel (FTE) and the average value of stock (these inputs are both indicative
of the dimension of the stores and of their sales’ volume). The non-discretionary
factors considered were the age and area of the store, which are believed to influence
the performance and sales volume of the stores. The area of the store cannot be
easily changed in the short run, and therefore it was considered a non-discretionary
factor. Note however that this distinction between inputs does not imply a different
treatment of these in the model, as we used a output oriented model where all factors
are by default treated as non-discretionary.

FTE is a factor that clearly determine sales, as the correlation between this
input and an aggregate value of sales is 0.908 (p-value =0.000), meaning that
the relationship is positive and very strong. The average stock was considered in
value (rather than in quantity) by multiplying the quantity of each type of stock
by its average price in 2011, and then aggregating all types of stocks into a single
aggregate value. The relationship between average stock and sales is positive and
the correlation coefficient is 0.766.

Regarding non-discretionary inputs, the bigger the area of the store (measured in
square meters) the higher the number of items that can be exposed to the clients,
and the higher the number of clients and sales staff that can be within the store. The
correlation coefficient between the area of the stores and the aggregate value of sales
is 0.427 (statistically significant — p-value = 0.000). In a regression analysis we also
verified that area and number of FTE were two important determinants of sales.

The age of the store (measured in months since opening date) is also a factor that
showed up as statistically significant in the aggregate sales regression. This factor
appears however, more relevant in street stores than in shopping center’s stores.
Figure 1 shows the relationship between age and sales (in thousand of Euros), being
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Fig. 1 Relationship between sales and age

evident that the trend for increasing sales with age is positive at least up to a certain
point.

As far as outputs are concerned the objective is to reflect the activity of the stores,
and therefore we considered the sales disaggregated by the various types of products
in a store. All outputs have been considered in terms of the quantity of products sold
and not in terms of its value, although the average price of each type of product
varies. This means that ideally this technical efficiency analysis should be followed
by a revenue efficiency analysis (but we do not pursue that avenue here).

S Technical Efficiency Results

Efficiency results for the set of 63 stores were obtained from the application of
model (1). Constant Returns to Scale (CRS) were used, since a preliminary analysis
showed that using a Variable Returns to Scale (VRS) model would mainly benefit
small stores. In addition we observed efficient CRS stores for all dimensions in our
sample (as measured through area per FTE). Efficiency results showed about 28
stores without any potential for increasing their sales (efficient stores). The average
efficiency was 89.37 %. In analysing these results, it was felt that the freedom given
to stores in weighting their outputs lead to inadmissible weighting schemes. For
example, some stores could weight mainly the sales of travel products, when its
importance to the overall sales of the company is very small. Therefore it was
important to impose constraints that could reflect the importance of each of the
items on the output set. This importance could be seen in terms of volume or in
terms of value. We computed both, but choose to focus our weight constraints on
the value of the products since this is the criterion most valued by management. The
information on the percentage of total sales (in value) of each type of item is shown
in Table 2.
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Table 2 Percentage of total Product Percentage

sales per type of product :
Textile products 8.80 %
Non-textile products 9.00 %
Hair products 2.00 %
Bijou 25.50 %
Shoes 8.10 %
Handbags 32.10%
Party bags 1.60 %
Evening bags 3.30%
Wallets 8.60 %
Travel bags 1.10 %

The constraints imposed took as a reference the weight on the handbags and are
as follows:

Mhandbags Mhandbags
0.5 < T < g 4 < [P g 4)
Mbijou Meveningbags
2 f ,thandbags f 4 4 S ﬂhandbagx S 8
MN—textile Mhair
) 5 ,thandbags 5 4 4 f ﬂhandbagx f 8
Metextile Mpartybags

< Mhandbags < 4 6 < Mhandbags < 10

Mwallets N Miravelbags

2

< Mhandbags < 4

Meshoes

2

The first constraint establishes the relationship between the weight attributed to
handbag products and bijou, determining that the weight given to handbags can vary
between the double of the weight given to bijou products, or it can be at least half
that weight. This goes in line with an importance of handbags that is 32 % of total
sales, whereas bijou represents 25.5 %. The ratio between these percentages is 1.25.
As we wished to allow for some flexibility in the weighting we assumed that this
value could be at most 2 and at least 0.5. In the case of the second constraint we
impose that the weight assigned to handbags should be at most 4 times and at least
2 times that of the non-textile products. The same reasoning applies to the remaining
types of products where a high flexibility was given to the weight of each type of
product (but not a complete freedom of choice). In Table 3 we show the average
output virtual weights in a DEA model with an without weight restrictions (WR).
Note that these are virtual weights and therefore the relationships in (4) cannot be
directly inferred.
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Table 3 Average weights of outputs with and without weight restrictions

Product DEA model with WR DEA model without WR
Textile products 5.70 % 10.70 %
Non-textile products 4.20 % 17.80 %
Hair products 2.90 % 15.40 %
Bijou 58.20 % 13.50 %
Shoes 2.30 % 6.50 %
Handbags 20.70 % 4.10 %
Party bags 0.30 % 5.90 %
Evening bags 0.60 % 8.20 %
Wallets 5.10 % 9.60 %
Travel bags 0.10 % 8.40 %

Table 4 Efficiency statistics with and without weight restrictions

CRS eff withWR CRS eff without WR
Average 76.95 % 89.37 %
Standard deviation 16.98 % 13.63 %
No. efficient units 10 28
% Efficient units 15.87 % 44.44 %

When there are no weight constraints the average weight attributed to handbags
is 4.10 % and the weight given to travel bags is 8.4 %, which does not reflect the
weight of these items in the total sales volume of the average store. When constraints
are imposed, the model reflects to a certain extent the importance of each type of
product, weighting more bijou items and handbags, while travel items show the
lowest weight.

In Table 4 we show the technical efficiency results obtained with and without
weight constraints.

The average efficiency obtained without weight constraints is clearly higher, with
28 units appearing 100 % efficient. The weight restricted model shows an average
efficiency of about 77 %, and just 10 stores show a 100 % efficiency status. The
results with weight constraints are those that will be discussed after this point, as
it has been shown that this model provides more discrimination between stores and
results in output weights that are more consistent with the importance of each item
for the overall sales quantity of the stores.

From the 10 efficient units under the weight restricted model, not all of them are
equally important in serving as benchmarks for the inefficient units. The graph in
Fig. 2 shows the number of times each efficient unit appears in the reference set of
inefficient units.

We conclude from Fig. 2 that stores L53, L22, 1.36, L52, L26, L.56 and L63 are
the better performing units, as they show 100 % efficiency and appear 10 or more
times in the peer set of inefficient units.
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N. times in peer set
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Fig. 2 N. of times efficient units are used as benchmarks of inefficient units

Avg Stock value
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Fig. 3 Inputs and outputs of benchmark and inefficient stores

In Fig. 3 we show the average input and output values observed for the efficient
and inefficient stores. Note that values shown in the radars have been normalised by
the values of the efficient units (that as a result appear with all variables equal to 1).

From Fig. 3 we can conclude that inefficient stores are in general smaller than
efficient stores, but both have a similar age. Inefficient stores have on average a
value of FTE, area, and average stock that is about 20 % below the values of efficient
stores. With inputs 20 % lower one would expect that outputs produced are also
about 20 % lower than those of remaining stores. However, for inefficient stores,
outputs are on average lower than those of efficient stores in about 40 %, with the
exception of non-textile products where sales quantities of inefficient stores are
on average lower than those of efficient stores by 30 %. This is the reason why
these stores have been considered inefficient, as they did not produce outputs on the
expected proportion for their level of inputs, when compared to other stores in the
sample.
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Note that these radars can be made for each individual store, to understand
their strengths and weaknesses and the factors where they should focus to improve
efficiency. Such detailed analysis is not presented in this paper in the sake of brevity.

5.1 The Potential for Improvement of Parfois Stores

The main objective of the efficiency analysis undertaken in this paper is to
understand what is the potential for improvement of Parfois stores. We adopt the
perspective that this potential should be sought in output sales improvements as
inputs are mostly non-discretionary, or difficult for management to act on. In any
case the DEA output oriented model allows one to analyse the identified slacks
at the input level, which gives us the perspective of inefficiencies that can occur
from employing wrong quantities of inputs. Table 5 shows the average improvement
potential for outputs for all the stores, calculated as the ratio between the target
outputs and actual outputs minus one. The values therefore show how much, on
average, inefficient stores can increase their outputs, without changing the volume
and mix of inputs employed.

As one can see travel bags show the highest potential for improvement (376.6 %).
The value of sales on travel bags for the Parfois stores increased 260 % in 2011, but
apparently not all stores followed this trend as when compared to efficient stores,
inefficient ones still have a huge potential for improvement. Shoe products are the
next items with the largest potential for improvement. This was another category
of items showing a big growth in 2011 in Parfois stores in 2011 (49.3 %). The
outputs showing the lowest potential for improvement are the non-textile products,
the wallets and hair products. This means that inefficient and efficient stores have a
closer profile of sales on these products, as it is not on the sales of these products that
they show the highest differences. Note however, that a potential for improvement
above 30 % is not negligible.

Party bags show a potential for improvement of 72.3 %, and it is known that
in 2011 this type of products increased their sales by 39 %, showing that there
is still potential for growth on the sales of these products. Bijou is the second
most important set of products in Parfois stores, and it still shows potential for
improvement in inefficient stores of 52.6 % on average.

The potential for improvement was also analysed in terms of the inputs used,
although, as mentioned before, this potential cannot in most cases be realised due to
the non-discretionary nature of the inputs. In any case it is of interest to understand
what are the input factors that are the sources of largest inefficiencies (Table 6).

The highest potential for input reduction was found in the input age. This is
clearly one of the inputs that cannot be changed, but this potential may suggest that
some inefficient stores (20 stores) may need some refreshment in terms of their
facilities. There is some potential for improvement in the input area too, which
seems to suggest that some stores may be over-dimensioned and the company may
analyse these stores (17 stores) in detail to see whether some can move to smaller
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Table 6 Inputs: potential for

. Area Age FTE Avg Stock
improvement

Average |27.42% |4127% |18.81% |19.47 %
StDev 20.24% |1899% |16.92% |16.09 %

premises. About 18 inefficient stores appear to be over-staffed as well, as there is
some potential for improvement in FTEs. Note, however, that the potential identified
here has been the lowest.

5.2 The Effect of Some Factors on Efficiency

After the efficiency analysis we also analysed the relationship between efficiency
and other factors that are relevant for the stores. These factors are the number of
bijou exhibitors in the store, the concept of the store, the location of the store and
the quality of the service, as measured through the visit of a ‘mystery client’ and her
opinion regarding the service of the store.

Parfois stores can have different number of bijou exhibitors (panels and other
specific furniture and accessories for displaying the bijou products), which can vary
between 4 and 8. It is expected that the higher number of exhibitors affects the sales
of bijou and likely the efficiency of the store. Table 7 shows some statistics regarding
the number of bijou exhibitors in the store.

From Table 7 we conclude that there appears to be an increasing trend in
efficiency with the number of bijou exhibitors in the store, but the number of stores
in each group is very different. We performed a Kruskal-Wallis test to evaluate
whether the differences in efficiency were statistically significant, and results point
for the non-rejection of the null hypothesis of equal distributions of efficiency (p-
value of 0.21). However, as far as the sales values of bijou, the hypothesis of equal
means is rejected meaning that indeed the sales of bijou tend to increase with the
number of exhibitors for bijou in the sore. As a result we conclude that the number
of exhibitors is relevant just for the sales of bijou, but the increased sales of bijou
for stores with more exhibitors do not necessarily translate in improved efficiency
(since efficiency includes the sales of all other articles in the store).

As far as the concept of the store is concerned, Parfois stores can have 5 types of
layout. The actual concept is concept V5, which is the one that is used in stores that
opened after 201 1. This new concept aims at improving the visibility of all products,
and creating a cosy and dynamic atmosphere. From the stores analysed only 17 are
displayed according to concept V5, 27 in concept V4 and 15 in concept V3. The
remaining 4 stores have the oldest layouts (V1 and V2). Given the discrepancy in
the number of stores in each group, it was not possible to conclude that the newest
concept lead to improved efficiency (through a Kruskal-Wallis test), since stores in
concept V4 exhibited on average an efficiency of 79.75 % and stores in concept V5
exhibited an average efficiency of 73.63 %.
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Table 7 Bijou exhibitors and efficiency

4 exhibitors | 5 exhibitors | 6 exhibitors | 7 or more exhibitors

No stores 4 9 40 10
Average eff. 76.00 % 65.68 % 77.77 % 84.22 %
Stantard deviation 16.39 % 21.99 % 15.54 % 15.24 %
% of eff. Units 25 % 0% 15 % 30 %
Average sales bijou (€000) 22.061 12.769 25.098 30.109
Stantard deviation sales bijou | 12.462 6.832 10.553 19.14
Tab!e 8 Location and e Street
efficiency
N 47 16
Average 77.10% | 76.70 %
St Dev 1550% |21.40%
N. efficient stores | 6 4

% efficient stores 1280% | 25%

As far as the location of the store, these can be located in shopping centers (SC)
or in streets. Most of the stores in our sample are shopping center stores (47 out of
63). In Table 8 we show the average efficiency scores for street and shopping center
stores. Note that although average efficiency is similar in both groups of stores it
is clear that street stores show more variety in efficiency scores, as revealed by a
higher standard deviation.

A Wilcoxon test reveals that the hypothesis of equal distributions of efficiency for
street stores and shopping center stores is not rejected (p-value of 0.6). Therefore,
our sample does not produce evidence that these two types of stores need to be
treated separately. Note however that the location of the store has some implications
on their area and on the volumes of sales. That is, in general street stores have on
average a higher area, but lower FTE personnel and the volume of sales is generally
lower.

As far as service quality is concerned, Parfois measures it through 4° mystery’
visits realized to each store over the year. We considered as a measure of the service
quality the average of the 4 evaluations of the mystery client. The average score of
service quality of the Parfois stores is 79 % (in a scale from 0 to 100), where the
worst classified store has a score of 49 % and the best classified store shows a score
of 93 %.

It is interesting to plot the efficiency of the Parfois stores against the evaluation
of the mystery client as shown in Fig. 4.

The correlation coefficient between the two variables is positive and statistically
significant but very low (0.273) as it is apparent from Fig. 4. For example, the store
with the lowest evaluation by the mystery client is almost efficient (95.47 %).

The objective of this service quality evaluation is to reward store managers that
show an evaluation above 70 %. When they show an evaluation lower than that value
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Fig. 4 Efficiency versus 120,00%
quality of Parfois stores
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Table 9 Percentage of % Stores | Technical efficiency

managers rewarded in 2011
Award 81.97% | 77.45%

Without Award | 18.03% | 82.65 %

they are penalized. Table 9 shows the percentage of store managers above and below
the 70 % threshold, and the respective average values of efficiency of their stores.

So, we have 18.03% of shop managers that suffer a penalization on their
prizes because they did not achieve the minimum evaluation by the Mystery client.
However, it is clear that their stores have an higher efficiency than the stores whose
managers were rewarded with a prize for good quality of service. This appears to
mean that the company is overemphasizing the way clients are treated within the
store and putting the efficiency of the store on the back burner. In addition, when
we cross compare the service quality of the store with other variables, like total
sales or average sales value, no strong relationships emerge from these comparisons
(correlation coefficients are between 0.2 and 0.3). This confirms that indeed, the
most efficient stores, the ones that use the least resources to sell the highest
quantities of products, are not necessarily the ones that pay more attention to the
clients.

6 Conclusion

The performance analysis of Parfois stores is currently done through financial ratios
like EBITDA (Earnings Before Interest, Taxes, Depreciation and Amortization)
and operational ratios like sales per square meter or per FTE. In addition, Parfois
establishes sales objectives for the stores and for the mystery client evaluation.
There is also some qualitative evaluation of store managers by their supervisors,
which includes an evaluation of their capacity to execute the store merchandizing,
their organization capacity, leading teams, punctuality, etc. Every month the stores
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are evaluated and rewards are given to their personnel (every member of personnel
receives a commission over sales, whose value depends on their position within the
store).

The results presented in this paper for the performance of Parfois stores show
some discrepancies in relation to the evaluations made by the company in 2011.
Although we do not have values for the evaluation performed by the company, we
know that managers rewarded show an average efficiency lower than those that were
not rewarded, and that the company analyses the performance ratios of stores in
absolute terms, not making a comparative analysis between stores.

With the aid of the developed model we conclude that about 85 % of the stores
are not efficient, mainly due to low sales in shoes and travel items. Regarding the
type of items that traditionally sell more (bijou and handbags), the improvement
potential is not as big, but there is room for improvement too. These conclusions
should be taken into account by the company, so that it can devise forms to achieve
the improvement potential of the stores (e.g. increasing the variety in the number of
products displayed, and displaying more references of the products, especially those
that show a higher potential for improvement).

The comparison between the efficiency and service quality allowed us to
conclude that these are two distinct concepts and the store should eventually reward
both separately. The best store will be the one showing a high efficiency and high
service quality, but these stores are uncommon. Therefore the company should
understand what exactly is being measured by the mystery client and understand
whether this evaluation is consistent with the objectives of the stores.

Finally, it is our belief that the company could benefit from the implementation
of an evaluation model like the one described in this paper. Several improvements
are still possible to the model. For example, the consideration of average prices of
the product categories and an analysis of revenue and allocative efficiencies, and
also a analysis regarding the location of the store, since eventually the comparative
analysis of the stores should be done within the same type of location. As a result,
this model is a starting point, for the development of a performance evaluation
model at Parfois, that is able to take into account several factors simultaneously and
can be used as a means to reward stores in a way that is consistent with the objectives
of the company and in a way that can be perceived as fair by the personnel at the
stores.
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Optimization Clustering Techniques on Register
Unemployment Data

Carlos Balsa, Alcina Nunes, and Elisa Barros

Abstract An important strategy for data classification consists in organising data
points in clusters. The k-means is a traditional optimisation method applied to
cluster data points. Using a labour market database, aiming the segmentation of this
market taking into account the heterogeneity resulting from different unemployment
characteristics observed along the Portuguese geographical space, we suggest the
application of an alternative method based on the computation of the dominant
eigenvalue of a matrix related with the distance among data points. This approach
presents results consistent with the results obtained by the k-means.

1 Introduction

Clustering is an important process for data classification that consists in organising
a set of data points into groups, called clusters. A cluster is a subset of an original
set of data points that are close together in some distance measure. In other words,
given a data matrix containing multivariate measurements on a large number of
individuals (observations or points), the aim of the cluster analysis is to build up
some natural groups (clusters) with homogeneous properties out of heterogeneous
large samples [1].
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Groups are based on similarities. The similarity depends on the distance between
data points and a reduced distance indicates that they are more similar. Several
distinct methods can be used to measure the distance among the elements of a data
set. Along this work we will consider the traditional Euclidian distance, i.e., the
2-norm of the differences between data points vectors.

There are two main classes of clustering techniques: hierarchical and opti-
mization methods. In hierarchical clustering is not necessary to know in advance
the number of subsets in which we want to divide the data. The observations
are successively included in groups of different dimensions depending on the
level of clustering. The result is a set of nested partitions. In each step of the
process, two groups are either merged (agglomerative methods) or divided (divisive
methods) according to some criteria [2]. In the agglomerative approach, single-
members clusters (clusters with only one observation) are increasingly fused until
all observations are in only one cluster. The divisive approach starts with a single
set containing all points. This group will be increasingly divided as the distance
between points is reduced. The set of nested partitions is represented graphically by
adendrogram that has a tree shape indicating the distance’s hierarchical dependence.

The k-means [3] is an optimization method that partitions the data in exactly k
clusters, previously determine. This is achieved in a sequence of steps which begins,
for instance, with an initial partition randomly generated. In each step the cluster’s
centroid (arithmetic vector mean) is computed. The minimum distance between
each data point and the clusters’ different centroids will decide the formation of new
clusters. The formation of a new cluster implies assigning each observation to the
cluster which presents the lowest distance. After that the centroids are (re)calculated
and the former step is repeated until the moment each individual belongs to a stable
cluster, i.e., when the sum of the squared distances to the centroid of all data point
over all the clusters is minimized. The algorithm presents a rather fast convergence,
but one cannot guarantee that the algorithm finds the global minimum [4].

Spectral clustering is also an optimization method. This method is becoming
very popular in recent years because it has been included in algorithms used in
the identification of the human genome or in web browsers. Beyond biology and
information retrieval the method has other fields of application such as image
analysis and, in some cases, it can perform better than standard algorithms such
as k-means and hierarchical clustering [2]. Spectral clustering methods use the k
dominant eigenvectors of a matrix, called affinity matrix, based on the distance
between the observations. The idea is grouping data points in a lower-dimensional
space described by those k eigenvectors [5]. The approach may not make a lot of
sense, at first, since we could apply the k-means methodology directly without going
through all the matrix calculations and manipulations. However, some analyses
show that mapping the points to this k-dimensional space can produce tight clusters
that can easily be found applying k-means [2].

The k-means and spectral methods are rigid because one observation can belong
to only one cluster. This rigidity can be avoided by using fuzzy clustering [6]. In this
method each observation has a probability of belonging to each cluster, rather than
completely belonging to just one cluster as it is the case in the traditional k-means.
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Fuzzy k-means specifically tries to deal with the problem where observations are
between centroids in an ambiguous position by replacing distance with probability.
Thus, one obtain the probability of an observation belonging to each cluster. From
the computational point of view this approach is more demanding than traditional
k-means. However, it allows more flexibility in the classification of observations.

Most of the observable phenomena in empirical sciences — including the social
ones — are of a multivariate nature. It is necessary to deal with huge data sets
with high dimensions making sense out of these data and exploring the hidden
features of it. In the present research work, spectral clustering is applied in an
unusual context concerning the traditional data mining analysis. We classify 278
Portuguese mainland municipalities (concelhos) regarding the type/characteristics
of unemployment official registers. The set of observations, xi,..., X275, that
contains 278 vectors, whose 11 coordinates are the values for some of the indicators
used to characterise Portuguese unemployment (gender, age classes, levels of formal
education, situation relating unemployment and unemployment duration), is divided
in k clusters. The classification of observations resulting from the spectral method
is than compared to the classification given by the traditional k-means method.

The results are analysed from both mathematical and economic points of view.
The main goal is to find evidence regarding which method produces the best cluster
partition and, accordingly, to understand if the resulting clusterisation makes sense
in terms of the spatial distribution of unemployment characteristics, over a country’s
administrative territory. Indeed it is important to understand if the application of the
cluster methodology could avoid a priori subjective grouping criteria as the one that
just groups municipalities in administrative regions [7].The idea is to understand
if a particular cluster methodology for data mining analysis provides useful and
suitable information that could be used to the development of national, regional
or local unemployment policies. The problem of unemployment has traditionally
been studied as a national phenomenon being the national unemployment rates
considered as a consequence of national labour market characteristics. However
the rates of unemployment at the regional level are very heterogeneous inside
countries, particularly in Europe. According to Siidekum [8], in Europe, regional
labour market disparities within many countries are of about the same magnitude
as differences between countries. Taking into account this findings is important to
understand the regional dynamics of unemployment [9].

The paper is divided as follows. The k-means method and the spectral clustering
method are presented in Sects.2 and 3, respectively. The methods description is
followed by Sect.4 where data and variables analysed are also presented and
described. In Sect. 5 we move ahead toward the optimal number of clusters applying
both selected methods. In Sect. 6 the results are presented and discussed, regarding
the particular case in which the methodology is applied. Our concluding remarks
can be found on Sect. 7.
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2 The k-Means Method

We are concerned with m data observations x; € R" that we want classify in k
clusters, where k is predetermined. We organize the data as lines in a matrix X €
R"™*". To describe the k-means method as proposed in [4] we denote a partition of
vectors Xy, . .., X, in k clusters as [ [ = {1, ..., 7} where

m; = {€ : x¢ € cluster j}

defines the set of vectors in cluster j. The centroid, or the arithmetic mean, of the
cluster j is:

mp=— > x (1)

where 7; is the number of elements in cluster j. The sum of the squared distance, in 2-
norm, between the data points and the j cluster’s centroid is known as the coherence:

g=Y |xe—ml; @)

Lem;

The closer the vectors are to the centroid, the smaller the value of g;. The quality
of a clustering process can be measured as the overall coherence:

o([T) = i 9 3)

Jj=1

The k-means is considered an optimization method because it seeks a partition
process that minimizes Q(]]) and, consequently, finds an optimal coherence. The
problem of minimizing the overall coherence is NP-hard and, therefore, very
difficult to achieve. The basic algorithm for k-means clustering is a two step heuristic
procedure. Firstly, each vector is assigned to its closest group. After that, new
centroids are computed using the assigned vectors. In the following version of k-
means algorithm, proposed by [4], these steps are alternated until the changes in the
overall coherence are lower than a certain tolerance previously defined.

Since it is an heuristic algorithm there is no guarantee that k-means will converge
to the global minimum, and the result may depend on the initial partition ]_[(0).
To avoid this issue, it is common to run it multiple times, with different starting
conditions choosing the solution with the smaller Q ([ ]).
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The k-means algorithm

1. Start with an initial partitioning ]_[(O) and compute the corresponding centroid vectors m?

J
forj=1,..., k. Compute Q(JT). Put t = 1.
2. For each vector x; find the closest centroid. If the closest centroid is mI’fl assign i to n,y).

3. Compute the centroids m;t) forj=1,..., kof the new partitioning ]—Im .

4. 1 |01 — o(1“™)| < tol, stop; Otherwise ¢ = ¢ + 1 and return to step 2.

3 Spectral Clustering Method

Let xy, ..., x, be a m data observations set in a n-dimensional euclidian space. We
want to group these m points in k clusters in order to have better within-cluster
affinities and weaker affinities across clusters. The affinity between two observations
x; and x; is defined by [10] as:

-l

A =exp 797

“

where o is a scaling parameter that determines how fast the affinity decreases
with the distance between x; and x;. The appropriate choice of this parameter is
crucial [2]. In [10] we can find a description of a method able to choose the scaling
parameter automatically.

The spectral clustering algorithm proposed by [10] is based on the extraction
of dominant eigenvalues and their corresponding eigenvectors from the normalized
affinity matrix A € R™". The components A;; of A are given by Eq. 4, if i # j, and
by A; = 0, if i = j. The sequence of steps in the spectral clustering algorithm is
presented as follows:

The spectral clustering algorithm

1. Form the affinity matrix A as indicated in Eq. 4.

2. Construct the normalized matrix L = D~'/2AD™'/2 with D; = Z,"n=1 Ajj.

3. Construct the matrix V = [v;v, ... v] € R"* by stacking the eigenvectors associated with
the k largest eigenvalues of L.

4. Form the matrix Y by normalizing each row in the m X k matrix V (ie. ¥; =

. S\ 172
Vij/ (Zj:l Vij) )-
5. Treat each row of Y as a point in R¥ and group them in k clusters by using the k-means
method.
6. Assign the original point x; to cluster j if and only if row i of matrix ¥ was assigned to
cluster j.
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4 Data Description

The 278 data observations represents the Portuguese continental concelhos. Each
data point have 11 coordinates representing characteristics of the unemployed
register individuals. Indeed, the unemployed individuals registered in the Portuguese
public employment services of the Instituto de Emprego e Formagdo Profissional
(IEFP) present a given set of distinctive characteristics related with gender, age,
formal education, unemployment spell (unemployment for less than a year or more
than a year) and situation related with the unemployment situation (unemployed
individual looking for a first employment or for another employment). Due to the
methodological particularities of the clustering methods here applied, it should be
noted that the characteristics of the individuals registered in each local employment
center are not mutually exclusive. If this is the general condition for all variables,
it should be stressed that this apply, in particular, to the characteristics of the
individuals recorded regarding their labour state within the labour market. A long-
term unemployed, for instance, can be looking for a new job or looking for he/she
first job. The fundamental feature demanded is the register in a given local labour
center for at least 12 months. Of course, is not expected that an individual register
presenting an age near the minimum age allowed (18 years) had completed the upper
level of formal education but that is not impossible since the upper level of formal
education starts counting after the twelve years of study.

The above mentioned characteristics are important determinants of unemploy-
ment. For example, the Portuguese labour market is characterised by low intensity
transitions between employment and unemployment, and very long unemployment
spells [11, 12]. They are also important economic vectors regarding the development
of public employment policies. National public policies benefit from being based on
simple and objective rules however a blind application of these national policies
across space (regions) could be ineffective if the addressed problem is not well
explored and identified [13] at a regional level. For example, in many countries the
labour market problems of large cities are quite different from those of rural areas
— even when the unemployment rate is the same [14]. It is believed this is the case
of the Portuguese economy. So well targeted policies are more efficient, in terms
of expected results, and avoid the waste of scarce resources. The main strategies of
labour market policy have to be varied regionally to correspond to the situation at
hand. For instance, it is easier to integrate an unemployed person into a job if the
policy measure depends on the local labour market conditions [14].

A complete study of regional similarities (or dissimilarities) in a particular labour
market, as the Portuguese, should not be limited by a descriptive analysis of the
associated economic phenomena. It should also try to establish spacial comparison
patterns among geographic areas in order to develop both national and regional
public policies to fight the problem. Indeed high unemployment indicators and
regional inequalities are major concerns for European policy-makers since the
creation of European Union. However, even if the problem is known the policies
dealing with unemployment and regional inequalities have been few and weak [15].
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In Portugal, in particular, there are some studies that try to define geographic,
economic and social homogeneous groups [16]. Yet, to the best of our knowledge,
there are no studies that offer an analysis of regional unemployment profiles. Other
economies are starting to develop this kind of statistical analysis using as a policy
tool the cluster analysis methodology [7, 17-19].

The data concerning the above mentioned characteristics are openly available
in a monthly period base in the website of IEFP (http://www.iefp.pt/estatisticas/
Paginas/Home.aspx). Additionally, the month of December gives information about
the stock of registered unemployed individuals at the end of the respective year. In
the case of this research work, data from unemployment registers in 2012 have been
used. The eleven variables available to characterise the individuals and that have
been used here are divided in demographic variables and variables related with the
labour market. These variables are dummy variables, measured in percentage of the
total number of register individuals in a given concelho, and describe the register
unemployed as follows: 1: Female, 2: Long duration unemployed (individual
unemployed for more than 1 year), 3: Unemployed looking for a new employment,
4: Age lower than 25 years, 5: Age between 25 and 35 years, 6: Age between 35
and 54 years, 7: Age equal or higher than 55 years, 8: Less than 4 years of formal
education (includes individuals with no formal education at all), 9: Between 4 and
6 years of formal education, 10: Between 6 and 12 years of formal education and
11: Higher education.

Women, individuals in a situation of long duration unemployment, younger or
older unemployed individuals and the ones with lower formal education are the
most fragile groups in the labour market and, consequently, are the most exposed to
unemployment situations [20]. They are also the most challenging groups regarding
the development of public employment policies, namely the regional ones.

S Toward the Optimal Number of Clusters

We begin by applying the k-means method to partition in k clusters the data points
set xi,...,Xn, with m = 278 Portuguese mainland concelhos regarding the 11
chosen unemployment characteristics. As the optimal number of targeted groups
is unknown a priori, we repeat the partition for k = 2, 3,4 and 5 clusters.

To evaluate the quality of the results from the cluster methodology and to
estimate the correct number of groups in our data set we resort the silhouette
statistic framework. The silhouette statistic introduced by [1] is a way to estimate
the number of groups in a data set. Given observation x;, the average dissimilarity to
all other points in its own cluster is denoted as a;. For any other cluster c, the average
dissimilarity of x; to all data points in cluster ¢ is represented by d (x;, ¢). Finally, b;
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denote the minimum of these average dissimilarities d (x;, ¢). The silhouette width
for the observation x; is:

_ (bi—a)
B max {bi, Cl,'}.

&)

The average silhouette width is obtained by averaging the s; over all observations:

=Y (©)

If the silhouette width of an observation is large it tends to be well clustered.
Observations with small silhouette width values tend to be those that are scattered
between clusters. The silhouette width s; in Eq.5 ranges from —1 to 1. If an
observation has a value close to 1, then it is closer to its own cluster than it is to a
neighbouring one. If it has a silhouette width close to —1, then it is a sign that it is not
very well clustered. A silhouette width close to zero indicates that the observation
could just as well belong to its current cluster or one that is near to it.

The average silhouette width (Eq.6) can be used to estimate the number of
clusters in the data set by using the partition with two or more clusters that yield
the largest average silhouette width [1]. As a rule of thumb, it is considered that
an average silhouette width greater than 0.5 indicates a reasonable partition of the
data, and a value less than 0.2 would indicate that the data do not exhibit a cluster
structure [2].

Figure 1 presents the silhouette width corresponding to the case of four different
partitions of the data points set, this is, k = 2, 3,4 and 5 clusters resulting from the
application of the k-means method.

As itis possible to observe, the worst cases occur, clearly, when k = 3 and k = 5.
For these cases, some clusters present negative values and others appear with small
(even if positive) silhouette indexes. In the case of k = 2 and k = 4 clusters there
are no negative values, however we find large silhouette values mostly in the case of
the two clusters partition.

To get a single number that is able to summary and describe each clustering
process, we find the average of the silhouette values (Eq. 6) corresponding to k =
2, 3, 4 and 5. The results can be observed in Fig. 2.

The two cluster solution presents an average silhouette value near 0.44 and the
four cluster solution presents an average silhouette value near 0.29. These results
confirm the ones above. The best partition obtained with the application of the k-
means method occurs with k = 2. Nonetheless, the average of the silhouette is close
but smaller than 0.5 which reveals that the data set does not seem to present a strong
trend to be partitioned in two clusters.

Figure 3 shows the silhouette width corresponding to each observation in the case
of four different partitions of the data set points. This is, in k = 2, 3, 4 and 5 clusters,
resulting from the application of the spectral clustering method.



Optimization Clustering Techniques on Register Unemployment Data 27

k=2 k=3
1
e 1 b
% % 2
= =
o ]
2 3
0 0.5 1 0 0.5 1
Silhouette Value Silhouette Value
k=4 kus
1
L= 2 £
o 2
w o
= =
O 3 O
4
0 0.5 1 0 0.5 1
Silhouette Value Silhouette Value

Fig. 1 Silhouette width for k = 2,3, 4 and 5 clusters resulting from the k-means method
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Fig. 2 Average silhouette width for k = 2, 3, 4 and 5 clusters resulting from the k-means method
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Fig. 3 Silhouette width for k = 2, 3, 4 and 5 clusters resulting from the spectral method

In this case all the tested partitions present clusters where can be observed
negative values. The worst cases occur, clearly, when k = 4 and k = 5. Here we
get values close to —0.5. In the case k = 3 is possible to observe negative values in
the three cluster obtained whereas in the case of k = 2 the negative values are just
observed in one of the two clusters.

The trend observed with the silhouette width is confirmed by the average of
the silhouette values corresponding to the spectral clustering process with k =
2, 3, 4 and 5 clusters (Fig.4).

The two cluster solution has an average silhouette value near 0.43 and decrease
as the number of clusters increases. The best partition obtained with the spectral
clustering method occurs with k = 2. These results are in agreement with the
partitioning found by using the k-means method. The average of the silhouette value
(0.43) is very close to the one calculated with k-means method (0.44).

As mentioned before, the results obtained with the k-means method agree with
the results obtained with the application of the spectral methods. The best partition
of the data set is accomplished with two clusters. However, this trend is not
completely crystal clear. Indeed, the average of the silhouette in the two cases is
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Fig. 4 Average silhouette width for k = 2,3, 4 and 5 clusters resulting from the spectral method.

smaller than 0.5. The computed value indicates that the distance between the two
considered clusters is not very large.

6 Mathematical and Economic Results’ Analysis

Both spectral clustering method and k-means method indicate that the data are best
partitioned into two clusters. The statistical properties of theses two clusters are
presented in Table 1.

Despite the number of observations in each cluster is not the same, it appears that
for both methods the first cluster is the largest. This is, includes a bigger number of
concelhos: ny = 177 for the k-means and n; = 154 for the spectral method. The
difference of 23 observations for the first cluster is reflected in the computed local
coherence g (Eq.2) that is larger for the k-means methods (q; = 3.4161). The
second cluster comprises n, = 101 observations and presents a local coherence of
q» = 1.9115, for the k-means, and n, = 124 observations and a local coherence
of g» = 2.6026 for the spectral method. Although the differences between the
computed coherence for each cluster, we can observe that both methods achieve
a very similar overall coherence (Eq. 3), Q ~ 5.3 for the k-means and Q ~ 5.4 for
the spectral method. The results presented in Table 2 show that clusters obtained
by the two methods are very similar. We can observe that 153 observations are
assigned to the first cluster and 118 assigned to the second by the two methods.
There are only 7 observations whose allocation fluctuates with the method. This
number represents about 2.5 % of the total number of observations (278). This
means that the uncertainty associated with the formation of the two clusters is small.
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Table 1 Statistical Method |j | n; 4 0
properties of the two clusters i L1177 34161 153276
resulting from k-means and -means : :
spectral methods 2 | 101 |1.9115
Spectral |1 | 154 |2.7511 |5.3536
2 | 124 |2.6026
Table 2 . Rel?eated Cluster | k-means | Spectral | Repeated
observations in each cluster i ) ) .
J nj nj nj
1 160 153 153
2 118 125 118
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Fig. 5 Mean values computed for the two methods by cluster

For a more complete comparison analysis of the results obtained by k-means and
spectral methods, it is also important to analyse two distribution measures: mean
and standard deviation. The measures are presented for each one of the 11 variables
used in the cluster analysis. In Fig.5 we compare the mean value obtained for the
11 parameters that characterise the two clusters obtained by the two clusterisation
methods. In Fig. 6 we compare the standard deviation value. Note that in these two
figures the comparison analysis is done regarding the cluster methods applied.

It is visible that the computed mean values, regarding each one of the variables,
are very similar in the two clusters independently of the cluster method used. This
situation is not unusual in times of economic crisis. In these periods of the economic
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Fig. 6 Standard deviation values computed for the two methods by cluster

cycle the registered unemployment increases, in general, not sparing any particular
group. So, the average values of registers, by characteristic, tend to converge. For the
computed standard deviation values we can observe a first cluster where the standard
deviation, for the overall set of variables, are slightly higher for the k-means and a
second cluster where the observed trend is reversed. In short, we can observe that
the results for both methods are similar regarding the measure of central tendency of
each one of the variables but the variability of values, regarding the central tendency,
differ between cluster methods.

The mean and standard deviation measures can be compared regarding the
values computed by cluster. From this point of view the analysis would have an
economic focus. So, in Fig.7 we compare the mean value obtained for the 11
parameters for each one of the clusters by cluster method. In Fig. 8 we compare the
computed standard deviation value. The lecture of both figures should not forget the
observation made on the data description — a register in a variable do not excludes
the register in an other variable since they are not mutually exclusive.

From the Figs. 7 and 8 it is possible to observe that both methods retrieve clusters
that present the same pattern. In the second cluster (cluster 2) are gathered the
Portuguese mainland concelhos that present a higher percentage of unemployed
register individuals with more problematic characteristics — women, long duration
unemployed individuals, individuals that are looking for a job for the first time
(individuals with no connections with the labour market), individuals with more
than 55 years and with lower number of years of formal education (for example, this
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cluster gathers the concelhos with a lower percentage of unemployed individuals
with a higher education). As mentioned before these groups of individual are the
most fragile labour market groups. Both cluster methods seem to divide the total
number of concelhos in two economic meaningful clusters. Despite the stage of the
economic cycle, that tends to align the unemployment registration rates, regardless
of the observed individual characteristics, is possible to verify the existence of
regional differences that should be studied and analysed carefully in order to make
employment public policies more effective and efficient. The success of labour
policies depends on the regional labour market conditions. As a consequence,
first, policy-makers should be very careful in promoting those policies since their
effectiveness might significantly vary. Second, policy-makers should adjust labour
policy strategy to the regional economic structure. It follows that when designing
a labour market strategy, the economic context should be heavily taken into
account [21].

Regarding the standard deviation we observe that the k-means method retrieve
clusters that present a lower variability among the observations in each cluster, by
variable. The variability seems to be lower for the overall set of characteristics even
if the k-means method divides the total number of observations in more uneven
clusters.

7 Concluding Remarks

In short, both methods denote the same data partition. Applying both methods, the
data partition into two clusters minimises the dispersion of data values. The use of
the spectral clustering method in an unusual economic application shows potential
benefits. Without algorithm parameters refinement the method presented results that
are consistent with the k-means results.

From the economic point of view both methods show the importance of dividing
Portuguese concelhos in two well defined spatial groups which could be object of
distinct public policies and of particular unemployment measures. Well targeted
labour market measures are, recognisable, more efficient with the cluster methodol-
ogy helping the identification of different and well defined target regions — regions
with similar characteristics and problems. Indeed the allocation of unemployment
particular measures according to a multivariate classification as the one explored in
this paper brings benefits that should not be ignored. The classification obtained (the
classification enables employment offices to compare themselves with others in the
appropriate peer group)can be used, for instance, to assess and support the labour
market policy adopted by each region. Although differences remain regarding labour
market conditions the complexity of reality is reduced — is possible to differentiate
within types of registered unemployed individuals since the results for the distance
matrix between all labour market regions is available [14],
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As pointed by Campo and co-authors [13] in their work, it is important to conduct

further analysis aiming to compare results from different techniques, data regarding
different moments of the economic cycle and different unemployment variables.
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Web Based Application for Home Care Visits’
Optimization of Health Professionals’ Teams
of Health Centers

Bruno Bastos, Tiago Heleno, Anténio Trigo, and Pedro Martins

Abstract Health Centers have among one of their many tasks the provision of
health care at home. This service is provided by teams of health professionals,
usually composed of physicians and nurses belonging to the Health Centers. The
scheduling of the visits is made by a health professional that groups one or more
routes in order to minimize the time of team’s visits. However, as there is no
technical or computer application to plan and optimize the visits in a systematic
way, the obtained solutions are rarely the best ones. To improve this situation we
were challenged by a Health Center to create an application to optimize the visits
of health care professionals. This paper presents the solution developed involving
a web application called “Health at Home”, which uses the heuristic of Clarke and
Wright. The main novelty of this work is the inclusion of priority and non-priority
patients, according to their degree of aseptic, within the routes optimization of the
health professionals’ teams.
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1 Introduction

The provision of home health care is becoming one of the most important and
increasing areas in Europe due to the population’s aging and to the fact that it is
economically advantageous to have people at home instead of having them in a
hospital bed [10].

The home-based care provided by public or private entities has been the subject
of recent research mainly in the operations research area with particular attention
on route’s optimization and on the staff team’s composition that provide that kind
of services [2, 3, 10, 12].

In providing home-based care, Health Centers (HC) play a very important role
since they are closer to population than hospitals, which are more focused on serving
patients that visiting them. To play this role, Health Centers have to schedule the
professional health teams (doctors and/or nurses) and the routes of those teams to
visit patients in their homes.

With the aim of optimizing these routes, it was proposed us by a HC’s nurse
from an urban area (Coimbra, Portugal) the development of an application being
able to respond adequately to this challenge. In this HC in particular the teams that
do the visits are the ones that plan the routes using their geographical knowledge
about the area in which they operate, thus defining the route they consider to be the
best, which is not always true. The odds of the route obtained not being the best
one increases when one is forced to attend certain restrictions, like, for example, the
issue about the priority or aseptic patients.

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimization
problem. Its most common objective is to find the shortest path or route to, for
example, the delivering or picking of goods [1] or persons [11]. In the particular case
of the professional health teams, they do not deliver goods but medical procedures
to sick patients, like the administration of injectable. It is assumed that the times of
travel between the patients homes’ locations and between these locations and the
HC are known, that the times of the visits are also known and that the professional
health teams always return to the HC (the origin).

Figure 1 shows the possible locations of the visits (patient’s houses) done during
a day by the professional health teams of a Coimbra’s HC. The red dots show the
locations that teams have to visit. The point with a red circle around is the CS from
where the teams start the visits and must obligatorily return. In section five, devoted
to the development of the application, a small example is presented in order to show
the use of the application.

This paper is structured as follows: the next section describes the home-based
care environment; the third section presents the mathematical formulation for the
problem; the fourth section presents the methodology used to solve the problem,
based on Clarke and Wright’s heuristic and a variation using the second order
heuristic; the fifth section presents the developed web application — Health at Home
— using the PHP language and MySQL database by Oracle; and finally the last
section presents some concluding remarks and proposals for future work.
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Fig. 1 Home visits locations in the city of Coimbra

2 Home-Based Care

Home-based care is a type of care provided continuously, pointing to the resolution
of some health problems, whose complexity does not require hospitalization, but
given the global dependence situation, transient or chronic, prevents patients to
travel to the HC [9]. In [8] it is possible to see some of the reasons for requesting this
kind of health care, which includes, among others, chronic obstructive pulmonary
diseases and congestive heart failure.

The procedures/treatments delivered at home are many [8], including for exam-
ple, at nursing care level, the Inhalation Therapy, Suctioning, Fluid Therapy, Wound
Control/Pressure Ulcers, Noninvasive ventilation (NIV), Oxygen Therapy, Enteral
Feeding, etc.

Although people’s houses do not present risk of contamination by microorgan-
isms existing in hospitals [9], health professionals are aware that it is mandatory to
prevent such infections, which can be harmful to weaker people. In this regard and
in order to reduce contamination by microorganisms, the present work takes into
account the asepsis degree in the definition of the patient’s type.
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2.1 Patient’s Type (or Asepsis Degree)

Asepsis is the set of measures that are taken to prevent the contamination by
microorganisms in an environment that does not have them, which means that an
aseptic environment is one that is free from infection.

Antisepsis is the set of proposed measures to inhibit the growth of microorgan-
isms or remove them from a certain environment, which may or may not destroy
them, by using antiseptics or disinfectants.

Aseptic (or priority) patients are those with a more weakened immune system and
therefore need to be the first to be visited in an attempt to minimize potential con-
tamination. So, in the designing of health professionals’ visits route, such patients
can never come after non-priority patients to avoid to the risk of contamination by
microorganisms.

3 Mathematical Formulation

The problem being handled in the present paper can be seen as a variant of the
VRP, in which the routes are bounded by time constraints and the set of nodes is
partitioned in two subsets: priority and non-priority nodes. The prioritized nodes
are associated to patients with high asepsis degree and the non-prioritized nodes
include patients who do not require special aseptic precautions.

For this problem, we consider the directed graph G = (V U {0}, A), with V the
set of nodes (patients), O the origin node (HC) and A the set of arcs (i, ) between
every pair of nodes i,j € V U {0}. Each arc (i, /) has an associated parameter ;
which describes the travel time from i to j. We also denote by parameter r; the time
for visiting client i, for all nodes i € V.

Each route starts and ends at the origin, node 0, and the route is defined by a
sequence of arcs. The total time of the route is the sum of the times of all its arcs
(#;7) and the sum of the times of its nodes (r;). There is a time limit for the total time
of a route, being denoted by 7.

In this problem, we are intending to calculate a set of routes that ensure the visit
to all nodes (patients), respecting the aseptic degree restriction and the total limit
time for each route, with the aim of minimizing the sum of the total time of all the
routes involved.

When looking for the times to travel between locations, and attending to the
practical problem in hand, we could treat them in a symmetric sense. However, and
for the purpose of formulating the problem, we are going to use an asymmetric
version of the original graph, where each edge {i, j} is substituted by the pairs (i, )
and (j, 7). There are two reasons for undertaking this option: (i) because we can
obtain a stronger flow based (compact) formulation from the linear programming
relaxation stand point; and (ii) because the chance to distinguish between traveling
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from i to j or from j to i allows us to model the priorities among the nodes in a
simpler way, using known oriented and compact formulations for the VRP.

In fact, the problem can be adapted from a capacitated VRP, simply by removing
the variables associated to the arcs (i,j) with i € V?> andj € V!, for V! and V? a
partition of the set of nodes (clients) V, where V! and V? represent the priority and
the non-priority clients, respectively.

While in the classic capacitated VRP the flow variables reflect the goods accu-
mulated/released in the graph’s nodes, in this version the flow variables represent
the times accumulated in the arcs and nodes, along the route.

Therefore, the following formulation is propose:

e Variables:

— design variables:

1, ifarc (i, ) belongs to the solution L o
xij = ! @.7) & u ,fori,jeVandi #j
0, otherwise
— flow variables:
v = accumulated time flow after traveling through arc (i, /) and before
starting the service at j, fori,j € V andi # j

¢ Parameters:

— t; = travel time from i to j, fori,j € Vand i # j

— r; = visit time in client i, for i € V (assuming that ryp = 0)

— V=VvV'UV?and V' N V2 = @, where V! is the set of nodes associated to
priority clients and V? the set of nodes associated to non-priority clients

— T is the maximum total time for each route

— Node 0 is the origin, representing departure/arrival point for all routes

* Objective function:

min 2=) " yio (1)

i€V

* subject to the following constraints,

Z xj=1,jeV )
ievUu{0}

Z xj=1,ieV (3)
jevu{o}

DoVt D2 vi— ) tmi=njEeV “4)

ievu{0} i€vU{0} i€vU{0}
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(ty + r)xy <y < (T = rj)xy, i,j € VU{0} (5)
x; €{0,1}, y; > 0, i,j € VU {0} (6)

For simplicity of notation, we have not isolated in the model all variables x;; and
y;j fori € V? andj € V! and all variables x; and y; for i € V U {0}. In effect, the
correct formulation for the problem in hands does not include those variables.

Constraints (2) and (3) guarantee that to each node (client) arrives a team (route)
and a single one and that exactly one team (route) leaves from each node (client).
The flow conservation constraints (4) guarantee the temporal increment of each
route. When embedded in the entire model, these equalities can avoid the creation
of sub-circuits among the nodes in V. Inequalities (5) establish the link between the
variables x and y and guarantee that the maximum cumulative flow on any route
does not exceed the time limit 7.

Note that the fact of having flow variables (and design variables, as well) linking
nodes from set V! to V2 and having no variables in the opposite direction, guarantees
that it will always travel from the priority to the non-priority clients and never the
reverse, when traveling between clients from one set to the other.

The objective function minimizes the total time length of all routes in the solution
characterized by the final flow variables in the routes.

3.1 Using the Solver to Obtain the Solution

The formulation described in Sect.3 was solved using the ILOG/CPLEX 11.2
package, and all experiments were performed under Microsoft Windows 7 operating
system on an Intel Core 17-2600 with 3.40 GHz and 8 GB RAM.

The mixed integer programming (MIP) algorithm of CPLEX was used for
solving the mathematical models. Most default settings were considered, which
involve an automatic procedure that uses the best rule for variable selection and
the best-bound search strategy for node selection in the branch-and-bound tree.

A number of computational tests were performed using the 5 nodes instance
proposed in the forthcoming Sect. 4.2. The example furthered assumes that r; = 1
for all i € V and that V! = {1,3} and V> = {2, 4,5}, thus 1 min is spent in each
client. Nodes 1 and 3 represent priority clients. With these parameters, the model
was solved considering three different values for the time limit parameter 7, setting
T = 10,12 and 15. The times to reach the optimums were lower than 0.01s in
all the three attempts. The optimum solutions (z* represents the optimum solution
value) are presented in Table 1.

As expected, the number of routes increase for lower values of the routes’ time
limit, leading to larger optimum solution values, that is, the entire solution becomes
more time demanding. In addition, the solutions respect client’s priority hierarchies,
putting both clients 1 and 3 to be visited before all those in {2, 4, 5}.
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Table 1 Solver solution of T
example in Table 2

z% | Solution

10 |24 1 0—>2—0
0—>3—>1—>4—>0
0—>5—>0

12 /19 [ 0>2—>4—>0
0—>3—->1—>5—>0

515/ 0->3=>1—->5—=>2—->4—>0

All these instances were solved very fast to optimality. However, when the
size of the problem grows, namely when the number of clients increase, we may
loose the chance to reach the exact solution within reasonable execution time.
This is something observed in many works in the literature that also resort to flow
based (compact) models for solving the VRP. Even if using Miller-Tucker-Zemlin
subtour elimination constraints instead of flow conservation ones (see, e.g., [5]),
the conclusion would be similar when attempting to solve large sized problems.
The reason is common to many other problems. In effect, this is also an NP-hard
problem, which means, in a broad sense, that, so far, there is no efficient method
for solving the problem. For this reason we propose in the forthcoming sections
approximate methods for addressing the problem, resorting to Clark and Wright
based heuristics.

4 Methodology

As a first approach to implement an algorithm to solve this problem the Clarke and
Wright’s heuristic [4] was chosen. In a second phase, it was decided to improve
the algorithm, first with the introduction of some random feature and then using the
Clarke and Wright’s heuristic in a repetitive method, namely using a second order
algorithm [6, 7]. The combination of heuristics is a common practice for handling
hard combinatorial optimization problems [3].

4.1 Clarke and Wright’s Heuristic

This heuristic, also known as the savings algorithm, was first proposed in 1964 by
Clarke and Wright for solving capacitated vehicle routing problems, being denoted
as the Capacitated Vehicle Routing Problem (CVRP). This initial form of the VRP
involves an unlimited and homogeneous fleet of vehicles [4, 5]. Next, it is described
the Clarke and Wright heuristic adapted to the problem under discussion.
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* Clarke and Wright [5] adapted to the problem:

1. Calculate the savings

sijzti0+t0j—tij,fori,jzl,...,nandi;zéj 7

— with the exception of savings s;; such as i € VZandje V';

2. Sort savings in descending order;

3. Go trough the savings’ list starting at the first element. For each element arc
(i,j) with s;; > 0 and having connections (i, 0) and (0, j), temporarily merge
the two routes by linking node i to node j. Check the viability of the route
obtained and if so remove arcs (i, 0) and (0, j). Go to the very next putatitve
connection (i, ) in the savings’ list until no further improvement is possible.

To summarize, the algorithm starts by making a list of all possible round-trip
routes from an origin (HC) to each of the destinations (patients), then it calculates
the savings using Eq. (7). At each step, two routes are merged according to the
greater savings that can be generated and the viability of the new connection is
checked. The algorithm stops when there are no more feasible and positive savings
in the list, showing that it cannot improve the current solution any further.

4.2 Example

Consider the example with a HC (HC) and five patients Py, P>, P3, P4 and P5 two
of them priority ones (the P; and P3) and the remaining non-priority.

Table 2 shows the times between different nodes and Table 3 presents the savings
calculated using the Eq. (7), with the exception of savings s;; such that i € V? and
j € V!. Once again, it was assumed that r; = 1 for all i € V and that V! = {1, 3}
and V? = {2,4, 5}, thus, the teams spend 1 min in each client.

Note that although the matrix distance is symmetric, our algorithm is asymmetric,
as it takes into account the directions of flows, so that at the beginning all savings
are taken into account.

Table 2 Time (minutes) 1 HC |P, |P, | Py | P, | Ps
HC 5 |4 |2 |1 |3
P, 3 1 1 |2
P, 2 |1 |3
Ps 4 |5
Py 3

Ps
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Table 3' Savings in s = toi + to; — 1y | Sy = toi + toj — 1
descending order

s1p = s5p =4

513 = sS4 =3

s31 = spp =3

S5 = 545 =1

S14 = ssq =1

53 = 535 =0

525 = 534 = —1

Fig. 2 Initial solution

Fig. 3 Second solution

Conn

The algorithm starts with 5 routes one for each client. In the next step two of
those routes are merged and the solution in Fig. 3 with four routes is obtained. One
route with patients 1 and 2, and 3 other routes with the remaining patients. The final
solution has only one route that passes by all patients. Note that the restriction not to
go from a non-priority patient (blue in Figs. 2 to 6) to a priority patient (red in Figs. 2
to 6) was not broken. Figure 4 shows an example of such an hypothetic intermediate
solution that was refused.

The objective of this problem is to minimize the total time of routes (in minutes)
visiting all patients. In the initial solution with five routes, the total time of the visit
(Z) is 30min. In the solution obtained in the first iteration, with four routes, Z is
24 min, an improvement of 6 min of the initial solution, whereas the final solution,
with only one route, Z is 15 min. The final solution allows a reduction in the total
time of the routes of 14 min, saving more than half the time compared to the initial
solution (with 5 routes).
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Fig. 4 Rejected solution

Fig. 5 Third solution

Fig. 6 Final solution

4.3 Algorithm Adaptation

B. Bastos et al.
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In a first test to the algorithm, with patients from Table 4, it was found that the
obtained solutions were not the best ones, although they solved the problem. The
algorithm suffers from some myopia because the initial choice of the largest savings
does not necessarily lead to the best solution. The total time of the routes obtained
for the problem presented in section five was 2h 28 min. For this time, five routes
were obtained: HC — Py - HC; HC —- P; - P, —» HC; HC — P; — Pg —
HC;HC - P¢ — Py — HC; and HC — P5; — HC.

To improve the algorithm some randomness was introduced by imposing jumps
in choosing the order of savings, i.e., instead of choosing sequentially in descending
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Table 4 Patient data of places to visit (fictitious)

Code |Name Address Prioritary | Health procedure
1 José Correia Rua Anténio Augusto Gongalves | Yes Pressure Ulcers
2 Maria Correia Av. Emidio Navarro 37 No Oxygen Therapy
3 Rui Fernandes Rua Coutinhos 26 Yes Pressure Ulcers
4 Fatima Neves Estrada da Guarda Inglesa, no 17 | No Ventilation

5 Ana Costa Rua Caminho das Vinhas 12 Yes Wound Control
6 Fernando Esteves | Rua da Escola, 37 Yes Pressure Ulcers
7 Celeste Marques | Av. Cénego Urbano Duarte 92 Yes Enteral Feeding
8 Mario Gouveia Rua Augusto Filipe Simdes No Oxygen Therapy

order savings, the new version of the algorithm skips some of these savings in
order to try to find better solutions. This improved version of the algorithm yielded
better results than the previous one with no randomness, for the instance tested.
The best total time obtained for the routes was 2h 11 min, with three routes,
HC—)PI—>P7—)P2—>P4—)HC,EIHC—>P3—>P8—>HCC
HC — Ps — P¢ — HC, which translates into a savings of 17 min. Since this
algorithm has a random component better results could be obtained if it was run for
longer time. Nevertheless, one of the criteria for choosing the algorithm to be used
is how quickly it can get good solutions.

Finally one last approach/adaptation of Clarke and Wright algorithm was tested,
which was using a second-order algorithm proposed by [6] and improved by [7]. In
this approach, after finding an solution, an arc is fixed and the remaining savings
are tested looking for the best solution. When the best solution is found it is saved
and the savings that originated are destroyed, except for the one that gave the best
solution, which is made permanent. The algorithm runs again considering the arcs
that were already made permanent trying to fix more arcs. With this algorithm has
achieved a time of 2h5 min. The time obtained represents the completion of one
route, HC — Ps — P¢ —» P, - P; —> P3 — Py — P, — P, — HC and allows a
saving of 13 min.

5 Development of Health at Home

Given the need to have a central and accessible application to various health care
professionals which interacts in the future with the HC information system web
based development was chosen. The web application called “Health at Home”
was developed using open source technologies namely PHP language, Apache
Web Server and MySQL database management system which currently belongs to
Oracle. Nonetheless the back-end database of the application can be moved to other
database management systems like PostgreSQL if needed.
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Assign procedures

Add patient
Assign
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Edit patient L, +” <<Extend>>

extension points
Assign procedures
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Create routes
User .
Add medical procedure <elncludess™ i
Delete medical procedure

Patient
Fig. 7 Use case diagram of the web application

5.1 Functionalities

The web application “Health at Home” will provide the features presented in the
use case diagram on Fig. 7.

The user in the diagram of Fig. 7 represents a generic health professional respon-
sible for the management of patients and routes. In “add patients” functionality, data
like name, address, whether or not it is a priority patient and procedure/treatment to
perform are added. The visits route creation presupposes the choice of patients for
whom the health professional wants to create the route and has also the feature of
sending SMS messages to patients to inform them of the date and time of visit.

5.2 Presentation of Health at Home

The web application — Health at Home — has three areas of work, one devoted to
the patient data management, another one on the management of health procedures
(treatments) of patients and a third one to create the routes of home visits, as can see
in Fig. 8.

Figure 8 shows the data edition of the fictitious patient José Correia a priority
patient. The developed application was for an HC situated in Coimbra, Portugal and
that is why the interface is in Portuguese.
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SAUDE A0 DOMmICI

indcro * SESTAOQ DOENTES GESTAD PROCEDIMENTOS * GESTAD ROTAS *

JOSE CORREIA Y ————

Pesquisar Doente

Listar Doente

Nome: José Correla

Adicionar Doente
Morada: Rua Antdnio Augusto G Activar Doente
Prioritario: SIM 3
Procedimento: Feridal =
Activo: SIM

Fig. 8 Health at Home (in portuguese — Satide ao Domicilio)

5.3 Experimentation

To demonstrate the use of the web application — Health at Home — the example from
Fig. 1 with 8 patients is shown.

A Table 4 shows the names, addresses, types of patients and health procedures.
The patient data is fictitious, although the addresses correspond to actual locations
in the city of Coimbra (there is no relation to potential patients in those locations).
The only reason to use real addresses is to get the time of travel between locations,
which forms the basis for calculations in order to present a demonstration of the
implemented algorithm.

The first step is user authentication. Once validated, if you need to create a new
patient you may enter the patient management area, otherwise you can go directly
to the routes management area.

It is in this area that professional health teams routes are optimized. For this
the user must select all patients he wants to add to simulation (in the case of this
particular example are the eight patients from Table 4) and run the algorithm, as
shown in Fig. 9.

In order to facilitate identification of the type of patient “Health at Home”
application marks the priority patients with a red bullet and the non-priority patients
with a green bullet.

Figures 10 and 11 show the obtained result in a list and map visualizations.

In this case the obtained result is only one route, HC — 5 - 6 - 1 — 7 —
3 -8 = 2 — 4 — HC, which appears in map visualization (Fig. 11) in alphabetic
order.

The solutions presented include the time of travel between patients’ homes
(arcs) and time spent at the patients’ homes (nodes). Although it could have
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J José Correia

) Maria Correia
) Rui Fernandes
) Fatima Neves
J Ana Costa

) Fernando Esteves

1
e®ee® @ o

) Celeste Marques

| Mario Gouveia

Fig. 9 Health at Home — patient selection for route creation

Trajecto da 1 2 equipa:

Saida do Centro de Salde:

5 - Rua Caminho das Vinhas 12

6 - Rua da Escola, 37, 3040-563 Coimbra

1 - Rua Anténio Augusto Gongalves, 3041-901 Coimbra
7 - Avenida Cénego Urbano Duarte 92, 3030 Coimbra
3 - Rua Coutinhos 26, 3000 Coimbra

8 - Rua Augusto Filipe Simdes, 3000 Coimbra

2 - Avenida Emidio Navarro 37, 3000-150 Coimbra

4 - Estrada da Guarda Inglesa, N.? 17, 3040-193 Coimbra
Regresso ao Centro de Salde!

O TEMPO FINAL DESTA SOLUGAO E: 02:05:00

Fig. 10 Health at Home - list visualization of proposed route

considered different times for demonstration purpose it was considered that the
medical teams spend 10 min at a patient’s home to perform the respective health
procedure (treatment).

6 Final Remarks

The proposed application optimizes the routes of professional health teams’ visits,
which has the effect of reducing fuel costs and improving the efficiency of the
system.

The innovation of this application, which is not found in the literature review, is to
optimize the routes of visits of professional health teams accordingly to the asepsis
degree of patients, allowing their differentiation into priority and non-priority, thus
helping avoiding the transmission of infections between patients.
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Fig. 11 Health at Home — map visualization of proposed route

Future research will focus on identifying additional constraints, such as the times
when the patients would prefer to be visited or preference of patients for certain
health professionals [3] in order to improve the satisfaction of patients and health
professionals in the service.

Another situation not addressed, but also unsolicited, was the issue of optimizing
the composition of teams of health professionals referenced in other similar works
[3, 10] and that may be the subject of study in future developments. The currently
implemented algorithm sees teams as single entities regardless of the number of
elements that compose them.

The next step will be to create a schedule that allows the application to list
patients who need to be visited on a particular day.

Notwithstanding the work developed and presented in this article has been carried
out on the basis of HC in an urban area (city of Coimbra), which can be generalized
to any other geographic location.
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Cell-Free Layer Measurements in a Network
with Bifurcating Microchannels Using a Global
Approach

David Bento, Diana Pinho, Ana 1. Pereira, and Rui Lima

Abstract One of the most interesting hemodynamic phenomenon observed in
microchannels is the existence of a marginal cell-free layer (CFL) at regions
adjacent to the wall. This is a well known phenomenon that occurs in simple glass
capillaries and in vivo microvessels, but has never been investigated in detail in
biomedical microdevices containing complex geometries. In the present chapter, in
vitro blood flowing through bifurcating microchannels was studied, with the aim of
characterizing the cell-free layer (CFL). For that three different videos with different
hematocrit and flow rates were considered. All images were obtained by means of a
high-speed video microscopy system and then processed in MatLab using the Image
Processing toolbox. The numerical data was obtained automatically and analyzed by
optimization techniques using the genetic algorithm approach. The results suggest
that the CFL were formed in a similar way at the upper and lower regions in all
bifurcations.

1 Introduction

Blood is a complex biofluid, composed mainly of red blood cells (RBCs) and
plasma, which contains a massive amount of information about several physio-
logical and pathologic events happening throughout the human body. Hence, in
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vitro blood studies in microfluidic devices have been intensively performed in order
to obtain a better understanding on the blood flow behavior at microscale levels
[14]. A hemodynamic phenomenon observed in in vitro studies has shown that in
microchannels both hematocrit (Hct) and apparent blood viscosity decrease as the
tube diameter is reduced [10, 14, 21]. This phenomenon mainly causes the formation
of a cell-free layer (CFL) around the wall, which is related with the tendency of
the RBCs to migrate toward the center of the microchannel [4]. Recently several
studies showed strong evidence that the formation of the CFL is affected by both
microchannel geometry [13, 17, 20, 22] and physiological conditions of the working
fluid [7, 8].

Although there have been several studies on the measurement of CFL thickness
in simple geometries [12, 16], according to our knowledge there have been few
studies on the measurement of the CFL in complex geometries, such as a network
containing multiple bifurcations and confluences [2, 3]. To study the behavior of the
CFL along complex geometries, image analysis plays an important role [18, 19].

Image analysis processing is a huge area which provides a large number of viable
applications. Segmentation is one of the most important elements in automated
image analysis, mainly because at this step the objects or other entities of interest
are extracted from the original image for subsequent processing, such as description
and recognition [1]. A variety of techniques can be applied: simple methods
as thresholding, or complex methods such as edge/boundary detection or region
growing. The literature contains hundreds of segmentation techniques [6], but there
is no single method that can be considered good enough for all kinds of images. In
this work an automatic method able to measure the thickness of the CFL in different
areas of the microchannel was developed. The automatic method consists in the
application of preprocessing filters, to remove and smooth the noise, followed by
the sum of the difference and multiplication of consecutive frames.

As well as image processing, optimization has been showing its important
role in this area of study such as in microcirculation and its phenomena. In the
recent years, the population based algorithms have become increasingly robust and
easy to use [9]. These algorithms are based in the Darwin theory of evolution,
performing a search for best solution among a population that evolves through
several generations. The genetic algorithm (GA), introduced by John Holland [11]
and popularized by his student David Goldberg in the late 1980s [9], is a search
method based on population genetics, inspired by the Darwinian principle of natural
selection and genetic replication, in which the principle of selection favors the most
fit individual with longer life and therefore more likely to reproduce. Additionally
individuals with more offsprings have more opportunity to perpetuate their genetic
to the subsequent generations [9, 11]. GAs are able to search and find the global
minimum, but have a high computational cost, as result of the need of evaluating
the total population at each iteration.

Generally the GAs use three main types of rules at each step to create the
next generation from the current population. Briefly, it selects individuals from
the current population (named as parents), that contribute with children to the
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population at the next generation. Children could be generated by combination of
two parents (crossover) or by random changes in the individual parents (mutation).

The GA differs from classical optimization algorithms in two main ways. The
classical optimization algorithms generate either a population of points at each
iteration, and the best point in the population approaches an optimal solution, or
a single point at each iteration, and the sequence of points approaches an optimal
solution. However the GA selects the next population by computation which uses
random number generators instead of selecting the next point in the sequence by a
deterministic computation as in the classical optimization algorithms [15].

In this work we used the genetic algorithm included in the Global Optimization
toolbox from Matlab and applied it to the experimental data obtained by an
automatic method developed to measure the CFL in microchannels.

The main purpose of this chapter is not only to measure the CFL in a network
with bifurcating microchannels at different working fluids, by means of an auto-
matic method developed in MatLab [2, 3], but also to characterize the CFL along
the network using global optimization techniques.

This chapter is organized as follows. Section 2 presents the materials used in this
work and the methods that were applied in this study, in particular the experimental
set-up, the working fluids, the image processing techniques and the optimization
method. Section 3 presents the numerical results and some discussion. The last
section presents some conclusions and future work.

2 Materials and Methods

2.1 Experimental Set-Up

The high-speed video microscopy system used in this study consists of an inverted
microscope (IX71; Olympus) combined with a high-speed camera (i-SPEED LT).
The microchannel was placed on the stage of the inverted microscope and, by using
asyringe pump (PHD ULTRA), a pressure-driven flow was kept constant (cf. Fig. 1).

The series of microscope images were captured with a resolution of 600 x 800
pixels. All the images were recorded at the center plane of the microchannels at a
rate of 200 frames/second and were transferred to the computer and then evaluated
using image analysis techniques.

2.2 Working Fluids and Microchannel Geometry

The blood samples were collected from a healthy adult sheep, and ethylenedi-
aminetetraacetic acid (EDTA) was added to prevent coagulation. The red blood cells
(RBCs) were separated from the blood by centrifugation and washed twice with
physiological saline (PS). The washed RBCs were suspended in Dextran 40 (Dx 40)
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Fig. 1 High-speed video microscopy system used in this study

Fig. 2 The geometry of the network and the regions where the CFL was measured

to make up the required RBCs concentration by volume — hematocrit. In this study
the Het of 5% and 10 % were used. All blood samples were stored hermetically at
4 °C until the experiment was performed.

The microchannels fabricated for the proposed study have been produced in
polydimensiloxane (PDMS) by a soft-lithography technique. The geometry used
is a network of microchannels, containing several bifurcations and confluences.
Figure 2 illustrates the configuration of the network and the regions where the CFL
was measured.

The region U; corresponds to the upper cell-free layer, fori = 1,...,10 and L;
the lower cell-free layer, fori = 1,..., 10.

The flow rate used for the recorded videos was 1000 nl/min for the both levels of
Hct (5 % and 10 %) and 500 nl/min only for the Hct of 10 %.
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Fig. 3 The original image of blood sample flowing in a bifurcating microchannel

2.3 Image Analysis

Figure 3 shows an example of the image sequences studied in this work, which
were processed using the Image Processing toolbox, available in MatLab [6]. An
automatic method to measure the CFL was developed and tested.

The method consists in the combination of the binarization of the sum of the
difference between the consecutive frames and the sum of the multiplication of the
image sequence. The general steps of the method are:

* Preprocess the image to smooth and eliminate the artifacts;

¢ Obtain the difference between consecutive frames and sum;

* Binarize the sum image;

e Apply the multiplication of consecutive frames from original image sequence
and sum;

e Multiply the last image with the sum of the differences image;

* Select the area to obtain the required data.

Firstly a median filter with a 3 x 3 pixel mask was applied to each frame to reduce
the noise, and then the difference of the consecutive frames was computed and those
differences are summed. An image that represents the sum of the differences of all
images was obtained. The resulting image is binarized, yielding an region in which
black is the region of highest intensity of RBCs, as is possible to observe in Fig. 4.

In the second step, the original image sequence was analyzed once again to
obtained an image that represents the sum of the multiplication of the frames, where
the channel is the white region. As the third step, those images were multiplied by
the images obtained in the previous step Fig.4. Figure 5 shows the result image
where the white region is the region of cell-free layer.
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Fig. 4 Result image of the sum of the differences

Fig. 5 Result image that shows in white boundary of CFL

Finally, the region of interest was selected and the upper and lower CFLs were
automatically measured.

2.4 Mathematical Model

The main objective is to compare the behavior of the cell-free layer in fluids with
different Hcts and with difference flow rates. To accomplish that the nonlinear least
squares theory was used.

In each region U;, fori = 1,...,10, and L;, for i = 1,..., 10, the nonlinear
optimization problem defined bellow was considered

Ng
min f(y) = D (M — gy x0))?
o (1)

st gy, x) >0Vk=1,...,Ng
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where (M, x;), for k = 1,...,Ng are the CFL measurements of the region R
(defined as U; and L;, for i = 1,...,10) and n is the number of the variables y
of each function g;. The functions g, for h = 1, ..., 3, are defined as follows

g1(y,x) = y1x? + yox + y3,
&2y, x) = yix + y2, )
g3(y, x) = sin(y1x) + cos(y2x) + y3.

The functions g;, g» and g3 were proposed in previous works presented in
[17-19].

2.5 Global Optimization Method: Genetic Algorithm

In the present work we used the genetic algorithm (GA), which is an optimization
technique based on the evolution principles. The genetic algorithm is a method for
solving both constrained and unconstrained optimization problems that is based on
natural selection, the process that drives biological evolution. The genetic algorithm
repeatedly modifies a population of individual solutions. At each step, the genetic
algorithm selects individuals at random from the current population to be “parents”
and uses them to produce the “children” for the next generation. Over successive
generations, the population “evolves” toward an optimal solution.

The evolution can be obtained by a crossover process, where the genes of the
best individuals are crossed with genes from other individuals which also have good
performance. The selection of the genes is done randomly. The GA also applies
the concept of mutation, thus improving the optimization process by, randomly,
introduction values that were not present in the previous generations.

The GA can be applied to solve a variety of optimization problems that are
not well suited for standard optimization algorithms, including problems in which
the objective function is discontinuous, non-differentiable, stochastic, or highly
nonlinear. The GA can address problems of mixed integer programming, where
some components are restricted to be integer-valued [9].

The Genetic Algorithms, are heuristic procedures, and does not guarantee that
the global minimum is found, however it is accepted that the final solution is close
to the global minimum, after a sufficient number of iterations [5].

The following outline summarizes how the genetic algorithm works:

1. The algorithm begins by creating a random initial population.

2. A sequence of populations is created by using the individuals in the current
generation to create the next population. For generation the new population, the
algorithm performs the following steps:

* Scores each member of the current population by computing its fitness value.
* Scales the raw fitness scores to convert them into a more usable range of
values.
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* Randomly select members, called parents.

* Some of the individuals in the current population that have higher fitness are
chosen as elite. These elite individuals are passed to the next population.

* Produces children from the parents. Children are produced either by making
random changes to a single parent — mutation — or by combining the vector
entries of a pair of parents — crossover.

» Replaces the current population with the children and the elite individuals.

3. The algorithm stops when one of the stopping criteria is met.

The iterative procedure terminates when there is no significant difference
between two successive populations, i.e., the corresponding difference is smaller
than €.

3 Results and Discussion

The numerical results were obtained using a Intel(R) Core (TM) i3 CPU
M330@2.13GHz with 8.00GB of RAM. The captured videos were analyzed
and the numerical data was taken in the regions already defined in Fig.2. Three
different flow condition were studied:

¢ fluid with a flow rate 500 nl/min and with 10 % of Hct,
¢ fluid with a flow rate 1000 nl/min and with 10 % of Hct, and
¢ fluid with a flow rate 1000 nl/min and with 5 % of Hct.

The following tables present the obtained numerical results using the genetic
algorithm to solve the optimization problem (1). Since the genetic algorithm is a
stochastic method, each problem was solved 30 times, considering different initial-
izations with random populations. Table 1 presents the regions where problem (1)
was solved, the average of the optimum value and the minimum value obtained in
the 30 runs.

The results from Table 1 show that the best curve fit is g3, since the minimum
value appears more often for this function (14 out of 20 regions). The function g; has
obtained the best value in the region U,, Us and L. In some regions, namely L, L3
and Lg, it was not possible to conclude anything about the best fit, since the average
of the optimum value was obtained with a given function but the minimum of all
runs was obtained with another curve fitting. Nevertheless, the difference between
the results obtained by the two functions, g; and g3 was not significative.

Table 2 presents the results obtained using the GA for the fluid with a flow rate
of 1000 nl/min and Hct of 5 %. With these conditions the function that better fits the
experimental data was g3. However there were some regions as Uj, U, U4, Ug and
U,y where it is not possible to conclude about the best fit.

It is worth mentioning that in all lower regions the best fit is the g3 function and
the function g, presents always the worst results.
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Table 1 Numerical results obtained for 10 % of Hct at the flow rate of 500 nl/min

Upper cell-free layer Lower cell-free layer
Region | Function | Average Minimum Region | Function | Average Minimum
U, g1 1.629E+03 | 1.118E+03 | L, 81 1.293E+03 | 8.738E+02
J) 3.809E+07 | 2.504E+04 J) 6.220E+07 | 1.103E+04
) 1.190E 4 03| 9.235E + 02 23 1.005E + 03 | 8.050E + 02
U, g1 2.453E + 03| 2.179E + 03 | L, 81 2.087E+03 | 1.503E+03
o 3.572E+07 | 1.493E+05 & 2.534E+08 | 1.411E+05
3 2.695E+03 | 2.210E+03 I 2.058E + 03 | 1.570E+03
Us g1 1.387E+03 | 9.423E + 02| L; 81 2.305E + 03| 2.236E + 03
o 1.229E+08 | 1.268E+03 & 1.956E+07 | 4.110E+03
23 1.184E + 03| 1.001E+03 83 2.786E+03 | 1.967E+03
U, g1 2.309E+03 | 1.216E+03 | Ly g1 1.367E+03 | 1.300E+03
o 1.151E+07 | 6.819E+04 & 1.251E+06 | 4.277E+03
23 1.087E + 03 | 8.464E + 02 23 1.054E + 03 | 8.864E + 02
Us g1 1.183E+03 | 1.007E+03 | Ls 81 1.884E+03 | 1.588E+03
o 1.451E+07 | 2.775E+03 & 8.912E+05 |3.241E+03
) 1.247E 4 00| 9.906E + 02 23 1.461E + 03| 1.338E + 03
Us g1 8.272E+02 | 7.151E+02 | Lg 81 1.262E+03 | 1.135E+03
o 1.987E+06 | 6.934E+02 J) 1.656E+07 | 8.391E+03
) 6.088E + 02 | 5.226E + 02 23 9.821E + 02| 7.883E + 02
U, g1 1.686E+03 | 1.107E+03 | L, g1 2.435E+03 | 2.312E+03
o 3.380E+07 | 1.427E+03 & 3.886E+07 | 6.669E+04
23 1.274E + 03| 9.526E + 02 23 1.994E + 03| 1.524E + 03
Us g1 5.352E+03 | 4.230E+03 | Lg g1 8.464E+02 | 5.691E+02
o 8.379E+07 | 1.056E+05 & 2.748E+07 | 1.738E+05
) 4.541E + 03 | 3.803E + 03 83 7.490E + 02 | 6.324E+02
Uy g1 2.361E+03 | 1.979E+03 | L, 81 2.199E+03 | 1.326E+03
J ) 3.153E+07 | 8.790E+03 2 1.865E+08 | 1.512E+03
) 1.959E 4 03| 1.606E + 03 23 1.598E + 03| 1.264E + 03
Uiy 81 2.329E+03 | 1.680E+03 | Ly g1 1.116E + 03 | 8 477E + 02
o 7.132E+06 | 3.544E+03 J) 2.708E+08 | 3.206E+05
23 1.829E 4 03| 1.219E + 03 g3 1.946E+03 | 1.320E+03

Table 3 presents the data obtained with a genetic algorithm for the fluid with a
flow rate of 1000 nl/min and 10 % of Hct.

Overall, the best results were for the fluid having a flow rate of 1000 nl/min and
10 % of Hct, as all tested functions present the minimum results when compared
with the values obtained in Tables 1 and 2.

Additionally, the function g3 is the one that presents the best fit to the data. In
contrast the function g is the one that presents the worst results. In the region L; it
was the function g; that has shown the best fit. In the regions U,, Us, Us, U7, Us
and Uy it was not possible to conclude anything about the best fitting.
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Table 2 Numerical results obtained for 5 % of Hct at the flow rate of 1000 nl/min

Region
U,

U,

Us

U,

Us

Us

U;

Us

Uy

Upper cell-free layer

Function | Average

81
82
&3
81
82
83
81
82
23
81
82
83
81
82
g3
81
82
g3
81
82
23
81
82
83
81
82
&3
81
82
g3

2.247E+03
3.483E+07
1.985E+03
6.018E+02
2.119E+07
5.016E + 02
1.458E+03
7.733E+07
9.168E + 02
4.254E+02
6.115E+06
3.937E + 02
1.206E+03
1.110E+07
1.045E + 03
1.406E+03
1.866E+06
9.992E + 02
8.085E+02
1.768E+07
7.813E + 02
1.480E + 03
1.593E+07
1.779E+03
2.859E + 03
3.768E+07
3.012E+03
7.451E+03
2.365E+07
6.359E + 03

Minimum
1.735E+03
2.798E+03
1.750E 4+ 03
4.062E+02
3.224E+03
4.391E + 02
7.895E+02
1.043E+04
7.541E + 02
3.189E+02
1.309E+04
3.354F + 02
9.817E+02
6.293E+03
8.344E + 02
9.314E+02
2.345E+03
7.712E + 02
6.668E+02
3.206E+04
6.314E + 02
1.331E + 03
2.499E+03
1.204E+03
2.647E + 03
3.003E+04
2.601E+03
6.493E+03
1.626E+04
5.190E + 03

Region
L

L

Ly

Ls

L

Ly

Lg

Ly

Ly

Lower cell-free layer

Function | Average

g1 2.243E+03
J) 3.584E+07
) 1.969E + 03
g1 1.379E+04
o 4.980E+07
) 1.202E + 04
g1 3.182E+03
o 1.189E+07
23 2.486E + 03
g1 1.617E+03
o 1.420E+06
) 1.375E + 03
g1 4.840E+02
o 1.238E+05
23 3.848E + 02
g1 2.508E+03
o 4.331E+06
23 1.732E + 03
g1 3.112E+03
o 3.775E+07
) 2.699E + 03
g1 3.232E+03
o 3.653E+07
) 3.132E + 03
g1 4.070E+03
2 2.127E+08
23 3.400E + 03
81 8.249E+02
o 1.578E+07
) 5.229E + 02
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Minimum
2.123E+03
3.061E+03
1.488E + 03
6.316E+03
2.276E+05
3.577E + 03
2.822E+03
2.367E+03
2.011E + 03
1.394E+03
1.367E+03
1.001E + 03
4.454E+02
4.012E+02
3.130E + 02
1.861E+03
3.067E+03
1.507E + 03
2.834E+03
1.219E+04
2.314E + 03
2.888E+03
1.357E+04
2.834E + 03
3.251E+03
5.987E+04
2.742E + 03
4.447E+02
6.985E+03
4.270E + 02

When comparing the three fluids one possible conclusion is that in the lower
regions the best curve fit is based on the sum of trigonometric functions.

Regarding to the results presented in the Table 4 resumes the previous tables by
presenting the best fit for each combination of region and fluid. Notations Fg 500,
F's 1000 and Fjg 1000 are use to represent fluid with flow rate of 1000 nl/min and 10 %
of Hct, fluid with flow rate of 500 nl/min and 10 % and fluid with flow rate of

1000 nl/min and 5 % of Hct, respectively.

Overall, it is possible to conclude that at lower regions the CFL behaves in similar
way, i.e., as a sum of trigonometric functions.
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Table 3 Numerical results obtained for 10 % of Hct at the flow rate of 1000 nl/min

Upper-free layer Lower cell-free layer
Region | Function | Average Minimum Region | Function | Average Minimum
U, g1 1.237E+03 | 9.064E+02 | L, g1 1.999E+03 | 1.228E+03
o 1.672E+07 | 5.643E+03 o 6.973E+07 | 3.581E+03
) 1.058E 4 03| 7.780E + 02 23 1.430E 4 03| 1.089E + 03
U, g1 5.388E+02 | 3.685E+02 | L, g1 5.884E+02 | 4.500E+02
o 3.030E+07 | 1.465E+04 o 1.280E+07 | 4.957E+02
3 5.264E + 02| 4.106E + 02 23 4.871E + 02 | 3.968E + 02
Us g1 6.419E+02 | 4.153E+02 | L; g1 1.195E+03 | 7.888E+02
o 2.440E+07 | 3.165E+04 o 1.110E+07 | 1.006E+03
23 5.830E + 02 | 4.809E + 02 23 9.081E + 02| 6.591E + 02
U, g1 6.632E+02 | 3.059E+02 | L, g1 6.509E+03 | 5.031E+03
o 5.379E+06 | 1.211E+04 o 5.467E+06 | 1.325E+04
2 3.836E + 02| 3.233E + 02 23 5.411E + 03 | 2.868E + 03
Us g1 1.181E+03 | 1.037E+03 | Ls g1 8.213E+02 | 6.233E+02
o 2.315E+07 | 3.016E+03 o 1.480E+06 | 8.988E+02
) 1.075E 4 03| 8.056E + 02 23 7.997E + 02| 5.619E + 02
Us g1 1.701E+03 | 1.515E+03 | L¢ g1 1.003E+03 | 9.235E+02
o 8.977E+06 | 2.961E+03 J) 6.573E+06 | 2.848E+03
) 1.689E 4 03| 1.287E + 03 23 9.809E + 02 | 8.705E + 02
U, g1 7.789E+02 | 4.139E+02 | L; g1 2.491E + 03 | 2.189E + 03
o 2.122E+07 | 1.340E+04 o 2.028E+08 | 8.873E+03
23 5.957E+02 | 4.738E + 02 g3 2.667E+03 | 2.211E+03
Us g1 3.338E + 03| 2.935E + 03 | Lg 81 6.292E+03 | 2.258E+03
o 7.077E+07 | 8.235E+04 o 5.678E+07 | 3.609E+03
3 3.424E+03 | 2.709E+03 ) 2.119E + 03 | 1.740E + 03
Uy g1 9.113E+02 | 5.342E+02 | Lo g1 1.789E+03 | 1.323E+03
o 1.027E+08 | 1.593E+04 o 2.086E+08 | 3.922E+04
g3 7.879E + 02 | 5.786E + 02 23 1.432E 4 03| 1.221E + 03
Uio g1 5A416E+02 | 3.296E+02 | Ly g1 5.578E+02 | 4.096E+02
o 6.169E+06 | 5.394E+02 o 1.206E+07 | 6.349E+03
) 4.249E + 02| 2.643E + 02 23 5.033E + 02 | 3.368E + 02

Another interesting result is that the regions Us and Us have similar behavior
when compared with Ls and Lg. This behavior happens in the smaller microchannels
and as a result we may conclude that the width of the channels may influence the
quality of the images and consequently the image analysis results.

Overall our results show that the CFLs have a similar behavior in all bifurcations.
However, for the upper regions it is not so clear to conclude about the best fit
function.

More investigation is required in this area and in the mean time, we plan to
measure the CFL by using a manual tracking method and compare the results with
the automatic method applied in this study.
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Table 4 Best fit for all considered fluids

Upper-free layer Lower cell-free layer
Region F10.500 F’s 1000 F10.1000 Region F10.500 F’s 1000 F10.1000
U, 83 - 83 L 83 83 83
U, 81 - - L, - 83 83
Us 81 83 - Ly - 83 83
Uy 83 - - Ly 83 83 83
Us 83 83 83 Ls 83 83 83
Us 83 83 83 Lg 83 83 83
Us 83 83 - Ly 83 83 81
Us 83 - - Lg - 83 83
Ug 83 - - Ly 83 83 83
Uio 83 83 83 Lyo 81 83 83

4 Conclusions and Future Work

In this study, we presented an automatic image processing method to obtain
automatically the CFL measurements in a complex microchannel with bifurcation
and confluence. The CFL boundary was fit using three different functions and a
genetic algorithm was used to solve the constrained optimization problem. The best
fit was obtained using the function g3, i.e. a sum of trigonometric functions. As
future work, we will test more fluids with different properties and different functions
to fit the CFL measurements and compare the automatic results obtained in this work
with a manual tracking method.
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Computational Comparison of Algorithms
for a Generalization of the Node-Weighted
Steiner Tree and Forest Problems

Raul Bras and J. Orestes Cerdeira

Abstract Habitat fragmentation is a serious threat for the sustainability of species.
Thus, the identification of effective linkages to connect valuable ecological units is
an important issue in conservation biology. The design of effective linkages should
take into account that areas which are adequately permeable for some species’
dispersal may act as obstructions for other species. The determination of minimum
cost effective linkages is a generalization of both node-weighted Steiner tree and
node-weighted Steiner forest problems. We compare the performance of different
procedures for this problem using large real and simulated instances.

1 Introduction

In conservation biology, habitat fragmentation is considered a key driver of bio-
diversity loss [4, 10]. To mitigate the impacts of fragmentation on biodiversity,
connectivity between otherwise isolated populations should be promoted [15]. To
effectively promote connectivity, there is need for procedures to identify linkages
(i.e., areas to establish the connection) between habitats of each of several species
(i) that take into account that linkage areas for a species might be barriers for
others, and (ii) that are cost-efficient, since placing linkage areas under conservation
compete with other land uses.

The problem can be formulated as follows. Consider a graph G = (V, E) where
the nodes of V identify the cells (usually grid squares) in which the study region has
been divided, and which are considered suitable for conservation actions. The edges
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of E define adjacencies between pairs of cells (usually two cells are adjacent if they
have a common border).

For each species (or group of “similar” species, i.e., sharing the same habitats and
suitable areas to disperse) k, k = 1,...,m,let T* be the set of nodes representing the
habitats of species k (terminals of type k), and V* the set of nodes corresponding to
cells which can be used as linkage passages for species k. We assume that T% C V¥,
and call k-barriers to the cells of V \ V*.

A feasible solution of the problem is a subset of nodes S C V that, for k =
1,...,m, includes a path that only uses nodes of V¥ between every pair of nodes
in T,

Suppose there is a (non negative) cost associated to every node, quantifying the
charge of allocating the corresponding cell to conservation purposes. The problem,
which we will call multi-type linkage problem (MTLinkP for short), seeks for a
minimum cost feasible solution (i.e., which minimizes the sum of the costs of the
nodes).

MTLinkP, that was independently considered by Lai et al. [13] and by Alagador
et al. [1], is a generalization of the node-weighted Steiner tree [20] and of the node-
weighted Steiner forest [8] problems. If V = V¥ and m = 1 (i.e., only one species,
no barriers) MTLinkP is the node-weighted Steiner tree problem. If V = V¥, fork =
I,---,m > 1 (i.e., different species, no barriers) MTLinkP is the node-weighted
Steiner forest problem.

Laietal. [13] and Alagador et al. [1] proposed a heuristic procedure for MTLinkP
by solving a sequence of node-weighted Steiner tree problems, one for each type &,
and outcome the union of these m Steiner solutions. We call this approach type by
type. In the same paper Lai et al. [13] presented a heuristic for MTLinkP that is
a generalization of the primal-dual algorithm of Demaine et al. [5] for the node-
weighted Steiner forest problem, and report computational results on synthetic
instances of small size (up to 15x15 grids) and m up to 5, and a real instance
consisting of two species, 4514 cells and up to 17 terminals.

Brés et al. [2] developed a computer application, MulTyLink, implementing a
version of the type by type algorithm and a GRASP type heuristic. This software
was announced in Brés et al. [3], along with a brief description of the two algorithms
used by the program.

In this paper we compare the performances of the primal-dual algorithm of Lai
et al. [13] and the two heuristics in MulTyLink on real and simulated data sets.
We start giving in Sect. 2 a multiflow formulation for MTLinkP. In Sect. 3 we give
some details on the two heuristics of MulTyLink, and summarize the primal-dual
heuristic of Lai et al. [13]. In Sect. 4 we report results of computational experiments
to compare running times and quality of the solutions produced with the three
heuristics. We finish with some remarks in Sect. 5.
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2 Multiflow Formulation

Flow formulations have been used to model Steiner tree problems (see, e.g., Wong
[21] for the standard edge-weighted Steiner tree problem; Segev [18] for a special
case of non negative costs on the edges and negative costs on the nodes and
Magnanti and Raghavan [14] for general network design problems with connectivity
requirements including the edge-weighted Steiner forest problem).

Here we give a multi-commodity flow based formulation of MTLinkP.

Let w, > 0 be a cost associated to each node v of graph G and let w, = 0 if
v € T*, for some k = 1,--- ,m. Denote by A the set of arcs obtained by assigning
two arcs of opposite directions to every edge of G.

Fork = 1,2....m, let 4,4, .1 , with p = [T*],
taken by some arbitrary order. Node t’l‘ will supply every other node in T* (the
demanding nodes) with one unit of commodity. Variables f(u y) On arcs indicate the

amount of commodity k (amount of flow of type k) along arc (u, v) with origin t’l‘
and destination tff , 1 = 2,...,pr. Connectivity of the nodes of T* in solutions is
ensured by the mass balance constraints which state that the amount of commodity
k out of a node v minus the commodity k into v must equal the supply/demand
amount.

In addition to flow variables f (0.0)’ binary variables x, on nodes will be used to
indicate whether node v is included (x, = 1) or not (x, = 0) in the solution. With
these variables MTLinkP can be formulated as follows.

minZwva (1)
veV
subject to:
Z ];;( :1’ If:l’-..’m’ (2)
(1sv) l:2’...’pk
{veV":(rjl‘,v)eA}
ve T\ ()
Yo Sy =1 k=1m, 3)
{uevk:(uv)eA} =2, , Dk
v e VE\ {Th)
Z f(UM) Z f(uv) k=1, ,m, “)
{uevk:(v.u)eA} {uevk:(uv)eA} i=2,--- , Pk
veVE\{#.
Z ﬁuv)— k=1,...,m, (5)
{uevk:(uv)eA} i=2,--- , Pk
x, € {0, 1}, veV (6)

faw =0, wveVs, (wv)eA k=1,...m i=2-- p. (7)
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The mass balance equations (2), (3) and (4) dictate that one unit of flow of type k
will be routed between the supply node # and each demanding node of 7%\ {#}}. The
“capacity” constraints (5) ensure there is no flow along the arcs entering nodes that
are not included in the solution. Constraints (2), (3), (4), (5), (6) and (7) guarantee
the existence of a directed path between t’f and every other node of T*, thus ensuring
that all nodes of T* will be in the same connected component of the solution.

We will use the compact formulation (1), (2), (3), (4), (5), (6) and (7) above
to derive, from a mixed integer programming solver, MTLinkP optimal values for
small size instances, to assess the quality of the solutions produced by the heuristic
algorithms of Sect. 3.

3 Heuristics

3.1 Type by Type Heuristic

Given a permutation iy, iy, ..., I, of (integer) types 1,2,...m, the type by type
heuristic computes in step k a Steiner solution with respect to < V¥ >, the subgraph
of G induced by V¥, updates the costs of nodes v of that solution letting w, = 0,
and proceeds to the next step k + 1. The final MTLinkP solution results from
turning minimal feasible (with respect to inclusion) the union of nodes of the Steiner
solutions obtained in each step.

The process can be repeated for a number of different permutations of integers
1,2,...,m, and the best solution is returned (see Fig. 1).

To solve the node-weighted Steiner tree problem in each step, we use the fol-
lowing straightforward modification of the well known distance network heuristic
suggested by Kou et al. [12] for the edge-weighted Steiner tree. If H is a graph

Sol — 0

. w(S()l) «— oo

& «— subset of permutations of {1,..., m}.
. ForallPe &

B =

a X0
b. Forall k€ P
i. Build graph < '* > with weights: 0 if v € X, w, otherwise.
ii. X* < Steiner solution w.r.t. < V¥ > and T*
jii. X —xuxk
c. Turn X minimal. For each v € X \ U, T¥ (randomly ordered) remove v from X if
X\ {v} is MTLinkP feasible.
d. w(X) — X,exwy
e. If w(X) < w(Sol) then
i. Sol —X
ii. w(Sol) — w(X)

5. Return Sol.

Fig. 1 TbT heuristic
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with costs w on the nodes and terminal set S, we define the distance network D(S)
which is the complete graph with S as its node set, and where the weight of every
edge (u,v) is the cost of the minimum cost path connecting terminal u to v on H.
Note that determining a node-weighted shortest path on undirected graph H between
nodes u and v, with w, = w,, reduces to finding an edge-weighted shortest path
from u to v in the digraph obtained assigning opposite directions to every edge of
H, and defining the cost of every arc (i, j) as being equal to w;.

A minimum spanning tree of D(S) is determined and a (node-weighted) Steiner
solution N is defined as the set of the nodes of the shortest paths corresponding to
the edges of the spanning tree.

In the final step the nodes of N are considered randomly and node j is removed
from N if all nodes of S belong to the same connected component of the subgraph
of H induced by N \ {}.

We use the above modification of the distance network heuristic since it is
fast and does not use large data structures. Procedures such as Klein and Ravi
[11] heuristic, based on the Rayward-Smith [16] algorithm, that perform well for
node-weighted Steiner problems, would be impractical for the large size instances
of MTLinkP we want to handle. Klein and Ravi [11] heuristic needs to compute
the minimum cost paths between all pairs of nodes, which is time consuming and
requires large amounts of memory.

Lai et al. [13] version of this heuristic uses the Dreyfus-Wagner (DW) algorithm
[7] to solve the Steiner problem at each step. DW is an exact dynamic programming
algorithm that runs in exponential time, not suitable to solve the instances that we
present in this paper.

3.2 Primal Dual Heuristic

Lai et al. [13] gave a modified version of the Demaine et al. [5] heuristic for
node-weighted Steiner forest problems. The heuristic operates on the following cut-
covering formulation of MTLinkP. Minimize (1) subject to (6), and

Y owzse, SEV ®)

k=1,....m
velk(s)

where f%(S) = 1,if @ # SN TF # T (i.e., if S includes at least one terminal of
T*, but not all), and f¥(S) = 0, otherwise, and I'*(S) is the set of nodes v € V¥ \ S
adjacent to at least one node in S.

The dual of the linear relaxation of (1), (6), (8) is:

max Y Y fHSAS)

k=1 SCVk



72 R. Bras and J.O. Cerdeira

—_

X U T*
2. Fork=1.,...,m calculate €'({X*)). *(C) « O for every C € € ((X*))
3. While X is not MTLinkP feasible

a. Simultaneously increase ¥ (C) until, for some v, 37| ¥ec yhoyerk © Y(C) = wy.
b. X —XU{v}
c. Fork=1,...,mrecalculate X* and €'(({X*)).

4. Turn X minimal. For each v € X'\ J; T* (by reverse order of insertion) remove v from X
if X'\ {v} is feasible
5. Return X.

Fig. 2 PD heuristic

subject to:

Xm: Yo Y®=wovev

k=1 SCVkwelk(s)

§c vk
k <
S)>0
¥ = k=1.....m

The heuristic maintains an infeasible primal solution X, and dual variables y*(S).
The algorithm is described in Fig. 2, where %((Xk)) are the connected components
of the graph induced by X* = X N V£,

3.3 GRASP Heuristic

The type by type (TbT) heuristic and the primal-dual heuristic (PD) of Lai et al.
[13] define a feasible solution adding in each step nodes to a current unfeasible
solution X. TbT heuristic adds to X a set of nodes that guarantee the connection of
all terminals from a certain predetermined type, and assigns costs equal to zero to
all the added nodes. PD heuristic adds to X one single node that belongs to V* and is
adjacent to X¥, for at least one not previously determined type k. We present a kind
of greedy randomized adaptive search procedure (GRASP) [9] that hybridizes the
two heuristics.

GRASP starts with set X consisting of all terminals of T k= 1---,m, and in
each step grows the current unfeasible solution X as follows. First, some type k, for
which not all terminals of T* are connected, is uniformly selected. Next, a connected
component S of < X* >, the subgraph induced by X, that includes terminals of type
k, is uniformly selected, and a minimum cost path P, among the minimum cost paths
connecting S with every other component of < X* > that includes terminals of type
k, is determined. The nodes of P are added to X, and costs are updated letting w, = 0
to every node v of P. Note that, since the costs of nodes of X are all equal to zero,
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1. w(Sol) « oo
2. r «+ number of repetitions
3. Fori=1,....r

a X, T*
b. While X is not MTLinkP feasible
i. X*=Xxnr*. Calculate €' ((X*)): k= l>bom
ii. Q= {k:notall terminals of T belong to the same S € € ((X*))< k=1,....m}
iii. If O = 0 then end the while cycle
iv. p < member of Q uniformly selected
v. S« member of € ((X?)) : SNT? # @ uniformly selected
vi. P« minimum cost path connecting Sto U € €((XP))\S:UNTP # /0
vii. X —XUP w,=0YveP
c. Turn X minimal. For each v € X \ U, T¥ (randomly ordered) remove v from X if
X\ {v} is MTLinkP feasible.
d. w(X) — F,exwy
e. If w(X) < w(Sol) then
i. Sol —X
ii. w(Sol) —w(X)

4. Return Sol.

Fig. 3 GRASP heuristic

P can be easily obtained with Dijkstra algorithm [6], choosing an arbitrary node in
S as the starting node and ending as soon as a node of a component of X, including
terminals of 7% and different from S, is added to the path.

The final GRASP solution is obtained by turning minimal feasible the solution
X obtained in the last step. Given its random behavior, repeating GRASP a number
of times with the same input is likely to produce different solutions, and the best
solution is outcome (see Fig. 3).

4 Computational Experiments

We performed computational tests to evaluate the quality of the solutions produced
by the heuristics, as well as the practicality of the flow formulation of Sect. 2.

4.1 General Case

Here we report results for the case where not all V¥ coincide.

4.1.1 Data

We used real and simulated instances to test the heuristics.

1. Real Data.
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Real data concerns the linkage of climatically-similar protected areas (PA) in the
Iberian Peninsula (IP). IP is represented as 580,696 1km x 1km cells, from
which 80,871 cells intersecting the 681 existent PA in the IP were defined as
terminals. Terminals were clustered in four groups sharing similar climates (with
respect to four climatic variables which are considered important drivers of species’
distributions). Adjacency was considered in terms of common edges or corners of
the square cells.

Cells with considerable human intervention (values derived from Human Foot-
print Index data available from http://www.ciesin.columbia.edu/wild_areas greater
than 60 in a range from 0 to 100) were excluded as they were considered poorly
permeable to species’ movements. This has reduced the number of cells to 438,948
(which includes every protected cell).

Figure 4 (page 74) shows the location of protected cells from each class
(colored cells), and cells that were excluded due to presenting high levels of human
intervention (grey cells).

For k = 1,...,4, V¥ was defined as the set of cells that do not significantly
differ from the mean climatic conditions of PA of class k. This was delineated as
follows. The centroid, in the climatic space, of the PA cells of each climatic class
was defined, and the Euclidean distances from the climate conditions of each cell

Fig. 4 Iberian Peninsula data (scenario 2). Protected cells are colored red, green, blue and
magenta. Grey areas represent cells not in V. Cells of the solution obtained with TbT heuristic
are colored yellow
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to the centroid of each class were computed. This retrieved four values d*(v), for
each cell v, expressing the dissimilarity of cell v to every climatic class k. Cell
v € V¥ (ie., v was not considered k-barrier) if d"(v) is below a certain threshold
value BX. Two scenarios were considered. In scenario 1, B* was defined as the largest
dissimilarity d*(v), among the protected cells v in every PA from class k. In scenario
2, B¥ was set as the third quartile of the @*(v) values for protected cells v of class k.
Cell u was included in V¥ (i.e., u was not considered k-barrier) if u belongs to some
PA of class k, or d*(u) < B*.

The rational for the identification of linkages between climatically-similar
protected areas, free from climatic barriers, stands on the assumption advocated
by Alagador et al. [1] that species with similar ecological requirements occupy the
same environments. Thus, linking climatically-similar protected areas is an effective
way to promote the dispersal of species, counteracting in part the negative effects of
fragmentation.

A cost was assigned to every non protected cell that is proportional to the cell’s
fraction not covered by Natura 2000 Network (w, = (100—percentage of Natura
2000 Network covered by v)/100). The Natura 2000 network is a European scaled
conservation scheme designed to complement nationally-defined protected areas.
We assigned cost equal to zero to every protected cell.

Details on the IP data can be found in Alagador et al. [1].

We denote by IP1 and IP2 the IP instances under scenarios 1 and 2, respectively.

2. Simulated Data.

Simulated data were generated as follows. Each node of V is a cell from a n x n grid.
Two cells are adjacent if they have a common edge or corner.

To define Vj we start by uniformly selecting an integer s € [0, m] and assume that
species 1, ..., s are “specialist” (can only thrive in a narrow range of environmental
conditions) and species s + 1,...,m are “generalist” (are able to thrive in a wide
variety of environmental conditions). Each node v of V is included in V; with
probability 1/4 for each “specialist” species k < s, and with probability 3/4
for each “generalist” species k > s. The number of terminals of each type was
obtained from a discrete uniform distribution in interval [2, max {|V| /1000, 5}], and
terminals chosen uniformly among the nodes of V*.

We assigned to every node in V '\ (U;T¥) a cost from an uniform distribution in
[0, 1], and cost zero to every node of T*,

We generated small instances with n = 10,20,30,40,50 and m =
2,3,4,6, 8,10 and large instances with n = 100,200, 300,400,500 and
m=4,6,8,10.

For the same values of n and m we generated 10 instances. This gave a total of
500 instances.
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4.1.2 Results

Here we report the main results of the computational tests that we carried out.

Heuristics were implemented in C++, using the Boost Graph Library [19]
to calculate spanning trees, shortest paths and connected components. Parallel
programming was not used and so they ran in a single thread. All times refer
to elapsed times. The computers were dedicated to running the instances, so that
elapsed time is close to CPU time. Solutions for the Iberian Peninsula data were
obtained with a Intel Core2 Quad CPU Q9450 @2.66 GHz and 4 GB of memory
machine, while for simulated data the solutions were obtained in a machine with 2
AMD Opteron 6172 processors (24 cores) @2.1 GHz and 64 GB of memory.

1. Real Data.

Table 1 displays results obtained for the Iberian Peninsula’s data with each of the
three heuristics. The first column identifies the problem instance (scenarios 1 and 2).
Each of the three pairs of the remaining columns contains the value of the solution
obtained with a heuristic: GRASP, type by type (TbT) and primal-dual (PD), and the
corresponding running time in seconds. The TbT heuristic ran for every permutation
of the m = 4 types, while GRASP was limited to 2 hours of execution. We let the
program finish the current repetition i, if it has started before the time expired, thus
computation times can exceed 7200 seconds. PD was not time-limited in order to
produce a solution.

GRASP obtained the best solutions. The costs of the solutions produced by TbT
were slightly higher, but the times to run the 24 permutations of the four types
were lower than the 2 hours that limited the execution of GRASP. PD had a poor
performance. Long computation times were necessary to obtain solutions with costs
that are greater than those of the solutions obtained with GRASP and with TbT.
This negative behavior of PD can be explained by the specific structure of these
graphs. Nodes which are far apart on the grid are connected by long paths. Thus, it
is likely that PD includes a large number of redundant nodes until a feasible solution
is reached. Solutions with many redundant nodes are difficult to turn minimal. The
process is time consuming and produces poor solutions. GRASP and TbT, in each
step, add to the solution that is being constructed the nodes of a minimum cost path
connecting a pair of terminals. Thus, the number of redundant nodes is likely to be
much less than that generated by PD.

Figure 4 shows a solution, obtained with the TbT heuristic, for the IP2 instance.
Protected cells are colored red, green, blue and magenta and the cells of the solution

Table 1 Results for the Iberian Peninsula

GRASP TbT PD
Instance Cost Time Cost Time Cost Time
IP1 2024.67 7782.55 2035.73 5012.39 2162.11 544,490.00

IP2 2121.03 7525.25 2148.49 7075.90 2167.62 347,003.00
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are yellow. Grey areas represent cells not in V (human footprint over 60). For a
detailed interpretation of the solution, knowledge of the location of the barriers from

each type would be needed.

2. Simulated Data.

The main results derived with small and large instances for simulated data are given
in Tables 2 and 3, respectively. Recall that 10 instances with the same values of |V|
and m were considered and, therefore, each row of Tables 2 and 3 summarizes the
results of 10 instances.

Table 2 Results for small instances

[Vl |m |#Opts | GRASP

% dev. from

Opt | BestH

100 | 210 1.67 | 1.67
3/10 1.66 | 1.66
4110 4.02 | 1.94
610 2.32 217
81|10 1.21 | 0.00

10 | 10 0.31 1 0.31
400 | 210 0.34 |1 0.00
3/10 1.80 | 0.25
4110 1.60 | 0.00
610 2.08 | 0.95
81|10 0.90 | 0.10

10 | 10 2.2410.00
900 | 2|10 0.85 | 0.00
3/10 0.54 |1 0.00
4110 1.34 1 0.00

6 8 2.71 /0.19

8| 7 2.86 | 0.00

10| 7 1.82 10.39
1600 2| 7 1.49 1 0.22
315 0.09 | 0.00
416 0.69 | 0.20

6| 5 1.52 1 0.43

8 5 0.29 | 0.00

10| 1 0.00 | 0.06
2500 | 2| 4 0.77 | 0.00
3/ 6 0.00 | 0.08

41 6 1.52 10.51

6| 4 5.05 | 0.15

8| 2 1.24 1 0.00

10/ 0 0.04

10
10
10
10

10

10

10

10

10

TbT

% dev. from

Opt
1.67
1.66
3.87
3.31
1.21
1.27
2.51
4.55
4.48
3.56
3.70
6.33
2.60
1.82
4.66
6.54
4.70
3.25
1.92
0.49
1.17
1.93
1.49
1.47
0.77
0.98
0.64
5.57
3.35

BestH | Best | Time

1.67
1.66
1.79
3.16
0.00
1.27
2.18
2.90
2.79
2.38
2.87
3.95
1.72
1.28
3.26
4.55
2.05
2.75
1.34
4.01
2.38
1.13
2.80
4.27
3.35
1.11
2.39
2.41
3.83
1.59

9
9
9
8

—_
(=]

AN WO Nl AR R ONNDW RO WA I NWLiW|

0.00
0.01
0.06
5.19
44.43
60.51
0.01
0.01
0.06
1.49
18.21
43.46
0.01
0.02
0.08
3.57
14.31
42.45
0.02
0.05
0.21
4.33
12.44
36.13
0.04
0.07
0.24
6.01
17.60
16.20

PD

% dev. from
BestH | Best | Time

Opt
2.15
0.00
6.49
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11.20
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2.15
0.00
4.20
1.48
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Table 3 Results for large instances

V| m GRASP TbT PD
Yodev. Best Yodev. Best | Time Yodeyv. Best | Time
10,000 4 0.00 10 5.27 1 1.56 18.17 1 43.71
6 0.00 10 4.55 1 49.93 19.91 1 89.57
8 0.00 10 343 2 214.82 11.90 2 67.37
10 0.00 10 4.86 0 766.98 | 21.31 0 148.57
40,000 4 0.00 10 3.13 2 52.95 14.74 2 1292.83
6 0.00 10 3.50 0 732.16 7.55 0 1116.29
8 0.00 10 3.44 1 982.21 14.08 1 1709.82
10 0.00 10 3.59 1 1320.94 13.60 1 1998.23
90,000 4 0.00 10 2.46 3 185.65
6 0.00 10 221 2 1056.98
8 0.00 10 3.66 0 1654.99
10 0.13 9 3.73 1 1823.81
160,000 4 0.00 10 2.24 4 819.54
6 0.00 10 242 2 1325.13
8 0.03 9 2.34 2 1931.62
10 0.00 10 2.14 0 1947.12
250,000 4 0.00 10 3.26 0 1378.50
6 0.00 10 2.45 0 1821.26
8 0.00 10 2.76 0 2053.90
10 0.00 10 2.09 2 2297.54

We established common elapsed time limit values for the heuristics. One minute
for small instances and 30 minutes for large instances, but we allowed GRASP to
finish the current repetition i, and TbT to finish the current permutation P.

For most of small instances we were able to obtain optimal solutions from the
flow formulation (1), (2), (3), (4), (5), (6) and (7), using CPLEX 12.4, with parallel
mode set to opportunistic and 24 parallel threads (all other options used default
values). For each instance, CPLEX execution time-limit was set to 1 hour of elapsed
time, meaning up to 24 hours of CPU time since the machine has 24 cores.

In Table 2 column #Opts indicates the number of instances for which optimal
solutions were found. The two columns labeled % dev. from indicate, for each
heuristic, the mean of the relative deviations (in percentage) from the optimal
values (opt) and from the best values of the heuristic solutions (bestH). The relative
deviation is calculated by the expression 100(h — w*)/w*, where # is the value of
the heuristic solution, and w* is the optimal value (opt), or the minimum of the
values of the three heuristic solutions (bestH), respectively. The number of optimal
values with respect to which averages were computed is given in column #Optfs.
Columns best report the number of instances for which the heuristic found the best
value among the values of the three solutions obtained for the same instance with
the three heuristics. Columns #ime indicate the mean computation times (in seconds)
for TbT and PD. The computation times are not reported for GRASP since it uses
all the amount of time allowed.
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Table 3 is similar except that there are no columns regarding optimal values,
since CPLEX was unable to handle the large instances. Thus, columns % dev. and
best refer to comparisons with the best values of heuristic solutions.

GRASP was clearly superior for the instances considered, while PD had a poor
performance.

For small instances the average over the 30 values of column % dev. from opt
in Table 2 was 1.48 for GRASP, 2.81 for TbT and 7.11 for PD. Only four of these
30 values exceeded 2.5 % for GRASP, while six values exceeded 4.5 % for TbT.
GRASP was a best heuristic in at least eight instances out of the 10 with the same
|V| and m. Considering all the 300 small instances, GRASP was a best heuristic in
275, TbT in 161 and PD in 116.

For the large instances the superiority of GRASP was even more evident. It has
obtained the best results in 198 out of 200 instances. The mean relative deviations
between TbT results and the best heuristic values were always below 5.3 %, but it
attained the best result only on 24 instances.

Results on simulated data confirmed the bad behavior of PD with this kind of
instances. For |V| > 90,000, we were unable to find solutions within the time limit
of 30 minutes, except for a few instances. These were not considered in order to
not bias the analysis of the results. The corresponding entries are blank on Table 3.
In general, solutions were of poor quality. It seems that PD has difficulties dealing
with instances where graphs have the structures here considered. An explanation
was previously given when analyzing the results on the IP instances.

A fact that should be mentioned is that, several times, TbT succeeded to complete
its computations within the time limits established, despite the relative high values
of m (m = 8, 10). This is justified by the way instances were generated. Each cell of
the n x n grid belongs to V¥ with probability 1/4 for “specialized” species k and 3/4
for “generalist” species k. Thus, it may happen that all components of the subgraph
induced by V¥, particularly for “specialized” species k, include at most one terminal
of T*, i.e., every path connecting any two terminals of 7% include some k-barrier.
In this case there is no need to consider species k, as no two terminals of T* can be
linked in V*. Since “specialist” species were uniformly chosen among the m species,
the number of species that needs to be considered might be much smaller than m.

4.2 Case Where All V¥ Coincide

MTLinkP is a generalization of the node-weighted Steiner tree and of the node-
weighted Steiner forest problems. Therefore, GRASP, TbT and PD can be used,
with no modification, to solve those problems.

We carried out some computational tests to assess how the heuristics perform on
solving node-weighted Steiner forest problem.
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For node-weighted forest problem, the PD heuristic is the Demaine et al. [5]
algorithm. Another heuristic, based on the Rayward-Smith algorithm [16, 17] that
performs well in practice for node-weighted Steiner forest is the Klein and Ravi [11]
heuristic.

Klein and Ravi heuristic (KR) begins by computing the matrix M of the costs
of minimum cost paths between every pair of nodes in V. Then, starting with X
consisting of all terminals of T, k = 1,--- ,m, in each step, KR adds to X the
nodes of certain paths that connect a number of connected components of < X >,
the subgraph induced by X. The connected components to merge are selected from
the values of a function f that is calculated as follows, for every node v € V. Let .
be the set components of < X > that, for some k, includes at least one node of T*
but not all, and let ., be the family of all r sets of . (i.e., if S, € ./, |S,| = r). For
every v € Vand S, € .7, let w(v, S,) be the sum of the costs of minimum cost paths
connecting v with each of the r components in S,. For every v € V, define f (v, r) =
ming, w(v, S,) — (r — D)w,. The value f(v, r) is the minimum cost of merging »
components of . with r paths rooted at v. Note that the computation of f(v, r) can
be quickly achieved from matrix M. Finally, f(v) = miny<,<|.»|f (v, r)/r, which is
the minimum of the mean values of f(v, r) with respect to r. In each step, KR adds
to X the nodes of the paths from v which minimizes f(v), while . is not the empty
set. When there are no more components to merge, the heuristic proceeds turning
solution X minimal.

We compared the performances of GRASP, TbT, Demaine et al. [5] (PD) and
Klein and Ravi [11] (KR) heuristics on instances generated as above for simulated
data, except that VE = V, fork = 1,...,m. We considered n x n grid graphs
with n = 50, 100,200 and m = 2,4, 6, 8, 10 types of terminals. For each n and m
two instances were generated. Table 4 reports costs and times (in seconds) on each
instance. GRASP and TbT heuristics were restricted to 30 minutes of execution
time. Computations were processed with the same machine that was used for the
simulated data.

Results for GRASP and KR were very similar. KR obtained the best result in
56.7 % of the cases, while GRASP was the best heuristic in 40.0 % of the cases and
PD in one case (3.3 %). TbT never obtained the best result. The mean relative gap
between the value vH obtained by the heuristic H and the value vKR obtained with
KR, given by (vH—vKR)/vKR, was 0.5 % for H = GRASP, 4.4 % for H=TbT and
3.5 % for H=PD. Considering only the cases for which KR performed better than
heuristic H (VKR < vH), the mean of the relative gap was 3.1 % for H= GRASP,
5.2% for H="TbT and 3.9 % for H=PD.

Results showed that GRASP performed better than KR in smaller instances,
while in general KR outperforms GRASP for larger ones. However, the relative
gap did not exceed 8.1 % (for an instance where n = 200 and m = 8). The values
obtained by TbT were slightly greater than those produced by GRASP. This was
more evident for larger instances (n = 200). PD obtains good results in the larger
instances. For n = 200 and m > 4 it obtains better results than GRASP with
relatively small times of execution. KR heuristic maintains in memory matrix M
of the costs of minimum cost paths between every pair of nodes in V. For n = 200
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Table 4 Results for Steiner forest

V| m | GRASP TbT PD KR
Cost Time Cost Time Cost Time Cost Time
2500 2 19.32 | 1800.28 20.12 0.11 20.09 1.15 19.20 2.04
12.61 |1800.37 13.01 0.08 15.92 2.34 14.67 1.92
4 | 2445 |1800.18 25.31 2.64 | 26.36 1.57 | 25.04 2.68
22.78 |1800.48 23.23 246 | 25.53 1.87 | 2298 2.33
6 | 24.39 |1800.65 24.83 104.46 | 25.38 0.82 | 24.64 2.73
30.03 | 1800.47 30.74 98.04 | 31.56 1.47 | 30.44 2.85

8 | 36.56 |1801.00 | 38.66 |1800.60 | 38.32 1.67 | 36.86 4.58
29.65 |1800.23 | 30.27 |1800.37 | 30.50 0.81 | 29.97 3.57

10 | 3430 |1800.63 | 37.12 |1801.13 | 36.90 1.82 | 35.51 3.82
33.46 |1801.23 | 34.80 |1800.23 | 33.51 1.01 | 33.30 4.71
10,000 | 2 | 46.64 |1800.54 | 48.39 0.73 | 48.02 17.43 | 46.83 39.35
42.19 | 1800.91 | 43.96 0.78 | 43.16 25.60 | 41.97 48.66

4 | 62.06 |1800.88 | 65.60 18.54 | 65.36 2649 | 61.77 58.09
47.44 |1801.16 | 50.20 12.94 | 49.05 2279 | 47.35 48.61

6 | 78.49 |1800.33 | 79.95 | 956.15 | 81.00 42.66 | 77.16 64.57
67.07 |1801.34 | 68.97 | 655.02 | 68.02 18.02 | 67.31 60.66

8 | 74.07 |1800.78 | 75.25 |1801.68 | 75.34 17.31 | 71.36 72.82
79.73 11800.39 | 81.12 |1801.94 | 82.17 22.02 | 78.56 82.25

10 |100.02 |1801.10 |100.70 |1802.77 | 99.83 59.72 | 98.07 96.04
90.77 |1801.33 | 95.66 |1802.23 | 92.31 32.39 | 89.00 96.32
40,000 | 2 |178.80 |1801.51 |192.27 9.94 |189.42 | 501.73 |189.39 |1541.14
83.15 |1801.27 | 87.51 3.47 | 89.15 | 328.08 | 84.28 |1154.73

4 |257.27 |1806.26 |265.71 190.69 |253.92 |1155.15 |273.20 |2280.98
188.07 | 1800.93 |197.61 151.75 |187.33 | 349.34 |182.06 |1666.43

6 |337.71 |1813.55 |348.49 |1814.00 |327.30 | 882.97 |317.66 |4884.35
22593 |1803.42 |236.66 |1806.29 |228.74 | 829.09 |218.27 |2187.45

8 |316.43 |1815.54 |327.89 |1821.25 |303.15 | 686.42 |292.69 |4239.43
305.71 |1802.64 |322.56 |1812.95 |300.84 | 51596 |291.56 |3982.47
10 |297.26 |1813.47 |310.58 |1813.78 |290.70 | 885.06 |283.34 |3827.51
372.83 | 1804.53 |386.94 |1817.54 |360.27 | 597.45 |345.79 |6483.80

6 GB of memory are needed, and for n = 300 30 GB are needed. Thus, KR heuristic
could not be used for the real IP instances.

Given the above limitations of KR, GRASP and PD appear to be good options
to solve large node-weighted Steiner forest problems for the type of graphs here
considered.
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5 Conclusions

In this paper we considered a mixed integer flow formulation and three heuristics
for MTLinkP. The flow based formulation only permited to solve instances up to
2500 nodes, which is far below the size of the instances that occur in the context
of conservation biology. For the specific structure of graphs of the instances that
occur in conservation, GRASP seems to be a good option. Producing different
solutions from different runs, on reasonable times, is relevant since, rather than a
single solution, decision making needs to consider different options before proceed-
ing negotiations with stakeholders. There are many issues (e.g., socioeconomic)
involved in the analysis of conservation actions which are not easily quantifiable,
thus having different alternatives to choose is an important feature.
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Development of a Numerically Efficient
Biodiesel Decanter Simulator

Ana S.R. Brasio, Andrey Romanenko, and Natércia C.P. Fernandes

Abstract This chapter deals with the modelling, simulation, and control of a
separator unit used in the biodiesel industry. While mechanistic modelling provides
an accurate way to describe the system dynamics, it is an iterative and computation-
ally burdensome process that arises from the need to determine the liquid-liquid
equilibria via the flash calculation. These disadvantages would preclude the use
of mechanistic models for process optimization or model based control. In order
to overcome this problem, an alternative strategy is here suggested. It consists
of maintaining the mechanistic model structure and to approximate the iterative
calculations with an artificial neural network. The general approach for dataset
consideration and neural network training and validation are presented. The quality
of the resulting neural network is demonstrated to be high while the computation
burden is significantly reduced. Finally, the obtained grey-box model is used in order
to carry out dynamic simulation and control tests of the unit.

1 Introduction

Today’s society is largely dependent on oil as an energy source. However, since it is
a finite resource, renewable alternatives have been playing an increasingly important
role. In particular, biodiesel—a biofuel produced from oil—presents a set of very
attractive characteristics. In this context, a considerable research effort devoted to
the development and well-functioning of biodiesel industry has been carried out in
recent years.
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One of the most relevant units of a biodiesel production line is the reactor,
where the oil reacts with methanol under certain operating conditions to produce
a mixture of biodiesel and the byproduct glycerol. After the reaction, the mixture
is cooled down and its components separated. Figure 1 represents schematically
the production line. It should be noted that the separation step in biodiesel industry
is commonly performed in a gravity settler. The gravitational settling is a lengthy
process and therefore this step represents a significant part of the total production
time, exceeding several times the residence time required in the reactor.

A decrease in settling time would represent an economic process improvement.
With this motivation, it is appealing to use dynamic optimization tools [3] in order
to reach a compromise between the objectives sought and the costs associated
with them. These techniques are based on models that describe the dynamics of
the process and that can achieve a high degree of complexity. Also, the operation
of a biodiesel production line can be greatly improved by a system of non-linear
predictive control as described in [6]. Such system requires a set of dynamic models
of existing process units in the production line. These models are used to obtain
predictions of the temporal trajectories of the state variables and of the output
variables as well as to determine the sensitivity of the solutions relatively to the
initial state and to the manipulated variables.

In the decanter two liquid phases coexist (the light and the heavy phases) which
interact with each other. It is therefore necessary to carry out calculations of liquid-
liquid equilibrium in order to quantify this interaction for subsequent incorporation
of this phenomenon in the dynamic model of the decanter. Quantification of liquid-
liquid equilibria is carried out by the flash calculation [11], which is an iterative
method.

However, a dynamic model which employs iterative methods cannot be inte-
grated efficiently in a predictive control computing platform. The model is invoked
dozens of times per iteration. Although the system has mechanisms to accelerate
the convergence of the algorithm, the use of iterative tools significantly increases
the calculation time and the required memory. On one hand, the iterative calculation
of phase equilibrium on each invocation of the model precludes its use from
the standpoint of required computation times. On the other hand, the iterative
form worsens the use of automatic differentiation methods, as ADOL-C [14] or
CppAD [2], because it significantly increases the memory needed to perform the
calculations.
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An alternative approach to the calculation of phase equilibria in order to avoid the
iterative method without deteriorating the quality of predictions is presented here.
The results obtained by flash calculations are approximated by a model based on
neural networks whose type, composition and characteristics are detailed in Sect. 3.
Finally, a first-principle dynamic model of a decanter is implemented applying the
developed network to characterize the phase equilibrium. Such model is then used
to study the decanter dynamics by simulation.

2 Liquid-Liquid Equilibrium

The methodology most commonly used to quantify the liquid-liquid equilibrium is
the flash calculation described in detail in [11] for situations of equilibrium between
two partially miscible liquid phases.

Considering a feed flow containing n. components with composition Xx;,, the
equilibrium at pressure P and temperature 7 is reached forming two distinct phases
(light and heavy) with composition x;j; and x; 1y, respectively (wherei =1, ..., n.).
The feed is separated into two phases: the molar fraction Ly constitutes the light
phase and the remaining fraction 1 — Ly, is the heavy phase. The equilibrium of
each component in the mixture is set by K; which represents the ratio of the molar
fractions of chemical species i in the two liquid phases, i.e.

_ Xae Vil (1)

;=
Xihv Yihv

where y; ) and y; 1y are the activity coefficients of component i in the light and heavy
phases, respectively.

Figure 2 represents schematically the mechanistic quantification of liquid-liquid
equilibrium, giving evidence of its iterative nature. After specification of the feed,
and already inside the iterative cycle, the UNIFAC method (or one of its variations)
is used to calculate the activity coefficients required to the calculation of the
equilibrium constants. The UNIFAC method [9] estimates the coefficients based on
the sum of the contributions of functional groups present in the mixture components:
ester (biodiesel), methanol and glycerol.

The oil that origins the ester is composed of glycerides (mainly triglycerides)
whose skeleton consists of a glycerol molecule binding fatty acids. The oil, having
a biological origin, is characterized by natural variability. However, the lauric acid is
normally the fatty acid in greater quantities in vegetable oils. For this reason and in
the context of this study, it is considered that the fatty acid present in the raw material
is only lauric acid (i.e., biodiesel consists exclusively of ester methyl laurate).

Once convergence for the flash calculation is reached, it is then possible to
quantify the degree of separation of component i by the light and the heavy phases.
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Fig. 2 Flowchart of the flash
method to determine the
liquid-liquid equilibrium
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3 Artificial Neural Network

Artificial neural networks are used in many engineering applications for predicting
variables of complex systems [7, 8]. Their use allows the simulation of physical
phenomena without explicit mechanistic formulation to describe the relationships
between the variables [8].

Feedforward back-propagation are the neural networks most used in these
applications. Such networks are considered static because they depend only on the
current input variables and constants. The absence of further information (feedback)
ensures the stability of the model [7].

Figure 3 represents the architecture of the neural network of the type feedforward
back-propagation here implemented. It consists of three layers of neurons or nodes
(the input layer, the intermediate layer and the output layer), as is typical of this type
of networks.



Development of a Numerically Efficient Biodiesel Decanter Simulator 89

Fig. 3 Neural network used
to substitute the flash
calculation
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The number of intermediate layers can vary increasing the prediction capacity of
the network, which proves particularly useful in problems with a large number of
input variables. However, an increase in the number of these layers also contributes
to the over-training of the network due to the large number of constants to determine,
that is, it can lead to the overfitting of the network [4, 7], apart from increasing
exponentially its learning time.

Intermediate and output neurons are structured by an aggregate function and an
activation function. According to standard practice, the sum is used in the present
work as aggregation function. In what respects the activation function, the most
common are the linear, the sigmoid and the hyperbolic tangent functions [7]. Here,
the hyperbolic tangent and the linear function were chosen for intermediate and
output layers, respectively, as shown within the referred neuron in Fig. 3.

Each neuron is directly connected to the neurons of adjacent layers. Each link is
assigned a weight that represents the degree of relationship between the two neurons
involved. Mathematically, one can write [4, 7]

nx
Ij:ﬁ<zwij'xi+9j) . j=1,....m 3)

i=1

and

ny
Ye=A (DX Wi+ L), k=1,...ny, €
j=1
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where nx is the number of input neurons, 7y is the number of intermediate neurons,
ny is the number of output neurons, X; is the input neuron i, /; is the intermediate
neuron j, Y is the output neuron k, wy; is the weight of the input neuron i relatively
to the intermediate neuron j, Wy is the weight of the intermediate neuron j relatively
to the output neuron k, 6 is the bias of the intermediate neuron j, I is the bias of
the output neuron £, fi() is the activation function of the intermediate neurons and
fy () is the activation function of the output neurons.

The activation function fi(-) was defined through the hyperbolic tangent since it
allows a faster convergence of the training algorithm [4]. As for the activation func-
tion to the output layer, fy (-), it is generally a linear function [7]. Mathematically,

q_ e
Hyperbolic tangent : filg) = % , 1< fi <1, (5)
Linear : (@) =g, —00 < fy <00, 6)

considering g a generic variable.
The continuous and differentiable function with predictive objectives which is
generated by the neural network is defined in the vectorial form by

Y(P.X) =W -tanh(w' - X +0)+ I, (7)

where P represents the set of matrix parameters w € R™> W ¢ R™>1 g ¢ R
and I' € R™*!; X € R™*! represents the vector of input neurons and ¥ € R"*!
the vector of output neurons.

Considering a dataset with m points {(X;, Y1),...,(X:, Yi),....Xu, Y},
during the neural network training the parameters are determined so that, for the
input X;, the estimate of the output variables Y; should equal the values Y; [15].
Such optimization problem corresponds to the minimization of the average square
error (MSE), that is,

lWl
in F(P)=—Y e e;.
n}_}n() - e e

i=1

wheree; = Y, — Y (P, X). The algorithm of Levenberg-Marquardt was used to solve
this problem since it is an efficient algorithm even in cases of strong ill-conditioned
problems [13]. The algorithm is based on Gauss-Newton and on Gradient methods
and determines P at each iteration using

AP = —(H + uIl)"' VF , (8)

where H is the hessian matrix, I is the identity matrix, VF is the gradient vector of
F(P) and p the learning rate that is updated in order to minimize MSE [10].
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4 Dynamic Mathematical Model of a Decanter

Consider now an industrial continuous decanter unit with parallelepipedic format
and positioned horizontally, as depicted in Fig. 4.

The decanter input stream is constituted by the mixture that leaves the reactor
flowing at a molar rate Nj, and is characterized by composition xj, and tempera-
ture 7.

In the decanter, all the components of the feed get split into two phases but in
different proportions from component to component. The degree of separation by
the two phases for a generic component i is quantified through the split fraction §&;
which represents the fraction of component i that goes into the light phase. The set
of the split fractions to the light phase for all the components is therefore the vector
& = [& &um &G] and to the heavy phase is its complementary 1 — §.

The decanter is equipped with an internal baffle. As the two phases separate,
the heavy phase leaves the unit through its bottom while the light phase leaves the
decanter by overflowing the baffle positioned close to its end. The dynamics of the
section after the baffle can be neglected since its volume is insignificant compared
to the total volume of the decanter. The output molar flow rate of the heavy phase,
Ny, s manipulated by a level controller.

A mathematical model describing this system can be developed based on first-
principles. With such a purpose, partial and global mass balances were considered.
The resulting mechanistic model describes the evolution of the molar fractions of
all the components in each of the phases as well as the heights of these phases. For
a generic component i (i = E, M),

dxi,hv o 1— Si
My == = Z (1 = &) xkin) Nin | 50— Xiin — Xihy )
k > (1= &) xicin)
3
5 light phase (It)
—_— >
Nin
Xin 1-¢ hny |[H  heavy phase (hv) X
——

(10) Ny
© Ch% i

Fig. 4 Schematic representation of the decanter
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and

dx,
d

TR &
— = in) Nin | 50— Xiin — Xixe | > 10
. Xk:@m, ) " Xijin = Xt (10)

Z(gk Xkin)
k

nye

where ny, and ny represent the molar amount of molecules in the heavy and light
phases, respectively. The composition of the remaining component (G) in phase j
(withj = hv, 1t) is

ne—1

xGJ-ZI—inJ-. (11)

From a global molar balance to the heavy phase,

d

Z:V = Z ((1 = &) xijin) Nim — Npy - (12)

The molar amount of molecules in the light phase is given by

hl[A
M= g (13)
> (Vixin)
and the heights of both phases by
Nhy o
e = = Z(xi,hv Vi), (14)
with
e =H — hyy , (15)

where A is the area of the base of the decanter and V; stands for the molar volume
of component .

The split fractions & are calculated using the previously developed neural
network. Equations 13 and 14 assume that both phases are ideal. The physical
properties that constitute model parameters are specified in Table 1.
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Table 1 Molar volume of

Component |V (107> m*>mol™!)
ester, methanol and glycerol

E 34.51
M 4.23
G 6.87

5 Results and Discussion

Based on the composition and temperature of a mixture of ester, methanol and
glycerol entering the decanter, the neural network must indicate how the three
components separate by the light and heavy phases, that is, must predict the split
fractions to the light phase for all the components. Thus, from the viewpoint of
the neural network, the input variables are the temperature (7) and the composition
of the mixture to be separated. The mixture composition is expressed in terms of
molar fractions of methanol and of glycerol,l Xm.in and xg in. The output variables
are the split fractions for the three components &g, &y and &g, indicating, for each
component, the molar or mass fraction of the initial amount that goes to the light
phase. Once known, the split fractions can be used to solve the mathematical model
describing the decanter in a CPU time efficient way.

5.1 Generation and Treatment of Data

The liquid-liquid equilibrium data used to train and validate the neural network were
generated by the flash calculation described in Sect. 2.

The characterization of the initial mixture that enters the separation unit is
specially important, since the network must be trained with a set of relevant data
with regard to the range usually observed in such systems. The authors of [1]
experimentally performed the transesterification reaction of sunflower oil at 60 °C
using a molar ratio between methanol and oil of 6:1, 0.50 % (m/m) of NaOH as
catalyst and an agitation rate of 400rpm. In that work, the molar ratio of the
component concentration over time is shown. However, the information about
methanol, one of the components in largest quantity in the mixture, is omitted. For
this reason, it was necessary to simulate the transesterification reaction (reactor)
in order to obtain the dynamic profiles of the composition of different chemical
species needed to completely quantify the mixture at the end of the reaction,
in particular with regard to methanol. The equilibrium and the speed of all the
transesterification reactions are conditioned by reaction medium stirring. Work [5]
proposes a methodology to systematically include this variable in the model of the

"Note that the molar fraction of the ester is linearly dependent of the molar fractions of the two
other components.
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Fig. 5 Simulation of the transesterification reaction of sunflower oil

reactor. However, for the purposes of the present work, a more simplistic model is
enough to generate the data sets. The model and parameters described in the work
[1] were used in the simulation system and the corresponding results are shown in
Fig.5. The visual comparison between simulated and experimental points as well
as the coefficient of determination (R> = 0.99998) allow to conclude on the good
reproduction of the system studied in [1].

The exhausted reaction mixture that leaves the reactor is then directed to the
decanter without undergoing any change in its composition. Therefore, the simula-
tion values of the reactor for the final time (r = 2 h) correspond to the concentration
values at the entrance of the decanter (mixture before separation). The molar
concentration of the mixture to be separated is C = [CTG Cpg Cvmc Cum Cg CE] =
[0.0018 0.0188 0.0550 2.6181 0.7644 2.4219] mol dm™>.

The fractions of tri-, di- and monoglycerides were considered to be in the fraction
of the ester component since their amounts are reduced and that molecules present
similar properties. The corresponding molar fraction is given by x = [xE XM xG] ~
[xE + ¥t + XpG + *mG XM x| = [0.42 0.45 0.13].

To generate the experimental data pertaining to the liquid-liquid equilibrium,
various temperatures of the input flow were used. For each temperature, a mesh was
constructed by varying the molar fractions of the mixture. The intervals considered
were: 25 < T < 60°C, 0.32 < xgijn < 0.52 and 0.35 < xmin < 0.55. The
molar fraction of glycerol at the entrance of the decanter, x¢ i, was computed by the

e
relation ) x;in = 1. The range for the temperature was selected taking into account
i=1
the typical reaction temperatures defined by [1]. This range was then covered with
increments of 1°C. The range of compositions was defined taking into account a

range of +0.10 in molar fractions xg j, and xy i, previously calculated. The defined
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Table 2 Average () and

o Input data " o
standard deviation (o) for the 04191 | 005769
normalization of the input i, = (n/n) : :
data XGin, — (n/n) | 0.14301 | 0.07483
T, °C 42.34 10.39

range for compositions was scanned through increments of 0.01. In total, 36 meshes
of 405 points were generated.

The normalization of data plays a key role in training the neural network.
The use of data from different orders of magnitude can favor the attribution of
different adjustment importances during the training phase of the neural network [7],
whereupon the data was normalized using the values given in Table 2.

After the pre-treatment, data were randomly divided into three sets: the training
set, the validation set and the test set. The training and validation sets were used to
adjust the neural network. The test set was used to simulate the network allowing
further comparison between the data obtained by the method flash and the predicted
by the neural network.

5.2 Characterization of the Neural Network

The neural network was structured into three distinct layers. The input layer has

. . . T
three neurons corresponding to the three input variables X = [XM,in XGin T] . An
intermediate layer having five neurons and an output layer with three neurons cor-

responding to the variables Y = [éE &M gG]T are considered. Figure 3 graphically
depicts the network structure.

The training algorithm described in Sect. 3 is available in the software package
octave-nnet 0.1.13-2 for GNU Octave [12] and was used in training the
neural network. In this algorithm, the weights initialization is made using random
elements uniformly distributed in the interval [—1, 1]. The initial learning rate g is
set to 1073 [10]. Other parameters related to the training of the neural network were
specified as follows: the maximum number of iterations was 2 x 103, the tolerance
was 5 x 1077 and the maximum time for training was 10’ s.

5.3 Neural Network Training

The neural network with the described structure was trained. Figure 6 shows
(points) the evolution of the mean squared error over the training iterations. The
Levenberg-Marquardt algorithm took 99 iterations to achieve the specified tolerance
of 5 x 1077 (dashed line). The training process took 20s. The network validation
was done automatically by the software package used. Figure 6 compares the MSE
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Fig. 6 Evolution of the average square error while applying the Levenberg-Marquardt algorithm

of the validation along iterations (solid line) with the MSE of the training dataset,
being possible to see that they are coincident.

The neural network training allows the determination of the weighting matrices
w and W defined by

—0.280399 —1.089354 —0.085569 0.139296 0.074241
w = | —0.133304 —0.569687 —0.994122 0.322463 1.155133
—0.477709 0.281168 0.030668 —0.061436 —0.017357

and

1.6266 x 107* 1.7624 x 10™* 8.4364 x 1073 1.2702 x 10™* 4.2978 x 1073
5.7984 x 1073 7.9335 x 1073 2.2665 x 1070 —2.9864 x 10~! 7.3118 x 107!
—1.3643 x 1073 7.3683 x 1074 3.9128 x 10~!  2.6466 x 1073 1.5635 x 107!

w

and the bias vectors @ and I" corresponding to

0.62280

1.15884 1.00373
0 = | —2.46359 |and I' = | 1.89116

0.27300 0.23502

2.24627

Since the objective of the work was the development of a neural network that
could replace in a faster but equally effective way the traditional flash calculation,
measures of average computation times required by each method were registered.
The average time required to generate a point by the flash calculation was about
0.018 129 s, while using the neural network was approximately 140 times smaller.
The time used by the neural network was substantially less than the time required
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by the flash calculation (about 141 times smaller), showing the appropriateness of
the choice made for the application in question.

5.4 Predicting Capability of the Network

Figure 7 shows the prediction of the split fractions using the neural network. It also
includes the first 250 points of the test.
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Fig. 7 Prediction of the split fractions through the neural network model
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Methanol is the component with the biggest variation of its split fraction within
the range of temperature and composition covered by the mesh. As for the ester,
it is the component for which the split fraction is less dependent on the initial
conditions of the mixture to be treated (i.e., its composition and temperature). In
fact, as it can be seen in Fig.7, more than 99.9% of the ester always goes to
the light phase, regardless of the initial conditions of the mixture to be separated.
Finally, the variation of the split fraction of glycerol as a function of composition
and temperature of the decanter feeding mixture is also slight. Glycerol migrates
almost entirely to the heavy phase. To allow for a better understanding of the data,
in Fig. 7, two areas of the main graph were zoomed out, one relative to the data for
the glycerol component and other to data concerning the ester component.

The determination coefficients corresponding to the estimates of the components
methanol, ester and glycerol are, respectively, R?(£v) = 0.9999, R?(£g) = 0.9137
and R*(§g) = 0.9676. The prediction is especially good in the case of methanol,
since this component is more sensitive to the initial conditions of the mixture.
However, although in the case of glycerol and of ester the determination coefficients
are somewhat lower, it is noteworthy that the absolute errors between the predictions
and the experimental values are extremely reduced (see Fig. 8).

The effect of temperature on the liquid-liquid equilibrium is very important. To
show the predictive capability of this effect by the neural network, two equilibria
corresponding to two mixtures A and B with different compositions under different
temperatures were studied.

Mixture A is characterized by a molar fraction xj, = [0.42 0.45 0.13], values
consistent with the experimental values of [1]. The second study deals with a
mixture, designated B, which represents a mixture resulting for a greater extent
of chemical reaction, i.e., represents a reaction mixture originated in a situation
of greater yield than the one verified when mixture A was originated. Based
on this assumption, mixture B was defined as having the composition xj, =
[0.47 0.43 0.10].

Fig. 8 Absolute error
between the predictions of the
neural network and the of the
flash calculation

Absolute error x 103, —

0 50 100 150 200 250
Data index
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Fig. 9 Prediction of the split fractions as function of temperature for two different mixtures A and
B (A: [0.42 0.45 0.13], B: x;, = [0.47 0.43 0.10])

Figure 9 represents the split fractions predicted by the flash calculation and by
the neural network as functions of the temperature of the mixtures, being evident a
good prediction of the neural network.

As discussed above, the split fraction for methanol varies significantly with
temperature, in opposition to the fractions of ester and glycerol that remain
approximately constant. A considerable zoom out of the graphical representation
of these two fractions (see Fig. 9) reveals what, at a first glance, could be considered
as a discrepancy, particularly in the case of the ester. However, keep in mind that
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the “discrepancy” is less than 0.006 % (6 thousandths percent), and is therefore
negligible.

Increasing the temperature, the methanol and the glycerol split fractions increase
in both mixtures, although with less intensity in the case of glycerol. In mixture B
(mixture richer in ester), methanol is more soluble in the light phase and, therefore,
the split fraction is greater than the one obtained to mixture A. Similar effect is
observed for glycerol. Conversely, by increasing the temperature of the mixture, the
ester becomes more soluble in the heavy phase and therefore the split fraction to the
light phase for ester decreases.

5.5 Application in a Dynamic Decanter

The artificial neural network presented above quantifies the interaction between the
two liquid phases by calculating the split fractions for all the components. Because
of its computational advantages over the iterative flash calculations, the network is
applied herein as part of the dynamic model of a decanter developed in Sect. 4.

Suppose that the continuous decanter with dimensions 1 mx 1 mx3 m is, at initial
time, completely filled: half with glycerol and half with ester. This combination
forms two immiscible liquid phases with glycerol at the lower layer due to its
higher density. Therefore, the initial height of the heavy phase is A, = 0.5m
and the initial height of the light phase is Ay = 0.5m. In such conditions, the
initial phase compositions are x;; = [1 0 0] and xp, = [O 0 1]. At the same
initial instant, the reaction mixture is fed to the decanter with a flow rate of
Ny = 9.67mols™!, composition xj, = [0.42 0.45 0.13] (corresponding to the
aforementioned mixture A), and temperature 7 = 60 °C.

The heavy phase level A,y is controlled through a PI(D) controller using the molar
flow rate My, as manipulated variable (initialized at O mol s~ 1. The controller was
tuned by the trial-and-error method with K¢ = —500 mol sT'm™!, 7y = 2000s, and
p = 0s.

5.5.1 Operation Start-Up

The decanter start-up operation is simulated along a time horizon of 20 h and using a
time interval of 10 s. Figure 10 exhibits the dynamic response of the unit. As soon as
the feed is introduced, the composition of the light and of the heavy phases change
due to the entrance of new components.

The split fractions computed by the neural network allow to define the affinity
that each component will have to each of the heavy and light phases. For the feed
conditions listed above, the split fractions are § = [0.9998 0.3481 0.0046]. Remark
the high split fraction to the light phase for ester and the low split fraction for
glycerol.
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Fig. 10 Profiles of the state variables and molar flow rate of the heavy phase under the start-up of
the decanter operation

Methanol is attracted by both phases originating changes in the composition of
both phases in what concerns this component. Glycerol does not have much affinity
to the light phase and, as result, its molar fraction remains near zero in this phase.
Conversely, the ester goes almost exclusively to the light phase, reason why the
composition of the heavy phase in ester keeps approximately zero. This behavior
is determined by the split fractions calculated by the neural network previously
trained.

After approximately 10 h, the decanter reaches a steady-state with a composition
of the light phase x; = [0.728 0.271 0.00I] and a composition of the heavy phase
Xhy = [0.000 0.694 0.306]. From the graphs of Fig. 10 it is also evident that the
light phase presents a much faster dynamics than the heavy phase. In spite of the
volumes of both phases to be the same throughout the experiment (0.5 m?), the light
phase is crossed by a significantly higher volumetric flow (bigger than 7 times)
when compared to the volumetric flow crossing the heavy phase. In consequence,
the residence time in the light phase is much smaller resulting in a faster dynamic
response.

As it is clear from Fig. 10, the level is kept by the controller at the set-point
of 0.5m during the whole test. To maintain this value, the controller increases the
output molar flow rate Ny, from zero until it finally stabilizes at 4.08 mols™!.
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5.5.2 Effect of Disturbances

The importance of the liquid-liquid equilibrium description is further underlined
with the analysis of the decanter under the effect of disturbances. The system,
reinitialized at the steady-state encountered during the study of the system start-
up, is subjected to various disturbances at instants t = 6 h and + = 18 h. Figure 11
reveals the evolution of the key variables describing the system behavior in such
situations. The ester composition in the heavy phase and the glycerol composition
in the light phase were omitted from the graphs because they remained very low
(approximately zero) throughout the whole test.

At instant + = 6h, the mixture that constitutes the feed is replaced by a
mixture richer in ester (that is, the feed is changed from mixture A to mixture B).
Therefore, the feed composition changes to xj, = [0.47 0.43 0.10]. In view of this
new condition, the neural network foresees a new liquid-liquid equilibrium and, in
accordance, updates the split fractions to & = [0.9998 0.4283 0.0069]. It is worth
mentioning that the ester and glycerol split fractions for the light phase do not suffer
significant changes. However, the methanol split fraction increases substantially.

Mixture B is poorer in methanol than mixture A. This reduces the amount of
methanol going to both phases inside the decanter. However, the new feed originates,
in parallel, a bigger split fraction to the light phase for methanol. A bigger methanol
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Fig. 11 Profiles of the state variables and molar flow rate of the heavy phase under disturbances
to the operation



Development of a Numerically Efficient Biodiesel Decanter Simulator 103

split fraction induces a bigger amount of methanol going to the light phase. This
second effect overlaps the first and, in consequence, the amount of methanol going
to the light phase increases as a result of the disturbance introduced at ¢+ = 6 h. The
total molar amount moving into the light phase also increases as a consequence of
this disturbance (because of methanol but, especially, because of ester). Although
this fact tends to reduce the molar fraction, the increase in the amount of methanol
is enough to impose an increase in methanol molar fraction, as shown in Fig. 11.
Therefore, the amount of methanol going to the heavy phase decreases as a result
of the introduced disturbance. However, since the total molar amount going to the
heavy phase decreases (because of smaller methanol and glycerol contributions),
the molar fraction of methanol increases as Fig. 11 reveals.

The amount of ester going to the light phase increases, but its molar fraction
decreases due to the more significant effect of the overall amount increase in the
light phase (namely methanol and ester). In what concerns the molar fraction of
glycerol in the heavy phase, it diminishes (see Fig. 11). On one hand the amount of
this component passing to the heavy phase is less and, on the other, the total molar
amount of the heavy phase is higher.

To keep the level at the set-point, the flow rate N, is changed. Once the rates
of methanol and glycerol sent to the heavy phase are smaller, the controller has to
lower the flow Ny, in order to be able to maintain the level at its set-point.

After having reached a steady-state, at # = 18 h the feed temperature is reduced
from 60°C to 30°C. This disturbance changes again the component distribution
(the split fraction becomes & = [0.9999 0.3677 0.0041]). For this new operating
conditions, the fraction of the inlet methanol that goes to the heavy phase is higher,
inducing an increase of the methanol molar fraction and a larger glycerol dilution,
that is, a decrease in glycerol molar fraction in the heavy phase.

At the same time, the methanol molar fraction to the light phase decreases.
Consequently, a smaller rate of methanol is directed to this phase whilst the molar
rates of the other two components remain practically unchanged. Therefore, the
molar fraction of methanol and ester in the light phase augments and diminishes,
respectively.

The level controller increases again the flow rate since the rate of methanol sent
to the heavy phase has also increased as a result of this second disturbance.

6 Conclusions

Process dynamic simulation and model based control of a phase separator in
biodiesel industry require a mechanistic dynamic model of the unit and, therefore,
a way of quantifying the liquid-liquid equilibrium. The flash calculation typically
used to describe the liquid-liquid equilibrium is inadequate in this situation because
it is an iterative method. Thus, it is suggested here to approximate the flash
calculation by an artificial neural network of the type feedforward back-propagation
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that predicts the separation of the initial ternary mixture composed of ester,
methanol and glycerol as a function of the compositions and the temperature.

With this approach, an iterative calculation subject to a stop condition based on
comparison of adjacent predictions was avoided. Moreover, it enables the use of
automatic differentiation tools to facilitate the resolution of nonlinear optimization
problems. These advantages were achieved without jeopardizing the quality of
the global model since the predictions of the split fractions obtained by the
neural network model reproduce well the equilibrium data obtained by the flash
calculation. Additionally, the computation time was significantly reduced with the
use of the neural network by avoiding the typical iterative process of the flash
calculation.

In order to investigate the impact of the phase equilibrium described by a neural
network on the model of the decanter (needed for example for optimization or
for model control of the unit) a set of dynamic simulations were conducted. A
first-principle model was used to predict the dynamic behavior of the system in
closed loop. The on-line results from the developed network were incorporated in
the model. It was possible to describe the decanter behavior in a computationally
effective way, compatible with objectives of dynamic optimization and model based
control of the real unit.
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Determination of (0, 2)-Regular Sets in Graphs
and Applications

Domingos M. Cardoso, Carlos J. Luz, and Maria F. Pacheco

Abstract In this paper, relevant results about the determination of («k, t)-regular
sets, using the main eigenvalues of a graph, are reviewed and some results about the
determination of (0, 2)-regular sets are introduced. An algorithm for that purpose is
also described. As an illustration, this algorithm is applied to the determination of
maximum matchings in arbitrary graphs.

1 Introduction

All graphs considered throughout this paper are simple (with no loops nor multiple
edges), undirected and have order n. V(G) = {1,2,...,n} and E(G) denote,
respectively, the vertex and the edge sets of G and ij represents the edge linking
nodes i and j of V(G). If i € V(G), then the vertex set denoted by Ng(i) =
{j € V(G) : ij € E(G)} is called neighbourhood of i. Additionally, Ng[i] denotes the
closed neighbourhood of vertex i (that is, Ng[i] = Ng(i) U {i}). Given a graph G
and a set of vertices U C V(G), the subgraph of G induced by U, G[U], is such that
V(GIU]) = U and E(G[U]) = {ijj: i,j € U Aij € E(G)}. A (k, T)-regular set of a
graph is a vertex subset inducing a k —regular subgraph such that every vertex not in
the subset has t neighbours in it, [2].
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The adjacency matrix Ag = [a;] of G is the n x n symmetric matrix such that
a; = 1if ij € E(G) and a; = 0 otherwise. The n eigenvalues of Ag are usually
called the eigenvalues of G and are ordered A,,,,(G) = A{(G) > --- > A, =
Amin(G). These eigenvalues are all real because Ag is symmetric. It is also known
that, provided G has at least one edge, we have that 4,,;,(G) < —1 and, furthermore,
Amin(G) = —1 if and only if every connected component of G is complete, [4].
The multiplicity of A; as eigenvalue of G (and, consequently, as eigenvalue of Ag)
is denoted by m(A;). Throughout this paper, o(G) will denote the spectrum of G,
that is, the set of G’s eigenvalues together with their multiplicities. The eigenspace
associated to each eigenvalue A of G is denoted by &5(A).

An eigenvalue of a graph G is main if its associated eigenpace is not orthogonal to
the all-one vector j. The vector space spanned by such eigenvectors of G is denoted
Main(G). The remaining (distinct) eigenvalues of G are referred to as non-main.
The dimension of &5 (A;), the eigenspace associated to each main eigenvalue A; of
G, is equal to the multiplicity of A;. The index of G, its largest eigenvalue, is main.
The concepts of main and non-main eigenvalue were introduced in [4]. An overview
on the subject was published in [5].

Given a graph G, the line graph of G, which is denoted by L(G), is constructed
by taking the edges of G as vertices of L(G) and joining two vertices in L(G) by an
edge whenever the corresponding edges in G have a common vertex. The graph G
is called the root graph of L(G).

A stable set (or independent set) of G is a subset of vertices of V(G) whose
elements are pairwise nonadjacent. The stability number (or independence number)
of G is defined as the cardinality of a largest stable set and is usually denoted
by @(G). A maximum stable set of G is a stable set with «(G) vertices. Given a
nonnegative integer k, the problem of determining whether G has a stable set of size
k is NP-complete and, therefore, the determination of «(G) is, in general, a hard
problem.

A matching in a graph G is a subset of edges, M C E(G), no two of which
have a common vertex. A matching with maximum cardinality is called a maximum
matching. Furthermore, if for each vertex i € V(G) there is one edge of the matching
M incident with i, then M is called a perfect matching. It is obvious that every perfect
matching is also a maximum matching. Notice that the determination of a maximum
stable set of a line graph, L(G), is equivalent to the determination of a maximum
matching of G. There are several polynomial-time algorithms for the determination
of a maximum matching of a graph.

The present paper introduces an algorithm for the recognition of (0,2)-regular
sets in graphs and the application of this algorithm is illustrated with the determina-
tion of maximum matchings through an approach involving (0,2)-regular sets.
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2 Main Eigenvalues, Walk Matrix and (k, 7)-Regular Sets

We begin this section recalling a few concepts and surveying some relevant results.

If G has p distinct main eigenvalues (1, ..., i, the main characteristic polyno-
mial of G is
p
mg(A) = AP — AT A Cp2A —Cpo1 = l_[()k — ).

i=1

Theorem 1 ([S]) If G is a graph with p main distinct eigenvalues iy, . .., [y, then
the main characteristic polynomial of G, mg(A), has integer coefficients.

Considering Ag, the adjacency matrix of graph G, the entry al(.ik ) of A is the
number of walks of length k from i to j. Therefore, the n x 1 vector A"j, gives the
number of walks of length k starting in each vertex of G. Given a graph G of order
n, the n x k walk matrix of G is the matrix Wy = (j, Aj,A%j, ..., A" 1j). If G has p
distinct main eigenvalues, the n x p walk matrix

W =W, =(,Aj,A4%,....A""j)

is referred to as the walk matrix of G. The vector space spanned by the columns of W
is called Main(G) and it coincides with the vector space spanned by vy, ..., v, with
v; € (i) and vij # 0,i = 1,...,p. The orthogonal complement of Main(G)
is denoted, as expected, Main(G)*. Notice that both Main(G) and Main(G)* are
invariant under Ag.

Taking into account that

me(Ag) = 0 & ALj — oAl ' j — 1AL Pj — - — ¢paAGi — cpeij = 0, 1)

the following result holds.

Theorem 2 ([3]) If G has p main distinct eigenvalues, then

Cp—1

where cj, with 0 < j < p — 1, are the coefficients of the main characteristic
polynomial of G.

It follows from this theorem that the coefficients of the main characteristic
polynomial of a graph can be determined solving the linear system

Wx = AFj.
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Proposition 1 ([2]) A vertex subset S of a graph G with n vertices is (k, T)-regular
if and only if its characteristic vector is a solution of the linear system

(Ag — (kK = D)ly)x = 1j. 2)

It follows from this result that if system (2) has a (0, 1)-solution, then such solution
is the characteristic vector of a (x, t)-regular set. In fact, let us assume that x is a
(0, 1)-solution of (2). Then, for all i € V(G),

o (kifies
(Ae);x = ING(i) 1 5] = { ey

Next, we will associate to each graph G and each pair of nonnegative numbers,
(k, 7), the following parametric vector, [3]:

p—1

go(k.1) = Y AL, 3)
j=0
where p is the number of distinct main eigenvalues of G and ay,...,a,—1 is a
solution of the linear system:
k=t 0 ... 0 —cp o 1
-1 k—7... 0 —cp o 0
0 -1 ... 0 —c3 =-7|:|. @
. . .. . o 0
0 0 ...-lk—1—09 Qp—1 0

The following theorem is a slight variation of a result proven in [3].

Theorem 3 ([3]) Let G be a graph with p distinct main eigenvalues jiy, ..., . A
vertex subset S C V(G) is (k, T)-regular if and only if its characteristic vector x(S)
is such that

x(S)=g+q,
with
p—1

8= Z A},
=0

(@0, ..., 0p_1) is the unique solution of the linear system (4) and if (k — t) ¢ 0(G)
then g = 0 else q € &g(k — v) and k — T is non-main.
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3 Main Results

An algorithm for the recognition of (0, 2)-regular sets in general graphs is intro-
duced in this section. Such algorithm is not polynomial in general and its complexity
depends on the multiplicity of —2 as an eigenvalue of the adjacency matrix of
Ag. Particular cases for which the application of the algorithm is polynomial are
presented.

Theorem 4 [f a graph G has a (0, 2)-regular set S, then |S| = j g5(0,2).
Proof Supposing that S C V(G) is a (0, 2)-regular set, according to Theorem 3, its

characteristic vector xg verifies
xs = 86(0,2) +q.
Therefore,
S| =j"xs = §"'26(0.2) +j"q.

Since q = 0 or q € &;(k — 1) with x — T non-main, the conclusion follows. O

The following corollary provides a condition to decide when there are no (0, 2)-
regular sets in G.

Corollary 1 IijgG(O, 2) is not a natural number, then G has no (0, 2)-regular set.
Now let us consider the particular case of graphs where m(—2) = 0.

Theorem 5 If G is a graph such that m(—2) = 0, then G has a (0, 2)-regular set if
and only if g;(0,2) € {0,1}".

Proof According to Theorem 3, since —2 is not an eigenvalue of G, there is a (0, 2)-
regular set S C V(G) if and only if xg = g. O

Considering a m x n matrix M and a vertex subset I C V(G), M’ denotes the
submatrix of M whose rows correspond to the indices in /.

Theorem 6 Let G be a graph of order n such that m(—=2) > 0 and let U be the
n X m matrix whose columns are the eigenvectors of a basis of &G(=2). If there is
v € V(G) such that U" (where N = Ng[v] = {v,v1,...,v}) has maximum rank,
then it is possible to determine, in polynomial time, if G has a (0, 2)-regular set.

Proof According to the necessary and sufficient condition for the existence of a
(k, T)-regular set presented in Theorem 3, a vertex subset S C V(G) is (0, 2)-regular
if and only if its characteristic vector x;s is of the form

Xs = gG(Os 2) +4q,
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where g is defined by (3) and (4). Setting q = UpB, where § is an m-tuple of scalars,
such scalars may be determined solving the linear subsystem of xs = g 4 q :

x =g"+U"B,

for each of the following possible instances of xg :

(xs)y = 1 and then (xs5),, =0,Vi=1,...,k;
(xs)» = 0 and then one of the following holds:

(xs)v, = (x5)v, = L and (x5)y, = 0, Yv; € Ng [v] \{v1, v2};
(xs)v, = (x5)v; = 1 and (xs)y;, = 0, Yv; € Ng [v] \{v1, v3};

0, Yv; € Ng [v] \{v1, v};
0, Yv; € Ng [v] \{v2, v3};
0, Yv; € Ng [v] \{v2, va}:

(k) = (xs), = 1 and (xs)y,
(x)uy = (x5)ey = 1 and (xs),,

(XS)vz = (xS)v4 = l and (XS)vz

(k)1 = (xs) = 1 and (xs),, = 0. Yo; € Ng [0] \{va, ve):

() vy = (x5)y, = 1 and (xs)y, = 0, Yv; € Ng [v] \{vk—1, vi};

If for any of the cases described above the solution B is such that the obtained entries
of vector xg are 0 — 1, then such xg is the characteristic vector of a (0, 2)-regular set.
If none of the above instances generates a 0 — 1 vector xg, then we may conclude
that the graph G has no (0, 2)-regular set. Notice that each of the (at most) 1 + (12‘)
linear systems under consideration can be solved in polynomial time, therefore it is
possible to determine in polynomial time if G has a (0, 2)-regular set. O

In order to generalize the procedure for the determination of (0, 2)-regular sets
to arbitrary graphs, it is worth to introduce some terminology. Let G be a graph
with vertex set V = {1,...,n} and consider I C V(G) = {ii, ..., in}. The m-tuple
X = (xi,,...,x,) € {0,1}" is (0, 2)-feasible if it can be seen as a subvector of a
characteristic vector x € {0, 1} of a (0, 2)-regular set in G. From this definition the
following conditions hold:

Vij (S NG(lr) ni, Xi; = 0 and
Vi € Na(ir): D rensongiy e = L:
@ Figelix, =0ANG() ST = Yoy ¥ = 2-

(1) i, elix, =1=

Using the (0, 2)-feasible concept and consequently the above conditions, we are
able to present an algorithm to determine a (0, 2)-regular set in an arbitrary graph or
to decide that no such set exists.

In the worst cases, steps 7—11 are executed 2™ times and, therefore, the execution
of the algorithm is not polynomial. There is, however, a large number of graphs for
which the described procedure is able to decide, in polynomial time, if there is a
(0, 2)-regular set and to determine it in the cases where it exists.
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Algorithm 1 To determine a (0, 2)-regular set or decide that no such set exists

Input: (Graph G of order n, m = m(—2) and matrix Q whose columns are the eigenvectors of a
basis of £5(—2)).

Output: ((0, 2)-regular set of G or the conclusion that no such set exists).

1.Ifj7g5(0,2) ¢ N then STOP (there is no solution) End If;

2.If m = 0, then STOP (xs = g(0,2)) End If;

3.IfJv € V(G) : rank(QV) < ds(v) + 1 (N = Ng[v]) then STOP (the output is a consequence
of the low multiplicity results) End If;

4. Determine I = {iy,...,in} C V(G) : rank(Q') = mand set g := g;(0,2);

5. Set NoSolution := TRUE;

6.Set X := {(x;,.... x;, ) which is (0, 2)-feasible for G} ;
7. While NoSolution A X # @ do
8. Choose (x;,, ..., x;,) € X and Set x' := (x;,,...,x;,)7;

9. Set X := X\ {x'} and determine B : x' =g’ + 0'B;

10.  Ifg+ 0B € {0, 1}" then NoSolution := FALSE End If;

11. End While

12. If NoSolution = FALSE then x := g 4+ Qf € {0, 1}" else return NoSolution;

14. End.
Example 1 Consider the graph G depicted in Fig. 1.

We will apply Algorithm 1 to determine a (0, 2)-regular set in G, a graph for
which m = m(-2) = 3.

Since

rank(j) =1,

rank(j Agj) = 2,

rank(j Acj (Ag)’j) = 2.

we have p = 2 distinct main eigenvalues of G.

Fig. 1 Graph G

12
13
13
14
14
14
14
13
13
12

W= (jAcj) =
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The solution of the linear system Wx = (A¢)?jis C = ( _42) , so the coefficients

of the main characteristic polynomial of G are ¢y = 4,¢; = 2.
Next, the coefficients of vector g € Main(G) will be determined.
Since

(k —T)ag = =T + @p—1Cp—1
and
(K - t)al =0+ Op—1Cp—2,
we have oy = &, 0y = —1, hence
0 - 7 1 = 7

0.2857
0.4286
0.2857
0.2857
0.4286
0.5714
0.4286
0.2857
0.4286
0.5714

g = agj + a1Agj =

Considering matrix Q whose columns ¢, g2, g3 form a basis for the eigenspace
associated to eigenvalue —2, we will proceed, searching for a vertex v for which the
submatrix of Q corresponding to Ns[v] has full rank.

0.4962 0.0345 —0.1431
—0.4962 —0.0345 0.1431
—0.4962 —0.0345 0.1431
0.2335 —0.1035 —0.5878
0.2626  0.1380 0.4446
0.2626  0.1380 0.4446
—0.2626 0.3795 —0.4446

0 -0.5175 O

0 —-0.5175 O

0 0.5175 0

The obtained results are summarized in the following table.
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v Ng(v) | Rank(Q"¢l’l)

12,3 1
2/1,4,5 2
31,4,6 2
42,3,5,6 2
52,4,7,8 3

It is obvious that the submatrix of Q corresponding to lines 2,4,5,7 and 8, the
closed neighbourhood of vertex 5, has full rank, so we will consider the subvector
of g and the submatrix of Q corresponding to I = Ng[5] = {2,4,5,7,8}.

0.4286 —0.4962 —0.0345 0.1431
0.2857 0.2335 —0.1035 —0.5878

g =|02857|.0' = 02626 0.1380 0.4446
0.2857 —0.2626 0.3795 —0.4446
0.4286 0 —05175 0

Supposing that G has a (0,2)-regular set S, there are two possibilities to be
considered: whether 5 € S or 5 ¢ S and there are 1+(;) possible instances (1) — (7)
for the entries of xg that correspond to N[5] (see next table).

Inst.| (xs)1|(xs)2|(xs5)3 | (x5)4 | (x5)5| (X5)6| (X5)7 | (x5)8 | (X5)9|(X5) 10
1) | = 0 * 0 1 * 0 0 * *

2)| = 1 * 1 0 * 0 0 * *
3) = 1 * 0 0 * 1 0 * *
@ = 1 * 0 0 * 0 1 * *
B)| = 0 * 1 0 * 1 0 * *
6) | = 0 * 1 0 * 0 1 * *
(7) | = 0 * 0 0 * 1 1 * *

Supposing that 5 € S, the entries of xg corresponding to I = {2,4,5,7, 8} are

(,JHN
|
S O = O O

and the solution of the subsystem

x5 =g + i@ + Ba(d)2 + Bs(d))s

is B1 = 1.0215, B, = 0.8281, B3 = 0.7461.
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Solving the complete system and calculating g + 8191 + B2g2 + B3gs for the
evaluated values of f1, B, and B3, the following result is obtained

xs =g+ Big1 + B2g2 + Bagz =

—_ O O O = = O O o

and S = {1,5,6,10} is a (0, 2)-regular set of G.

4 Application: Determination of Maximum Matchings

In this section, Algorithm 1 is combined with the procedure for maximum matchings
described in [1], to provide a strategy for the determination of maximum matchings
in arbitrary graphs. Such strategy is based on the determination of (0, 2)-regular sets
in the correspondent line graphs, in the cases where they occur, or on the addition
of extra vertices to the original graphs, in the situations where the line graphs under
consideration have no (0, 2)-regular sets.

Considering the graph described in Example 1 and the (0, 2)-regular set deter-
mined by Algorithm 1, it is easily checkable that it corresponds to a maximum
matching in graph G whose line graph is L(G). Both graphs are depicted in Fig. 2.

It should be noticed that, according to Theorem 7 in [1], a graph G which is not
a star neither a triangle has a perfect matching if and only if its line graph has a
(0, 2)-regular set.

We will now determine a maximum matching in a graph whose line graph does
not have a(0, 2)-regular set, which is equivalent to say that the root graph has no
perfect matchings, following the algorithmic strategy proposed in [1].

Fig. 2 Graphs L(G) and G
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2
2
3 %% ! 3 <\ 1
4 5 4
Example 2 Consider graphs G, and L(G)) both depicted in Fig. 3.
Since —2 is not an eigenvalue of L(G;), we will determine the parametric vector

2.6(0,2) in order to find out if its coordinates are 0 — 1. L(Gy) has two main
eigenvalues and its walk matrix is

Fig. 3 Graphs G; and L(G,)

11
12
12
11

The coefficients of the main characteristic polynomial of L(Gy), that are the
solutions of system Wx = Ay)J, are co = ¢; = 1. The corresponding solutions

of system (4), that is, the coefficients of gL(Gl)(O, 2), are ag = g and o; = —%.
Therefore,
0.8
. . 0.4
2.6)(0,2) = aoj + 1Al = 0.4
0.8

and it can be concluded that the graph L(G) has no (0, 2)-regular sets. In order
to determine a maximum matching in G, we will proceed as it is proposed in [1].
Since G| has an odd number of vertices, a single vertex will be added to G| and
connected to all its vertices. The graph G, and its line graph L(G>), depicted in
Fig. 4, are obtained.

Repeating the procedure described in Algorithm 1 (now applied to L(G3)), we
have that m(—2) = 3 and p = 4. It is also easy to verify that co = 5,¢; = 1,¢;, =
—6 and c¢3 = 0 are the coefficients of the main characteristic polynomial of L(G>).
The solution of system (4) is g = 1,y = —2.0p = £.a3 = —3; and the
corresponding parametric vector g, (0, 2) is
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5 6

Fig. 4 Graphs G, and L(G;)

0.6
0.4
0.4
0.4
81(62)(0.2) = aoj + 1ALy + ©2(ALGy) S + a3(ALey)’i = | 0.2
0.6
04
0

0

We will now consider matrix Q, whose columns form a basis for the eigenspace
associated to the eigenvalue —2 of L(G).

0.2241 0.4458 0.2260
—0.2241 —0.4458 —0.2260
0.3176  —0.4525 —0.3072
—0.41150.3651 —0.3121
0 =1 0.0939 0.0875 0.6193
—0.1302 —0.3583 0.3933
0.1302 0.3583 —0.3933
—0.5416 0.0068 0.0812
0.5416 —0.0068 —0.0812

Searching for a vertex of degree > 2 in L(G,) whose closed neighbourhood
corresponds to a submatrix of Q with maximum rank, the following table is
obtained.
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VNG, (v)  rank(QVHel’])
112,3,8
2/1,5,7,8,9
31,4,5,8
413,5,6,9
52,3,4,7,8,9
6/4,7,9
72,5,6,8,9
81,2,3,5,7,9
912,4,5,6,7,8

W W W N W W W w N

It is evident that the closed neighbourhood of vertex 2 verifies the mentioned
requirements and we will proceed considering the subvector of g and the submatrix
of Q whose lines are the elements of Ny(c,) [2] .

0.6 0.2241 0.4458 0.2260
0.4 —0.2241 —0.4458 —0.2260
of = 0.2 o = 0.0939 0.0875 0.6193
04|’ 0.1302 0.3583 —0.3933
0 —0.5416 0.0068 0.0812
0 0.5416 —0.0068 —0.0812

Supposing that L(G) contains a (0,2)-regular set, there are 1+(§) possible
instances for the entries of xg that correspond to N, [2]. One of them is

(xs)1|(x5)2 | (x5)3 | (x5)4| (x5)5 | (X5)6 | (X5)7 | (X5)8| (X5)9
0 1 x | 0 «= 0 0 0

Assuming that 2 € S, the entries 1,2, 5,7, 8, 9 of xg must be of the form

S
|
cocoo~o

and the solution of the subsystem

Xk =g 4 i@ + Ba(d)a + Ba(d))s

is B1 = —0.0367, B> = —1.2566, B3 = —0.1399.
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Solving the complete system xs = g + Big1 + B292 + B3g3 and computing
g + Big1 + B2g2 + B33, we obtain

xs =g+ Big1 + Bag2 + B3gs =

S O O = OO = = O

and S = {2,3,6} is a (0,2)-regular set of L(G;). The resulting (0, 2)-regular
set S corresponds to the perfect matching of G,: M* = {{1,4},{2,5},{3,6}}.
Therefore, intersecting the edges of M* with the edge set of the root graph G, a
maximum matching of G

M = {{1,4}.{2,5}},

is determined.

5 Final Remarks

The aim of this paper is the introduction of an algorithm for the determination of
(0,2)-regular sets in arbitrary graphs. In Sect. 2, an overview of the most relevant
results about the determination of (k, 7)-regular sets using the main eigenspace of
a given graph is presented. Such results were introduced [3]. In Sect. 3, several
results that lead to the determination of (0, 2)-regular sets are introduced and a new
algorithm that determines a (0, 2)-regular set in an arbitrary graph or concludes that
no such set exists is also described. Section 4 is devoted to the application of the
introduced algorithm to the determination of maximum matchings.

Despite the interest of the introduced techniques for the determination of (0, 2)-
regular sets in general graphs, their particular application to the determination of
maximum matchings is not efficient in many cases. The use of these techniques
in this context is for illustrating the application of the algorithm. It remains as an
open problem, to obtain additional results for improving the determination of (0, 2)-
regular sets in line graphs.
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A Multiobjective Electromagnetism-Like
Algorithm with Improved Local Search

Pedro Carrasqueira, Maria Jodo Alves, and Carlos Henggeler Antunes

Abstract The Multiobjective Electromagnetism-like Mechanism (MOEM) is a rel-
atively new technique for solving continuous multiobjective optimization problems.
In this work, an enhanced MOEM algorithm (EMOEM) with a modified local
search phase is presented. This algorithm derives from the modification of some key
components of MOEM including a novel local search strategy, which are relevant
for improving its performance. To assess the new EMOEM algorithm, a comparison
with an original MOEM algorithm and other three multiobjective optimization
state-of-the-art approaches, OMOPSO (a multiobjective particle swarm optimiza-
tion algorithm), MOSADE (a multiobjective differential evolution algorithm) and
NSGA-II (a multiobjective evolutionary algorithm), is presented. Our aim is to
assess the ability of these algorithms to solve continuous problems including
benchmark problems and an inventory control problem. Experiments show that
EMOEM performs better in terms of convergence and diversity when compared
with the original MOEM algorithm. EMOEM is also competitive in comparison
with the other state-of-art algorithms.

1 Introduction

In the last two decades several meta-heuristics have been developed to address
multiobjective optimization problems. The importance of multiobjective models
in practical applications and the difficulties that arise in their resolution have
fostered research in this field. In general, these problems have an extensive
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set of non-dominated solutions, which may be difficult to compute. In addition
to multiobjective evolutionary algorithms (MOEA), such as NSGA-II [5], other
population-based meta-heuristics as particle swarm optimization (MOPSO), differ-
ential evolution (MODE) and electromagnetism-like mechanism (MOEM) have also
been proposed. These approaches were initially developed to solve single objective
optimization problems and then adapted to multiobjective optimization.

Particle Swarm Optimization (PSO) is inspired on the behavior of some species,
such as bird flocks when they are looking for food [10]. Population members
move themselves based on their own experience and the experience of their
neighbors. Several researchers have proposed modifications to the initial algorithm
and later this approach was extended to solve multiobjective optimization problems
(MOPSO). Most of these approaches rely on the Pareto Dominance concept. Among
these, OMOPSO [15] has been considered one of the most competitive MOPSO
algorithms [7].

In Differential Evolution (DE) [16] population members evolve through a mech-
anism based on solution vector differences aimed at capturing fitness landscape.
Despite its simplicity, this mechanism proved to be very effective [14]. The
adaptation of the algorithm to solve multiobjective optimization problems only
requires a slight modification of the selection mechanism. In the last decade, several
versions of multiobjective DE approaches (MODE) have been developed. Some
of them solve the problem as a single objective problem by encompassing the
multiple objective functions into a scalar function, but most MODE algorithms are
Pareto-based approaches. In addition, some of these algorithms adopt mechanisms
of multiobjective evolutionary algorithms, namely non-dominated sorting [5] and
diversity preserving techniques based on the crowding measure. In [11], a review
of the state-of-the-art of MODE algorithms is presented. MOSADE [22] is a
recently developed algorithm that incorporates self-adaptation of the parameters and
a crowding entropy strategy, which is able to measure the crowding degree of the
solutions more accurately.

The Electromagnetism-like mechanism (EM) is a recent meta-heuristic intro-
duced in [3] and research has been conducted concerning EM applications to
single objective continuous optimization problems. This approach is inspired by the
attraction-repulsion mechanism of the electromagnetism theory. After initialization,
the EM algorithm is composed by three main steps: local search procedure, indi-
vidual force vector evaluation and population individuals’ movement. Concerning
single objective optimization, several different designs of these components have
been proposed [13, 25]. The performance of the EM algorithm is strongly dependent
on these components. The individual force vector evaluation and the movement
of the population individuals are influenced by all the other population members.
In contrast, applying local search procedure to a selected individual does not use
information about the other individuals. The local search procedure is therefore a
decisive component of the performance of an EM algorithm.

EM was adapted to solve multiobjective problems by Tsou and Kao [19]. This
algorithm, which we will denote hereafter by MOEM, was also used to solve
an inventory control problem in [20, 21]. As in the single objective case, the
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MOEM algorithm relies on the individual force vector evaluation, the population
individuals’ movement and the local search process. Aiming to improve MOEM
performance, we have developed an Enhanced MOEM algorithm (EMOEM) [4] in
which the individual force vector and the position updating process were modified
in order to overcome some difficulties experienced by the MOEM algorithm. In
the present work, we propose a new version of the EMOEM algorithm, which
incorporates an improved local search strategy. This strategy uses the Hooke and
Jeeves’s algorithm [9], which has been successfully applied to single objective
optimization [17] and to multiobjective optimization [12]. The new EMOEM
algorithm is compared with MOEM [19], OMOPSO [15], MOSADE [22] and
NSGA-II [5] algorithms. The results obtained confirm that EMOEM outperforms
the MOEM algorithm. Also, it is very competitive with respect to the other state-of-
the-art algorithms.

The remainder of the paper is organized as follows. In Sect.?2 the formulation
of a continuous multiobjective optimization problem is presented. In Sect. 3, the
OMOPSO, MOSADE and NSGA-II algorithms are briefly described. In Sect. 4 the
new EMOEM algorithm is presented. In Sect.5, results are analyzed. Section 6
provides some conclusions and future work directions.

2 Multiobjective Optimization

A multiobjective optimization problem is defined as

Minf () = ((i(Z). (T Su(F))
StX €9, (1)
2={F eRgi(X) <0, i=12,---,p},

— . . . ..
where f (X) is the vector of objective functions to optimize, ¥ = (x|, X2,-+ ,Xq)
is the decision vector, d is the number of variables and g,-(?) <0,i=12,---,p
are the constraints.

Definition 1 A vector ¥ € £2 dominates a vector y € 2 and we say T <V, if
(X)) <f(V). Yi=1,-- mandF € {1,--- ,m}: [i(X) <f(I).

Definition 2 A solution ¥ € £2 is said efficient if 7Y € £ : ¥ < X. The
corresponding objective point 7)(7) is a non-dominated point.

These definitions are valid for minimization problems. Similar definitions can be
derived for maximization problems. The set of all non-dominated solutions to a

multiobjective optimization problem is called the Pareto optimal front. Our goal is
to approximate the entire Pareto optimal front of the problem.
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3 Description of State-of-the-Art MOEA, MOPSO
and MODE Algorithms

3.1 NSGA-II Algorithm

NSGA-II [5] is a well-known multiobjective evolutionary algorithm representative
of the state-of-the-art of its class. The algorithm uses the genetic operators crossover,
mutation and selection to generate a new population. A non-dominated sorting
mechanism is introduced to rank population members by non-dominated fronts.
Also a crowding distance operator is applied to each population member to sort
individuals within the fronts by decreasing order of the crowding distance. At each
generation the algorithm starts by creating the new population of n individuals
using the genetic operators. Then, the old and new populations are joined. The
resultant population is ranked and sorted by non-dominated fronts using a fast
sorting mechanism. The individuals in the same front are sorted by decreasing order
of their crowding distance. The best n individuals are selected to create the new
population for the next generation. This process continues until the stop criterion is
reached, and the final population is presented.

3.2 OMOPSO Algorithm

The PSO algorithm is usually initialized with a population of n randomly generated
particles. Each particle is assigned a “velocity” operator that indicates the direction
and amplitude of the particle movement resulting from the combination of the
directions of the best position so far achieved by the particle (pbest;) and the best
position attained by the whole population (gbest). In multiobjective optimization,
pbest; and gbest are not unique. Each particle X; moves itself in the k iteration
according to the expressions

7?“ = w?f + cirand() (pbest; — 75‘) + cyrand()(gbest — 75‘) 2)

T =R T i = 1,2, 0 3)
where w, ¢; and ¢, are parameters of the algorithm, rand( ) is a random uniform
value in the interval [0, 1] and » is the number of particles in the population. The
way that parameters w, ¢; and ¢, are defined during the execution of the algorithm
depends on the MOPSO version. In case of OMOPSO [15], these parameters are
randomly chosen, in each iteration, within a predefined interval: w € [0.1, 0.5] and
c1, ¢ € [1.5,2]. Other features of OMOPSO are the following, some of them being
shared with other MOPSO algorithms.

* A new particle i replaces its pbest; if pbest; is dominated by the new particle or
both are non-dominated with respect to each other.
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* Non-dominated particles are stored in an external archive. This archive has a
predefined size. When the capacity of the archive is reached, one particle is
inserted into the archive after deleting a particle from the archive.

* A crowding distance [5] is assigned to each particle of the external archive. This
measure is used to select the leader (gbest;) of each population member and to
select a particle of the external archive to be replaced when the archive is full.

* A mutation operator named turbulence is used, with a certain probability.
This operation is performed after the execution of operations (2) and (3). The
population is split in three parts. One third is applied a uniform mutation, another
third is applied a non-uniform mutation and the last third of the population is not
changed.

* An additional archive is used in [15]. This archive is the output of the algorithm,
and results from applying the concept of € —dominance to the external archive of
non-dominated particles. This mechanism limits the size of the non-dominated
archive. In further implementations of OMOPSO algorithm, this additional
archive has not been considered [7]. We also do not use this archive.

The OMOPSO algorithm has been compared with other MOPSO and MOEA
algorithms in [7] and due to its good performance OMOPSO has become one of
the representatives of the state-of-the-art MOPSO approaches. The pseudo code of
the OMOPSO algorithm is presented in Algorithm 1.

Algorithm 1 OMOPSO pseudo code

1: Initialize iteration counter, k = 1
2: Randomly initialize each population 1nd1v1dual k and its velocity v Ji=1,---,n

¥, evaluating f (x ) (}‘1(7{-‘),]2(7?‘),"' 9fm(7f’{))9 i =

[S¥]

: Assess each particle Ed
1,---.,n
4: Initialize pbest; as the individual particle ?f‘z =1,,n
5: Insert non-dominated particles into external archive
6: Sort archive members by decreasing order of crowding distance
7
8
9

: while stop criterion is not met do

fori=1,---, ndo

: Select the leader gbest;
10: Update particle velocity v k+1 , using (2)
11: Update particle position X f+ , using (3)
12: Mutate particle x'; E4aE
13: Assess the particle ¥ _) k1 evaluatingf(?erl)
14: Update pbest; of pamcle i
15: end for
16: Update external archive of non-dominated solutions
17: Sort archive members by decreasing order of crowding distance

18: end while
19: Return archive of non-dominated solutions
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3.3 MOSADE Algorithm

In Differential Evolution (DE) a random generated population evolves based on
three mechanisms: mutation, recombination and selection. There are a number of
different ways to define such operations. We will consider the parameterization
DE/rand/1/bin. It means that each basis solution is randomly chosen, the mutation
operator uses only one vector and the binomial distribution is applied in the
crossover operation.

At each generation k and for each solution i, the algorithm starts by applying a
mutation operator. To perform this operation, three individuals of the population are
randomly chosen, say ry, r, and r3. A new solution is built, which is called the donor
vector:

—>k+1 =k +F( _—>k (4)

LK)

where F > 0 is the mutation parameter. This parameter controls the extent of the
movement performed. Low values of F favor exploitation and high values favor

exploration. Then, a recombination operatlon is apphed The trial vector _)kH is

developed based on the elements of the vector X and the donor vector _v)f.‘“.

e _ k,+1 if rand(j) < CR or j = randint(i) =1 d )
v x’.‘- if rand(j) > CR and j # randint(i) ’ T

ij

where rand(j) ~ UJ[0, 1], CR is the recombination probability and randint is a
random integer between 1 and d. To decide which solution will survive to the next
generation, a selection operation is performed.

In MOSADE algorithm [22], the selection operation considers the Pareto dom-
inance between two individuals and, in case they are non-dominated with respect
to each other, the least crowded solution is selected. This operation is given by the
expression

_)k lf —)k+l
u;
—x>;<+l — —>k+1 lf —>k+1 —>k (6)
LC(—u)k-l-l —>k) lf —>k+1 <> _>k

where LC (T]f“,?f) means the less crowded individual 75‘ or _u)fH, if they do
not dominate each other (<>).

In MOSADE, non-dominated particles found are stored in an external archive.
The solutions in this archive are distinguished in terms of a diversity preserving
mechanism. The authors [22] introduce a new mechanism called crowding-entropy
operator based on the crowding distance proposed by Deb et al. [5] that aims at
a better diversity of solutions in the non-dominated external archive. The entropy
concept is employed to describe the distribution of a solution along each one of
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Algorithm 2 MOSADE pseudo code

1: Initialize iteration counter, k = 1
2: Random initialize each population 1nd1v1dua1 7" ,i=1,--,n

3. Assess each particle 7{‘ evaluating f (@ =@ (7{-‘),]’2 (7{-‘), coo S (7?)), i =
1,---.,n

4: Initialize external archive of non-dominated solutions

5: while stop criterion is not met do

6: fori=1,---, ndo

7: Randomly select ry,r, and r3 € {1,2,--- ,n}

8: Create the donor vector _>k+l by mutation using @

9: Create the vector 1 ,-+ by recombination of X Kand v _>k+1 using (5)

10: Assess _u>kJrl evaluating 7)(_)k+1)

11: Perform selection between "X _>k and i _)H'l to define "X _>k+1 , using (6)

12: end for

13: Update external archive of non-dominated solutions

14: end while
15: Return archive of non-dominated solutions

the objectives. If a point is located in the middle of its neighbors, it has a better
distribution than a point with the same average distance but which is near one
neighbor and far from another. The parameters F' and CR are set independently
for each individual and they are self-adaptive. This means that if one solution has
not been improved during a certain number of generations, the F and CR parameters
assigned to that solution are recalculated in a random manner within a predefined
range. The authors argue that the DE algorithm is very sensitive to parameter values
and with this strategy the parameters do not need to be fine tuned. The MOSADE
algorithm was also designed to solve constrained problems. The mechanism to deal
with constraints presented in [5] is adopted in MOSADE. This mechanism is based
on the non-dominance concept and the total amount of constraint violation, for
each individual. This approach was tested on benchmark problems and it obtained
competitive results. The pseudo code of the MOSADE algorithm is presented in
Algorithm 2.

4 Multiobjective Electromagnetism-Like Mechanism
Algorithms

4.1 MOEM Algorithm

The first attempt to design a MOEM algorithm was presented in [19]. The algorithm
is based on three main components: individual charge, total force, and local
search procedure. The algorithm starts with a randomly generated population of
individuals. Then, the population evolves by local search and population movement
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based on the computation of individual charges and attraction/repulsion forces, until
a predefined criterion is met.

The local search procedure is applied to each particle of a local archive S. Each
variable of the particle is changed by a random value. When all the variables have
been changed the particle is evaluated. If the new generated particle dominates the
old particle, this is replaced. The process is repeated [siter times for each particle in
each generation.

The charge of an individual depends on its objective function values and the ones
of all other population members. In MOEM, the charge of a particle i is given by

minz s |7 (30 = 7 ()]

S yming 5 [ F (F) - 7 (Xl

q; = exp(—d i=1,---,n @)

where S is the local archive, which is a subset of the external archive that stores the
non-dominated solutions found by the algorithm.

In the Coulomb‘s Law, the force exerted between two particles is inversely
proportional to the square of their distance and directly proportional to the product
of their charges. The individual force that each X; exerts on another X ; resembles
this principle as it is given by (8):

—> - qi9j g —
. (Xi= X555 if Xi<X;
Flj — ” X X/”
=y > - qiqj .
(X;—X)i=>—%5-; otherwise
%=

LG #D ®)
The total force exerted on individual i is the sum of individual forces:
Fi=YTFi 9)
J#i
After obtaining the total force vector the movement of each individual i is performed

according to expression (10)

FL _ . i
- _ x4+ A 5 (u, —xXX) if F1 >0
ir xﬁ.}.A”;)_',”(xfr—lr) lfF:,fO

r=1,---,d (10)

where A is a random number such that A ~ U(0, 1) and /,, u, are the lower and upper
bounds for each component r of particle X ;, respectively. F' ! is the r — component
of the total force exerted on individual i.

The non-dominated particles obtained during the algorithm execution are stored
in the external archive. In [19], the clustering technique proposed in [23] was used
to maintain the diversity of the non-dominated archive.
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The main steps of the MOEM algorithm are described in Algorithms 3 and 4
details the local search procedure.

Algorithm 3 MOEM pseudo code

1: Initialize iteration counter, k = 1

2: Randomly initialize each population individual ?f‘ i=1,---,n
—
3. Assess each particle 7{‘ evaluating  f (?f) = (fi (?f),fz(?f), e ,f;,,(?ff)), i =
1,---.,n
4: Insert non-dominated particles into archive A
5: while stop criterion is not met do B B
6: Randomly select the particles to insert into the local archive S from archive A
7 Do local search in §
8: fori=1,---, ndo
9: Compute the charge (g;) of the particle i using (7)
—.
10: Compute total force ( F' ') exerted on particle i using (8) and (9)
11: Move particle i using (10) B
12: Update non-dominated archive A
13: end for

14: end while B
15: Return non-dominated archive A

Algorithm 4 Local Search (MOEM) pseudo code
1: length = § - (maxy=1 ... a{ux — Ix})

2: fori=1,---, |S| do
3: Initialize local search counter, count = 0
4 while count < Isiter do
5: _Z) = ?,’
6: fork=1,---, ddo
7. Select two random values A1, A, € [0, 1]
8: if A; > 0.5 then
9: 2 = zx + Ay X length
10: else
11: 2k = zx — Ao X length
12: end if
13: end for
14: if 7 < 7,»~then N
15: Update A with 7
16: 72,’ . _Z>
17: end if
18: count = count + 1

19: end while
20: end for
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4.2 EMOEM Algorithm

The EMOEM algorithm proposed in [4] modified some of the main components of
the MOEM algorithm. In MOEM, the movement of each particle (10) is influenced
by its force vector (8-9), which depends on the charges of all the other particles
of the population (7). As can be observed in (7), the charge is computed using the
number of variables (d) as a correcting factor, in order to emphasize the differences
among individuals. However, the differences of charge values between particles
performing very different in the objective space could vanish when the ratio of
the number of variables to the population size is small. In the enhanced algorithm
EMOEM, the number of variables is replaced by the population size in the factor
used for the charge computation. Thus, in EMOEM the charge is obtained using the
expression (11).

minz s |7 (30 = 7 (%))l

Sy ming s |7 (F) - 7l

qi = exp(—n

i=1,,n (11)

Using (11) the range between poor and better performing particles is extended, as
the weaker particles diminish their charges and the stronger ones increase theirs.

In addition, the movement expression (10) has also been changed. In MOEM, the
individual movement may be performed in a different direction from that indicated
by the force vector for two reasons. The first reason is: each coordinate of the force
vector is multiplied by the corresponding coordinate of a range vector, the limits of
which are X; and one of the variable lower/upper bounds. As the range vector has
not all coordinates equal, the direction of the movement is changed. An example
of this situation is represented in Fig. 1, where the dashed vectors represent the
direction of the force vector. This situation always occurs except when the distance
from X; to the respective bounds is the same in all dimensions. The second reason
is that the chosen bound depends on whether the force is positive or negative. There
are many situations in which the individual force components have different signs.
In such situations different range vectors are used, which deviates the individual
from the direction indicated by its force vector. In sum, we conclude that in most
cases the direction of movement is different from the direction defined by the force.
This may bias the particle movement.

To overcome the limitations of the individual updating process in the MOEM
algorithm, a modified update position mechanism has been incorporated in
EMOEM. In the new position updating expression, the vector of the allowed
range of movement is dropped to guarantee that the movement performed by a
particle follows the direction of its force vector. Figure 2 represents an example of
the update position mechanism performed by the EMOEM algorithm. Then, in the
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Fig. 1 Update position — X, &
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EMOEM algorithm, each particle moves itself according to the expression

F,
tA— r=1 . d (12)
IF7]

A =

ir r

where A is a random uniform value in the interval [0, 1]. Since the force vector is
normalized, variables should be considered in [0, 1]. To satisfy this requirement,
a change of variables is performed. Then, before updating the particle position, its
variables are mapped onto the [0, 1] interval using the expression

Xir — lr

Xip <—

r=1,---,d (13)

9
u— 1,

where /, and u, are the lower and upper bounds of variable r, respectively. This
ensures that each variable of the particle lies in [0, 1] and the particle is ready to be
updated. The direction of the movement does not change with the position occupied
by the individual in the search space. Then the movement performed in the EMOEM
algorithm overcomes the biased situations identified in the MOEM algorithm and at
the same time guarantees the feasibility of solutions. In some cases one individual
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may become infeasible (i.e., outside the bounds) but in such case it is moved to
the corresponding bounds. The implementation and test of this version of EMOEM
showed that it performs globally better than MOEM, as it improved the convergence
and diversity of the solutions in most problems although not in all. Thus, we propose
herein another modification, which consists in an improvement in the local search
procedure. Preliminary tests have shown that the new EMOEM version outperforms
the previous one. The new local search procedure is described and justified below.
In the electromagnetism-like mechanism, the individual charges and the force
vector applied to an individual are affected by all the other individuals. This may
prevent the best performing particles from achieving even better positions in the
search space. In contrast, local search may provide an exploitation process in which
a selected individual is not conditioned by the other individuals. Therefore, the
local search procedure is crucial for the success of the algorithm. The MOEM
local search strategy presented in Algorithm 4 randomly perturbs each variable of
one individual within a predefined step length. If the new solution dominates the
current one, this is replaced and the search ends; otherwise, a new random search is
performed on the same individual until Isiter iterations have been concluded. This
situation is illustrated in Fig.3, where the end point of each vector indicates an
alternative solution to be analyzed in terms of dominance with respect to solution
X ;. Analyzing the behavior of the MOEM algorithm, we found that more often
than not the local search produced few new non-dominated solutions. Aiming
at improving the MOEM ability to converge to the Pareto front, we introduced
a new local search procedure inspired by the Hooke and Jeeves algorithm [9]
and its successful application in multiobjective optimization [12]. The proposed
local search intends to explore promising directions of search. Taking a selected
individual 7,- from the local archive, a variable is perturbed each time with a certain
probability leading to a new solution. If this trial solution is dominated by X, or
they do not dominate each other, a new perturbation is made. Otherwise, a pattern
search is performed from the trial solution following the direction defined by ¥; and
the trial solution. When this search produces a dominating solution, this is selected
to replace X ;; otherwise X; is replaced by the trial solution. An example of this
process is illustrated in Fig. 4. Considering the local search starting from solution

Fig. 3 Local search in

. A
MOEM algorithm 2

v

Xq
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Fig. 4 Local search in A Vi
EMOEM algorithm X5
z;
X; z, Yi
5
-
X

?,-, the successful search directions are indicated. By changing variable x;; in 7,-,
_Z),' is obtained. Considering that _z),- dominates ?,-, then the search proceeds in this
direction and Y, is retained considering that it dominates 7. Afterwards, starting
from 7 i» by changing variable y;, in ? ;» solution _z)i is obtained. The search would
still proceed to '/ if 7} dominated y ;. Considering these two variables of solution
?,-, four successive non-dominated solutions were found. This illustrates our goal
with this strategy, that is to take advantage of a successful direction and pursue the
search throughout that direction. The pseudo code of this local search procedure is
presented in Algorithm 5.

5 Experimental Results

This section starts by referring to the performance measures used to assess the
algorithms. The test problems and the parameter settings of the algorithms are
described below. Then, the computational results are shown and analyzed, firstly
considering some benchmark multiobjective problems and then an inventory control
problem.

5.1 Performance Measures

The multiobjective algorithms are assessed in terms of convergence to the Pareto
front and with respect to the diversity of the obtained solutions. In order to assess
the proposed EMOEM and compare it with the other algorithms, two unary per-
formance measures commonly used in the literature are considered: Hypervolume
indicator (HV), measuring the volume of the space between the non-dominated front
obtained and a reference point (usually the nadir point is considered) [8, 23], and the
Inverted Generational Distance (IGD), which is the sum of the distances from each
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Algorithm 5 Local Search (EMOEM) pseudo code

1: fori=1,---, |S| do

2 fork=1,---, ddo

3 length = 6 - (u — Iy)

4: Select a random value A; € [0, 1]
5: if 1, < 1 then
6.
7
8

Initialize local search counter, count = 0
while count < Isiter do
—

z = ?,‘

9: trial=false

10: Select a random value A, € [0, 1]
11: Zk = Xix + Ay X length
12: if 7 < 7),- then

13: y=7

14: Y=y + 8 x — xi)
15: trial=true

16: else

17: 2k = Xj — Ay X length
18: if 7 < X, then

19: y=7
20: e =y + 8 Ok —xi)
21: trial=true
22: end if
23: end if
24 if trial then
25: if 7 < 7 then
26: ZT=7
27: end if
28: =7
29: count =~lsiter N
30: Update A with 7
31 72,- =7
32: else
33: count = count + 1
34 end if
35: end while
36: end if
37. end for
38: end for

point of the true Pareto front to the nearest point of the non-dominated set found
by the algorithm. Both indicators measure the convergence and spread of the set of
solutions obtained. The lower the IGD value, the better the approximation is. Larger
values of HV indicate better approximation sets.
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5.2 Test Problems

Twelve test problems are considered, distributed as follows: 5 bi-objective problems
from the test suite ZDT [24]; 3 test problems from DTLZ [6] (dtlzl, dtlz2
and dtlz3 problems), considering three-objective formulations; in the domain of
constrained optimization, the 3 bi-objective problems CONSTR, SRN and TNK [5]
are considered. The last problem we have selected is an inventory control problem
[20] studied in the literature.

5.3 Parameterization of the Algorithms

All the algorithms were implemented in Matlab and the tests were performed on an
Intel core 2 Duo 2.4 GHz processor.

Thirty independent runs of each algorithm were performed for each problem. The
population size and the non-dominated archive size were set to 100 individuals for
all algorithms. In the EMOEM algorithm, the local archive was limited to 5 elements
and the number of local search iterations was set to Isiter = 5. In order to balance
the computational effort of all algorithms, the stop condition for EMOEM algorithm
was set to 50000 and 100000 function evaluations, for two and three objective
problems, respectively, and for the remaining algorithms, the stop condition was
set to 25000 and 50000 function evaluations, for two and three objective problems,
respectively. The different values of the stop condition adopted for the EMOEM
algorithm are justified by the need of equalizing the computational running cost. It
is worthy of mention that approximately half of the function evaluations performed
by EMOEM algorithm occur in the local search procedure and the computational
cost per function evaluation in this procedure is much lower than in the main cycle
of the algorithm.

5.4 Comparing EMOEM, MOEM, OMOPSO, MOSADE
and NSGA-II Algorithms

The algorithms used in this comparison are found to be the best performing algo-
rithms of their classes. Table 1 contains the median and inter-quartile range values of
the hypervolume obtained by the algorithms in all the benchmark problems. In the
problem dtlz1, only the EMOEM and NSGA-II algorithms have obtained solutions
inside the hypercube defined by the non-dominated set and the reference point. The
same situation occurs in the dtlz3 problem, in spite of the median being zero for
the EMOEM algorithm. As can be observed in Table 1, EMOEM ranks second in
the performance hierarchy given by the hypervolume for most of the problems. At
significance level o = 0.05, the differences are statistically significant for all the
problems solved. The Kruskall-Wallis test was used.
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In the case of the IGD performance measure, the results obtained for the five
algorithms are reported in Table 2. These results confirm what we have observed
with the hypervolume indicator. EMOEM obtains better results than MOSADE in
all problems except zdtl, zdt3 and ztlz2, and is better than MOEM in all problems.
It can be observed that EMOEM maintains its relative position in constrained
problems. The MOEM algorithm presents the worst performance among these
algorithms. The results obtained are significant at « = 0.05 level for all instances.

The median and inter-quartile range values of execution time spent by each
algorithm in the benchmark problems ZDT and DTLZ are reported in Table 3.
Although EMOEM algorithm performs more function evaluations, its computa-
tional cost still decreases in relation to MOEM algorithm. Generally, the time spent
by each algorithm in solving a problem strongly depends on how the algorithm
performs in that problem, namely the number of non-dominated solutions obtained,
because a better performance of the algorithm generally corresponds to an increase
of the size of the non-dominated archive. In many poor performance situations of
the algorithms few non-nominated solutions were obtained, and the computational
effort decreased substantially. This situation has occurred, for example, in dtlz1 and
dtlz3 problems, in MOEM, OMOPSO and MOSADE algorithms.

In general, the NSGA-II algorithm presents better values of the hypervolume and
IGD performance measures than the other approaches; however, it also imposes a
higher computational effort to achieve a number of non-dominated solutions similar
to the one obtained by EMOEM.

5.5 Inventory Control Problem

In the economic activity of most companies, the inventory control problem is a
critical issue. The problem generally involves the optimization of different conflict-
ing objectives. Most approaches to solve this problem rely on the aggregation of
the objectives into a single objective optimization problem. Different multiobjective
models for the inventory control problem are described in the literature, depending
on the objectives considered to be minimized. Agrell [2] proposed the following
multiobjective formulation for the problem:

Minf (k. Q) = (C(k. Q). N(k, Q). S(k. Q))

where

Ck, Q) = 22 + he($ + koy)

N(k. Q) = 2 [T p(x)dx (14)
S(k.Q) = %+ J" (x ~ K)p()dx

S.t.
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Table 4 Inventory Control

o~ Parameters |A | D h c oL
Problem parameterization

80 |3412 |0.26 |27.5 |53.354

Table 5 Median and Inter-Quartile Range (IQR) of hypervolume values obtained by EMOEM,
MOEM, OMOPSO, MOSADE and NSGA-II algorithms

Algorithm EMOEM MOEM OMOPSO MOSADE NSGA-II
Median 86478.8 82303.9 84771.2 85338.8 85808.8
IQR 380.62 4989.15 1350.39 997.56 1308.08

Table 6 Median and Inter-Quartile Range (IQR) of IGD values obtained by EMOEM, MOEM,
OMOPSO, MOSADE and NSGA-II algorithms, in the Inventory Control Problem

Algorithm EMOEM MOEM OMOPSO MOSADE NSGA-II
Median 51.6527 264.301 109.338 84.5601 93.7468
IQR 11.6312 267.633 25.9197 18.5143 28.6092

where k and Q are the decision variables that represent the safety factor and the order
size; D is the expected annual demand of the product whose unit cost is ¢, A the fixed
ordering cost, & the inventory carrying rate, oz, the standard deviation of lead time
demand, and ¢(x) the demand density function. The objectives are to minimize the
expected total cost, C, the expected number of stockout occasions annually, N, and
the expected annual number of the items stocked out, S.

We consider the problem instance addressed in [20], whose parameters are
presented in Table 4.

The problem was solved by all the algorithms herein implemented and the
hypervolume and IGD measures are reported in Tables 5 and 6, respectively.

Tables 5 and 6 show that EMOEM was the algorithm that provided the best
results for this problem.

6 Conclusions and Future Research

Several meta-heuristics have been proposed to address single and multiobjective
optimization problems. The electromagnetism-like mechanism (EM) is a rela-
tively recent meta-heuristic that has shown a very good performance in single
objective optimization problems [I, 18]. The research work on extending the
electromagnetism-like mechanism to multiobjective optimization has been rather
scarce. The MOEM algorithm [19] represents a first attempt to use the EM
approach in multiobjective optimization. However, the MOEM algorithm has shown
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a poor performance in comparison with other state-of-the-art multiobjective meta-
heuristics.

Motivated by the success of EM in single objective optimization, we have
analyzed and modified some main components of the MOEM algorithm leading
to an Enhanced MOEM (EMOEM). We have also changed the local search
procedure, which further improved the results. The results obtained by the EMOEM
algorithm are found to be very competitive when compared with the results of
other representative state-of-the-art algorithms (OMOPSO, MOSADE, NSGA-II).
In general, EMOEM ranks in the second position, being outperformed only by
NSGA-IL

Further research should be pursued in order to make the EMOEM algorithm
more robust and competitive, namely for problems with more than two objective
functions. Hybridization with other approaches will be studied to enhance EMOEM
algorithm performance.
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A Routing/Assignment Problem in Garden
Maintenance Services
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Abstract We address a routing/assignment problem posed by Neoturf, which
is a Portuguese company working in the area of project, building and garden’s
maintenance. The aim is to define a procedure for scheduling and routing efficiently
its clients of garden maintenance services. The company has two teams available
throughout the year to handle all the maintenance jobs. Each team consists of two
or three employees with a fully-equipped vehicle capable of carrying out every kind
of maintenance service. At the beginning of each year, the number and frequency
of maintenance interventions to conduct during the year, for each client, are agreed.
Time windows are established so that visits to the client should occur only within
these periods. There are clients that are supposed to be always served by the same
team, but other clients can be served indifferently by any of the two teams. Since
clients are geographically spread over a wide region, the total distance traveled while
visiting clients is a factor that weighs heavily on the company costs. Neoturf is
concerned with reducing these costs, while satisfying agreements with its clients.
We give a mixed integer linear programming formulation for the problem, discuss
limitations on the size of instances that can be solved to guarantee optimality,
present a modification of the Clarke and Wright heuristic for the vehicle routing with
time windows, and report preliminary computational results obtained with Neoturf
data.
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1 Introduction

In this paper we address a routing/assignment problem posed by Neoturf, which
is a Portuguese company working in the area of project, building and garden’s
maintenance. One of the services provided by Neoturf is the maintenance of
private gardens of residential customers (about 60), whose demands are mainly
periodic short time interventions (usually 1-3 hours). In the beginning of each year,
the number and the estimated frequency of maintenance interventions to conduct
during the year are accorded with each client. That estimate on frequency is then
used to settle, in regular conditions, a minimum and maximum periods of time
separating two consecutive interventions on the same client. Consecutive days of
irregular conditions (e.g., extreme weather conditions) may sporadically change
those maximum (or minimum) values.

The amount of work highly depends on seasonality. The company allocates to
this service two teams (each consists of two or three employees) during the whole
year, which may be reinforced with an additional third team during summer. Each
team has a van fully equipped with the tools needed to perform the maintenance
jobs. There are customers who should be always served by the same team, while
others can be served by any team.

Time windows were established so that visits to the client should occur only
within these periods. The clients are geographically spread along an area around
Oporto of approximately 10 000 km?. In 2011, these teams traveled more than
60 000 km, with a significant impact on the costs.

Neoturf aims at finding a procedure to scheduling and routing clients efficiently
so to reduce costs, while satisfying the agreements with the clients. The scheduling
of clients for each day should be planed on a basis of short periods of time (say ten
consecutive working days), since unforeseeable events (e.g., weather conditions,
client not available at the time previously arranged) may force to postpone planned
interventions and to re-settle the designed scheduling.

The routing of customers in each period is a vehicle routing problem (VRP).
VRP designates a large class of problems that deals with the design of optimal routes
for fleet of vehicles to serve customers. In part dictated by its practical relevance,
VRPs have attracted intense research in Combinatorial Optimization expressed by
some thousands of scientific and technical papers covering many aspects of the
topic. The books [6, 11, 12] provide an insight into the huge variety of the research
on this subject. The basic VRP is the problem of finding a set of routes minimizing
the total cost or distance traveled for a number of identical vehicles, located at a
depot, to supply a set of geographically dispersed customers with known demands
subject to vehicle capacity constraints. A large number of variants and extensions
of the basic VRP were proposed to model specific applications, including pickup-
and-delivery, stochastic demands, online VRPs, multiple depots, ship routing. The
VRP with time windows (VRPTW) is a special case/generalization of VRP where
each customer can only be served within established time windows (see [3, 5, 8] for
recent surveys on the VRPTW). The problem that we address here is a constrained
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version of the VRPTW where (i) some customers, but not all, are to be visited by a
certain vehicle (team); (ii) no more than one route is assigned on each day to each
vehicle (team) and (iii) each customer that is to be served in each period is assigned
to exactly one route, in exactly one day of that period. We give a mixed integer linear
programming formulation model for the problem, discuss limitations on the size of
instances that can be solved to guarantee optimality, present a modification of the
classic Clarke and Wright heuristic for the vehicle routing with time windows [4],
and report computational results obtained with Neoturf data.

2 Formulation

We consider the year partitioned into consecutive short periods of time (say 10
consecutive working days) and, for each period P of m consecutive working days,
we classify clients as

* mandatory, those for which an intervention has to take place during period P,
i.e., the number of days since the last visit till the end of period P exceeds the
maximum number of consecutive days which can elapse without any intervention
taking place, according to what has been agreed with the client;

 discarded, those for which no intervention is expected to take place during
period P, i.e., the number of days since the last visit till the end of period P
is lower than the number of consecutive days that were agreed to elapse before a
new intervention takes place;

* admissible, those for which an intervention may or may not take place during
period P.

Let C be the set of clients to be served in period P. We start with C consisting of
all mandatory and admissible clients. If no feasible scheduling is found, the decision
maker may consider, among other options, to redefine C removing some or all
admissible clients from the period P. If no feasible solution exists even when C
only includes mandatory customers, then services to some of these customers have
to be postponed to the next period. The customers to be removed from the current
period may be selected according to some ranking on customers.

Our problem can be viewed as a VRPTW in which certain clients in C have to
be visited by (vehicle) team Ey, other clients have to be visited by team E|, and the
remaining clients can be served indifferently either by team E, or by team E;. We
denote the sets of those clients by Cy, C; and Cy j, respectively.

We based our formulation on the so-called big M formulation of the traveling
salesman problem with time windows (model 1 in [2]).

We construct a directed weighted graph G = (V, A, p) as follows (see Fig. 1).
The set of vertices V is equal to C U B, where each vertex bf.‘ of B,withi =0,---,m
and k = 0, 1, is the i-th “day (fictitious) copy” of the depot for team Ej. There is an
arc (u, v) linking client u to client v if there is any possibility to serve v immediately
after visiting u, by a same team. Arcs with both directions link each vertex bf.‘, i =
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Fig. 1 An example of a directed graph G, and a feasible solution for a two days period.
Vertices bY, bY, b3 and b, bt, b} are the “fictitious copies” of the depot for team Eq and team E|,
respectively. The subsets of the set of clients C = {cy,...,cs} are Co = {c1,c2}, C1 = {cs}
and Cyp; = {c3,c4,cs}. The scheduling of clients assigned to team E, is represented by the
directed path consisting of continuous (blue) arcs Qy = (bg, c1,Cq, b?, cs, cz,b(z)). Clients ¢y, ¢4
and cs, ¢, are visited by that order on days one and two, respectively. The scheduling of clients
assigned to team E; is represented by the directed path consisting of continuous (red) arcs
0 = (b(l), c3,Cé, b% s b%). Clients c3, ¢ are visited by that order on day one and no client is visited
on day two

1,---,m — 1, with every client of C; U Cy, for k = 0, 1. There is an arc from
b’é to every vertex in Cy U Cyp 1, for k = 0, 1, but there is no arc with head b’g.
There is an arc from every vertex in C;y U Cp; to bfn, k = 0,1, but no arc with
tail b’,‘n. The other arcs in set A are (bk, b’f), (bk, b’;), cee, (b,’jl_l, b,’jl), with k = 0,1,
and no more arcs exist linking pairs of vertices in B. For v € V, we use V, and
V. to denote the out-neighborhood and in-neighborhood of v, respectively, i.e.,
Vi={ueV:(vu)eAlandV, ={uecV: (uv) €A}

A scheduling of clients assigned to team Ej will be read on graph G as a directed
path Oy from b’é to bk . The clients that are to be visited on day i are the vertices of C
on the subpath of Qy linking bf_l to bf.‘. The order of vertices on that path specifies
the order by which the corresponding clients should be visited. If arc (bf_l, bf.‘) is
included in path Qy it means that no interventions on clients of set C will occur on
day i for team E.



A Routing/Assignment Problem in Garden Maintenance Services 149

We define the weight p,, of every arc (u,v) € A as the time to travel on arc
(u,v), except when u, v € B, where p,, = 0.

For each vertex v € C, let T, = [e], I/] be the j-th time-window of client v, j =
1,---,nT,, where nT, is the number of time-windows of vertex v, e‘,’; < lﬂ < e(vj +D s
and e} and I} are the release time and the deadline time of the j-th time-window
of client v, respectively. The release time and deadline time specify minimum and
maximum instants for the start of the intervention at the client. For vertices of B,
define T;l{; = [ST, ST] and T;,_( = [EN+24(i—1),EN+24(i—1)],fori=1,---,m
and k = 0, 1, where ST and ll?N are, respectively, the daily service start hour and the
daily service end hour.

For v € C, let ¢, be the processing time on client v, and set thé = 0 and thf.‘ =
ST +24 —EN,fori=1,...,m.

The formulation that we present below uses the following indices, sets, parame-
ters and variables.

Indices

i —days

k — teams

u, v — clients

j — j-th time-windows

Sets

C — clients

Cy — clients to be visited by team k

Co1 — clients served by any of the teams

B — “day (fictitious) copies” of the depot, bf
V — vertices C U B of the graph
A—arcsinVxV

Parameters

m — number of days in the period

Puy — time to travel on arc (u, v)

t, - processing time on client v

T{; — j-th time-window [eﬁ, l{;] of client v

nT, — number of time windows of client v

e — release time of the Jj-th time-window of client v
l‘,’; — deadline time of the j-th time-window of client v
ST — daily service start hour

EN - daily service end hour

A,y — weight to minimize the number of working days
M - alarge number
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Variables

X,» — binary variables that are equal to 1 if client v is served immediately after
client u, by a same team

y{; — binary variables that are equal to 1 if client v is served in time-window T
a, — binary variables that assigned client v to team E,,

s, — time-instant in which the service starts at client v

w, — waiting-time to start the service at client v

We deem minimize the sum of travel-time, waiting-time on clients, and number
of working days. We thus have the following objective function.

Min Z (Puv + Aup) X + ZWU (D

(u,v)€EA veC

where A,, = EN —STifu € Candv = b € B\{bo,b(l)}, and A, = 0 for
the remaining arcs (u, v), to ensure that optimal solutions will have the minimum
number of working days (i.e., the maximum number of arcs (bf_l, bf)).

The following equations

D xw=1. YveV\{bl b} )
uev
D xw =1, YveV\{b. by} (3)
uev

ensure there will be exactly one arc leaving every vertex v # bt and exactly one
arc entering every vertex v # b’(‘).

To force that each client is visited exactly in one of its time-windows, we add
equations

Z%‘:l, Vv e V. 4)

Jj=nTy

To guarantee that the start time occurs within the selected time-window and that
vehicle has enough time to travel from u to v, we use the following constraints

Z ei’;y{; <5, < Z l{;yi’;, YveV, 5)
Jj=nTy Jj=nTy
Sy + ty + Puv — (1 _-xMU)M = Sy, V(M, U) €A, (6)

where M > 0 is large enough (say M = 24m) to guarantee that the left hand side
is non positive whenever x,, = 0, and thus making constraint (6) not active when
X = 0.
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Note that constraints (2), (3) together with (6), ensure that the set of selected arcs
defines a directed path linking b’(‘) to b’,‘n, for k = 0, 1, where every vertex of V is
included exactly once in exactly one of the two paths.

The following inequalities define upper bounds on the waiting-times on clients.

Wy = Sy — (S,,, + 1t + puv) - (1 _xuv)Mv V(u, U) €A, veC, (7)

where M > 0 is large enough (say M = 24m) to guarantee that the right hand side
is non positive whenever x,, = 0, thus turning the constraint (7) redundant when
X = 0.

The following conditions guarantee that the team assigned to every client v in
Co.1 is the same team that has visited vertex u, whenever arc (i, v) is in the solution.

ay <1—xy+a, VYuv)eA 8

ay > xp—1+a, Vuv)eA )

a, =k, YveCUibi, bl ... b5y, k=01 (10)

Indeed, if x,, = 1, a, = a,, and if x,, = 0, the inequalities (8) and (9) are

redundant.
The range of the variables is established as follows.

a, €{0,1}, Yve Cy, (11)

Xw €140,1}, VY, v)eA (12)

y/ €{0,1}, VYv eV, andj<nT, (13)
sy >0, YveV (14)

wy, >0, VYveC (15)

The above model (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14),
and (15) gives a mixed integer linear programming formulation for the problem
of routing clients of C on a given period of m days, by two teams. The objective
function (1) was defined to minimize travel-time and waiting-time on clients in the
minimal number of days. Other alternative goals could be considered. For instance,
minimizing the total completion-time, i.e., the time of the last service on period
P. This could be achieved introducing variable F, imposing the constraints F >
Sy+1ty, Yu € C, and defining as objective function: min F. This would give solutions
with a minimum number of consecutive working days, and leaving the non working
days, if any, at the end of period P. Solutions that define a sequence of consecutive
non working days finishing at the end of period P permit to anticipate the next
period. However, the objective function (1) expresses the goals specified by Neoturf.
The existence of intermittent non working days is not a issue for Neoturf, as it
permits to assign the members of the team to other activities.
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3 Heuristic Approach

Given the limitations on the size of the instances that could be solved exactly
with the formulation (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13),
(14), and (15) above (see Sect.4 below), we decided to waive from optimality
guaranteed, and use an implementation of Clarke and Wright (C&W) [4] heuristic
for the vehicle routing problem with multiple time windows (VRPMTW) available
in MATLAB [9].

There are two main issues in applying C&W heuristic to our problem. First,
C&W algorithm does not distinguish between clients from Cp, C; and Cy ;. Thus,
solutions may include in the same routes clients from Cj together with clients
from Cj.

The second issue follows from the assumption behind C&W algorithm that there
are enough vehicles available for the routes determined by the algorithm. Thus,
the same team may be assigned, on the same day, to more than one route with
incompatible time windows (i.e., services to clients in different routes overlap in
time).

To handle the first issue we proceeded as follows.

*  We duplicated the number m of days of period P.

¢ For all clients in C;, we added 24 x m hours to the release and deadline times of
every time-window.

* For all clients in Cy; we duplicated the number of time-windows and, beside the
original ones, we also added 24 x m hours to the release and deadline times of
every original time window.

Since each client is visited exactly once, in the whole period (now with 2m days),
within one of its time-windows, setting the time windows of clients Cy on the first
m days and the time-windows of clients C; on days m + 1 to 2m, ensures that clients
from Cy will not be put together in the same routes with clients from Cj.

Duplicating as described above the number of time-windows of clients Cy ;, and
given that each will be served exactly once, defines a partition of these clients into
those that will be served in the first m days (together with clients of Cy), and those
that will be served in days m 4 1 to 2m (together with clients of Cy ;).

To address the second issue we use matchings in bipartite graphs.

Suppose the number of routes assigned to a team is less than or equal to m, and
there is more than one route on the same day. We consider a bipartite graph (see
Fig.2) where vertices of bi-class R represent routes and vertices of the other bi-
class D represent the m days. There is an edge [r, d], with r € R and d € D, if and
only if route r can be done (w.r.t time-windows) in day d.

We then find the maximum matching [7] of this graph. If it has |R| edges, then
it indicates how routes should be distributed by the m days of the period, with no
more than one route per day. If the maximum matching has less than |R| edges, or
|R| > m, we propose that the decision maker considers: assigning an extra-team
for this period; increasing the number of days in the forecast period, or reducing
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Fig. 2 Bipartite graph with |[R| = 3 routes assigned to the same team for a period of four days.

Blue edges (continuous lines on the left picture) indicate the assignment of routes to days on the
solution obtained with the modified C&W heuristic. Edges [r;, dj] indicate that route r; can done
(w.r.t time-windows) on day d;. Red edges (continuous lines on the right picture) are the edges of a
maximum matching. On the left picture, all routes were assigned to the first day. On the right, the
maximum matching (red edges) defines a feasible assignment of the three routes to three days of
the period

the number of admissible clients for the period, and repeat the whole process. Quite
often the matching obtained had cardinality |R|, which permitted to distribute the
|R| routes by the m days. Only in few cases the number of days and/or the set of
customers of the period had to be redefined.

4 Computational Results

Here we report some computational experiments carried out with Neoturf data. We
call total time to the sum of travel-time and waiting-times, i.e., the values of the
objective function not accounting for parameters A.

We used the NEOS Server [10] platform to test the model (1), (2), (3), (4),
(5), (6), (7), (8), (9), (10), (11), (12), (13), (14), and (15). The implementation
was made in AMPL [1] modeling language and ran using the commercial solver
Gurobi. On the tests that we carried out, only for periods not exceeding five days
Gurobi produced the optimal solutions. On two instances with periods of five
days and thirteen customers, with |Cy ;| = 2 in one instance, and |Cp;| = 3 in
the other instance, the optimal solutions were obtained. However, on an instance
with all parameters with the same size except |Co 1| = 4, NEOS Server returned
either “timeout” or “out of memory”. The same happen for all the instances that
we considered with periods of more than five consecutive working days, and no
improvements were achieved when we used different parameterization on threads,
mipgap or timelimit.

For the small instances for which Gurobi determined optimal solutions, the gap
of total routing times of the solutions obtained with C&W heuristic w.r.t. the optimal
values (i.e., (T(C&W)-OPT)/OPT, where T(C&W) and OPT are the total time of the
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solution obtained with C&W heuristic and the optimal total time, respectively) did
not exceed 5 %.

We then compared the planning that Neoturf had established for a 14 days period
(18-Feb-2013 till 3-Mar-2013) with the one produced with C&W heuristic. The
solution produced with C&W has an total time of 8h54m (waiting-time = 0h00,
and 105h24m if working time is also considered) to serve the 27 clients in 7
and 9 working days for teams Ej and E), respectively. The planning of Neoturf
consisted of 14h02m total time (waiting-time=1h00, and 110h32m considering
working time), 8 days for team Ej and 11 days for team E|.

This gives a reduction on total time (100 x (14h02m — 8h54m)/14h02m) around
37 %, that significantly decreases costs resulting from distances traveled, specially
because the two teams travel around 60 000 km/year.

5 Conclusion

We considered a routing/location problem arising in the context of garden mainte-
nance services. For each day of each period of time (consisting of some consecutive
working days) routes are to be designed, starting and ending at a same point, so
that every customer is visited only once during that period, by exactly one vehicle
and within predefined time-windows. Customers may require a fixed team or be
assigned indifferently to any team.

For this new variant of the VRPTW we constructed a directed graph and
presented a compact formulation to minimize travel-time and waiting-time on
clients that consists of finding vertex-independent paths of the graph, where every
vertex is included in exactly one path, and vertices representing customers that
require the same team are included in the same path.

The computational tests that we carried out showed that only for periods not
exceeding five days we could obtain the optimal solutions. To deal with this
limitation we presented a heuristic approach that uses an adaptation of the classic
Clarke and Wright (C&W) heuristic for the VRPTW followed by a procedure to find
a maximum matching in a bipartite graphs. The adaptation of the C&W heuristic
was devised to satisfy the constraint that customers will be served by the team they
required. The maximum matching will check, and possibly repair, infeasibilities on
the solution obtained from the C&W heuristics regarding the existence of more than
one route assigned to the same vehicle, in the same day. The procedure ran quickly
on data provide by Neoturf and the solutions produced significantly improved the
solutions that were conceived and implemented by Neoturf. Yet we believe that
results may be improved using heuristics for routing more sophisticated than C&W,
and exploring models alternative to (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11),
(12), (13), (14), and (15). We intend to pursuit on this direction.
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A Column Generation Approach to the Discrete
Lot Sizing and Scheduling Problem on Parallel
Machines

Anténio J.S.T. Duarte and J.M.V. Valério de Carvalho

Abstract In this work, we study the discrete lot sizing and scheduling problem
(DSLP) in identical parallel resources with (sequence-independent) setup costs and
inventory holding costs. We propose a Dantzig-Wolfe decomposition of a known
formulation and describe a branch-and-price and column generation procedure to
solve the problem to optimality. The results show that the lower bounds provided by
the reformulated model are stronger than the lower bounds provided by the linear
programming (LP) relaxation of the original model.

1 Introduction

Since the introductory work of Wagner and Whitin [12] a great amount of research
has been done on the discrete lot sizing and scheduling problem (DLSP). The
original model has been extended from single-item to multiple-item and from
single resource to multiple-resource configurations. Also, additional constraints and
different cost structures have been studied. Other studies aim at proposing and/or
strengthening compact mixed integer linear (MILP) formulations in order to solve
larger and more complex instances. Examples of relevant research works on this
problem are [4, 5, 9—11]. Most of the published research for problems with parallel
resources is devoted to heuristics.

In this work we propose a Dantzig-Wolfe decomposition to a common integer
linear (ILP) formulation and a branch-and-price algorithm to solve the problem to
optimality. For the single resource problem a similar column generation approach is
presented in [2].
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For the parallel resource configurations the authors are not aware of similar
approaches, although the used decomposition is very close the one used in[7, 8].
However, on those works, the problem of finding the optimal integer solution was
not addressed. Also, the problem does have some similarities with the capacitated
lot sizing and scheduling problem for which there is also some published research
involving column generation, such as [1, 3]. A relatively recent review of methods
for this problem can be found in [6].

In Sect. 2 we provide a formal description of the problem. In Sect.3 we present
a compact original ILP formulation. In Sect.4 we present a minimum cost flow
model that can be used to readily compute upper bounds. In Sect.5 a Dantzig-
Wolfe decomposition for the ILP formulation is proposed along with the resulting
master problem and subproblem. In Sect. 6 a dynamic programming approach to the
resulting subproblem is presented. Three different branching schemes to solve the
problem to optimality are presented in Sect. 7. Finally we present some results show-
ing that the lower bounds provided by the reformulated model are stronger than the
lower bounds provided by the linear programming relaxation of the original model.

2 Problem Description

There are R identical parallel resources, indexed with r = 1,...,R, I items to be
processed, indexed with i = 1,...,/, and T discrete and equal periods of time,
indexedwithz = 1, ..., T. Ineach time period, any given machine will be producing
one demand unit of a given item or will be idle.

Without loss of generality, we define the demand unit for a given item as the
quantity of that item that is possible to process in one machine during one time
period. In practice, this can be seen as a minimum lot size for each item. From this
point on, demands will be expressed in integer demand units.

Each item has the following associated coefficients: a vector of demands along
the planning horizon, d; = {d;,...,dir}; a startup cost, s;, which is the cost of
starting the production of a different item in a given resource, which is resource and
time independent; an inventory holding cost, /;, defined as the cost of holding one
demand unit of item i over one time period (time independent).

The objective is to decide a production schedule (assigning machines to items
over the different time periods) that minimizes the sum of startup and holding costs
while meeting the required demands (back-orders are not allowed).

3 ILP Formulation

Because the resources are identical, in our formulation, we use the aggregate
variables, as defined in [5]. The complete set of variables is:

X;; : number of resources producing item i on period ¢. Variables x;y are defined in
order to account for the number of startups in period 1 and should be made equal
to a value that reflects the state of the various resources at the start of period 1;



A Column Generation Approach to DLSP on Parallel Machines 159

vi; : number of resources where production of item i is started on period ¢ and a
startup cost is incurred;

z;; : number of demand units of item i carried as inventory from period ¢ to period
t 4+ 1. Variables z;p are defined and should be fixed to reflect the inventory level
at the start of period 1.

The complete ILP formulation is the following:

T
min Z Z (siyir + hizir) ey

i=1 t=1

s.t. Zi([—l)+xit:dif+zit l:{lsvl}st:{lvsT} (2)
Yir = Xir — Xi(—1) i={l,.... I} t={l,...,T} 3)
I
Y xi<R t={l,....T} ©))
i=1
x;; > 0 and integer i={l,.... I}, t={1,...,T} (5)
vir > 0 and integer i={1,..., I}, t={1,...,T} (6)
zi > 0 and integer i={1,..., I}, t={1,...,T} @)

Note that x;p and z;o are actually constants that reflect the initial state of the
resources and the initial inventory levels. From this point on, for simplicity and
without loss of generality we will assume these constants to be 0.

The objective function (1) sums the startup costs and the holding inventory costs.
Constraints (2) express the inventory balance at each period. Constraints (3) ensure
that a startup cost is incurred whenever the number of resources used for a given item
increases. Finally, constraints (4) limit the number of resources used in each time
period, and constraints (5), (6) and (7) specify the type and limits of the variables.

Using a similar formulation and a standard optimization package on a personal
computer, the authors of [5] reported that they could not solve instances with I = 10,
R = 2 and T = 50 within 30 minutes of computation. It is clear that solving this
formulation directly is not practical, even for small instances.

4 Minimum Cost Flow Formulation

When performing branch-and-bound it is important to be able to compute upper
bounds. In this section we propose a minimum cost flow formulation for the DLSP.
The formulation is incomplete in the sense that inventory costs are accounted but
not the startup costs, which means that the optimal solutions of the network flow
problem, when they exist, are feasible to the DLSP, but not guaranteed to be optimal.
A similar network for single item problems appears on [13].

Consider the following acyclic directed network. There is one supply node, S,
whose supply is equal to RT. Consider also a set of 7" transshipment nodes, one for



160 A.J.S.T. Duarte and J.M.V.V. de Carvalho

diy d.q dn di d.o dp dy... d.. dy... dip d.g drr diqre

Fig. 1 Minimum cost flow network representation

each time period, named T1, ..., Tr. There are arcs from S to 7, with cost 0 and
capacity equal to R.
Each of the T; nodes will be connected to / demand nodes named Dy;, ..., Dy,.

The demand on the D;; nodes will be equal to d;, and the arcs from 7, to D;, have a
cost of 0 and unlimited capacity (in practice, the limit will be R). The flow on these
arcs has the same meaning as variables x;, of the ILP formulation.

Another set of directed arcs will depart from each D node to the node Dj41).
These arcs have a cost equal to /; and unlimited capacity. The flow on these arcs has
the same meaning as variables z;; of the ILP formulation.

Finally, in order to balance the supply and the demand, consider an additional
demand node, Dy, whose demand, d4,, is computed as!

T
digie = RT — Z Zdit

i=1 t=1

Finally, an arc with cost equal to zero and unlimited capacity, should connect S
and D;g4;.. The flow on this arc represents the global capacity excess on the resources.

The complete network is represented on Fig. 1. Note that z;y and z;7 can be used
to account for, respectively, initial and final inventory levels, if there is need for them
to be non-zero.

Note that, if diy, is negative, the problem is infeasible due to a global lack of resource capacity.
If d;4. is non-negative, the problem can still be infeasible due to demand imbalances over time. A
trivial way to check feasibility is to use the same principle to compute the idle capacity at every

. . . 7 /
time period ¢/, i.e., dy, = Rt — Y 1_, i, dy.
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Because the flow in arcs (7}, D;;) has the same meaning as variables x;; of the ILP
formulation, this network can be used to compute feasible solutions to the DLSP that
can be used as upper bounds, taking advantage of fast and widely available state-of-
the-art minimum cost flow algorithms.

5 Dantzig-Wolfe Decomposition

In this section we apply and present a standard Dantzig-Wolfe decomposition to the
ILP formulation presented in Sect. 3.

The ILP formulation has a block angular structure. With the exception of (4),
which are coupling constraints, all other constraints can be grouped into / blocks,
one for each product item. In our decomposition we will leave constraints (4) in the
master problem and group all the constraints that refer to item i to a polyhedron
named P;.

Because any polyhedron P; is a convex region, any point belonging to P; can be
represented as a convex combination of extreme points. Let pj; be such points. For
any P; polyhedron there will be K; extreme points, so thatk = 1,...,K;. LetA; > 0
be the weight of each extreme point in a given combination such that, for any given
IR ZkK’: | Air = 1. After variable substitution, the master problem will be:

I K
min )Y cada ®)

i=1 k=1

1 K
st Y Y awhi <R t=A{1,...,T} ©)
i=1 k=1
K;
Y =1 i={1,....I} (10)
k=1
Ai > 0 and integer i={1,....1}, k={1,...,K;} (11)

In this reformulated model, columns can be interpreted as potential schedules for
a single item, i, where cj, is the cost of the schedule (including startup and inventory
holding costs) and aj;, is number of resources used by the schedule in period z.

Because it is not practical to enumerate all the potential single item schedules,
they have to be dynamically generated. Based on the dual solution of the master
problem, the subproblems will generate valid and cost attractive schedules to be
included in the solution of the master problem.

Each P; polyhedron will give origin to a different subproblem. Let 7, and v; be
the dual variables associated with constraints (9) and (10), respectively. Subproblem
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i will have the following formulation:

T

min Y (s + hizie — i) — vi (12)
=1

S.t Zig—1) + X = dy + 2y t=A{1,...,T} (13)
Yit = Xit = Xi(i—1) t={1,...,T} (14)
0 < x;; < R and integer t={1,...,T} (15)
vir > 0 and integer t={1,...,T} (16)
ziy > 0 and integer t={1,...,T} (17)

The subproblem is a single item DLSP on parallel resources. Note that the bounds
on x; in constraints (15) are included to avoid the generation of invalid schedules
that will never be part of an optimal integer solution to the master problem.

After optimization, for a new column, ¢ = ZLI (siyir + hizi;) and, hence, the
subproblem optimal objective function value is the reduced cost of that column. A
generated column is added to the master problem, only if its reduced cost is negative.
Also, coefficients a;, of the new column are equal to x;;.

Clearly, if the solution of the reformulated model has only integer variables,
then an integer solution to DLSP can be computed. Nevertheless, one relevant
characteristic of this problem is that an integer solution to DLSP can also be
computed from non-integer variables of the reformulated model, whenever the
solution of the reformulated model corresponds to an integer solution in the space
of the original variables. This is fully exploited in the branch-and-price algorithm,
because the solution in the space of the original variables has to be computed to
derive the branching constraints; the branching scheme is presented in Sect. 7.

The following proposition defines the set of conditions that a solution to the
master problem must possess in order to be an integer solution to the DLSP:

Proposition 1 For a solution to the DLSP problem to be integer, it is sufficient that
all Ay variables are integer or that all x;; variables are integer, with

K;
Xi =) dichi (18)
k=1

Proof The variables A are binary variables that represent a single item schedule
among all the resources, and, if they are all integer, they represent a valid solution.
Variables x;; are the original formulation variables that represent the number of
resources used by item i in time period ¢. Thus, if all x;, are integer, they represent a
valid solution.

Consider a new free decision variable, yﬁ, defined as yﬁ, = Xj — Xj4—1). This
decision variable represents the change in the number of resources producing item i



A Column Generation Approach to DLSP on Parallel Machines 163

from period ¢ — 1 to period ¢. If there is an increase in the number of resources used,
y;, will be positive (equal to the formerly defined y;,) and, if there is a decrease, it
will be negative. Given this definition, the following proposition is also true:

Proposition 2 Given the sets of variables x;, y,, and zy, if one of those sets is
integer, then, the others must also be integer.

Proof Variables y!, represent the variation in the number of used resources for a
given item and can be computed from x;, as stated above. Hence if one of the sets
is integer the other is also integer. Variables z;; are inventory levels and so z; =
Zi—1) + Xiy — dj;. Because dj; are integer values, the previous reasoning still applies.

6 Subproblem Optimization

In this section we present a dynamic programming algorithm to solve the subprob-
lem, a single item DLSP. The algorithm evaluates function F,(z, r) that represents
the minimum cost to get z inventory level at the end of period ¢ with r resources
setup for the production of the considered item. If we assume that all resources are
idle at instant 0, and the initial inventory is O, then, Fy(0,0) = 0. At each stage
transition, we must decide how many resources will be allocated to the production
of the considered item, i. Let x;; € {0, ..., R} be that value. Then, from state (z, r) at
stage r — 1 we can reach, at stage 1, states (7'z — di; + xi;, ¥ = x;;) as long as 7 > 0,
because inventory can not be negative. The objective function will be computed in
the following way:

Foi(z,r) —mr + i +s:(F —r) if¥ >r

Ft(zlar/): , .
Fr—l(Zvr)_”rV/‘i‘hiZ ifr <r

19)

At each stage, the maximum theoretical number of states will be equal to (R +
1)(z;F —z7 + 1), where z; and z;' are bounds on the inventory level at the end of
period ¢ and can be computed as follows:

z, = max (O, dig+1y — R+ Z;_l) (20)
t T
z" = min (Z(R —di). Y d,-,) (21
=1 I=1+1

In Eq. (20) computation is recursive and should be initialized with z; = 0, stating
that the minimum inventory at the end of period T should be 0 (see discussion on
Sect. 4). The computations reflect the fact that, when the demand exceeds R, there
will be need for inventory at the end of the previous period or periods.

Concerning the Eq. (21), the maximum inventory is the minimum value between
the achievable inventory at the end of period ¢ using maximum capacity and the
maximum inventory needs to satisfy demand from inventory for the rest of the
planning horizon (once again, assuming that the final inventory should be 0).
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Note that these bounds can be used to improve (7) in the ILP formulation and (17)
in the subproblem formulation and can be easily modified in the presence of initial
and final inventories.

The above mentioned number of states is the theoretical maximum because if,
for some state, Fy(z, r) equals or exceeds v;, further transitions from that state can
be ignored, because the reduced cost of the new column would not be negative and,
hence, the column would not be attractive.

7 Branching

Solving the relaxed master problem to optimality does not guarantee an integer
solution. For that reason, in order to find an integer optimal solution it is necessary
to identify and eliminate fractional solutions. Branching is a standard procedure to
achieve that goal.

As it is widely known, when performing column generation, branching on the
master problem variables (A;) is not a good idea, because it leads to column
regeneration whenever a branching decision of the type A; < 0 is made.

Given Proposition 2, presented in Sect.5, the sets x;, yﬁt and z; are natural
candidates for branching. The choice should be made based on the results of
computational performance tests.

Note that the original variables y; cannot be used for branching because, although
integrality on x;; implies integrality on y;, the converse is not true. For example,
consider the number of resources used (aj, vectors) in two four-period schedules for
a given item: (0,4,4,4) and (4,4,3,1). Suppose that, in the optimal solution of a given
node, both A; are at a level of 0.5. As it can be easily seen, x; = (2,4,3.5,2.5)
while y; = (2, 2,0, 0). This solution would be fractional, while the y;, vector would
be integer. In this case, the vector yfr would be (2,2,—0.5,—1) and, hence, not
integer.

The following subsections present the 3 possible branching schemes along with
the adjustments to the subproblem structure.

7.1 Branching on x;

When branching upon the x; variables, in node j, two branches of the problem are
created. On one branch (the left branch) the constraint

Xi < ] (22)

is added, where xj’." represents some non-integer value. On the other branch (the right
branch) the following constraint is added instead:

X =[x (23)
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With respect to finding the optimal solution of the model at a given node j, it
is necessary to call the subproblems for attractive columns not yet included in the
master problem. In node j, besides the initial constraints, the master problem has
other sets of constraints, denoted as PZ.[, withi=1,...,landt =1,..., T, resulting
from all the branching decisions imposed on each different variable x;;.

Let pf, ; be the dual variable associated with constraint p, with p € P},. Thus, in
order for the subproblem to correctly identify the attractive columns, in the objective
function (12) and in the recursive equation (19), r, must be replaced with (77, 4 pf,),

where g/, is the sum of all dual variables, pf, j» associated with constraints p € P,

which are imposed on the variable x;, at node j, i.e., pl’:t = Z,, - pﬁ i
it

7.2 Branching on z;

Branching on the z;; variables requires some additional manipulations. Developing
Zir = Zig—1) + Xi — dj; recursively yields the following (assuming the starting
inventory is 0):

=y —dy) (24)
=1

To translate z;; to the master problem space, once again, Eq. (18) should be used.
Using the same approach as before, on node j we want to branch on variable
zir, whose fractional value is z}". The left and right branching constraints will be,
respectively:

= 12 (26)

a < 127 (25)

Using the same notation as in Sect. 7.1, if g/, is the sum of the dual variables
that refer to constraints imposed on the variable z;;, the modification to objective
function (12) and to the recursive equation (19) is the replacement of &; by (h; — pl,).

7.3 Branching ony

Let y;* be the fractional value of y/, that we wish to branch upon on node j. The
constraints to impose on the left and right branches are, respectively,

Vi = b 27)
e = %11 (28)
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On these equations, y;, can be replaced with x;; — x;,—1) and projected to the
master problem space using Eq. (18). Once again, as in the previous sections, let p{r
be the sum of the dual variables whose associated constraints refer to variable y,.

In this case, the modifications to the subproblem structure are more complex than
in the previous branching schemes presented on Sects. 7.1 and 7.2.

In the case of the ILP formulation there is the need of creating a set of variables
to account for decreases in the number of used resources. Let’s name those variables
y;; - In the objective function (12) a new term associated with this new variables must
be included rendering the following objective function:

T
Z ((Si - P{,))’it + hizip — X + ,Uit)’;) — Vi (29)

=1

Also, an additional set of constraints must be included (similar to con-
straints (14)):

y; > Xi(t—1) — Xit = {1, ey T} (30)

Also, in the subproblem formulation that resulted from the decomposition, the y;
variables have no upper bound because it is implicitly assumed that their coefficients
on the objective function are always positive. Because this last assumption is no
longer true, an upper bound on y; equal to max (0, Xip — Xi(— 1)) must be enforced
in the ILP subproblem formulation. The same logic applies to the y;, variables: an
upper bound equal to max (O, Xi(—1) —x,-,) must be enforced. For simplicity, the
necessary additional constraints are omitted here.

The recursive equation (19) needs also to be modified and, after the necessary
modifications, it will be:

F(Z,r) = Fioi(z,r) —mr’ + hi + (si — oY —r) ifF > (31)
Fioi(z,r) —mr’ + hid + pl,(r—7r) ifr <r

With this changes, the subproblem will correctly process the additional dual
information.

8 Computational Results

In order to access the quality of our approach, an implementation was developed in
C# (Microsoft .NET framework 4.5) using ILOG CPLEX 12.5.0.1 for optimization,
with the default parameters. All tests were run in a laptop with a Intel Core i7
3610QM @ 2.30GHz CPU. The branching scheme is based on the x;, variables,
as described in Sect.7.1. This choice was made based on the performance results
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of a limited set of preliminary computational tests, which pointed towards a better
performance of the partition scheme based on the x;, variables.

The test instances were generated randomly, using the procedure described in [5].
Namely, the inventory holding costs (4;) come from an integer Uniform distribution
between 5 and 10, the startup costs (s;) come from an integer Uniform distribution
between 100 and 200 and the demands for a randomly chosen set of (i,f) pairs
(dir), come from an integer Uniform distribution between 1 and R. Furthermore, the
instances have similar characteristics, namely, there are 4 sets of instances:

¢ set A: small instances (R = 2,1 = 10 and T = 50);

* set B: instances with a large number of periods (R = 2,1 = 10 and T = 150);

* set C: instances with a large number of items (R = 2,/ = 25 and T = 50);

* set D: instances with a large number of resources (R = 10,/ = 10 and T = 50).

These sets were combined with 5 levels of used capacity (75 %, 80 %, 85 %, 90 %
and 95 %). For each combination, 3 instances were generated, resulting in a total of
60 instances.

The computational results are shown in Table 1, where each line contains
aggregate results for the 3 instances in each combination described above, and
the columns have the following meaning: column UC refers to the used capacity;
columns Nodes and Cols are the average number of nodes in the branch-and-price
tree and the average number of columns generated, respectively; columns TMIP
and TBP are average times (in seconds) to solve to optimality the ILP formulation
presented in Sect. 3 (TMIP) using the CPLEX MIP Solver and the proposed branch-
and-price framework (TBP), respectively; columns SMIP and SBP show the number
of instances solved to optimality using each procedure within a time limit of
30 minutes; column LBInc shows the average increase, in percentage of the ILP
formulation LP relaxation bound, to the LP relaxation of the reformulated model?;
finally, column Gap shows the average gap, in percentage, between the LP relaxation
of the root node and the optimal (or best) integer solution found.?

In addition to this set of results, we also tested our approach with the instances
used in [5]. These results appear in Table 2. The instances are similar to the
generated ones with the exception that, instead of 3 instances per combination of
parameters, there are 5 instances per combination.*

The most noticeable result in the presented tables is that, for every set of
instances, except for set D, the computational times are faster than the ones obtained
with the CPLEX MIP solver. As noticeable, only for the instances in set D, has our
approach a poorer performance, which seems to indicate that it is not so well suited

2 Let ILPRel be the optimal objective value for the TLP relaxation and RMRel be the optimal
objective value for the linear relaxation of the reformulated model (relaxation of the search tree
root node). Using the above notation, LBInc = 100 X (RMRel — ILPRel) /ILPRel.

3If Best represents the optimal or best integer solution found, Gap = 100 Xx
(Best — RMRel) /RMRel.

“Except for set C (instances with 75 % used capacity) where only 4 instances were available.
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Table 1 Computational results

Instance set UC | Nodes | Cols TMIP | SMIP | TBP SBP | LBInc | Gap
A:R=2,1=10 |75 1.7 1 602.3 2.36 |3 0.39 |3 89.4 |0.01
and 7' = 50 80 3.0 5120 0.90 |3 0.55 |3 70.0 |0.06
85 1.0 | 774.0 4.09 |3 045 |3 85.6 |0.00
90 5.7 1 1031.0 1.20 |3 041 |3 67.0 |0.16
95 34.0 | 1686.0 4.85 |3 0.66 |3 69.0 |0.32
B:R=2,1=10 |75 251.3 |4795.7 |219.47 |2 1442 |3 87.3 10.30
and 7' = 150 80 |3844.3 |22,495.0 |- 0 255.79 |3 96.4 |0.26
85 [2051.3 |35,514.0 |- 0 19.07 |2 759 1043
90 617.0 | 18,415.7 |- 0 91.90 |3 78.8 |0.32
95 |2624.0 |78,555.7 |- 0 1046.95 |2 75.6 |0.48
C:R=21=25 |75 3.7 |583.0 1.20 |3 0.52 |3 88.0 |0.03
and T = 50 80 1.0 | 716.0 320 |3 0.57 |3 90.9 |0.00
85 35.7 | 1040.7 544 |3 0.53 |3 105.3 |0.05
90 55.7 |1010.7 5.09 |3 0.50 |3 859 |0.13
95 700.3 | 1710.7 4.73 |3 1.10 |3 71.5 10.18
D:R=10,1=10 |75 30.3 |573.0 0.99 |3 5.60 |3 89 10.29
and T = 50 80 5.7 | 858.3 1.44 |3 590 |3 10.2 |0.03
85 |1228.3 | 3080.0 1.97 |3 5021 |3 6.3 |0.37
90 465.3 | 5410.0 1.94 |3 144.79 |3 7.8 10.28
95 |3185.0 | 12,928.3 6.85 |3 214.27 |2 9.3 0.67

for problems with a high number of resources to be scheduled. On the other hand,
for the instances in set B, our approach solved to optimality 32 of the 40 instances,
while the MIP solver only solved 2 instances to optimality.

Another important result is the linear relaxation improvement that our decom-
position achieves. This improvement is consistent across all instances tested and
clearly shows the merits of this approach. The instances in set D are the ones with
the lowest increase in the linear relaxation bound, which seems to indicate that,
when the number of resources increases, the decomposition is not as effective. This
is consistent with the previous paragraph comment.

Another interesting point to notice is the small Gap values in the last column of
the tables. It means that the linear programming relaxation at the root node provides
a very tight lower bound on the optimal integer solution. Even for the cases when our
approach fails to solve all the instances to optimality, there is a small gap between
the lower bound and the best known solution (e.g. set B with 95 % used capacity).

The computational results in Tables 1 and 2 should be similar and, in fact,
they show congruency, although the instances in Table 2 seem to be slightly
harder to solve. This could be due to some difference in our interpretation or our
implementation of the random generation procedure detailed in [5].
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Table 2 Computational results for instances in the literature 2

Instance set UC |Nodes |Cols TMIP | SMIP | TBP SBP | LBInc |Gap
A:R=2,1=10 |75 5.2 |479.0 214 |5 0.66 |5 95.8 10.26
and 7 = 50 80 8.4 |572.4 235 |5 0.72 |5 82.0 |0.18
85 29.6 | 795.6 513 |5 072 |5 87.3 0.41
90 17.8 | 1124.0 325 |5 0.80 |5 732 10.26
95 30.0 | 1667.4 16.44 |5 0.96 |5 70.2 045
B:R=2,1=10 |75 124.6 | 35182 |- 0 2533 |5 116.0 |0.18
and 7 = 150 80 664.8 | 10,665.8 |- 0 88.03 |5 1119 |0.15
85 | 1047.4 15,7942 |- 0 11642 |5 102.3 | 0.44
90 27044 56,5674 |— 0 486.86 |4 103.7 |0.73
95 2656.2 | 86,827.2 |— 0 - 0 88.2 |1.23
C:R=21=25 |75 18.0 695.0 | 5.07 |4 0.85 |4 122.5 |0.09
and T = 50 80 19.4 7724 | 628 |5 0.90 |5 126.3 |0.12
85 89.2 943.6 | 794 |5 0.96 |5 123.2 | 0.13
90 82.0 1213.0 |33.58 |5 1.09 |5 1352 |0.21
95 320.8 1598.6 | 19.18 |5 135 |5 112.6 |0.54
D:R=10,1=10 |75 14.0 4214 | 0.65 |5 3.14 |5 114 10.12
and T = 50 80 30.0 8472 | 1.16 |5 550 |5 8.8 |0.13
85 54.8 12084 | 1.08 |5 6.72 |5 9.7 10.19
90 21052 | 46188 | 5.53 |5 17097 |4 10.2 1 0.29
95 |5815.0 22,9394 | 785 |5 442.06 |1 11.3 | 0.68

9 Conclusions and Future Work

In this work we presented a column generation approach to a known problem. The
computational results show that the presented algorithm can be used with success to
solve many real word size instances in very short times. They also show that, when
optimality is not achieved, the objective value of the best solution is close to the
lower bound provided by our column generation approach.

On the other hand, for some types of instances, with a high number of resources
to be scheduled, the results are not so good. Future research efforts should try to fully
understand those results and to improve the performance for that set of instances,
probably with the help of additional cuts, different branching schemes and/or with
an heuristic approach.

Acknowledgements The authors want to thank the anonymous reviewers of the 102013 confer-
ence for the insightful comments to the first version of this paper and the authors of [5] for kindly
providing the problem instances they used in their work. This work has been partially supported by
FCT - Fundagio para a Ciéncia e Tecnologia within the Project Scope: PEst-OE/EEI/U10319/2014.



170 A.J.S.T. Duarte and J.M.V.V. de Carvalho

References

—

. Caserta, M., VoB, S.: A math-heuristic Dantzig-Wolfe algorithm for capacitated lot sizing. Ann.

Math. Artif. Intell. 69(2), 207-224 (2013)

2. Cattrysse, D., Salomon, M., Kuik, R., van Wassenhove, L.N.: A dual ascent and column
generation heuristic for the discrete lotsizing and scheduling problem with setup times. Manag.
Sci. 39(4), 477-486 (1993)

3. Degraeve, Z., Jans, R.: A new Dantzig-Wolfe reformulation and branch-and-price algorithm
for the capacitated lot-sizing problem with setup times. Oper. Res. 55(5), 909-920 (2007)

4. Gicquel, C., Minoux, M., Dallery, Y.: Exact solution approaches for the discrete lot-sizing and
scheduling problem with parallel resources. Int. J. Prod. Res. 49(9), 2587-2603 (2011)

5. Gicquel, C., Wolsey, L.A., Minoux, M.: On discrete lot-sizing and scheduling on identical
parallel machines. Optim. Lett. 6(3), 545-557 (2012)

6. Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M.: The capacitated lot sizing problem: a review
of models and algorithms. Omega 31(5), 365-378 (2003)

7. Lasdon, L.S., Terjung, R.C.: An efficient algorithm for multi-item scheduling. Oper. Res. 19(4),
946-969 (1971)

8. Manne, A.S.: Programming of economic lot sizes. Manag. Sci. 4(2):115-135 (1958)

9. van Eijl, C.A., van Hoesel, C.PM.: On the discrete lot-sizing and scheduling problem with
Wagner-Whitin costs. Oper. Res. Lett. 20(1), 7-13 (1997)

10. van Hoesel, S., Kolen, A.: A linear description of the discrete lot-sizing and scheduling
problem. Eur. J. Oper. Res. 75(2), 342-353 (1994)

11. van Hoesel, S., Wagelmans, A., Kolen, A.: A dual algorithm for the economic lot-sizing
problem. Eur. J. Oper. Res. 52(3), 315-325 (1991)

12. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci.
5(1), 89-96 (1958)

13. Zangwill, W.L.: Minimum concave cost flows in certain networks. Manag. Sci. 14(7), 429-450

(1968)



A Tool to Manage Tasks of R&D Projects

Joana Fialho, Pedro Godinho, and Joao Paulo Costa

Abstract We propose a tool for managing tasks of Research and Development
(R&D) projects. We define an R&D project as a network of tasks and we assume
that different amounts of resources may be allocated to a task, leading to different
costs and different average execution times. The advancement of a task is stochastic,
and the management may reallocate resources while the task is being performed,
according to its progress. We consider that a strategy for completing a task is a
set of rules that define the level of resources to be allocated to the task at each
moment. We discuss the evaluation of strategies for completing a task, and we
address the problem of finding the optimal strategy. The model herein presented uses
real options theory, taking into account operational flexibility, uncertain factors and
the task progression. The evaluation procedure should maximize the financial value
for the task and give the correspondent strategy to execute it. The procedure and
model developed are general enough to apply to a generic task of an R&D project.
It is simple and the input parameters can be inferred through company and/or project
information.
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1 Introduction

Companies operating in dynamic markets, driven by technological innovation, need
to decide, at each moment, which projects to carry out and the amount of resources
to allocate to them. These decisions are crucial for the companies’ success. Projects
that create or improve an existing process, material, device, product or service,
or projects that aim to extend overall know-how or ability in a field of science
or technology, are considered as research and development (R&D) projects [19].
The nature of this kind of projects may lead to a high cost [19]. Furthermore the
R&D outcomes may take years to be realized. Hence, R&D projects should be
properly valued and managed, especially for firms that depend on innovation [12].
An effective evaluation of these projects allows allocating the limited resources
properly, as well as prioritizing the current projects, according to their expected
financial returns.

Traditional evaluation methods, such as the ones based on discounted cash flows,
are not adequate because they assume a pre-determined and fixed plan, which does
not allow taking into account both uncertainty and flexibility [20]. This kind of
methods estimate the future benefits, in terms of cash flows, usually on an annual
basis, and then the cash flows are discounted at a risk-adjusted rate so that the
present value is obtained. If the initial investment is subtracted, the net present
value is obtained [12]. However, predicting future cash flows is not easy in an R&D
environment, because the profitability also depends on how the projects are managed
during their lifetime [12]. The methods based on discounted cash flows reflect the
passive management of a project.

R&D projects are characterized by several types of uncertainty and by the
possibility of changing the initial plan of action, that is, R&D projects have two
important features that have to be taken into account: uncertainty and operational
flexibility. The flexibility of a project leads to an increase in the project value that
must be taken into account in its analysis or evaluation. When there is operational
flexibility, it may be better to change the plan of action when new information
arrives. Hence, it is very important to consider these features in the evaluation of
R&D projects.

Mostly, R&D projects are composed by different phases. We can also consider
that each project or phase is split into different tasks. Usually, the companies
undertaking those projects have different kinds of resources that can be allocated to
those tasks. The difference among resources can be qualitative, quantitative, or both.
Consequently the cost and the execution speed are different among different levels
of resources. Thus, both evaluation and resource allocation have to consider the
project flexibility. The flexibility during the execution of a project is very important
for seizing opportunities or avoiding losses upon the occurrence of unfavorable or
unexpected scenarios [1]. The flexibility can consider different actions at different
phases of an R&D project like defer, expand or abandon; but this flexibility is also
important to do an active and better resource allocation, that is, the allocation can be
changed according to the project progress or the occurrence of unexpected events.



A Tool to Manage Tasks of R&D Projects 173

Hence, the flexibility is relevant in order to make optimal decisions, because it leads
to an increase in the project value that must be taken into account in its evaluation
or management. When new information arrives, the flexibility allows changing the
plan of action, if necessary.

In this paper, we intend to present a tool to evaluate tasks of R&D projects,
taking into account the resource allocation strategy. For each task, there are different
levels of resources that can be chosen. We define a strategy as a set of rules that
indicate which level of resources shall be chosen, at each moment, among the levels
of resources defined to execute the task.

The main condition to use the model behind the tool is the ability to define a
finite, discrete set of levels of resources that can be used at each instant, and to
define the cost per time unit of each level of resources.

The output of this tool helps management to allocate resources to tasks that
compose an R&D project. Although the tool presented evaluates a task of an R&D
project, it implies that the evaluation of the tasks that compose a project leads to a
financial evaluation of the project. The connection between tasks will be detailed in
future work, because it is necessary to determine how the tasks are linked to each
other and how codependent they are. Notice that some tasks can have precedents,
that is, some tasks can only begin when others are completed or if others have
obtained certain results.

For each task, we assume that different resource levels can be allocated, which
have different costs and different average execution times. The advance of the task
is stochastic and the project manager can reallocate resources while the task is in
progress. The progression of a task defines, at each moment, which is the best
level of resources to choose. The difference between the resource levels can be
quantitative, qualitative or both. Different strategies are analyzed, and the objective
is to find the optimal strategy to execute an R&D task.

This paper is structured as follows: Sect.2 reviews some literature about
evaluation and management of R&D projects; Sect.3 presents and characterizes
the model, Sect. 4 describes the analysis procedure, Sect. 5 presents some examples,
Sect. 6 describes the usage of the procedure, and Sect. 7 concludes.

2 Evaluation of R&D Projects

There are several models and techniques to evaluate R&D projects and tasks, but it
is difficult to aggregate all issues that characterize this kind of projects in a single
model.

If the project evaluation is required to be mostly financial, real options theory
seems to be quite promising, since it integrates the operational flexibility and the
uncertainty into the evaluation process, assisting in the best decisions [19]. A real
option gives the right (but not the obligation) to perform a determined action. For
example, an R&D laboratory gives to the company the right to research and develop
new products but not the obligation to do so [19]. Real options valuation is based on
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financial options theory and allows assessing investments under uncertainty, because
it takes into account the risks and the flexibility value for making decisions when
new information arrives [1].

For the valuation of R&D projects, real options consider that managers have the
right but not the obligation to act upon the development process. The evaluation
models based on real options emphasize the flexibility and the options available to
management [15]. The recognition that the financial options theory can be used to
evaluate investment projects was made by Myers [11], who used the expression real
option to express the management flexibility under uncertain environments. Real
options theory allows us to determine the best sequence of decisions to make in
an uncertain environment, and provides the proper way to evaluate a project when
such flexibility is present. The decisions are made according to the opportunities
that appear along the project lifetime, which means that the optimal decision-path
is chosen step by step, switching paths as events and opportunities appear [7].

The models to evaluate real options can present some difficulties like finding
the right model, determining the model inputs and being able to solve the option
pricing equations [15]. Although some evaluation aspects could be defined through
qualitative assessment, it is quite hard to capture interactions among factors or multi
period effects during the project. Still, following a real options perspective on R&D
projects has a positive impact on both R&D and financial performance.

Many authors use real options to evaluate R&D projects in different areas. Brach
and Paxson [2], for example, use real options to evaluate pharmaceutical R&D, Lint
and Pennings [9] also use a real options model in the Philips Electronics, Schwartz
and Zozaya-Gorostiza [17] use real options in information technology, and Lee and
Paxson [6] in e-commerce. However, these models and other similar ones, cannot
be flexible enough to adapt to all companies.

To evaluate or analyze an R&D project through real options theory, management
has to evaluate the sequential real options that appear along the lifetime of the
project. To evaluate these options, it is important to incorporate the associated
risk. This risk may be related to prices, costs and technology, among others. There
are several processes to model these variables, like Brownian motions [6], mean
reversing models [5], controlled diffusion processes [17], or even combinations
between diffusion and Poisson processes [13]. The Poisson processes are also
widely used to model technological uncertainties [13] or catastrophic events that
make it impossible to proceed with the project [17]. The revenues may also be
uncertain, and it may be necessary to model them with stochastic processes [16].

The real option value can be determined through closed-form valuation models,
like the Geske model [14] or the Carr model [3]. In general, real options are
American, which means that they may be exercised over a period of time instead
of being exercised in a given moment. The value of such options is the solution
of partial differential equations. The analytic solution or construction of such
equations can be hard and an alternative is to use numerical techniques, analytical
approximations or simulation. Notice that real options models mostly have a high
complexity, because they integrate a set of interacting options, complicating their
evaluation. It can be very hard to define or solve some kind of equations that
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represent the real options value. Simulation is a good alternative to evaluate real
options, because it allows to consider the state variables as stochastic processes and,
nowadays, the simulation techniques are easy to use, transparent and flexible [10].
For example, Schwartz and Moon [16] formulate the model they use in continuous
time and, then, they define a discrete time approximation and solve the model by
simulation.

The model and the procedure we present intend to find the optimal strategy
in terms of resource allocation to tasks of R&D projects. This optimal strategy
maximizes the task value and this value characterizes and evaluates the task. In tasks
of R&D projects, it is important, when different levels of resources are available, to
choose the most appropriate one at each moment, that is, it is important to choose
the level of resources that maximizes the task value. The evaluation is financial
and to incorporate the operational flexibility and uncertainty, we use real options
theory. Furthermore, we used simulation (Least Squares Monte Carlo — LSM) in
the evaluation process to deal with different state variables. We elected the LSM
method, because it allows making decisions according to future expectations.

The model we present is flexible enough to apply to tasks of different R&D
projects. The state variables were modelled without very strong assumptions, and
the necessary parameters can be inferred from the information concerning other
projects of the company.

3 The Proposed Model

We present a tool that can be applied to evaluate tasks of R&D projects, in order to
help management making decisions concerning resource allocation.

We consider that an R&D project is composed by different tasks, and to evaluate
a project, we must evaluate its tasks. The tool herein presented intends to evaluate
those tasks.

As mentioned before, the result of such evaluation is a set of rules that helps
management choose the level of resources, at each moment. These rules allow
maximizing the task value. To apply this procedure, it is necessary to define the
finite set of levels of resources and the respective cost per unit of time.

We assume that each task is homogeneous and needs a certain number of
identical and independent work units to be completed. These work units can be
seen as small parts of the task and the set of these parts composes the task. The
work units can also be executed by different resource levels, which lead to different
average times to finish the task and different costs per time unit.

We consider, in our model, that there is uncertainty in the time it takes to
complete a task, and consequently, in the costs, because they depend directly on
the time to complete the task.

The costs are deterministic, per unit of time, and depend on the level of resources.
We also assume that there may be a cost inherent to switching between different
resource levels.
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In the model herein presented, we do not model the revenues, but the cash flows
resulting from the completion of the task. The expected operational cash flows
resulting from the exploration of the investment project follow a stochastic process
and depend on the time it takes to complete each task.

Notice that a set of tasks composes a project. From now on, the present value
of the cash flows resulting from the lifetime of each task (cash inflows and cash
outflows) is termed the task worth. These cash flows represent a portion of the
total cash flows of the entire project. The concept of instantaneous task worth is
used, which represents the present value of the task worth, assuming that the task
was already finished. We also assume a penalty in the task worth according to its
completion time, that is, the task worth is more penalized as the task takes longer to
be completed. We incorporate this penalty, because we assume that R&D projects
can turn more profitable if a product or a service is launched earlier. Finally, the task
value is calculated through the costs, time and task worth.

Before presenting the evaluation process we define the relevant variables. Thus,
the next subsections describe in detail how we handle the time to complete a task,
the task worth, the costs and the net present value of the task.

3.1 Time to Complete a Task

The time to complete a task is not deterministic because it is impossible to know
it with certainty, due to unpredictable delays or technical difficulties. Considering a
specific level of resources along the entire task, we define the time to finish the task
as TW,

T® is a random variable and it is the sum of a deterministic term, the minimum
time to finish the task, M®, with a stochastic one. Let D be the number of work
units to complete the task. The time it takes to complete each work unit is composed
by a constant part and a stochastic one, the latter being defined by an exponential
distribution. This distribution is adequate because we assume that the average
number of work units completed per unit of time is constant and there is no a priori
expectation as to the nature of the distribution [8]. We also assume that the time it
takes to complete one work unit is independent of the time it takes to complete the
other work units. Thus, it is immediate that the necessary time, T® to complete the
task, using the level of resources k, is defined by

D
=31 (1)
i=1

where ?fk) is the time that each work unit takes, considering the level of resources k.
Each term can be written as

M®

~(k) (k)

t"V = —— 4+t 2
! D ! 2)
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where tfk) follows an exponential distribution with average 1/14®. Replacing ?fk) in

(1

D
T = M® + 3O 3)

i=1

The time to finish the task is composed by a sum of a deterministic term, which
represents the minimum time that is necessary to finish the task, with a stochastic
one. This latter term is defined as the sum of D independent and identically
distributed exponential variables.

3.2 The Costs

The costs we consider are related to the usage of the resource levels. Thus, these
costs depend on the level of resources used and on the necessary time to complete
the task. We assume that the costs are deterministic per unit of time and that they

increase at a constant rate, possibly the inflation rate. Considering a specific level of

resources k, let C,(Ck) be the instantaneous cost, at instant x. The model for the costs

can be defined by
dC® = pC®ax “4)
where p is the constant rate of growth of the costs. Thus the value of C)(ck) is
ch = e )

where C(()k) is a constant dependent of the level of resources.

~ (ki .. .
The cost, C; ) , of a work unit j that uses the level of resources k;, and that begins
on instant x; and ends on instant x; 4 is

o N N 1w 19 ¥
C;k") = / Yy = / C(()k’)e”xdx = [—C(()k’)e”xi| = 0 (ePitt — ePY)
’ X Xj p p

(6)

The present value of the cost of the work unit j, that uses the level of resources k;,

j Y

. . . . RPN o
with respect to an instant xo, and assuming a discount rate r, is C/( X’; and it is given
by

. (k)

Xj+ )

G = / " gt g = SO (o _ glomrin ™)
Xj p—r
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The expression above is valid when p # r. In the case p = r,

A (ki Xit1 . .
e = / e gx = e (x4 — x)) ®)

Xj

We also assume that costs related to changes of the level of resources can occur.
That is, if there is a change in the level of resources from one work unit to another,
it may be necessary to incur a cost. The cost for changing the level of resources from
k;, in the work unit j, to other level of resources, k1, in the next work unit j + 1 is
given by y(k;, kj+1). We also assume that these costs are deterministic, depend on
the level of resources and grow at the same rate p. If the change occurs at moment
Xj+1, that is, at the moment that work unit j 4 1 begins, the value of the respective
cost is y(kj, kjy1)e”i+! and the present value of this cost, with respect to an instant
Xo 1S

V(kj’ kj+1)epr+1 e_’(xj+1—xo) ©)

In our evaluation procedure, it is necessary to calculate the present value of the total
remaining costs, that is, it is necessary to determine the total costs from a certain
work unit j until the last one, D. We assume that, for all work units, j = 1,...,D,
the present value of the remaining costs is determined with respect to x;, which is the
instant in which the work unit j starts, and it is denoted as TotC(j, x;). The expression
of TotC(j, x;) can be given by

D—1
ToiC(jx) = 3 (D + p(ko. kgr)e?e e et =] G40 (10)
a=j

where:

* x; is the instant in which work unit j starts;

. é‘flk;/) is the present value of the cost of the work unit a, with respect to the instant
x;. The work unit a begins at instant x,, and uses the level of resources k,;

. 63";}’ is the present value of the cost of the work unit D with respect to instant x;.
The work unit D uses the level of resources kp;

e y(ky, ka+1) defines the value of the cost to change from the level of resources £,
used in work unit a to the level of resources k,+; used in work unit a + 1. Notice
that if the level of resources is the same in the work unit a and in the work unit
a + 1, this cost is zero;

e ris the discount rate.
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3.3 The Task Worth

Many authors define the price process of an R&D product through the geometric
brownian motion (GBM), dP = aPdt+ o Pdz. The GBM assumes that uncertainties,
with respect to the project, are solved along the project lifetime. This assumption
can be very strong in an R&D environment, because the expected value may not
be adjusted continuously. Thus, the use of a GBM would not be suitable. Notice
that the expected task value may vary with shocks (positive or negative), such as
the discovery of a new technology, a competitor’s entry or technological difficulties,
among others. These shocks occur at certain discrete moments of time, and not
continuously as it is assumed when a GBM is used.

We define the task worth as the present value of the cash flows resulting from
completing the task (including both cash inflows and cash outflows). The task worth
does not depend on the level of resources used to undertake the task, but on the
time to complete it. We also define the related concept of instantaneous task worth
(or instantaneous worth), which is the value of the task worth assuming that the
task is completed at the instant being considered. We assume that the instantaneous
task worth changes according to a pre-defined rate and with some stochastic events.
The rate can be positive or negative, depending on the nature of the project, and
it can be inferred from historical data or knowledge and experience of managers.
In R&D projects, new information can arrive, or unexpected events can occur, that
change the course of the project and, consequently, the expectations regarding to
the instantaneous task worth. Thus, we chose to model the instantaneous task worth
by using a Poisson process. The parameter associated with the Poisson process is
constant along the task because it is considered that, at each moment, the likelihood
of a “shock” is the same. So, there is no specific information on the ongoing progress
of the cash flows.

We also assume that a penalty in the instantaneous task worth may occur, due to
the duration of the task. That is, we assume that it may be the case that the earlier
the product is launched in the market, the bigger is the worth obtained. The task
worth may be more penalized as the task takes longer to complete. The reason for
such penalty may be related to the existence of competition: if a competitor is able
to introduce, earlier, a similar product in the market, the task worth might be lower.
Let the model of instantaneous worth, R, be defined by:

RdR = aRdx + Rdq (11D

The parameter « included in the model represents the increasing or decreasing rate
of the instantaneous worth, in each lapse dx. The term dqg represents a Jump process,
that is

dg = u, with probability pdx

= 12
0, with probability 1 — pdx (12)
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with u defined by an uniform distribution, u ~ U(Umin, Umax)> Umin < Umax- NOtice
that, if the instantaneous worth would depend only on the rate «, it would be
continuous and monotone increasing (assuming the rate positive). But, besides the
rate «, there is the possibility of occurring jumps in the instantaneous worth, due
the nature of these projects and/or the behavior of the market. New information can
drastically modify the course of the project and the entry of new competitors can
change the value of the project. In order to handle the model, we assume a discrete
version of the instantaneous worth. Without the jump process, the solution of (11)
would be R, = Rpe®*, and therefore we would have R, — R, = Rpe**(e” — 1).
Considering low values for «, we can assume that e¢* — 1 ~ «, and the expression
would become R,+; — R, ~ «R,. In order to incorporate the jump process, we
assume that in a lapse of time that is not infinitesimal, more than one jump may take
place. So, the discrete version of the model of the instantaneous worth becomes

Ret1 ~ R, + aR, + R, Aq (13)

v
where Ag = Z u;, with u; ~ U(Umin, Umax), and v is defined by a Poisson
i=1
distribution with parameter p, that is, v ~ P(p).

The present value of the instantaneous worth in a given moment depends on the
instantaneous worth of the previous moment. Thus, the instantaneous worth of the
first period is Ry ~ Ry + aRy + RoAg. It is necessary to know the initial value
Ry, which is an input parameter for the model. Assuming that the task is finished at
the moment 7', we define Ry as the task worth, which is calculated according to the
model previously presented.

The penalty mentioned initially can be expressed by a function g(x), where x
denotes the time. This function is positive, decreasing, and it takes values from the
interval [0, 1]. Thus, assuming this feature, the final expected task worth is Ry xg(T).
Notice that, if there is no penalty, g(x) = 1, Vx.

3.4 The Net Present Value of the Task

For the model, it is necessary to calculate the expected value of the net present value
of the task, for each work unitj, j = 1, ..., D, and with respect to the initial instant
of that work unit, x;. The net present value of the task in each work unit includes the
present value of the expected task worth at the end of the task and the present value
of the total remaining costs. These present values are calculated with respect to the
instant x;. Thus, assuming that the instant to finalize the task is 7, the net present
value of the task, at the beginning of the work unit j is Val(j, x;) and it is determined
as follows:

Val(j, xj) = Ry x g(T)e™" "9 — TotC(j, x;) (14)
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4 Procedure for the Task Evaluation

The procedure we propose intends to define the optimal strategy to execute an R&D
task. We consider that there are different levels of resources, and the aim of this
procedure is to choose which level of resources should be used at each moment, in
order to maximize the task value.

The procedure considers the models presented in the previous section and uses a
method similar to the Least Square Monte Carlo [10]. We selected this method for
being simple, for considering different state variables and for capturing the future
impact of current decisions.

The least-squares Monte Carlo (LSM) method was presented by Longstaff
and Schwartz [10] and it estimates the price of an American option by stepping
backward in time. At any exercise time, the holder of an American option optimally
compares the payoff from immediate exercise with the expected payoff from
not exercising it. This approach uses a conditional expectation estimated from
regression, which is defined from paths that are simulated with the necessary state
variables. The paths are simulated forward using Monte Carlo simulation, and
the LSM performs backwards-style iterations where at each step it performs a
least-squares approximation from the state variables [4]. The fitted value from the
regression provides a direct estimate of the conditional expectation for each exercise
time. Along each path, the optimal strategy can be approximated, by estimating this
conditional expectation function for in-the-money paths and comparing it with the
value for immediate exercise. Discounting back and averaging these values for all
paths, the present value of the option is obtained.

This method can be applied to estimate the value of real options. It constructs
regression functions to explain the payoffs for the continuation of an option through
the values of the state variables. A set of simulated paths of the state variables is
generated. With the simulated paths, the optimal decisions are set for the last period.
From these decisions, it is built, for the penultimate period, a conditional function
that sets the expected value taking into account the optimal decisions of the last
period. With this function, optimal decisions are defined for the penultimate period.
The process continues by backward induction until the first period is reached. The
use of simulation allows integrating different state variables in an easy way.

The procedure herein presented is based on LSM method, but some adaptations
were necessary, for example in the way time is handled.

The process consists in the following: we start by building many paths with
different strategies. The strategies used to build the paths include executing all work
units with the same level of resources or using different resource levels to finish
the task. For each strategy, and for each path, we simulate the values of the time to
execute the task, through the model we presented in the previous section. With the
time and the level of resources used, we can determine the costs, and through the
model for the task worth, we can simulate the values for the instantaneous worth;
finally, we can determine the net present value of the task, for each path, and for
each work unit.
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In this procedure we build, by backward induction and for all work units,
regression functions for values previously calculated for the paths. These functions
explain the net present value of the task as a function of different state variables: the
elapsed time, the instantaneous worth and the number of work units already finished.

The evaluation procedure begins in the last work unit. For all paths initially
simulated, it is considered the instantaneous worth observed in the beginning of
the last work unit, as well as the time elapsed until the start of that work unit. For
all paths, assuming a specific level of resources, kp, to complete the last work unit,
the time to complete the task is redefined, as well as the net present value of the
task in the beginning of the last work unit. Taking the net present value of the task
recalculated in all paths, V|kp, the elapsed time until the beginning of the last work
unit, Y} p, and the instantaneous worth observed in the beginning of the last unit,
Y, p, a regression function, Fpy,, is built. This function explains the net present
value of the task, in the last unit, as function of the elapsed time until the beginning
of the last work unit and of the instantaneous worth observed in the beginning of
that unit. We regress V|kp on a constant, and on the variables Y p, Y2 p, le’D, YZZ’D
and YopYip, that is,

Fpi, =ao+aYip+aY,p+ a3Y12’D + 614Y22,D +asY>pYip (15)

We assumed these basis functions for the regression, but other basis functions could
be selected without interfering with the process or altering it [18].

This procedure is repeated assuming the other resource levels to perform the last
work unit. Thus, considering that there are N resource levels, in the last work unit,
for each level of resources kp, kp = 1,...,N, we define a function, Fp,, which
explains the net present value of the task as function of the elapsed time (until the
beginning of the last unit) and of the instantaneous worth observed in the beginning
of that unit.

For the earlier work units, the procedure is based on the same principle: it is
considered that the work unit under consideration, say j, is executed with a specific
level of resources, k;. Next, the net present value of the task in the beginning of that
unit is recalculated, through the definition of the best strategy from the following
unit until the last one. The definition of the best strategy is done using the regression
functions already determined (Fig. 1) and the costs for switching levels: for each of
the following work units, the level of resources chosen is the one that leads to a
higher value in the difference between the respective regression function and the
cost of switching the level (if the level of resources is different from the level used
in to the previous work unit), that is, fora = j + 1,..., D, the level of resources
chosen k, is

r—nlaXN{Fa,ka - V(ka—l, ka)epxa} (16)

a—Lsees

Assuming the specific level of resources used in the unit j, and with the best
strategy defined from the work unit j 4+ 1 until the last one, we recalculate the net
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Fig. 1 Functions that allow the definition of the best strategy from unit j + 1 until the last unit D

present value of the task in the beginning of the unitj. Taking the recalculated values
of the net present value of the task, V|k;, the values of the elapsed time until the
beginning of the unit j, Yy, and the values of the instantaneous worth observed in
the same moment, Y, ;, a regression function is defined. This regression function
explains the net present value of the task as a function of the elapsed time until the
beginning of work unit j and of the instantaneous worth observed in the beginning
of work unit j.

For this work unit j the procedure is repeated, assuming the other resource levels
to execute it. In this way, we construct regression functions for all resource levels
in the work unit j. These functions explain the net present value of the task as a
function of the elapsed time and of the instantaneous worth. The process proceeds
by backward induction until the second work unit. This procedure allows having, for
each work unit and for all resource levels, a regression function that estimates the
net present value of the task, through the elapsed time and through the instantaneous
worth observed (Fig. 2).

For the first work unit we do not construct the regression functions, due the fact
that, for all paths, the instantaneous worth observed in the beginning of the first
unit is Ry and the elapsed time in that moment is 0, that is, the instantaneous worth
observed and the elapsed time are constant. Thus, to determine the best level of
resources in the first work unit, a specific level of resources is assumed. Then, with
the regression functions of the following work units, the best strategy is defined
for all paths. With the best strategy in each path, the net present value of the task
is calculated for the first work unit. The average of these values provides the task
value, assuming that specific level of resources for the first unit. This evaluation is
repeated, assuming the other resource levels for the first work unit. Notice that it is
necessary to decide which level of resources may be used to begin the task. The level
leading to a bigger average value of the task in the first unit is chosen to initialize
the task. After this procedure, the regression functions allow defining rules which
can guide management in the decisions about the strategy to use. Thus, with the
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Fig. 2 Regression functions, explaining the task value as function of elapsed time and instanta-
neous task worth

regression functions and knowing which level of resources was used, we can define
rules, indicating management which is the level of resources to use next.

5 Numerical Example

To test the evaluation procedure, we consider a project that is being executed. It is
necessary to evaluate one of its tasks and define the best strategy for undertaking
it. There are two different resource levels (level 1 and level 2) to execute the task.
For this specific task, D = 20 work units were defined, that is, the task is divided in
20 identical parts. We assume that, in average, level 1 can conclude 1.5 work units
per unit of time, and level 2 can conclude 3 work units per unit of time. The costs
increase at a rate of 0.5 % per unit of time, and the discount rate is » = 0.1 %, per
unit of time. We assume that the instantaneous task worth increases 1 % per unit of
time. The penalty function for the instantaneous worth punishes it up to 10 %, if the
task takes less than 10 units of time; if the task takes between 10 and 15 units of
time, the task worth is penalized up to 30 %; if the task takes longer than 15 units of
time, the penalty is fixed: 30 %. Thus, the penalty function, g(x), where x represents
time, is the following:

1— X xo.1, ifx <10
0,
—_ X —
8 =1409-——— x02.ifl0<x<15
15— 10
0.7, ifx> 15

The input parameters are in Table 1.
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Table 1 Input parameters for the numerical example

Time Costs Task worth
MY =M =0 ¢’ =10; ¢ =40 Ry = 2000
k.
paoy = 1.5 4® =3 vk ki) = G «=1%
p=05% v ~ Po(0.4)
u ~ U(—0.2,0.2)
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To run the evaluation procedure, 700 paths were considered and we used the
following initial strategies: to execute the whole task with the first level of resources;
to execute the whole task with the second level of resources; to execute half of the
task with one level and the other half with the other level of resources. This led to
a total of 2100 paths. The paths built, using only the level 1, led to an average time
of 13.28, with a net present value of 1637.6. The paths built, using only the level
2, led to an average time of 6.64, with a net present value of 1708.5. After running
the procedure described in the previous section, the average time to execute the task
is 8.4 and the net present value of the task is 1728.58. Analyzing the results of the
strategy used, level 2 is the only one chosen in the first units, but afterwards level 1
is chosen in many paths (Fig. 3).

In order to analyze the procedure, we can assay which one is the indicated
level of resources for the next work unit. If we know the level of resources used
before and the regression functions of the next work unit, it is possible to choose
the level of resources that should execute the next work unit, taking into account
the state variables information. The best decisions can be plotted as regions in the
two-dimension space defined by the instantaneous worth and by the elapsed time.
Such plot can provide some intuition about the best choices concerning the level of
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Fig. 4 Strategy for work unit 17, when level 1 is used in the work unit 16

resources to be used in the next work unit. If in a certain work unit d, level 1 was
used, the equation to determine the frontier lines between “continuing with level
1” and “change to level 2” regions are is Fy4+11() = Fa+12(-) — y(1,2)ePra+1,
Similarly, if in a certain work unit d, level 2 was used, the equation to determine
the frontier lines between the “continuing” and “change” regions is Fy41.1(-) —
Y2, et = Fap5().

For example, assume that unit 16 of the task is completed. Supposing that
level 1 was used in unit 16, we can provide a plot that defines how the level
of resources should be chosen for work unit 17. This plot defines two regions,
“continue with level 17 and “change to level 27, with the frontier lines obtained
through F7.1(-) = F172(-)—y (1, 2)e™7. Besides these frontier lines, we also plotted
the level of resources chosen for work unit 17, in the different paths in which level
1 was used in work unit 16 (Fig. 4). The little stars in Fig. 4 correspond to the paths
that used level 1 in unit 16 and continue with level 1 in unit 17. The little balls
correspond to the paths that used level 1 in work unit 16 and changed to level 2 in
work unit 17. According to the region in which the pair (elapsed time, instantaneous
worth) is situated, it is possible to define the level of resources to use in unit 17.

The procedure herein presented can be analyzed according to others aspects. We
can analyze the net present value of the task when the input parameters change.

For example, we can analyze the changes when the costs to switch level exist or
not; or when the penalty of the task worth exists or not. Taking the example above
we obtain the following results, displayed on Table 2.

The most significant increase in the net present value of the task occurs when we
remove the task worth penalty. The removal of the cost of switching level might not
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Table 2 Net present value of the task considering the existence or not of a penalty in the task
and/or the costs to switch level

Costs to switch level Penalty Net present value of the task in its beginning
Yes Yes 1728.6

No Yes 1733.0

No No 2097.3

Yes No 2097.7
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change the net present value of the task very much, but changes the strategy to use.
Notice that the absence of these costs leads to more changes of level of resources,
like shown in Fig. 5. This happens if there is not a dominant level, that is, if there is
not a level that leads to a higher net present value of the task in all work units.

6 Usage of the Procedure

The evaluation procedure herein presented allows managing tasks of R&D projects.
Knowing the levels of resources available to execute a task, the evaluation procedure
provides a strategy to complete the task. The main utility of this approach is to help
managers to understand what level of resources should start the task. Furthermore,
analyzing the results, managers can see whether it is useful or not to change the level
of resources during the task. If circumstances change, throughout the execution of
the task, managers can reapply the evaluation procedure, considering a “subtask”
of the initial task, that is, considering a smaller number of work units, since some
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of them have been completed. In this case, managers can decide on the level of
resources that should execute the rest of the task.

This evaluation process provides two useful results: the expected net present
value for the task and the corresponding strategy to execute it. For the application of
this approach, information is needed to allow the inference of the model parameters
and is also necessary to know what levels of resources are available to execute the
task. The input parameters of the evaluation model can be inferred from historical
data of the company. The construction of this approach was made, taking into
account it would be possible to infer these parameters. A major difficulty in applying
evaluation models to real projects is the knowledge of the required parameters.
Furthermore, many models consider assumptions that are difficult to be encountered
in reality. This procedure tried to rely on realistic and simple assumptions.

7 Conclusions and Future Research

We developed a financial approach to evaluate homogeneous tasks of R&D projects.
This approach takes into account one single criterion, which is financial; it is based
on real options and its result defines the strategy to execute the tasks as well as
the correspondent financial value. The strategy to execute the task consists on a set
of rules that allows defining, at each moment, which is the level of resources that
should be chosen, among the available levels of resources.

The resource levels impose different average speeds, as well as different costs per
unit of time. The model incorporates the completion time of the task, the cost, the
task worth and the net present value of the task. The evaluation procedure is based
on a simulation process and uses, in their regression functions, information observed
at each moment. If new information appears or the course of the task changes, the
procedure can be reapplied. Managers can reapply the procedure whenever it is
necessary.

This approach can be improved by introducing an abandonment option, when the
expected net present value is equal to or lower than a certain reference value. This
option must be integrated and interpreted in the context of the project that contains
the task.

Considering that an R&D project is a set of interdependent tasks, this evaluation
procedure can be the basis to analyze the strategy to execute an R&D project, as well
as the financial value associated to it. However, there are some aspects that must be
taken into account: the result of the evaluation of a task influences the evaluation
of the next task. On the other hand, the connections between the tasks and the way
these connections influence the evaluation of an R&D project must also be taken
into account.
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An Exact and a Hybrid Approach for a Machine
Scheduling Problem with Job Splitting

Luis Floréncio, Carina Pimentel, and Filipe Alvelos

Abstract The unrelated parallel machine scheduling problem with job splitting and
setup times is addressed in this paper.

A time-indexed integer programming formulation of the problem to minimize
a weighted function of the processing occurring both before and after jobs’ due
dates is proposed. Moreover, we apply to a suitable decomposition of the integer
programming model a recently proposed framework for decomposable integer pro-
gramming/combinatorial optimization problems (SearchCol, meta-heuristic search
by column generation) based on the combination of column generation and meta-
heuristics.

A problem specific heuristic to use in the column generation component of
the SearchCol is developed. To evaluate the effectiveness of the models and the
proposed algorithms, computational tests are performed.

1 Introduction

The interest both of practitioners and researchers in studying scheduling problems
exists for more than 50 years and its importance is well known among the literature,
with different approaches and models developed. As industry’s characteristics
and demands evolved, new and different implementations on models have been
proposed, with a huge variety of problem types and characteristics available today.
Scheduling plays a crucial role in today’s enterprises, as appropriate timing of
production is mandatory and has important financial impacts. Computational and
theoretical developments have given the possibility to better accommodate the needs
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of industry and complex systems can now be modelled to provide better decision
making. With these developments, several realistic features have been introduced
around basic concepts of production’s environment and other characteristics directly
related to processing, setup, sequencing of jobs, job splitting, as well as a wide range
of evaluation criteria [2].

This work approaches the unrelated parallel machine scheduling problem with
job splitting. In this problem a set of independent jobs must be processed on a set
of unrelated parallel machines, with setup times being incurred whenever a machine
switches jobs. Other system characteristics are considered such as jobs release dates,
machines availability dates, preservation of machine’s initial setup state and job
splitting.

The job splitting property allows the split (or partition) of jobs into several lots
of smaller size that can be processed in more than one machine at the same time,
allowing the improvement of the scheduling plans when compared with scheduling
plans where no job splitting is permitted. However, job splitting increases the
complexity of the optimization models since a solution can no longer be represented
solely as a completion time and a machine for each job but must be represented as
a completion time and a machine for each lot of each job. Being so, additional
decisions on how many lots for each job and their size must be taken. Job splitting
differs from preemption where jobs processing being interrupted are resumed later
on the same machine or another machine. In job splitting, jobs can be executed at
the same time in different machines.

Processing and setup times must consider, respectively, release dates for jobs
and machine’s availability dates. Moreover, by preserving the initial state of each
machine, job’s setup can be carried from a previous scheduling plan to an actual
one.

To evaluate a solution for this problem, the inventory over the planning horizon
is considered. The aim is to obtain a scheduling plan that minimizes processing
occurring both before and after the job’s due date, motivating processing to be done
the closest possible to the due date, thus avoiding unnecessary work in progress.
This is achieved through penalties for processing taking place both before or after
the due dates of the jobs, that increase the more distant they are from the due date
and that can be adjusted, accordingly to the situation where the model is being
applied and to the decision maker will. Although this objective as been seldom
considered in the scheduling literature, it is of great interest in the many practical
applications where work in progress stocks are undesirable.

In this paper, a new integer programming time-indexed model for the Unrelated
Parallel Machine Scheduling Problem with job splitting (UPMSPjs) is proposed.
The model is a compact one (has a polynomial number of variables and constraints
with respect to the data of the problem) and therefore can be solved directly by a
general purpose mixed integer programming solver.

A second approach, proposed in this paper, relies on a decomposition model
obtained by applying a (Dantzig-Wolfe) decomposition [7] by machine to the
compact model. As the subproblem of this decomposition does not have the
integrality property, the lower bound provided by the linear relaxation of the
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decomposition model dominates the one provided by the linear relaxation of the
compact model.

The decomposition model is solved by a SearchCol algorithm. SearchCol (short
for metaheuristic search by column generation) is a framework for obtaining approx-
imate solutions to integer programming/combinatorial optimization decomposable
problems [3]. As the name describes, SearchCol relies on combining Column
Generation (CG) and Metaheuristics (MHs). In this work, we explore a variant of
SearchCol where a general purpose mixed integer programming solver replaces the
MHs.

Some specific heuristics were devised and incorporated within SearchCol for
the decomposition model resolution. Although SearchCol provides exact resolution
of the Subproblem (SP) that resulted from the Dantzig-Wolfe decomposition, in
the context of the UPMSP;js the development of a heuristic designed around the
problem’s characteristics and using the dual information provided by the Restricted
Master Problem (RMP) brought advantages when solving the CG. In addition, a
different approach to the CG is taken, with the developed heuristic solving all SPs
simultaneously. Moreover, other specific heuristics were also created to build initial
solutions, to include on the first RMP, aiming to create an upper bound, to speed
up the CG process and to guarantee that feasible columns are present in the RMP
before starting the CG process.

SearchCol may be seen as a hybrid method combining a linear programming
(to solve the RMP of CG), problem specific algorithms (to solve the SPs of CG),
MHs and, possibly, a general purpose mixed integer programming solver (possibly
to solve the SPs of CG when an optimal solution is desired and in the search
phase replacing the MHs). Several hybrid methods have been proposed in recent
years [4, 31]. SearchCol has two distinctive features: it is a general approach and
relies on column generation. For a detailed description of the advantages of using
decomposition methods and hybrid approaches (resulting from the combination of
decomposition methods with MH) we refer to [3].

The remainder of this paper is organized as follows. Section 2 reviews with detail
the literature on the parallel machine scheduling and on problems related to the
UPMSP;js. Section 3 presents a compact formulation of the UPMSPjs. Section 4
presents the decomposition model to be solved by a SearchCol algorithm, which
is introduced in Sect. 5 along with the specific heuristics developed. Computational
experiments are presented in Sect. 6. Finally, in Sect. 7 we draw the conclusions of
this work.

2 Literature Review

A significant amount of research has been done on scheduling. This section
outlines machine scheduling, reviewing then parallel machine scheduling and the
environment being approached in this work — unrelated parallel machine scheduling.
Finally, a brief overview on hybrid methods is given.
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2.1 Machine Scheduling

The study of scheduling problems goes back to the mid-1950s and since then,
several works have been published on the subject [2].

For both an overview of the state of the art of scheduling problems after 1999
and a historical perspective see [2] which follows previous works by [1] and by
[25]. A comprehensive survey is done on scheduling problems involving setup times
or costs, classifying them according to the environment previously referred and
to batching and non-batching considerations (a batch can be defined as a set of
jobs to be processed as a group so setup times or costs are unique to the batch,
instead of incurring a setup time/cost for each job). [37] also surveys scheduling
research involving setup times. In this work, important definitions and classifications
are summarized, involving job, class, sequence dependence and separability setup
situations.

Unlu and Mason [32] made a comparison in order to identify — for various
types of objective functions and machine environments — promising Mixed Integer
Programming (MIP) formulation paradigms based on the types of decision variables
such as job completion time, assignment and positional, linear ordering, time
indexed and network types.

Pinedo [24] offers an exhaustive study on the scheduling problem, approaching
the deterministic and stochastic models and numerous variants in each one, provid-
ing several and important definitions and classifications, as well as formulations,
examples and possible approaches to solve the problems.

In the following subsections, literature on Parallel Machine Scheduling (PMS)
and Unrelated Parallel Machine Scheduling Problem (UPMSP), with focus on works
using job splitting properties, is reviewed, making also a brief introduction on hybrid
methods and relevant literature regarding this work.

2.2 Parallel Machine Scheduling

The PMS environment is defined by [32] according to the speed of processing
of the machines for the different jobs: identical machines operate at the same
speed (identical machine environment: P,,); non-identical machines operate at
different speeds but its speed/processing rate is consistent for all machines when
processing different jobs (non-identical machine environment: Q,,). The unrelated
PMS environment is, in fact, a generalization of the non-identical case as an
unrelated set of parallel machines can include a set of non-identical machines [24].

Most of works on problems with job splitting properties were done for the
identical PMS case. Yalaoui and Chu [36] considered the problem of identical
PMS with job splitting and sequence dependent setup times to minimize maximum
makespan using a heuristic method to solve it. Such method was used by [21] for
the same problem, using a heuristic based on a linear programming formulation to
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improve the approach of [36]. Xing and Zhang [35] also studied the job splitting
property on an identical PMS problem with independent setup times to minimize
the makespan, discussing cases with splitting properties and analysing a heuristic
for this problem by extrapolating preemption properties.

The identical PMS case with job splitting properties was also addressed by [22,
28, 30] and [14] with the objective of minimizing total tardiness.

Shim and Kim [30] developed a Branch & Bound algorithm for the problem with
independent setup times, the same due dates for all jobs and machines available from
the beginning of the planning horizon, using the example of Printed Circuit Boards
as an industry with these characteristics. Shim and Kim [30] stated the existence
of very few research results on the parallel machine scheduling problem with job
splitting property.

Kim et al. [14] approached the problem with sequence independent setup times
developing a heuristic that reschedules an initial scheduling plan, by splitting jobs
through rules to select jobs, subjobs and machines.

Park et al. [22] considered the problem with major/minor sequence dependent
setup times embedding a heuristic that accounts for the problem’s properties (job
splitting, setup dependency) in three existing algorithms, and comparing them to
the original ones.

Sarigicek and Celik [28] proposed both a Tabu Search and Simulated Annealing
meta-heuristic for the problem with independent setup times and developing a
MIP formulation with positional variables, finding that the Simulated Annealing
approach significantly outperforms the Tabu Search in computational time and
optimal solution deviation.

The objective functions considered in the reviewed literature have no resem-
blance to the one being studied in this work. Most works rely on evaluating
scheduling plans through earliness and/or tardiness, makespan or other factors
related to setup, completion times or due dates fulfilment.

As pointed out by [35] and [38], the NP-hardness of the problem of scheduling
n jobs on m machines with distinct release dates for jobs and machines, and distinct
due dates for jobs, implies that alternatives to exact approaches must be sought.

2.3 Unrelated Parallel Machine Scheduling

A survey of the literature focusing on the UPMSP without side conditions was
done by [23]. The authors reviewed the several performance evaluation methods
and compiled existing algorithms for the various objective functions. Pfund [23]
also report that unrelated PMS environments remained relatively unstudied, noting
that there were few solution approaches to minimize due date related functions, and
making aware that research in this area should include the development of solution
algorithms to minimize due date related criteria.

Logendran and Subur [18] studied the UPMSP, with job splitting and distinct
release dates for jobs and machines, to minimize total weighted tardiness. The
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authors present a MIP model using assignment and positional decision variables.
In this work, the splitting property considers a job can only be split in two parts to
prevent higher Work In Progress (WIP), with a predetermined number of jobs to be
split. Also, neither setup times or costs are explicit, assuming they are included in
the processing times Though the authors study an unrelated case with job splitting,
the presented model constraints force jobs to be processed in the same machine in
case a splitting occurs. To solve the problem, different initial solutions are created
and then used by a Tabu Search based heuristic to find a better solution, comparing
then the initial solutions that provide better results after applying Tabu Search.
Logendran et al. [19] studied a similar problem with a similar approach, considering
six different Tabu Search algorithms and four different initial solution methods that
act as seeds of the algorithms. This work does not consider the possibility to split
jobs. Sequence dependent setup times, as well as distinct release dates, with the
objective of minimizing total weighted tardiness define the main characteristics of
this work.

Zhu and Heady [38] developed a MIP for the Earliness-Tardiness case of
an unrelated PMS problem with sequence dependent setups to provide optimal
solutions for small scale problems regarding future research and validation on
industrial-scale heuristics.

Shim and Kim [29] considered the problem of scheduling jobs on unrelated PMS
to minimize total tardiness without setup considerations, using a Branch & Bound
algorithm approach with several developed dominance rules.

Liaw et al. [16] also considered the problem of unrelated PMS to minimize
the total weighted tardiness without setup considerations. They first created upper
and lower bounds, through a two-phase heuristic and an assignment approach
respectively, and use a Branch & Bound algorithm with dominance rules to
eliminate unpromising partial solutions.

Chen and Wu [6] presented a heuristic combining the Threshold-Accepting
method with Tabu Search and designed improvement procedures to minimize total
tardiness for an UPMSP with auxiliary equipment constraints. Chen [5] combined
the Simulated Annealing method, apparent tardiness cost with setup and designed
improvement procedures to minimize total tardiness for an UPMSP with setup times
that are dependent both on job sequence and machine used.

Wang et al. [34] modeled the PMS problem with job splitting, for both identical
and unrelated cases and without setup considerations, to minimize the makespan,
approaching it through a hybrid Differential Evolution method.

Vallada and Ruiz [33] developed a MIP with positional variables and proposed a
genetic algorithm approach for the UPMSP to minimize the maximum makespan of
a scheduling plan with sequence dependent setup times for both jobs and machines.

Rocha et al. [26] considered the problem of unrelated PMS, with sequence
dependent setup times for both machines and jobs, and developed a Branch & Bound
algorithm in order to minimize the maximum makespan and the total weighted
tardiness (both are added in the same objective function).

Kim et al. [13] presented a Simulated Annealing approach for the UPMSP
with job sequence dependent setup times to minimize total maximum tardiness.
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A particularity in this work is the existence of already defined and divided parts of
jobs.

Lopes and Carvalho [20] studied the UPMSP with sequence dependent setup
times to minimize total weighted tardiness, using a Branch & Price algorithm with
a new column generation acceleration method that significantly reduces the number
of explored nodes.

Fanjul-Peyro and Ruiz [10] approached the UPMSP under makespan minimiza-
tion. The unrelated environment was also extended to consider only a subset of
desirable machines and jobs in order to understand if production capacity needs to
be increased. Three algorithms were developed, combining them with CPLEX [12]
or between them.

Lee et al. [15] suggested a Tabu Search algorithm to solve the unrelated PMS
problem with sequence and machine dependent setups to minimize total tardi-
ness. The Tabu Search approach outperformed significantly an existing Simulated
Annealing method, and gave quicker solutions than an iterated greedy solution
although it did not improve the solution values.

Lin et al. [17] approached the UPMSP using different heuristics and a genetic
algorithm. In this work, neither setup times nor job splitting properties are conside-
red. Rodriguez et al. [27] also approached the unrelated environment without setup
times and splitting properties to minimize the total weighted completion times but
using an iterated greedy algorithm to solve large-scale size instances.

Most research on machine scheduling problems has been done for the single
machine case [2, 38]. According to the review in [2], there has been few attempts
at tackling the problem of optimizing the scheduling and splitting of jobs subject
to release dates and sequence-independent setup times in an unrelated parallel
machines environment. Moreover, no work has been found for the particular case of
using all of the referred properties being studied in this work in the same UPMSP.

3 Compact Model

The proposed compact model to the UPMSPjs is a time indexed one. In a time-
indexed formulation, time is divided into a pre-set of identical periods of a unit
length. The notation used in this paper is presented below.

The sets considered are represented by:

J —Set of jobs, indexedbyj=1...n
T — Set of discrete, integer time periods, indexed by t = 0... T,x
M — Set of machines, indexedby i =1...m

The parameters are the following:

pij — Processing time of job j in machine 7, in time units

r; — Release date of job j, the moment in time it becomes available for processing
q; — Release date of machine i, the moment in time after which machine i can
process jobs
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d; — Due date of job j

w; — Priority or weight of job j

s; — Setup time of job j

z[{] — job programmed for machine i at the beginning of the scheduling horizon
B — Constant between 0 and 1

The model’s decision variables are:

{ 1 if jobjis assigned to machine i in period ¢
Xijt =

0 otherwise

§ 1 if a setup for job j is incurred in machine i in period ¢
Yijr =

0 otherwise

1 if the setup status of machine i changes from z[i] to j in periods
eir = or in a previous period of time

0 otherwise

The developed MIP model, considering the previous presented notations and
decision variables is the following:

m n 1=dj n Tmax

MinZ = Y% (1= B)d—wpxye + Y > Y Bl —dpwpry (1)

i=1 j=1 r=1 i=1 j=1 r>d;
Subject to:
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YooY =1l v )
— Dij
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Xijts Yijt» €it € {07 1} (9)

The objective function penalizes early and tardy processing (related to the due
date), with the possibility to define if the penalization should be bigger for earlier
or tardier processing, by using a convex combination with weight 8. Also, within
the set of processing periods before and after the due date, the more distant the
processing is done from the due date the more it penalizes the solution’s value. In
addition, the priority of the job is also taken into account.

A set of constraints must be defined to guarantee the satisfaction of demand,
considering that processing can be executed in any machine with different relations
between the speed/processing and the total demand or needed processing. Con-
straints (2) simply state that the sum of the processing for each job must be at least
equal to its total processing time (each job is completely executed and demand is
satisfied).

A second set of constraints in this model relates to setup considerations,
guaranteeing not only the mandatory machine setup before any new job is processed,
but also the preservation of an initial setup state inherited from the previous
scheduling plan. Constraints (3) ensure that a setup time is incurred whenever a
machine starts processing a new job. Constraint set (4) has the same role as (3), but
considers the case where the incoming job is the preprogrammed one, and allows for
initial setup preservation through the change of status variable e;. By (5), the setup
status of a machine changes in time ¢ if the incoming job is not the preprogrammed
one (in which case a setup must be incurred before any processing takes place).

A third set of constraints aims at limiting the status of a machine, if not idle or
unavailable, to one of the two active possible states: being setup or processing. By
(6), it is ensured that at any given time #, a machine is either processing, being setup
for a job, or idle.

A set of constraints must also be considered to guarantee that the release dates
are respected, so that machines cannot process or be setup before being available
and jobs cannot be processed before being also available. Constraints (7) guarantees
that no processing takes place before the maximum between the release dates of
job j and machine i. By (8) it is stated that setups cannot take place before machine
i is available. Finally, constraints (9) bound the variables of the problem.

In Fig. 1, an example of a complete scheduling plan is provided, highlighting the
benefits of applying a job splitting property in this problem.

4 Decomposition Model

In this section, a Dantzig-Wolfe decomposition [7] is applied to the compact
model of Sect. 3, and the resulting Master Problem (MP) and set of smaller and
independent problems — the Subproblems (SPs) — are presented.
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pj. processing j with splitting
Unavailable

dj, due date of j

-EEEOCO

Fig. 1 A scheduling plan example

A natural decomposition of the problem is to define subproblems by machine
as most constraints imposed on a single machine. Using the previously presented
compact model as the original model, constraints (2) are the only where variables
associated with different machines appear in the same constraint, therefore they are
treated as coupling constraints. Constraints (3), (4), (5), (6), (7), (8), and (9) define
the SPs. In this decomposition, each SP solution corresponds to a machine schedule,
so each problem represents a single machine scheduling problem.

The SPs solutions will result in different machine scheduling plans where not
all jobs must be scheduled (no satisfaction of the demand must be guaranteed) and
where allocation of processing and of setup times has exactly the same procedure
as in the compact model, indicating for that SP which jobs or parts of jobs (and in
which periods) shall be processed. Each SP has its own characteristics and depend
on machine properties and its job processing times, resulting in a set of different
(sub-)problems.

For the MP new decision variables will be needed, to represent the extreme points
generated by the SPs. The solution of the MP will represent a convex combination
of these points.

All notation being used in this section has already been introduced in Sect. 3,
except for the set, decision variables and parameters that will be presented in the
following paragraphs.

A new set must be defined representing the total number of scheduling plans
generated by the SPs:

H; — Set of machine i scheduling plans, indexedby h =1...g;
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The new decision variables to be used are the following:
)Lf-’ — Weight of scheduling plan / of machine i

A new set of parameters to be used must be defined such that:

n 1 if jobjis processed in machine i in period # on scheduling plan &

Qs = .
0 otherwise

It must be noted that the parameter oz . is directly related to the previously defined
Xjjr, though this one is now used in the MP whereas the original one is being used by
the SPs.

4.1 Master Problem

With all the notation developed in Sects. 3 and 4 the following MP can be defined:

g m n t=d;

MinZ"" =3 "% "33 (1= B)(d) — wery) A!

h=1 i=1 j=1 t=1

, (10)
333D - el
h=1 i=1 j=1 t>d;
Subject to:
8i
doal=1 Vi () (11)

Tinax

& m
YN Sz v ) (12
h=1i

=1 i=1 r>max{rj.q;} v

Al e{o,1} (13)

The objective function in (10) follows the one used in the compact model,
minimizing processing occurring distant from the due date of the jobs in the chosen
scheduling plans. A new set of constraints is introduced. The set of constraints (11)
are the convexity constraints of the model, that guarantee that a combination of the
SPs is chosen. Constraints (12) derive from the compact model set of constraints
that ensure processing and satisfaction’s demand is met for all jobs (in all chosen



202 L. Floréncio et al.

plans for all machines). The last set of constraints, the set (13), defines the decision
variables domain.

A modified version of the Master Problem is considered during the decompo-
sition model resolution process — Restricted Master Problem (RMP), which works
only with a sufficiently meaningful subset of variables [9]. When solving the linear
relaxation of the RMP, a set of dual variables is obtained: IT; from (12) giving
information of whether it is attractive to process job j and from (11) the convexity
constraint dual variable 7;.

4.2 Subproblem

Using the constraints sets (3), (4), (5), (6), (7), (8), and (9) of the compact model and
the dual variables provided by the MP, the following SP is obtained, for machine i:

. o n Tmax 1
Minz% =3 3 B(t — dp)w; — —1IT; ) xie +
Jj=1 r>d; At>max{rj.q;} Pi

Tmax

DN DI (B e A P
ij

J=1t=d; A t>max{r;.q;}

(14)

Tmax

Z Z (1 = B)(d; — hwjxy, +

=1 1=d; N t<max{rj.q;}

Tmax

Yo > Be—dywiy — s

J=1 t>dj At<max{rjq;}
Subject to:

t—1

D7 vk = (o —xgeen)sy ViYjij# il Veoe =1 (15)

k=I‘—Sj

t—1

s (1 — eig—1)) + Z Yielik = (Xiglile — Xigfijao—1))Sz7 Vi,Vert=1  (16)

k=r—sz[,-]

n t
DD o+ x) Stew  Vi.Vi:t>max{g. 1} (17)

=1yl k=0

D+ Y yp <1 ViVirr=1 (18)
=1 =1
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X =0 Vi, Vj, ¥t :t < max{rj, q;} (19)
Yijt = 0 Vl, V], Vit < q; (20)
Xije» Yije» €ir € {0, 1} (21)

In this formulation, each SP is associated to a machine upon which the reduced
cost of scheduling plans are evaluated at each iteration of the CG algorithm.

The set of constraints of the SP has the same meaning as in the case of the
compact model (see Sect. 3).

The linear relaxation of the decomposition model is solved by CG. CG is an
iterative process, typically used to solve large linear programming problems to
obtain good lower bounds for integer programming problems, where the MP and
the SPs interchange information between each other in each iteration of the CG
process. When the RMP is solved, whether in the first iteration or in the successive
iterations, it provides dual information that is included in the subproblems objective
function.

Moreover, the solutions resulting from solving the SPs, in the first iteration of the
CG process and the remaining ones, are iteratively added to the RMP as variables,
until in a given iteration all the SPs solutions have non-negative reduced cost,
meaning that no attractive columns were found on that iteration. As a result, no
column will be added to the RMP in that iteration and it can be concluded that the
solution of the last solved RMP is the optimal one. For a detailed description of the
CG algorithm see [8].

5 SearchCol

SearchCol [3] will be used to solve the aforementioned machine scheduling
problem. As the full name of the SearchCol framework suggests (‘metaheuristic
search by column generation’), SearchCol is a framework for combining Column
Generation and metaheuristics. SearchCol can be easily extended to accommodate
the use of a general purpose mixed integer programming solver. Using the Search-
Col framework — and in particular a decomposition model — is attractive due to
the complexity of the problem we want to study, where larger and more realistic
instances are too hard to solve by non-decomposable models.

The SearchCol’s global algorithm can be divided in three main steps or phases,
as represented in Fig. 2. The SearchCol steps can be identified as the CG, the Search
and the Perturbation phases. In each one of these steps, several methods and possible
problem specific implementations are defined by the framework.

The SearchCol algorithm starts by applying CG using the subproblem heuristic
detailed in Sect. 5.2. In this step the decomposition model is solved and an optimal
Linear Relaxation (LR) solution to the problem is obtained, which also provides
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Fig. 2 SearchCol flowchart

a lower bound to the optimal integer solution. Problem specific algorithms can be
implemented to solve the SPs more efficiently.

In the second phase of the algorithm, the set of previously generated, by CG,
SP solutions define a search space, and work as components of the overall solution.
The objective is to obtain integer solutions for the problem, that is, with A7 € {0, 1},
implying a column must be chosen for each SP (or machine scheduling plan). This
phase is problem independent and can be conducted by a general purpose MIP solver
or by a MH.

In the third step a set of perturbations is added to the RMP that will be solved in
the following CG. Each perturbation is a new constraint forcing one SPs variable
to take value 0 or 1 (depending on the perturbation definition). Perturbations
are included with the purpose of leading CG to generate new SP solutions. The
perturbation phase and its components are presented and detailed in Sect. 5.3.

After the perturbation phase, a new CG is run — perturbed CG — which will lead
to a new search phase. Afterwards, if no stopping criteria is met, new perturbations
are applied and the process iterates again. In the SearchCol framework, several
problem independent perturbations are available, based on information such as the
incumbent and/or the optimal LR solution and with deterministic or probabilistic
characteristics.

The stopping criterion in SearchCol can be met using: a time limit, a limited
number of search iterations, a given improvement on the value of the incumbent
solution or a limited number of total iterations without improvement (a total iteration
comprises the execution of the three referred steps). A more detailed description on
SearchCol is available in [3].
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In the following subsections we will present the developed heuristics in this work,
namely heuristics for the generation of initial solutions to be included in the first
RMP before the first iteration of the CG algorithm and a heuristic to solve the SPs.

5.1 |Initial Solutions

The initial solutions are obtained from five different types of heuristics that create a
scheduling plan for each machine with the guarantee that all jobs are fully processed
in the set of all machines scheduling plans.

For each resulting machine scheduling plan, an associated variable (Af.‘) is
inserted in the RMP.

The scheduling plans are created using an average processing time rule or a due
date rule to allocate all parts of each job to the most attractive periods of a machine,
that is chosen from the set of all machines, after calculating which one induces
the minimum weight on the objective function if processing is done on the available
periods before the due date (or just after the due date if early processing is possible).

For detailed information about the developed initial solutions refer to [11].

5.2 Global Subproblem Heuristic

In SearchCol, it is possible to solve SPs heuristically or exactly, and in the former
case, to use independent heuristics (each SP is solved independently) or global
heuristics (a global solution that considers all SPs is obtained heuristically and then
decomposed in one solution for each SPs).

The following global heuristic was devised considering the complete set of
machines (SPs), meaning that, unlike common CG procedures, all SPs are solved at
once.

The motivation for using this approach was to guarantee that, in an integer
solution to the decomposition model, different feasible solutions are obtained. When
the SPs are solved independently, because of the type of dual information provided
to the SP and although the optimal solution of the LR of the master problem is
feasible, forcing the selection of only one schedule plan for each machine (during
the search phase) may result on an integer solution equal to the best initial heuristic
solution.

As mentioned, this is caused by the type of dual information given by the
RMP, as it provides the SPs with the same dual information (variable 7;) for all
periods of a given job, with the reduced cost for each machine (and its associated
SP) differing only because of the different processing times for the same job on
different machines, which may be insufficient for an overall solution when building
the solution of each machine. This aspect results in the achievement of very similar
schedules for different machines in terms of the jobs considered, in a given iteration
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of the CG when the SPs are being solved independently. Moreover, the most
attractive jobs have a high probability of being scheduled in all machines (in a given
iteration of the CG) and other jobs have a high probability of not being scheduled
on any machine, resulting in overall poor integer solutions.

The global heuristic defines the schedule plans for all machines at one step in an
iteration of CG, providing the RMP with all SPs solutions that can be easily seen as
a global feasible solution (given the heuristic assures that all the jobs are scheduled
completely). In the following paragraphs we describe the heuristic’s steps. An
explanation is given after to the meaning of ‘cost’ in the heuristic context.

1. Sort jobs hierarchically:

(a) Increasingly by the most negative ‘cost’ from the set of the job’s periods;
(b) Increasingly by due date;

(c) Decreasingly by weight;

(d) Increasingly by index.

2. On sorted list, pick the first job not totally scheduled.

. Sort machines increasingly by ‘cost’ of processing in the available periods.

4. Schedule job selected on Step 2 taking into account the first machine of the sorted
list of machines from Step 3, and on first available period with the most negative
cost on the objective function.

(O8]

(a) If no available period, change to the next machine on the sorted list;

(b) If no available period and all machines checked, restart from Step 4 allowing
processing on periods with non negative cost (only for the job being
scheduled).

5. Repeat the process starting from Step 2 until all jobs are scheduled.

The ‘cost’ of processing a given job j in a given period ¢ (as referred in Step 1)
is calculated using the SPs objective function for the period being considered as
shown in Eq. (22). In Step 3 the calculation is similar, although a set of given periods
needed to totally process the job is considered, with the ‘cost’ of processing in
the periods being the sum of ‘costs’ of each period in the interval, guaranteeing
processing is possible.

Bt —dp)w; — pl,,nf ift > d; At > max{rj, q;}

cost =
(1 =B)dj—Hw; — piUH, ift <d; At > max{r;,qi}

(22)

5.3 Perturbations

A perturbation in SearchCol is an additional constraint, i.e. a constraint not present
in the original decomposition model, that fixes SP variables to 0 or to 1. In the
particular case of the UPMSPjs, a perturbation forces a given period, ¢, of a given
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machine, 7, to be occupied by a given job, j, by fixing x;; = 1 or forbids a given job,
J» to occupy a given period, 7, of a given machine, i, by fixing x;; = 0.

The SearchCol framework states several ways of defining sets of perturbations.
In the SearchCol algorithm implemented in this work, perturbations are based on a
combination of the incumbent solution and the (optimal) solution obtained the last
time CG was solved.

A user defined parameter () is first applied to round the fractional values, from
which results the values to be combined with the incumbent solution (x ;).

/ _
XLR_ijt < 6 — xLRfijr =0

A
X i > 1 =0 = xpp 5 =1

The following rules are then applied:

1. Subproblem variables with value 1 in the optimal LR solution and value 1 in the
incumbent solution are fixed to 1;

2. Subproblem variables with a fractional value in the optimal LR solution and
value 0 in the incumbent solution are fixed to 0.

Further details on perturbations are available in [3, 11].

6 Computational Tests

The implementation of the SearchCol algorithm to the UPMSP;js relied on Search-
Col++ (a computational framework in C++ for the implementation of SearchCol
algorithms, http://searchcol.dps.uminho.pt/). SearchCol++ uses the CPLEX callable
libraries for the solution of the RMP, as a general purpose mixed integer program-
ming solver when required for the search phase (alternatives are VNS and tabu
search among other MHs) and also to solve the compact model.

Problem specific classes implementations were coded using the integrated
development environment Microsoft Visual C++ in Microsoft Visual Studio 2010
with CPLEX 12.2 libraries [12] for a x64 platform.

The problem instances were adapted from [20] and are composed of 16 subsets
classified by number of jobs and machines as can be seen in Table 1. Each subset
contains 5 instances corresponding each to different scheduling congestion levels
(9), with the total number of instances amounting to 80.

Table 1 Instances’ characteristics

M (machines) (2 |2 |2 |2 |4 |4 |4 4 |6 |6 (6 |8 |8 |8 |10 10
J (jobs) 20 |30 |40 |50 |30 (40 |50 |60 (40 |50 |70 |40 |60 |80 |70 | 100
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In [20], the setup times are sequence dependent whereas in this work they are
sequence independent. These test instances embody all the remaining characteristics
of the UPMSPjs being studied, except for the setup times which were adapted, by
calculating the average setup time for all the possible sequences of any job j.

An important characteristic to consider in these instances is their scheduling
system congestion level (g). For each pair of instances characteristics (machines
and jobs — in Table 1) there are five different levels of congestions. The authors
considered that the larger the value g the more congested the system will be. This
parameter has particular importance not only because it helps to define the values
of the due dates for each instance [20], but also because it causes a greater number
of tardy jobs, as it becomes impossible (in more congested instances) to allocate all
jobs before their respective due date.

The B parameter of the objective function was set to 0.99 and the number of
periods (set T') for each instance, is calculated by:

J

maxr; + max [Z (pj + 55 % m)]
J i

Tpax = max {max d; + 1, (23)
J

m

All tests were run with a time limit of 1800seconds on a PC Intel Core i7
3610QM 2.3 GHz and 8 GB RAM under MS Windows 7 x64.

Despite the referred time limit, a second stopping criterion was used so that the
algorithm would stop if the incumbent solution’s value was not improved after the
search step.

In Tables 2 and 3 the results from the computational tests using all the heuristics
previously presented (for initial solutions and solving the subproblem globally), the
general purpose mixed integer programming solver in the search step of SearchCol,
and the perturbations described in Sect.5.3, are presented. The compact model
results, obtained by solving it directly with CPLEX 12.2, are represented in columns
denominated by ‘Comp’ and the SearchCol algorithm results are represented by
‘Dec’. Each line corresponds to a pair of machines and jobs (M-J) and contains five
instances values, one for each congestion level column represented by ‘q’.

Comparing solution values, the compact model solved directly by a state-of-the-
art commercial general purpose mixed integer programming solver outperforms the
decomposition model solved by SearchCol in almost all instances.

For the instances with more machines and jobs and high congestion, SearchCol
is able to provide a feasible solution while the compact model is not (for these
instances the solution value is substituted for ‘inf”).

Moreover, regarding computational times, when considering low congested
instances the compact model is more efficient that the decomposition approach,
whereas for higher congestion levels it requires longer computational times than
the decomposition model.
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Table 2 Comparison of values between models for the five congestion levels
qg=1 qg=2 q=3 qg=4 qg=>5

M-J Comp |Dec |Comp |Dec |Comp |Dec Comp | Dec Comp | Dec
2-20 0.2 0.2 0.7 0.8 | 14.8 79.6 | 88.7 142.5 | 146.3 219.4
2-30 0.7 0.8 4.1 54 | 171.0 |276.6 |367.2 491.6 |521.3 652.1
2-40 0.6 0.8 4.4 6.4 | 189.2 |324.3 |515.8 706.3 | 764.1 | 1088.1
2-50 0.6 1.2 1.4 2.9 193.2 |449.1 (7552 |1059.0 |1246.4 |1511.4
4-30 0.1 0.1 6.2 |23.4 | 943 |145.7 |166.4 208.0 |231.7 269.3
4-40 0.1 0.1 9.2 38.0 | 90.6 |141.3 |198.3 267.8 |290.2 372.5
4-50 0.1 0.2 1.5 3.1 | 339 | 69.0 170.2 249.8 | 3194 450.5
6-60 0.2 0.3 |18.0 35.1 | 111.6 |250.5 |416.3 639.3 | 644.9 838.1
6-40 0.0 0.0 0.1 0.1 | 19.2 | 77.8 |100.4 153.9 | 163.6 214.2
6-50 0.1 0.1 5.2 18.4 | 77.6 |170.9 |232.8 293.4 | 347.6 406.1
6-70 0.0 0.1 7.1 21.5 | 68.6 |146.5 |270.4 403.2 | 462.4 582.2
840 0.0 0.0 4.0 6.0 | 37.7 | 83.2 |94.1 120.9 | 116.8 162.4
8-60 0.0 0.0 |18.9 |350 |107.3 |168.3 |224.8 305.1 |317.0 382.3
8-80 0.0 0.0 3.0 7.6 | 20.1 |128.0 |248.1 389.5 |471.4 555.0
10-70 0.0 0.0 |11.0 |27.9 | 883 |174.2 |218.0 350.8 | 317.8 433.8
10-100 | 0.0 0.0 0.1 7.6 | 69.7 |119.8 |inf 558.3 |inf 757.0
Average |0.2 0.2 5.9 14.9 | 86.7 |175.3 |271.1* | 385.4*|424.1* | 542.5%

2 The average value for these columns excludes instances 10-100-4 and 10-100-5 (M-J-q)

Table 3 Comparison of time spent between models (in seconds) for the five congestion levels

qg=1 qg=2 qg=3 qg=4 qg=>5
M-J Comp |Dec |Comp [Dec |Comp [Dec |Comp |Dec |Comp |Dec
2-20 1 832 1 163 2 133 8 77 8 95
2-30 3 1814 6 1825 | 1674 |1336 |1800 306 | 1800 231
2-40 7 1836 7 1804 | 1800 |1804 |1800 |1036 | 1800 618
2-50 10 1800 8 1808 | 1800 |1806 |1800 |1808 |1800 |1807
4-30 1 182 2 582 134 218 83 129 140 128
4-40 2 70 |11 875 | 1800 830 | 1350 560 | 1641 515
4-50 5 1809 |11 1818 | 1438 | 1808 |1800 |1399 |1800 | 1147
6-60 11 1809 |21 1837 | 1800 |1807 |1800 |1811 |1800 |1815
640 3 13 4 762 125 418 471 334 355 302
6-50 5 911 |12 1146 | 1800 | 1338 | 1800 716 | 1800 660
6-70 15 1820 |29 1831 | 1800 |1823 |1800 | 1824 |1800 |1814
8-40 3 9 4 462 49 368 124 205 29 204
8-60 9 428 |37 1822 | 1640 |1813 |1800 |1279 | 1800 991
8-80 28 74 |32 1872 | 1370 | 1809 |1800 | 1825 |1800 |1837
10-70 19 163 |44 1817 | 1800 |1835 |1800 | 1830 |1800 | 1651
10-100 |77 570 |89 1844 | 1800 |1841 |1800 | 1810 |1801 |1803
Average |13 884 |20 1392 | 1302 |1312 |1365 |1059 |1373 976
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7 Conclusions

In this paper an unrelated parallel machine scheduling problem that considers
several important characteristics arising in real world manufacturing environments
was approached. In particular, we addressed the job splitting property that can
contribute significantly to the reduction of the production lead time in parallel
machine environments, as for example in the textile industry or in the electronic
industry, thus contributing to the reduction of tardy jobs. Nonetheless, this property
received little attention by the scheduling research community and only in the
last recent years a few papers about parallel machine scheduling considering this
property were published.

Another important feature of the practical scheduling problems, particularly in
the recent years due to the proliferation of just-in-time production practices and lean
manufacturing, is the objective to guarantee the processing of the customers’ orders
as close as possible to their due dates, thus preventing unnecessary work in progress
(WIP), inventory costs and customer dissatisfaction caused by late deliveries. The
objective function considered in this work (in both approaches proposed) minimizes
both WIP and late deliveries, being an important contribution of this work, as this
type of objective was seldom studied in the literature so far.

Two models were proposed: an integer programming compact model and a
decomposition model. The first one was solved directly through a state-of-the-art
commercial general purpose mixed integer programming solver and the second one
was approached by combining column generation and the same general purpose
mixed integer programming solver through SearchCol framework.

Computational results on instances up to 10 machines and 100 jobs show that the
compact model approach is, in general, much more efficient, although for some of
the largest and most congested instances no feasible solutions were obtained unlike
the SearchCol algorithm used for the decomposition model.
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Testing Regularity on Linear Semidefinite
Optimization Problems

Eloisa Macedo

Abstract This paper presents a study of regularity of Semidefinite Programming
(SDP) problems. Current methods for SDP rely on assumptions of regularity such
as constraint qualifications (CQ) and well-posedness. In the absence of regularity,
the characterization of optimality may fail and the convergence of algorithms is not
guaranteed. Therefore, it is important to have procedures that verify the regularity
of a given problem before applying any (standard) SDP solver. We suggest a simple
numerical procedure to test within a desired accuracy if a given SDP problem is
regular in terms of the fulfilment of the Slater CQ. Our procedure is based on the
recently proposed DIIS algorithm that determines the immobile index subspace
for SDP. We use this algorithm in a framework of an interactive decision support
system. Numerical results using SDP problems from the literature and instances
from the SDPLIB suite are presented, and a comparative analysis with other results
on regularity available in the literature is made.

1 Introduction

Linear Semidefinite Programming (SDP) deals with problems of minimization/ma-
ximization of a linear objective function subject to constraints in the form of
linear matrix inequalities. SDP can be considered as a generalization of Linear
Programming (LP), where matrices are used instead of vectors. Recently, special
attention has been devoted to SDP due to many applications in engineering, control
theory, statistics, financial models and combinatorial optimization [33].

Most of the well-known and efficient methods for SDP, the duality theory and
SDP optimality conditions rely on assumptions of regularity [6, 15, 33]. The lack of
regularity significantly affects the characterization of optimality of a solution. With
respect to algorithms, the regularity of a problem is a condition that guarantees
their stability and efficiency. In the absence of regularity, a problem may be poorly
behaved and the resulting solution may be corrupted [6].
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In the literature, different concepts are being associated to the notion of reg-
ularity. An optimization problem is commonly considered to be regular if cer-
tain constraint qualification (CQ) is satisfied, and nonregular, otherwise [12].
Regularity conditions play also an important role in deriving duality relations,
sensitivity/stability analysis and convergence of computational methods [14]. Many
optimality conditions, such as the classical Karush-Kuhn-Tucker (KKT) optimality
conditions, are formulated under the fulfilment of certain CQs. One of such
conditions is the Slater CQ (see [4, 15]) that consists in the nonemptiness of the
interior of the feasible set. According to [4], there are many instances of SDP
problems for which Slater CQ fails to hold, leading to numerical difficulties when
standard SDP solvers are applied. Therefore, it is important to know in advance if a
given problem satisfies the Slater CQ, in order to avoid poor behaviour of numerical
methods. To our knowledge, there is no simple numerical procedure to test the Slater
CQ. This is one of the purposes of the present work.

Another kind of regularity notion in Optimization and Numerical Methods is
known as well-posedness of a problem. In general, one can define well-posedness
of a problem in the sense of Hadamard or in the sense of Tikhonov. According to
[5, 18], an optimization problem is well-posed in the sense of Hadamard if it has
a unique solution that is stable, i.e., depends continuously on data, meaning that
small perturbations on data give rise to small variations on the solution. According
to [5, 18, 29], a problem is well-posed in the sense of Tikhonov if it has a unique
solution and every minimizing sequence for the optimization problem converges
to that solution. The theoretical study of well-posedness of certain classes of
optimization problems is a rather difficult issue. A problem that is not well-posed
is called ill-posed. This kind of problems are quite common in applications and,
according to [13], the ill-posedness may occur, for instance, due to the lack of
precise mathematical formulations.

In [8, 13], a practical characterization of well-posedness of conic and in
particular, SDP problems is proposed and it is based on a so called condition number
defined by Renegar in [27]. It is showed that the Renegar’s condition number is
infinite if and only if the problem is ill-posed. The Renegar’s condition number
is defined as a scale-invariant reciprocal of a problem instance to be infeasible.
Therefore, a SDP problem is considered to be well-posed if its Renegar condition
number is finite, and ill-posed, otherwise. In [13], the calculus of this condition
number is connected with upper bounds of optimal values of SDP problems. The
approach proposed in [13] for characterization of regularity is constructive and
based on obtaining rigorous bounds and also error bounds for the optimal values, by
properly postprocessing the output of a SDP solver.

There exist some studies dedicated to interrelation between regularity and well-
posedness of optimization problems. In [18], different notions of well-posedness
of general convex problems are studied and compared and it is also shown that
under the Slater CQ, Hadamard’s well-posedness is equivalent to that of Tikhonov.
In particular, it is mentioned that uniqueness of the solution of a finite convex
minimizing problem is enough to guarantee that the problem is Tikhonov well-
posed, and that this is no longer valid for the infinite case. Other definitions of
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well-posedness are considered in [18] as well, namely, the Levitin-Polyak well-
posedness and strong well-posedness. It is proved that well-posedness in the sense
of Hadamard implies either Tykhonov, Levitin-Polyak and strong well-posedness.
In [11, 13, 32] the relationship between well-posedness and regularity in the sense
of the fulfilment of the Slater CQ is considered for SDP problems.

In [19], it is suggested the DIIS algorithm (stands for Determination of the
Immobile Index Subspace) to find a basis of the subspace of immobile indices,
which is showed to be an important characteristic of the feasible set permitting to
develop new CQ-free optimality conditions. Moreover, in [19], it is proved that if
the subspace of immobile indices is null, then the SDP problem satisfies the Slater
CQ. We have numerically implemented the DIIS algorithm and tested it using SDP
problems from the literature and from SDPLIB. Since each iteration of the DIIS
algorithm is based on the solution of a quadratic system of equations, we suggest
and discuss two different approaches to address its solution. The obtained numerical
results on regularity in terms of the fulfilment of the Slater CQ were compared with
other regularity tests in terms of well-posedness described in [8] and [13].

The paper is organized as follows. The basic definitions and the study of
different notions of regularity of linear SDP problems are presented in Sect. 2. The
description of the algorithm to test the Slater CQ for these problems is carried out
in Sect. 3. In Sect. 4, new approaches that can be used to test the Slater CQ are
suggested and a numerical procedure to test regularity is presented in Sect. 5. The
numerical results as well as the conclusions of the experiments are presented in
Sect. 6.

2 Regularity in SDP
This section begins with basic definitions of SDP and is devoted to the study of

different notions of regularity in SDP.

2.1 Constraint Qualifications for Linear Semidefinite
Programming Problems

Given s € N, denote by S(s) the space of s x s real symmetric matrices endowed
with the trace inner product defined by

IV(AB) = Xn: Xn: aijbji

i=1 j=1
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for A,B € S(s). A matrix A € S(s) is positive semidefinite (A > 0) if xTAx >

0, Vx € R® and a matrix A € S(s) is negative semidefinite (A < 0) if —A > 0. Let

P(s) C S(s) be the cone of positive semidefinite symmetric s X s matrices.
Consider the linear SDP problem

minc’x, st .o/ (x) <0, (1)

where x € R", and the matrix-valued function <7 (x) is defined as &7 (x) := > A;x;+

i=1
Ao, A; € S(s),i=0,1,...,n.

The SDP problem (1) is a convex problem and its (convex) feasible set is given
by

Z ={xeR":d(x) <0}.
The Lagrangian dual of problem (1) is given by
max tr(ApZ), s.t. —tr(AZ)=c,Vi=1,....,n, Z>0, )
where Z € P(s). The feasible set of problem (2) is
Z={ZeP(s):—tr(AZ)=c;i=1,...,n}.

We will refer to problem (1) as the primal problem and to problem (2) as the
dual one. Notice here that some authors consider that the primal SDP problem has
the form (2), and the dual problem has the form (1). This is not an issue, since it is
possible to transform a SDP problem in the form (1) into the form (2), and vice-versa
(see [33)).

The duality results in SDP are more subtle than in Linear Programming (LP).
Nevertheless, the following property of LP problems still holds for SDP, inducing a
lower bound on the value of the primal problem:

Theorem 1 (Weak Duality) Given a pair of primal and dual feasible solutions
x € X,Z € Z of SDP problems (1) and (2), the inequality c'x > tr(A¢Z) always
holds.

Proof Considering the formulation of the problems (1) and (2), we have that

clx—tr (ZAg) = Xn: (—tr (ZA))) x; — tr (ZAo) = tr ((—Ao - Xn: A,-x,-) Z) .

i=1 i=1

i=1 i=1

Since —Ag — ) A;x; > 0 and Z > 0, then r ((—Ao -y A,-x,-) Z) > 0, and thus,

we obtain the inequality ¢’ x > tr(A¢Z). O
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Definition 1 Denote by p* the optimal value of the objective function of the primal
SDP problem (1) and by d* the optimal value of the objective function of the dual
problem (2). The difference p* — d* is called duality gap.

Unlike LP, a nonzero duality gap can occur in SDP and to guarantee strong
duality some additional assumptions, such as the fulfilment of some constraint
qualification (CQ), have to be made [1, 32]. Constraint qualifications are conditions
imposed on the constraints of an optimization problem that should be satisfied in
order to apply the Karush-Kuhn-Tucker optimality conditions. There exist several
CQs, such as the Mangasarian-Fromovitz CQ, the Robinson CQ, and the Slater CQ.
According to [4], the Robinson CQ is equivalent to the Mangasarian-Fromovitz CQ
in the case of conventional nonlinear programming, which includes convex linear
SDP. In [33], it is proved that in the particular case of convex SDP, the Slater CQ
is equivalent to the Robinson CQ. Since the Slater CQ implies the Robinson CQ,
then it also implies the Mangasarian-Fromovitz CQ, meaning that the Slater CQ is
a stronger CQ.

One of the most widely known CQ in finite and infinite optimization is the Slater
CQ. In SDP, many authors assume in their studies that this condition holds (see
[4, 11, 15, 32]).

Definition 2 The constraints of the SDP problem (1) satisfy the Slater CQ if the
feasible set 2~ has a nonempty interior, i.e., 3x € R" : &7/(x) < 0.

Here, A < 0 (A > 0) denotes that matrix A € S(s) is negative (positive) definite.
The analogous definition can be introduced for the dual SDP problem.

Definition 3 The constraints of the dual SDP problem (2) satisfy the Slater CQ if
there exists a matrix Z € P(s), such that —tr (A;Z) = ¢;,Vi=1,...,nand Z > 0.

The Slater CQ is sometimes called strict feasibility [32] or Slater regularity
condition [15].

If problem (1) satisfies the Slater CQ, then the following property is valid ([4,
32]):

Theorem 2 (Strong Duality) Under the Slater CQ for the SDP problem (1), if the
primal optimal value is finite, then the duality gap vanishes and the (dual) optimal
value of problem (2) is attained.

The first order necessary and sufficient optimality conditions for linear SDP can
be formulated, under the fulfilment of the Slater CQ, in the form of the following
theorem from [2]:

Theorem 3 If problem (1) satisfies the Slater CQ, then x* € X is an optimal
solution if and only if there exists a matrix Z* € P(s) such that

r(Z*A) +ci=0,i=1,....n and tr(Z*/(x*)) = 0. A3)

In SDP, if the Slater CQ does not hold, some pathologies may occur: the dual (or
primal) optimal value may not be attained, one of the problems may be feasible
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and bounded, while the other is infeasible, or a nonzero duality gap can exist
and conditions (3) (also called complementary conditions) may fail [4, 19, 32].
Hence, the complete characterization of optimality of feasible solutions may be
compromised.

2.2 Well-Posedness of Linear Semidefinite Programming
Problems

In [8] and [13], two constructive approaches to classify SDP problems in terms of
well-posedness are proposed, both based on the concept of well-posedness in the
sense defined by Renegar in [27].

The Renegar condition number of a problem’s instance is defined as a scale-
invariant reciprocal of the distance to infeasibility (the smallest data perturbation
that results in either primal or dual infeasibility). According to [8], the Renegar’s
condition number for problem (1) is defined by

4]l
min {pp(d), pp(d)}
where ||d|| := max {||<|, ||c||, |Ao]|} is the norm on the data space d, pp(d) and

pp(d) are the distance to primal and dual infeasibility, respectively. The distance to
primal infeasibility is defined as

pp(d) := inf{||Ad| : Znq = 0},

where Ad is the perturbation on data and Z'a is the feasible region of the perturbed
SDP problem and the distance to dual infeasibility pp(d) is defined in a similar way,
but considering the dual problem. The SDP problem is considered to be ill-posed
(in the sense of Renegar) if C = co.

The numerical approach described in [8] is based on the estimation of lower and
upper bounds of the Renegar’s condition number C of a SDP problem. The distance
to primal infeasibility is obtained by solving several auxiliary SDP problems of
compatible size to the original SDP problem and the distance to dual infeasibility
is found by solving one single SDP auxiliary problem. According to Proposition 3
in [8], the estimation of the norm of data can be done with the help of its upper
and lower bounds using straightforward matrix norms and maximum eigenvalue
computations. Notice that it is necessary to choose adequate norms for computing
the distances to primal and dual infeasibility, as well as a SDP solver.

In [13], the characterization of well-posedness of SDP problems is based on the
calculus of rigorous lower and upper bounds of their optimal values. It is shown that
if the rigorous upper bound p* of the primal objective function is infinite, then the
Renegar condition number C is also infinite and hence, the SDP problem is ill-posed.
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An algorithm for computing the upper bound p* (Algorithm 4.1 from [13])
is described in [13]. On its iterations, some auxiliary perturbed “midpoint” SDP
problems are solved using a SDP solver and special interval matrices are constructed
on the basis of their solutions. The constructed interval matrices must contain
a primal feasible solution of the perturbed “midpoint” problem and satisfy the
conditions (4.1) and (4.2) of Theorem 4.1 from [13]. If such interval matrix
can be computed, then the optimal value of the primal objective function of
the SDP problem is bounded from above by p*, which is the primal objective
function value considering the obtained interval matrix. Besides requiring a SDP
solver for computing the approximate solutions of the perturbed problems, the
approach proposed in [13] also needs verified solvers for interval linear systems
and eigenvalue problems.

2.3 Relationship Between Regularity Notions in SDP

Nevertheless the above considered definitions of regularity of SDP problems are
different, there exist a deep connection between them. According to [32], the lack
of regularity in terms of the fulfilment of the Slater CQ implies ill-posedness of the
problem.

The following lemma can be easily proved.

Lemma 1 [f a linear SDP problem in the form (1) does not satisfy the Slater CQ,
then it is ill-posed.

Proof Indeed, since the Slater CQ is not satisfied, all the feasible solutions of
the SDP problem lie on the boundary of the feasible set. Hence, any small data
perturbations may lead to the loss of feasibility, meaning that the problem is ill-
posed.

O

Notice that the reciprocal of Lemma 1 is not true. The following example shows
that there exist problems that are ill-posed, but do satisfy the Slater CQ.

Example 1 Consider the primal SDP problem

mil’lxl—)Cz—X3
000 000 —110

st. [0—=10|x2+ |00 0 |x3+] 1 00| =x0.
000 00-1 000

“
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The dual problem to (4) has the form

max yi +y2
-10 100 001 000 0 -10
st. | =3 0 0[y+[000]|»+[000[y3+|001|ya+|—5 1 0|=0
0 00 000 100 010 0 01

The constraints of the primal problem (4) satisfy the Slater CQ, since there exists
a strictly feasible solution: e.g., x; = 1,x, = 2 and x3 = 1. However, problem (4) is
ill-posed, since its Renegar condition number is infinite. Indeed, it is easy to see that
the dual of the problem (4) is infeasible, i.e., there is no possible feasible solution
satisfying the constraints, and hence, the distance to dual infeasibility is zero.

3 The Algorithm of Determination of the Immobile Index
Subspace

In this section, we introduce the notions of immobile indices and immobile index
subspace and describe the algorithm of their determination that can be used to verify
if a given SDP problem satisfy the Slater CQ.

3.1 Subspace of Immobile Indices

Given the linear SDP problem (1) it is easy to see that it is equivalent to the following
convex Semi-Infinite Programming (SIP) problem:

minc’x, st (x)<0,VieL:={eR |l =1}, )

where L C R’ is a s-dimensional index set. The (convex) feasible set of problem (5)
is {x e R" : "o/ (x)] < 0, VI € L}. Notice that it coincides with the feasible set of
problem (1), £ . Therefore, problems (1) and (5) are equivalent.

Since our approach to test the Slater CQ on SDP programs involves an equivalent
formulation as a SIP problem, it is worth introduce the following definition.

Definition 4 The SIP problem (5) satisfies the Slater CQ if there exists a feasible
point x € R” such that the inequalities /" .27 (x)I < 0 hold, for all indices / € L.

The approach that we propose here to test the regularity in SDP is based on the
notions of immobile indices for SIP and subspace of immobile indices for SDP.
These notions were suggested in [19] and showed to be important to obtain new
optimality conditions for linear SDP.



Testing Regularity on Linear Semidefinite Optimization Problems 221

Definition 5 Given a convex SIP problem (5), an index [* € L is called immobile
if*To/ (x)I* =0,Vx e 2.

The set of immobile indices of the SIP problem (5) is given by
L*={leL:I"d(x)=0,Vxe Z}.

It is proved in [19] that, given the pair of equivalent problems (1) and (5), the set
of immobile indices L* of problem (5) can be presented in the form L* = L N .,
where .# is a subspace of R* defined by

M={eR :I"d()=0VYxe X} ={leR : A (x)| =0,Vxe 2}.
(6)

The subspace . is called subspace of immobile indices of the SDP problem (1).
It is easy to see that the equivalent pair of problems (1) and (5) satisfy or not the
Slater CQ, simultaneously. The following propositions are proved in [19].

Proposition 1 The convex SIP problem (5) satisfies the Slater CQ if and only if the
set L* is empty.

Proposition 2 The SDP problem (1) satisfies the Slater CQ if and only if the set of
immobile indices in the corresponding SIP problem (5) is empty.

Notice that the set of immobile indices L* for the SIP problem (5) is empty if
and only if the subspace of immobile indices .# for the SDP problem (1) is null.

From Proposition 1, it follows that problem (1) is regular if and only if .# is null,
i.e., . # = {0}. The dimension of the subspace .#, denoted by s*, can be considered
as an irregularity degree of the SDP problem (1). Moreover,

e if s* = 0, then the problem is regular, i.e., the Slater CQ holds;
e if s* = 1, then the problem is nonregular, with minimal irregularity degree;
o if s* = s, then the problem is nonregular, with maximal irregularity degree.

In [19], it is shown that the subspace of immobile indices plays an important role
in characterization of optimality of SDP problems and a new CQ-free optimality
criterion is formulated, based on the explicit determination of the subspace of
immobile indices .# . The constructive algorithm (the DIIS algorithm) that finds
a basis of the subspace . is described and justified in [19]. We will use the DIIS
algorithm to verify if the Slater CQ holds for a given SDP problem, permitting to
conclude about its regularity.

3.2 The DIIS Algorithm

Consider a linear SDP problem (1) with 27 (x) defined by n 4+ 1 symmetric s x
s matrices A;, i = 0,1,...,n and suppose that its feasible set is nonempty. The
DIIS algorithm proposed in [19] constructs a basis M = (m;,i = 1,...,s*) of the



222 E. Macedo

subspace of immobile indices .#. At the k-th iteration, I* denotes some auxiliary
set of indices and M* denotes an auxiliary set of vectors. Suppose that s > 1, with
seN.

DIIS algorithm
input: s X s symmetric matrices A;,j =0, 1,...,n.
Setk:=1,1':=0,M" := 9.
repeat given k, I*, M*:
setpi := s — | I¥|
solve the quadratic system:

Pk
Z liTAjli + Z )/iTAjmi =0,j=0,1,...,n,
i=1

ielk
Pk 7
S =1, M

Imi=0,jel* i=1,..., p

where ; e R.i=1,...,prand y;, e R*,i e I*
if system (7) does not have a solution, then stop and return the current £, It
and M*.
else given the solution {/; € R",i = 1,... ,p, y; € R, i € I*} of (7):
construct the maximal subset of linearly independent vectors
{ml, C ,mxk} C {ll, C ’lpk}
update:
AL = {1 || s
M= MR U {my, j e AT}
=1 U AR
dok:=k+1

In [19], it is proved that the DIIS algorithm returns the set of immobile indices I*
and the basis M* of the subspace of immobile indices .Z .

Considering the results presented in the previous Sect. 3.1 and the properties of
the DIIS algorithm in [19], we can conclude that:

 if the Slater CQ is satisfied, then the DIIS algorithm stops at the first iteration
withk = 1, # = {0} and s* = 0;

« if the Slater CQ is violated, then the algorithm returns a basis M = MF, such that
rank(M) = s* > 0.

Notice that the main procedure on each iteration of the DIIS algorithm is to solve
the quadratic system of Eqgs. (7). At each iteration k, this system has p; + |I¥| vector
variables (and since each vector variable has s components, one has s(p; + |I¥])
scalar variables) and n + 2 + p; x |I¥| equations. Notice also that one iteration is
enough to verify the fulfilment of the Slater CQ on SDP problems and in this case,
one has s vector variables and n + 2 equations.
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Considering the description of the DIIS algorithm, we can conclude that tech-
nically, testing of regularity in terms of the Slater CQ on SDP problems using the
DIIS algorithm from [19] is more simple than testing their well-posedness using
the methods from [8] and [13], since these last methods present a more complex
framework. To classify SDP problems using the methods from [8] and [13], several
auxiliary SDP problems must be solved using standard SDP solvers, and the method
proposed in [13] also involves interval arithmetic and the solution of eigenvalue
problems.

4 New Approaches to Test Regularity of Linear Semidefinite
Programming Problems

The numerical procedure we suggest to test the regularity on SDP problems in terms
of the fulfilment of the Slater CQ uses an adaptation of the DIIS algorithm [19] and
is based on a cross-check of two numerical approaches for solving the quadratic
system of equations.

Taking into account the description of the DIIS algorithm, it is enough to compute
only one iteration of the algorithm to verify the Slater CQ on SDP problems.

At the first iteration, the basis of the subspace .# is empty, p; = s and we solve
the following quadratic system of equations

S TAL=0,j=01,...,n,
i=1

o ®)
2Ll =1,
i=1

where [; € R’,i = 1,...,s, are the variables, A; € S(s),j = 0,1,...,n and n is the

dimension of the variable space of the SDP problem (1).

If system (8) is consistent, then the dimension s* of the subspace of immobile
indices .# is nonzero, otherwise, .# = {0} and s* = 0. In the first case, one can
conclude that the Slater CQ is violated, while in the latter, one can conclude that the
Slater CQ is satisfied.

The important question here is how to ensure that system (8) is not consistent,
i.e., does not admit any solution. Adequate numerical procedures should be used to
verify this issue.

Exact solving of the system (8), i.e., obtaining its exact solution, can be rather
difficult. The numerical solution procedures for nonlinear systems are iterative and
rely on approximate solutions. In our case, we are interested in obtaining accurate
solutions for the system (8), or guaranteeing that the system is not consistent, within
a desired degree of certainty. We will present two numerical approaches that can be
used to ensure that system (8) is consistent or not within a desirable tolerance, and
then be able to conclude about the regularity of a SDP problem in the form (1) in
terms of the fulfilment of Slater’s CQ.
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Numerical Approach I

For the sake of clarity, let us rewrite system (8) in the following componentwise
form

Fi(0) 2 TAL=0,j=0.1,....n,
=S 9)
Fpp1(0) = Z: I3 =1 = o,

where vector £ is defined by a concatenation of the vectors Iy, I, ..., I; € R®, each
one with s scalar variables as follows:

t=[tn.. 1] =[6t.. t,] erR",

where £; e R,i=1,...,m,and m = s°.

System (9) has n 4 2 nonlinear equations and m unknowns. In general, we have
m > n + 2 and thus, it is an underdetermined system. Obviously, the functions
F;, j=0,1,...,n+ 1 are quadratic real valued functions defined in R", hence they
are continuous and smooth. Although for every j = 0,1, ...,n, the function Fj is
convex if and only if the symmetric matrix A; is positive semidefinite, which may
not hold. Evidently, the function F, 4 is convex.

Any solution of system (9) is a minimizer of the function Z'H'l F 2(6) and thus,
we can formulate the following unconstrained nonlinear least-squares problem:

n+1

min G(() = Z F3(0). (10)

Notice that G(£) > 0, V£ € R™.
Considering problem (10) and denoting by £* its solution, the following two
situations can occur:

o if G({*) = 0, then £* is a solution of system (9) and, consequently, system (8) is
consistent. Therefore, the SDP problem (1) does not satisfy the Slater CQ;

o if G(£*) > 0, then system (9) is not consistent, as well as system (8) and one can
conclude that Slater’s CQ holds for the SDP problem (1).

Notice also that problem (10) is a global optimization problem and may have
multiple local minima. Therefore, its solution may be not unique. There exist
several algorithms to solve the nonlinear least-squares problem (10), namely, the
Levenberg-Marquardt Algorithm, the Gauss-Newton Algorithm and the Trust-
Region-Reflective Algorithm [22, 23]. These algorithms are already implemented
in the MATLAB function 1sgnonlin.

Since problem (10) may have multiple local minima, the algorithms may not
reach the global minimum. Running the algorithm with several starting points may
increase the degree of certainty that the system (9) is not consistent. Moreover,
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the cross-check of results obtained by different algorithms may also increase that
certainty.

Numerical Approach II

Another numerical approach to solve system (8) is based on solving a nonlinear
programming problem with equality constraints.
Consider the following problem:

p 2
min  H(y) = [yl
yERM 2 [, RS

s.t. ZliTAjl,-—i-yj.;_l =0,j=0,1,...,n, an
i=1

SLIE + yug2 =1 = 0,

i=

T
wherey = [yi y2 -+ yusa ] -
Let y* € R"2 be a solution of problem (11). The following two situations can
occur:

e if H(y*) > 0, then system (8) is not consistent and the SDP problem (1) satisfies
the Slater CQ;

o if H(y*) = 0, then system (8) is consistent and we can conclude that the Slater
CQ is violated.

The problem (11) can be easily solved using interior point methods, which
perform very well in practice. These methods are based on a barrier function and
keep all the iterates in the interior of the feasible set and are specially useful
for problems with sparse data or problems that have a particular structure. The
routine fmincon from MATLAB uses several algorithms to solve constrained min-
imization problems. Besides an implementation of an Interior Point Algorithm, the
routine also may use a Trust-Region-Reflective Algorithm, Active-Set Algorithm
and a Sequential Quadratic Programming Algorithm.

5 Numerical Procedure to Test the Fulfilment of the Slater

CcQ

To test regularity in terms of the fulfilment of the Slater CQ, a routine in MATLAB
language has been created. This routine is the implementation of the DIIS algorithm.
On its iterations, the existence of solution of the quadratic system (8) is verified
using both approaches, I and II. The numerical procedure allows the user to
specify which of the two approaches to use. The implementation of both numerical
approaches, Approach I and Approach II, is included to permit a cross-check of
results. The cross-check of different numerical approaches is important to increase
the reliability on the solvers approximate solution.
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In order to increase the reliability on the results obtained using the suggested
numerical approaches, the following techniques were used in the initial testing
phase:

» cach solver was run 10 times with different random starting points for each
problem;

 each solver was restarted using the last approximation computed earlier;

o (different tolerances values were tried;

* both numerical and analytical Jacobians were used.

Experiments showed that the most powerful technique is running the solver
several times with different starting points. By default, our program uses a randomly
chosen starting point.

The program stops when one of the following stopping criteria is satisfied:

o ||IFED)—F{*V)||s0 < TolFun, where TolFun is a tolerance on the function
value;

o |[£® — pitD]| o < TolX, where TolX is a tolerance on the argument variable

g

value;

e ||lc(®)|| > TolCon, where TolCon is a tolerance for constraints violation (onl

y

for the Approach II).

The tolerances TolFun, TolX and TolCon should be specified by users.

A specific tolerance denoted by SCQ was introduced to enable one to conclude
about the fulfilment of the Slater CQ. This tolerance is specified by users apriori:
this is the desired accuracy on the regularity test. When the Approach I is being
used, from the condition G(£*) < SCQ, one can conclude that the Slater CQ does
not hold for the SDP problem (1). When the Approach II is being used, one can
conclude that the SDP problem (1) does not satisfy the Slater CQ if H(y*) < SCQ.

6 Testing Regularity: Numerical Experiments

6.1 Description of the Experiments

Our experiments were run on a computer with an Intel Core 17-2630QM processor
CPU@2.0 GHz, with Windows 7 (64 bits) and 12 GB RAM, using MATLAB (v.7.12
R2011a). The implementation of the presented procedure handles block diagonal
matrices and the SDP problems should be in dat-s format. For the numerical
tests we have used problems from the literature and from the SDPLIB suite, a
collection of 92 Linear SDP test problems, provided by Brian Borchers [3]. In
this section, we present several numerical experiments using problems from a
collection of 50 SDP problems found in the literature and also instances from
SDPLIB, a SDP data base containing problems ranging in size from 6 variables
and 13 constraints up to 7000 variables and 7000 constraints. The problems are
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drawn from a variety of applications, such as truss topology design, control systems
engineering and relaxations of combinatorial optimization problems. Due to the
limited computational resources, we were only able to test 26 small-scale problems
from SDPLIB. The procedure proposed in this paper does not check the feasibility
of the SDP problems, since it works under the assumption that their feasible sets
are nonempty. Notice that all the tested SDP problems from SDPLIB are feasible,
and thus, it is not required to verify their feasibility. The test problems collected
from the literature are feasible and were constructed or adapted from [3, 7, 9—
11,13, 16, 17, 19-21, 23-26, 28, 30, 31, 34].

When the Approach I was applied in the procedure to check regularity of a
SDP problem, the solver 1sgnonlin with the Levenberg-Marquardt algorithm
was used. When the Approach II was applied, the solver fmincon with the interior
point algorithm was used.

We have chosen empirically the tolerances for stopping criteria. In our compu-
tational experiments, we set the tolerances TolFun, TolX and TolCon to 1078
for all the tests. The numerical experiments have shown that for the used tolerances,
the numerical results get stabilized, i.e., for termination tolerances less than 1078 all
the solvers stop at the same point. Therefore, the value 1073 is considered to be safe
to conclude about the fulfilment of the Slater CQ, although it could be more time
consuming.

In our experiments on testing regularity with problems from the SDPLIB suite,
we set SCQ = 107, It may be emphasized that the value of the parameter SCQ
= 10™* was considered to be a reasonable parameter in practice when large scale
problems are involved. If we force a smaller value for this parameter the solvers
are less efficient, since the computation time of the experiments increases in a non
acceptable way.

6.2 Regularity Results

We used our procedures for testing the regularity of 50 SDP problems from literature
(see Table 1) and for 26 instances from SDPLIB (see Table 3). The first columns of
the tables contain the instance’s name. The second and third columns contain the
number of variables, n, and the dimension of the constraint matrices, s, respectively.
The next three columns represent the obtained results and conclusions in terms of
the fulfilment of the Slater CQ using the Approach I, where the solver 1sgnonlin
is applied for solving the quadratic system (8). The last columns of the table contain
the results and conclusions about the fulfilment of the Slater CQ using the Approach
II, where the solver fmincon is applied for solving the quadratic system. The lack
of results in Table 3 means that the procedure was not able to fulfil the test, because
the running time increases in an unacceptable way.

Considering the results reported in Table 1, we can see that for the feasible
problems collected from the literature, both numerical approaches, Approach I and
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Table 1 Numerical results about the fulfilment of the Slater CQ in SDP using the Approach I and
Approach II on problems from literature (computation time is in seconds)

lsgnonlin Slater | fmincon Slater
Problem n s G(L*) Time CQ H®y™) Time CQ
example3isa 2 2 1.1363¢ — 25 | 0.036052 No 6.9483¢ — 15 | 0.155928 | No
FreundSun 2 3 5.8581e — 1 0.070417 Yes 5.8581e — 1 0.172609 | Yes
helmbergl 2 3 5.4540e — 24 | 0.060488 No 1.5165¢ — 13 | 0.180284 | No
jansson 3 3 5.5140e — 24 | 0.0.065630 | No 6.3023¢ — 14 | 0.395749 | No
Janssonl 3 3 3.2587¢ —2 0.138249 Yes 3.2587¢ —2 0.105394 | Yes
Jansson2 3 3 3.2619¢ — 3 0.073290 Yes 3.2619¢ — 3 0.143587 | Yes
Jansson3 3 3 3.3027¢ — 1 0.060724 Yes 3.3027¢ — 1 0.097528 | Yes
Jansson4 3 3 1.4601e — 1 0.069686 Yes 1.4601e — 1 0.093127 | Yes
Jansson5 3 3 3.2127e —1 0.071036 Yes 3.2127e—1 0.099324 | Yes
kojimal SDP2006 2 4 9.5204e — 1 0.223964 Yes 9.5204¢ — 1 0.188890 | Yes
kojimaSDP2006 4 3 2.5000e — 1 0.023337 Yes 2.5000e — 1 0.109484 | Yes
K-Tnl 1 2 2.5841e —23 | 0.023267 No 1.3029¢ — 14 | 0.118685 | No
K-Tn2 2 2 3.4530e — 24 | 0.044250 No 5.5507¢ — 15 | 0.216425 | No
K-Tn3 3 2 5.8301e —23 | 0.039288 No 6.3543¢ — 15 | 0.124848 | No
K-Tn4 4 2 1.8636e —23 | 0.041151 No 3.845le — 15 |0.159502 | No
K-Tn5 5 2 1.8835¢ —22 | 0.042491 No 1.1144¢ — 15 | 0.190099 | No
K-Tn6 6 2 3.8912¢ —21 | 0.043691 No 1.7715¢ — 15 | 0.183893 | No
K-Tn7 7 2 3.6967¢ — 22 | 0.048549 No 1.8502¢ — 15 | 0.270957 | No
K-Tn8 8 2 3.4387¢ —21 | 0.050035 No 6.6118¢ — 16 | 0.214851 | No
K-Tn9 9 2 6.4710e —22 | 0.055816 No 2.1353¢ — 16 | 0.274397 | No
K-Tnl0 10 2 1.5483¢ —20 | 0.058125 No 4.1765¢ — 17 | 0.340125 | No
LuoSturmZhang 2 3 1.0255¢ — 23 | 0.066404 No 7.3305¢ — 15 | 0.404231 | No
Mitchell2004 2 3 5.0000e — 1 0.045751 Yes 5.0000e — 1 0.423425 | Yes
patakil 1 2 4.2345¢ —24 | 0.025313 No 1.6671e — 14 | 0.187986 | No
patakilalphal 1 2 9.1435¢ — 24 | 0.024894 No 4.1820e — 12 | 0.048927 | No
patakilalpha2 1 2 5.2021e —23 | 0.024497 No 2.8976¢ — 14 | 0.189384 | No
patakilalpha3 1 2 7.6752¢ —25 | 0.024970 No 2.6538¢ — 17 | 0.066301 | No
patakilalpha4 1 2 2.1773e — 25 | 0.031795 No 1.4323¢ — 14 | 0.183482 | No
patakilalpha5 1 2 1.5810e — 22 | 0.026075 No 7.3292¢ — 15 | 0.213028 | No
patakilalpha-1 1 2 6.0371e — 25 | 0.030338 No 1.7755¢ — 14 | 0.148022 | No
patakilalpha-2 1 2 5.5582¢ — 25 | 0.037817 No 9.7994¢ — 15 | 0.145855 | No
patakilalpha-3 1 2 4.2037¢ —26 | 0.038157 No 4.7202¢ — 15 | 0.151887 | No
patakilalpha-4 1 2 2.3310e — 26 | 0.034479 No 9.2661e — 15 |0.227901 | No
patakilalpha-5 1 2 2.7032¢ —23 | 0.024885 No 1.9230e — 14 | 0.195679 | No
pataki2 2 3 1.0996e — 23 | 0.068269 No 4.6525¢ — 15 | 0.443608 | No
pataki2.-1 2 3 2.1120e — 22 | 0.060252 No 1.0909¢ — 14 | 0.433127 | No
pataki2.32 2 3 5.3683¢ — 21 | 0.058523 No 1.9661e — 14 | 0.284285 | No
pataki2.33 2 3 1.2313¢ — 22 | 0.065221 No 1.5303¢ — 14 | 0.392578 | No
polikl 1 2 4.3130e — 24 | 0.024449 No 4.0894¢ — 15 | 0.142294 | No
polik2 2 3 2.8493¢ —23 | 0.060726 No 3.2616e — 14 | 0.411495 | No
polik3 1 2 1.6265¢ — 26 | 0.026367 No 5.6213¢e — 15 |0.163265 | No
polik4 2 3 3.4310e — 24 | 0.063227 No 9.2481e — 15 |0.364975 | No
polik5 4 3 1.8360e — 24 | 0.078022 No 1.7116e — 14 | 0.575205 | No
polik6 2 2 7.3225¢ — 25 | 0.040701 No 2.6444e — 14 | 0.146335 | No
polik7 2 2 1.9659% — 24 | 0.028269 No 1.7242¢ — 16 | 0.134994 | No
polik8 2 2 3.3333¢ — 1 0.010292 Yes 3.3333¢ — 1 0.068612 | Yes
SturmZhang 3 5 6.4972¢ — 2 0.442867 Yes 6.4972¢ — 2 0.326788 | Yes
Todd 2 2 3.1557¢ —23 | 0.029669 No 2.2196e¢ — 15 | 0.140185 | No
VandBoydl 2 3 1.5896e — 23 | 0.025929 No 5.1099¢ — 15 | 0.137883 | No
YumingZhang1995 4 4 1.4186e —22 | 0.125032 No 8.9888¢ — 17 | 0.407860 | No
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Approach II, performed very well and the obtained results do coincide for the two
proposed approaches.

From Table 1 we can see that 39 of the 50 tested problems do not satisfy the
Slater CQ, while 11 do satisfy. It is interesting to observe that all these 50 problems
were correctly classified in terms of the fulfilment of the Slater CQ, since it is easy
to see that 11 problems for which the Slater CQ holds, have a nonempty interior
feasible set.

For these 50 problems we have applied our procedure for testing regularity and,
in the cases where the Slater CQ did not hold, computed the irregularity degrees.
This irregularity degree is the dimension s* of the subspace of immobile indices of
the given SDP problem. Table 2 displays the results using all the iterations of the
DIIS algorithm for the 50 problems collected from the literature.

The first column in Table 2 contains the instance’s name. The next two columns
contain the number of variables, n, and the dimension of the constraint matrices, s.
The remaining columns contain the dimension of the immobile index subspace, s*,
and the computation time. Notice that if s* = 0, then the Slater CQ holds.

Observing Table 2, we can conclude that the dimension of the immobile index
subspace not only provides information on the regularity of the SDP problem, but
also the degree of irregularity of the problem, in the case of nonregular problems.
Notice that all the problems that do not satisfy the Slater CQ have minimal
irregularity degree. The only exception is the problem YumingZhangl995 that has
the irregularity degree equal to 3, which is less than s = 4.

Based on these experiments, one can conclude that our procedure based on the
DIIS algorithm is an efficient procedure to verify if a given small-scale SDP problem
satisfies the Slater CQ.

In the following, we present the numerical results on testing the regularity of
SDP problems using instances from the SDPLIB suite.

Recall that the Slater CQ is satisfied when system (8) is not consistent, and in
this case, we may conclude that the dimension of the immobile index subspace is
s*=0.

First of all, let us observe that the computation time is much better when we used
Approach II based on the fmincon solver for solving the quadratic system (8). The
only exceptions are for problems trussi, truss3 and truss4.

Considering the results displayed in Table 3, we can observe that for 19 of the
26 tested problems the results using both numerical approaches do coincide. Our
tests show that using any of the approaches to check the fulfilment of the Slater CQ,
11 SDP tested problems satisfy the Slater CQ, while 8 do not satisfy. Notice that
for 7 SDP problems, the procedure was not able to solve the system (8) using the
Approach I, since the computation time have increased in an unaffordable way.

It is worth mentioning that the presented numerical procedures may return
different results in terms of conclusions. Therefore, when using our numerical
procedure to check the fulfilment of the Slater CQ it is recommended to run the
procedure for different starting points in order to increase the degree of certainty on
the obtained result/conclusion.
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Table 2 Numerical results using the DIIS algorithm on problems collected from literature
(computation time is in seconds)

0.074760 No
0.099995 No
0.131180 No

0.555413 No
0.824851 No
0.445150 No

patakilalpha-3

patakilalpha-4

patakilalpha-5

lsgnonlin Slater fmincon Slater

Problem n s s* Tter Time CcQ s* Tter Time cQ
example3isa 2 2 1 2 0.226202 No 1 2 0.539775 No
FreundSun 2 3 0 1 0.146649 Yes 0 1 0.259852 Yes
helmbergl 2 3 1 2 0.178968 No 1 2 0.658152 No
Jjansson 3 3 1 2 0.164909 No 1 2 0.840702 No
Janssonl 3 3 0 1 0.244887 Yes 0 1 0.170550 Yes
Jansson2 3 3 0 1 0.109592 Yes 0 1 0.193711 Yes
Jansson3 3 3 0 1 0.525396 Yes 0 1 0.279601 Yes
Janssond 3 3 0 1 0.114246 Yes 0 1 0.127950 Yes
Jansson5 3 3 0 1 0.101950 Yes 0 1 0.144949 Yes
kojimalSDP2006 2 4 0 1 0.387002 Yes 0 1 0.303760 Yes
kojimaSDP2006 4 3 0 1 0.032463 Yes 0 1 0.174287 Yes
K-Tnl 1 2 1 2 0.072533 No 1 2 0.447973 No
K-Tn2 2 2 1 2 0.093047 No 1 2 0.447500 No
K-Tn3 3 2 1 2 0.083016 No 1 2 0.538221 No
K-Tn4 4 2 1 2 0.097496 No 1 2 0.637090 No
K-Tns 5 2 1 2 0.120930 No 1 2 0.670066 No
K-Tn6 6 2 1 2 0.140890 No 1 2 0.762693 No
K-Tn7 7 2 1 2 0.142380 No 1 2 0.766286 No
K-Tn8 8 2 1 2 0.148806 No 1 2 0.877893 No
K-Tn9 9 2 1 2 0.145744 No 1 2 0.873110 No
K-Tnl0 10 2 1 2 0.135638 No 1 2 0.907883 No
LuoSturmZhang 2 3 1 2 0.162486 No 1 2 0.518502 No
Mitchell2004 2 3 0 1 0.070062 Yes 0 1 0.634781 Yes
patakil 1 2 1 2 0.121993 No 1 2 0.433417 No
patakilalphal 1 2 1 2 0.100748 No 1 2 0.806680 No
patakilalpha?2 1 2 1 2 0.129894 No 1 2 0.497163 No
patakilalpha3 1 2 1 2 0.071018 No 1 2 0.458166 No
patakilalpha4 1 2 1 2 0.127574 No 1 2 0.428617 No
patakilalpha$ 1 2 1 2 0.180141 No 1 2 0.479815 No
patakilalpha-1 1 2 1 2 0.170281 No 1 2 0.419834 No
patakilalpha-2 1 2 1 2 0.099228 No 1 2 0.525398 No

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

2 3 1 2 1 2

2 3 1 2 1 2

2 3 1 2 1 2

2 3 1 2 1 2

1 2 1 2 1 2

2 3 1 2 1 2

1 2 1 2 1 2

2 3 1 2 1 2

4 3 1 2 1 2

2 2 1 2 1 2

2 2 1 2 1 2

2 2 0 1 0 1

3 5 0 1 0 1

2 2 1 2 1 2

2 3 1 2 1 2

4 4 3 2 3 2

pataki2 0.177333 No 0.523884 No
pataki2.-1 0.201498 No 0.620947 No
pataki2.32 0.227159 No 0.559715 No
pataki2.33 0.191399 No 0.667981 No
polikl 0.091698 No 0.392195 No
polik2 0.165904 No 0.611956 No
polik3 0.084446 No 0.431411 No
polikd 0.151859 No 0.642326 No
polik5 0.319945 No 1.059643 No
polik6 0.097512 No 0.527270 No
polik7 0.114855 No 0.477063 No
polik8 0.020385 Yes 0.110016 Yes
SturmZhang 0.507338 Yes 0.380577 Yes
Todd 0.089365 No 0.561483 No
VandBoydl 0.086054 No 0.422023 No
YumingZhang1995 0.301380 No 1.424340 No
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Table 3 Numerical results about the fulfilment of the Slater CQ in SDP using the Approach I and
Approach II using problems from SDPLIB (computation time is in seconds)

lsgnonlin Slater | fmincon Slater
Problem |n s |G Time CQ HG™) Time CQ
controll 21 |15 [3.3333¢—1 939.7 | Yes 3.3333¢ — 1 50.5 | Yes
control?2 66 |30 |3.3333¢—1 42405.0 | Yes 3.3333¢ — 1 1287.2 | Yes
control3 | 136 |45 |3.3333¢—1 259224.2 | Yes 3.3333¢ — 1 12657.3 | Yes
hinfl1 13 |14 |3.2289% —3 461.9 | Yes 3.228% — 3 26.1 | Yes
hinf2 13 |16 |1.1797¢ —6 816.8 | No 1.1797¢ — 6 230.6 |No
hinf3 13 |16 |1.7767¢ —17 5301.1 |No 1.7767¢ — 7 135.0 |No
hinf4 13 |16 |4.4624¢ —5 13675.2 | No 4.4622¢ — 5 86.2 |No
hinf5 13 |16 |2.7754e —9 22167.8 | No 2.7754e — 9 221.6 |No
hinf6 13 |16 |6.9476e —9 |101429.0 |No 6.9476¢ — 9 122.3 |No
hinf7 13 |16 |1.6784e —10 | 23130.5 |No 1.6786e — 10 202.4 |No
hinf8 13 |16 |1.2890e — 7 1825.3 | No 1.2890e — 7 151.5 |No
hinf9 13 |16 |2.2907¢ — 11 1562.2 | No 2.2022¢ — 11 827.9 |No
hinfl10 21 |18 4.2813¢ -5 161.1 |No
hinfl1 31 |22 3.508% — 4 375.0 | Yes
hinfl2 43 |24 1.8611e — 5 1038.6 | No
hinfl3 57 |30 4.3625¢ — 9 5902.5 |No
hinfl14 73 |34 2.3778¢ — 6 10123.4 | No
hinfl5 91 |37 7.9113¢ — 10 | 55173.8 |No
qaps 136 |26 |4.7906e — 1 118064.7 | Yes 4.7904e — 1 3508.2 | Yes

qap6 229 |37 |4.8191e—1 |432101.6 | Yes 4.8191e — 1 21827.1 | Yes
qap7 358 |50 |4.8414e —1 |433254.7 | Yes 4.8048¢ — 1 57981.6 | Yes
qap8 529 |65 |4.8192¢ —1 518749.0 | Yes 4.8193e — 1 121362.1 | Yes

thetal 104 |50 4.9999¢ — 1 18840.7 | Yes
trussl 6 |13 |1.4285¢—1 4.0 |Yes 1.4284¢ — 1 7.5 | Yes
truss3 27 |31 |3.2258¢e —2 178.5 | Yes 3.2256e — 2 408.5 | Yes
truss4 12 |19 |7.6923¢ —2 20.0 | Yes 7.6923¢ — 2 30.6 | Yes

6.3 Comparison of Regularity Results

For the comparison of tests of regularity in terms of the Slater CQ with that of
well-posedness, 26 test problems from the SDPLIB suite were chosen. For these
problems we checked regularity in terms of the fulfilment of the Slater CQ using the
DIIS algorithm and applying the Approach II, that showed to be the most efficient
numerical procedure on solving the quadratic system (8). The results of testing the
same problems in terms of well-posedness are presented in [8] and [13]. Notice that
the results reported in [8] and [13] include all the feasible problems from SDPLIB,
since they were obtained using more powerful computational resources.

The results of testing the 26 problems using the numerical procedure suggested
in this paper are displayed in Table 4. The first column of the table contains the
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Table 4 Numerical results on testing regularity: using the DIIS algorithm (the SDP problem
satisfies the Slater CQ if s* = 0), the lower and upper bounds of the Renegar condition number
from [8] and the upper bound of the optimal value from [13] (if C or p* is finite, then the problem
is well-posed)

o

Problem n s s* Lower bound Upper bound p*

controll 21 15 0 8.3 x 10° 1.8 x 10° —1.7782 x 10!
control2 66 30 0 3.9 x 10° 1.3 x 107 —8.2909 x 10°
control3 136 45 0 2.0 x 10° 1.2 x 107 —1.3615 x 10!
hinfl 13 14 0 00 00 00

hinf2 13 |16 16 |35%x10° 5.6 x 10° —7.1598 x 10°
hinf3 13 16 16 (oe] [ee) [ee)

hinf4 13 16 16 00 [ee) 00

hinf5 13 16 16 00 [ee) 00

hinf6 13 16 16 00 0o oo}

hinf7 13 16 16 00 00 00

hinf8 13 16 16 00 00 00

hinf9 13 16 16 2.0 x 107 3.6 x 107 00

hinf10 21 18 18 00 00 00

hinfl1 31 22 0 00 00 00

hinfl2 43 24 24 00 00 00

hinfl3 57 30 30 00 00 00

hinf14 73 34 34 00 [ee) 00

hinf15 91 37 37 00 [ee) 00

qap5 136 26 0 00 [ee) [ee)

qap6 229 37 0 00 0o oo}

qap7 358 50 0 foe] [ee) [oe)

qap8 529 65 0 foe] [ee) [oe)

thetal 104 50 0 2.0 x 102 2.1 x 10? —2.3000 x 10!
trussl 6 13 0 2.2 x 102 3.0 x 10? 9.0000 x 10°
truss3 27 31 0 7.4 x 10? 1.9 x 10° 9.1100 x 10°
truss4 12 19 0 3.6 X 102 7.7 x 10% 9.0100 x 10°

instance’s name used in SDPLIB data base; the next two columns refer to the
number of variables, n, and the dimension of the constraint matrices, s. The next
column represents the results of the regularity tests that find the dimension of the
immobile index subspace, s*. If s* = 0, then the problem satisfies the Slater CQ.
Column 5 contains the lower and upper bounds of the condition number C reported
in [8] and the last column presents the upper bound for the primal objective function
from [13].

From Table 4 we see that 13 from 26 tested problems are regular, i.e., their
constraints satisfy the Slater CQ. Moreover, the tests provide valuable information
about the irregularity degree for a nonregular SDP problem, i.e., when the Slater CQ
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Table 5 Regularity in terms Regularity (Slater CQ)
of the fulfilment of Slater’s

CQ and well-posedness Regular | Nonregular

according to [8] Well-posed |7 2
Il-posed 6 11
Table 6 Regularity in terms Regularity (Slater CQ)

of the fulfilment of Slater’s

CQ and well-posedness

according to [13] Well-posed |7 1
I11-posed 6 12

Regular | Nonregular

fails to hold. Notice that for all the tested problems in Table 4 for which the Slater
CQ fails have maximal irregularity degree.

Tables 5 and 6 compare the results of testing SDP problems in terms of their
regularity: the fulfilment of the Slater CQ and well-posedness.

In Table 5, the lines correspond to well-posed and ill-posed problems according
to the test from [8] and the columns correspond to regular and nonregular problems
in terms of the Slater CQ. On the intersection we have the number of problems
that satisfy both corresponding conditions. Table 6 is constructed in a similar way,
but the lines correspond to the number of the well-posed and ill-posed problems
classified on the basis of the experiments in [13]. From Table 5 we can see that 18
from the tested problems satisfy the Slater CQ and are well-posed, or do not satisfy
the Slater CQ and are ill-posed, simultaneously, and 6 of the ill-posed problems do
satisfy the Slater CQ. The only exception is problem hinf9 that is nonregular in terms
of the fulfilment of the Slater CQ and well-posed according to [8]. This contradiction
to Lemma 1 can be explained by the fact that the numerical procedures are based on
approximated calculus and may be not precise. Comparing our regularity results in
terms of the Slater CQ with those from [13] w.r.t. ill-posedness, regarding Table 6
we conclude that for 19 problems these results coincide, i.e., the problems satisfy
the Slater CQ and are well-posed, or do not satisfy the Slater CQ and are ill-posed,
simultaneously.

Notice that the numerical results of well-posedness obtained in [8] and in [13] do
not coincide: problem hinf9 is well-posed according to [8] and ill-posed according to
[13]. This can be connected with the fact that nevertheless the condition number C is
finite, it is rather big and the problem is close to be ill-posed, and it may also be due
to the tests were performed in nonexact arithmetic and/or with different numerical
procedures.

Finally, notice that in [13], it is reported that problem hinf8 is well-posed,
although the results presented in [13] (and also in [8]) have shown that this problem
is ill-posed. Our numerical tests show that this problem is nonregular in terms of the
fulfilment of the Slater CQ.

Therefore, the numerical experiences have showed that the DIIS algorithm can
be efficiently used to study the regularity of SDP problems in terms of the Slater CQ.
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The comparison of these tests with those from [8] and [13] confirm the conclusions
about relationship between the regularity notions in SDP.

6.4 Conclusions and Future Work

In this paper we have presented a simple numerical procedure to test regularity on
SDP problems in terms of the Slater CQ, within a desired tolerance. This procedure
is based on the DIIS algorithm, which revealed to be very efficient on checking
regularity on SDP. Our procedure can use two numerical approaches: the first, based
on a least-squares problem and a second one, based on a constrained nonlinear
problem. Both approaches were tested on problems collected from literature and
also from SDPLIB and a comparative analysis was performed.

On the basis of our numerical experiments, we can conclude that: our procedure
is efficient on checking regularity of SDP’s; it is important to introduce a unified
treatment of regularity for SDP problems, have numerical tools to verify regularity,
and establish clear relationship between different notions of regularity; the cross-
check of different numerical approaches is important, since it permits to increase
the reliability on the results.

In the future, we plan to improve the procedure described in the paper imple-
menting a pre-step to verify feasibility of SDP problems, since the DIIS algorithm
can only be applied on feasible SDP problems. Moreover, we are going to provide
more extensive regularity tests on SDP and SIP problems, and compare them with
other available results.
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Decompositions and a Matheuristic for a Forest
Harvest Scheduling Problem

Isabel Martins, Filipe Alvelos, and Miguel Constantino

Abstract In this paper, we describe four decomposition models and a matheuristic
based on column generation for the forest harvest scheduling problems subject to
maximum area restrictions. Each of the four decomposition models can be seen as a
Dantzig-Wolfe decomposition of the so-called bucket formulation (compact mixed
integer program), in two cases with additional constraints on the connectivity of
the buckets. The matheuristic is based on one of the decomposition models (the
. -knapsack-and-clique decomposition) and relies on the interaction of column
generation with a general purpose mixed integer programming solver. We compare
the quality of the solutions obtained for benchmark instances with the bucket
formulation and with applying column generation and solving the integer restricted
master problem (MipHeur) for the same time limit. We concluded that the proposed
matheuristic provides, in general, better solutions than both the other approaches
for small and medium instances, while, for large instances, the MipHeur approach
outperformed the other two.
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1 Introduction

Forest harvesting for timber production causes negative environmental impacts,
primarily habitat alteration and loss of biodiversity, soil, water quality and scenic
beauty. A common practice in many countries to reduce these impacts has been to
restrict the areas of clearcuts. Addressing these constraints has led to an evolution
of model approaches that support forest management. The most recent approach,
the so-called area restriction model (ARM), lets the formulation itself suggest stand
aggregation when the sum of the areas does not violate the maximum clearcut area.
Three main basic integer programming models for the ARM have been described
in the literature: the path formulation, with an exponential number of constraints,
the cluster formulation, with an exponential number of variables, and the bucket
formulation, with a polynomial number of variables and constraints (for a survey
of integer programming approaches to solving the ARM, we refer those interested
to [6]).

The harvest scheduling problem that we shall consider consists of selecting, for
each period in the planning horizon, a set of stands to be harvested, in order to
maximize the timber’s net present value. The stand selection is subject to several
restrictions. Maximum area restrictions impose that the area of each clearcut does
not exceed the maximum allowed size. Each stand is harvested at the most once in
the planning horizon, i.e. the minimum rotation in the stand is longer than the latter.
Other requirement is a steady flow of harvested timber. This restriction is mainly to
ensure that the industry is able to continue operating with similar levels of machine
and labor utilizations.

Four Dantzig-Wolfe decompositions of the bucket formulation [3] are proposed:
the .-knapsack and the .’-knapsack-and-clique decompositions, and two similar
decompositions of the bucket formulation with additional constraints on the con-
nectivity of the buckets, the %Z-knapsack and the Z-knapsack-and-clique decom-
positions. We establish theoretically that the LP bounds of the knapsack-and-clique
decompositions are better than or equal to those of the knapsack decompositions,
and that the LP bound of the .¥’-knapsack-and-clique decomposition is equal to that
of the Z-knapsack-and-clique decomposition. According to these results and those
obtained with preliminary computational tests, and since the pricing subproblem
of the .¥’-knapsack-and-clique decomposition may be less difficult to solve than
that of the %Z-knapsack-and-clique decomposition, we decide to present the solution
approach based on the .’-knapsack-and-clique decomposition.

For solving the decomposition model of the .’-knapsack-and-clique decompo-
sition, we propose a matheuristic (MatHeur), a heuristic based on mathematical
programming. The MatHeur is closely related with the general framework “Meta-
heuristic search by column generation”, SearchCol for short, designed to solve
integer programming and combinatorial optimization problems with a decompos-
able structure [1].

A SearchCol algorithm has three main steps which are executed in cycle: (i)
column generation (CG) is applied (possibly with additional constraints fixing
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subproblem vaiables — named perturbations), (ii) a search is conducted in a space
defined by the subproblem solutions provided by CG, and (iii) the set of subproblem
variables currently fixed in CG is updated. The difference between the proposed
approach and SearchCol is that in SearhcCol, a metaheuristic is used in step (ii)
instead of a general purpose mixed integer programming solver.

SearchCol defines several ways of defining perturbations [1]. In the proposed
MatHeur we explore the definition of perturbations based on scoring the subproblem
solutions according to information from the incumbent, previous CGs, and previous
searches. We also explore a intensification strategy consisting in, for each even
iteration, defining a restricted search space made of the subproblem solutions in the
incumbent, null, generated last time CG was solved, and that were included more
times in solutions obtained in previous searches.

We describe the harvest scheduling problem and the bucket formulation in
Sect. 2, and the decompositions in Sect. 3. The results of the dominance relation-
ships between the bounds of the bucket formulation and the decompositions are
presented in Sect. 3. In Sect. 4, we describe the basis of the proposed MatHeur. In
Sect. 5, we report on computational experience as to the efficiency of the MatHeur.
Our tests involved both real and hypothetical forests ranging from 45 to 2945
polygons and used temporal horizons ranging from three to twelve periods. We
compare the quality of the solutions obtained for these instances with the bucket
formulation for the same time limit. In the last section, we present our conclusions.

2 Problem Definition and the Bucket Compact Model

The addressed forest harvest scheduling problem consists in determining which
stands should be harvested in each period during a planning horizon. The area of
each contiguous set of harvested stands cannot exceed the maximum allowed size,
and the variation on the volume of timber harvested in each period cannot exceed
a given degree of fluctuation from the harvest level in the previous period. Each
stand can only be harvested once. The objective is to maximize the total profit (net
present value) defined as the sum of the profits generated by the harvestings during
the planning horizon. We introduce the following notation:

e T —set of time periods indexed byt = 1,...,|T|

e [—setof standsindexedbyi=1,...,|]|

e ag;—areaofstandi;iel

e A, — maximum clearcut area

. pﬁ — timber net present value from stand i if it is harvested in period t; i € I;t € T

. vf — volume of timber of stand i in period ;i € I; t € T

¢ A — maximum allowed variation on volume of timber harvested between two
consecutive periods.

Let G = (I,E) be a graph, where each stand in / is represented by a vertex
and the endpoints of each edge in E correspond to two adjacent stands. Using
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1 2
5 4
o)
8 6 7
G=(V.E)

Fig. 1 Forest with eight stands and its graph representation. Stands 2, 3, 6 and 8 are harvested in
period 1, stands 1, 5 and 7 in period 2, and there is no intervention in stand 4. The area of each
stand is 1 ha

the definition of strong adjacency, the graph is planar, i.e. it can be drawn in a
plane surface without crossing edges. Let 2 be the set of maximal cliques of
G indexed by P € 2. A clique is the set of nodes of a complete subgraph of
the graph, which has an edge between each pair of vertices, and it is maximal
if it is not contained in any other clique. Since the graph is planar there are
no cliques with more than four vertices [4]. For the graph in Fig.1, 2 =
{{1,2,3},{1,3,5},{2,3,4},{3,4,5},{4,7},{5,6,8},{6,7}}. Cliques are used to
ensure that each clearcut does not exceed the maximum allowed size.

We now describe a compact formulation, the bucket formulation.

As each stand is harvested once at the most, the harvested area in a forest is a
set of clearcuts (maximal harvested connected regions) which do not overlap in the
course of the planning horizon. Thus, each clearcut may be represented by one of
its stands, for example the one with the smallest index. In this paper two stands
are considered to be adjacent when both share a boundary with positive length, i.e.
that is not a discrete set of points (the so-called strong adjacency [5]). According to
this definition, clearcuts in Fig. 1 are, in period 1, regions {2, 3} and {6, 8} and, in
period 2, {1, 5} and {7}. These clearcuts may be represented by stands 2, 6, 1 and 7,
respectively.

Let us consider the empty set Cy (bucket) for each stand k. Assigning stands to
Cy, (stand k and stands i > k) corresponds to selecting these stands to be harvested.
The model assigns stands to buckets in such a way that constraints of the maximum
area, volume variation, at most one harvest per stand, are satisfied. A bucket remains
empty if no stands are assigned to it. Each non empty bucket represents a feasible
clearcut or a set of feasible clearcuts. The stand with the smallest index in a non
empty bucket Cy is k.

We can represent the set of buckets in the forest as C = {C1, ..., Cj}.
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The decision variables in the bucket model are therefore as follows:

+ | 1if stand i is selected to belong to bucket C in period ¢
" 7| Ootherwise; keliteT;i=k, ..., ||

1 if at least one stand from clique P is selected to belong to bucket Cy
wh = in period ¢
0 otherwise; kel;teT;Pec 2 : mz;x{i} > k.
i€

The model is the following:

Il

max ZZZpﬁxf’ (D

teT kel i=k
subject to
N <whikelteT,i>kPe2:icP Q)
Y wi<liteT:Pe2 (3)

k< max{i
= ieP il

|71

> ad < (Apw—a)xikeliteT )
i=k+1

Y d<tniel S
t€T k=1

DUy A== T Y AT =2 T (6)
i€l k=1 i€l k=1

DUy A =+ )Y v Y AT =2, T 7)
i€l k=1 i€l k=1
Mef0,1};keliteTi=k... | ®)
w’,‘,’zo;kel;teT;PeQ:mE}Jx{i}zk. )

i€

The objective function (1) states the management objective of maximizing the net
present value of timber harvested. Constraints (2) define the relationship between
variables x and w. Constraints (2) and (3) ensure that in each period every two
adjacent stands are in one bucket at the most. Constraints (4) guarantee that each
bucket does not exceed the maximum allowed size. Constraints (4) also state that if
C is non-empty then C; contains stand k, and thus the stand in Cj with the smallest
index is k. Constraints (5) state that each stand is harvested at the most once in the
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planning horizon. Constraints (6) and (7) allow harvested volumes in each period
to range from 1 — A to 1 + A times the harvested volume in the previous period.
The other constraints state binary and non-negativity requirements on variables. The
integrality of variables x, together with constraints (2), implies the integrality of
variables w in at least one optimal solution. Note that a non empty bucket is a region
that might be disconnected since there are no constraints to enforce its connectivity.
However, any solution with a disconnected harvested set Cy is equivalent to the
solution where Cy is replaced by its clearcuts, each with an area not exceeding
A,..x- Hence there is no need to add explicit constraints in the model to enforce
connectivity of the buckets.

The bucket model has O(|I| x | 2| x |T|) variables and constraints. If G is planar,
the number of cliques is of the order of the number of nodes [4], so in this case
the formulation has O(|I|?> x |T|) variables and constraints. Even though the number
of variables is polynomial, it can be very large for large instances. However, most
variables have the value zero in any feasible solution, and this can be determined
a priori [3]. Observe that if a stand is too “far” from stand k then it is not worth
assigning it to bucket Cy, because the area of any connected region with both stands
would exceed the maximum. Back to Fig. 1, considering A,,,, = 2, for k = 1,
variables xj', xg', x3', x§', w5, wg'; are null in any feasible solution. Such variables
may not be considered and thus the number of variables and constraints of the model
can be reduced.

We pointed out above that there is no need to enforce connectivity in the
bucket formulation. Nevertheless, we can consider an alternative formulation with
constraints on the connectivity of the subgraphs of G induced by sets {i : xf." =
1},k € Iand t € T or, in other words, on the connectivity of the non empty buckets.
We consider two Dantzig-Wolfe decompositions for the bucket model and also
similar decompositions for the alternative formulation. For the sake of simplicity,
the alternative formulation is not described.

The knapsak decomposition of the bucket model is obtained by reformulating set
# defined by constraints (4) and (8), while the knapsack-and-clique decomposition
correspond to the reformulation of set 4" defined by constraints (2), (4), (8) and (9).
Similar decompositions of the alternative formulation are obtained by reformulating
sets £ and % by the same constraints and the connectivity constraints. In each case,
the representation of the convex hull of the corresponding set by extreme points is
used to strengthen the respective formulation. As those convex hulls have an expo-
nential number of extreme points in general, the linear programming relaxations of
the resulting models are solved by column generation. The corresponding pricing
subproblems consider objective functions of reduced costs over sets % and %,
respectively.
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3 Decomposition Models

3.1 Knapsack Decompositions

In this subsection, we propose a Dantzig-Wolfe decompositions of the bucket model
by reformulating the set defined by constraints (4) and (8). A similar decomposition
of the alternative model can also be presented by reformulating the set defined by
these constraints and the connectivity constraints.

3.1.1 The Master Problems

Letd = |T| x |I| x (|I| + 1)/2 be the number of variables x' in the bucket model
and 7 = (x € RY) satisfying (4) and (8).

Observe that % can be decomposed into |I| x |T| sets £ = {x € {0, 1}//I=k+1 :
Zl‘ik 41 aixf’ < (Apax — ak)xlli’}. Observe further that, for a given k, sets # '~ are
identical, and that an element of a set J#* is either the null vector or the incidence
vector of a region with stands i > k, containing k and with area not greater than
Apax. Thatis, &% = {0} U {35 : S € 7%} where .7 is the set of all regions S with
stands i > k such that k € S and the area of S is not greater than A,,,, and )'clg is the
incidence vector of S:

—« _ | 1if stand i belongs to region § € .7*
5771 0 otherwise.

Now, forr € T, k € I and S € .* define the variables

« _ | 1ifregion S is selected to be harvested in period ¢
5 7| 0 otherwise

and for each k € I and ¢ € T define the variable y’(‘)’ that assumes the unitary value
if none of sets of .#* is selected to be harvested in period ¢ and the null value
otherwise. We have # = {x € RITFF1 + x = S Xyl ki 4 3 i) =
1,y§’ € {0,1},S € 7%}, for each k € I and t € T. By incorporating this
reformulation of the sets #* into the bucket formulation, we obtain the master
problem

|71

max Y3 3 3 ik (10

1€T kel se.k i=k
subject to

W+ Y W=lkelteT (11)
Se sk
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Yo RN <wiikelteTizkPe2:i (12)
Se.sk

Y wi<liteT:Pe2 (13)
k<max{i:i€P}

ZZZ Ho¥ < liel (14)

teT k=1 se .7k

D ZZ zsyy>(1—A)Zv”Zchf‘sy§f Lr=2...T]

i€l k=1 Se .7k i€l k=1 se .7k

(15)
dYov ZZ ,sys_(1+A)Zv”ZZ Bkl =2 T
i€l k=1 se .7k i€l k=1 se.#k

(16)
Yel{o,1};kel;teT;Se.s* (17)
Mefo,1}:;kel;teT (18)
wgzo;kel;teT;PeQ:m%)x{i}zk. (19)

i€

We shall refer to this formulation as .%’-knapsack decomposition. Note that
constraints (14) imply constraints (11), so these can be removed.

Observe also that variables x in the bucket formulation and variables y in the
-knapsack decomposition are related through the equations XX = Y ¢ i ¥4,
The linear programming relaxation of the .¥’-knapsack decomposition corresponds
to replacing, in the bucket model, the set 27 defined by constraints (4) and (8) by its
convex hull. Given that the extreme points of the set defined by the linear relaxation
of constraints (4) and (8) are not necessarily integer, we may state the following:

Proposition 1 The LP bound of the ./-knapsack decomposition is better than or
equal to that of the bucket formulation.

A similar decomposition of the alternative model, with the connectivity con-
straints to be included in the knapsack sets to be reformulated, can also be
considered. Since now this sets are more constrained, the linear programming
bounds obtained by the knapsack decomposition with connectivity are not worse
than those obtained by the knapsack decomposition without connectivity.

Let Z* denote the set of all regions from ¥ that are connected, for k € 1. We
shall refer to the master problem where sets .#* are replaced by %* as %-knapsack
decomposition. The solution set of the master problem does not change if sets .7%
are replaced by Z*. However, we have the following:
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Proposition 2 The LP bound of the %-knapsack decomposition is better than or
equal to that of the . -knapsack decomposition.

That the LP bound of the Z-knapsack decomposition is never worse than
that of the .’-knapsack decomposition follows from the fact that there are more
constraints in the alternative formulation defining the set which is reformulated, and
the remaining constraints in the master problem are the same. Next, we will give an
example that shows there are instances for which the LP bound of the Z-knapsack
decomposition is strictly better.

Consider a forest with seven stands (Table 1) and let A,,, = 3.0 and
A = 1.0. Optimal solutions of the linear relaxations of the .¥’-knapsack and %-
knapsack decompositions are the following, respectively (only the non-null values
are displayed):

iy = 0.03), 305, = 0.3), ¥ise = Loy = 0.3) v = 0.03), 34155y =
0.(3), y?ﬁz} = 0.(3),y?4} = 1 (note that set {1, 3, 7} is disconnected),

ﬁgzlw&} M@wm} 0.3), wypy = M@wm} ma

2.2
{34} —0(6) w{34} = 0.(3), w{56} = Lwiy = 0.(3), w{23} = 0.(3), w{27} =
42
0.(3), w{34} =1.0,w;, =10,

=yt =y =50 =5 =y = 1007 = 0.3).557 = 0.(6), with
the value of the objective function 165 104.1;
L1
Yo = 1 0 y{456} L0, y{z} = 1.0,

Wl W 41 32 — 10,
Wiy = {z 3= {z 7T Waa T Wisy = Wosy = {3 4 =
yo’2 = ygz = yf’)’l = yo2 = yo2 = yg’z = y(7)’ = 1.0, with the value of the

objective function 161,346.1. These solutions are obtained using CPLEX 12.4 [7]
as a linear programming solver.

Table 1 Instance for which the LP bound of the %-knapsack decomposition is strictly better than
that of the .-knapsack decomposition

Stand Nodes adjacent
i a; pl P> v} v? toi

1 1.0 27,135.0 18,387.2 524.2 558.5 2

2 1.0 26,524.1 18,030.2 512.9 548.7 1,3,7

3 1.0 26,524.1 18,030.2 512.9 548.7 2,4

4 1.0 7693.6 5789.0 263.2 341.5 3,5

5 1.0 28,094.4 18,950.6 542.0 573.9 4,6

6 1.0 26,934.4 18,269.8 520.5 555.3 5

7 1.0 26,934.4 18,269.8 520.5 555.3 2



246 1. Martins et al.

3.1.2 The Pricing Subproblems

Relaxation of the binary requirement on the variables y@ leads to the linear
relaxation of the master problem. Constraints (17) and (18) are simply replaced
respectively by y > 0 and y"t > 0 because constraints (11) guarantee y"t <1
and y’é’ < 1. The pricing subproblem k¢ for each node k € I and for each period
t € T consists of finding a variable y¥, with § € #* or S e ,%”‘ such that the
corresponding reduced cost is maximum. The variables y " and w¥ are inserted into
the first restricted master problem

Let 2K « lP, B5. 6;, u' and v' denote the dual variables associated with
constraints (11), (12), (13), (14), (15) and (16) of the linear relaxation of the master
problem and £24*, f‘,ﬁ*, o, 6%, u'™* and v™* assume an optimal dual solution of the
linear relaxation of a restricted master problem. By definition of reduced cost, the
objective function of the pricing subproblem k7 is given by

max {Zet*} + th*

where Y% = % or SR = H#* and

* :pll + ei* _Hz*(l —A)U v2*(1 4 A)U 4 Z kl*

PeE2:
iepP

= pl 0F 4 p ol vl — T = Apf — v+ A

kt*
+ E op, t=2,...,]T|—1
reo:
iep
T 7| * |T|% .. IT] |T|*, ITI
€ =p; HO+p" Ty oy

+ Z akm* (with 0 <0, u™* >0, V™ < 0and a* < 0).

prPe2:
i€ep

For both knapsack decompositions, the variables of the subproblem kz will be

.= 1 if stand i is selected to belong to region S
"7 | 0 otherwise; i =k, ..., |I|.

For the .¥-knapsack decomposition, the subproblem k7 can be formulated by the
following integer program:

I7]
max Z €*x; + M (20)
i=k

subject to
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Il

Z aix; < Amax — ai (21)
i=k+1
X =1 (22)
eloyi=1,... k (23)

The objective function (20) is to maximize the sum of the node weights €/* over
the selected nodes and to add the value £2¥* to the optimal sum. Constraint (22)
guarantees that region S contains stand k. Constraints (21) ensure that the area of S
does not exceed A,,,,. Constraints (23) state the variable types.

For the #-knapsack decomposition, the pricing subproblem can be formulated
as (20), (21), and (23) with additional constraints on the connectivity of the subgraph
of G = (I, E) induced by the set {i : x; = 1}.

3.2 Knapsack-and-Clique Decompositions

In this section, we define a Dantzig-Wolfe decomposition of the bucket model
by reformulating the set defined by constraints (2), (4), (8) and (9). A similar
decomposition of the alternative model can also be presented by reformulating the
set defined by these constraints and the connectivity constraints.

3.2.1 The Master Problems

Let d and e be the number of variables x*' and w in the bucket model respectively,
e=) elkt),wheree(k,t) ={Pec 2:PN{k, ... I} # @}

As before, ¥ can be decomposed into |I| x |T| sets €% = {(x,w) €
{0, 1}TI=kHD etk Zl"1=|k+1 aixf’ < (Apax — ak)xit and xf." < wll‘f;i >kPe2:
i € P}.

Again, for a given k, the sets are identical, and an element (x, w) of a set %
is either the null vector or a vector ()_c’g, v'vlg) where § is a region with stands i > k,
containing k and with area not greater than A,,,, and )'c’;, v‘vé are defined as

o 1 if stand i belongs to region S
571 0 otherwise

0 otherwise.

& { 1 if clique P is such that PN S # @
Wps =
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Fort € T,k € I and S € .*, we consider again variables y’g and y’é’ . The master
problem is as follows:

Il

max ZZ Z Zl’ zs)’s (24)

teT kel se.7k i=k

subject to

b+ > wW=likelteT (25)
N2
Yoo Y ¥ <LiPe2iterT (26)

k<max{i:i€P} Se.k

YN g <nier 27)

teT k=1 Se. 7k

> ZZ ,syy>(1—A)Zv”ZZ Pyt =2, ]

i€l k=1 se.7k i€l k=1 se.7k

(23)
S v ZZ Sys_(1+A)Zv”ZZ‘f‘S’§’ Li=2,...,7
i€l k=1 se.7k i€l k=1 se.7k

(29)
Melol};kelLteT;Se s* (30)
Vel 1};kel;teT. €2V

We shall refer to this formulation as .’-knapsack-and-clique decomposition.

As for the knapsack decomposition, one can consider the %-knapsack-and-
clique decomposition corresponding to the reformulation of the bucket model with
enforcement of the connectivity of buckets. It turns out that the corresponding
master problem coincides with the so-called cluster formulation which has been
considered in [5, 8, 9, 11].

The authors in [9] showed that the linear relaxation bound of the cluster
formulation remains the same if besides connected clusters, disconnected clusters
(buckets) are allowed in the model. This means that in this case the . and %
knapsack-and-clique decompositions yield the same LP bounds.

The reformulated sets in the . or % knapsack-and-clique decompositions are
contained in the reformulated sets in the corresponding knapsack decompositions,
i.e. they are defined by a tighter set of constraints. This means the LP bounds
obtained by the knapsack-and-clique decompositions are never worse than those
obtained by the corresponding knapsack decompositions, and it turns out that they



Decompositions and a Matheuristic for a Forest Harvest Scheduling Problem 249

Table 2 Instance for which the LP bound of the knapsack-and-clique decompositions is strictly
better than those of the knapsack decompositions

Stand Nodes adjacent
i a |pl p; pi v v; v toi

1 1.2 121.3 | 101.9 |95.5 165.0 204.8 2447 2,35

2 0.8 88.5 84.8 |62.1 |1687.7 |1828.3 |1940.8 |1,3,4

3 1.5 11.0 227 |17.5 |1796.5 |1946.2 20659 |1,2,4,5

4 1.0 28.0 64.3 |40.2 136.5 204.8 290.2 |2,3,5,6,7

5 0.8 29.1 82.8 483 111.6 186.0 297.7 |1,3,4,6,8

6 1.0 124.1 85.1 |55.6 125.7 209.5 3352 |4,5,7,8

7 05 | —21.1 1.9 7.5 859.0 978.9 |1098.7 |4,6

8 1.0 47.5 547 1395 32.0 97.0 153.0 |5,6

are better in many instances. Next, we will give an example for which the LP bound
of the knapsack-and-clique decomposition is strictly better.

Consider a forest with eight stands (Table 2) and let A, = 2.3 and A =
0.15. The optimal values of the objective functions of the linear relaxations of
the Z-knapsack and the %Z-knapsack-and-clique decompositions are 545.258 and
544.394, respectively. These values are obtained using CPLEX 12.4 [7] as a linear
programming solver.

From the above discussion we may state the following results:

Proposition 3 The LP bound of the .-knapsack-and-clique decomposition is
equal to that of the Z-knapsack-and-clique decomposition.

Proposition 4 The LP bounds of the . or Z knapsack-and-clique decompositions
are better than or equal to those of the . and X knapsack decompositions.

3.2.2 The Pricing Subproblems

For the linear relaxation of the master problem, constraints (30) and (31) are simply
replaced by y "> 0and yk’ >0 respectlvely

Let 2%, B 5 O, u' and v’ denote the dual variables associated with con-
straints (25), (26), (27), (28) and (29) of the linear relaxation of the master problem
and %%, o, 6, u™* and v assume an optimal dual solution of the linear
relaxation of a restricted master problem. By definition of reduced cost, the objective
function of the pricing subproblem kf is given by

nax {Ze’*—}— Z By 4

P:SNP£(
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where Y% = Y% or SR = H#* and
€ =pl + 67 — (1 — A} —v*(1 + Ay}

)

€* = plroF v v v — T (1= AT AL =2, .., | T =1
e = Py g 4 Tl 1T 1T (with % < 0, ™ > 0 and v™ < 0).

€

For both decompositions, the variables of the subproblem kz will be

|} Lif stand i is selected to belong to region §
"7 | 0 otherwise;i =k, ..., ||

1 if at least one stand from clique P is selected to belong to region S
WP = 0 otherwise; P € 2 : me;)x{i} > k.

ie
For the .”-knapsack-and-clique decomposition, the subproblem &t can be formu-

lated by the following integer program:

|71

max Z € xi + Z Bwp + QK* (32)
i=k P:max;ep{i}>k
subject to
xi <wpii>k;Pe2:i€P (33)
Il
Y ami < Apa— (34)
i=k+1
=1 (35)
x €40, 1}:i=k, ... || (36)
wp>0;Pe 2: mz}Jx{i} > k. (37)
i€

The objective function (32) is to maximize the sum of the node weights €/* and
the clique weights 5 over the selected nodes and to add the value 2¢* to the
optimal sum. Constraints (33) ensure that if a node is selected, then any maximal
clique with this node is also selected. Constraint (35) guarantees that region S
contains stand k. Constraints (34) ensure that the area of region S does not exceed
Aax- Constraints (36) and (37) state the variable types.

For the %Z-knapsack-and-clique decomposition, the pricing subproblem can be
formulated as (32), (33), (34), (35), (36), and(37) with additional constraints on the
connectivity of the subgraph of G = (I, E) induced by the set {i : x; = 1}.
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4 The Matheuristic

In this section, we present a solution approach for the harvest scheduling problem.
This solution approach relies on the .#’-knapsack-and-clique decomposition, given
its advantages over the other decompositions shown in the previous section.

The huge number of decision variables of the decomposition models preclude
solving them directly. Therefore, the proposed approach is based on column
generation. Given the complexity of the problem, exact methods, as branch-and-
price (the combination of CG and branch-and-bound), are not an alternative for
large instances. For that reason, the proposed approach is a matheuristic (MatHeur)
based on CG and on a general purpose mixed integer programming solver.

The proposed MatHeur is closely related to the general framework ‘“Metaheuris-
tic search by column generation” [1], SearchCol for short. Each iteration of a basic
SearchCol algorithm has three main steps: (i) apply CG to the linear relaxation of a
perturbed (restricted) master problem, (ii) conduct a search in the space provided by
the subproblem solutions obtained so far, and (iii) define perturbations for the next
iteration. A perturbation is a constraint that forces a subproblem variable to take
value 1 or 0, therefore a perturbed (restricted) master is the original master problem
with additional constraints fixing subproblem variables.

Many variants can be devised based on these three steps. The core idea is the
exchange of information between CG and search. CG provides to search its search
space and additional information on the subproblem solutions (e.g. their value in the
last restricted master problem). Search attempts to improve the incumbent which is
used, possibly with other solution attributes, to define perturbations to include in
CG.

A core concept in SearchCol is that a solution can be represented as being
made of subproblem solutions, one from each subproblem. In the .%’-knapsack-and-
clique decomposition, the solutions of subproblem k¢ are all the regions including
stand k£ and stands with an index higher than k (and also the empty region) for
period ¢ (variables w are omitted in this discussion for the sake of clarity). With
this perspective, a solution to the forestry problem, s, can be represented by s =
(s(1),s(2),...,s(|K|)), where s(k), k € K, represents the region associated with
subproblem £ in the solution and X is the set of subproblems.

The main difference between SearchCol and the proposed MatHeur is that in
the latter the search is conducted by a general purpose mixed integer programming
solver and not by a metaheuristic.

The algorithm of the MatHeur is represented in Fig. 2. Two types of iterations (A
and B) are used (almost) alternately. In both, the first step is to apply CG. After CG,
a search space is defined.
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numnoimprov < 0
typeiter «— A
repeat
Initialize the set of perturbed subproblems, R, as empty
5:  Initialize the set of perturbations, P, as empty
improv «— false
while R does not include all subroblems do
Solve CG with the set of perturbations P
if CG is infeasible then
10: Break cycle while
end if
Define a search space
Construct a (partial) solution and provide it to the MIP solver
Optimize with the MIP solver with a time limit of 0.1 X
thenumbero frowso fthedecompositionmodel

15: if The incumbent was improved then
improv = true
end if

Define perturbations for 10% of the subproblems (the ones in R are not candidates) and
include the perturbations in P and the selected subproblems R
end while
20: if improv == true then
numnoimprov «— 0
typeiter — A
else
numnoimprov «— numnoimprov + 1
25: if typeiter == A then
typeiter — B
end if
if typeiter == B then
typeiter «— A
30: end if
end if
until numnoimprov = maxnumnoimprov

Fig. 2 The matheuristic. maxnumnoimprov is a parameter corresponding to the maximum number
of iterations with no improvement

Type A Iteration

The search space is made of the subproblem solutions in the incumbent, all null
subproblem solutions, all subproblem solutions generated in the last CG solved, and
the 2 x| K| subproblem solutions with higher search recency. The search recency of a
subproblem solution is the number of times it belonged to global solutions obtained
by the mixed integer programming (MIP) solver. The incumbent solution is provided
to the MIP solver. After the MIP solver reaches the optimal solution or the time limit
imposed, perturbations are defined. The perturbations used in the proposed MatHeur
are based on scoring subproblem solutions. The score of a subproblem solution s(k)



Decompositions and a Matheuristic for a Forest Harvest Scheduling Problem 253

is obtained through:

scorey ) = Presencelnc + LRWeight 4+ CurWeight 4+ CGrecency + SearchRecency
+ BelongSpace

where

* Presencelnc is 1 if the subproblem solution is in the incumbent; and 0 otherwise;

* LRWeight is the value of the variable of the decomposition model associated
with the subproblem solution the first time CG was applied (i.e. in the linear
relaxation);

* CurWeight is similar to LRWeight but considers the last CG solved;

* CGrecency is the number of times the subproblem solution was the solution of
the subproblem during CG (normalized to a value between 0 and 1);

» SearchRecency is the number of times the subproblem solution belonged to
global solutions obtained by the MIP solver (normalized);

* BelongSpace is the number of times the subproblem solution belonged to search
space (normalized).

For each subproblem not yet perturbed, the score of all solutions are calculated
and the solution with higher score (excluding the null solution) is selected. Next,
the unperturbed subproblems are sorted in descending order of the score of their
selected solutions and the first 10 % subproblems are chosen for defining new
perturbations. The perturbations consist in forcing all variables with value 1 in the
subproblem solution to take value 1 in the next CG by adding constraints to the RMP
of CG and take into account their duals in the objective function of the subproblems.

Type B Iteration

There are two differences in a iteration of type B when compared to a iteration
of type A. Firstly, the search space is made of all subproblem solutions generated
by CG from the start. Secondly, a partial solution is provided to the MIP solver.
The partial solution is made of the 20 % subproblem solutions (at most one per
subproblem) with higher value of the variable associated with it in the last CG
solved.
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5 Computational Experiment

5.1 Implementation

The proposed MatHeur was implemented in SearchCol++ (http://searchcol.dps.
uminho.pt/), an implementation of the SearchCol framework in C++. When using
SearchCol++, only information on the decomposition and problem specific com-
ponents must be coded. More precisely, the user must provide the number of
subproblems, the sense and right hand side of the master constraints, a subproblem
solver, how the coefficients in the objective function of the subproblem variables are
modified by the duals of the global constraints, and how a column corresponding to
a solution of a subproblem is obtained.

The search and perturbations steps of SearchCol are hidden from the user and are
controlled through input parameters.

SearchCol++ uses Cplex 12.4 [7] as the linear programming solver for the
restricted master problems and also as the MIP solver in the search step. We also
used Cplex 12.4 to solve the subproblems. The RMP of CG was initialized with
all feasible clusters with two stands at the most. A limit of one hour was set to all
approaches testes, including the MatHeur.

Bucket model was solved with the same version of Cplex. The branch-and-cut
algorithm was allowed to run for one hour at the most. Computation time includes
the time spent by branch-and-bound and the time used to build the model.

In all situations, Cplex default parameters were used throughout, except the ones
described in the previous section for the MatHeur. Computations were performed
on a desktop computer with an Intel Core i7 — 3.3 GHz processor and with 32 GB
RAM.

5.2 Test Instances

We report results for both real and hypothetical test forests (Table 3). Real test
forests include Leiria National Forest (LNF) in Portugal and the El Dorado forest in
the U.S.A. El Dorado is referred to in [5]. LNF and the hypothetical test forests F
and G are referred to in [3]. We also report results for other hypothetical instances
which are referred to in [3] (Bloedel and WLC) and [9] (FLG), all partly available
at the website www.unbf.ca/fmos/ (El Dorado is in this site as well). The parameter
A used in the timber flow constraints is 0.1.

We consider two groups of instances: one group with the small and medium
instances and the other with the large instances (ElDorado and the three FLG
instances).


http://searchcol.dps.uminho.pt/
http://searchcol.dps.uminho.pt/
www.unbf.ca/fmos/
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Table 3 Size of the instances (a is the average of the stand’s area)

No. No. No. ay
Instance nodes edges cliques (ha) Amax [Tk |T|
Bloedel 45 112 37 1 4 3
LNF 574 1152 740 14.96 3.46 6
F10x10: —3, —4 100 180 180 1 3,4 7
F15x15: —3, —4 225 420 420 1 3,4 7
F20x20: —3, —4 400 760 760 1 3,4 7
F25x25: —3, —4, =5, —6 625 1200 1200 1 3,4,5,6 7
G15x7: =3, —4 105 247 145 1 3,4 7
G40x10: =3, —4 400 988 596 1 3,4 7
G40x14: =3, —4 560 1396 844 1 3,4 7
G60x10: =3, —4, =5, —6 600 1492 904 1 3,4,5,6 7
WLC 73 98 63 10.12 3.95 7
El Dorado 1363 3609 2041 12.78 3.13 12
FLG-9-1 850 3009 1825 15.22 3.02 11
FLG-10-1 763 2677 1635 15.24 3.02 11
FLG-12-1 2945 10603 6414 15.14 2.97 11

5.3 Results

SearchCol++ also implements branch-and-price (BP) [2] and a heuristic version of
it based on the concept of beam search [10] (we name this approach BeamBP). We
tested those two approaches and a third which consists in solving the RMP obtained
at the end of column generation (with no perturbations) but considering that the
master variables must be integer (approach named MipHeur). For these preliminary
tests, we used five instances (F10x10-3, F10x10-4, G15x7-3, G15x7-4, and WLC)
and a time limit of one hour. For BP and BeamBP, the variable with a fractional value
closest to 0.5 was chosen as the branching variable. For BP, the tree was explored
with a dive strategy (when the node generates sons, the up branch one is chose to
continue, in the other cases the node with best bound is chosen). In Beam, the width
of the beam (i.e. number of nodes selected in each level) was set to three.

We compare MatHeur and MIPHeur with the bucket formulation in Table 4. The
quality of the best integer solution found by the bucket model was measured by

using the deviation (in percentage) of its value (vis) from the best upper bound
bup — vi

found by branch-and-cut (bup): gap = a 100. The value of gap is returned

vis

by Cplex.
The quality of the best integer solutions provided by MatHeur and MIPHeur
was measured on the strength of the deviation of their values (visyam and

visygpa) from the best integer solution found by the bucket model, gapmam/s =

ViSMatH — VIS i .
—MaB T TP 100 and gapvipn/p = MEBHUEE]0Q, respectively. Therefore, a

visg visp
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positive value for gapmam/s means the MatHeur provided a better solution than
the bucket, and the same applies for gapmipa/s With respect to the MipHeur and
bucket.

For the small and medium instances, MipHeur is clearly inferior to bucket which
gave better solutions in 18 instances out of the 23. MatHeur is better than the
bucket in 14 instances, worst in 8 and the same solution was obtained in one
instance. Comparing the three approaches, MathHeur provided the best solution in
14 instances, bucket in 7 and MipHeur in 4. It is worth noting that for the easiest
instance, the Bloedel instance, MipHeur failed to obtain the optimal solution, as the
restricted integer search space did not contain the necessary subproblem solutions.
With the subproblem solutions generated after the perturbations were added, the
MatHeur found the optimal solution.

The quality of the best integer solution provided by MatHeur for the small and

medium instances was also measured in terms of the deviation of its value from

vis — vis
the best integer solution found by MipHeur, gapyam/mipn = —MatH T POMIPH 100

ViSMIPH
(Table 5). MatHeur is better than MIPHeur in 18 instances, worst in 4, and equal

in 1.

Table 5 Comparison APk MIPH
between MatHeur and

MIPHeur in terms of Bloedel 0.02
gapmam/mrpH for small and WLC 0

medium instances LNF 42x1073

F10x10-3 | 1.28
F10x10-4 |0.85
F15x15-3 |0.14
F15x15-4 |0.15
F20x20-3 | —0.26
F20x20-4 |0.23
F25x25-3 | —0.1
F25x25-4 |0.08
F25x25-5 |0.13
F25x25-6 |0.62
G15x7-3 | —0.02
G15x7-4 | 0.97
G40x10-3 | 0.06
G40x10-4 | —0.05
G40x14-3 | 0.06
G40x14-4 | 0.61
G60x10-3 | 0.13
G60x10-4 | 0.06
G60x10-5 | 0.08
G60x10-6 | 4.3x1073
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Table 6 Computational results for MIPHeur and MatHeur in comparison with the bucket
formulation (solved by cplex) for large instances. For the three FLG instances, since the bucket
did not provide any solution, no relative quantitative comparison can be made between both
approaches. The values displayed between parenthesis are the relative gap of the incumbent and
the linear relaxation bound. — means the model was not loaded within one hour. * means a feasible
solution was not obtained, the number of violated constraints of the solution with less violated
constraints is presented. ** means out of memory

Bucket formulation

(branch-and-bound) MIPHeur MatHeur Best

Best gap |Time | gapmipu/s | Time | gapmanys | Time | approach
Instance solution (%) |(sec.) | (%) (sec.) | (%) (sec.) | (best solution)
ElDorado |4,210,960 |0.06 3902 | 0.02 3625 | 1* 3620 | MIPHeur
FLG-9-1 |- - - (1.60) 3600 | 4* 3607 | MIPHeur
FLG-10-1 |- - - (2.76) 3600 | ** MIPHeur
FLG-12-1 | - - - (0.24) 3600 |5* 3636 | MIPHeur

The advantage of using a decomposition model becomes clear when analysing
the results for the large instances (Table 6). Bucket is not adequate for the three
FLG instances since the time spent to construct the model exceeded the time limit
imposed. For the ElDorado instance it provided a solution worst than MipHeur.
MatHeur could not find feasible solutions in three instances and returned out of
memory in the other. As shown in the table, the obtained solutions had a very small
number of constraints violated. Providing more time to the search phase of MatHeur
would certainly benefit the MatHeur as it would have a behaviour more similar to
MipHeur. However, we stuck to the use of the same parameters for all instances.
MipHeur is clearly the best approach for the large instances. It provides feasible
solutions to the four instances with optimality gaps smaller than 3%.

6 Conclusions

We presented a matheuristic based on column generation for the forest harvest
scheduling problems subject to maximum area restrictions. The matheuristic is
based on one of the four Dantzig-Wolfe decompositions proposed for the so-
called bucket formulation and the bucket formulation with additional constraints on
the connectivity of the buckets. The .”-knapsack and the .’-knapsack-and-clique
formulations are decompositions of the bucket model, and the Z-knapsack and the
Z-knapsack-and-clique formulations are decompositions of the bucket model with
the connectivity constraints. We proved that the LP bounds of the knapsack-and-
clique decompositions are equal, the knapsack-and-clique decompositions dominate
the knapsack decompositions, the Z-knapsack decomposition dominates the .&-
knapsack decomposition and the .#-knapsack decomposition dominates the bucket
model.
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We implemented the decomposition model in SearchCol++ allowing testing
different solution approaches. Branch-and-price and a heuristic variant where only
a subset of nodes in each depth of the tree is considered (we called beam branch-
and-price) did not provide feasible solutions in instances where the other tested
approaches found solutions with small optimality gaps.

We proposed a matheuristic based on column generation and a general purpose
mixed integer programming (MIP) solver. The main idea is the exchange of
information from CG to the MIP solver (subproblem solutions, values of the
variables in the RMP, among other) allowing defining restricted search spaces and
advanced starts in MIP and from the MIP solver to CG (through perturbations based
on the incumbent and other measures).

We compared the proposed matheuristic with two approaches. The first one, from
the literature, consists in solving a compact model (bucket) with a general purpose
solver. The second one consists in applying CG and then solve the integer restricted
master problem with a general purpose MIP solver (MipHeur).

The matheuristic was tested with benchmark instances, both real and hypothetical
forests, ranging from 45 to 2945 stands, using values of the ratio A, /@y ranging in
the interval [3,7] and temporal horizons from three to twelve periods.

The results show that, for small and medium instances, the proposed matheuristic
found better solutions than the bucket formulation and than the MipHeur for
the majority of the instances. For large instances (e.g. forests from 763 stands
with eleven or twelve periods), the bucket formulation is not effective and the
matheuristic failed (by small amounts) to find feasible solutions. The MipHeur was
able to obtain solutions with optimality gaps smaller than 3 %.

Acknowledgements This research was partially supported by Fundagdo para a Ciéncia e a Tec-
nologia, projects UID/MAT/04561/2013, PEst-OE/EEI/UI0319/2014 and PTDC/EIAEIA/100645/
2008 (SearchCol: Metaheuristic search by column generation). We wish to thank Andres Weintraub
and José G. Borges (through the project PTDC/AGR-CFL/64146/2006) for providing some real
test forest data.

References

—

. Alvelos, F,, Sousa, A., Santos, D.: Combining column generation and metaheuristics. In: Talbi,
E.G. (ed.) Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 434, pp. 285—
334. Springer, Berlin (2013)

2. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-

price: column generation for solving huge integer programs. Oper. Res. 46, 316-329 (1998)

3. Constantino, M., Martins, 1., Borges, J.G.: A new mixed-integer programming model for

harvest scheduling subject to maximum area restrictions. Oper. Res. 56(3), 542-551 (2008)
4. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 2nd edn. Springer, New York
(2000)

5. Goycoolea, M., Murray, A.T., Barahona, F., Epstein, R., Weintraub, A.: Harvest scheduling

subject to maximum area restrictions: exploring exact approaches. Oper. Res. 53(3), 90-500

(2005)



260

10.
11.

1. Martins et al.

. Goycoolea, M., Murray, A.T., Vielma, J.P., Weintraub, A.: Evaluating approaches for solving

the area restricted model in harvest scheduling. For. Sci. 55(2), 149-165 (2009)

. ILOG, ILOG CPLEX 12.4 — User’s Manual (2011)
. Martins, I., Constantino, M., Borges, J.G.: A column generation approach for solving a non-

temporal forest harvest model with spatial structure constraints. Eur. J. Oper. Res. 161(2), 478—
498 (2005)

. Martins, I., Alvelos, F., Constantino, M.: A branch-and-price approach for harvest scheduling

subject to maximum area restrictions. Comput. Optim. Appl. 51, 363-385 (2012)

Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. Int. J. Prod. Res. 26, 35-62 (1988)
Vielma, J.P., Murray, A.T., Ryan, D.M., Weintraub, A.: Improving computational capabilities
for adressing volume constraints in forest harvest scheduling problems. Eur. J. Oper. Res.
176(2), 1246-1264 (2007)



A Routing and Waste Collection Case-Study

Karine Martins, Maria Candida Mourao, and Leonor Santiago Pinto

Abstract Waste collection systems are among the main concerns of municipalities
due to the resources involved. In this paper we present a hybrid heuristic to find the
vehicle routes that should be performed to collect the household waste along the
streets of a network. The solution method hybridizes the resolution of ILP based
models with some simple heuristic ideas to assign services (collecting streets) to
the vehicles. The Seixal case study, in the Lisbon Metropolitan Area, is tackled and
some encouraging results are reported.

1 Introduction

Nowadays, waste collection is a major issue in municipalities as it absorbs an
important amount of resources. The routes that vehicles should perform through
the streets network with this scope are studied mainly through Vehicle Routing
Problems (VRP), whenever the garbage is in dump sites apart, or by Arc Routing
Problems (ARP) if it is disposed in small containers along the streets. No matter the
last received less attention, it is considered the more adequate in certain situations.
That happens in some residential areas of Seixal municipally, the case-study in
focus. Recent surveys of waste collection applications may be found in [4], [3] and
[5], being the VRP and the ARP problems well studied in [7] and [1].

The county (Concelho) of Seixal is in the Lisbon Metropolitan Area which
accommodates about a quarter of the Portuguese population. Spread all over the
county there are a number of residential areas of townhouses where the garbage
is deposited in small containers along the streets. This option provides a better
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environment as there is no accumulation of garbage as usually near the big
containers. The case-study that we address aims to design these routes and we name
the problem as MCARP—-Seixal. The MCARP is an ARP defined on a mixed graph,
and thus edges are used to represent narrow streets, where the “zigzag” collection
is allowed, while arcs stand for one-way streets or large avenues. No matter the
capacity requirement is not relevant under this study, each vehicle must perform only
one route and a time limit must be observed. The objective is to minimize the total
time, i.e. the time traveled by the vehicles to reach and service the streets demanding
for refuse collection, and to leave and to return back the depot. In addition, a major
concern in the Seixal municipality, included in the so called MCARP—-Seixal, is to
identify a set of balanced routes, in terms of the traveling times.

We present a model and a heuristic for the MCARP-Seixal. This is a result
of an ongoing cooperation with the Seixal municipality that intends to develop
software that would consist on a support decision tool for the waste collection
routes, incorporating GIS, which, in turn, embodies models and heuristics designed
to obtain a set of feasible routes.

The paper is organized as follows. Next section the problem is defined and
modeled. Then the heuristic method is detailed. The computational experiments are
then reported and analyzed. Finally the conclusions are drawn.

2 Problem Definition and Modeling

The MCARP-Seixal, as mentioned, is an MCARP with a fleet of homogeneous
vehicles, with no capacity concerns, but a maximum travel time to observe per
vehicle route. Each vehicle must perform only one route that starts and ends at the
depot. In parallel to the time minimization objective, MCARP—-Seixal also attempts
to identify a set of balanced routes, in terms of the traveling times. To model the
problem the following notation is needed:

* I' = (N,A" UE) is the mixed graph. Ay, € A" and Ex C E are the set of arcs and
edges demanding for service, respectively, also named as tasks or required links;
and N is the set of nodes, representing street crossings, dead-end streets, or the
depot.

* 1 € N is the depot node where every vehicle route must start and end. We assume
that the depot is far away, with no tasks incident into it, and also coincides with
the landfill.

e G = (N,A) is a directed graph where each edge from E is replaced by two
opposite arcs, i.e. A = A" U {(i,)), (j, i) : (i,)) € E}.

e Ag C Ais the set of required arcs in G, (|Ag| = |A3e’ + 2 |Eg]).

e P is the number of routes, equal to the vehicles number.

e L is the maximum time allowed per route (in seconds).

. tz is the deadheading time of arc (i,j) € A (in seconds), i.e. the time needed to
traverse it without serving.
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* 1 is the service time of arc (i,J) € Ag (in seconds), i.e. the time needed to collect
the refuse along the task.

The scope is to determine a set of P time balanced routes, starting and ending at
the depot, observing a time limit L, performing all tasks and minimizing the total
time.

2.1 Models

Compact models, i.e. models with a polynomial number of variables and constraints,
are derived following [6] and used to find solutions for the problem under study. The
next formulation is a valid model for MCARP—-Seixal. Let us define:

* xj = Lif (i,j) € Ag is served by route p, and equal 0 otherwise;
. yZ as the number of times that arc (i, ) € A is deadheaded during route p;

. f5 as the flow in arc (i,)) € A, related with the remaining time in route p;

¢ T as the difference between the total times of the two most different routes (in
seconds), defined for the routes balancing objective, and thus referred as the
balancing variable.

,,
)y (e X gg)er 0

p=1 \(ij)eA (i)€AR
Subject to:
St Y= X X viem @
Ji(ij)€A Jji(ij)€ER Ji(i)eA Jj:(i.i)€ER
P
Yo =1 V(i) eAy )
p=1
P
S () =1 Vi) ek “4)
p=1
o=l v (5)
ji(1j)ea
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YooM= )0 b+ DD ok v ®)

ir(i,1)€A i(i,1)€EAR ir(i,1)€A

o= YA p=1...pP-1 ©9)
I S O

S e X et (0
ji(lj)eA Ji(1j)eA
I SLOG+Y0), V@) eA Vp (1D
xj; € {0.13}, V(i,j) € Ag, Vp (12)
=0, V(@jeA Vp (13)
Yy >0 integer, V(i.j) €A, Vp (14)

The objective function (1) represents the total time plus the balancing variable T
This variable is defined to balance the routes, i.e. to try to find routes with similar
traveling times. Constraints (2) state that the number of times a vehicle enters and
leaves a vertex is equal. Constraints (3) and (4) impose that tasks are served only
once, (5) require that each vehicle performs one route starting at the depot, and (6),
(7), and (8) are needed to ensure the connectivity of the routes, which jointly with (2)
also guarantee its continuity. Constraints (9) and (10) establish the maximum time
between two routes, and define T variable. Constraints (11) relate the flow variables
with the remaining variables, also needed to impose the time limit constraint per
route.

As in the case-study of Seixal, the above formulation assumes that the depot is
far away from the demand network, with no tasks incident into it. Then, the depot
will never be used as an intermediate node in a route.

To try to reduce the computation time needed to solve this ILP we add lower
bounds on the values for the flow variables, that is:

7 > (1 +minT)x; V(i,j) € Ag, Vp (15)

f8 = (@ + minT)y, V(ij) €A, Vp (16)

where minT = minke{dﬁs};(a’b)eA(t’;,h).

This model differs from the model in [6] by considering: (i) flow variables related
with the time instead of service and thus modifying (6), (7), and (8); (ii) a new
variable, 7 and a new constraint (10); and (iii) new flow lower bound constraints
(15) and (16).

Other models are also considered to try to infer about the effect of introducing
the balancing requirements this way, named as (F) and (FB2). (F) does not consider
route balancing at all, and thus T variable is dropped and so constraints (10), as in
an MCARP model. Note that (9) are kept only for breaking symmetries. In model
(FB2) we use T as a parameter, and so it is only removed from the objective function,
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the set of feasible solutions is also defined by (2), (3), (4), (5), (6), (7), (8), (9), (10),
(11), (12), (13), (14), (15), and (16).

Another model that is helpful is the aggregated model, (Ag), similar to the one
in [6]. In this model, variables are aggregated over the set of routes yielding:

P
* x; = 1if (i,j) € Ag is served, and equal O otherwise; thus x;; = > xf},
p=1
P
* y; the number of times that (i, ) € A is deadheaded, thus y; = Y %
p=1

P
* f; the flow that traverses (i,j) € A, thus f;; = > f7.
p=1

Then, (Ag) may be written from any of the first three models (FB1, FB2 or F) by
dropping T variable, by summing over p expressions (1), (2), (5), (6), (7), (8), (11),
(12), (13), and (14), and by replacing the variables as above defined.

3 Heuristic

As integer solvers usually fails to find solutions for bigger instances, we also propose
a heuristic method. This heuristic mixes the resolution of both aggregate and valid
models with some simple heuristic rules to assign tasks to vehicles reducing this
way the instances dimensions.

In the heuristic it is assumed that all nodes of graph G (with the exception of the
depot) have tasks incident into it. There is no loss of generality, as a deadheading
path between two end task nodes may be replaced by an arc with an associated
length (time or cost) given by the shortest path length (time or cost) between the
two corresponding end task nodes.

The heuristic is structured in three phases.

Heuristic

1. Solve the aggregate model (Ag)
2. Fix tasks

(a) Compute time distances
(b) Select seeds
(c) Assign tasks to vehicles

A priori assignment
A posteriori assignment

3. Solve the valid model considering the already fixed tasks (Phase 2). This model
is named as FH.

The resolution of the aggregate model in Phase 1 produces a giant route. The
value of its solution is a lower bound on the optimal value of the problem. The graph
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induced by the solution of the aggregate model, G; = (V,A;) is a subgraph of G,
A; C A. Usually, it includes only a subset of the deadheading links and identifies the
edge tasks service direction by choosing only one of the two opposite arcs associated
with each edge task to serve.

Phase 2 of the heuristic proceeds with graph Gy, and is the main focus of this
work. This aims to assign some tasks to vehicles to reduce the dimension of the
problem in Phase 3, that consists in solving the valid model with the tasks prefixed.
In summary, in Phase 2 a special vertex, seed-node, is selected for each route and
from it, it is identified a circuit starting and ending at the depot, and that passes
through the seed, including a maximum percentage, « (in the tests we set @ = 0.8),
of the average demand per route, Q. Although in this phase all the links in the circuit
are needed, only the information about the tasks fixed is conveyed to Phase 3. Phase
2 is next detailed.

3.1 Compute Time Distances in Gy

The time distance between any pair of nodes i, j € V, Dist(i, ), is the duration of the
corresponding shortest path in G;, assuming that the time of arc (u, v) € A; is given
by ¢, . On that purpose the Floyd algorithm (see [2]) was used. Based on these time
distances it is also computed:

* DCircyj = Dist(1,j) + Dist(j, 1),j € V \ {1}, the duration of the shortest circuit
that includes vertex j and the depot, referred by Circ(1,j);
e Dist = Yijev Dist(i)

~vi—y  the average time distance between all nodes.

3.2 Seeds Selection

To fix tasks that may promote balanced routes we start to find a set of seed—nodes
spread all over the graph. A set of P nodes (one per route), far away from each other
and from the depot, within a given time from the depot, to try to ensure that each
vehicle can return to the depot within the time limit, is thus selected. The distances
between the seeds and the depot will be controlled by parameter D4, and the
distances between two seed-nodes through Dp. Initially, we set Dy = Dp = Dist.
In the absence of seed-node candidates, D4 and Dp are successively divided by a
factor, 8 > 1 (in the tests & = 1.1), until the desired number of seed-nodes is
met. Beyond these controls, and to try to ensure that from each seed-node a feasible
tour may be found, the time of the minimum circuit including the seed and depot
may not exceed a given percentage, w (in the tests @ = 0.6), of the maximum
time route, L. The first seed to be selected, k € V \ {1}, is thus a task-node away
from the depot at least Dy, and which maximizes DCircy; amongst the ones for
which DCirci; < wL. That is, defining Vs as the set of seeds (initially empty), and
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2 ={j € V\ (VsU{1}) : Dist(1,j) = D4 A Dist(j, 1) > D4 A DCircy; < wL}, the
first seed-node is seed' = arg(max;eq (DCircyj)). Each following seed is selected
among the nodes away from the depot and from the previous selected seeds at
least Dgp, i.e. each new seed is given by seed” = arg(maxjex (Circyj)), where
K = {j € 2 : Dist(i,j) > Dp A Dist(j,i) > Dp, Vi € Vs}.

3.3 Assign Tasks to Vehicles

Two types of assignments are considered: (i) a priori and (ii) a posteriori.

A Priori Assignment

This assignment aims to find two paths, one from the depot to a seed node and the
other from the seed back to the depot, and to fix tasks in both paths so that it could be
a wise skeleton of a route. These paths, although allowing an initial deviation from
the depot, not greater than Dev (detailed later in this section), are built to prevent
that a route deviates uncontrollably from it.

Four rules (R0, R1, R2 or R3) are applied to assign links to a route. Rule RO must
be satisfied by all candidate tasks, being then used jointly and sequentially with one
of the rules R1-R3.

On this purpose, two specific nodes linked with the seed-node through a directed
path, DP, in G are considered: (i) node v;, the initial node of DP(v;, seed); and (ii)
node vj, the end-node of DP(seed, v;), as is shown in Fig. 1.

Seed

Fig. 1 Nodes linked with the seed
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Dist(1,v)) + tap + Tselect(p)+ Dist(b,1) < L

Dist(i\.g) + tqp + Tselect(p) + Dist(vj,,"ll) <L

Fig. 2 Candidate links accordingly rule RO

The method, starts with both v; and v; equal to the seed-node, and iteratively
moves these nodes away from the seed through the identified directed paths in
Gj. The tasks to be fixed to a route (identified by its seed-node) belong to these
directed paths, which in turn define a directed path from v; to v;, throughout the
seed, DP(v;, seed, v;), and are chosen accordingly to the following rules.

Rule R0 — within this rule the candidate links try to ensure that a feasible route
may be found, i.e. the time needed to service the assigned links from the depot
is compatible with the time limit L. Let TSelect(p) be the total time of the path
DP(v;, seed?, v;) for route p and TaskFixed be the set of already fixed tasks, the RO-
candidate links, as illustrated by thicker arcs in Fig. 2, are (a,b) € A:a =v; Vb =
v; and

Dist(1, v;) + ta, + Tselect(p) 4+ Dist(b,1) < L, if a = v; a7
Dist(1, a) + tap + Tselect(p) + Dist(v;, 1) < L, if b = v,

where, t,, is the service time in case (a, b) is tackled as a task, or the deadheading

time, otherwise.

Then, as referred, RO is used together with the sequence R1, R2 and R3. In
order to explain it, assume that Qfix(p) is the total demand in path DP(v;, seed”, v;)
assigned to route p.

Rule R1 - looks for a task that do not fill the route more than a percentage of the
average demand and although allowing a deviation from the depot prevents that it
exceeds a given parameter, named by Dev. Then, R1-candidate tasks, as illustrated
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Dist(b,1) < Dist(vj,1) + Dev . Dist(1,a) < Dist(1,vi) + Dev

Fig. 3 Candidate tasks accordingly rule R1

by thicker arcs in Fig.3, are (a,b) € Ag \ TaskFixed : (a = v; vV b = v;) and
qab + Qfix(p) < aQ and

Dist(b, 1) < Dist(a, 1) + Dev, if a = v; (18)
Dist(1,a) < Dist(1,b) + Dev, if b = v;

If no tasks verify R1, we study the rule R2, which allow the selection of tasks
that deviate the route from the depot more than Dev.

Rule R2 — aims to find a task, which although being farther from the depot,
than nodes v; or v;, more than Dev, belongs to a sub-circuit in graph G; with a
small number of links, less than a specified parameter, ¢ (in the tests + = 3). The
rational is to allow a deviation from the depot through a task that being in a circuit
with one of the specific nodes (v; or v;) ensures a short way back. Let Nlink(b, a)
be the number of links in the sub-circuit, Circ(b, a), linked with the specific node
a = v; V b = v; excluding task (a,b) (see Fig.4). Then, R2—candidate links are
(a,b) € Ag \ TaskFixed : (a = v; vV b = v;) and

® Yab + Qﬁx(P) =< Ol@ and
e Nlink(b,a) <t

In the absence of tasks satisfying R2 some deadheading links may be considered
following rule R3.
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Nlink(b,vj) =2<t

Fig. 4 Candidate tasks accordingly rule R2, witht = 3

Rule R3 - this rule, although similar to R1, looks for a link (instead of a task)
which does not deviate from the depot more than Dev. R3—candidate links are
(a,b) eA:(@a=vjVvb=v;) and

Dist(b, 1) < Dist(a, 1) + Dev, if a = v;

19
Dist(1,a) < Dist(1,b) + Dev, if b (19)

Vi

For each rule, and in case of more than one candidate, we select the one that
maximizes the distance between the designed sub-route and the depot. For Phase 3
of the heuristic only the fixed tasks are relevant, the identified deadheading links are
just needed for the a posteriori assignment (detailed in the next section).

The above mentioned deviation, Dev, is made positive while Qfix(p) < uQ, (0 <
1 < «) and null thereafter. Thus, it is allowed an initial deviation from the depot. To
keep this parameter within meaningful values we compute Dev = w (we set
r = 4), where DMinSeed is the minimum distance between all pairs of seed—nodes.

A priori assignment is repeated until a circuit per vehicle between the depot and
its seed-node is identified in two distinct ways: (i) Route to Route (RR) or (ii) Multi-
Route (MR). Route to Route starts with a seed (route) and repeats the assignment
process as long as possible in the same route (i.e. until the depot is reached or one of
the percentages settled bounds for time or demand is achieved), after that chooses
another seed (route), and so on. Accordingly Multi-Route procedure the assignment
is sequentially done to all the routes. Firstly, one task per route is assigned, secondly,
a second task per route is identified, until reaching the depot throughout the directed
paths, the time or the demand assigned percentage. In both cases, RR or MR, the
sequence of the routes is given by the order of the seeds (1st route — 1st seed selected,
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2nd route — 2nd seed selected, etc.). With the MR strategy one tries to even the
routes, avoiding the worst choices to be left for the last routes.

In fact, we will not present the results for (RR) strategy, as our preliminary tests
confirm that (MR) clearly overcomes (RR).

A Posteriori Assignment

With the a priori assignment we notice that usually the paths DP(v;, seed, v;) reach
the depot, not allowing further assignments, with only a small percentage of the
demand fixed. This motivated the development of the a posteriori assignment, which
assigns the tasks to the closest route, within the lime limit. A process similar to
Clarke—Wright’s savings method (see [2]) is used. An unassigned task is randomly
selected, and the cost to insert task (a, b) in route k before link (u, v) (see Fig.5) is
given by:

Dist(u, a) + Dist(b, u), if (u,v) is served
Dist(u, a) + Dist(b,v) — tg if («,v) is deadheaded
(20)

For each task (a,b) the best position and the best route for its insertion is
evaluated by computing:

Cost(a,b,u, k) =

v

e Cost(a,b,k) = MmN, ()€ Cire(1,seedt) {Cost(a,b,u,k)} and
e Cost(a,b) = ming {Cost(a, b, k)}.

Let u* the best insertion point for the unassigned task (a, b), in route k, i.e. uk =

arg(min,., y)ecire(1 seeaty 1C0St(a, b, u, k)}), and p be the best route to insert (a, b),
i.e. p = arg(ming {Cost(a, b, k)}).

The a posteriori assignment iteratively, and if possible, assigns tasks to routes as
summarized in the next procedure.

© 0 @00

Cost(a,b,u, k) = Dist(u,a) + Dist(b,u) Cost(a,b,u, k) = Dist(u,a) + Dist(b,v) — tg,

Fig. 5 Best insertion position for a posteriori assignment
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A posteriori assignment procedure
Let TF < Ay \ TaskFixed
Repeat

1. Randomly select (a,b) € TF
2. Let CR < 0 be the set of candidate routes to insert (a, b)
3. Foreachroute k = 1,..., P, identify uF the best insertion position for (a, b)

If (Cost(a, b, k) + 15, + Tselect(k) < L) A (g, + Ofix(k) < Q)
Then update CR < CR U {k}

4. If (CR # 0)

Then Identify route p = arg(minyecr) {Cost(a, b, k)})
Update TaskFixed < TaskFixed U {(a, b)}
Add (a, b) to route p before/after node u”

5. TF < TF \ {(a, b)}
Until (TF = 0)

4 Computational Results

The results were obtained with CPLEX 12.3, on a machine with Intel(R) Pentium(R)
CPU B950, 2,1 GHz (6 RAM). Instances from the case study of Seixal were
generated and used to assess the performance of the heuristic. Next the instances are
then first characterized, followed by the presentation and discussion of the obtained
computational results.

Computational results aim to: (i) evaluate the performance of the heuristic; (ii)
evaluate the impact of the balancing impositions both in the model and in the quality
of the solutions for their practical implementation.

4.1 Instances

Real world based instances are generated to test the proposed heuristic. Seixal
historical data regarding the waste collection system was treated and used to
compute the links parameters, as the amount of refuse per task, the service and
deadheading times. Seixal map is divided into several zones, accordingly the routes
in use and devised by the Waste Division. The data set characteristics are displayed
in Table 1. The instances dimensions, vary between 106 and 257 nodes and from
143 to 439 links.



A Routing and Waste Collection Case-Study 273

Table 1 Characteristics of the Seixal instances

Instance |V |AUE| |Ag] |Eg| P 0
S1 106 143 10 87 2 250
S2 148 284 63 119 3 6042
S3 167 320 77 70 2 2571
S4 179 352 43 120 2 4324
S5 257 439 47 235 3 5043

4.2 Analysis of Computational Results

Table 2 presents gap values for the different alternatives under study. The two
columns after the instance names depict the gap values for the aggregate relaxation
(Ag) and for the MCARP model (F), measuring the distance between the respective
upper bound and the MCARP lower bound. The remaining columns always compare
two upper bounds, computed in two different ways. Columns 4-9 compare upper
bounds of model (FH, FB2 or FB1) against MCARP upper bound values, in case
the heuristic is performed with parameter 1 = 0 (columns 4-6), not allowing further
deviations from the depot, or with a deviation of 10 % (columns 7-9). The last three
columns measure the effect of the p parameter on the solution values, comparing
the respective upper bounds.

Recall that (FB1) is an extended MCARP model, where the balancing imposi-
tions on the time limit are considered through as extra variable 7, whereas (FB2)
uses T as a parameter, fixed after the resolution of model (F). As may be seen, the
valid MCARP model (F) is able to solve all the instances but S2. While no cpu time
limit was imposed for model (F), an one hour limit was settled to run the remaining
ILP models.

When the balancing is imposed the quality of the solution values increase con-
siderably, as may be confirmed through columns 4-9, and none of the models FB1
or FB2 seems to be consistently better. However, by Table 3 FB1 is systematically
more effective than FB2 in achieving a good balance. In fact, Table 3 depicts the
imbalance of the solutions, computed as: Imb = Im@=Tmin » 100, where Tmax
and Tmin are, respectively, the time spent on the more consuming and the less
consuming route. Note that the increasing on parameter u, from 0 to 10, produced
clearly more equilibrium in the routes designed.

We stress that the time consuming part of the heuristic is, as expected, spent on
the integer solver that usually does not end up with an optimal solution. In fact,
Phase 2 of the heuristics takes only a few seconds, whilst Phase 1 and 3 usually
attain the imposed time limit.
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Table 2 Gap values

No Heuristic Aggregated model + Heuristic + Final model
(U#—UF)/UF
(U—Lb)/Lb n=0 ©=10 (U#10—U#0)/U#0
Instance | Ag(F) | F | FH | FB2 | FB1 | FH | FB2 | FB1 | FH | FB2 | FBI
S1 —0.13 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00

S2 0.03 | 0.09 | 0.00 | 4342 | 3.65 | 0.00 | 631 | 2.27 |0.00 | 7.54 | —1.33
S3 0.00 | 0.00 | 0.00 | 2.57 | 242 | 0.00 | 246 | 2.44 | 0.00 | —0.10 | 0.02
S4 0.00 | 0.00 | 0.00 | 5.67 | 5.67 |0.00 | 567 | 550 |0.00| 0.00 | —0.16
S5 0.52 | 0.00 | 3.34 | 12.17 | 22.52 | 3.82 | 11.67 | 21.25 | 0.46 | 0.01 | —0.58
Legend: Lb — lower bound for the MCARP model (F); Ag(F) — aggregated MCARP; UF is (F)
upper bound; (FH) — (F) with prefixed tasks; (FB1) — (FH) with balancing constraints (9)-(10);

(FB2) — (FB1) with variable 7 in the objective; U# is the upper bound for model # (FH, FB1 or
FB2); U#u — U# with fixed p

Table 3 Imbalance (in %)

Imb nw=20 n =10

Instance F FH FB2 FB1 FH FB2 FB1
S1 3.48 3.48 3.48 0.00 0.00 0.00 0.00
S2 31.63 31.63 31.63 0.00 0.00 0.05 0.04
S3 39.30 39.30 39.30 0.00 0.00 0.00 0.00
S4 12.03 12.03 12.03 0.00 0.00 0.03 0.03
S5 2.71 2.97 11.43 0.00 0.00 0.39 0.18

Legend: (F) — MCARP model; (FH) — (F) with prefixed tasks; (FB1) — (FH) with balancing
constraints (9)-(10); (FB2) — (FB1) with T in the objective function

5 Conclusions

In this work the MCARP-Seixal is defined to approach a waste collection problem
in a county in the metropolitan area of Lisbon. A compact integer formulation is
derived and a relaxation is presented as well. Those models are hybridized with
a heuristic procedure to produce feasible solutions. The method is tested on real
instances and is quite promising in providing solutions with balance sets of routes.

This works is part of an ongoing project, that will proceed with its integration in
a Decision Support System that will include an automatic data gathering with the
help of a GIS, that will also assist in a friendly solutions presentation.
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Exact Solutions to the Short Sea Shipping
Distribution Problem

Ana Moura and Jorge Oliveira

Abstract Short sea shipping has several advantages over other means of trans-
portation, recognized by EU members. The maritime transportation could be dealt
like a combination of two well-known problems: the container stowage problem
and routing planning problem. The integration of these two well-known problems
results in a new problem CSSRP (Container stowage and ship routing problem) that
is also an hard combinatorial optimization problem. The aim of this work is to solve
the CSSRP using a mixed integer programming model. It is proved that regardless
the complexity of this problem, optimal solutions could be achieved in a reduced
computational time. For testing the mathematical model some problems based on
real data were generated and a sensibility analysis was performed.

1 Introduction

There are several transportation systems that can be used to transport containers
from one destination to another. Transport over sea is among the various forms
of transportation and the one with a greatest growth rate over the last decades.
Presently, short sea shipping is responsible for a significant part of all freight
moved within the European Union borders. In the last decades containerization
has revolutionized cargo shipping. According to Drewry Shipping Consultants
(http://www.drewry.co.uk/), today over 70 % of the value of the world international
seaborne trade is being moved in containers. The world container fleet expanded
at an average annual growth rate of 9 %. A significant part of all freight moved
within the European Union travels by sea. EU statistics state that 3800 million tons
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were transported by ship in 2006 and it is hoped that, in 2018, if the economic
crisis overcome, the 5300 million tons mark will be reached. Short sea shipping
has several advantages but also has some downsides: the bureaucracy attached to
customs and ports; port services costs and efficiency; travel duration; inflexibility
of routes; and dependency on environmental factors. Considering some of these
downsides, this work intends to minimize the transportation costs reducing the
travel duration and the port servicing cost and efficiency. With that purpose, a
mixed integer programing (MIP) model that minimizes the total cost distribution
was developed.

The motivation and the idea for this work arise from the parallelism between
this type of distribution and the distribution problems over land. In this latter type
of transportation a well-known problem, the Vehicle Routing and Loading Problem
(VRLP) that is an integration of the Vehicle Routing Problem (VRP) and Container
Loading Problem (CLP), was first presented by [15]. The routes and the packing
of boxes (or pallets) in the trucks are computed considering the Last-In-First-Out
(LIFO) strategy and all the constraints related to this two different problems. The
study of VRLP only started in 2006 and since then further work has been done.
Gendreau et al. [13] and Moura and Oliveira [15] were the first authors to integrate
the VRP and CLP and to publish benchmark instances. Moura and Oliveira [15]
considered a mathematical formulation to the VRLP with Time Windows and tri-
dimensional packing and in this work they presented two heuristic approaches,
a hierarchical and a sequential approach. Bearing this in mind, we applied the
same concept to short sea distance distribution problems. Nevertheless, the main
difference between these two apparently similar problems is in the cargo loading.
The routes are more dependent on the loading plans, due to both the vessel and cargo
stability and the great amount of time that each vessel spends in a port in order to
load and unload the containers. A good loading plan in this case is more crucial
to the entire distribution process. The routes are planed depending on: distances,
demands and the delivery deadlines of each port. Besides, the mathematical model
considers the interconnection between the routes optimization and the containers
loading on containerships, in order to reduce overstowing.! According to these,
two different kinds of optimization problems must be dealt with, in an integrated
manner: the Containership Routing Problem with Deadlines and the Container
Stowage Problem. The integration of these two problems was named by [16] as
the Container Stowage and Ship Routing Problem (CSSRP).

This paper is structured as follows: Sect.2 consists of a detailed description of
the CSSRP; Sect. 3 is a review of the relevant literature; in Sect. 4 a mixed integer
programming model of CSSRP is presented; Sect. 5 is dedicated to the discussion
of results, considering some generated problem instances, and the analysis of the
model performance; to conclude in Sect. 6, some global remarks are presented.

! An overstow occurs when there are containers that must be moved because they block the access
to other containers that have to be unloaded.
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2 Container Stowage and Ship Routing Problem Description

The containerships are vessels (for now on always just referred to as vessels)
specifically constructed to transport containers. The cargo space of the vessel is
divided in bays positioned on deck and below the deck of the ship and separated
by a hatch cover [18]. Each bay (longitudinal sections) consists of a set of stacks
(transversal sections) and tiers (vertical sections of a stack) that are one container
wide (Fig. 1). The space related to one stack and tier is usually referred by a slot,
which is a single space where containers could be loaded. The vessels have capacity
constraints, related to weight, slot dimensions and number of slots. Although there
are different types of containers with different dimensions and characteristics, in
this work only the containers types considered in our problem are described. Each
container has a weight, a destination port and standard dimensions. Those standard
dimensions are measured in foot equivalent units and could be TEU (Twenty-foot
Equivalent Unit) or FEU (Forty-foot Equivalent Unit). In each slot one 40’ or two
20’ can be loaded. Another type of containers are those that need electric power
(refrigerated containers). These particular containers must be loaded in slots that
have a power plug. The maximum weight of each container is 24 tons for 20" and
40 tons for 40'.

In CSSRP we have an origin port with a set of vessels and containers. The vessels
must deliver the containers to other different ports within a given period of time
(deadlines), each port has a demand (set of containers) that must be satisfied. In the
end of the distribution process, the vessels must return to the port of origin with

HATCH No. 9 HATCH No. 8 HATCH No.7 HATCH No. 6 HATCH No. 5 HATCH No. 3 HATCH No. 1
BAY No. 33 BAY No. (30) 29 BAY No. 25 BAY No. 21 BAY No. 17 BAY No.9 BAY No. 1
BAY No. (34) 35 |]_ _II S — - el e S el e I I
H H BAY No. (26) 27 BAY No. (22) 23 BAY No. (18) 19 BAY No. (10) 11
] I | I I L1 1] o
L BAY No. 3
BAY No. (30) 31 —— e | e | e e
BE;EB 1] H ] [ 1] H ] BEHIB
L 1] Ll 1] Ll 1N Ll 11
!1— -1 L J L J L J 1 ] I :
H .| T T _.:._ _d._.l ..
i L U L L L]
HATCH No. 4 HATCH No. 2
W Treated for tainting cargo BAY No. 13 BAY No. 5
9 8 7 6 5 4 3 2 1 Hatch No. —_——— [ 1
34 30 26 2 18 14 10 06 02 40BayNo. BAY No. (14) 15 [ l
3533 3129 27 25 23 21 19 17 15 13 11 09 07 05 03 01 20 Bay No. L
— — — BAY No.7
H 1]
| J
H amas
H
— | ]

Fig. 1 General arrangement of cargo positioning (Wilson and Roach [18])
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some empty containers that are loaded in the vessel in each port in the free spaces.
This means that in each port the containers (demands) are unloaded and some empty
containers are loaded in the same (now empty) slots in order to be returned to the
origin port. Two major decisions must be considered: which ports should be visited
by each vessel and the visit sequence, and how to stow the containers on board
when considering all the placement requirements and LIFO strategy. The goals are
to determine the best visiting sequence of ports and to reduce shifting of containers,
while minimizing the total distribution cost.

As explained in [16] the short sea shipping main costs are related to the containers
handling in the ports. A vessel carrying cargo to several ports may require a large
number of shift operations. So the position of the containers on the vessels is crucial
to reduce the time spent on a port to unload them. Taking this into account the
vessel’s stowage plan influences port handling, because the containers are loaded
in vertical stacks located in different sections (bays) and the only way to access
them is through the top of the stack. There are different handling operations of the
containers:

1. Containers are loaded to be dispatched;

2. Containers are unloaded because they reached their destination;

3. Containers have to be shifted because they block the access to others that have to
be unloaded, known as overstow;

4. Containers have to be re-positioned to improve the overall stowage (vessel
stability) or to make the next port handling easier, which are known as re-handles

When a shift is performed, the container is always loaded in a different slot and
the stowage plan is normally rearranged. Shifting is a time consuming activity, hence
the arrangement of containers on board is crucial to achieve operational efficiency
and reduce the number of shifts. To reduce the number of shifts, the LIFO strategy
is considered when the routes are computed, which is part of the decision making
process.

Beyond the costs implicit on a movement, there are other costs that have to be
considered:

1. Costs related to ports, for example, taxes and utilization costs;

2. Costs related to vessels, for example the cost of a travel operation that depends
on the cost of the fuel/mile and the cost of vessel utilization which depends on
the crew member per day.

So, in order to reduce the global short sea distribution cost, an optimal route
is computed that minimizes the total distribution costs. The CSSRP has several
constraints that have to be considered. The constraints are divided in three groups:
related to routes/ports (C1); related to vessels/loading (C2); and those that are
related to both (C3).

(C1) The Routing constraints: Deadline constraint: deadline limits can be
modeled as linear vehicle routing constraint, where the arrival time of the vessel
to a port must be less than or equal to the smallest container deadline of the port
demand.
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(C2) The Loading and Placement constraints:

1. Vessel capacity constraints: maximal weight and number of containers. Weight
limits and the number of slots can be modeled as a linear knapsack constraints,
where the number of containers loaded and sum of its weights must be smaller
or equal to the vessel capacity;

2. Positioning constraints, related to container placement stability in vessels. Can
be modeled as a three-dimensional container loading problem constraints, where
containers could be loaded directly on the vessel floor (or on the hatch cover) or
above another container(s).

(C3) The Routing and Loading constraints: LIFO strategy, which is directly
related to the number of shifts operations and it is used to bind the routing and the
loading problem.

The challenge tackled in this study, is to develop a MIP model for the CSSRP that
can achieve optimal solutions in a reduced computational time and can be applied
to real problems, being the main contribution of the present work.

3 Literature Review

The CSSRP has received little attention in literature. All the approaches we were
able to find have only considered the ships’ container stowage problem (CSP),
sometimes considering predefined port visiting sequence. Nevertheless, as far as we
know the first published work that deals with the Container Stowage Problem (CSP)
and the well-known Vehicle Routing Problem (VRP) with deadlines in an integrated
way is from [14]. Later on, [16] proposes a MIP model that solves the CSSRP but
with some assumptions in order to simplify the model. These simplifications are
related to the containers. The distinction between containers (TEUs or FEUs and
refrigerated) are not considered. In this model a demand to a given port is addressed
like one big container with a defined dimension and a weight, that corresponds to the
summation of dimensions and weights of all container’s demand. So, the placement
matrix is simplified and reduced. In this present work and with the aim to improve
and adapt the model of [16] to real problems, these simplifications are not taken in
consideration.

Regarding the ship routing and scheduling, [10] present an optimization-based
solution approach for a real vessel’s planning problem which the authors char-
acterized as the Inventory Pickup and Delivery Problem with Time Windows
(IPDPTW). The mathematical programming model was solved using the Dantzig—
Wolfe decomposition, decomposing the original formulation into a sub-problem
for each port and each ship. The linear programming relaxation of the master
problem is solved by column generation, where the columns represent the vessel’s
routes or port’s visit sequences. In order to make the integer solution optimal,
the iterative solution process is embedded in a Branch-and-Bound search. Later
on, [1] presented an integrated MIP model to solve the vessel’s scheduling and
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cargo-routing problems simultaneously. In this work a greedy heuristic, a column
generation based algorithm and a two phase algorithm were developed. This
approach is able to generate good schedules for vessels. Later on [14] proposes a
genetic algorithm approach to improve the flexibility of short sea shipping and to
increase its competitiveness with other means of freight transport. A logistic model
was developed to manage a fleet of vessels which transport cargo to and from several
ports, bearing in mind the cargo loading and delivery deadlines. The results show
that the overall efficiency of short sea shipping can be improved.

In the last three decades unlike CSSRP, several works on CSP, also known as
the Master Bay Problem (MBP), were published. Considering the description of the
CSSRP in Sect. 2, is easily understandable that the CSP is a NP-hard problem [7].
This problem concerns the task of determining the arrangement of containers in a
vessel. It can be categorized as an assignment problem where a set of containers
with different characteristics and with a given port destination, must be assigned to
slots in a vessel aiming to minimize the transportation cost. Since the late 1980s
there were several works published about the CSP. To the best of our knowledge
[4] was the first author to solve the stack overstowage problem using a dynamic
programming algorithm. The goal was the arrangement policy and this approach
was widely adopted in later works. Avriel and Penn [5] proposed the whole columns
heuristic procedure to find the optimal solution for a stowage problem in a single
rectangular bay with only accessibility constraints. This heuristic requires solving
a ILP model after some pre-processing of the data. This method was proven to be
limited because of the large number of binary variables and constraints needed to
the formulation. Later on, [6] developed the suspensory heuristic procedure that
achieves very satisfactory results in a short computation time. Nonetheless, the
method proved to be very inflexible as far as the implementation of constraints
is concerned. Binary linear programming formulations for the CSP with stability
constraints, weight constraints, accessibility constraints, etc., can be found in
[2,9, 16] and [3]. In all of these works, the authors concluded that it is impossible to
obtain optimal solutions through ILP for these problems with additional constraints.
A very recent work that solves the vessel stowing planning, from [11] contradicts
this statement. They decompose the problem and present a constraint programing
and integer programming model for stowing a set of containers in a single bay
section and solve real life problems to optimality in a reasonable computational
time.

Several search methods such as Genetic Algorithms (GA), [12, 14], and tabu
search [19] have also been applied to CSP. The advantage of using heuristic and
meta-heuristic approaches to deal with this kind of problems has been proved
with these works. Wilson and Roach [18] and later on [19], presented a two-phase
method. In the first stage containers are grouped by their destination using a Branch-
and-Bound search algorithm, aiming to reduce overstows and hatch movements at
the next port-of-destination. After that, in the second stage, a tabu search algorithm
is applied to the generalized solution, trying to move the containers and assigning
them to a specific slot, in order to reduce re-handles, bearing in mind the stability
constraints. The first time that the CSP was compared and characterized like another
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well-known problem — the Bin Packing Problem — was by [17]. In this work the CSP
is regarded as a bidimensional packing problem, where the bays of the vessels are
regarded as bins, the number of slots in each bay is regarded as the capacity of the
bins, and containers with different characteristics are treated as items to be packed.
A two stage approach was developed: in the first stage two objective functions were
considered, one to minimize the number of bays packed by containers and the other
to minimize the number of overstows. Then the containers assigned to each bay
in the first stage are allocated to special slots in the second stage, applying a tabu
search algorithm. Constraints like weight, stability and overstows are considered.

4 The CSSRP Model Formulation

In this section a mixed integer programming model, aimed to guarantee the
generation of optimal solutions to the CSSRP is presented. A mathematical model
was developed to manage a fleet of vessels which must transport the container’s
demands to several ports, bearing in mind the cargo loading and delivery deadlines.
The data and variables of the model are described in the following subsections.

4.1 General Model Components

The CSSRP is defined on a direct graph G(P,A) where each port is represented by
a node and has a different geographical location. P = {1, ..., p} represents the set
of ports and A = {(i,j) : i,j € P,i # j} the set of arcs in G. The length of each arc
djj corresponds to the distance between port i and j in miles. For the distribution
process, a vessel’s fleet is available and represented by a set V = {1,...,v}. For
the sake of simplicity, it is assumed that the navigation speed (vely) is constant
throughout all the arcs.

There are costs associated with ports and vessel’s (Sect.2). uy is the visiting
cost (in euros) of port i by vessel k. This cost includes the tax and ports utilization
costs, like for example, tugs and cranes. Let us assume that the initial port for vessel
departure is port one and the visiting cost in this port is also considered. The costs
related to the vessels are:

* ¢y is the traveling operation cost of vessel k (per miles, in euros) which depends
on the cost of fuel per mile;

* ucy a vessel utilization cost (per day, in euros), which depends on the crew
member number.

Each vessel k is characterized by its weight capacity Wmax; and the vessels
capacity in number of containers Cmaxy.

In order to fulfill the capacity constraints of the vessels, another set of data related
to the containers, must be presented. First we consider that all the containers have
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standard dimensions (TEU and FEU). Second, we consider that there are two types
of containers: the normal containers and the refrigerated containers. The initial port
has a set of containers that must be delivered to other ports-of-destination. Each port-
of-destination has a demand td; = dt; + df; + drt; + drf;, composed of one or more
types of containers, where dt;, df;, drt;, drf; are the number of normal containers
of 20" and 40, refrigerated containers of 20" and 40, respectively. Also, for each
port the demands’ total weight given by w; = wt; + wf; + wrt; + wrf;, where,
wit;, wfi, wrt;, wrf; is the weight of all normal containers of 20" and 40, refrigerated
containers of 20’ and 40’, for port i, respectively.

Moreover, the demand of each port is characterized by a delivery deadline dI;. For
simplicity’s sake, all containers with the same destination have the same deadline
that will be equal to the smallest containers’ deadline for that port. In order to fulfill
this constraint an estimation of the service time ts;; of vessel k in port i must be
considered and tt;; it’s the required time that vessel k needs to transverse the arc
(i,)), in days, given by (1):

djj

_— 1
vely x 24 M

The last set of data is related to the vessel loading and slots. As mentioned in
Sect. 2 and due to the irregular configuration of the cargo space in a vessel, the bays
B = {l1,..., b} are defined by a matrix posMj.s of slots (Fig.2). The matrix has a
set of rows (tier or cell) C = {1, ..., c} and a set of columns (stacks) S = {1, ..., s}
Each cell of the matrix has assigned a value (0 or 1) that indicates if it is a vessels’
slot or not. These slots can load one container of 40" or up to two containers of 20'.
Another matrix refM;, is used only to indicate the slots with electrical power (slots
with value equal to 1), as mentioned before in Sect. 2, these slots are the only place
where the refrigerated containers can be loaded (Fig. 3).

These slots can be occupied by one 40" or two 20’ refrigerated containers,
because there are two plugs available in each slot. It should be noted that, the normal
containers can also be loaded in slots with plugs, as long as there aren’t sufficient
refrigerated containers to occupy them.

There is a cost related to the container’s movement (load or unload) represented
by mec, this cost is incurred for the handling operations of one single container.

Tiers

= = O O
= O O o
(=) | (=) | (=) (=)
(=) (=) (=) ]| (=]
o O oo
= O O o
= = O O

Stacks

Fig. 2 Placement matrix
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Fig. 3 Plugs location matrix

Fig. 4 Loading rule

4.2 Loading Rule

As in the three dimensional container loading problem (3D-CLP), there are several
different ways to place the containers in vessels. In the 3D-CLP the boxes could
be placed in the containers on the walls and layer building schemes, the boxes of
the same type are arranged in rows or columns to fill one side or the floor of the
container free space [8]. There are other ways to fill the containers, by homogeneous
blocks, where each block consists of a set of equal box types, single columns or
TOWS, etc.

In this problem, a loading rule was defined in order to reduce the overstows and
related shift movements. This rule fills the bays row by row (stacks) from left to
right and from bottom to top of each column (cells). Figure 4, shows the load rule
application for a vessel where A and B represents the set of containers to delivery
in port A and B.

This way the containers with a farthest destination are placed on the lowest part
of the stack. This rule is achieved due to the order in which the indexes in the
bays’ matrixes positioning (posMys) are defined (see, Sect.4.1) and the way in
which the model is developed (see C3 — Loading and placement constraints, from
15 to 25 in Sect. 4.3). However there are some exceptions. Those are related to the
refrigerated containers. In this case the containers are loaded in the existing plugged
slots disregarding the loading rule.
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4.3 The MIP Model

Several decisions and auxiliary variables were considered, some of them exclusively
related to the routing problem, others to the container stowage problem:

1. x; indicates if the vessel k traverses arc (i, j), or not.

2. s;; gives us the arrival time of vessel k to port i.

3. tkibess fribess Pibess Tfkives, these variables indicate if a type of container with
destination port i is placed in slot (b, c,s) of vessel k or not. Those variables
are related to the 20" containers fyipes, Fixipes vary between 0 and 2, because in
one slot it could be loaded up to two containers of 20’. On the other hand, the
variables related to 40’ containers fyipes, Ifkives vary between 0 and 1, because up
to one container of 40’ could be loaded in a slot.

Considering all the general model components, the objective function of the
model is defined as:

Min Z Z Z xjk (dijcx + up + tdjme) + Z UCKS 1k 2

k€V i€P jePj#i kev

The CSSRP model minimizes the total route cost (2). This objective function is
related to several constraints divided in three groups (as presented in Sect. 2):
C1 - Routing constraints:

> xp <1, Vi#leP.VkeV (3)
i€EP,iF#j
> x <1, Vi#leP.VkeV (4)
JEP j#i
Y xp—xu=0, VkeV.VjeP (5)
i€EP,i#]
Y xu <1l VkeVv (6)
jep
> xu <1 VijeP (7)
kev
sic + tsic + e < s+ M (1 —x5), VkeV.Vij#ieP (®)
sig <dl;, YkeV, VYieP )

This first set of constraints is related to the routing problem. Constraints (3), (4)
and (5) are the flow conservation constraints. Equations (3) and (4) ensures that
every port is visited only by one vessel. Equation (5) ensures that if a vessel arrives
to a port it also leaves the same port. Equation (6) ensures that if a vessel is used, it
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must begin its route in port one and Eq. (7) ensures that each port is visited only by
one vessel. Constraint C1 (Sect. 2), is achieved with Egs. (8) and (9). These ensure
the feasibility of time scheduling defining the vessel setup time and the deadline
constraint for serving a port, respectively. Constraint (8) guarantees that the port’s
service does not begin before the vessel’s arrival to the port. This constraint uses
a large multiplier (Big-M value) and in order to create valid inequalities we set
M = S, where S is the maximum time needed to visit all ports. Constraint (9),
guarantees that each container deadline is not violated.

C2 - The Loading and Placement constraints:

The following sets of constraints are related to positioning and loading con-
straints (C2, Sect. 2).

Z Z Xje X wj < Wmaxy, VkeV (10)
i€P jEP j#i
> xjoxtdy < Cmax,, VkeV (11)
i€P jeP j#i

D3N tuives <dti. VieP (12)

k€V beB ceC seS

Y 3N fubes < dfi. VieP (13)

keV beB ceC seS

Ttipes < drt;, YieP (14)
2222,

keV beB ceC seS

Zzzzrfkibcsfdrfi, VieP (15)

k€V beB ceC s€S

Equations (10) and (11) are related to the vessels capacity. The first one states
that the total demand on a route cannot exceed the vessel capacity in terms of weight
and the second one in terms of number of containers. Equations (12), (13), (14) and
(15), ensures that all demands are satisfied. Another set of constrains are related
to containers’ position on vessels. As mentioned before, there are two different
matrixes, one related to the possible loading positing in a vessel and the other that
indicates the slots with plugs.

tibes + 2 X posMipes <2, Vke V. Yie P,YbeB,Yce(C,Vse S (16)

fuives + posMipes < 1, VYkeV,YNie P,YbeB,Yce C,Vse S (17)
Ftiipes + refMipes <2, VkeV,Vie PYbe B,Vce(C,Vse S (18)
Ifiives + refMipes <1, VYke V,Yie P,Ybe B Yce C,VseS (19)

Z (txives + 2 X fuipes) <2, Vke V,VbeB,YceC,VseS (20)

i€P
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> (tiipes + 2 X tfeives) <2, Vk€V.Vbe B ¥ce C,Vs€S 1)
i€P
> " (tiibes + 2 X tfiives) <2, YKkEV.VbEB VceC,VseS (22)
i€EP
> (thives + rtiives) < 2. Yk €V.VbeB.¥ce C.V¥s€S (23)
i€P
> (tiibes + 2 X fuives) <2, Vke€V.VbeBVceC.VseS (24)
i€P
> " (fuives + tfaives) <1. Vk€V.VbeB.Vce C.Vs€S (25)
i€P
Z (rtkihcs + tkihcs + zﬁcibcx + ZPOSMkbcx) 2 (26)
i€EP
Z (rtkibas + kibas + 2fkibas + 2p0SMkbas) s (27)
i€P
VkeV,Vbe B, Vc,a<ce (C,VseS (28)

For this reason a set of constrains, from (16) to (28), are needed in order to
guarantee that the refrigerated containers are assigned only to slots with power
supply ((18) and (19)) and also that in each one of these slots only one 40" or
up to two 20’ refrigerated containers can be placed (21). On the other hand, the
normal containers can be placed in any slot in the vessel and each slot can have
one 40’ container or up to two 20’ containers ((16) and (17)). The other set of
constraints (20), (22), (23), (24) and (25) ensures that in any slot, it only could
be loaded one 40’ container or one or two 20" container, or it could be empty.
Those constraints together with constraint (28), ensures the containers placement
stability in vessels. These sets of constraints, give us the possible relative position
between adjacent slots in the same stack. It guaranties that all the containers are
fully supported. Nevertheless, it can never be placed any type of container in a slot
if the slot below is empty or not fully occupied (Fig. 5).

C3 - Routing and Loading constraints:

Z Xk X dj = Z Z Z (tijpes + figpes + Tligpes + 1figpes) Yk € V. Vj € P

i€P,i#] beB ceC seS
(29)

The two problems (route planning and container stowage) are integrated through
Eq. (29), that binds the container loading variables to the vehicle routing problem
variables, i.e., if a vessel visits a given port then the port’s demand must be placed
inside that vessel. To guarantee the LIFO strategy and to minimize the number of
shifts (Routing and Loading Constraint — C3, Sect. 2), the loading rule (Sect.4.2) is
applied.
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Fig. 5 Infeasible loading example

5 Computational Results

The main goal of this approach is to solve the short sea shipping distribution
problem using an exact method that can achieve an optimal solution in a reasonable
computational time. According to [11], a reasonable computation time for real
problem solving applications are 15 minutes. The main idea is to apply this model
to real-life problems taking in consideration that in the short sea distribution the
average number of ports per route is five [14]. With this perspective, available data
from real ships and ports was used. The problem instances and the model results are
described in the following sections.

5.1 Problem Instances

The problem instances were developed based on the available data of a short sea
distribution problem presented in [16], which considers two vessels and five ports
and a homogeneous demand distribution per port. This means that the number of
containers and weight for each port is similar and in some cases equal. These
problem instances that we from now on call basic problems, were also developed
taking into account [14] work. The scenarios utilized in [14] were collected in Porto
Maritimo de Viana do Castelo, Portugal. In our problem instances, two different
vessels were used. One of them also used in [16] and [14], the AXE that has a
capacity of 348 TEUs, has 8 bays defined as a 9*8 matrix (cells*stacks). The other
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vessel with a greater capacity that could achieve 5000 TEUs with a maximum bay
size under deck of 69 TEUs. This vessel has 32 bays defined as a 14*15 matrix.
Usually in short sea distribution, these kinds of vessels are not used, only the smaller
types of vessels with around 348 TEUs. But we wanted to test the model with bigger
vessels, in order to study its behavior when the number of slots is considerably
increased.

It was considered that the fuel consumption and the velocity of the vessels
are constant independently of the quantity and weight of the cargo. To prove the
robustness of the model larger instances were generated, increasing the number of
ports and using two vessels. In general, each port demand could not exceed the
maximum capacity of the vessel in order to avoid the split of a port’s demand
between vessels. Also as in [16] it is assumed that all port tariffs are the same
and some costs, such as insurance costs and others, were neglected. These cost
simplifications only imply changes in the objective function value. Then, in order
to study the model behavior another set of instances were developed. The idea is
to study the effect of the demand quantities and the containers deadline variation,
in terms of CPU time and optimal solutions. For this reason, in all instances, the
quantity of containers per type in each demand varies upon: at least 50 % for the
20" normal containers; at least 35 % for the 40’ normal containers; between 0 %
and 10 % for the 20’ refrigerator containers and between 0 % and 5 % for the 40/
refrigerator containers. The problem instances were solved by CPLEX software, and
the experiments were run on an Intel CORE i7 vPro 2.2 GHz with 8 Gb of memory.

5.2 Model Results and Sensibility Analyses

For each type of vessel, keeping the same demand distribution per port and the same
type of deadlines, like in the basic problems, 10 problem instances were tested.
The difference between those instances are the number of ports and the number of
vessels. The results achieved are presented in Table 1.

For the instances with one vessel, except for 15 ports, the model always achieved
an optimal solution. All the CPU times are very small, except for the 15 ports and
2 vessels problem instance (almost 2 hours). For the problems with one vessel,
increasing the number of ports results in a small increase in the computation time.
However there is a more significant rise in the computational time when, for the
same number of ports the number of vessels is increased. This was expected due to
the number of variables related to the containers’ positioning. In order to give an
idea of the model size relevance to the difficulty of solving some of the instances,
for the smallest and biggest problems the numbers of constraints and variables are
presented in Table 2:

As can be seen in Table 2, there is a large increase in the number of constraints
and variables in the instances of Panamax vessel with 15 ports and 2 vessels. This
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Table 1 Problem instances results

Vessels N. vessels N. ports Obj. function CPU (sec) GAP (%)
AXE 1 5 321,084 0.55 0
AXE 2 5 413,676 1.81 21.74
AXE 1 10 534,155 0.61 0
AXE 2 10 685,386 16.97 3.2
AXE 1 15 630,386 66.89 0.80
AXE 2 15 754,303 6400.08 27.58
Panamax 1 5 797,743 0.69 0
Panamax 2 5 1,034,385 37.13 14.85
Panamax 1 10 1,324,606 0.70 0
Panamax 2 10 1,513,677 754.42 3.94

Table 2 Problem size

N. constraints N. variables
AXE: 8 bays 5 ports, 2 vessels 24,770 17,345
AXE: 8 bays 15 ports, 2 vessels 60,060 52,325
Panamax: 36 bays 5 ports, 2 vessels 806,578 268,922
Panamax: 36 bays 15 ports, 2 vessels 2,420,468 807,352

implies an incredible increase of the computational time. This is the reason why
the results of Panamax vessel instances with 15 ports are not presented. Taking into
account the majority of the tested instances we can conclude that the integrality GAP
decreases with the increase of the number of ports. The opposite behavior happens
when varying the number of vessels, in particular for 15 ports. Nevertheless, and
according to the problems sizes (Table 2), with the results achieved it is proven that
this model can be applied to real problems of short sea distribution (characterized
by a reduced number of ports and small vessels), due to the small computational
time needed to achieve an optimal solution.

As mentioned before, a sensibility analyses was performed with different
instances. Our intent was to explore the effect of varying the quantities of the
demands and deadlines. So, in order to prove the robustness and behavior of the
model, three different scenarios only for 5 ports problem instances, were tested.

SA2: Varying the demand distribution per port: The behavior of the model
and the effect of varying the demand distribution per port was studied (Table 3). As
in [16], three types of demands’ distribution were considered: weak heterogeneous
and strong heterogeneous. As explained before, in the so called basic problems,
the load distribution is based on real data and the container’s number and weight
is very similar sometimes equal, between each port. On the other hand, a weak
heterogeneous distribution happens when there are more significant differences
between them. Furthermore, strong heterogeneous is when differences between the
demands of each port are very significant, for example: a demand from one port
could be composed by only 10 containers and for another by 1200.
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Table 3 Computational results varying the demands and deadlines

Vessels N. ports/vessels | Problem type Obj. function | CPU (sec) | GAP (%)
AXE 51 Basic Problem 321,084 0.55 0
AXE 5/1 Strong Het. Demands 321,079 0.51 0
AXE 51 Weakly Het. Demands 321,073 0.52 0
AXE 5/1 Narrow Deadlines 472,522 0.51 0
AXE 5/1 Wide Deadlines 272,077 0.58 0
AXE 52 Basic Problem 413,676 1.81 21.74
AXE 5/2 Strong Het. Demands 413,741 1.34 22.86
AXE 52 Weakly Het. Demands 413,671 1.03 0
AXE 5/2 Narrow Deadlines 413,676 1.72 0
AXE 5/2 Wide Deadlines 413,676 2.68 14.55
Panamax | 5/1 Basic Problem 797,743 0.69 0
Panamax | 5/1 Strong Het. Demands 797,743 0.60 0
Panamax | 5/1 Weakly Het. Demands 797,689 1.34 0
Panamax | 5/1 Narrow Deadlines 1,171,162 0.67 0
Panamax | 5/1 Wide Deadlines 676,899 1.14 0
Panamax | 5/2 Basic Problem 1,034,385 37.13 14.85
Panamax | 5/2 Strong Het. Demands 965,051 32.54 30.39
Panamax | 5/2 Weakly Het. Demands | 1,033,867 28.63 34.83
Panamax | 5/2 Narrow Deadlines 1,034,385 53.52 0
Panamax | 5/2 Wide Deadlines 1,034,385 85.50 17.63

SA3: Varying the deadlines: Another test was made in order to see the behavior
of the model according to different types of deadlines. In this case, narrow and
wide deadlines were tested using the basic problems load distribution (Table 3). A
deadline is called narrow, when it is almost the same amount of time required to
traverse the arc. On the other hand, when a deadline is called wide it is because
those values are large enough that it makes it so (for some or for the majority of the
ports) there are no deadline constraints.

These two data types could be critical because, for example, if the demand
to a given port is equal to or very close to the vessel capacity, that vessel will
visit only that port, making the problem potentially easier to solve due to the
decrease in the number of possible route/loading combinations. The effects on
the CPU time and optimal solutions, on varying the demands distribution and
deadlines are presented in Table 3. The results obtained when the optimal solution
is achieved, problem instances with one vessel, denotes a relationship between
the type of demand and the computational time needed to solve the problem. For
strong heterogeneous distribution the computational time is always smaller than
considering the other two load distributions. Moreover, for problems with two
vessels, the highest computational time is always associated with basic problems
distribution. Related to the deadlines variation and for the problem instances with
one vessel, the optimal solution was always achieved. In these cases and for wide
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deadlines the computational time is always longer than the computational time of the
basic problems. But decreasing the size of the deadlines (narrow deadlines) it could
be seen that the computational time decreases and in a significant way compared to
the wide deadlines. We think that this fact can be explained with the same arguments
presented above for the demands variation. Namely, if a port has a deadline that is
equal to the travel time that the vessels needs to get there, so this port must be the
next port to visit independently if it is the farthest port or not. On the other hand,
with wide deadlines and in the problem instance with one AXE vessel, it could be
seen that the optimal solution was significantly reduced. This could be explained
due to the fact of the size of deadlines be such as, that this constraint no longer
exists and the route is the shortest one. Another curiosity is related to the problem
instance with two Panamax vessels. In this case, unlike previously, the model only
achieved the optimal solution with the narrow deadlines.

6 Conclusions

In this work a Mixed Integer Programing model to solve the short sea distribution
problem named as container stowage and ship routing problem (CSSRP), was
presented. This problem can be approached like the integration of two well-known
NP-Hard problems: the Vehicle Routing Problem and the 3-Dimensional Loading
Problem. However in CSSRP the demands have deadlines and the containers
placement locations are fixed. Besides, in CSSRP it must be decided where to
load the demands to a given port in order to reduce the unloading time and the
number of shifts movements. The CSSRP is also a NP-hard problem. Despite the
complexity of the problem and of the presented model, the results obtained for the
set of problems tested prove that this model can be applied to solve real life short
sea shipping problems. It was