
Chapter 5
Extraction of Grasp-Related Visual Features

A model for visual cue extraction and merging strongly inspired on primate, and
especially human, psychophysiology is described in this chapter. This implements
the part of the framework of Chap. 4 dedicated to the extraction of object visual
features relevant for grasping purposes. The areas and connections of the model of
Fig. 4.6 involved in this process are highlighted in Fig. 5.1.

The distance of a target object is estimated, similarly as in the lateral intraparietal
sulcus LIP, using proprioceptive vergence data. The advantages of expressing and
calculating distances in nearness units are discussed. Object orientation estimation,
executed in the posterior intraparietal sulcus CIP, is performed combining binocular
(stereoptic) andmonocular (perspective) visual data. A theoretical analysis for deriv-
ing plausible expressions for slant estimation is accompanied by an implementation
with a set of artificial neural networks. The behavior of the system in simulated noisy
conditions suggests that the model is faithful to biological reality.

A first interaction between the two streams is implemented at this point. An
object recognition module, representing area V4, classifies the target object into one
of three basic shapes: boxes, cylinders and spheres. Even though such classification
provides no direct information on object size and proportion, it allows to access a
basic knowledge about the target shape which helps in the pose estimation process.

The outcome of applying the computational model to a real robotic platform is
presented and discussed. The robot is required to observe target shapes of differ-
ent size and proportion and estimate the features useful for a potential grasping
action. The comparison of the obtained results with experiments described in the
neuroscience literature confirms the effect of different driving factors on estimation
reliability, showing how stereoscopic, perspective and merged estimators behave in
different conditions. The same comparison is done for distance estimation obtained
from proprioceptive vergence data.

In order to complement the background information provided in the previous
chapters, some important concepts regarding cue extraction and integration, object
recognition, and artificial vision methods for pose estimation, are given in the next
section.
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Fig. 5.1 Areas of the model framework involved in extraction of grasp-related visual features

5.1 Extraction and Integration of Object-Related Visual
Cues in the Primate Cortex and in Robotics

For both natural and artificial agents, the interaction with the environment requires
the ability of estimating distance, size and shape of surrounding objects. Such skill is
highly supported by, if not fully dependent on, the use of binocular, or stereoscopic
vision (Marotta et al. 1995; Watt and Bradshaw 2003; Bradshaw et al. 2004; Loftus
et al. 2004). Binocular vision consists in the contemporaneous acquisition of two
different images taken from viewpoints that are always at the same, short distance—
the eyes. Theprocess allows to obtain a fast and accurate estimationof object distance,
size, motion, through the interpretation of binocular disparities (see box).

The difference between the left and right retinal representations of visual fea-
tures is called binocular disparity (Howard and Rogers 2002; Parker 2004).
Absolute disparities are simple distances, either horizontal or vertical, between
the two retinal positions of the same point-like feature. Various types of higher
order disparities can be computed from absolute ones. First order relative dis-
parities represent the difference in disparity between two image points, and
thus directly code for feature depth and slant. Horizontal relative disparities
are used for estimating object slant about a vertical axis, the most common in
nature. Orientation disparities allow instead to calculate slants about horizontal
axes (Heeley et al. 2003). Second order disparities are used to estimate object
curvature.
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Despite its fundamental importance, stereoptic information alone is often not
enough, and motion, texture, shading and other cues are used to complement it.
Indeed, in each modality the brain seems to efficiently use a large set of differ-
ent cues at the same time (Norman et al. 1995). Evaluation and integration of all
available cues is performed in order to obtain the most likely final estimates. Cue
integration is amajor principle in the primate sensory cortex, and especially in vision.
Visual information is processed in a highly parallel way, different cues for the same
stimulus are processed, compared and merged in order to provide increased estima-
tion reliability through redundancy (Landy et al. 1995; Tsutsui et al. 2001). In this
section, vision science concepts related to cue generation and integration which help
in complementing the review of Chap.2 are provided.

5.1.1 Feature Extraction

The basic mechanisms of stereoscopic vision have been studied for long time, and
are discussed in fundamental works such as Julesz (1971), Marr (1982). Neuronal
responses to disparity stimuli in cortical visual areas have also been throughly inves-
tigated (Poggio et al. 1988; Cumming and DeAngelis 2001). Disparity detection is a
fundamental aspect of visual processing that begins already in V1 and V2 (Gonzalez
and Perez 1998; von der Heydt et al. 2000; Thomas et al. 2002; Trotter et al. 2004;
Read 2005). It is though from V3 that disparity coding spans areas of the visual
field wide enough to provide a proper interpretation of stereoptic information, both
in monkeys (Adams and Zeki 2001; Tsao et al. 2003) and in humans (Backus et al.
2001; Welchman et al. 2005; Anzai et al. 2011). For what concerns the processing
of higher order disparities, there is a general consensus regarding a prominent role
of V3A in representing relative disparities (Backus et al. 2001; Tsao et al. 2003;
Rutschmann and Greenlee 2004; Brouwer et al. 2005). An initial, basic perspective
processing could also be performed in area V3A (Welchman et al. 2005; Georgieva
et al. 2009).

As explained in Sect. 2.3.1, the caudal intraparietal sulcus CIP is dedicated to
the extraction and description of visual features suitable for grasping purposes. Its
neurons are strongly selective for the orientation of visual stimuli, represented in
a viewer-centered way. Selectivity toward disparity-based orientation cues is pre-
dominant in macaque’s CIP, which neurons are selective for first and second order
disparities (Sakata et al. 1998; Endo et al. 2000; Tairaet al. 2000). fMRI studies
showed that the human posterior intraparietal sulcus is responsive to disparity-coded
orientation, too (Tsao et al. 2003; Rutschmann and Greenlee 2004; Naganuma et al.
2005). On the other hand, many CIP neurons also respond (some exclusively) to
perspective-based orientation cues, both in monkeys (Tsutsui et al. 2001, 2005) and
humans (Taira et al. 2001).

The evidence suggests that CIP integrates stereoptic and perspective cues for
obtaining better estimates of orientation (Tsutsui et al. 2005; Welchman et al. 2005).
This sort of processing performed by CIP neurons is the logical continuation of the
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simpler orientation responsiveness found in V3 and V3A, and makes of CIP the ideal
intermediate stage toward the grasping-based object representations of AIP (Sakata
et al. 1999; Shikata et al. 2001; Bray et al. 2013; Konen et al. 2013).

Another area that projects to CIP is the lateral intraparietal sulcus LIP, which
performs distance and location estimation of target objects. More exactly, according
to psychophysiological research in humans (Tresilian andMon-Williams 2000),what
is actually estimated and used in the parietal cortex is the reciprocal of distance, that
is, nearness. In the intraparietal sulcus, distance and disparity are processed together,
the former acting as a gain modulation variable on the latter (Salinas and Thier
2000; Genovesio and Ferraina 2004). This mechanism allows to properly interpret
stereoscopic visual information (Dobbins et al. 1998; Mon-Williams et al. 2000), as
described in Sect. 5.2.2.

5.1.2 Cue Integration

Cue integration, or combination, is one of the main working principles of the human
sensory systems. Restricting to unimodal cue integration, vision is probably the
best example of the complexity reached in the process of getting the best estimate
of a stimulus from concurring and often discordant cues. Several models have been
proposed for explaining how such best estimate is obtained, but most phenomena can
bemodeled by a simple linear weighting of concurrent cues, aimed atmaximizing the
likelihood of the final estimate (Landy et al. 1995). The main underlying principles
that allow to achieve this goal seem to be two: cue reliability and cue correlation, or
discrepancy (Tresilian and Mon-Williams 2000; Jacobs 2002).

Cue reliability is probabilistic, it depends on environmental conditions, on the
estimate itself and sometimes on other, ancillary measures (Landy et al. 1995). Con-
sidering the case of interest for our research, i.e. orientation estimation, stereoscopic
cues are considered less reliable outside a certain range of disparity, but also at
longer distances, being distance in this case an ancillary cue. Often, ancillary cues
directly affect the estimation process through gain modulation, such as in the men-
tioned distance/disparity example (Trotter et al. 1996). This seemingly simple and
safe mechanism may nevertheless suffer because of a second-order uncertainty, the
problem of assessing the reliability of the ancillary cue itself. In any case, reliability
rules have to be learnt by a subject in her/his interaction with the environment, and
can be misleading in the case of unusual situations, such as in optical illusions.

The second principle, cue correlation, considers the degree to which concurrent
cues conflict or coincide, and gains importance with increasing number of cues. In
fact, there is no way to choose between two conflicting cues only on the base of cue
correlation, but if a cue is the only one in disagreement with a number of coincident
cues, it is very reasonable to consider it untrustworthy. Fortunately, vision systems
often provide many cues quite different from each other, so that correlation can be
a perfect criterion for weighting the cues in the final estimate (Backus and Banks
1999).



5.1 Extraction and Integration of Object-Related Visual Cues in the Primate … 87

The available models for extraction and integration of visual cues usually focus
on very specific aspects, such as disparity responsiveness with changing distance
(Lehky et al. 1990; Lehky and Sejnowski 1990), conflicting stimuli (van Ee et al.
1999), maximum-likelihood cue integration (Hillis et al. 2004), temporal integration
according to cue reliability (Greenwald et al. 2005), extraction of local surface slant
(Jones and Malik 1992). Apparently, no published models on the subject provide
details for practical implementation on robotic vision setups.

5.1.3 Object Recognition in the Ventral Stream

As pointed out in Sect. 2.4.1, object recognition in the ventral stream is performed
gradually and hierarchically (Grill-Spector et al. 1998; Bar et al. 2001). Recent find-
ings indicate that object recognition is composed of at least two subsequent stages,
categorization and identification (Grill-Spector and Kanwisher 2005). In the first
stage, an object is classified as belonging to a given class or family of objects, and
such process is strikingly fast. The classification delay is so short that there is proba-
bly time to feed category information to the dorsal stream, for improving the online
estimation of action-related features. This mechanism is represented by the link pro-
jecting from areaV4 toCIP in Fig. 5.1. As pointed out in Sect. 2.3.1.3, anatomical and
functional evidence supports this early integration between the streams (Perry et al.,
2014). The second stage of object recognition is proper identification, performed by
LOC, in which object identity is recognized within its category.

A second aspect, relevant for modeling purposes, is the method employed by the
ventral stream for performing object recognition (Ullman 1996). At least for the first
classification stage, visual input is very likely compared to memorized 2D represen-
tations (Bülthoff et al. 1995; Orban et al. 2006), and complex objects are identified
by composing simpler features (Thoma and Henson 2011). A classification based on
3D representations would require mental rotation, and this can hardly be performed
with the quickness observed in the experiments of Grill-Spector and Kanwisher
(2005). Moreover, the consistent preference of some “canonical” views during free
and classification-oriented object exploration indirectly supports the existence (if not
the dominance) of 2D object representations (Blanz et al. 1999; James et al. 2001).

Various biologically inspired methods for object recognition have been developed
in computer vision, and different models of ventral stream processing are available
(O’-Reilly and Munakata 2000; Riesenhuber and Poggio 2000; Rolls and Webb
2014). Someof themare strongly inspired by neurosciencefindings, and use plausible
approaches such as radial basis function networks (Pouget and Sejnowski 1997;
Deneve and Pouget 2003) or a temporal coherence principle in unsupervised learning
(Einhäuser et al. 2005). For the purposes of this work, object recognition is functional
to grasping actions, and the interest is not in detailed modeling of ventral stream
mechanisms. A simple viewpoint invariant classification is implemented, based on
basic 2D global object representations (see Sects. 5.2.3 and 5.4.2).

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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5.1.4 Orientation Estimation in Artificial Vision and Robotics

Object orientation (or slant) estimation is a common, and difficult, problem in arti-
ficial vision (Lippiello et al. 2006). Nevertheless, no research works similar to the
proposed approach are available in the literature.

A detailed overview of existing techniques for pose estimation can be found
in Goddard (1998). The available approaches differ depending on the type and loca-
tion of the sensors, the illumination requirements, the object or scene feature on
which the pose is calculated, the relative motion between robot and object. Some-
times, noise sources and uncertainty factors are modeled in an attempt to improve the
robustness and accuracy of the results. Among various methods, geometry or model
based techniques are most common. These methods use an explicit model for the
geometry of the object in addition to its image in determining the pose. The object
is modeled in terms of points, lines, curves, planar surfaces, or quadric surfaces
(Rosenhahn et al. 2004). Methods of this kind have been proved useful even with
moving targets (Lippiello et al. 2001). Often, the use of markers substitute explicit
modeling (Gehrig et al. 2006). These techniques can be combined with others, where
appearance based methods are used for the rough initial estimate and followed by a
refinement step usingmodel based technique (Ekvall et al. 2003). In Peters (2004) the
rough initial estimate is determined on the viewing hemisphere as an initial guess,
and then also refined. A model based approach can also be connected with range
images, for example matching a 3D model to a range representation of the scene
(Germann et al. 2007). The managing of range data is anyway quite different from
vision research, and works which locate parallel surfaces to grip from range images,
such as Weigl et al. (1995), are interesting but unrelated to the current approach.

For what concerns stereo slant estimation inspired on human physiology, Ferrier
(1999) describes a method based on disparities which makes use of a model for
computing orientation of features. With the support of camera calibration, which
is not used in this work, they obtained similar results. Regarding the integration of
stereoptic and perspective cues in artificial vision, although the idea is not novel
(Clark and Yuille 1990), there are very few robotic platforms that make use of both
visual cues at the same time. For example, in Saxena et al. (2007) a vision system is
trained to estimate scene depth through monocular data using supervised learning,
and a joint monocular/binocular estimator is generated. The authors show that inte-
gration of monocular and stereopsis data performs better than either cue alone. Other
works, focused on object tracking (Taylor and Kleeman 2003) and on visual servoing
(Kragic and Christensen 2001), perform cue integration, but their visual analysis is
model-based, and their goal is feature matching and not feature extraction.
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5.2 A Model of Distance and Orientation Estimation
of Graspable Objects

This section introduces a proposal for distance estimation based on proprioceptive
vergence data, and two different orientation estimators obtained from stereoscopic
and perspective cues. A hierarchical approach to object classification is also pre-
sented.

5.2.1 Distance Estimation Through Proprioceptive Data

The distance of a fixated object from the viewer can be estimated by either retinal
and/or proprioceptive cues, accommodation and vergence (see box).

The movement performed by the eyes in order to converge on a given visual
target is called vergence, or convergence. The resultant angle is called vergence
angle. The adaptation of the shape of the eye crystalline lens in order to change
the eye focus is called accommodation. Accommodation and vergence are both
directly related to the distance of the visual target, and are linked by a reflex. In
distance estimation, accommodation and vergence are preferably used when
retinal data are not available or considered not reliable, and for short distances
(Mon-Williams and Tresilian 1999; Tresilian et al. 1999).

The relation between distance and vergence angle γP is simple and depends only
on the interocular distance I , which is constant (see Fig. 5.2). The distance d between
the fixated point P and the cyclopean eye O, middle point between the two eyes, is
given by:

d = I

2 tan(γP/2)
(5.1)

Psychophysiological experiments (Tresilian and Mon-Williams 2000) suggest
that distance estimation is most probably performed in the human brain using near-
ness units instead of distance units. Nearness is the reciprocal of distance, and a
point at infinite distance has 0 nearness. The nearest distance at which vergence
can be maintained, called the near point of vergence, is usually between 60 and
70mm (Brautaset and Jennings 2005). Average interocular distance for adults is
considered to be between 63 and 65mm, and thus approximately coincident with
the near point of vergence. Setting I = d yields a maximum vergence angle of:
γ = 2 · arctan(I/(d · 2)) = 2 · arctan(1/2)) = 0.927rad = 53◦8′. The following
expression for computing nearness from vergence hence produces nearness values
between 0 (for γP → ∞) and 1 (for γP = 0.927 rad, the maximum vergence angle):
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Fig. 5.2 Relation between
vergence angle γP and
distance d. I is the
interocular distance, O the
position of the cyclopean eye

nearness = 2 tan(γP/2) (5.2)

Such measure is more precise for close distances, and thus especially suitable for
dealing with objects in the peripersonal space. Moreover, it is based on the relation
between I and the near point of vergence, and does not depend on any constant or
auxiliary measures.

Two radial basis function (RBF) networks were designed, for learning the associ-
ation between vergence and nearness and between vergence and distance. The results
can be seen in Fig. 5.3. On the top left, the distance/vergence curve corresponding
to (5.1) is shown. Equation (5.2) between vergence and nearness is depicted on the
top right of the image, and the corresponding learnt curve appears on the bottom
right of Fig. 5.3 (lighter, dashed curve). The reciprocal of the learnt relation is finally
depicted on the bottom left, where it can be compared with the true mathematical
relation (they practically coincide). In this simplified example, to obtain a similar
performance in the estimation of distance, the distance/vergence network requires
11 RBF units, while the nearness/vergence net requires only 4 neurons. This is not
surprising, considering the approximate linearity of the relation vergence/nearness,
and considering that the brain often employs an economy principle, minimizing the
resources required to perform a given task. In the current model, object distance is
represented in nearness units, and is used in the next section to modulate the effect
of disparity on orientation estimation.

5.2.2 Object Orientation Estimation Through Retinal Data

For estimating object pose, humans combine estimators provided by different visual
and proprioceptive cues, both binocular (mainly horizontal and gradient disparity
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Fig. 5.3 Distance to vergence and nearness to vergence relations: theoretical equations (upper
diagrams) and learnt curves (superposed dashed lines in the lower diagrams)

cues) and monocular (texture or edge perspective cues) (Backus et al. 1999). In this
section, the problem of orientation estimation according to different cues is analyzed.
First, a couple of expressions both neurologically plausible and useful for a practical
implementation are derived. Next, the neural network architecture implemented for
the solution of the problem is introduced. Finally, some results which allow to discuss
the theoretical and practical implications of the proposed approach are described.

The proposed object orientation estimation process makes use of simple visual
information for achieving a geometric 3Dselectivity similar to that observed in neuro-
science studies. The goal is to develop a modular computational structure, composed
of various estimators, which makes use of proprioceptive and retinal cues in order
to obtain the geometrical parameters needed for grasp planning. This approach dif-
fers from related research (e.g. Jones and Malik 1992) in that it builds upon retinal
data: instead of using pixelated images and projective matrices, the only inputs are
retinal angles and proprioceptive eye data. The center of the coordinate system is the
cyclopean eye, as for humans.

For orientation and basic shape discerning, the approach relies upon one monocu-
lar information source, that is, perspective under the assumption of edge parallelism,
and one kind of binocular information, width disparity. As explained in the previ-
ous section, these data are coded by visual areas V3 and V3A and combined in the
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posterior intraparietal cortex CIP. One basic assumption is that objects recognized
as boxes or cylinders have actually straight, parallel edges, and are laying on a hori-
zontal table. This is very plausible from a neuropsychological point of view, as the
primate brain is actually “programmed” to better assess vertical and horizontal edges,
most common in nature. Indeed, experiments on monkeys (Tsutsui et al. 2001) and
humans (Brouwer et al. 2005) have shown that, even for purely perspective pose
estimations, a frontoparallel trapezoid is usually interpreted as a rectangular shape
slanted in depth.

Next, we analyze the sort of computation performed by the human brain during
orientation estimation, in the binocular and in the monocular case, and propose
plausible transfer functions to obtain estimators from simple retinal angles.

5.2.2.1 Stereoscopic Slant Estimation

In Fig. 5.4a a viewing scene is seen from above: object PQ of length l is slanted
about a vertical axis with an orientation θ . Its extreme P is the fixation point, placed
straight ahead from the cyclopean eye (in this way γP corresponds to the vergence
angle). All α angles represent the retinal projections of points P and Q on the left
and right eyes, I is the interocular distance, ψQ the binocular separation of points P
and Q (being ψP = 0).

The change in slant of segment PQas pointQmoves on the xz reference systemcan
be observed in Fig. 5.5. In the graph, the position of P is fixed at (xP = 0, zP = 30).
The dot represents θ for Q positioned as in Fig. 5.4a.

(a) (b)

Fig. 5.4 Schemes for deriving slant from stereopsis and perspective. a Stereopsis. b Perspective
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Fig. 5.5 Slant θ as a
function of the position of
point Q in the xz space
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The horizontal slant θ of an object can be computed only from retinal angles using
the following expression, which can be derived from Fig. 5.4a:

tan θ = (tan αr Q − tan αl Q) − (tan αr P − tan αl P )

tan αl P tan αr Q − tan αl Q tan αr P
(5.3)

Reminding that P is the fixation point, so that αl P = −αr P = γP/2, the equation
can simplified in this way:

tan θ = 1

2 tan(γP/2)
· (tan αr Q − tan αl Q) − (tan αr P − tan αl P )

(tan αr Q + tan αl Q)/2
(5.4)

Recalling (5.2) and the definitions in the disparities text box, this relation can be
expressed by using only quantities that are actually computed in the visual brain
areas:

tan θ = 1

nearness
· relative dispari t y

separation
(5.5)

Separating θ , a biologically plausible stereoptic orientation estimator θ̂S is obtained:

θ̂S = arctan
relative dispari t y

nearness · separation
(5.6)

The interpretation of (5.6) is that the component due to disparity (the fraction relative
disparity/separation, which is also called disparity gradient) is modulated by the
viewing distance (or nearness), as indicated by neuroscience research. Nearness is
probably computed from proprioceptive data, as discussed in the previous section.
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Fig. 5.6 Distorted estimation of θ (b) obtained by approximating tan α with α

The separation which appears in the formula is binocular, referred to the cyclopean
eye.

Other works (Banks et al. 2001; Howard and Rogers 2002) propose expressions
similar to (5.6), starting from slightly different assumptions. It is important to point
out though that common approximations found in the literature carry to unaccept-
ably wrong estimations in most cases. An example of this can be seen in Fig. 5.6,
where an exact reproduction of Fig. 5.5 (Fig. 5.6a), obtained with (5.6), is compared
to a distorted one (Fig. 5.6b), obtained with the same equation in which the common
solution of approximating the exact value of tan α with α is employed. The compar-
ison demonstrates that for a real application, and a faithful model, exact expressions
need to be used.

5.2.2.2 Perspective Slant Estimation

The slant of an object can be estimated using only monocular data, as depicted in
Fig. 5.4b, in which the origin of the axes is one of the eyes. The frontal object face is
considered as rectangular, exploiting the reasonable assumption of parallelism and
equality of opposite edges (PS and QR in the image). The angles β in the figure
represent the vertical retinal angles associated to such edges. The function which
leads from retinal angles to orientation estimation can be derived from the draw, and
can be referred entirely to either the left or the right eye:

tan θ = tan βQ R

tan βP S sinψQ
− 1

tanψQ
(5.7)

In this case the monocular separation is: ψQ = (αQ − αP )/2.
Approximating sinψQ to tanψQ , which is plausible for reasonably small sepa-

rations, a formula for perspective estimation of θ is obtained:

θ̂P = arctan
perspective dispari t y

separation
(5.8)



5.2 A Model of Distance and Orientation Estimation … 95

Perspective disparity is the quantity tan βQ R
tan βP S

− 1, which represents the proportion
between the projected sizes of edges QR and PS. Therefore, again, the estimator
depends on a separation factor and a disparity factor, this time monocular.

Equations (5.8) and (5.6) will be used, both separately and merged, for simulated
(Sect. 5.3) and real orientation estimation on a robotic setup (Sect. 5.4).

5.2.3 Hierarchical Object Classification

The approach to object classification proposed in the model is composed of a three
stages process. These stages are initial shape classification, proper object recognition
and actual identification of a known object.

1. Shape classification. In this stage the target object is classified into one of a
number of known classes. For example, a bottle would be classified in the class
of cylinders. Simple visual information such as shape silhouette or a basic topo-
graphic relation between object features is enough for this task. No actual data
regarding the size and the proportion of the object are considered. Nothing is
inferred at this point about object composition, utility, meaning. The information
recovered at this stage is used by early areas of the dorsal stream in order to
estimate the size and pose of the object.

2. Object Recognition. Actual object recognition is the goal of this stage. The target
object is identified as if the task was to name it. What was a general cylindrical
shape in the previous stage is now identified as a bottle. Additional conceptual
knowledge is thus added to the previous basic information. Composition, rough-
ness, weight of the object can be inferred if not known for sure. The object proper
use in different tasks is also recalled at this point. Object recognition directly
affects the process of grip selection, providing a bias toward grasp configurations
better suited to the object weight distribution, possible friction and common use.

3. Object Recall. In this final stage, a subject recalls a single well-known object
which was encountered, and possibly grasped, before. Going back to the cylinder
example, here it can be recognized as a wine bottle recently bought, and thus
previously known and dealt with by the subject. Compared to the previous one,
this stage adds security to the estimation of the object characteristics. To recognize
an object as a bottle helps in estimating its weight, whilst to identify a previously
encountered bottle provides an exact value of that weight.

In all stages, the classification process has to be viewpoint invariant. A very impor-
tant issue is that object classification and recognition is always a gradual process,
not a binary one, and each classification is accompanied by a confidence value, nec-
essary to clarify its reliability. Any classification having a low confidence should be
used prudentially, and if no class or object are clearly identified the system should
rather provide a failed classification answer, to clarify that the situation is uncertain
and needs further exploration. Feedback from execution outcome can later be used
to complete and improve the world knowledge in these situations.
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5.3 Neural Network Implementation of a Multiple Cue Slant
Estimator

A neural architecture for estimating the orientation θ of a target object according to
the concepts described in the previous section has been implemented. The framework
includes two sets of neural networks, for stereoscopic estimation and for monocular
estimation based on perspective data.

5.3.1 Neural Network Estimators

The whole framework of the neural network implementation is depicted in Fig. 5.7,
where the nets are associated to the brain areas that probably perform their functions.
Apart from nearness estimation, implemented with the RBF network described in
Sect. 5.2.1, all networks are feedforward backpropagation, trained with the
Levenberg-Marquardt algorithm. Four neural networks constitute the module for
orientation estimation based on stereopsis: they compute nearness, relative disparity
and separation (two nets represented as a unique one in the scheme), and the final
estimate of θ̂S from the outputs of the previous three networks (according to expres-
sion (5.6)). The module for orientation estimation based on perspective makes use
of two networks for computing the two components of (5.8), and a third for the final
calculation of θ̂P .

5.3.2 Merging the Estimators

Following the insights provided by the neuroscience literature, the final orientation
estimator is computed by combining the stereoscopic estimator θ̂S and the perspective

Fig. 5.7 Scheme of the neural network architecture for slant estimation
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estimator θ̂P . A first merging can be done through a simple average of the two output
values:

θ̂A = θ̂S + θ̂P

2
(5.9)

Looking for better performances and improved biological plausibility, the two
principal driving factors for cue merging, correlation and reliability, have been taken
into account. In the present case, cue correlation could not be used, as only two differ-
ent estimators are available. The chosen solution was thus to experimentally simulate
cue combination using only cue reliability. The stereoptic and perspective estimators
were trained to learn how their reliability changes in different conditions. According
to the literature, the driving factors for the accurateness of orientation estimation are
distance and orientation itself (this is not a contradiction: the estimated value can be
used as output and, at the same time, as reliability index for the estimation). In fact,
although it is known that stereopsis quickly looses its reliability with distance, here
the interest is on the near space defined by the arm reaching distance, within which
the variation of distance affects the two methods in similar ways. For this reason, the
focus is rather put on the effect of orientation, and the goal is to devise a merging
method that optimizes the weights given to the two estimators when changing the
estimated value of θ .

How the human brain can predict cue reliability is still a matter of debate. Never-
theless, it has been shown that stereoscopic andperspective cues are actuallyweighted
through a maximum-likelihood process (Knill 2007). To emulate this process, the
error patterns obtained with the estimation methods alone were saved, and used to
generate a joint estimator which is a weighted average of the original ones:

θ̂W = wS θ̂S + wP θ̂P (5.10)

In (5.10), wS and wP are functions of θ computed in the following way:

wS = SSEP

SSES + SSEP
; wP = SSES

SSES + SSEP
(5.11)

where SSES and SSEP are the previously learnt summed squared errors of stereopsis
and perspective respectively.

5.3.3 Results of the ANN Simulation

In principle, the neural network implementation allows to achieve any arbitrary pre-
cision in the estimation. The study of estimators reliability can thus be done either in
the real world or simulating the effect of natural imprecisions introducing stochastic
variability in the computation. Before the implementation on a real robotic setup, a
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Table 5.1 ANN slant
estimation results for
different estimators

Method Estimator Error (◦)
Perspective θ̂P 4.49

Stereopsis θ̂S 4.17

Simple average θ̂A 3.05

Weighted average θ̂W 2.93

simulation was performed to study the effect of noise on slant estimation performed
with stereoptic and perspective methods.With this purpose, random noise was added
to all retinal angles which constitute input values for the nets. The error representing
the average difference between estimation and true value was calculated all over the
test space (10◦ < θ < 70◦, 450mm < d <850mm).

In Table5.1 the improvement of joining the two estimators in this way can be
observed. For comparison, consider that the nets were trained so that the average
error of the two original estimators θ̂S and θ̂P before the introduction of noise was
less than one degree. Although stereopsis seems to suffer less from the insertion of
noise, the contribution of both perspective and stereoptic predictors is very important
for improving the final result. In fact, the weighted average θ̂W allows to obtain an
improvement of almost 30% on the best single cue estimator θ̂S , suggesting that the
combination of different cues is the best solution for pursuing a reliable estimation.
Even the simple average θ̂A, that can be used a priori without exploiting previous
experience, improves the θ̂S performance by more than 25%. The performance dif-
ference between θ̂W and θ̂A, which is rather small in this example, sensibly increases
especially in the most extreme situations, when one of the estimators is much better
than the other, and the simple average would not take this aspect into account.

Experiments with human subjects tell that distance, as an ancillary cue, and
slant itself are the two most important driving factors for slant estimation reliability.
Figure5.8, taken from Hillis et al. (2004), depicts the precision of two orientation
estimators, perspective and disparity based, as a function of distance and slant. With
increasing distance, both estimators become less reliable, but the stereoscopic cue
(blue) is clearlymore affected. The effect of orientation ismore complex. Perspective
methods are more sensitive and precise for pronounced slants, that generate higher
differences in vertical disparities. At long distances, disparity methods also prefer
high slants. On the contrary, for the short distances typical of grasping actions their
error is minimum for low slant values, which grant higher binocular disparities.

To check if this pattern of behavior could be reproduced in the simulation, the
estimators accurateness was plotted as a function of distance d and as a function
of orientation θ . The outcome can be observed in Fig. 5.9, in which the error in
stereoptic and perspective estimation is plotted against orientation (Fig. 5.9a) and
distance (Fig. 5.9b). The similarity of the obtained results to what is described in the
literature is remarkable, as can be observed by comparing the corresponding ranges
of Figs. 5.8 and 5.9. Notice that, being Fig. 5.8 symmetrical with respect to slant,
in Fig. 5.9a only positive slants are plotted, and Fig. 5.9b considers just reachable
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Fig. 5.8 Precision of texture
(orange) and disparity (blue)
cues as a function of distance
and slant. JND is the Just
Noticeable Difference,
corresponding to the smaller
detectable slant variation.
From Hillis et al. (2004)

distances, up to 850mm. The proposed model looks thus appropriate to reproduce
the behavior of stereoptic and perspective estimators.

The second effect that could be reproduced is the improved performance obtained
through amaximum likelihoodmerged estimator in which cues are weighted accord-
ing to their reliability (experimentally learnt), as explained in Sect. 5.1.2. The better
results obtained with the weighted estimator θW can also be observed in Fig. 5.9.

The implemented neural architecture hence constitutes an orientation estimator
both biologically plausible and practically reliable. The quantities used are employed
by the human visual system, but also computationally useful for artificial implemen-
tation (e.g. retinal angles). The proposed equations for computing orientation from
stereopsis and perspective are plausible transfer functions useful to model the esti-
mation process. The trained neural networks are someway emulating the behavior
of modules pertaining to higher visual brain areas. Indeed, inputs and intermediate
results represent quantities that have been observed andmeasured, and are part of real
brain processes (Welchman et al. 2005). This suggests that functions (5.6) and (5.8)
are plausible models for stereoptic and perspective slant estimation in the human
cortex.

The simulation results indicate that the proposed approach can be suitable for
improving the reliability of a real application. The next immediate step is the practical
experimentation on a robotic platform.

5.4 Robotic Validation

Orientation and pose estimation are very complex problems in machine vision, espe-
cially when the goal is to develop a reliable robotic system which makes use of
visual estimates to interact with the environment, such as in object grasping actions
(Wandell 1995; Trucco and Verri 1998). In this section, the computational method



100 5 Extraction of Grasp-Related Visual Features

10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8  perspective θ
P

 stereopsis θ
S

 simple average θ
A

 weighted average θ
W

Error (°) vs. slant (°)

450 500 550 600 650 700 750 800
0

1

2

3

4

5

6

7

8
 perspective θ

P

 stereopsis θ
S

 simple average θ
A

 weighted average θ
W

Error (°) vs. distance (mm)

(a)

(b)

Fig. 5.9 Slant estimation error as a function of slant and distance; neural network simulation (for
distance the value is the class lower bound). a. Error (◦) versus slant (◦). b Error (◦) versus distance
(mm)

described above is implemented on a robotic setup. The goal is to obtain an orienta-
tion estimator robust and reliable enough to be used in vision-based robotic grasping.
A number of different experiments to verify how the ideal results change when the
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model has to face the uncertainties of the real world are executed. As a second goal,
the implementation tries to reproduce the effects obtained with the ANN simulation
with real experimental data, and hence further validate the model.

5.4.1 Robotic Setup

The robotic setup, shown in Fig. 5.10a, consists of a seven degrees-of-freedom (DOF)
Mitsubishi PA-10 arm endowed with a Barrett Hand and a JR3 force/torque and
acceleration sensor mounted at the wrist, between hand and arm. A stereoscopic,
black and white camera Videre Design is coupled to the wrist, eye-in-hand style
(Fig. 5.10b). This configuration allows for controlledmovements of the vision system
without the need of a pan-tilt-vergence robotic head.

The Barrett Hand (see schema in Fig. 5.11) has three-fingers with a total of four
controllable degrees of freedom. Each finger possesses two joints which are driven
by a single motor. The controlled variables are thus the three finger extensions e1,
e2 and e3. The fourth degree of freedom controls the opening angle θ of fingers 2
and 3, which are symmetrically placed on either side of finger 1, the thumb, which
is fixed. When fully abducted, for θ = 0◦, fingers 2 and 3 oppose the thumb, when
adducted (θ = 180◦) they flex in parallel to the thumb.

As it can be observed in Fig. 5.10b, the hand fingertips are equipped with arrays
of pressure sensors, designed and implemented by Weiss Robotics (Weiss and Wörn
2004). The sensors are 8 × 5 cell matrices that cover the inner parts of the distal
phalanxes of the fingers. Each sensor is able to detect a complete two dimensional
force profile by the use of a homogeneousmaterial connected to an adequate electrode
matrix.

Fig. 5.10 Robotic setup with arm, hand and stereoscopic camera. a Robotic arm and hand. b Detail
of hand with stereo camera
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Fig. 5.11 Barrett hand
kinematics

The robot world is a dark environment in which clear shapes are placed on a table
at variable positions and orientations (see Fig. 5.12). The range of possible positions
are those that allow to view the object and also keep it at reaching distance for the
hand. Using the estimators previously introduced, the system is able to estimate
distance, pose and size of objects without using explicit models, but only common
knowledge regarding basic shapes it recognizes, such as the assumption of edge
parallelism.

The grasping action begins with the stereo camera facing straight ahead, and
having an object in its field of view. Both left and right images are continuously
binarized and the object contour tracked. The choice of object and background color
is driven by the need of keeping image processing as fast and lean as possible. The
point in the image having minimum y coordinate, called P , is selected as reference
and starting point for the contour, and one of the images is centered on it. Let us

Fig. 5.12 Workspace with robot fixating an object and possible target objects as seen from the
robot camera. a Robot at fixation position. b Workspace with examples of target objects
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Fig. 5.13 Left and right object images from the initial position, with labels of detected corners

assume from now on that processing begins from the left eye, hence point P is
centered on the left image (see Fig. 5.13 in Sect. 5.4.3).

The images at this position are processed by two parallel modules, one concerned
with classifying the object in a number of known categories, the other dedicated to
pose estimation. The first module, emulating the processing of the medium ventral
stream, makes use of a global visual representation of the object in order to perform
a viewpoint invariant classification. The second module integrates different cues for
estimating object distance, size and pose.

5.4.2 Object Classification Experiments

The object classification module has to categorize objects seen from different poses
and distances. With this purpose, it has to consider object images globally, rather
than focusing on local features. The goal is to classify an object as pertaining to
one of three known object classes: parallelepipeds (boxes), cylinders and spheres.
This has to be done using only a couple of stereo images, without changing the
viewpoint. Moreover, it is important to retrieve a value measuring the confidence
in the classification, represented by the percentage of likeliness assigned to each
class. Two different approaches were tested, using the extracted object contour as a
silhouette of the object.

The first tested method consisted in computing a chain code of the contour, which
constitutes a representation that is invariant with respect to size and distance, while
maintaining the feature topology necessary to identify the object. The chain was
generated extracting a pre-defined, finite number of points regularly spaced along
the contour, starting from P . The code ci corresponding to point Pi is thus the
following, normalized so that the range is [−1, 1]:
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ci = atan

(
yi − yi−1

xi − xi−1

)
(5.12)

The number of points to use can be chosen according to the application. The selection
of 20–30 points gave the best results. The chain codes of different objects from
different points of view constituted the training data. A probabilistic neural network
was used to classify the object in one of the three classes. For training, 10 different
objects were used, each seen from 19 different positions (apart for the spheres).

This solution did not provide the required behavior. In fact, results on training
objects (form different viewpoints) and on different test objects gave recognition
success very close to 100%, but test objects were often misclassified. Moreover,
even in the wrong cases, confidence was always very high, often above 98–99%.
The conclusion is that the method is very good in recognizing known objects, but not
in generalizing. The sequential order of different object features, like straight and
curved segments, or corners, would be enough for classification. Instead, the chain
code representation takes into account and hence classify objects also according
to the feature length, distinguishing for example a short cylinder from a long one.
Moreover, classification should be much more shaded, with confidence percentages
not always close to 100%. As justified in Sect. 5.2.3, a missed classification due to
high uncertainty is preferred to a wrong categorization.

For these reasons, a different classification method was tested, based this time
on the curvedness of objects. This method is based on only one index represent-
ing each object, the curved fraction of its contour, ratio between the length of its
curved features and the total contour length. For the shapes in use, experimental data
showed that parallelepipeds, cylinders and spheres normally possess linearly separa-
ble curvedness values. The classification process begins with a training phase during
which the system is presented with five different boxes (B), three cylinders (C) and
two spheres (S), again from 19 viewpoints distributed along a 90◦ range. Average
curvedness values μK and corresponding standard deviations σK are calculated for
the three classes, K ∈ {B, C, S}.

Given a test point ci , the curvedness coefficient of object i , its degree of mem-
bership mi K to class K is computed as the reciprocal of the relative distance to the
class center:

mi K = σK

|ci − μK | (5.13)

At this point, classification percentages for the three classes K = B, C, S are given
by:

pi K = mi K

mi B + miC + mi S
(5.14)

As explained above, a missing recognition response is better than a misclassifica-
tion. To favor the former over the latter, a high confidence value of 70% is required
to assign the object to any class. If no class reach this value, the object is not classi-
fied. In such cases, only distance and approximated center of mass (that is in reality
the centroid of the visible 2D silhouette) can be estimated and used for grasping.
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An exception is the case of uncertainty between boxes and cylinders. If the sum
pi B + piC > 70%, then the object is classified in the less restrictive class, i.e., as
a cylinder. For cylinders, only one face can be computed for slant estimation, while
for boxes two visible faces are used. A misclassification of a cylinder as a box would
thus provide a wrong orientation estimation, whilst a misclassification of a box as a
cylinder would just imply that some available information is not used.

Classification results for objects in the training set are provided in Table5.2.
Cases of misclassification are highlighted in bold whilst uncertain cases are marked
in italics. For the training set, only two problematic cases are identified, both for
cylinders seen from a 0◦ angle (objects 5 and 6). It is not surprising that this is
a difficult condition for the recognition system, as the contour provides limited if
any information on curvature, and more elaborate methods which take into account
shading would be required for proper classification.

Classification results for test objects are given in Table5.3. Most cases of missing
classification regard the problem observed for the training set. Cylinders seem to be
difficult to recognize, especially for extreme viewing angles, in which their silhouette
appears as a rectangle or as a circle. Nevertheless, the prudential decision of assigning
the object to classC in case of uncertainty between box and cylinder, works in nearly
all conditions, and provide reliability to the whole pose estimation system. Only
objects 14 and 16 from the 0◦ viewpoint are finally misclassified, the first as a sphere
and the second as a cylinder. Object 18 cannot be clearly put in any of the three
classes, but it has one face that can be used for slant estimation, as cylinders, hence
its classification as a cylinder is the most appropriate from a practical point of view.

5.4.3 Object Pose and Distance Estimation

5.4.3.1 Orientation Estimation

For what concerns pose estimation, this requires the extraction of features as those
used in the model. For this reason, a number of salient points on the contour have
to be extracted. Object classification biases this process, modeling the influence of
ventral stream data on dorsal stream processing, and the contextual nature of 3D
perception (Todd 2004).

For boxes, the salient points usually correspond to the object corners (Fig. 5.13).
Object faces are not segmented separately, so the number of detected corners ranges
from 4 to 6 depending on point of view and object pose. Possible missing points
are added according to the shape class. For example, if a box is detected by the
classification process and, due to a bad perspective position only five points of the
contour are chosen as corners, the sixth will be set according to simple geometric
considerations. For a cylinder, only four points are necessary, as those on the curved
parts of the contour are not used. For spheres only centroid and apparent diameter
are computed.
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Table 5.2 Object classification percentages for different slants; training shapes

# Object Class 0° 30° 60° 90°

1
Box
Cylinder
Sphere

98.16
1.64
0.20

86.63
11.57
1.80

84.81
13.12
2.07

94.90
4.44
0.66

2
Box
Cylinder
Sphere

92.97
6.13
0.90

85.90
12.19
1.91

84.81
13.12
2.07

91.22
7.63
1.15

3
Box
Cylinder
Sphere

93.94
5.29
0.77

84.81
13.12
2.07

84.84
13.10
2.06

87.25
11.04
1.71

4
Box
Cylinder
Sphere

99.87
0.11
0.02

86.88
11.36
1.76

84.81
13.12
2.07

99.23
0.68
0.09

5
Box
Cylinder
Sphere

86.20
12.44
1.36

0.59
98.65
0.76

0.26
97.91
1.83

0.81
92.94
6.25

6
Box
Cylinder
Sphere

58.07
38.70
3.23

1.68
96.85
1.47

20.81
74.97
4.22

0.35
97.96
1.69

7
Box
Cylinder
Sphere

2.74
95.19
2.07

2.42
95.73
1.84

0.63
94.59
4.77

9.01
88.51
2.48

8
Box
Cylinder
Sphere

0.48
25.46
74.07

9
Box
Cylinder
Sphere

0.37
24.23
75.40
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Table 5.3 Object classification percentages for different slants; test shapes

# Object Class 0° 30° 60° 90°

10
Box
Cylinder
Sphere

98.83
1.05
0.12

85.80
12.53
1.67

85.07
13.16
1.77

85.55
12.75
1.70

11
Box
Cylinder
Sphere

94.60
4.81
0.59

89.97
8.88
1.15

85.07
13.16
1.77

91.08
7.90
1.02

12
Box
Cylinder
Sphere

80.49
17.75
1.76

96.20
3.38
0.42

86.02
12.33
1.65

91.72
7.54
0.74

13
Box
Cylinder
Sphere

94.48
4.98
0.54

95.59
3.92
0.49

90.59
8.33
1.08

99.43
0.51
0.06

14
Box
Cylinder
Sphere

0.59
30.85
68.56

5.86
91.42
2.72

0.33
96.56
3.11

0.51
51.93
47.56

15
Box
Cylinder
Sphere

60.35
36.20
3.45

61.66
35.02
3.32

35.89
59.45
4.66

0.32
99.16
0.52

16
Box
Cylinder
Sphere

57.89
38.63
3.48

84.91
13.04
2.05

93.33
5.77
0.90

98.05
1.73
0.22

17
Box
Cylinder
Sphere

0.82
98.29
0.89

1.03
87.37
11.60

0.42
95.07
4.51

0.71
90.31
8.98

18
Box
Cylinder
Sphere

17.89
77.30
4.81

0.20
97.37
2.43

3.69
94.28
2.03

3.81
93.78
2.41
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Even with this simplified setup, to reliably detect the salient points a double
search is performed on the contour, combining the information given by different
algorithms for corner (Teh and Chin 1989; Chetverikov and Szabo 1999) and edge
detection (Ray and Ray 1995), to maximize the chance of finding all visible corners
of the object when possible. A system able to segment the three faces of the object
separately would provide a better estimate, but the results obtained with this simpler
approach, presented below, match the application requirements.

Three variables identify object position and orientation. The distance d is mea-
sured between point P and the camera, and is enough to represent full 3D object
location, as the object is centered in the image, and there is thus no lateral or vertical
displacement. The other two variables are slant angle with respect to the frontopar-
allel position θ (see Fig. 5.4), and the direction of view with respect to the horizontal
plane, φ. This last variable is known by the robot, and is computed by the vestibular
system in primates. The viewing direction angle is restricted in the experiments, to
allow a clear perspective view without simplifying too much the task as it happens
for large angles (in such cases, the slant is very similar to what can be estimated
simply using the inclination of segments in the 2D image). The final working range
is about 15◦ < φ < 50◦, and these are very plausible values even for a human
subject looking at an object with grasping purposes. For what concerns the slant θ ,
only those situations that would reduce the interest of the slant estimation (for angles
very close to 0◦ and 90◦) are ruled out. These conditions can anyway be detected
quite easily by the system, from the number and distribution of the defining corners.

The process of distance, pose and size estimation begins with the arm moving
until point P of the object is placed horizontally at the center of the image, in order to
minimize distortions due to the cameras’ optics. Left and right images at this position
are then processed: corners P, Q, R, W, T and U are found as explained above, and
the position of S is estimated through a two point perspective method (Fig. 5.13).
At this point, the coordinates of the defining points are transformed into angles with
respect to the center of the image, using the camera focal lens and image size in
pixels as parameters. The non-linearity of the camera optics is the reason to avoid
getting close to the image borders, where distortions could affect the transformation
process.

Once the six points identifying the two frontal faces of the object for both cameras
have been detected, the actual slant estimation process can begin. Eight different esti-
mators are calculated using the equations provided in Sect. 5.2.2: (5.8) is applied to
the couples of segments PS/QR andUT/PS for both the left and right eye, whilst (5.6)
is applied to segments PQ, SR, TS andUP. The first eight estimators, four perspective
and four stereoscopic, of Table5.4 are obtained at this point.

Before calculating the final, merged estimator it is useful to check for possible
outliers (completely wrong estimations). In nature, bad estimations could be due to
momentary occlusions, unusual light conditions, sudden movements, etc. In the sim-
ple setup used, any previous processing step can affect the final results, so again illu-
mination issues, imperfections in the binarization or corner detection can cause one
or more cues to deviate hugely from the average estimate. Outlier detection is a full
sub-branch of statistics (Rousseeuw and Leroy 1987), and many different methods
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Table 5.4 Slant estimators

# Estimator Computation method

1 Perspective I Segments PS/QR, left eye

2 Perspective II Segments PS/QR, right eye

3 Perspective III Segments UT/PS, left eye

4 Perspective IV Segments UT/PS, right eye

5 Stereopsis I Segment PQ

6 Stereopsis II Segment SR

7 Stereopsis III Segment UP

8 Stereopsis IV Segment TS

9 Merged (θ̂P ) Perspective Only Average, #
1–4

10 Merged (θ̂S) Stereopsis Only Average, #
5–8

11 Merged (θ̂A) θ̂P and θ̂S Simple Average, #
9–10

12 Merged (θ̂G ) Global Simple Average, # 1–8

13 Merged (θ̂W ) Global Weighted Average, #
1–8

are available. Various techniques were explored, and they did not give significantly
different results. The classical Rosner’s many outliers test (Rosner 1975), widely
used in the literature for similar problems, was finally chosen. The best results were
obtained for a significance level α = 0.01, which gave a final estimation improved
of more than 5% compared to the implementation without outlier rejection.

Following the model, monocular and binocular cues have to be merged according
to their expected reliability and correlation. The starting point of the experiments is
a situation in which no information is available regarding reliability of the different
cues in the various working conditions. Therefore, to begin with, there are only two
solutions readily available without the need of performing a training session for
learning the cue weights. The first is to compute a simple, non-weighted average of
a set of simple estimators (Estimators 9–12 of Table5.4). The second is to compute
an average in which weights are calculated using cue correlation (Estimators 13), in
this case simply using the deviation of each cue from the simple average of all cues.

5.4.3.2 Nearness and Size Estimation

As no previous knowledge regarding the target object is assumed, it is not possible to
disambiguate the pair distance/size only from retinal data. The nearness of the object
can be calculated making use of expression (5.1), after estimating the proprioceptive
vergence angle γP . The available stereo camera does not allow for vergence move-
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ments of the eyes, so they have to be simulated. The simple procedure adopted is to
center point P of the object in one of the images first, and rotate the camera around
the cyclopean eye, in order to center again P on the other image without changing
the actual distance. To take advantage of this movement left and right images are
taken both from the initial and the final position, and they are considered as two
independent slant estimation experiments. No significant differences were observed
regarding the estimation precision from the initial and the final position.

For what concerns size estimation, the relative size of the object (proportion
between its edges) can be detected from orientation and separation angles alone.
Once distances have been estimated, the actual dimensions of the object can be
computed through simple geometric equations, as the ambiguity size/distance has
been resolved.

5.4.4 Experimental Results

Overall, 422 experimentswere executedwith different values of slant and distance, as
shown in Table5.5. The global average estimation errors of all executed experiments
are provided in Table5.6. Perspective estimator θ̂P and stereopsis estimator θ̂S are
calculatedmerging the four estimators of eachmodality alone. The simple average θ̂A

is the mean between the two, and the global average θ̂G is the mean of all eight initial
estimators. It is quite apparent how the combination of multiple cues, especially
when they come from different kinds of visual information, strongly improves the
estimation performance. The worst merged estimator θ̂P performs better than the
best single cue estimator, Stereopsis I; the global average θ̂G improves the merged
stereopsis estimator θ̂S by more than 25%. The cue correlation weighted average
estimator θ̂W shows a further improvement of around 8% compared to θ̂G , bringing
the overall mean error close to 2.5◦, which constitutes quite a good pose estimation
for a robotic system, even in these restricted conditions.

Table 5.5 Number of
experiments per distance and
slant

Distance Count Slant Count

450–500 14 10 12

500–550 40 20 80

550–600 66 30 96

600–650 74 40 80

650–700 88 50 92

700–750 94 60 48

750–800 28 70 14

800–850 18

Total 422 Total 422



5.4 Robotic Validation 111

Table 5.6 Experimental slant
estimation results, overall
average errors

# Estimator Error(◦)
1 Perspective I 8.63

2 Perspective II 6.67

3 Perspective III 12.75

4 Perspective IV 9.59

5 Stereopsis I 4.73

6 Stereopsis II 7.89

7 Stereopsis III 6.31

8 Stereopsis IV 5.41

9 Merged (θ̂P ) 4.71

10 Merged (θ̂S) 3.92

11 Merged (θ̂A) 3.78

12 Merged (θ̂G ) 2.91

13 Merged (θ̂W ) 2.68

5.4.4.1 Comparison with Human and Neural Network Simulation Data

It is interesting to compare error distributions obtained in the real practical experi-
ments with the theoretical ones of Sect. 5.3.3. Figure5.14 shows the average error
plotted as a function of slant (Fig. 5.14a) and distance (Fig. 5.14b), similarly to
Fig. 5.9. Some slant and distance values are probably affected by the use of different
objects and viewpoints, which were not regularly distributed across conditions; see
for example the bad quality of stereopsis, and consequently of themerged estimators,
for slant =60◦. Nevertheless, the trends are quite clear, and the expected effect of
slant and distance on the different estimators is once again reproduced. In Fig. 5.14a
the improvement in perspective estimation and the deterioration in stereoptic estima-
tion with increasing slant are clearly visible, and the weighted average is definitely
the best available estimator. Figure5.14b shows that stereoptic estimation gradually
decreases its precision with distance, whilst perspective seems nearly uncorrelated
with it, apart for extreme values. Again the weighted average presents a clearly
advantageous behavior in all cases.

It can be noted from both graphs how the weighted estimator maintains its reli-
ability across conditions. Error bars of θW are always small apart from extreme
conditions (which are also affected by a reduced number of trials). Errors for other
estimators, which could not be plotted for clarity reasons, are always quite larger.
This is a very important aspect for a robotic application, as there are no “blind spots”
for which its estimation capabilities become unreliable. The implementation of a
multiple cue estimation method thus provides a robotic system with a robustness
hardly achievable with perspective or stereopsis alone.
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Fig. 5.14 Slant estimation error as a function of slant and distance; experimental results. For clarity,
errors on errors are plotted only for θW . a Error (◦) versus slant (◦). b Error (◦) versus distance (mm)

Forwhat concerns distance estimation, the global average error for all experiments
is of 33.4mm, and the error distribution shown in Fig. 5.15, although noisy, follows
the expected trend, showing decreasing estimation precisionwith increasing distance.

Size estimation revealed to be less precise compared to slant and distance esti-
mation. In part, this is due to the fact that it makes use of two estimators and the
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theoretical final error is the product of the two initial errors. Moreover, for high slants
and for small objects, the edges of the least visible side have very short separation
angles, for which the relative error is much higher. Anyway, the worst case error is
never larger than a few centimeters, and this is enough for reliable grasping by the
robot hand, as shown in Sect. 6.2.4.

5.4.4.2 Additional Experiments

The second class of objects used to test the system were approximately cylindrical
shapes, which still offer parallel edges. In the experimental setup, cylinders are lying
on a plane, and the slant to estimate is that of their axis. Four salient points are
detected on cylinder contours, those points in which curvature changes from 0 to
some positive value, i.e., the transition from straight to curved segments. Those four
points are treated as they were the P, Q, R and S of the box shapes (see Fig. 5.16). In
this way, estimators 1, 2, 5 and 6 of Table5.4 can be computed. The results of just few
experiments are encouraging, as the average orientation estimation error is around
3.5◦. It must be said though that the values chosen for viewpoint, slant and distance
were those that gave the most consistent results in the experiments with boxes, and
the method has not been tested exhaustively in various different conditions.

For spheres, only centroid, size and distance can be estimated. As for spheres there
is no reliable point P with minimum y coordinate, the centroid was used instead in
order to detect the vergence angle γP and hence the distance of the object. Distance
computed with this method was found to have higher precision than for boxes and

http://dx.doi.org/10.1007/978-3-319-20303-4_6
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Fig. 5.16 Contour and
salient points extraction for
cylindrical shapes, left and
right images

cylinders, and this reflects in an improved size estimation for spheres compared to
the other classes.

5.5 Conclusions

The robotic implementationof the computationalmodel for estimatingobject features
in 3D permitted to achieve two important results. On the one hand, the robotic
grasping system was provided with a very reliable and robust visual estimation of
slant, distance and size of target objects. On the other hand, effects described in
human experiments could be reproduced at a reasonable level of approximation. Cue
integration is the fundamental principle which allowed to obtain such results, through
the efficient merging of stereoscopic and perspective estimators.

The experimental results obtained with the robotic visual system confirm the
hypothesis that integration of monocular and binocular data provide a robot with
superior estimation capabilities. The final merged estimator obtained appropriately
weighting the different cues is robust across working conditions, in a way that is
probably not attainable by a simple estimator alone.

The following step is to make use of the extracted information regarding object
potential grasping features to generate suitable action plans. This is the subject of
next chapter.
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