
Chapter 5

Discrete Time: matlab Programs

This chapter is dedicated to illustrating the examples, theory, and algorithms, as presented
in the previous chapters, through a few short and easy-to-follow matlab programs. These
programs are provided for two reasons: (i) For some readers, they will form the best route by
which to appreciate the details of the examples, theory, and algorithms we describe; (ii) for
other readers, they will be a useful starting point to develop their own codes. While ours are
not necessarily the optimal implementations of the algorithms discussed in these notes, they
have been structured to be simple to understand, to modify, and to extend. In particular,
the code may be readily extended to solve problems more complex than those described in
Examples 2.1–2.7, which we will use for most of our illustrations. The chapter is divided into
three sections, corresponding to programs relevant to each of the preceding three chapters.

Before getting into details, we highlight a few principles that have been adopted in the
programs and in the accompanying text of this chapter. First, notation is consistent between
programs, and it matches the text in the previous sections of the book as far as possible.
Second, since many of the elements of the individual programs are repeated, they will be
described in detail only in the text corresponding to the program in which they first appear;
the short annotations explaining them will, however, be repeated within the programs. Third,
the reader is advised to use the documentation available at the command line for any built-
in functions of matlab; this information can be accessed using the help command—for
example, the documentation for the command help can be accessed by typing help help.

5.1 Chapter 2 Programs

The programs p1.m and p2.m used to generate the figures in Chapter 2 are presented in
this section. Thus these algorithms simply solve the dynamical system (2.1) and process the
resulting data.
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5.1.1. p1.m

The first program, p1.m, illustrates how to obtain sample paths from equations (2.1)
and (2.3). In particular, the program simulates sample paths of the equation

uj+1 = α sin(uj) + ξj , (5.1)

with ξj ∼ N(0, σ2) i.i.d. and α = 2.5, both for deterministic (σ = 0) and stochastic dynamics
(σ �= 0) corresponding to Example 2.3. In line 5, the variable J is defined, which corresponds
to the number of forward steps that we will take. The parameters α and σ are set in lines
6–7. The seed for the random-number generator is set to sd∈ N in line 8 using the command
rng(sd). This guarantees that the results will be reproduced exactly by running the pro-
gram with this same sd. Different choices of sd∈ N will lead to different streams of random
numbers used in the program, which may also be desirable in order to observe the effects of
different random numbers on the output. The command sd will be called in the preamble
of all of the programs that follow. In line 9, two vectors of length J are created, named v
and vnoise; after the program has run, these two vectors contain the solutions for the case
of deterministic (σ = 0) and stochastic dynamics (σ = 0.25) respectively. After the initial
conditions are set in line 10, the desired map is iterated, without and with noise, in lines
12–15. Note that the only difference between the forward iteration of v and that of vnoise
is the presence of the sigma*randn term, which corresponds to the generation of a ran-
dom variable sampled from N(0, σ2). Lines 17–18 contain code that graphs the trajectories,
with and without noise, to produce Figure 2.3. Figures 2.1, 2.2, and 2.5 were obtained by
simply modifying lines 12–15 of this program, in order to create sample paths for the corre-
sponding Ψ for the other three examples; furthermore, Figure 2.4a was generated from output
of this program, and Figure 2.4b was generated from output of a modification of this program.

1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p1.m - behaviour of sin map (Ex. 1.3)
3 %%% with and without observational noise
4
5 J=10000;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 sigma=0.25;% dynamics noise variance is sigmaˆ2
8 sd=1;rng(sd);% choose random number seed
9 v=zeros(J+1,1); vnoise=zeros(J+1,1);% preallocate space

10 v(1)=1;vnoise(1)=1;% initial conditions
11
12 for i=1:J
13 v(i+1)=alpha*sin(v(i));
14 vnoise(i+1)=alpha*sin(vnoise(i))+sigma*randn;
15 end
16
17 figure(1), plot([0:1:J],v),
18 figure(2), plot([0:1:J],vnoise),
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5.1.2. p2.m

The second program presented here, p2.m, is designed to visualize the posterior distribution
in the case of one-dimensional deterministic dynamics. For clarity, the program is separated
into three main sections. The setup section in lines 5–10 defines the parameters of the
problem. The model parameter r is defined in line 6, and it determines the dynamics of the
forward model, in this case given by the logistic map (2.9):

vj+1 = rvj(1− vj). (5.2)

The dynamics are taken as deterministic, so the parameter sigma does not feature here. The
parameter r is equal to 2, so that the dynamics are not chaotic, as the explicit solution given
in Example 2.4 shows. The parameters m0 and C0 define the mean and covariance of the prior
distribution v0 ∼ N(m0, C0), while gamma defines the observational noise ηj ∼ N(0, γ2).

The truth section in lines 14–20 generates the true reference trajectory (or truth) vt in
line 18 given by (5.2), as well as the observations y in line 19 given by

yj = vj + ηj . (5.3)

Note that the index of y(:,j) corresponds to observation of H*v(:,j+1). This is due to
the fact that the first index of an array in matlab is j=1, while the initial condition is v0,
and the first observation is of v1. So effectively the indices of y are correct as corresponding to
the text and equation (5.3), but the indices of v are off by 1. The memory for these vectors is
preallocated in line 14. This is unnecessary, because matlab would simply dynamically allocate
the memory in its absence, but it would slow down the computations due to the necessity
of allocating new memory each time the given array changes size. Commenting this line out
allows observation of this effect, which becomes significant when J becomes sufficiently large.

The solution section after line 24 computes the solution, in this case the pointwise
representation of the posterior smoothing distribution on the scalar initial condition. The
pointwise values of the initial condition are given by the vector v0 (v0) defined in line 24.
There are many ways to construct such vectors, and this convention defines the initial (0.01)
and final (0.99) values and a uniform step size 0.0005. It is also possible to use the command
v0=linspace(0.01,0.99,1961), defining the number 1961 of intermediate points, rather
than the step size 0.0005. The corresponding vector of values of Phidet (Φdet), Jdet (Jdet),
and Idet (Idet) are computed in lines 32, 29, and 34 for each value of v0, as related by the
equation

Idet(v0; y) = Jdet(v0) + Φdet(v0; y), (5.4)

where Jdet(v0) is the background penalization and Φdet(v0; y) is the model–data misfit
functional given by (2.29b) and (2.29c) respectively. The function Idet(v0; y) is the negative
log-posterior as given in Theorem 2.11. Having obtained Idet(v0; y), we calculate P(v0|y) in
lines 37–38, using the formula

P(v0|y) = exp(−Idet(v0; y))∫
exp(−Idet(v0; y))

. (5.5)

The trajectory v corresponding to the given value of v0 (v0(i)) is denoted by vv and is
replaced for each new value of v0(i) in lines 29 and 31, since it is required only to compute
Idet. The command trapz(v0,exp(-Idet)) in line 37 approximates the denominator of
the above by the trapezoidal rule, i.e., the summation
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trapz(v0, exp(−Idet)) =

N−1∑

i=1

(v0(i+ 1)− v0(i)) ∗ (Idet(i+ 1) + Idet(i))/2. (5.6)

The rest of the program deals with plotting our results, and in this instance, it coincides with
the output of Figure 2.11b. Again, simple modifications of this program were used to produce
Figures 2.10, 2.12, and 2.13. Note that rng(sd) in line 8 allows us to use the same random
numbers every time the file is executed; those random numbers are generated with the seed
sd, as described in Section 5.1.1. Commenting this line out would result in the creation of
new realizations of the random data y, different from those used to obtain Figure 2.11b.

1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p2.m smoothing problem for the deterministic logistic map (Ex. 1.4)
3 %% setup
4
5 J=1000;% number of steps
6 r=2;% dynamics determined by r
7 gamma=0.1;% observational noise variance is gammaˆ2
8 C0=0.01;% prior initial condition variance
9 m0=0.7;% prior initial condition mean

10 sd=1;rng(sd);% choose random number seed
11
12 %% truth
13
14 vt=zeros(J+1,1); y=zeros(J,1);% preallocate space to save time
15 vt(1)=0.1;% truth initial condition
16 for j=1:J
17 % can be replaced by Psi for each problem
18 vt(j+1)=r*vt(j)*(1-vt(j));% create truth
19 y(j)=vt(j+1)+gamma*randn;% create data
20 end
21
22 %% solution
23
24 v0=[0.01:0.0005:0.99];% construct vector of different initial data
25 Phidet=zeros(length(v0),1);Idet=Phidet;Jdet=Phidet;% preallocate space
26 vv=zeros(J,1);% preallocate space
27 % loop through initial conditions vv0, and compute log posterior I0(vv0)
28 for j=1:length(v0)
29 vv(1)=v0(j); Jdet(j)=1/2/C0*(v0(j)-m0)ˆ2;% background penalization
30 for i=1:J
31 vv(i+1)=r*vv(i)*(1-vv(i));
32 Phidet(j)=Phidet(j)+1/2/gammaˆ2*(y(i)-vv(i+1))ˆ2;% misfit
33 functional
34 end
35 Idet(j)=Phidet(j)+Jdet(j);
36 end
37
38 constant=trapz(v0,exp(-Idet));% approximate normalizing constant
39 P=exp(-Idet)/constant;% normalize posterior distribution
40 prior=normpdf(v0,m0,sqrt(C0));% calculate prior distribution
41
42 figure(1),plot(v0,prior,’k’,’LineWidth’,2)
43 hold on, plot(v0,P,’r--’,’LineWidth’,2), xlabel ’v_0’,
44 legend ’prior’ J=10ˆ3
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5.2 Chapter 3 Programs

The programs p3.m-p7.m, used to generate the figures in Chapter 3, are presented in this
section. Hence various MCMC algorithms used to sample the posterior smoothing distribution
are given. Furthermore, optimization algorithms used to obtain solutions of the 4DVAR and
w4DVAR variational methods are also introduced. Our general theoretical development of
MCMC methods in Section 3.2 employs a notation of u for the state of the chain and w for
the proposal. For deterministic dynamics, the state is the initial condition v0; for stochastic
dynamics, it is either the signal v or the pair (v0, ξ), where ξ is the noise (since this pair
determines the signal). Where appropriate, the programs described here use the letter v, and
variants thereof, for the state of the Markov chain to keep the connection with the underlying
dynamics model.

5.2.1. p3.m

The program p3.m contains an implementation of the random walk Metropolis (RWM)
MCMC algorithm. The development follows Section 3.2.3, where the algorithm is used to
determine the posterior distribution on the initial condition arising from the deterministic
logistic map of Example 2.4 given by (5.2). Note that in this case, since the underlying dy-
namics are deterministic and hence completely determined by the initial condition, the RWM
algorithm will provide samples from a probability distribution on R.

As in program p2.m, the code is divided into three sections: setup, where parameters are
defined; truth, where the truth and data are generated; and solution, where the solution
is computed, this time by means of MCMC samples from the posterior smoothing distribution.
The parameters in lines 5–10 and the true solution (here taken as only the initial condition,
rather than the trajectory it gives rise to) vt in line 14 are taken to be the same as those
used to generate Figure 2.13. The temporary vector vv generated in line 19 is the trajectory
corresponding to the truth (vv(1)=vt in line 14) and used to calculate the observations y
in line 20. The true value vt will also be used as the initial sample in the Markov chain
for this and for all subsequent MCMC programs. This scenario is, of course, impossible in
the case that the data is not simulated. However, it is useful when the data is simulated,
as it is here, because it can reduce the burn-in time, i.e., the time necessary for the current
sample in the chain to reach the target distribution, or the high-probability region of the state
space. Because we initialize the Markov chain at the truth, the value of Idet(v

†), denoted by
the temporary variable Idet, is required to determine the initial acceptance probability, as
described below. It is computed in lines 15–23 exactly as in lines 25–34 of program p2.m, as
described around equation (5.4).

In the solution section, some additional MCMC parameters are defined. In line 28, the
number of samples is set to N =105. For the parameters and specific data used here, this
is sufficient for convergence of the Markov chain. In line 30, the step-size parameter beta
is preset such that the algorithm for this particular posterior distribution has a reasonable
acceptance probability, or ratio of accepted to rejected moves. A general rule of thumb for
this is that it should be somewhere around 0.5, to ensure that the algorithm is not too
correlated because of high rejection rate (acceptance probability near zero) and that it is
not too correlated because of small moves (acceptance probability near one). The vector V
defined in line 29 will save all of the samples. This is an example in which preallocation is
very important. Try using the commands tic and toc before and respectively after the loop
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in lines 33–50 in order to time the chain both with and without preallocation.1 In line 34, a
move is proposed according to the proposal equation (3.15):

w(k) = v(k−1) + βι(k−1),

where v(v) is the current state of the chain (initially taken to be equal to the true initial
condition v0), ι

(k−1)=randn is an i.i.d. standard normal, and w represents w(k). Indices are
not used for v and w because they will be overwritten at each iteration.

The temporary variable vv is again used for the trajectory corresponding to w(k) as a
vehicle to compute the value of the proposed Idet(w

(k); y), denoted in line 42 by I0prop =
J0prop + Phiprop. In lines 44–46, the decision to accept or reject the proposal is made
based on the acceptance probability

a(v(k−1), w(k)) = 1 ∧ exp(Idet(v
(k−1); y)− Idet(w

(k); y)).

In practice, this corresponds to drawing a uniform random number rand and replacing v
and Idet in line 45 with w and I0prop if rand<exp(I0-I0prop) in line 44. The variable
bb is incremented if the proposal is accepted, so that the running ratio of accepted moves
bb to total steps n can be computed in line 47. This approximates the average acceptance
probability. The current sample v(k) is stored in line 48. Notice that here one could replace
v by V(n-1) in line 34, and by V(n) in line 45, thereby eliminating v, and letting w be the
only temporary variable. However, the present construction is favorable, because as mentioned
above, in general one may not wish to save every sample.

The samples V are used in lines 51–53 to visualize the posterior distribution. In particular,
bins of width dx are defined in line 51, and the command hist is used in line 52. The
assignment Z = hist(V,v0) means first that the real number line is split into M bins with
centers defined according to v0(i) for i = 1, . . . ,M , with the first and last bins corresponding
to the negative, respectively positive, half-lines. Second, Z(i) counts the number of k for
which V(k) is in the bin with center determined by v0(i). Again, trapz (5.6) is used
to compute the normalizing constant in line 53, directly within the plotting command. The
choice of the location of the histogram bins allows for a direct comparison with the posterior
distribution calculated from the program p2.m by directly evaluating Idet(v; y) defined in (5.4)
for different values of initial conditions v. This output is then compared with the corresponding
output of p2.m for the same parameters in Figure 3.2.

1 In practice, one may often choose to collect certain statistics from the chain “on the fly” rather than
saving every sample, particularly if the state space is high-dimensional and the memory required for
each sample is large.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p3.m MCMC RWM algorithm for logistic map (Ex. 1.4)
3 %% setup
4
5 J=5;% number of steps
6 r=4;% dynamics determined by alpha
7 gamma=0.2;% observational noise variance is gammaˆ2
8 C0=0.01;% prior initial condition variance
9 m0=0.5;% prior initial condition mean

10 sd=10;rng(sd);% choose random number seed
11
12 %% truth
13
14 vt=0.3;vv(1)=vt;% truth initial condition
15 Jdet=1/2/C0*(vt-m0)ˆ2;% background penalization
16 Phidet=0;% initialization model-data misfit functional
17 for j=1:J
18 % can be replaced by Psi for each problem
19 vv(j+1)=r*vv(j)*(1-vv(j));% create truth
20 y(j)=vv(j+1)+gamma*randn;% create data
21 Phidet=Phidet+1/2/gammaˆ2*(y(j)-vv(j+1))ˆ2;% misfit functional
22 end
23 Idet=Jdet+Phidet;% compute log posterior of the truth
24
25 %% solution
26 % Markov Chain Monte Carlo: N forward steps of the
27 % Markov Chain on R (with truth initial condition)
28 N=1e5;% number of samples
29 V=zeros(N,1);% preallocate space to save time
30 beta=0.05;% step-size of random walker
31 v=vt;% truth initial condition (or else update I0)
32 n=1; bb=0; rat(1)=0;
33 while n<=N
34 w=v+sqrt(2*beta)*randn;% propose sample from random walker
35 vv(1)=w;
36 Jdetprop=1/2/C0*(w-m0)ˆ2;% background penalization
37 Phidetprop=0;
38 for i=1:J
39 vv(i+1)=r*vv(i)*(1-vv(i));
40 Phidetprop=Phidetprop+1/2/gammaˆ2*(y(i)-vv(i+1))ˆ2;
41 end
42 Idetprop=Jdetprop+Phidetprop;% compute log posterior of the proposal
43
44 if rand<exp(Idet-Idetprop)% accept or reject proposed sample
45 v=w; Idet=Idetprop; bb=bb+1;% update the Markov chain
46 end
47 rat(n)=bb/n;% running rate of acceptance
48 V(n)=v;% store the chain
49 n=n+1;
50 end
51 dx=0.0005; v0=[0.01:dx:0.99];
52 Z=hist(V,v0);% construct the posterior histogram
53 figure(1), plot(v0,Z/trapz(v0,Z),’k’,’Linewidth’,2)% visualize the
54 posterior
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5.2.2. p4.m

The program p4.m contains an implementation of the independence dynamics sampler for
stochastic dynamics, as introduced in Section 3.2.4. Thus the posterior distribution is on the
entire signal {vj}j∈J. The forward model in this case is from Example 2.3, given by (5.1). The
smoothing distribution P(v|Y ) is therefore over the state space R

J+1.
The sections setup, truth, and solution are defined as for program p3.m, but note

that now the smoothing distribution is over the entire path, not just over the initial condition,
because we are considering stochastic dynamics. Since the state space is now the path space,
rather than the initial condition as it was in program p3.m, the truth vt∈ R

J+1 is now a
vector. Its initial condition is taken as a draw from N(m0, C0) in line 16, and the trajectory
is computed in line 20, so that at the end, vt∼ ρ0. As in program p3.m, v† (vt) will be the
chosen initial condition in the Markov chain (to ameliorate burn-in issues), and so Φ(v†; y)
is computed in line 23. Recall from Section 3.2.4 that only Φ(·; y) is required to compute the
acceptance probability in this algorithm.

Notice that the collection of samples V∈ R
N×J+1 preallocated in line 30 is substantial in

this case, illustrating the memory issue that arises when the dimension of the signal space,
and number of samples, increases.

The current state of the chain v(k) and the value of Φ(v(k); y) are again denoted by v and
Phi, while the proposal w(k) and the value of Φ(w(k); y) are again denoted by w and Phiprop,
as in program p3. As discussed in Section 3.2.4, the proposal w(k) is an independent sample
from the prior distribution ρ0, similarly to v†, and it is constructed in lines 34–39. The
acceptance probability used in line 40 is now

a(v(k−1), w(k)) = 1 ∧ exp(Φ(v(k−1); y)− Φ(w(k); y)). (5.7)

The remainder of the program is structurally the same as p3.m. The outputs of this
program are used to plot Figures 3.3, 3.4, and 3.5. Note that in the case of Figure 3.5, we
have used N = 108 samples.
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1 clear; set(0,’defaultaxesfontsize’,20); format long
2 %%% p4.m MCMC INDEPENDENCE DYNAMICS SAMPLER algorithm
3 %%% for sin map (Ex. 1.3) with noise
4 %% setup
5
6 J=10;% number of steps
7 alpha=2.5;% dynamics determined by alpha
8 gamma=1;% observational noise variance is gammaˆ2
9 sigma=1;% dynamics noise variance is sigmaˆ2

10 C0=1;% prior initial condition variance
11 m0=0;% prior initial condition mean
12 sd=0;rng(sd);% choose random number seed
13
14 %% truth
15
16 vt(1)=m0+sqrt(C0)*randn;% truth initial condition
17 Phi=0;
18
19 for j=1:J
20 vt(j+1)=alpha*sin(vt(j))+sigma*randn;% create truth
21 y(j)=vt(j+1)+gamma*randn;% create data
22 % calculate log likelihood of truth, Phi(v;y) from (1.11)
23 Phi=Phi+1/2/gammaˆ2*(y(j)-vt(j+1))ˆ2;
24 end
25
26 %% solution
27 % Markov Chain Monte Carlo: N forward steps of the
28 % Markov Chain on Rˆ{J+1} with truth initial condition
29 N=1e5;% number of samples
30 V=zeros(N,J+1);% preallocate space to save time
31 v=vt;% truth initial condition (or else update Phi)
32 n=1; bb=0; rat(1)=0;
33 while n<=N
34 w(1)=sqrt(C0)*randn;% propose sample from the prior
35 Phiprop=0;
36 for j=1:J
37 w(j+1)=alpha*sin(w(j))+sigma*randn;% propose sample from the prior
38 Phiprop=Phiprop+1/2/gammaˆ2*(y(j)-w(j+1))ˆ2;% compute likelihood
39 end
40 if rand<exp(Phi-Phiprop)% accept or reject proposed sample
41 v=w; Phi=Phiprop; bb=bb+1;% update the Markov chain
42 end
43 rat(n)=bb/n;% running rate of acceptance
44 V(n,:)=v;% store the chain
45 n=n+1;
46 end
47 % plot acceptance ratio and cumulative sample mean
48 figure;plot(rat)
49 figure;plot(cumsum(V(1:N,1))./[1:N]’)
50 xlabel(’samples N’)
51 ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
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5.2.3. p5.m

The independence dynamics sampler of Section 5.2.2 may be very inefficient, since typical
random draws from the dynamics may be unlikely to fit the data as well as the current
state, and will then be rejected. The fifth program, p5.m, gives an implementation of the
pCN algorithm from Section 3.2.4 that is designed to overcome this issue by including the
parameter β, which, if chosen small, allows for incremental steps in signal space and hence
the possibility of nonnegligible acceptance probabilities. This program is used to generate
Figure 3.6

This program is almost identical to p4.m, and so only the points at which it differs will
be described. First, since the acceptance probability is given by

a(v(k−1), w(k)) = 1 ∧ exp(Φ(v(k−1); y)− Φ(w(k); y) +G(v(k−1))−G(w(k))),

the quantity

G(u) =

J−1∑

j=0

(1
2
|Σ− 1

2Ψ(uj)|2 − 〈Σ− 1
2uj+1, Σ

− 1
2Ψ(uj)〉

)

will need to be computed, both for v(k) (denoted by v in lines 31 and 44), where its value
is denoted by G (v(0) = v†), as well as for G(v†) which is computed in line 22), and for w(k)

(denoted by w in line 36) where its value is denoted by Gprop in line 39.
As discussed in Section 3.2.4, the proposal w(k) is given by (3.19):

w(k) = m+ (1− β2)
1
2 (v(k−1) −m) + βι(k−1); (5.8)

here ι(k−1) ∼ N(0, C) are i.i.d. and denoted by iota in line 35. Here C is the covariance of the
Gaussian measure π0 given in Equation (2.24) corresponding to the case of trivial dynamics
Ψ = 0, and m is the mean of π0. The value of m is given by m in line 33.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p5.m MCMC pCN algorithm for sin map (Ex. 1.3) with noise
3
4 %% setup
5 J=10;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=.1;% dynamics noise variance is sigmaˆ2
9 C0=1;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=0;rng(sd);% Choose random number seed
12
13 %% truth
14
15 vt(1)=m0+sqrt(C0)*randn;% truth initial condition
16 G=0;Phi=0;
17
18 for j=1:J
19 vt(j+1)=alpha*sin(vt(j))+sigma*randn;% create truth
20 y(j)=vt(j+1)+gamma*randn;% create data
21 % calculate log density from (1.--)
22 G=G+1/2/sigmaˆ2*((alpha*sin(vt(j)))ˆ2-2*vt(j+1)*alpha*sin(vt(j)));
23 % calculate log likelihood phi(u;y) from (1.11)
24 Phi=Phi+1/2/gammaˆ2*(y(j)-vt(j+1))ˆ2;
25 end
26
27 %% solution
28 % Markov Chain Monte Carlo: N forward steps
29 N=1e5;% number of samples
30 beta=0.02;% step-size of pCN walker
31 v=vt;% truth initial condition (or update G + Phi)
32 V=zeros(N,J+1); n=1; bb=0; rat=0;
33 m=[m0,zeros(1,J)];
34 while n<=N
35 iota=[sqrt(C0)*randn,sigma*randn(1,J)];% Gaussian prior sample
36 w=m+sqrt(1-betaˆ2)*(v-m)+beta*iota;% propose sample from the pCN walker
37 Gprop=0;Phiprop=0;
38 for j=1:J
39 Gprop=Gprop+1/2/sigmaˆ2*((alpha*sin(w(j)))ˆ2-2*w(j+1)*alpha*sin
40 (w(j)));
41 Phiprop=Phiprop+1/2/gammaˆ2*(y(j)-w(j+1))ˆ2;
42 end
43
44 if rand<exp(Phi-Phiprop+G-Gprop)% accept or reject proposed sample
45 v=w;Phi=Phiprop;G=Gprop;bb=bb+1;% update the Markov chain
46 end
47 rat(n)=bb/n;% running rate of acceptance
48 V(n,:)=v;% store the chain
49 n=n+1;
50 end
51 % plot acceptance ratio and cumulative sample mean
52 figure;plot(rat)
53 figure;plot(cumsum(V(1:N,1))./[1:N]’)
54 xlabel(’samples N’)
55 ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
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5.2.4. p6.m

The pCN dynamics sampler is now introduced as program p6.m. The independence dynamics
sampler of Section 5.2.2 may be viewed as a special case of this algorithm for proposal variance
β = 1. This proposal combines the benefits of tuning the step size β while still respecting
the prior distribution on the dynamics. It does so by sampling the initial condition and noise
(v0, ξ) rather than the path itself, in lines 34 and 35, as given by equation (5.8). However,
as opposed to the pCN sampler of the previous section, this variable w is now interpreted
as a sample of (v0, ξ) and is therefore fed into the path vv itself in line 39. The acceptance
probability is the same as that of the independence dynamics sampler (5.7), depending only
on Phi. If the proposal is accepted, both the forcing u=w and the path v=vv are updated in
line 44. Only the path is saved, as in the previous routines, in line 47.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p6.m MCMC pCN Dynamics algorithm for
3 %%% sin map (Ex. 1.3) with noise
4 %% setup
5
6 J=10;% number of steps
7 alpha=2.5;% dynamics determined by alpha
8 gamma=1;% observational noise variance is gammaˆ2
9 sigma=1;% dynamics noise variance is sigmaˆ2

10 C0=1;% prior initial condition variance
11 m0=0;% prior initial condition mean
12 sd=0;rng(sd);% Choose random number seed
13
14 %% truth
15
16 vt(1)=m0+sqrt(C0)*randn;% truth initial condition
17 ut(1)=vt(1);
18 Phi=0;
19 for j=1:J
20 ut(j+1)=sigma*randn;
21 vt(j+1)=alpha*sin(vt(j))+ut(j+1);% create truth
22 y(j)=vt(j+1)+gamma*randn;% create data
23 % calculate log likelihood phi(u;y) from (1.11)
24 Phi=Phi+1/2/gammaˆ2*(y(j)-vt(j+1))ˆ2;
25 end
26
27 %% solution
28 % Markov Chain Monte Carlo: N forward steps
29 N=1e5;% number of samples
30 beta=0.2;% step-size of pCN walker
31 u=ut;v=vt;% truth initial condition (or update Phi)
32 V=zeros(N,J+1); n=1; bb=0; rat=0;m=[m0,zeros(1,J)];
33 while n<=N
34 iota=[sqrt(C0)*randn,sigma*randn(1,J)];% Gaussian prior sample
35 w=m+sqrt(1-betaˆ2)*(u-m)+beta*iota;% propose sample from the pCN walker
36 vv(1)=w(1);
37 Phiprop=0;
38 for j=1:J
39 vv(j+1)=alpha*sin(vv(j))+w(j+1);% create path
40 Phiprop=Phiprop+1/2/gammaˆ2*(y(j)-vv(j+1))ˆ2;
41 end
42
43 if rand<exp(Phi-Phiprop)% accept or reject proposed sample
44 u=w;v=vv;Phi=Phiprop;bb=bb+1;% update the Markov chain
45 end
46 rat(n)=bb/n;% running rate of acceptance
47 V(n,:)=v;% store the chain
48 n=n+1;
49 end
50 % plot acceptance ratio and cumulative sample mean
51 figure;plot(rat)
52 figure;plot(cumsum(V(1:N,1))./[1:N]’)
53 xlabel(’samples N’)
54 ylabel(’(1/N) \Sigma_{n=1}ˆN v_0ˆ{(n)}’)
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5.2.5. p7.m

The next program, p7.m, contains an implementation of the weak constrained variational
algorithm w4DVAR discussed in Section 3.3. This program is written as a function, while all
previous programs were written as scripts. This choice was made for p7.m so that the matlab
built-in function fminsearch can be used for optimization in the solution section, and
the program can still be self-contained. To use this built-in function, it is necessary to define
an auxiliary objective function I to be optimized. The function fminsearch can be used
within a script, but the auxiliary function would then have to be written separately, so we
cannot avoid functions altogether unless we write the optimization algorithm by hand. We
avoid the latter in order not to divert the focus of this text from the data-assimilation problem,
and algorithms to solve it, to the problem of how to optimize an objective function.

Again the forward model is that given by Example 2.8, namely (5.1). The setup and
truth sections are similar to the previous programs, except that G, for example, need not be
computed here. The auxiliary objective function I in this case is I(·; y) from equation (2.21),
given by

I(·; y) = J(·) + Φ(·; y), (5.9)

where

J(u) :=
1

2

∣
∣C

− 1
2

0 (u0 −m0)
∣
∣2 +

J−1∑

j=0

1

2

∣
∣Σ− 1

2

(
uj+1 −Ψ(uj)

)∣
∣2 (5.10)

and

Φ(u; y) =
J−1∑

j=0

1

2

∣
∣Γ− 1

2

(
yj+1 − h(uj+1)

)∣
∣2. (5.11)

It is defined in lines 38–45. The auxiliary objective function takes as inputs (u,y,sigma,gamma,
alpha,m0, C0,J), and gives output out= I(u; y), where u ∈ RJ+1 (given all the other pa-
rameters in its definition—the issue of identifying the input to be optimized over is discussed
also below).

The initial guess for the optimization algorithm uu is taken as a standard normal random
vector over R

J+1 in line 27. In line 24, a standard normal random matrix of size 1002 is
drawn and thrown away. This is so that one can easily change the input, e.g., to randn(z)
for z∈ N, and induce different random initial vectors uu for the optimization algorithm,
while keeping the data fixed by the random number seed sd set in line 12. The truth vt
may be used as initial guess by uncommenting line 28. In particular, if the output of the
minimization procedure is different for different initial conditions, then it is possible that the
objective function I(·; y) has multiple minima, and hence the posterior distribution P(·|y) is
multimodal. As we have already seen in Figure 3.8, this is certainly true even in the case of
scalar deterministic dynamics, when the underlying map gives rise to a chaotic flow.

The matlab optimization function fminsearch is called in line 32. The function handle
command @(u)I(u, · · ·) is used to tell fminsearch that the objective function I is to
be considered a function of u, even though it may take other parameter values as well (in
this case, y,sigma,gamma,alpha,m0,C0, and J). The outputs of fminsearch are the
value vmap such that I(vmap) is minimum, the value fval = I(vmap), and the exit
flag, which takes the value 1 if the algorithm has converged. The reader is encouraged to use
the help command for more details on this and other matlab functions used in the notes.
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The results of this minimization procedure are plotted in lines 34–35 together with the true
value v† as well as the data y. In Figure 3.9, such results are presented, including two minima
that were found with different initial conditions.

1 function this=p7
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p7.m weak 4DVAR for sin map (Ex. 1.3)
4 %% setup
5
6 J=5;% number of steps
7 alpha=2.5;% dynamics determined by alpha
8 gamma=1e0;% observational noise variance is gammaˆ2
9 sigma=1;% dynamics noise variance is sigmaˆ2

10 C0=1;% prior initial condition variance
11 m0=0;% prior initial condition mean
12 sd=1;rng(sd);% choose random number seed
13
14 %% truth
15
16 vt(1)=sqrt(C0)*randn;% truth initial condition
17 for j=1:J
18 vt(j+1)=alpha*sin(vt(j))+sigma*randn;% create truth
19 y(j)=vt(j+1)+gamma*randn;% create data
20 end
21
22 %% solution
23
24 randn(100);% try uncommenting or changing the argument for different
25 % initial conditions -- if the result is not the same,
26 % there may be multimodality (e.g. 1 & 100).
27 uu=randn(1,J+1);% initial guess
28 %uu=vt; % truth initial guess option
29
30 % solve with blackbox
31 % exitflag=1 ==> convergence
32 [vmap,fval,exitflag]=fminsearch(@(u)I(u,y,sigma,gamma,alpha,m0,C0,J),uu)
33
34 figure;plot([0:J],vmap,’Linewidth’,2);hold;plot([0:J],vt,’r’,’Linewidth’,2)
35 plot([1:J],y,’g’,’Linewidth’,2);hold;xlabel(’j’);legend(’MAP’,’truth’,’y’)
36
37 %% auxiliary objective function definition
38 function out=I(u,y,sigma,gamma,alpha,m0,C0,J)
39
40 Phi=0;JJ=1/2/C0*(u(1)-m0)ˆ2;
41 for j=1:J
42 JJ=JJ+1/2/sigmaˆ2*(u(j+1)-alpha*sin(u(j)))ˆ2;
43 Phi=Phi+1/2/gammaˆ2*(y(j)-u(j+1))ˆ2;
44 end
45 out=Phi+JJ;
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5.3 Chapter 4 Programs

The programs p8.m-p15.m, used to generate the figures in Chapter 4, are presented in
this section. Various filtering algorithms used to sample the posterior filtering distribution
are given, involving both Gaussian approximation and particle approximation. Since these
algorithms are run for very large times (large J), they will be divided into only two sections:
setup, in which the parameters are defined, and solution, in which both the truth and
observations are generated, and the online assimilation of the current observation into the filter
solution is performed. The generation of truth can be separated into a truth section as in
the previous sections, but two loops of length J would be required, and loops are inefficient in
matlab , so the present format is preferred. The programs in this section are all very similar,
and their output is also similar, giving rise to Figures 4.3–4.12. With the exception of p8.m
and p9.m, the forward model is given by Example 2.8 (5.1), and the output is identical, given
for p10.m through p15.m in Figures 4.5–4.7 and 4.8–4.10. Figures 4.11 and 4.12 compare the
filters from the other Figures. The program p8.m features a two-dimensional linear forward
model, and p9.m features the forward model from Example 2.9 (5.2). At the end of each
program, the outputs are used to plot the mean and the covariance as well as the mean-
square error of the filter as functions of the iteration number j.

5.3.1. p8.m

The first filtering program is p8.m, which contains an implementation of the Kalman filter
applied to Example 2.2,

vj+1 = Avj + ξj , with A =

(
0 1
−1 0

)

,

and observed data given by

yj+1 = Hvj+1 + ηj+1

with H = (1, 0) and Gaussian noise. Thus only the first component of vj is observed.
The parameters and initial condition are defined in the setup section, lines 3–19. The

vectors v, m ∈ R
N×J , y∈ R

J , and c ∈ R
N×N×J are preallocated to hold the truth, mean,

observations, and covariance over the J observation times defined in line 5. In particular,
notice that the true initial condition is drawn from N(m0, C0) in line 16, where m0 = 0 and
C0 = 1 are defined in lines 10–11. The initial estimate of the distribution is defined in lines
17–18 as N(m0, C0), where m0 ∼ N(0, 100I) and C0 ← 100C0, so that the code may test the
ability of the filter to lock onto the true distribution, asymptotically in j, given a poor initial
estimate. That is to say, the values of (m0, C0) are changed such that the initial condition is
not drawn from this distribution.

The main solution loop then follows in lines 21–34. The truth v and the data that
are being assimilated y are sequentially generated within the loop, in lines 24–25. The filter
prediction step, in lines 27–28, consists in computing the predictive mean and covariance m̂j

and Ĉj as defined in (4.4) and (4.5) respectively:

m̂j+1 = Amj , Ĉj+1 = ACjA
T +Σ.
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Notice that indices are not used for the transient variables mhat and chat representing m̂j

and Ĉj , because they will not be saved from one iteration to the next. In lines 30–33, we
implement the analysis formulas for the Kalman filter from Corollary 4.2. In particular, the
innovation between the observation of the predicted mean and the actual observation, as
introduced in Corollary 4.2, is first computed in line 30,

dj = yj −Hm̂j . (5.12)

Again d, which represents dj , does not have any index for the same reason as above. Next,
the Kalman gain defined in Corollary 4.2 is computed in line 31:

Kj = ĈjH
T (HĈjH

T + Γ )−1. (5.13)

Once again, an index j is not used for the transient variable K representing Kj . Notice that a
“forward slash” / is used to compute B/A=B A−1. This is an internal function of matlab that
will analyze the matrices B and A to determine an “optimal” method for inversion, given their
structure. The update given in Corollary 4.2 is completed in lines 30–32 with the equations

mj = m̂j +Kjdj and Cj = (I −KjH)Ĉj . (5.14)

Finally, in lines 36–50, the outputs of the program are used to plot the mean and the
covariance as well as the mean-square error of the filter as functions of the iteration number
j, as shown in Figure 4.3.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p8.m Kalman Filter, Ex. 1.2
3 %% setup
4
5 J=1e3;% number of steps
6 N=2;% dimension of state
7 I=eye(N);% identity operator
8 gamma=1;% observational noise variance is gammaˆ2*I
9 sigma=1;% dynamics noise variance is sigmaˆ2*I

10 C0=eye(2);% prior initial condition variance
11 m0=[0;0];% prior initial condition mean
12 sd=10;rng(sd);% choose random number seed
13 A=[0 1;-1 0];% dynamics determined by A
14
15 m=zeros(N,J);v=m;y=zeros(J,1);c=zeros(N,N,J);% pre-allocate
16 v(:,1)=m0+sqrtm(C0)*randn(N,1);% initial truth
17 m(:,1)=10*randn(N,1);% initial mean/estimate
18 c(:,:,1)=100*C0;% initial covariance
19 H=[1,0];% observation operator
20
21 %% solution % assimilate!
22
23 for j=1:J
24 v(:,j+1)=A*v(:,j) + sigma*randn(N,1);% truth
25 y(j)=H*v(:,j+1)+gamma*randn;% observation
26
27 mhat=A*m(:,j);% estimator predict
28 chat=A*c(:,:,j)*A’+sigmaˆ2*I;% covariance predict
29
30 d=y(j)-H*mhat;% innovation
31 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
32 m(:,j+1)=mhat+K*d;% estimator update
33 c(:,:,j+1)=(I-K*H)*chat;% covariance update
34 end
35
36 figure;js=21;plot([0:js-1],v(2,1:js));hold;plot([0:js-1],m(2,1:js),’m’);
37 plot([0:js-1],m(2,1:js)+reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
38 plot([0:js-1],m(2,1:js)-reshape(sqrt(c(2,2,1:js)),1,js),’r--’);
39 hold;grid;xlabel(’iteration, j’);
40 title(’Kalman Filter, Ex. 1.2’);
41
42 figure;plot([0:J],reshape(c(1,1,:)+c(2,2,:),J+1,1));hold
43 plot([0:J],cumsum(reshape(c(1,1,:)+c(2,2,:),J+1,1))./[1:J+1]’,’m’, ...
44 ’Linewidth’,2); grid; hold;xlabel(’iteration, j’);axis([1 1000 0 50]);
45 title(’Kalman Filter Covariance, Ex. 1.2’);
46
47 figure;plot([0:J],sum((v-m).ˆ2));hold;
48 plot([0:J],cumsum(sum((v-m).ˆ2))./[1:J+1],’m’,’Linewidth’,2);grid
49 hold;xlabel(’iteration, j’);axis([1 1000 0 50]);
50 title(’Kalman Filter Error, Ex. 1.2’)
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5.3.2. p9.m

The program p9.m contains an implementation of the 3DVAR method applied to the chaotic
logistic map of Example 2.4 (5.2) for r = 4. As in the previous section, the parameters and
initial condition are defined in the setup section, lines 3–16. In particular, notice that the
truth initial condition v(1) and initial mean m(1) are now initialized in lines 12–13 with
a uniform random number using the command rand, so that they are in the interval [0, 1],
where the model is well defined. Indeed, the solution will eventually become unbounded if
initial conditions are chosen outside this interval. With this in mind, we set the dynamics noise
sigma = 0 in line 8, i.e., deterministic dynamics, so that the true dynamics themselves do
not become unbounded.

The analysis step of 3DVAR consists in minimizing

Ifilter(v) =
1

2
|Γ− 1

2 (yj+1 −Hv)|2 + 1

2
|Ĉ− 1

2 (v −Ψ(mj))|2.

In this one-dimensional case, we set Γ = γ2, Ĉ = σ2 and define η2 = γ2/η2. The stabilization
parameter η (eta) from Example 4.12 is set in line 14, representing the ratio in uncertainty
in the data to that of the model; equivalently, it measures trust in the model over the obser-
vations. The choice η = 0 means that the model is irrelevant in the minimization step (4.12)
of 3DVAR, in the observed space—the synchronization filter. Since in the example, the signal
space and observation space both have dimension equal to 1, the choice η = 0 simply corre-
sponds to using only the data. In contrast, the choice η = ∞ ignores the observations and
uses only the model.

The 3DVAR setup gives rise to the constant scalar covariance C and resultant constant
scalar gain K; this should not be confused with the changing Kj in (5.13), temporarily defined
by K in line 31 of p8.m. The main solution loop follows in lines 20–33. Up to the different
forward model, lines 21–22, 24, 26, and 27 of this program are identical to lines 24–25, 27, 30,
and 32 of p8.m, described in Section 5.3.1. The only other difference is that the covariance
updates are not here because of the constant-covariance assumption underlying the 3DVAR
algorithm.

The 3DVAR filter may in principle generate the estimated mean mhat outside [0, 1],
because of the noise in the data. In order to flag potential unbounded trajectories of the
filter, which in principle could arise because of this, an extra stopping criterion is included in
lines 29–32. To illustrate this, try setting sigma�= 0 in line 8. Then the signal will eventually
become unbounded, regardless of how small the noise variance is chosen. In this case, the
estimate will surely blow up while tracking the unbounded signal. Otherwise, if η is chosen
appropriately so as to stabilize the filter, it is extremely unlikely that the estimate will ever
blow up. Finally, similarly to p8.m, in the last lines of the program we use the outputs of
the program in order to produce Figure 4.4, namely plotting the mean and the covariance as
well as the mean-square error of the filter as functions of the iteration number j.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p9.m 3DVAR Filter, deterministic logistic map (Ex. 1.4)
3 %% setup
4
5 J=1e3;% number of steps
6 r=4;% dynamics determined by r
7 gamma=1e-1;% observational noise variance is gammaˆ2
8 sigma=0;% dynamics noise variance is sigmaˆ2
9 sd=10;rng(sd);% choose random number seed

10
11 m=zeros(J,1);v=m;y=m;% pre-allocate
12 v(1)=rand;% initial truth, in [0,1]
13 m(1)=rand;% initial mean/estimate, in [0,1]
14 eta=2e-1;% stabilization coefficient 0 < eta << 1
15 C=gammaˆ2/eta;H=1;% covariance and observation operator
16 K=(C*H’)/(H*C*H’+gammaˆ2);% Kalman gain
17
18 %% solution % assimilate!
19
20 for j=1:J
21 v(j+1)=r*v(j)*(1-v(j)) + sigma*randn;% truth
22 y(j)=H*v(j+1)+gamma*randn;% observation
23
24 mhat=r*m(j)*(1-m(j));% estimator predict
25
26 d=y(j)-H*mhat;% innovation
27 m(j+1)=mhat+K*d;% estimator update
28
29 if norm(mhat)>1e5
30 disp(’blowup!’)
31 break
32 end
33 end
34 js=21;% plot truth, mean, standard deviation, observations
35 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
36 plot([0:js-1],m(1:js)+sqrt(C),’r--’);plot([1:js-1],y(1:js-1),’kx’);
37 plot([0:js-1],m(1:js)-sqrt(C),’r--’);hold;grid;xlabel(’iteration, j’);
38 title(’3DVAR Filter, Ex. 1.4’)
39
40 figure;plot([0:J],C*[0:J].ˆ0);hold
41 plot([0:J],C*[0:J].ˆ0,’m’,’Linewidth’,2);grid
42 hold;xlabel(’iteration, j’);title(’3DVAR Filter Covariance, Ex. 1.4’);
43
44 figure;plot([0:J],(v-m).ˆ2);hold;
45 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
46 hold;xlabel(’iteration, j’);
47 title(’3DVAR Filter Error, Ex. 1.4’)
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5.3.3. p10.m

A variation of program p9.m is given by p10.m, where the 3DVAR filter is implemented for
Example 2.3 given by (5.1). Indeed, the remaining programs of this section will all be for the
same example, namely Example 2.3, so this will not be mentioned again. In this case, the
initial condition is again taken as a draw from the prior N(m0, C0) as in p7.m, and the initial
mean estimate is again changed to m0 ∼ N(0, 100I) so that the code may test the ability of
the filter to lock onto the signal given a poor initial estimate. Furthermore, for this problem,
there is no need to introduce the stopping criterion present in the case of p9.m since the
underlying deterministic dynamics are dissipative. The output of this program is shown in
Figure 4.5.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p10.m 3DVAR Filter, sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12
13 m=zeros(J,1);v=m;y=m;% pre-allocate
14 v(1)=m0+sqrt(C0)*randn;% initial truth
15 m(1)=10*randn;% initial mean/estimate
16 eta=2e-1;% stabilization coefficient 0 < eta << 1
17 c=gammaˆ2/eta;H=1;% covariance and observation operator
18 K=(c*H’)/(H*c*H’+gammaˆ2);% Kalman gain
19
20 %% solution % assimilate!
21
22 for j=1:J
23 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
24 y(j)=H*v(j+1)+gamma*randn;% observation
25
26 mhat=alpha*sin(m(j));% estimator predict
27
28 d=y(j)-H*mhat;% innovation
29 m(j+1)=mhat+K*d;% estimator update
30
31 end
32
33 js=21;% plot truth, mean, standard deviation, observations
34 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
35 plot([0:js-1],m(1:js)+sqrt(c),’r--’);plot([1:js-1],y(1:js-1),’kx’);
36 plot([0:js-1],m(1:js)-sqrt(c),’r--’);hold;grid;xlabel(’iteration, j’);
37 title(’3DVAR Filter, Ex. 1.3’)
38
39 figure;plot([0:J],c*[0:J].ˆ0);hold
40 plot([0:J],c*[0:J].ˆ0,’m’,’Linewidth’,2);grid
41 hold;xlabel(’iteration, j’);
42 title(’3DVAR Filter Covariance, Ex. 1.3’);
43
44 figure;plot([0:J],(v-m).ˆ2);hold;
45 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
46 hold;xlabel(’iteration, j’);
47 title(’3DVAR Filter Error, Ex. 1.3’)
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5.3.4. p11.m

The next program is p11.m. This program comprises an implementation of the extended
Kalman filter.It is very similar in structure to p8.m, except with a different forward model.
Since the dynamics are scalar, the observation operator is defined by setting H to take the
value 1 in line 16. The predicting covariance Ĉj is not independent of the mean, as it is
for the linear problem p8.m. Instead, as described in Section 4.2.2, it is determined via the
linearization of the forward map around mj , in line 26:

Ĉj+1 = (α cos(mj))Cj (α cos(mj)) .

As in p8.m, we change the prior to a poor initial estimate of the distribution to study whether,
and how, the filter locks onto a neighborhood of the true signal, despite poor initialization,
for large j. This initialization is in lines 15–16, where m0 ∼ N(0, 100I) and C0 ← 10C0.
Subsequent filtering programs use an identical initialization, with the same rationale as in
this case. We will not state this again. The output of this program is shown in Figure 4.6.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p11.m Extended Kalman Filter, sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12
13 m=zeros(J,1);v=m;y=m;c=m;% pre-allocate
14 v(1)=m0+sqrt(C0)*randn;% initial truth
15 m(1)=10*randn;% initial mean/estimate
16 c(1)=10*C0;H=1;% initial covariance and observation operator
17
18 %% solution % assimilate!
19
20 for j=1:J
21
22 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
23 y(j)=H*v(j+1)+gamma*randn;% observation
24
25 mhat=alpha*sin(m(j));% estimator predict
26 chat=alpha*cos(m(j))*c(j)*alpha*cos(m(j))+sigmaˆ2;% covariance predict
27
28 d=y(j)-H*mhat;% innovation
29 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
30 m(j+1)=mhat+K*d;% estimator update
31 c(j+1)=(1-K*H)*chat;% covariance update
32
33 end
34
35 js=21;% plot truth, mean, standard deviation, observations
36 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
37 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
38 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
39 (’iteration, j’);
40 title(’ExKF, Ex. 1.3’)
41
42 figure;plot([0:J],c);hold
43 plot([0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
44 hold;xlabel(’iteration, j’);
45 title(’ExKF Covariance, Ex. 1.3’);
46
47 figure;plot([0:J],(v-m).ˆ2);hold;
48 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
49 hold;xlabel(’iteration, j’);
50 title(’ExKF Error, Ex. 1.3’)
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5.3.5. p12.m

The program p12.m contains an implementation of the ensemble Kalman filter, with per-
turbed observations, as described in Section 4.2.3.The structure of this program is again very
similar to those of p8.m and p11.m, except now an ensemble of particles, of size N defined in
line 12, is retained as an approximation of the filtering distribution. The ensemble {v(n)}Nn=1

represented by the matrix U is then constructed out of draws from this Gaussian in line 18,
and the mean m′

0 is reset to the ensemble sample mean.

In line 27, the predicting ensemble {v̂(n)j }Nn=1 represented by the matrix Uhat is computed
from a realization of the forward map applied to each ensemble member. This is then used
to compute the ensemble sample mean m̂j (mhat) and covariance Ĉj (chat). There is now

an ensemble of “innovations” with a new i.i.d. realization y
(n)
j ∼ N(yj , Γ ) for each ensemble

member, computed in line 31 (not to be confused with the actual innovation as defined in
equation (5.12)),

d
(n)
j = y

(n)
j −Hv̂

(n)
j .

The Kalman gain Kj (K) is computed using (5.13), very similarly to how it is done in p8.m
and p11.m, and the ensemble of updates is computed in line 33:

v
(n)
j = v̂

(n)
j +Kjd

(n)
j .

The output of this program is shown in Figure 4.7. Furthermore, long simulations of length
J = 105 were performed for this and the previous two programs, p10.m and p11.m, and
their errors are compared in Figure 4.11.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p12.m Ensemble Kalman Filter (PO), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e5;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Uhat=alpha*sin(U(j,:))+sigma*randn(1,N);% ensemble predict
28 mhat=sum(Uhat)/N;% estimator predict
29 chat=(Uhat-mhat)*(Uhat-mhat)’/(N-1);% covariance predict
30
31 d=y(j)+gamma*randn(1,N)-H*Uhat;% innovation
32 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
33 U(j+1,:)=Uhat+K*d;% ensemble update
34 m(j+1)=sum(U(j+1,:))/N;% estimator update
35 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/(N-1);% covariance update
36
37 end
38
39 js=21;% plot truth, mean, standard deviation, observations
40 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
41 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
42 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
43 (’iteration, j’);
44 title(’EnKF, Ex. 1.3’)
45
46 figure;plot([0:J],c);hold
47 plot([0:J],cumsum(c)./[1:J+1]’,’m’,’Linewidth’,2);grid
48 hold;xlabel(’iteration, j’);
49 title(’EnKF Covariance, Ex. 1.3’);
50
51 figure;plot([0:J],(v-m).ˆ2);hold;
52 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
53 hold;xlabel(’iteration, j’);
54 title(’EnKF Error, Ex. 1.3’)
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5.3.6. p13.m

The program p13.m contains a particular square-root filter implementation of the ensemble
Kalman filter, namely the ETKF filter, described in detail in Section 4.2.4. The program thus
is very similar to p12.m for the EnKF with perturbed observations. In particular, the filtering
distribution of the state is again approximated by an ensemble of particles. The predicting

ensemble {v̂(n)j }Nn=1 (Uhat), mean m̂j(mhat), and covariance Ĉj (chat) are computed exactly

as in p12.m. However, this time the covariance is kept in factorized form X̂jX̂
�
j = Ĉj in lines

29–30, with factors denoted by Xhat. The transformation matrix is computed in line 31,

Tj =
(
IN + X̂�

j H�Γ−1HX̂j

)− 1
2

,

and Xj = X̂jTj (X) is computed in line 32, from which the covariance Cj = XjX
�
j is

reconstructed in line 38. A single innovationdj is computed in line 34, and a single updated
mean mj is then computed in line 36 using the Kalman gain Kj (5.13) computed in line
35. This is the same as in the Kalman filter and extended Kalman filter (ExKF) of p8.m
and p11.m, in contrast to the EnKF with perturbed observations appearing in p12.m. The
ensemble is then updated to U in line 37 using the formula

v
(n)
j = mj +X

(n)
j

√
N − 1,

where X
(n)
j is the nth column of Xj .

Notice that the operator that is factorized and inverted has dimension N , which in this case
is large in comparison to the state and observation dimensions. This is, of course, natural for
computing sample statistics, but in the context of the one-dimensional examples considered
here, it makes p13.m run far more slowly than p12.m. However, in many applications, the
signal state-space dimension is the largest, with the observation dimension coming next, and
the ensemble size being far smaller than either of these. In this context, the ETKF has become
a very popular method. So its relative inefficiency, compared, for example, with the perturbed
observations Kalman filter, should not be given too much weight in the overall evaluation of
the method. Results illustrating the algorithm are shown in Figure 4.8.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p13.m Ensemble Kalman Filter (ETKF), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=10;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Uhat=alpha*sin(U(j,:))+sigma*randn(1,N);% ensemble predict
28 mhat=sum(Uhat)/N;% estimator predict
29 Xhat=(Uhat-mhat)/sqrt(N-1);% centered ensemble
30 chat=Xhat*Xhat’;% covariance predict
31 T=sqrtm(inv(eye(N)+Xhat’*H’*H*Xhat/gammaˆ2));% right-hand sqrt
32 transform
33 X=Xhat*T;% transformed centered ensemble
34
35 d=y(j)-H*mhat;randn(1,N);% innovation
36 K=(chat*H’)/(H*chat*H’+gammaˆ2);% Kalman gain
37 m(j+1)=mhat+K*d;% estimator update
38 U(j+1,:)=m(j+1)+X*sqrt(N-1);% ensemble update
39 c(j+1)=X*X’;% covariance update
40
41 end
42
43 js=21;% plot truth, mean, standard deviation, observations
44 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
45 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
46 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
47 (’iteration, j’);
48 title(’EnKF(ETKF), Ex. 1.3’);
49
50 figure;plot([0:J],(v-m).ˆ2);hold;
51 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
52 plot([0:J],cumsum(c)./[1:J+1]’,’r--’,’Linewidth’,2);
53 hold;xlabel(’iteration, j’);
54 title(’EnKF(ETKF) Error, Ex. 1.3’)
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5.3.7. p14.m

The program p14.m is an implementation of the standard SIRS filter from Section 4.3.2. The
setup section is almost identical to the those of the EnKF methods, because those methods
also rely on particle approximations of the filtering distribution. However, the particle filters
consistently estimate quite general distributions, while the EnKF is provably accurate only
for Gaussian distributions. The truth and data generation and ensemble prediction in lines
24–27 are the same as in p12.m and p13.m. The way this prediction in line 27 is phrased

in Section 4.3.2 is v̂
(n)
j+1 ∼ P(·|v(n)j ). An ensemble of “innovation” terms {d(n)j }Nn=1 is again

required, but with all terms using the same observation, as computed in line 28. Assuming

w
(n)
j = 1/N , then

ŵ
(n)
j ∝ P(yj |v(n)j ) ∝ exp

{

−1

2

∣
∣
∣d

(n)
j

∣
∣
∣
2

Γ

}

,

where d
(n)
j is the innovation of the nth particle, as given in (4.27). The vector of unnormalized

weights {ŵ(n)
j }Nn=1 (what) is computed in line 29 and normalized to {w(n)

j }Nn=1 (w) in line
30. Lines 32–39 implement the resampling step. First, the cumulative distribution function
of the weights W ∈ [0, 1]N (ws) is computed in line 32. Notice that W has the properties

W1 = w
(1)
j , Wn ≤ Wn+1, and WN = 1. Then N uniform random numbers {u(n)}Nn=1 are

drawn. For each u(n), let n∗ be such that Wn∗−1 ≤ u(n) < Wn∗ . This n∗ (ix) is found in line
34 using the find function, which can identify the first or last element in an array to exceed
zero (see help file): ix = find ( ws > rand, 1, ’first’ ). This corresponds to

drawing the (n∗)th element from the discrete measure defined by {w(n)
j }Nn=1. The nth particle

v
(n)
j (U(j+1,n)) is set equal to v̂(n

∗)
j (Uhat(ix)) in line 37. The sample mean and covariance

are then computed in lines 41–42. The rest of the program follows the others, generating the
output displayed in Figure 4.9.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p14.m Particle Filter (SIRS), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=100;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % Assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Uhat=alpha*sin(U(j,:))+sigma*randn(1,N);% ensemble predict
28 d=y(j)-H*Uhat;% ensemble innovation
29 what=exp(-1/2*(1/gammaˆ2*d.ˆ2));% weight update
30 w=what/sum(what);% normalize predict weights
31
32 ws=cumsum(w);% resample: compute cdf of weights
33 for n=1:N
34 ix=find(ws>rand,1,’first’);% resample: draw rand \sim U[0,1] and
35 % find the index of the particle corresponding to the first time
36 % the cdf of the weights exceeds rand.
37 U(j+1,n)=Uhat(ix);% resample: reset the nth particle to the one
38 % with the given index above
39 end
40
41 m(j+1)=sum(U(j+1,:))/N;% estimator update
42 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/N;% covariance update
43
44 end
45
46 js=21;% plot truth, mean, standard deviation, observations
47 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
48 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
49 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
50 (’iteration, j’);
51 title(’Particle Filter (Standard), Ex. 1.3’);
52
53 figure;plot([0:J],(v-m).ˆ2);hold;
54 plot([0:J],cumsum((v-m).ˆ2)./[1:J+1]’,’m’,’Linewidth’,2);grid
55 hold;xlabel(’iteration, j’);title(’Particle Filter (Standard) Error,
56 Ex. 1.3’)
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5.3.8. p15.m

The program p15.m is an implementation of the SIRS(OP) algorithm from Section 4.3.3. The
setup section and truth and observation generation are again the same as in the previous
programs. The difference between this program and p14.m arises because the importance

sampling proposal kernel Qj with density P(vj+1|vj , yj+1) is used to propose each v̂
(n)
j+1 given

each particular v
(n)
j ; in particular, Qj depends on the next data point, whereas the kernel P

used in p14.m has density P(vj+1|vj), which is independent of yj+1.

Observe that if v
(n)
j and yj+1 are both fixed, then P

(
vj+1|v(n)j , yj+1

)
is the density of the

Gaussian with mean m′(v) and covariance Σ′ given by

m′(n) = Σ′
(
Σ−1Ψ

(
v
(n)
j

)
+H�Γ−1yj+1

)
, (Σ′)−1

= Σ−1 +H�Γ−1H.

Therefore, Σ′ (Sig) and the ensemble of means
{
m′(n)}N

n=1
(vector em) are computed in lines

27 and 28 and used to sample v̂
(n)
j+1 ∼ N(m′(n), Σ′) in line 29 for all of

{
v̂
(n)
j+1

}N

n=1
(Uhat).

Now the weights are updated by (4.34) rather than (4.27), i.e., assuming w
(n)
j = 1/N .

Then

ŵ
(n)
j+1 ∝ P

(
yj+1|v(n)j

)
∝ exp

{

−1

2

∣
∣
∣yj+1 −Ψ

(
v
(n)
j

)∣
∣
∣
2

Γ+Σ

}

.

This is computed in lines 31–32, using another auxiliary “innovation” vector d in line 31.
Lines 35–45 are again identical to lines 32–42 of program p14.m, performing the resampling
step and computing the sample mean and covariance.

The output of this program was used to produce Figure 4.10, similar to the other filtering
algorithms. Furthermore, long simulations of length J = 105 were performed for this and
the previous three programs, p12.m, p13.m, and p14.m, and their errors are compared in
Figure 4.12, similarly to Figure 4.11, comparing the basic filters p10.m, p11.m, and p12.m.
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1 clear;set(0,’defaultaxesfontsize’,20);format long
2 %%% p15.m Particle Filter (SIRS, OP), sin map (Ex. 1.3)
3 %% setup
4
5 J=1e3;% number of steps
6 alpha=2.5;% dynamics determined by alpha
7 gamma=1;% observational noise variance is gammaˆ2
8 sigma=3e-1;% dynamics noise variance is sigmaˆ2
9 C0=9e-2;% prior initial condition variance

10 m0=0;% prior initial condition mean
11 sd=1;rng(sd);% choose random number seed
12 N=100;% number of ensemble members
13
14 m=zeros(J,1);v=m;y=m;c=m;U=zeros(J,N);% pre-allocate
15 v(1)=m0+sqrt(C0)*randn;% initial truth
16 m(1)=10*randn;% initial mean/estimate
17 c(1)=10*C0;H=1;% initial covariance and observation operator
18 U(1,:)=m(1)+sqrt(c(1))*randn(1,N);m(1)=sum(U(1,:))/N;% initial ensemble
19
20 %% solution % Assimilate!
21
22 for j=1:J
23
24 v(j+1)=alpha*sin(v(j)) + sigma*randn;% truth
25 y(j)=H*v(j+1)+gamma*randn;% observation
26
27 Sig=inv(inv(sigmaˆ2)+H’*inv(gammaˆ2)*H);% optimal proposal covariance
28 em=Sig*(inv(sigmaˆ2)*alpha*sin(U(j,:))+H’*inv(gammaˆ2)*y(j));% proposal
29 mean
30 Uhat=em+sqrt(Sig)*randn(1,N);% ensemble optimally importance sampled
31
32 d=y(j)-H*alpha*sin(U(j,:));% ensemble innovation
33 what=exp(-1/2/(sigmaˆ2+gammaˆ2)*d.ˆ2);% weight update
34 w=what/sum(what);% normalize predict weights
35
36 ws=cumsum(w);% resample: compute cdf of weights
37 for n=1:N
38 ix=find(ws>rand,1,’first’);% resample: draw rand \sim U[0,1] and
39 % find the index of the particle corresponding to the first time
40 % the cdf of the weights exceeds rand.
41 U(j+1,n)=Uhat(ix);% resample: reset the nth particle to the one
42 % with the given index above
43 end
44
45 m(j+1)=sum(U(j+1,:))/N;% estimator update
46 c(j+1)=(U(j+1,:)-m(j+1))*(U(j+1,:)-m(j+1))’/N;% covariance update
47
48 end
49
50 js=21;%plot truth, mean, standard deviation, observations
51 figure;plot([0:js-1],v(1:js));hold;plot([0:js-1],m(1:js),’m’);
52 plot([0:js-1],m(1:js)+sqrt(c(1:js)),’r--’);plot([1:js-1],y(1:js-1),’kx’);
53 plot([0:js-1],m(1:js)-sqrt(c(1:js)),’r--’);hold;grid;xlabel
54 (’iteration, j’);
55 title(’Particle Filter (Optimal), Ex. 1.3’);
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5.4 ODE Programs

The programs p16.m and p17.m are used to simulate and plot the Lorenz ’63 and ’96 models
from Examples 2.6 and 2.7, respectively. These programs are both matlab functions, similar
to the program p7.m presented in Section 5.2.5. The reason for using functions and not scripts
is that the black box matlab built-in function ode45 can be used for the time integration
(see help page for details regarding this function). Therefore, each has an auxiliary function
defining the right-hand side of the given ODE, which is passed via a function handle to ode45.

5.4.1. p16.m

The first of the ODE programs, p16.m, integrates the Lorenz ’63 model 2.6. The setup
section of the program, on lines 4–11, defines the parameters of the model and the initial
conditions. In particular, a random Gaussian initial condition is chosen in line 9, and a
small perturbation to its first (x) component is introduced in line 10. The trajectories are
computed on lines 13–14 using the built-in function ode45. Notice that the auxiliary function
lorenz63, defined on line 29, takes as arguments (t, y), prescribed through the definition of
the function handle @(t,y), while (α, b, r) are given as fixed parameters (a,b,r), defining
the particular instance of the function. The argument t is intended for defining nonautonomous
ODEs and is spurious here, since it is an autonomous ODE, and therefore, t does not appear
on the right-hand side. It is nonetheless included for completeness, and it causes no harm.
The Euclidean norm of the error is computed in line 16, and the results are plotted similarly
to previous programs in lines 18–25. This program is used to plot Figs. 2.6 and 2.7.

5.4.2. p17.m

The second of the ODE programs, p17.m, integrates the J=40-dimensional Lorenz ’96
model 2.7. This program is almost identical to the previous one, where a small perturba-
tion of the random Gaussian initial condition defined on line 9 is introduced on lines 10–11.
The major difference is the function passed to ode45 on lines 14–15, which now defines the
right-hand side of the Lorenz ’96 model given by the subfunction lorenz96 on line 30. Again
the system is autonomous, and the spurious t-variable is included for completeness. A few of
the 40 degrees of freedom are plotted along with the error in lines 19–27. This program is
used to plot Figs. 2.8 and 2.9



148 5 Discrete Time: matlab Programs

1 function this=p16
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p16.m Lorenz ’63 (Ex. 2.6)
4 %% setup
5
6 a=10;b=8/3;r=28;% define parameters
7 sd=1;rng(sd);% choose random number seed
8
9 initial=randn(3,1);% choose initial condition

10 initial1=initial + [0.0001;0;0];% choose perturbed initial condition
11
12 %% calculate the trajectories with blackbox
13 [t1,y]=ode45(@(t,y) lorenz63(t,y,a,b,r), [0 100], initial);
14 [t,y1]=ode45(@(t,y) lorenz63(t,y,a,b,r), t1, initial1);
15
16 error=sqrt(sum((y-y1).ˆ2,2));% calculate error
17
18 %% plot results
19
20 figure(1), semilogy(t,error,’k’)
21 axis([0 100 10ˆ-6 10ˆ2])
22 set(gca,’YTick’,[10ˆ-6 10ˆ-4 10ˆ-2 10ˆ0 10ˆ2])
23
24 figure(2), plot(t,y(:,1),’k’)
25 axis([0 100 -20 20])
26
27
28 %% auxiliary dynamics function definition
29 function rhs=lorenz63(t,y,a,b,r)
30
31 rhs(1,1)=a*(y(2)-y(1));
32 rhs(2,1)=-a*y(1)-y(2)-y(1)*y(3);
33 rhs(3,1)=y(1)*y(2)-b*y(3)-b*(r+a);
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1 function this=p17
2 clear;set(0,’defaultaxesfontsize’,20);format long
3 %%% p17.m Lorenz ’96 (Ex. 2.7)
4 %% setup
5
6 J=40;F=8;% define parameters
7 sd=1;rng(sd);% choose random number seed
8
9 initial=randn(J,1);% choose initial condition

10 initial1=initial;
11 initial1(1)=initial(1)+0.0001;% choose perturbed initial condition
12
13 %% calculate the trajectories with blackbox
14 [t1,y]=ode45(@(t,y) lorenz96(t,y,F), [0 100], initial);
15 [t,y1]=ode45(@(t,y) lorenz96(t,y,F), t1, initial1);
16
17 error=sqrt(sum((y-y1).ˆ2,2));% calculate error
18
19 %% plot results
20
21 figure(1), plot(t,y(:,1),’k’)
22 figure(2), plot(y(:,1),y(:,J),’k’)
23 figure(3), plot(y(:,1),y(:,J-1),’k’)
24
25 figure(4), semilogy(t,error,’k’)
26 axis([0 100 10ˆ-6 10ˆ2])
27 set(gca,’YTick’,[10ˆ-6 10ˆ-4 10ˆ-2 10ˆ0 10ˆ2])
28
29 %% auxiliary dynamics function definition
30 function rhs=lorenz96(t,y,F)
31
32 rhs=[y(end);y(1:end-1)].*([y(2:end);y(1)] - ...
33 [y(end-1:end);y(1:end-2)]) - y + F*y.ˆ0;
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