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Abstract. Automated left ventricle (LV) segmentation in 3D ultra-
sound (3D-US) remains a challenging research problem due to variable
image quality and limited field-of-view. Modern segmentation approaches
(shape, appearance and contour model based surface fitting) require an
accurate initialization and good image boundary features to obtain reli-
able and consistent results. They are therefore not well suited for this
problem. The proposed method overcomes those limitations with a novel
and generic 3D-US image boundary representation technique: Probabilis-
tic Edge Map (PEM). This new representation captures regularized and
complete edge responses from standard 3D-US images. PEM is utilized
in a multi-atlas LV segmentation framework to spatially align target and
atlas images. Experiments on data from the MICCAI CETUS challenge
show that the proposed approach is better suited for LV segmentation
than the active contour, appearance and voxel classification approaches,
achieving lower surface distance errors and better LV volume estimates.

Keywords: Structured decision forest · Probabilistic edge map · Multi-
atlas label fusion ·Left ventricle segmentation ·Ultrasound image analysis

1 Introduction

Cardiac ultrasound remains the primary imaging modality in the assessment of
left ventricular systolic function, mass and volume to assess the morphology and
function of the heart. Automated tools to analyse three-dimensional ultrasound
(3D-US) images are important to ensure reproducibility as well as consistency
of segmentations and to reduce the workload of clinicians. The development
of such tools is still an ongoing research problem due to limitations posed by
low image quality, restricted field-of-view and anatomical variations. For these
reasons, accurate and generic image analysis techniques are crucial.

Related Work: Automated left ventricle (LV) segmentation techniques can
be broadly categorized into two groups: (1) image-driven and (2) model-driven
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approaches. Level-set approaches such as phase asymmetry [13] are part of the
first category. They calculate 3D LV surfaces with weak or no shape constraints
and do not require the fitting of a model to a large number of images. Also the
B-spline active surface approach proposed in [4] does not require model fitting.
Instead, the surface is initialized with an ellipsoid and B-splines are used to regu-
larize the deformation of the surface model. Approaches in the second group use
additional a-priori information by analyzing intensity patterns in training sam-
ples and manually traced contours. This includes approaches such as appearance
models (AAM) [15] and semantic labelling of voxels using a classifier such as a
decision forest [9]. Another method proposed in [10] uses labeled atlases and
image registration to segment the LV volume. It does not require the training of
a shape model, but makes an implicit use of such model through the atlases.

Research Motivation and Method Proposal: Active contour and level-set
approaches require an accurate estimate of LV shape and position for initial-
ization. This is because final segmentation results are sensitive to initializations
obtained either manually [7,10] or through ad-hoc solutions such as Hough trans-
form of edges [4] or through selection of image center points [15]. Such approaches
depend on the acquisition field-of-view and cannot be generalized to acquisitions
from different acoustic windows such as apical and parasternal views together.

Similarly, these approaches [4,13,15] make use of intensity and phase based
features to delineate ventricle borders. Since phase features rely on the agreement
of phases between different Fourier components (and are therefore insensitive
to contrast), less importance is given to local energy information. This causes
these features to be sensitive to noise. Likewise, intensity based approaches are
sensitive to low image quality, shadowing, speckle and clutter.

This paper proposes a fully automatic multi-atlas LV segmentation framework
for US images. Additionally, a novel robust 3D boundary representation method,
Probabilistic Edge Map (PEM), is presented and utilized within this framework
to address the challenges outlined above. PEMs delineate object boundaries in
the input images by using a trained structured decision forest (SDF) classifier [6].
With this method, we are extending the structural representation proposed in [7],
applied on 2D cardiac short-axis slices, to a 3D structural analysis together with
the use of US related image features. In this way, discontinous and spurious edge
responses in through plane direction can be eliminated, while achieving smooth
and regularized tissue boundaries, as shown in Fig. 1.

In the proposed multi-atlas LV segmentation framework (PEM-MA), the
PEMs are used in robust affine registration [11] and non-rigid registration [14]
to spatially align multiple atlas images to the target. PEM based US image
registration provides more reliable initialization between target and atlas images,
and achieves better atlas selection [1] and LV segmentation performance. The
proposed segmentation framework is evaluated on a benchmark dataset used in
the MICCAI 2014 CETUS segmentation challenge. The results collected from
the online evaluation platform show that PEM-MA achieves state-of-the-art LV
segmentation accuracy in both surface distance and volumetric measure metrics,
while outperforming all other challenge participants [3,7,15] in terms of the used
evaluation criteria.
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Fig. 1. (a) 3D cardiac US image, (b) phase congruency [13], and (c) PEM which cap-
tures missing structures (orange arrows) and provides smoother edge response (green
arrows). In (d) SDF training is illustrated, where the label patches (yi) are clustered
at each node split, and the weak learners (ψi) search for the optimal threshold value
(θi) and feature (xi) to separate the two clusters (Color figure online).

2 Methodology

2.1 Probabilistic Edge Map (PEM) Representation

In cardiac imaging, 3D-US images outline an anatomical representation of the
heart chambers. Further image analysis typically requires an accurate and smooth
object boundary delineation. Data driven approaches may fail due to severe inten-
sity artefacts and missing boundaries. A machine learning approach such as a
structured decision forest (SDF) [6] can cope with these difficulties as the training
data guides the boundary extraction. This is shown in Fig. 1, where the proposed
PEM captures the missing boundaries and delineates them accurately.

The US images are initially resampled to isotropic voxel size. Furthermore,
speckle noise is reduced using a sparse coding approach: The K-SVD algo-
rithm [8] is used to learn an over-complete dictionary from US image patches.
After the learning stage, the image is reconstructed from a sparse combination of
the learned dictionary atoms to remove speckle patterns. Finally, a SDF classifier
for the PEM is trained from the preprocessed images. While SDFs are similar
to decision forests, they possess several unique properties and advantages.

In the tree structure of SDF, the output space (Y) is assumed to be struc-
tured. In our case, this means that the output labels (yi ∈ Y) of size (Se)3

represent the edge labelling for image patches. In general, any type of multi-
dimensional output can be stored at each tree leaf node, as long as labels can be
clustered into two or more subsets by determining the optimal splitting function
(ψ) at each tree branch, as shown in Fig. 1(d). In the PEM classifier training,
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Fig. 2. A block diagram of the proposed multi-atlas segmentation framework.

this is achieved by mapping each image patch label to an intermediate space
(Θ : Y → Z) where label clusters can be generated based on the Euclidean
distance in Z (cf. [6]). Similar to decision forests, SDFs operate on standard
input feature space which is defined by the high dimensional appearance fea-
tures (xi ∈ X ) extracted from image patches of fixed size (Sa)3. These features
are computed in a multi-scale fashion and correspond to image intensities, gra-
dient magnitudes, soft-binning based histogram of oriented gradients, and local
phase features. Weak classifiers ψ(xi, θ), e.g., 1D and 2D decision stumps, are
trained by maximizing the entropy based information gain criterion at each tree
node with one of the selected image features. The parameter vector θ contains
the stump threshold value and selected feature identifier. At testing time, each
target image voxel is voted for (Se)3 × Nt times by Nt number of trees and
these votes are aggregated by averaging all the predictions. Multiple and over-
lapping patch label predictions are the main advantage of PEMs, as these result
in smooth, regularized and complete delineations of the cardiac chambers.

2.2 Multi-atlas Left Ventricle Segmentation

Next, we detail our proposed multi-atlas LV segmentation framework as out-
lined in Fig. 2, employing the generated edge maps. Initial affine alignment,
atlas selection and deformable registration between target (I) and atlas images
(Ji) are performed based on the PEMs (P I , P J

i ) generated from the US images.
A dataset consisting of a number of manually annotated US images is used in
the atlas formation. The annotations for these atlases contain only the LV endo-
cardial labels. The composite spatial transformations transfer the atlas labels to
the target, followed by a globally weighted label fusion based on PEM similarity.

Global Alignment: The PEMs from both target image and atlases are first
aligned using a block matching technique [11] which maximizes the normalized
correlation coefficient between image blocks. The set of vectors defined by the
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displacement of each block is regularized before finding the global affine trans-
formation Ai. A least trimmed squared regression based regularization (cf. [11])
removes the influence of displacements for the atlas blocks which have no target
block correspondence due to missing features in the images. For this reason, this
approach is robust to shadowing and anatomical variations and can provide an
accurate spatial alignment for atlas selection and good initial segmentation.

Atlas Selection: It was shown in multi-atlas brain segmentation [1], that a
selection of most similar atlases is beneficial. Therefore, after affine registra-
tion, all M1 atlases are ranked according to their average local correlation coef-
ficient [5] score, LCC(P I , P J

i ◦ Ai), and the M2 < M1 top scoring atlases in the
upper quartile are selected. The LCC similarity metric is defined in (1), where
Ω denotes the target voxels within a region defined by the dilated LV mask.

LCC(P I , P J) =
1

|Ω|
∑

x∈Ω

∣∣〈P I , P J〉x

∣∣
√〈P I , P I〉x〈P J , P J〉x

(1)

A Gaussian window Gσ with variance σ2 locally weights the PEMs and
〈P I , P J〉x = Gσ ∗ (P I .P J )[x] − (Gσ ∗ P I)[x](Gσ ∗ P J)[x], where . denotes the
Hadamard product, and ∗ the convolution. As the SDF classifier makes use of
image intensities in node splits ψ, local intensity changes in the input images
can influence the edge probabilities in PEMs. For this reason, LCC is a more
suitable similarity measure for PEMs than global metrics such as sum of squared
differences.

Local Alignment: To correct for residual misalignment, a registration based on
free-form deformations (FFDs) [14] follows the atlas selection. The total energy
E(Ti) = −LCC(P I , P J

i ◦ Ti ◦ Ai) + λBE(Ti) is minimised in a multi-resolution
scheme, where BE is the bending energy of the cubic B-spline FFD Ti and λ
defines the trade-off between local PEM alignment and deformation smoothness.

Label Fusion: Finally, the transferred atlas labels are fused using a globally
weighted voting1 [2] based on the dissimilarity mi = 1 − LCC(P I , P J

i ◦ Ti ◦ Ai).
The LV segmentation of the target image is then given by the labelling function
SI(x) = arg maxl∈{0,1}

∑M2
i=1 wi ·δ(SJ

i (x)− l), where δ is the Dirac delta function
and global weights wi = exp(−mi/

1
M2

∑M2
j=1 mi). In this fusion strategy, atlases

more similar (higher LCC score) to the target image have a stronger influence on
the final segmentation and those with a relatively lower score are downgraded.

3 Algorithm Evaluation

The proposed segmentation framework is evaluated on a benchmark dataset
used in the MICCAI 2014 CETUS challenge [12]. It consists of 4D echo sequences
acquired from an apical window in healthy volunteers and patients with myocar-
dial infarction and dilative cardiomyopathy. The dataset is divided into 15 train-
ing and 30 testing image sequences. Contours of the heart chambers were outlined
1 Locally weighted and majority voting fusion methods were also evaluated in the

experiments, and the best results were obtained with the global fusion method.
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Table 1. LV segmentation results on 30 subjects (CETUS challenge testing data-
set [12]). Mean distance (MD [mm]), Hausdorff distance (HD [mm]) and Dice coefficient
(DC [%]) results are listed separately for ED and ES frames.

MDED MDES HDED HDES DCED DCES

Manual [12] 1.01 ± .30 1.01 ± .38 3.37 ± .87 3.30 ± .94 0.949 ± .15 0.938 ± 0.21

AAM [15] 2.44 ± .xx 2.79 ± .xx 8.45 ± x.xx 8.65 ± x.xx 0.879 ± .xx 0.835 ± .xx

BEAS [3,4] 2.26 ± .xx 2.43 ± .xx 8.10 ± x.xx 8.13 ± x.xx 0.894 ± .xx 0.856 ± .xx

SE-MA [10] 2.18 ± .70 2.47 ± .74 7.55 ± 1.76 8.57 ± 2.96 0.894 ± .03 0.849 ± .04

SDF-LS [7] 2.09 ± .xx 2.20 ± .xx 9.31 ± x.xx 8.35 ± x.xx 0.894 ± .xx 0.871 ± .xx

PEM-MA 1.94 ± .55 2.23 ± .60 7.00 ± 1.99 7.53 ± 2.23 0.904 ± .02 0.874 ± .04

by three experts, but only those of the training set are publicly available. There-
fore, the CETUS web site2 is used for evaluation. Submissions are automatically
evaluated based on surface distance errors and clinical LV volumetric indices.

In all experiments, segmentations are computed only for end-diastolic (ED)
and end-systolic (ES) phases. Table 1 lists the surface distance errors obtained in
the first experiment. The proposed PEM-MA framework achieves better results
than the challenge top performing algorithms: AAM [15] (active appearance
model), BEAS [3,4] (B-spline active contours), SDF-LS (structured decision
forest followed by level-set segmentation), and SE-MA [10] (spectral embedding
multi-atlas method). The inter-observer manual segmentation [12] variations are
reported for comparison. We can conclude that PEMs provide a better boundary
representation than spectral features [10] based on mean (p < 0.01) and Haus-
dorff distance (p < 0.01). Moreover, the proposed approach does not require
landmark selection [10] or manual affine alignment of LV surface template to
initialize the segmentation [7].

The difference in segmentation accuracy between PEM-MA and model based
surface fitting methods (AAM, BEAS) can be explained as follows. The proposed
approach employs affinely aligned atlas labels as shape priors which are selected
based on LCC similarity of PEMs, whereas the other methods use less data
specific priors such as mean LV shape [15] and ellipsoid [4] shape assumption.
Similarly, in PEM-MA, the LV segmentation is initialized with position priors
obtained through a robust affine block matching of PEMs. This delineates the
left ventricle position in the image more accurately than Hough transform [4]
and the mean LV position of the training images [15].

In the second experiment, clinical indices, such as ejection fraction (EF), ED
and ES volume values, are computed from the proposed segmentation approach.
The obtained results are compared against their reference values using the afore-
mentioned web site. The results in Table 2 show that PEM-MA achieves a better
agreement with the ground truth compared to the other methods. As PEM-MA
delineates LV boundaries more accurately, better volume estimates are obtained.
Additionally, we observe that PEM-MA displays a consistent performance in
2 https://miccai.creatis.insa-lyon.fr/miccai/community/1.

https://miccai.creatis.insa-lyon.fr/miccai/community/1
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Table 2. Segmentation results on 30 images (CETUS testing data [12]). Pearson’s
correlation coefficient (corr) and Bland-Altman (μ ± 1.96σ) limit of agreement (LOA)
between ground-truth and estimated LV volume values are reported.

EDcorr EDLOA EScorr ESLOA EFcorr EFLOA

Manual [12] 0.981 −0.636 ± 18.2 0.987 −0.50 ± 14.4 0.959 0.13 ± 6.07

AAM [15] 0.966 −15.42 ± 32.1 0.964 −13.2 ± 28.9 0.611 3.69 ± 17.58

SE-MA [10] 0.945 −6.02 ± 41.6 0.924 −0.42 ± 41.2 0.780 −1.55 ± 13.88

BEAS [3,4] 0.965 −4.99 ± 35.3 0.967 −6.78 ± 27.7 0.889 2.88 ± 10.48

SDF-LS [7] 0.917 8.73 ± 49.9 0.956 −5.16 ± 31.7 0.819 8.33 ± 14.46

PEM-MA 0.961 −4.14 ± 34.0 0.973 −3.47 ± 26.7 0.892 0.48 ± 10.78

both LV surface fitting and volume estimation in contrast to SDF-LS. The per-
formance difference between the two can be linked to the improved structural
representation and the choice of different surface fitting algorithm.

All experiments were carried out on a 3.00 GHz quad-core machine. The
average computation time per image pair was 74 s for non-rigid registration,
16s for affine alignment and 20 s to compute each PEM. The training of the
SDF (70m per tree) and atlas PEM computation were performed offline prior to
target segmentations. The segmentation of the LV takes in total 16 m per image.
The proposed approach is computationally more complex than the methods in
[4,7] due to the multitude of registrations. However, a parallel implementation
of these registrations significantly reduces the total runtime.

Implementation Details: In total Nt = 8 PEM decision trees are trained
using 20 US sequences plus rotated versions of these images. PEM quality was
not improved further by including more trees. Patch sizes for training features
and ground-truth edges are chosen as Sa = 20 and Se = 10 per dimension. For
global alignment, blocks of size 53 voxels were used with search radius equal to
the block size as in [11]. A multi-scale optimization strategy was employed to
capture large displacements and to improve convergence. A total of M1 = 30 ED
and ES atlases were aligned to each subject. Of these, on average M2 = 6.3 were
selected based on their LCC score, with a standard deviation of the Gaussian
σ = 7 voxels in each dimension.

4 Conclusion

We presented a novel US image representation (PEM) which achieves state-
of-the-art cardiac US image registration and LV segmentation results within a
multi-atlas framework. The proposed framework outperforms all other methods
participating in the MICCAI CETUS challenge based on the obtained surface
mesh evaluation criteria. The main contributions of the paper are: (1) highly
accurate 3D edge map representation for cardiac US images, and (2) block-
matching based robust and accurate initialization technique for automatic LV
segmentation. The proposed PEM representation is generic and modular. It has
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the potential of being applied to echo images acquired from other organs and
does not make assumptions on the acquisition window and image orientation.
Additionally, the multi-atlas segmentation framework is shown to be applicable
for clinical routine as it can estimate functional indices very accurately.
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