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Abstract. A novel method to characterize biophysical atria regional
ionic models from multi-electrode catheter measurements and tailored
pacing protocols is presented. Local atria electrophysiology was described
by the Mitchell and Schaeffer 2003 action potential model. The pacing
protocol was evaluated using simulated bipolar signals from a decapolar
catheter in a model of atrial tissue. The protocol was developed to adhere
to the constraints of the clinical stimulator and extract the maximum
information about local electro-physiological properties solely from the
time the activation wave reaches each electrode. Parameters were fitted
by finding the closest parameter set to a data base of 3125 pre computed
solutions each with different parameter values. This fitting method was
evaluated using 243 randomly generated in silico data sets and yielded a
mean error of ±10.46 % error in estimating model parameters.
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1 Introduction

Computational models represent a novel framework for studying pathologies of
the human atria and offer a pathway for selecting patients and personalizing
treatment, [1,2]. Of particular interest is the study of atrial fibrillation (AF),
a pathology where the underpinning mechanisms triggering and maintaining the
arrhythmia are not known. The use of increasingly sophisticated electro anatom-
ical mapping systems, high fidelity imaging techniques and inverse ECG meth-
ods has significantly improved patient outcomes [3]. These improved diagnostic
modalities are still only able to provide information on the current state of the
patient and are unable to provide predictions of the outcome of treatments.

Biophysical modeling provides a formal framework that combines our under-
standing of atria physiology, physical constraints and patient measurements to
make quantitative predictions of patient response to treatment. These models
have provided fundamental insight into the mechanisms that underpin arrhyth-
mia’s in the ventricle and the atria, [4] but their potential to inform clinical pro-
cedures had been limited by their inability to capture the significant variability
in physiology inherent both between and within AF patients.
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The aim of this study is to develop and test a robust and rapid pacing
protocol and a model fitting method that allow for local characterization of
cellular biophysical parameters and electrophysiology restitution within patients
atria. Validation of the pacing protocol will be presented in Sect. 3. Validation
of the method proposed here is purely based on synthetic data. Application to
experimental data will be a topic of a future work.

2 Method

2.1 Computational Model

The first step of the method proposed is to build a data set of restitution curves
for each permutation of a set of parameters known a priori. A numerical model
describing the action potential propagation across the left atrium tissue is imple-
mented. The model is then used to reproduce electrogram signals from the poles
of a decapolar catheter when an ectopic pacing stimulus is applied to the central
poles. The procedure for building the restitution curves is described in Sect. 2.2.

Atria tissue electrophysiology was modeled by the mono-domain equations [5],
a simplification of the bi-domain model, [6] when intra- and extra-cellular con-
ductivities are considered proportionals up to a constant, λ. Due to assumed local
symmetry and negligible thickness in the atrium the model was reduced to a 1D
fiber model as follows:

∂vm
∂t

− σm
d2vm
dx2

= Iion + Iapp (1)

σm =
λ

1 + λ
(2)

where Iion is an external applied stimulus, while Iion characterize the ionic cur-
rents defined by the ionic model, [7].

Substituting the mono-domain approximation into the extra-cellular poten-
tial equilibrium equation, and simplifying the conductivity it follows that:

σi
d2vm
dx2

+ (σi + σe)
d2φe

dx2
= 0 σe = λσi

σi
d2

dx2
(vm + (1 + λ) φe) = 0 (3)

d

dx
(vm + (1 + λ) φe) = const

where φe represents the extra-cellular potential, vm the trans-membrane poten-
tial, σi the intra-cellular conductivity and σe the extra-cellular conductivity. The
constant term appearing on the right-hand side of (3) is fixed by imposing a zero
spatial mean on the extra-cellular potential:

φe = − 1
1 + λ

(vm − vm)
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where vm, denotes the spatial mean of the trans-membrane potential.
The catheter configuration and the catheter dimensions are depicted in Fig. 1;

bipolar signals were evaluated as the difference of the extra-cellular potentials
between a pair of electrodes spaced by a distance d1.

l = 30

d1 = 2 d2 = 5

x x
Δx = 7

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Fig. 1. Decapolar catheter configuration and dimensions. Dimensions are expressed in
mm. The pacing stimulus is applied to the central poles, highlighted by the gray ellipse.
Bipolar poles are determined by the pairs: (e1,e2), (e3,e4), (e5,e6), (e7,e8), (e9,e10)

Ionic currents were described using the Mitchell Schaefer 2003 (MS), [7]
ionic current model. Despite its simplicity, the MS model captures the Effec-
tive Refractory Period (ERP) and the Conduction Velocity (CV) restitutions
with a minimal number of parameters. The MS model has four parameters that
describe the opening (τopen, τin) and closing (τclose, τout) rate of the fast activa-
tion and slow repolarization currents respectively.

2.2 Pacing Protocol and Restitution Curves

Atria were paced from the central poles (e5,e6) of the decapolar catheter depicted
in Fig. 1; activations were measured at proximal and distal poles, (e1,e2), (e3,e4),
(e7,e8), (e9,e10).

The initial (maximum) inter-beat interval was fixed at s0 = 700ms and the
minimum inter-beat interval smin = 200ms, for each decrement step ΔTstim the
inter-beat delay si+1 is defined recursively as:

si+1 = si − ΔTstim, i = 1, . . . N(
sN − smin

)
= min

(
si − smin

)
,
(
si − smin

) ≥ 0 (4)

and depicted graphically in Fig. 2.

time

• • • • • •
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time

•••
si+1 ΔTstim
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Fig. 2. Inter-beat sequence. Left: the sequence generated by the recursion defined in (4).
Right: definition of the (i + 1)-th pacing interval as a function of the previous one.

In this work, values of ΔTstim = (100, 80, 60, 40, 20, 10)ms were chosen.
For each bipolar pair the Non-Linear Energy Operator (NLEO), [8], was

evaluated between two subsequent stimulations. In Fig. 3 (left) the output of a
bipolar electrode is depicted; in the same Figure (right) activations are showed.
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Fig. 3. Example of output of a bipolar electrode (left) and particular for two subsequent
electrodes. Peaks corresponds to activations.

The time of maximal NLEO was defined as the activation time. We have
assumed that we do not have access to repolarization times as these can not
be observed reliably in an atria electrogram. Repolarization times were available
in [9], when a mono phasic action potential catheter was used to make recordings.
In the absence of repolarization times we estimate the ERP by identifying when
activation fails to propagate for a given inter-beat interval.

CV was evaluated as the ratio between the distance Δx defined in Fig. 1 and
the time elapsed during which the activation front propagates from one electrode
to the subsequent one.

2.3 Parameter Fitting

A data base of simulation results for 3125 combinations of model parameters
was created for the pacing protocol described above. The data base was created
once on an HPC in approximately one hour and a half. The range of parameter
values explored in the data set are described in Table 1. Restitutions were then
evaluated for each member of the data base.

The parameter fitting is performed in two steps. First, for each member of
the data set a cost C1 is evaluated as the sum of the mean square difference of
the “measured” and the data base CV on each electrode and for each pacing
decrement. A monotone C1 cost function is then obtained by re-ordering the
data set. A subset of N1 solutions is chosen that have a C1 cost below a cut off
value. The cut off is the minimum of a defined cost function value (Fig. 4 left
panel) or the cost function where the derivative is less than the modulus of the
cost function derivative, to avoid plateau regions (Fig. 4 right panel).

Table 1. Parameter values used for building the data set

Conductivity (S/cm) τin (ms) τout (ms) τopen (ms) τclose (ms)

Min 0.001 0.225 4.5 75 120

Max 0.003 0.375 7.5 125 180

Step 0.0005 0.0375 0.75 12.5 15
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Fig. 4. Example of cost function and choice of candidate subset. Left panel: cost criteria
determined by a maximum cost value; this happens when the cost as a function of Iset
is enough steeper. If this is not the case, the selection of Iset is performed using the
derivative of the cost function (right panel)

On the set of N1 candidates a new cost C2 is evaluated as the sum of the
mean square difference between the “measured” and data base ERP on each
electrode and with each pacing decrement.

A new sub-set of N2 candidates is then chosen as the sub-set yielding an
ERP-related cost smaller than a fixed tolerance. From these available parameter
sets, the one that best fits the CV was chosen as the CV measurement had the
highest fidelity. The application of the estimation procedure was performed in
less than one minute on 2.66 Ghz Xeon desktop machine.

3 Results

To evaluate the error properties and robustness of our approach a set of 243
combination models was generated by choosing parameter randomly in the
[min, max] interval reported in Table 1. For each combination, the parameter
set determined from the fitting process was compared with the known true solu-
tion and the L2 (mean error on the 5 parameters) and the L∞ error (maximum
error between the 5 parameters) were then evaluated as a percentage of the
known true solution. Figure 5 shows the L2 and L∞ error distributions and the
corresponding cumulative distribution function (CDF). For the L2 error, a max-
imum value of 29.45% was found with a mean error of 10.46% and a standard
deviation on the error of 5.4%. As depicted by the CDF, 95% of the estimated
parameters analyzed here have a L2 error not greater than 20%.

Figure 6 shows the error distribution for each parameter together with its
CDF. Higher relative errors occur when the value of the parameter to estimate
is close to the minimum value adopted for building the data base of Table 1. The
best performances are obtained in estimating the conductivity and τin parameters.
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Fig. 5. Left: L2 error distribution (bars) and cumulative distribution (thick line) eval-
uated for 243 set of randomly chosen parameters. Right: L∞ error distribution (bars)
and cumulative distribution (thick line) evaluated for 243 set of randomly chosen para-
meters.

According to [11], τopen, τclose parameters characterize ERP restitution: a poorer
approximation of these two parameters was expected, since the available data is
best able to constrain parameters affecting CV restitutions.

The parameter τout is constrained by both CV and ERP restitution. This
parameter characterizes the outward repolarization current, [7]. The inability to
accurately measure ERP through activation times alone means that this parame-
ter is often poorly constrained leading to it often being the worst fit parameter
(see Fig. 6, bottom right).
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Fig. 6. Error distribution and CDF for each parameter; Recurrence of the maximum
error for each parameter
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Figure 6 (bottom, right) shows the number of occurrences each parameter
defines the L∞ error. The τout and τopen parameters appear to be the least well
constrained (116 occurrences for τout, 68 for τopen).

Robustness with respect to noise was evaluated by adding a white noise signal
to each of the bipolar electrograms with an intensity equal to the 10% of the
maximum absolute value of the electrode output. For the L2 error, a maximum
value of 29.45% was found with a mean error of 10.72% and a standard deviation
on the error of 5.5%. This result is not surprising since the proposed method
fits the model parameters using activation time values, i.e. where the signal to
noise ratio is maximum.

4 Discussion

A pacing protocol designed to constrain the biophysical parameters of a cellular
ionic model from a multi-electrodes catheter bipolar electrograms was derived
and tested. The simplified model used in this study reflects the level of complexity
available from clinical data where only endocardial surface activation times can
be recorded. Differently from [10], the same catheter is used to both pacing and
measuring the activation times, reducing uncertainty in the relative orientation
of the wave propagation and the catheter. The CV and ERP restitutions with
respect to the pacing decrement were determined only using the activation times.
The robustness of the method was tested on a set of 243 combination of randomly
chosen parameters.

In the test performed, higher relative errors occurred when the value of para-
meter to estimate was close to the minimum value adopted for building the data
base. The best performances were obtained in the estimation of the conductivity
and τin parameters. These parameters mainly characterize the CV restitution, the
measurements which are well represented by the data set. Conversely, τopen and
τclose characterize ERP restitution. The accuracy in determining ERP depends on
ΔTstim, thus a poorer approximation on ERP could lead to a poorer approxima-
tion on τopen and τclose.

The τout parameter appears to be the least well constrained (116 occurrences
in determining the L∞ error); and poorly approximated. This parameter charac-
terize the outward current, and thus the repolarization: a possible reason of the
poor performances in constraining τout could be ascribed to a greater influence
of this parameter on the ERP restitution than the CV restitution.

Another limitation on the accuracy of the proposed methods depends on the
number of values adopted for each parameter in building the data set.

The proposed method represents a first step in personalizing atrial electro-
physiology models to individual patient physiology and pathology on clinical
time scales.
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5 Conclusions

In this work were introduced a robust and potentially clinically tractable protocol
and fitting algorithm for characterizing local tissue electro-physiology properties
by biophysical ionic cell models.
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