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Abstract. Multi-plane, 2D TEE images constitute the clinical standard
of care for assessment of left ventricle function, as well as for guiding
various minimally invasive procedure that rely on intra-operative imag-
ing for real-time visualization. We propose a framework that enables
automatic, rapid and accurate endocardial left ventricle feature identifi-
cation and blood-pool segmentation using a combination of image filter-
ing, graph cut, non-rigid registration-based motion extraction, and 3D
LV geometry reconstruction techniques applied to the TEE image series.
We evaluate our proposed framework using several retrospective patient
tri-plane TEE image sequences and demonstrate comparable results to
those achieved by expert manual segmentation using clinical software.

1 Introduction

Over the past two - three decades, ultrasound (US) imaging has evolved as the
preferred, standard-of-care imaging modality for the diagnosis, screening, mon-
itoring, and real-time guidance of several conditions. Specifically, thanks to its
real-time capabilities, relatively inexpensive cost (compared to other modali-
ties), and lack of exposure, US imaging has become the “first-line” modality for
patient screening, diagnosis, and cardiac function assessment.

Trans-esophageal echocardiography (TEE) enables heart imaging while min-
imizing signal attenuation and optimizing field-of-view. As such, TEE is not only
used for screening and diagnosis, but also for intra-operative therapy monitoring
and/or image-guided cardiac interventions. Since the mid-2000s, TEE technol-
ogy has accommodated 3D image acquisition and visualization of the cardiac
anatomy in lieu of simple 2D renderings. However, despite the added bonus of
3D and 4D (3D + time) displays, the inherent trade-off between frame rate, and
extent of anatomy covered, has determined clinicians to resort to the acquisition
and visualization of multi-planar (orthogonal bi-plane or tri-plane) images to
estimate the required parameters to assess cardiac function (i.e., ejection frac-
tion) or identify critical features for image-guided therapy.
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Despite their high frame rate, 2D US images are hampered by several well
known limitations: challenging interpretation and uncertainty in identifying
structures of interest due to inherent specular appearance. Several approaches
for LV segmentation in echocardiography [1] have been popularly formulated as
a contour finding problem, with the active contour method [2,3] being exten-
sively used. Given its edge-based energy approach, the active contour method
often produced many local minima and is also sensitive to the initialization.
Inspired by the active contours, the level set method [4,5] uses both edge- and
region-based energy, making it more robust and less sensitive to initialization.

Active shape [6] and active appearance models [7] incorporate knowledge of
the LV shape and appearance from manually segmented training sets, but assume
a Gaussian distribution of the shape and appearance derived from the training
sets, requiring an initial approximation close to the final solution. On the other
hand, database-guided segmentation [8] overcome the initialization problem by
implicitly encoding prior knowledge from the expert-annotated databases, yet at
the expense of a highly complex search process. Other supervised learning tech-
niques, such as artificial neural networks [9], have been used to detect endocardial
border pixels using expert annotated training sets, but require large training sets
and are unable to handle cases well outside of the training set.

In this work we propose the implementation and clinical validation of an
automatic workflow that encompasses well-evaluated filtering, segmentation, reg-
istration, and volume reconstruction techniques as a means to provide a rapid,
robust and accurate framework for feature tracking from multi-plane ultrasound
image sequences. The proposed computational framework was developed in close
collaboration with our echocardiography colleagues, motivated by the need to
reduce user-dependent and user-induced bias and reduce the uncertainty associ-
ated with the process of manually identifying features from US image sequences.
The impact and contribution of the proposed work is the integration of several
image processing techniques (i.e., phase-based filtering, segmentation, registra-
tion and volume reconstruction) into a streamlined workflow that utilizes tradi-
tional standard of care images and fits seamlessly within the current workflows
associated with both cardiac function assessment and intra-operative cardiac
intervention guidance and monitoring.

2 Methodology

Speckle noise and signal dropouts inherent in US images render intensity based
approaches unreliable; rather, local-phase based approaches [10], theoretically
invariant to the intensity magnitude, have been preferred for detecting endo-
cardium. Here we exploit the robustness of phase-based feature detection and
combine it with the power of graph cut-based techniques [11] that use both region
and boundary regularization, to obtain a rapid, automatic piecewise smooth seg-
mentation of the LV blood pool and muscle regions. In addition, we conducted a
preliminary study using retrospective clinical patient data consisting of tri-plane
(60◦ to one another) TEE image sequences through the cardiac cycle to validate
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the proposed tools and demonstrate their clinical utility and performance against
commercial, clinical-grade, clinician-operated software.

The proposed methodology encompasses three steps: (1) endocardial left ven-
tricle (LV) feature extraction and blood-pool segmentation from the raw 2D
multi-plane image sequences, (2) frame-to-frame feature tracking and propaga-
tion through the cardiac cycle using non-rigid image registration, and (3) 3D
reconstruction of the LV blood pool geometry at the desired cardiac phases
using spline-based interpolation and convex hull fitting.

2.1 LV Feature Extraction and Blood-Pool Segmentation

Image Pre-processing via Monogenic Filtering: Unlike intensity-based
edge detection algorithms are inefficient in identifying features from US images,
intensity invariant local phase-based techniques have shown promising results
[10], where a local phase of ±π/2 signifies high symmetry, while a local phase
of 0 or π signifies high asymmetry [12]. The local phase computation of a 1D
signal uses a complex analytic signal comprised of the original signal as the real
part and its corresponding Hilbert transform as the imaginary part. However,
since the Hilbert transform is mathematically restricted to 1D with no straight-
forward extension to 2D and 3D, we used the method described in [13] to extend
the concept of the analytic signal to higher dimensions using a monogenic signal.
The higher dimension monogenic signal is generated by combining a bandpass
Gaussian-derivative filter with a vector-valued odd filter (i.e., a Reisz filter). The
low frequency variations in the local phase are extracted using a high spread (σ)
Gaussian-derivative filter, while the high frequency components are extracted
using a low spread (σ) Gaussian-derivative filter. The described monogenic fil-
tering sequence is used to transform each of the three tri-plane 2D US images
into corresponding “cartoon” images in which the blood pool and myocardial
wall appear enhanced, facilitating their segmentation in the subsequent step.

Graph Cut-Based Segmentation: The resulting “cartoon” image is used to
construct a four neighborhood graph structure in which each pixel is connected
to its east, west, north and south neighbors. Three special nodes called terminals
are added, which represent three classes (labels): background, blood pool and
myocardium. The segmentation can be formulated as an energy minimization
problem to find the labeling f , such that it minimizes the energy:

E(f) =
∑

{p,q}∈N
Vp,q(fp, fq) +

∑

p∈P
Dp(ip, fp), (1)

where the first term represents smoothness energy, which forces pixels p and q
defined by a set of interacting pair N , towards the same label. The second term
represents the data energy that reduces the disagreement between the labeling
f and the observed data ip. The links between each pixel and the terminals (i.e.,
t-links) are formulated as the negative logarithm of the normal distribution [14]:

Dp(ip, fp) = −ln

(
1

σ
√

2π
exp

(
− (ip − μ)2

2σ2

))
, (2)
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Fig. 1. Segmentation Workflow: (a) original US image, (b) high spread (σ) low fre-
quency monogenic filter applied to the “2D + time” image dataset shown with the
high confidence blood pool mask, (c) low spread (σ) high frequency monogenic fil-
ter output with blood pool removed, (d) “cartoon” image with enhanced regions, and
(e) graph cut segmentation output (f) superimposed onto the original image.

where μ and σ are the mean and standard deviation for the three classes
obtained from the image. The links between neighboring pixels, called n-links,
are weighted according to their similarity to formulate the smoothness energy:

Vp,q(fp, fq) =

{
2K · T (fp �= fq) if |Ip − Iq| ≤ C

K · T (fp �= fq) if |Ip − Iq| > C
(3)

where T (·) is 1 if its argument is true, and otherwise 0, K is a constant, and C
is a intensity threshold that forces the neighboring pixels within the threshold
towards the same label. The minimum cut equivalent to the maximum flow is
obtained via the expansion algorithm in [11] yielding optimal segmentation of
background, blood-pool, and myocardium (Fig. 1e).

2.2 Frame-to-frame Feature Tracking and Propagation

Image Pre-processing: Once a single-phase image is segmented using the
procedure outlined in Sect. 2.1, the extracted features are tracked and propa-
gated throughout the cardiac cycle using non-rigid registration (Fig. 2). Prior to
registration, each “2D + time” image sequence corresponding to each of the tri-
plane views is first “prepared” by identifying a region of interest-based “bound-
ing box” centered on the features that belong to the LV. To ensure the chosen
“bounding box” spans the entire LV including blood-pool, myocardium, and sur-
rounding region, this window is selected based on the high confidence blood pool
mask obtained after the application of the high spread Gaussian-derivative filter
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Fig. 2. The frame-to-frame motion transforms (T(k−1)→k) are estimated by non-rigidly
registering adjacent images in the sequence, then concatenated (T1→k = T1→2 · . . . ·
T(k−1)→k) and applied to the segmented end-diastolic (ED) frame (Fk = T1→k · F1 =
T(k−1)→k · . . . · T1→2 · F1).

employed in Sect. 2.1 to the entire image sequence, followed by an isotropic dila-
tion to ensure full coverage beyond the LV myocardial boundary. Moreover, the
mitral valve region is “trimmed” using a straight line joining the leaflet hinges.

Non-rigid Registration Algorithm: The employed registration algorithm is
a modified version of the biomechanics-based algorithm proposed by Lamash
et al. [15]. The LV anatomy is modeled as a two compartment model consist-
ing of muscle — linear elastic, isotropic, and incompressible, and blood-pool,
with prescribed smoothness constraints to allow rapid motion of the endocardial
contour. We initialize the algorithm by first discretizing the endocardial and epi-
cardial contours, then constructing a mesh of the blood-pool and myocardium.
Rather than resorting to a rectangular grid, we account for the local curvature of
the endocardial border using a finite-element like mesh defined via linear shape
functions. The algorithm deforms the mesh by estimating the required deform-
ing forces that minimize the sum of the squared difference between the initial
and target images (Fig. 3). To avoid large deformations and ensure a smooth
displacement field, a linear elastic regularization approach [16] is utilized.

2.3 3D LV Volume Reconstruction

Following the segmentation of each of the tri-plane views at end-diastole using
the technique in Sect. 2.1 and their propagation throughout the cardiac cycle, the
resulting images are re-inserted into a pseudo-3D image volume along the same
orientation at which they were originally acquired (i.e., 60◦ apart) correspond-
ing to each cardiac phase. The boundary points of each segmented contour at
the same elevation are then fitted using the parametric variational cubic spline
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Fig. 3. Registration workflow: (a) the original image is “prepared” by automatically
identifying an LV-centered ROI (b) onto which the mesh is applied (c), then registered
to the target image (d); the resulting displacement field (e) is applied to the pre-
registered image (b) to obtain the registered image (f), which can be compared to the
target image (d) by visualizing the digitally subtracted image (g).

Fig. 4. Schematic illustration of the 3D LV reconstruction: the tri-plane views at 60◦

(a) are inserted at their appropriate orientation (b), followed by spline interpolation
and convex hull generation (c).

technique in [17]. The spline interpolated data is used to generate a convex hull
using the algorithm proposed in [18] (Fig. 4).

3 Evaluation and Results

We conducted a preliminary study using retrospective tri-plane time series data
spanning multiple cardiac cycles from patients who underwent TEE imaging
for cardiac function assessment. Since the proposed framework encompasses
three different components — automatic extraction of endocardial features,
registration-based feature tracking and propagation, and volume reconstruc-
tion — we assessed the performance of each component against the ground
truth, which consists of the blood-pool representation annotated manually by
the expert clinician, using the EchpPac PC clinical software. In addition, we
also evaluated the performance at each stages of our application running in
MATLAB on an Intel� Xenon� 3.60 GHz 32 GB RAM PC.
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Table 1. Comparison between the blood-pool area measurements (Mean ± Std. Dev.
[cm2]) annotated by the expert (Ground Truth) and the area obtained via A — auto-
matic feature detection from individual frames; B — single phase automated feature
detection + registration-based propagation; and C — single phase expert manual anno-
tation + registration-based propagation. Measurements are evaluated at two cardiac
phases — end-diastole (ED) and end-systole (ES) — and averaged across all views and
cardiac cycles spanned by the acquired data.

Blood-pool area [cm2] vs. Method ED ES

Ground truth: multi phase expert manual seg 52.1 ± 3.2 50.4 ± 4.6

Method A: multi phase auto seg 51.2 ± 3.5 48.9 ± 4.3

Method B: single phase auto seg + Reg 50.1 ± 4.0 48.3 ± 4.6

Method C: single phase manual expert seg + Reg 49.8 ± 4.6 48.2 ± 5.1

Automatic Direct Frame Endocardial Feature Extraction Evaluation:
We first evaluated the accuracy of our automatic, direct frame endocardial fea-
ture extraction component against expert manual annotation of the same fea-
tures from the same frames performed by a cardiologist using the GE EchoPac
PC clinical software. Table 1 summarizes the blood-pool area measurements
annotated by the expert (Ground Truth) and the area obtained via A — auto-
matic feature detection from individual frames; B — single phase automated
feature detection + registration-based propagation; and C — single phase expert
manual annotation + registration-based propagation. Measurements are evalu-
ated at two cardiac phases — end-diastole (ED) and end-systole (ES) — and
averaged across all views and multiple cardiac cycles spanned by the acquired
sequences. Our automatic blood-pool extraction technique required 26.5 s to seg-
ment a “2D + time” 15 frame TEE tri-plane sequence.

Registration-Based Blood-Pool Tracking and Propagation Evaluation:
To evaluate the accuracy with which the non-rigid registration algorithm prop-
agates the extracted features throughout the cardiac cycle, we employed several
metrics, including the DICE correlation, Hausdorff distance, mean absolute dis-
tance error and endocardial target registration error (TRE) computed between
the ground truth blood-pool manually annotated by the expert and the blood-
pool depicted via three other methods under consideration (Table 2).

Figure 5 visually compares the ground truth blood-pool annotation per-
formed by the expert clinician to that extracted via direct frame feature identi-
fication, as well as registration-based propagation of the single-frame blood-pool
annotated either manually by the expert or automatically using the first com-
ponent of our proposed framework. The segmentation propagation technique
required 162 s to run through a 15 frame tri-plane TEE sequence.

3D Volume Reconstruction and Ejection Fraction Evaluation: Lastly,
we assessed the accuracy of the 3D LV reconstruction procedure by comparing
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Table 2. Mean ± Std. Dev. of several metrics — DICE Coefficient [%], Hausdorff
Distance [mm], Mean Absolute Distance (MAD) Error [mm], and Endocardial TRE
[mm] — used to compare the expert clinicians’ blood-pool annotations (Ground Truth)
with the blood-pool annotation obtained via A — automatic feature detection from
individual frames; B — single phase automated feature detection + registration-based
propagation; and C — single phase expert manual annotation + registration-based
propagation. Measurements are evaluated at two cardiac phases — end-diastole (ED)
and end-systole (ES).

Comparison metrics Expert vs. A Expert vs. B Expert vs. C

ED ES ED ES ED ES

DICE coeff [%] 94.9 ± 0.7 94.7 ± 1.4 93.8 ± 0.9 94.6 ± 1.0 95.1 ± 1.0 95.2 ± 1.8

Haussdorf dist [mm] 4.7 ± 0.9 5.2 ± 1.3 7.9 ± 3.5 5.9 ± 1.3 6.4 ± 1.7 5.4 ± 2.1

MAD error [mm] 1.5 ± 0.3 1.6 ± 0.6 1.9 ± 0.4 1.7 ± 0.5 1.7 ± 0.2 1.8 ± 0.7

Endocardial TRE [mm] 1.9 ± 0.2 2.0 ± 0.7 2.6 ± 0.7 2.1 ± 0.5 2.2 ± 0.2 2.2 ± 0.8

Table 3. Comparison between the LV blood-pool volume and Ejection Fraction (EF)
between expert manual annotations (Ground Truth) and A — automatic feature
detection from individual frames; B — single phase automated feature detection +
registration-based propagation; and C — single phase expert manual annotation +
registration-based propagation. Measurements were evaluated at two cardiac phases —
end-systole (ES) and end-diastole (ED).

LV assessment metric EchoPac Auto A Manual + Reg C Auto + Reg B

ED ES ED ES ED ES ED ES

Mean vol [mL] 249.0 223.0 247.6 220.8 232.0 209.6 242.0 217.7

Std dev vol [mL] 3.5 10.8 3.5 3.8 10.4 9.8 2.0 1.5

Mean LV EF (%) 10.4 ± 5.6 10.9 ± 2.0 9.6 ± 0.4 10.0 ± 0.8

Std dev LV EF (%) 5.6 2.0 0.4 0.8

the reconstructed LV volume to that estimated by the GE EchoPac PC clinical
software following expert manual segmentation. The end-diastolic and systolic
volume measurements are summarized in Table 3, along with the corresponding
ejection fraction measurements. Performance-wise, the LV volume reconstruction
from a tri-plane sequence requires 11.6 s.

4 Discussion

We described the implementation and clinical data evaluation of a rapid, auto-
matic framework that encompasses well-evaluated filtering, segmentation, reg-
istration, and volume reconstruction techniques as a means to provide a rapid,
robust and accurate framework for feature tracking from multi-plane ultrasound
image sequences. All components of the proposed technique — segmentation,
registration-based feature tracking and propagation, and 3D blood-pool volume
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Fig. 5. Visual comparison of the blood-pool annotations achieved via A — automatic
feature detection from individual frames; B — single phase automated feature detection
+ registration-based propagation; and C — single phase expert manual annotation +
registration-based propagation vs. the ground truth expert manual blood-pool annota-
tion (GT) quantified at end-diastole (ED) and end-systole (ES) for the three tri-plane
views (V1, V2 and V3). White regions are common between the GT and each of the
three A, B and C blood-pool estimates, red regions belong to the expert annotated
blood-pool (GT), while the blue regions belong to the blood-pool area depicted by
each of the three annotation methods A, B or C under comparison. Panels are named
according to the same convention — i.e., the panel labeled GT-B V2 ES compares the
ground truth expert-annotated blood-pool (GT) to the blood-pool annotated using Method
B displayed in View 2 at end-systole (Color figure online).

reconstruction — were assessed against expert manual segmentation at both
the systolic and diastolic cardiac phases and demonstrated accurate and consis-
tent performance, while significantly minimizing user-induced variability. Fur-
thermore, unlike other techniques that operate on 3D datasets, this technique
enables rapid and consistent analysis of multi-plane, 2D US image sequences —
the standard format for acquisition, interpretation, and analysis of cardiac US
images.

As the proposed workflow integrates multiple algorithms, the influence of
different parameters in the segmentation result is an important consideration.
The frequency specific to the monogenic filter operates over a wide range of values
and yields a good quality “cartoon image” for further segmentation. Similarly,
for the graph cut algorithm, the mean and standard deviations for the blood
pool, muscle and background regions are adaptively extracted from the image
content, while the threshold ’C’ that constraints the pixels towards same label
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can span a sufficiently wide range without significantly effecting the segmentation
result. Furthermore, Lamash et al. [15] have thoroughly studied the effects of
various regularization parameters in the biomechanics-based registration; for our
purpose we selected the optimal parameters as suggested by the paper [15]. In
summary, the proposed workflow yields a consistent segmentation result over a
wide range of parameter values.

Unlike expert manual segmentation that is highly sensitive to intra- and
inter-observer variability, the proposed technique provides a consistent result for
each dataset, which can be reviewed and improved, if needed, by expert clini-
cians. The single-phase feature extraction, followed by tracking and propagation
via registration further reduces uncertainty, avoiding the need to segment each
frame independently by using the a priori frame information along with the
image sequence to achieve optimal segmentation. Hence, should the expert clin-
ician choose to perform any adjustments to the single-phase segmentation, their
precise tracking and propagation throughout the cardiac cycle is guaranteed by
the registration-based implementation.

5 Summary and Future Work

The impact and contribution of the proposed work is the integration of several
image processing techniques (i.e., phase-based filtering, segmentation, registra-
tion and volume reconstruction) into a streamlined workflow that utilizes tradi-
tional standard of care images and fits seamlessly within the current workflows
associated with both cardiac function assessment and intra-operative cardiac
intervention guidance and monitoring.

Ongoing and future efforts include further evaluation and demonstration
of how the proposed technique can cater to dynamically reconstructing 3D
endocardial LV representations that facilitate computer-assisted assessment of
stroke volume and ejection fraction, as well as employing intra-operative multi-
plane 2D TEE data to dynamically update and animate CT and/or MRI
anatomy depicted pre-operatively to better represent the intra-operative condi-
tions. Lastly, although we believe the most meaningful assessment is still against
the expert clinicians analysis of the same input data, we acknowledge the impor-
tance of assessing the output of our proposed framework against the output of
other techniques and extend the analysis to a large dataset of multi-plane image
sequences acquired across multiple cardiac cycles.

Besides its direct application to computer-aided cardiac function assessment,
the proposed framework is readily adaptable to the guidance and monitoring of
image-guided cardiac interventions, most of which involve the use of real-time
ultrasound imaging the clinical standard of care for cardiac procedures.
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