
Chapter 8

Continuous Time: Filtering Algorithms

In this chapter, we describe various algorithms for determination of the filtering distribution
μt in continuous time. We begin in Section 8.1 with the Kalman–Bucy filter, which provides
an exact algorithm for linear problems. Since the filtering distribution is Gaussian in this case,
the distribution is entirely characterized by the mean and covariance; the algorithm comprises
a system of differential equations for the mean and the covariance. In Section 8.2, we discuss
the approximate Gaussian methods introduced in Section 4.2 in the discrete-time setting.
Similarly to the case of the Kalman–Bucy filter, we again obtain a differential equation for the
mean; for the extended Kalman (ExKF) filter, we also obtain an equation for the covariance,
and for the ensemble Kalman filter (EnKF), we have a system of differential equations coupled
through their empirical mean and covariance. In Section 8.3, we discuss how the particle filter
methodology introduced in Section 4.3 extends to the continuous case, while in Section 8.4,
we study the long-time behavior of some of the filtering algorithms discussed in the previous
sections. Finally, in Section 8.5, we present some numerical illustrations and conclude with
bibliographic notes and exercises in Sections 8.6 and 8.7 respectively.

It is helpful to recall the form of the continuous-time data-assimilation problem. The signal
is governed by the SDE from (6.4):

dv

dt
= f(v) +

√
Σ0

dBv

dt
,

v(0) ∼ N(m0, C0);

the data is generated by the SDE (6.5):

dz

dt
= h(v) +

√
Γ0

dBz

dt
,

z(0) = 0.

We let zt denote {z(s)}s∈[0,t], the data accumulated up to time t, and we are interested in
the probability measure μt governing v(t)|zt, and in particular, in updating this measure
sequentially in time. This is the filtering problem. In principle, the Kushner–Stratonovich
and Zakai equations provide the solution to the filtering problem, but in general, they do
not have closed-form solutions. Thus algorithms are required to approximate their solution.
The filtering algorithms that we describe in the remainder of the section attempt to do this.
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We highlight here the fact that the Kushner–Stratonovich and Zakai equations are stochastic
PDEs in spatial dimension n, the size of the state space. Thus their solution poses formidable
challenges for high-dimensional problems.

8.1 Linear Gaussian Problems: The Kalman–Bucy Filter

Although the Kushner–Stratonovich and Zakai equations do not, in general, have closed-
form solutions, they do have such solutions for linear models; this is entirely analogous to
the discrete-time setting and stems from the fact that the desired filtering distribution is
Gaussian. The resulting algorithm for the mean and covariance is the Kalman–Bucy filter,
which we now describe.

Consider equations (6.4) and (6.5), where f(v) = Lv, h(v) = Hv, for L ∈ R
n×n, H ∈ R

m×n

of full rank m. Then (6.4) and (6.5) become

dv

dt
= Lv +

√
Σ0

dBv

dt
, v(0) ∼ N(m0, C0), (8.3a)

dz

dt
= Hv +

√
Γ0

dBw

dt
, z(0) = 0. (8.3b)

Theorem 8.1. The filtering distribution μt for v(t)|zt governed by (8.3) is Gaussian with
mean m and covariance C solving the Kalman–Bucy filter

dm

dt
= Lm+ CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= LC + CLT +Σ0 − CHTΓ−1

0 HC, C(0) = C0.

Sketch Proof We give references to the rigorous derivation of Kalman–Bucy filtering in
the bibliographic notes at the end of the chapter. Here we derive the filter by a formal
discretization argument, with no proof, since this provides a useful way to understand the
structure of the filter. In particular, we consider the discrete-time Kalman filter of Section 4.1,
and the prediction and analysis steps given by (4.4), (4.5) and (4.7), (4.8) respectively, with
M = I+τL and the other scalings detailed in (6.1). The prediction steps (4.4) and (4.5) give,
to leading order in τ ,

m̂j+1 = mj + τLmj , (8.4)

Ĉj+1 = (I + τL)Cj(I + τL)T + τΣ0

= Cj + τ(LCj + CjL
T +Σ0) +O(τ2). (8.5)

Now using the analysis step from Corollary 4.2, again to leading order and substituting (8.4)
and (8.5), we obtain

dj+1 = (yj+1 −Hmj) +O(τ),

Sj+1 =
1

τ
Γ−1
0 +O(1),

Kj+1 = τCjH
TΓ−1

0 +O(τ2),

mj+1 = mj + τLmj + τCjH
TΓ−1

0 (yj+1 −Hmj),

Cj+1 = Cj + τ(LCj + CjL
T +Σ0)− τCjH

TΓ−1
0 HCj +O(τ2).
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Recalling that yj+1 = τ−1(zj+1 − zj) and passing to the limit gives

dm

dt
= Lm+ CHTΓ0

(
dz

dt
−Hm

)
,

dC

dt
= LC + CLT +Σ0 − CHTΓ−1

0 HC,

which concludes the proof sketch. �

8.2 Approximate Gaussian Filters

Here we discuss the family of approximate Gaussian filtersintroduced in Section 4.2, general-
izing to continuous time. Our aim is to ascertain the form of continuous-time limits under the
scalings detailed in (6.1). Our aim is not to prove theorems about the limiting process, but
rather to give an understanding of what the natural continuous-time limiting processes are.
We thus use the environment “result” rather than “theorem” to highlight the fact that the
forms of the continuous-time limits are derived only formally and not, currently, rigorously
proved in the published literature; however, it would not be difficult to make rigorous proofs
based on these results.

The starting point of our investigations is equation (4.13), which is based on the assumption

that P(uj+1|Yj) = N(Ψ(mj), Ĉj+1). In addition to the expression for the update of mj (4.13a)
using Bayes’s, rule one sees that the new covariance Cj+1 satisfies

Cj+1 = (I −Kj+1H)Ĉj+1. (8.6)

We will now proceed in a similar fashion as in the case of the Kalman–Bucy filter: we derive
a differential equation for the time evolution of the mean and covariance of the different
approximate Gaussian filters studied in Section 4.2. The resulting Gaussian measures should
be viewed as attempts to approximate the true filtering distribution μt.

8.2.1. 3DVAR

Result 8.2. Consider the filtering distribution for the 3DVAR algorithm (4.14) arising in
the case of deterministic dynamics (Σ = 0) and linear observations(h(v) = Hv). Under the
scalings detailed in (6.1), and in the continuous-time limit (τ → 0), the corresponding limiting
filtering distribution is Gaussian with mean m and covariance C satisfying

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0, (8.7a)

dC

dt
= 0, C(0) = Ĉ. (8.7b)

Derivation We begin our derivation by observing that (4.13) implies that

mj+1 = Ψ(mj) + Ĉj+1H
T (Γ +HĈj+1H

T )−1
(
yj+1 −HΨ(mj)

)
.
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We now apply the scalings appropriate for a continuous-time limit and in particular set

Ψ(m) = m+ τf(m) +O(τ2).

In addition, for the case of 3DVAR, we have Ĉj+1 = Ĉ for all j, which implies that

Ĉj+1 − Ĉj = 0.

Finally, using the scalings from equation (6.1) and recalling that yj+1 = τ−1(zj+1 − zj), we
have that

mj+1 −mj

τ
= f(mj) + Ĉj+1H

T (Γ0 + τHĈj+1H
T )−1

(
zj+1 − zj

τ
−Hmj

)
+O(τ),

Ĉj+1 − Ĉj

τ
= 0.

By taking the limit τ → 0, we obtain

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= 0, C(0) = Ĉ,

where we have identified C0 with Ĉ. This completes our derivation. �

8.2.2. Extended Kalman Filter

The 3DVAR algorithm imposes a fixed covariance on the model in the prediction step of the
algorithm, implying also a fixed covariance in the analysis step. The extended Kalman filter
attempts to improve on this by propagating the covariance in the prediction step according
to the linearized dynamics. In the continuous-time limit, we obtain the following.

Result 8.3. Consider the filtering distribution for the extended Kalman Filter from Sec-
tion 4.2.2 in the case of stochastic dynamics and linear observations (h(v) = Hv). Under
the scalings detailed in (6.1) and in the continuous-time limit (τ → 0), the corresponding
limiting filtering distribution is Gaussian with mean m and covariance C satisfying

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= Df(m)C + C(Df(m))T +Σ0 − CHTΓ−1

0 HC, C(0) = C0.

Derivation From the formulas given in Section 4.2.2, we have

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T +Σ,
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and using (4.13) and (8.6),

mj+1 = Ψ(mj) + Ĉj+1H
T (Γ +HĈj+1H

T )−1(yj+1 −HΨ(mj)),

Ĉj+1 = DΨ(mj)(I −KjH)ĈjDΨ(mj)
T +Σ.

To deduce the continuous-time limit, we set Ψ(m) = m + τf(m) + O(τ2) and impose (6.1).
This yields

DΨ(mj) = I + τDf(mj) +O(τ2),

(I −KjH) = I − τĈjH
T (Γ0 + τHĈjH

T )−1H +O(τ2).

Combining the two previous sets of equations and recalling that yn+1 = τ−1(zn+1 − zn), we
obtain

mj+1 −mj

τ
= f(mj) + Ĉj+1H

T (Γ0 + τHĈj+1H
T )−1

(
zj+1 − zj

τ
−Hmj

)
+O(τ),

Ĉj+1 − Ĉj

τ
= Df(mj)Ĉj + ĈjDf(mj)

T − ĈjH
T (Γ0 + τHĈjH

T )−1HĈj +Σ0 +O(τ).

By taking the limit τ → 0, we obtain

dm

dt
= f(m) + CHTΓ−1

0

(
dz

dt
−Hm

)
, m(0) = m0,

dC

dt
= Df(m)C + C(Df(m))T +Σ0 − CHTΓ−1

0 HC, C(0) = C0,

as required. �

8.2.3. Ensemble Kalman Filter

As already discussed in Chapter 4, the ensemble Kalman filter differs from the extended
Kalman filter and 3DVAR in that instead of using an appropriate minimization procedure to
update a single estimate of the mean, a minimization principle is used to generate an ensemble
of particles all of which satisfy the model/data compromise inherent in the minimization;
these are coupled through the empirical covariance used to weight the minimization. Thus in
studying the EnKF in continuous time, it is natural to derive an SDE for each of the particles,
instead of deriving a single equation for the mean and the covariance as in Results 8.2 and 8.3.
In deriving the continuous-time limit for each of the particles, it will be useful to rewrite the
ensemble Kalman filter from Section 4.2.3 using the family of minimization principles Ifilter,nn
given by (4.15), with n = 1, . . . , N indexing the particles. Using such an interpretation leads
to the following equation:

Ĉ−1
j+1(I + Ĉj+1H

TΓ−1H)v
(n)
j+1 = Ĉ−1

j+1v̂
(n)
j+1 +HTΓ−1y

(n)
j+1,

with Ĉj+1 the predictive covariance found from the properties of the predictive ensemble; in

this derivation we simply assume that Ĉj+1 is invertible and return to address this issue after

the derivation. Applying Ĉj+1 allows us to rewrite the analysis step of the ensemble Kalman
Filter in the following form:
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(I + Ĉj+1H
TΓ−1H)v

(n)
j+1 = v̂

(n)
j+1 + Ĉj+1H

TΓ−1y
(n)
j+1, (8.8a)

y
(n)
j+1 = yj+1 + η

(n)
j+1, n = 1, · · · , N, (8.8b)

where v̂
(n)
j+1, m̂j+1, and Ĉj+1 are given by the prediction step detailed in Section 4.2.3. We

now have the following result:

Result 8.4. Consider the ensemble Kalman Filter from Section 4.2.3 in the case of stochastic
dynamics and linear observations (h(v) = Hv). Under the scalings detailed in (6.1) and in the
continuous-time limit (τ → 0), the particles evolve according to the following set of coupled
SDEs, for n = 1, · · · , N :

dv(n)

dt
= f(v(n)) + C(v)HTΓ−1

0

(dz(n)

dt
−Hv(n)

)
+Σ

1/2
0 dBv, (8.9a)

dz(n)

dt
= Hv + Γ

1/2
0

(dW (n)

dt
+

dBz

dt

)
, (8.9b)

where W (1), · · · ,W (N), Bz, Bu are mutually independent standard Wiener processes. The
mean m(v) and covariance C(v) are defined empirically from the particles v = {v(n)}Nn=1

as follows:

m(v) =
1

N

N∑

n=1

v(n), (8.10a)

C(v) =
1

N − 1

N∑

n=1

(v(n) −m)(v(n) −m)T . (8.10b)

Derivation We begin our derivation by noting the formulation of the analysis step given
in (8.8) and employing the definition of the particle prediction step to give

v
(n)
j+1 − v

(n)
j = v̂

(n)
j+1 − v

(n)
j − Ĉj+1H

TΓ−1Hv
(n)
j+1 + Ĉj+1H

TΓ−1y
(n)
j+1

= Ψ(v
(n)
j+1)− v

(n)
j − Ĉj+1H

TΓ−1Hv
(n)
j+1 + Ĉj+1H

TΓ−1y
(n)
j+1 + ξ

(n)
j .

Now using the scalings from equation (6.1), we have that

Ψ(v) = v + τf(v) +O(τ2), ξ
(n)
j =

√
τΣ

1/2
0 ξ̂

(n)
j ,

and thus we obtain

v
(n)
j+1 − v

(n)
j = τ(f(v

(n)
j )− Ĉj+1H

TΓ−1
0 Hv

(n)
j+1) + τĈj+1H

TΓ−1
0 y

(n)
j+1 +

√
τΣ

1/2
0 ξ̂

(n)
j+1 +O(τ2),

where ξ̂
(n)
j is N(0, I) distributed. Now using the rescaling y

(n)
j+1 = τ−1(z

(n)
j+1 − z

(n)
j ), we have

the coupled difference equations

v
(n)
j+1 − v

(n)
j = τ(f(v

(n)
j )− Ĉj+1H

TΓ−1
0 Hv

(n)
j+1) + Ĉj+1H

TΓ−1
0 (z

(n)
j+1 − z

(n)
j ) +

√
τΣ

1/2
0 ξ̂

(n)
j+1,

(8.11)

z
(n)
j+1 − z

(n)
j = τHvj+1 +

√
τΓ

1/2
0 (η̂

(n)
j+1 + η̂j+1), (8.12)
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where ξ̂
(n)
j+1, η̂

(n)
j+1, and ξ̂j+1 are independent N(0, I)-distributed random variables. In addition,

we have

m̂j+1 =
1

N

N∑

n=1

v
(n)
j+1 +O(τ),

so in the limit of τ → 0, we have that (m̂j+1, Ĉj+1) → (m,C) given by equation (8.10).
Furthermore, we see that the coupled difference equations given by (8.11) form a mixed
implicit–explicit Euler–Maruyama-type scheme for the system of SDEs (8.9), and thus in the
limit of τ → 0, we obtain the desired equations. �

Recall that in the preceding derivation, we made the assumption that Ĉj+1 is invertible.
However, this might not be the case; indeed, it cannot be the case if the dimension of the state
space exceeds the number of particles. However, one can still obtain the key equations (8.8)
in this case, by applying the following lemma to the analysis formula in Section 4.2.3.

Lemma 8.5. Assume that Γ is invertible. Then

(I −Kj+1H)−1 = (I + Ĉj+1H
TΓ−1H)

and

(I −Kj+1H)−1Kj+1 = Ĉj+1H
TΓ−1.

Proof We begin the proof by noting that using the Woodbury matrix identity from
Lemma 4.4, we have, for

Sj+1 := (Γ +HĈj+1H
T ),

that
S−1
j+1 = Γ−1 − Γ−1H(Ĉ−1

j+1 +HTΓ−1H)−1HTΓ−1,

where we note that Sj+1 is invertible because Γ is. Assume that Cj+1 is invertible; we will

relax this assumption below. Thus Z := I −Kj+1H = I − Ĉj+1H
TS−1

j+1H can be written as

Z = I − Ĉj+1H
TΓ−1H − Ĉj+1H

TΓ−1H(Ĉ−1
j+1 +HTΓ−1H)−1HTΓ−1H

= I − Ĉj+1B − Ĉj+1B(Ĉ−1
j+1 +B)−1B

= I − Ĉj+1B(I − (Ĉ−1
j+1 +B)−1B)

= I − Ĉj+1B(Ĉ−1
j+1 +B)−1Ĉ−1

j+1,

where B = HTΓ−1H. Manipulating this expression further, we see that

Z(I + Ĉj+1B) = I.

This identity may be derived even if Cj+1 is not invertible simply by adding εI to Cj+1 in
the preceding derivation and then letting ε → 0. The preceding identity implies that

(I −Kj+1H)−1 = (I + Ĉj+1B) = (I + Ĉj+1H
TΓ−1H),

which concludes the proof for our first equation. Now using this equation, it is easy to see
that

Kj+1 = H−1 − (I + Ĉj+1H
TΓ−1H)−1H−1
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and thus

(I −Kj+1H)Kj+1 = (I + Ĉj+1H
TΓ−1H)H−1 −H−1 = Ĉj+1H

TΓ−1,

which concludes the proof for our second equation. �

8.3 The Particle Filter

The particle filter in continuous time faces many of the same issues arising in discrete time,
as outlined in Section 4.3. In the basic version of the method, analogous to the bootstrap
filter of Section 4.3.2, the particles evolve in continuous time according to the SDE (6.4). The
particles are weighted according to (6.31), which reflects the change of measure required to
take the solution of the SDE into the solution of the SDE conditioned on the observations
given by (6.5). As in discrete time, it is helpful to resample from the resulting distribution in
order to obtain an approximation with significant weight near the data. References to detailed
literature on the subject are given in Section 8.6.

8.4 Large-Time Behavior of Filters

Here we provide some simple examples that illustrate issues relating to the large-time behavior
of filters. The discussion from the preamble of Section 4.4 also applies here in continuous
time. In particular, the approximate Gaussian filters do not perform well as measured by
the Bayesian quality assessment test of Section 2.7 but may perform well as measured by
the signal estimation quality assessment test. Also, similarly to the situation in discrete time,
the Kalman–Bucy filter for linear problems and the particle filter give accurate approximations
of the true posterior distribution, in the latter case in the large-particle limit. The purpose of
this section is to illustrate these issues.

8.4.1. The Kalman–Bucy Filter in One Dimension

We consider the case of one-dimensional deterministic linear dynamics (8.3) with Σ0 = 0 and

f(v) = �v, h(v) = v,

while we will also assume that
Γ0 = γ2, C0 = c0.

Thus the filter aims to reconstruct signal v(t) solving the equation

dv

dt
= �v

from knowledge of {z(s)}0≤s≤t, where

z(s) =

∫ s

0

v(τ)dτ + γBw(s).
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Even though the variance of Bw(t) grows linearly with t, we will show that the variance of
the Kalman–Bucy filter is asymptotically zero, for � ≤ 0, or of order O(γ2) otherwise.

With these definitions, the Kalman–Bucy filter of Theorem 8.1 becomes

dm

dt
= �m+ γ−2c

(
dz

dt
−m

)
, m(0) = m0,

dc

dt
= 2�c− γ−2c2, c(0) = c0.

Here m denotes the mean of the filter, and c, the variance.
We notice that the equation for the variance evolves independently of that for the mean,

and independently of the data. Furthermore, if we define the precision p to be the inverse of
c, then straightforward calculation reveals that p solves the linear equation

dp

dt
= −2�p+ γ−2.

For � �= 0, this has exact solution

p(t) = exp(−2�t)
1

c0
+
(
1− exp(−2�t)

) 1

2�γ2
,

while for � = 0, we see that

p(t) =
1

c0
+

t

γ2
.

Thus for � ≤ 0, we have p(t) → ∞ as t → ∞. and the asymptotic variance is zero, while
for � > 0, the asymptotic variance is 2�γ2. In particular, if the observational variance γ2 is
small, then the asymptotic variance of the Kalman filter is O(γ2), even when � > 0, so that
the dynamics is unstable. The key point to observe, then, is that asymptotic uncertainty is
small, independently of whether the underlying deterministic dynamics is stable. In words,
observation can stabilize uncertainty growth in unstable systems. We study the behavior of
the error in the mean in the exercises at the end of this chapter.

8.4.2. The 3DVAR Filter

Recall the 3DVAR continuous filtering algorithm (8.7). We will study the behavior of this
algorithm with data z := {z†(t)}t∈[0,∞) constructed as follows. We let {v†(t)}t∈[0,∞) denote
the exact solution of the equations (6.4) in the case Σ0 = 0 :

dv†

dt
= f(v†), v†(0) = v†0. (8.13)

We assume that the data z† is a single realization of the SDE (6.4) with v = v† and in the
case h(·) = H·:

dz†

dt
= Hv† +

√
Γ0

dBz

dt
, z†(0) = 0. (8.14)
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In order to study the continuous-time 3DVAR filter, we eliminate z = z† in equation (8.7)
using (8.14) to obtain

dm

dt
= f(m) + CHTΓ−1

0 H(v† −m) + CHTΓ
− 1

2
0

dBz

dt
. (8.15)

In the following theorem, expectation is with respect to the Brownian motion Bz entering the
data equation (8.14).

Theorem 8.6. Let m solve equation (8.15), let v† solve equation (8.13), assume that f is
globally Lipschitz with constant L and that there exist λ > 0 and ε > 0 such that

〈CHTΓ−1
0 Ha, a〉 ≥ (L+

1

2
λ)|a|2, ∀a ∈ R

n,

Tr(Γ
− 1

2
0 HC2HTΓ

− 1
2

0 ) ≤ ε2.

Then the error in the 3DVAR filter satisfies

E|m(t)− v(t)|2 ≤ e−λt|m(0)− v(0)|2 + ε2

λ
(1− e−λt). (8.16)

Thus

limsupt→∞E|m(t)− v(t)|2 ≤ ε2

λ
. (8.17)

Proof Define δ = m− v† and subtract equation (8.13) from equation(8.15) and apply the Itô
formula to |δ|2 to obtain

1

2
d|δ|2 + 〈CHTΓ−1

0 Hδ, δ〉dt ≤ 〈f(m)− f(v†), δ〉+ 〈δ, CHTΓ
− 1

2
0 dBz〉+ 1

2
Tr

(
Γ

− 1
2

0 HC2HTΓ
− 1

2
0

)
dt.

(8.18)

Using the Lipschitz property of f and the definition of λ and ε, and taking expectations, gives

dE|δ|2
dt

≤ −λE|δ|2 + ε2. (8.19)

Use of the Gronwall inequality gives the desired result. �
It is interesting to consider the asymptotic behavior of this 3DVAR filter in the linear

Gaussian case from the preceding subsection. We thus assume that

f(v) = �v, h(v) = v,

and that
Γ0 = γ2, C = η−1γ2I.

We assume that γ2 
 1 and that � > 0. Our scaling of C proportional to γ2 is motivated
by the fact that the Kalman–Bucy filter has asymptotic variance on this scale. Theorem 8.6
applies, provided η is chosen to satisfy

η ≤ (�+
1

2
λ)−1,

and then (8.17) shows that the mean-square error in the filter is bounded by η−2λ−1γ2. Thus
the asymptotic error of the 3DVAR filter scales in the same way as the error Kalman filter
(which we study in the exercises) if the covariance C is tuned appropriately.
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8.5 Illustrations

In this section, the output of the various filtering algorithms will be presented. The text is
minimal, since the filters and their respective behaviors relative to one another are analogous
to their discrete-time counterparts as detailed in Chapter 4.

Figure 8.1 shows application of the Kalman Bucy filter to equation (6.21), in dimension
n = 2, with

Λ =

(−1 1
−1 −1

)
.

The observation operator is H = (1, 0)T , so that the second component is unobserved.
Figure 8.1a shows that the unobserved component is accurately recovered in the long-time
limit, despite the fact that the filter is initialized far from the truth. Figures 8.1b and 8.1c
show the asymptotic behavior of the covariance and the square of the Euclidean error between
the mean and the true signal underlying the data; both are shown pathwise and in running
average form.

Fig. 8.1: Kalman–Bucy filter for Example 6.4 with Λ given by (8.20) with γ = σ = 1, as given
in Section 8.20.
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The next figures all concern the application of approximate Gaussian filters, together with
the particle filter, to Example 6.6. Figures 8.2 and 8.3 concern application of the 3DVAR
filter for (γ, σ, η) = (0.3, 0.3, 0.1) and (0.1, 0.3, 0.1) respectively, where γ2 and σ2 are the
variance of the observations and the model dynamics respectively, and C = η−1γ2 is the fixed
variance defining the filter. Notice the decrease the error from Figure 8.2 to 8.3 resulting from
the decrease in γ. This is consistent with Theorem 8.6. Similar behavior is observed for the
other filters, as shown in Figures 8.4–8.8, where the extended Kalman filter, two forms of
the ensemble Kalman filter, and two forms of the particle filter are displayed. The extended
Kalman filter has, arguably, the best performance; but it is a method that does not scale well
to high-dimensional problems.

Remark 8.7. It is important to remark that stability can be a significant issue, especially for
filters in continuous time when complex nonlinear models are considered. As examples of this,
consider the continuous-time extended Kalman filter applied to the chaotic dynamical systems
Lorenz ’63 (6.23) and Lorenz ’96 (6.24), as presented in Section 6.2. In both cases, whether
instability is observed depends on the observation operator, for example. Figures 8.9 and 8.10
show the second component (left) and mean-square error (right) of the Lorenz ’63 model (6.23)
with σ = 2 and γ = 0.2. In both cases, we make a scalar linear observation h(v) = Hv. The
difference is that in Figure 8.9, the observation operator is given by H = (1, 0, 0), while in
Figure 8.10, the observation operator is given by H = (0, 0, 1). Figures 8.11 and 8.12 show
the second component (left) and mean-square error (right) of the Lorenz ’96 model (6.24)
with σ = 1 and γ = 0.1. The difference is that in Figure 8.11, we observe two out of every
three degrees of freedom, again linearly, while in Figure 8.12, we observe one out of every
three degrees of freedom, also linearly. Note that for both Lorenz models, for observations that
are insufficient to keep the filter close to the truth, large excursions in the error can occur.
These large excursions can easily induce numerical instabilities and destabilize the algorithms
unless care is taken in the choice of integrator and time step. ♠

8.6 Bibliographic Notes

• In Section 8.1, we consider the continuous-time limit of the Kalman filter. This is the
celebrated Kalman–Bucy filter, which was published in [80], the year after Kalman’s orig-
inal paper in the discrete-time setting [79], as described in Section 4.1. The Kalman–Bucy
smoother concerns the related continuous-time smoothing problem; it may be solved by
a continuous-time analogue of LU factorization, in which the first triangular sweep corre-
sponds to application of the Kalman–Bucy filter—see [64] and the discussion at the end of
the previous chapter. Theorem 8.1 can also be derived from the Kushner–Stratonovich or
Zakai equation equation of Theorem 6.16 by computing moments.

• Section 8.2 concerns approximate Gaussian filters and, more specifically, filters that are
derived as continuous-time limits of the discrete-time approximate Gaussian filters of Sec-
tion 4.2. The idea of deriving continuous-time limits of the 3DVAR, extended, and ensemble
Kalman filters was developed systemically in the papers [21, 82]. Furthermore, those pa-
pers, along with the paper [88], contain analyses of the large-time stability and accuracy
of the filters, with results similar in spirit to Theorem 4.10.

• Section 8.3 concerns the continuous-time particle filter. This methodology for solving
continuous-time filtering problems arising in SDEs can be viewed as constituting a particle
method for solution of the underlying stochastic PDE (Zakai or Kushner–Stratonovich)
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Fig. 8.2: Continuous 3DVAR filter for double-well Example 6.5 with γ = σ = 0.3, as given in
Section 9.3.2.

introduced in Section 6.4 and governing the probability density of v|zt. The method is
analyzed in detail in [9] and in [45]; these two books also provide copious references to the
literature on this subject.

• Section 8.4 concerns stability of filters. In Section 8.4.1, we study the one-dimensional
Kalman filter, while Section 8.4.2 concerns the 3DVAR filter. The example and theorem,
respectively, covered in these two subsections are entirely analogous to those in discrete
time in Section 4.4.
The example from Section 8.4.1 concerning the Kalman–Bucy filter is very specific to one-
dimensional deterministic dynamics. However, the general setting is thoroughly studied, as
in discrete time, and the reader is directed to the book [86], concerning Riccati equations,
for details. Theorem 8.6 is a simplified version of a result first proved in the context
of the Navier–Stokes equation in [21], and then for the Lorenz ’63 model in [88]. The
first stability analysis in continuous time concerned noise-free data and a synchronization
filter in which the observed variables are simply inserted into the governing equations
for the unobserved variables, giving rise to a nonautonomous dynamical system for the
unobserved variables [116]; this analysis forms the backbone of the analyses of the 3DVAR
filter for the Navier–Stokes and Lorenz ’63 models. The analysis was recently extended
to the Lorenz ’96 model in [87]. The synchronization filter is discussed in discrete time in
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Fig. 8.3: Continuous 3DVAR filter for double well Example 6.5 with γ = 0.1, σ = 0.3, as given
in Section 9.3.2.

Section 4.4.3. The continuous-time 3DVAR filter acts as a control system, forcing the filter
toward the data. In the paper [21], the data for the Navier–Stokes equation comprised low-
frequency Fourier information, and this control perspective was generalized in [8] to cover
the technically demanding case of data based on pointwise observations. The large-time
behavior of the EnKF is studied, in both discrete and continuous time, in [82]. Finally, we
note that as discussed in Section 4.6 in the discrete-time setting, the 3DVAR filter may be
used to bound the error in the mean of the Kalman filter for linear problems, because of the
optimality of the Kalman filter; this latter optimality property follows, as in discrete time,
from a Galerkin orthogonality interpretation of the error resulting from taking conditional
expectation. The paper [126] implements this idea in the discrete setting.

• Section 8.5 concerns various numerical illustrations. Remark 8.7 highlights the fact that
implementing filters in a stable fashion, especially for complex models, can be nontrivial,
and the reader is cautioned that blind transfer of the programs in the next chapter to other
models may well lead to numerical instabilities. These can be caused by an interaction of
the numerical integration method with noisy data. See [59] for a discussion of this.
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Fig. 8.4: Extended Kalman filter for double-well Example 6.5 with γ = 0.1, σ = 0.3, as given
in Section 9.3.3.

8.7 Exercises

1. Consider the linear example of Section 8.4.1. Implement the Kalman–Bucy filter for this
problem by modifying program p8c.m. Verify that the code reproduces the large-time
asymptotic behavior of the variance as proved in Section 8.4.1. Carefully distinguish be-
tween � < 0, � = 0, and � > 0. Now extend your code to include the case Σ0 = σ2 > 0 and
study the large-time behavior of the covariance. What can you prove about the large-time
behavior of the covariance in this case?

2. In this exercise, we study the properties of the mean for the one-dimensional linear dynam-
ics example considered in Section 8.4.1, in the large-time asymptotic. More specifically, we
study the error between the filter and the truth v†. Assume that the truth satisfies the
equation

dv†

dt
= �v†,

while the data z is given by
dz

dt
= v† + γ

dB

dt
,
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Fig. 8.5: Ensemble Kalman filter for double-well Example 6.5 with γ = 0.1, σ = 0.3, as given
in Section 9.3.4.

and B is a realization of the standard unit Brownian motion. Define e = m− v† and show
that

de

dt
+ fe = γ−1c

dB

dt
,

where f = F ′ and

F ′(t) = γ−2c(t)− �, F (0) = 0.

Apply the Itô formula of Lemma 6.3 to a judiciously chosen function to show that

e(t) = exp
(−F (t)

)
e(0) + SI(t), (8.20)

where

SI(t) =

∫ t

0

γ−1 exp
(
F (s)− F (t)

)
c(s)dB(s).
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Fig. 8.6: Ensemble transform Kalman filter for double-well Example 6.5 with γ = 0.1, σ = 0.3,
as given in Section 9.3.5.

Use the Itô isometry of Lemma 6.1(iii) to show that

E|SI(t)|2 =

∫ t

0

γ−2 exp
(
2F (s)− 2F (t)

)
c2(s)ds. (8.21)

Using the properties of the variance established in Section 8.4.1, show that the asymptotic
error in the filter mean is bounded by O(γ2).

3. Extend the 3DVAR code of program p10c.m so that it may be applied to the Lorenz ’63
example of Example 6.7. Consider both the fully observed case, in which H = I, and the
partially observed case, with H = (1, 0, 0, )T . Compare the output of the filter with the
truth underlying the data, using different observational noise levels.

4. Extend the ExKF code of program p11c.m so that it may be applied to the Lorenz ’63
example of Example 6.7. Consider the fully observed case, in which H = I. Compare the
output of the filter with the truth underlying the data using different observational noise
levels.
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Fig. 8.7: Continuous particle filter (standard) for double-well Example 6.5 with γ = 0.1,
σ = 0.3, as given in Section 9.3.6.

5. Extend the EnKF code of program p12c.m so that it may be applied to the Lorenz ’96
example of Example 6.8. Consider the case in which two out of every three points are
observed. Compare the output of the filter with the truth underlying the data, using
different observational noise levels.
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Fig. 8.8: Continuous particle filter (optimal) for double-well Example 6.5 with γ = 0.1, σ = 0.3,
as given in Section 9.3.7.

Fig. 8.9: Extended Kalman filter for Lorenz ’63 Example 6.7 with observation operator
H = (1, 0, 0).
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Fig. 8.10: Extended Kalman filter for Lorenz ’63 example 6.7 with observation orator
H = (0, 0, 1).

Fig. 8.11: Extended Kalman filter for Lorenz ’96 example 6.8 with 2/3 of components observed.

Fig. 8.12: Extended Kalman filter for Lorenz ’96 example 6.8 with 1/3 of components observed.
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