Chapter 3
Intelligent Robotic Grasping?

Mutual interest between the fields of robotics and cognitive sciences has been steadily
growing in the recent years, especially through the bridging of artificial intelligence
research. Nevertheless, the differences in goals and methodology and the lack of a
common language make of true interdisciplinary research still a pioneering work.
As the following review will expose, grasping is not an exception to this situation.
A brief description of traditional and bio-inspired research in robotic vision-based
grasping is presented and critically discussed in this chapter, with the purpose of
defining a few important guidelines required to achieve fruitful cross-disciplinary
research. The chapter includes a proposal for grounding symbolic representations in
sensorimotor interactions for robotic grasping, synthesized in Sect.3.3.

3.1 Vision-Based Robotic Grasping, A Brief Outline

The field of robot grasping and manipulation has been steadily growing and devel-
oping, as can be noticed comparing the most important research of the near past.
The fundamental studies of the eighties (Cutkosky 1985; Mason and Salisbury 1985;
Nguyen 1988) defined the basic concepts, both physical and technological, on which
most of the later research built upon. In parallel, classical works on grasping in
humans and primates were published (Napier 1983; Iberall 1987). A view of the
robotic grasping problem more related to biological research and artificial intelli-
gence goals and techniques was developed in the early nineties (Venkataraman and
Iberall 1990; Stansfield 1991; Bekey et al. 1993). Interdisciplinary research became
more common, and works such as Mackenzie and Iberall (1994), with a real interdis-
ciplinary stance, is still among the most cited in robot grasping. Nevertheless, engi-
neering issues and approaches clearly keeps dominating the field (Shimoga 1996),
and the currently most cited reviews on the subject, Bicchi (2000) and Okamura et al.
(2000), are purely technical.

The survey of Bohg et al. (2014) reviews the most recents advances on grasp
planning using data-driven methods. Grasping techniques are classified depending
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on whether the target objects are previoulsy known, unknown or similar to a familiar
category. Up to six different functional architectures are identified for organizing
and structuring the necessary parts of a grasping system. For what concerns the
planning of grasping actions through the use of visual information, a number of
simplifications have commonly been used in robotics. The most common approach
is to start from a model of the object to grasp, obtained or defined in an off-line
stage, and to perform object recognition if necessary. A grasp synthesis process (see
box below) can be thus performed on the model (Lopez-Damian et al. 2005), or
pre-defined grasp programs can be accessed (Taylor and Kleeman 2004). Felip et al.
(2013) propose a functional organization of grasping which relies on the concept
of manipulation primitive. A primitive is an independent controller focused on a
specific manipulation action. Primitives are coordinated through automatas which
implement complete manipulation tasks. The same plan can be used on different
hardware embodiments to execute the same task.

In the robotic literature (Bicchi 2000), a grasp is usually defined as the set of
locations (points or regions) on an object surface where the effector—a simple
gripper or an artificial hand—has to contact the object for grasping it. A grasp
definition may include the configuration of the hand, which depends on its
kinematics and degrees of freedom (DOF). Grasp synthesis is the problem of
determining a proper set of contacts on the target object, and a corresponding
suitable hand configuration. See Sahbani et al. (2012) for a review of grasp
synthesis techniques. The inverse problem, grasp analysis, involves the study
and evaluation of a given grasp.

The object model can be approximated with a set of shape primitives (Miller et al.
2003), or a 3D representation useful for grasp synthesis can be built performing
a visual reconstruction of the object. Due to the implicit complexity of the task
(Chaumette et al. 1996), visual reconstruction is often performed using range data
(Ade et al. 1995; Rutishauser and Stricker 1995). As in these works, grasp synthesis
often consists of searching for antipodal regions on the reconstructed object surfaces.
Otherwise, the 3D model can be decomposed into basic structural components and
grasps on object parts can be either generated (Goldfeder et al. 2007) or retrieved,
according to predefined preshape primitives (Miller et al. 2003). Works that try to bias
visual analysis with grasping aspects, without relying on models, have often dealt
with simplified worlds, such as sets of planar objects (Stanley et al. 2000; Morales
et al. 2006).

Only a few ambitious works have ever been developed for visual inspection of
real 3D objects aimed at grasping actions. Taylor et al. (1994) deal with the problem
of how a possible grip changes with the viewpoint, whereas Cipolla and Hollinghurst
(1997) look for planar surfaces within a set of possible target objects and perform a
grasping action with a parallel gripper. In Seitz (1999) a visual system is introduced
that moves around a target object and is able to identify its major axis and extract
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a symbolic representation of the contour. On such representation, suitable grasping
features, both parallel and curved, are searched for. The system of Saxena et al. (2008)
learns to match visual object features to suitable grasping postures, showing a high
adaptability and generalization capabilities in grasping with a parallel jaw-gripper.
Preliminary results of the same method in which grasping experiments are executed
with a three-finger Barrett Hand are also provided, and show that the technique is
promising but need adaptation to the hand kinematics. Industrial applications of
autonomous vision-based grasping, such as Sanz et al. (2005), are very rare. For the
cases in which a set of candidate grasps are generated, quality measures focused
on aspects related to the object and effector geometry and kinematics are often
used in order to assess and select the most reliable and stable grasp configurations
(Markenscoff et al. 1900; Ferrari and Canny 1992; Ponce and Faverjon 1995; Xiong
et al. 1999; Borst et al. 2004; Chinellato et al. 2005).

Visual control of reaching and grasping movements and of manipulation actions
is a very active area, often referred to as “visual servoing”. The basic principle is that
the movement follows a vision-based control law, with respect to either the Cartesian
space or the image space (Hutchinson et al. 1996; Cervera et al. 2003; Recatald et al.
2008a). These methods are not focused on the visual analysis of the object, but rather
on the transport action and the fine adjustment of the movement. Such detailed visual
tracking of the arm and hand movements is usually not performed by primates, unless
in the case of sudden changes in the environment, or for very fine manipulation tasks.
The most common solution in nature is the use of ballistic movements supported by
extremely reliable proprioceptive and tactile information.

In fact, the use of visual information alone, without touch feedback, is as limiting
in robotics as it is in primates. Nowadays, many works that deal not only with the
synthesis but also with the execution of grasping actions, make use of force or tactile
sensors on the fingers of the robot hand (Hollerbach 2000; Tegin and Wikander
2005). For instance, in Platt et al. (2002), force-based controllers are concurrently
used to find an appropriate placement of the fingers on the object, and in Natale and
Torres-Jara (2006) a robotic hand performs tactile exploration of the object, based
on a set of exploratory primitives, in order to find a good grasp. More rarely, tactile
information is used to recognize an object (Allen and Roberts 1989; Petriu et al.
2004) while active haptic exploration for detecting and modeling object features is
practically a novel area in robotics (Petriu et al. 1992; Johnsson and Balkenius 2006).
In any case, multimodal integration is a rapidly developing topic both at the practical
and at the theoretical level (Pouget et al. 2002; Prats et al. 2013), and represents
a fundamental issue for the future of grasping (Coelho et al. 2001; Lippiello et al.
2006; Grzyb et al. 2008; Prats et al. 2009) and robotic research in general (Barakova
and Lourens 2005; Wermter et al. 2005).
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3.2 Biological Inspiration for Robot Grasping
and Manipulation

Many international research projects and meetings around the world are nowadays
devoted to the interplay between robotics and life sciences (Dario et al. 2005). The
use of robotic solutions for medical applications is the most developed and promising
direction of such interdisciplinary approach, from aided microsurgery to prosthetics.
Regarding upper limb mobility and grasping, brain guidance of artificial arms and
hands has been performed with monkeys (Carmena et al. 2003), and the technology
is being developed in order to achieve the same for humans (Andersen et al. 2005;
Acharya et al. 2007). Pursuing this goal, very complex prosthetic hands are being
constructed which join the dexterity of the most advanced robotic hands with new
material technology for providing them with the best comfort and aspect (Buterfass
et al. 2001; Huang et al. 2006; Cipriani et al. 2008). A review of the field, completed
by a biomechanical comparison between the human hand and state of the art robotic
manipulators provides a valuable framework for the study of the grasp both in nature
and engineering (Leon et al. 2014).

For what concerns another aspect of the interplay between robotics and
neuroscience—such as the use of insights regarding brain functions and natural solu-
tions in general in order to implement better robotic systems—biologically inspired
robotics is a rapidly developing field (Bar-Cohen and Breazeal 2003; Habib et al.
2007). Nevertheless, the limited literature about biological inspiration in visual-based
robot grasping at the functional level suggests that the subject has still much to offer.
In fact, for most biology-inspired grasping research available in the literature, the link
with neuroscience is usually a general inspiration with limited impact on the final
implementation (Kragic and Christensen 2003; Laschi et al. 2006). On the opposite
end are works that appear as more biologically plausible, but which relation to life
sciences is not clarified. For example, Kamon et al. (1998) propose a quite flexible
and adaptable learning framework for grasping, but do not explicitly cite or men-
tion any neuroscience research or biological inspiration. Systems that do implement
neural mechanisms, such as Hoffmann et al. (2005), are rare, and work only with
simplified environments and ad-hoc conditions.

In the development of systems which model or imitate natural skills, either cog-
nitive or practical, two approaches are usually cited as contrary options: bottom-
up and top-down. Modern robotics favors the former, in which complex behaviors
emerge from simple, hierarchically organized ones (Brooks 1999). According to the
paradigm of behavior-based robotics (Arkin 1998), complex tasks can be executed
through the composition of simpler ones in a bottom-up direction, to the extent that
some basic components are simple stimulus-effect reflexes of the agent with the
environment (Braitenberg 1984).

Behavior-based grasping and manipulation robotic research is expanding (Zollner
et al. 2005; Recatald et al. 2008b), but the paradigm is less widespread in grasping
than it is in other areas of robotics. In fact, although some kinds of problems such
as basic navigation of obstacle avoidance can be solved with simple and elegant
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behavior-based solutions, the high complexity of the vision, motor and especially the
sensorimotor processing behind grasping actions are hard to be dealt with following
such techniques.

While behavior-based robotics seems to follow the right direction toward mim-
icking biological systems, epigenetic robotics takes one step further in approaching
natural intelligence, trying to evolve high-level abilities from basic ones as in an infant
developing process (Berthouze and Goldfield 2008). This developmental process can
be catalyzed by imitation or human teaching (Schaal 1999; Billard and Mataric 2000;
Maistros and Hayes 2000; Ito et al. 2006). For what concerns manipulation, if not
proper grasping, “baby” robots which learn simple manipulation skills from explo-
ration and observation of their actions have been already built following this trend
(Metta and Fitzpatrick 2003; Natale et al. 2005), and a possible future development
is imitation between robots, which could accelerate the learning process without the
need of humans to intervene. Some imitation processes used for robotic systems are
also biologically plausible (Demiris 2002), as they are inspired by the mirror system
of the primate brain, introduced in Sect. 2.3.3, and by the concept of motor primitives
(see box).

Motor primitives are basic motor components used to generate more complex
behaviors in all kinds of movements. The composition and functionality of
the motor cortex described in Sect.2.3.3 supports their use in primate visuo-
motor transformations. Motor primitives can be extracted from the thorough
analysis of human motion (Drumwright et al. 2004), and used to form a motor
vocabulary that can be employed to produce complex movements and action
sequences (Nori and Frezza 2004).

Similarly to what happens in animals, the composition of simple behaviors as motor
primitives can endow robotic systems with notable skills, dexterous manipulation
being one of them (Mataric 2000). On this line, Kyota et al. (2005) use artificial neural
networks to match simple voxel-based object representations to grasp configurations
derived from basic human hand postures learnt with a data glove.

Even though the bottom-up approach has been usually considered more plausible
from a physiological point of view, backprojections from associative to primary areas
are widespread in the brain. Examples of bidirectional links, such as the premotor-
parietal circuit, or the recurrent connections between visual areas, were given in the
previous chapter. A mixed approach in which bottom-up mechanisms are triggered
by top-down, cognitive style information, is therefore more faithful to the neurolog-
ical reality. In artificial systems, whilst top-down solutions are implemented follow-
ing knowledge engineering methodologies, bottom-up approaches are often coded
with connectionist methods, more or less inspired by biological neural networks.
Nowadays—and until artificial neural systems will resemble more closely the nat-
ural networks of neurons—more intelligent systems are probably better achieved


http://dx.doi.org/10.1007/978-3-319-20303-4_2
http://dx.doi.org/10.1007/978-3-319-20303-4_2

44 3 Intelligent Robotic Grasping?

with mixed approaches, in which pre-wired knowledge complements the connec-
tionist mechanisms.

With the goal of linking bottom-up approaches with top-down cognitive represen-
tations, one of the most important issues is that of associating consistent symbolic
meanings to aspects of the environment or of the agent-environment interaction. This
issue is commonly known in cognitive science research as the symbol grounding prob-
lem. Though proposals have been put forth to solve the symbol grounding problem
through robotic sensorimotor interactions, only little progress has been achieved with
actual working systems. In the next section, a possible solution to the problem based
on manipulation and grasping research is provided. Such approach can be useful in
order to endow a robotic system with an implicit ability in merging practice with
conceptual reasoning and thus “interpreting” its actions.

3.3 Symbol Grounding Through Robotic Manipulation

In this section, the problem of symbol grounding is addressed in the context of
robotic manipulation. The goal is to obtain a more natural integration between the
top-down and the bottom-up approaches by showing that there are symbols which do
not refer simply to physical objects, but rather to the interactions between the robot
and the objects in its environment. The description of two grasping and manipulation
experiments performed at the Robotic Intelligence Lab of Universitat Jaume I, and
summarized in this section, serves as a base on which to build a theory of symbolic
representations for physical interactions. It will be shown that the symbols related to
the interaction between agent and target object can be directly inferred from the exe-
cution of a planned action, and that neural networks can provide a suitable method for
mapping complex perceptual signals to symbols. The proposal is sustained by impor-
tant neuroscience studies, especially those related to the two streams of the visual
cortex and the mirror system. Implementation details and further considerations can
be found in Chinellato et al. (2007).

3.3.1 Symbol Grounding and Neuroscience

The symbol grounding problem is a classical challenge for cognitive science (Harnad
1990). In a traditional Al system, symbol interpretation is not intrinsic to the system,
and the meaning of a symbol is always given by an external interpreter (e.g. the
designer of the system). A really “intelligent” system should be able to assign sym-
bolic meaning to an object or an action without being thought, as human beings can
normally do. Harnad (1995) and del Pobil (1998) suggest that robotic sensorimotor
interactions can represent a solution to this problem. In a cognitive robotic system,
the symbols could be grounded in the system own capacity to interact physically
with its environment.
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So far, progress in symbol grounding by means of actual working robotic systems
has been mostly related to visual recognition of individual objects. There is never-
theless an additional class of symbols, fundamental for cognitive robotics, which do
not refer simply to physical objects but rather to the embodied physical interactions
between the robot itself and the objects in the world. This kind of symbols would be
more related to sensorimotor transformations, and they seem to have appeared in the
evolutionary landscape long before vision as “sight” (Goodale and Westwood 2004).

The strategies employed by the brain when we interact with the world, and the
more or less explicit symbolic meanings assigned to such interactions are an insightful
source of inspiration for dealing with the symbol grounding problem in artificial
agents. As explained above, motor primitives show different levels of complexity, and
compose hierarchically to form a motor vocabulary. Complex movements and action
sequences are composed in an almost linguistic way from this motor vocabulary. The
question is whether motor and visuomotor primitives can be considered as symbols,
extending the symbol grounding problem to a larger domain.

As explained in Chap. 2, visual processes related to specific actions in primates
are different from visual processes not explicitly oriented to interaction of the subject
with the environment. Area AIP codifies visual information in a grasp oriented way,
associating visual features of a target object with a specific joint configuration suitable
to guide the movements for grasping them, movements that are stored in the premotor
cortex (Sakataet al. 2005). According to recent findings, in the inferior parietal lobule,
and very likely even in AIP itself, actions are coded not only in a pragmatic way, but
also in a semantic one (Gallese 2007). The activation of the dorsal stream areas of the
mirror system, both parietal and premotor, when a subject is looking at an object with
the purpose of interacting with it (e.g. reaching, hitting, pushing, grasping) seems to
represent a “potential action”. The emerging relation between sensory information
and motor response may thus represent a symbolic correspondent of a grasping action
(Hamilton and Grafton 2006). The dorsal stream involvement in action recognition
suggests that actions are indeed associated with a symbolic meaning (Culham and
Valyear 2000).

The lessons that robotics researchers can draw from these findings are: (1) the
plausibility of a “dorsal style” visual elaboration that is exclusively dedicated to acting
purposes; (2) the need of an emergent attribution of semantic meaning to synthesized
grips. The next section introduces a robot system capable of object grasping in which
visual analysis is dedicated to action, as in the primate dorsal stream, and in which
a grasp codifies a relation between the hand and the object, as in humans.

3.3.2 An Emerging Categorization of Synthesized Robot Grips

Within the context of a robotic application for grasping and manipulation in a semi-
structured environment, a framework was defined for characterizing candidate grips
in a natural way, according to their properties in relation with the execution of a
grasping action. Clustering of the candidate grip configurations occurs due to implicit
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Fig. 3.1 Examples of three hand configurations found for two different objects

properties of grips, and an eventual symbolic meaning emerges through interaction of
the agent with its world. The experimental setup used for the experiments described
here is the one defined in Sect.5.4.1.

The grasping action can be subdivided in four main modules or steps:

1. Image processing: The stereo vision system of the robot estimates the two-
dimensional location of an unknown planar object placed on the table, which is
the grasping target. A monocular image of the object is provided and analyzed to
extract the object contour and identify on it regions suitable for finger contact.

2. Grasp synthesis: Several feasible candidate grasps (see some examples in
Fig.3.1) are generated, by selecting the target contact points for each triplet of
grasp regions. Hand configurations for reaching the target points are computed
taking into account the kinematic and geometric constraints of the Barrett Hand.

3. Grasp evaluation: The candidate grasps are characterized according to properties
related to the geometry of the target object, the kinematics of the hand and their
interaction, in order to perform a reasoned selection of the grasp to execute.

4. Execution: The hand is preshaped and positioned above the object, it moves
down, closes the fingers so that the object is grasped, lifted and transported to
a designated location. All this is performed with support of visual and tactile
feedback.

Regarding grasp evaluation (step 3), a characterization scheme which includes
nine high-level features was defined for providing an object-independent way to
describe candidate grasps. In this way, each grasp is represented by nine measure-
ments and thus by a point in a 9-dimensional space. The features regard visual and
motor aspects related to properties of the object contour, hand kinematics and nature
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of the contacts. The nine features derive from a set of quality criteria defined for
assessing candidate grasp configurations (Chinellato et al. 2005).

A practical measurement of the reliability of a grasp was defined to characterize
candidate configurations. After selecting a candidate grasp to execute, if the robot
has been able to lift the object safely, a set of stability tests are applied in sequence.
They consist of three consecutive shaking movements of the hand which are executed
with an increasing acceleration. After each movement the tactile sensors are used to
check whether the object has been dropped off. In this way the stability of the current
grasp is measured.

An extensive experimental data gathering was realized following this protocol, and
provided a qualitative measure of the success of many different grasps. A learning
schema has been applied that makes use of the hyperspace described by the nine
characterizing features, and tries to predict the reliability of a novel grip exploiting
the information previously gathered on the outcome of already executed grasping
actions. Different predicting methods have been applied and compared, with quite
satisfying performances (Chinellato et al. 2003; Morales et al. 2004). These results
showed that grasp reliability could be implicitly related to the characterizing features.

Summarizing, in this example each grip is represented as a point in a multidi-
mensional space, and a procedure is introduced to predict a query point based on its
similarity to previous grasping experiences. This is a case of instance-based, also
known as memory-based learning (Aha 1997), which is a numeric version of the
explicitly symbolic case-based reasoning (Waltz 1995). Although in this approach
there is no explicit representation of the target function when training samples are
provided, a natural characterization of the grips evolve from experience. The “char-
acter” of a new grip is recognized from the system as similar to some experience
it already passed through, and the validity of such emerging associating ability is
proved by the consequent predicting capacity of the system.

The system thus assigns each novel grip a symbolic value originating directly from
its visuomotor character. Also, the visual analysis performed is only oriented toward
action related features, as in the cortical dorsal stream, and there is no recognition of
the target object. In this way, symbols are not related to the identity of objects, but
rather to the different sensory experiences that objects can provide.

The next section proposes a procedure for extracting symbolic meaning from
sensorimotor interactions through the use of connectionist methods.

3.3.3 Extracting Symbolic Meanings from Physical
Interactions

In the previous section, a symbolic representation of sensorimotor experience was
used to compare grips and predict the reliability of upcoming actions. This section
describes an approach for extracting explicit symbolic meaning from sensor data
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Fig. 3.2 System setup for
the peg-in-hole task

through the use of artificial neural networks. In this case, the symbolic relation refers
to the contact states between an already grasped object and the goal position.

The study is based on the classical two-dimensional peg-in-hole insertion task
(Cervera and del Pobil 2000), performed using the setup depicted in Fig.3.2. The
task is to insert a peg hold with the gripper in a chamferless hole. Wrist-mounted
force sensors are used to measure the external forces and torques applied to the peg
as the manipulator interacts with the environment.

Symbol grounding in this experiment is required to assign symbolic values to the
physical interactions between the robot—the peg can be considered as a prolonga-
tion of the robot gripper—and the environment. The correct identification of such
interactions is of fundamental importance for the adequate execution of the task: in
this particular case the insertion of the peg into the hole. Physical interactions are
modeled as contact states between peg and hole, that have to be identified with the
help of the force sensors. In Fig. 3.3, all possible contact states and the corresponding
forces are shown. The no-contact state, F0, shows the weight force, while all the oth-
ers only show the reaction forces, but weight is considered too. In order to identify
the contact states, only the direction of forces is relevant, not their magnitude. The
sensors provide only three raw signals of force and torque, and the problem is to

R )

FO F1i

Fig. 3.3 Set of contact states for the peg-in-hole task, showing the contact forces between peg and
hole. State FO shows only the weight force which is omitted in all other graphs
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Table 3.1 Contact states

. . State Right Wrong Unknown
classification percentages
F1 94 5 1
F2 100 - —
F3 59 34 7
F4 97 — 3
F5 100 — —
F6 78 21 1
Average 88 10 2

appropriately map these signals to one symbolic contact state. This is not a trivial
problem due to the variability of the forces and the superposition of the peg weight
and one or several reaction forces.

In order to perform the matching between sensory data and symbolic states,
Self-Organizing Maps were used (Kohonen 1990). The experiments consist of three
phases:

1. Training. The neural network is trained with a set of 1200 random input samples
equally distributed across contact states, according to the procedure described in
Kohonen (1990). In this way the net learns in an unsupervised way the natural
structure of the data.

2. Calibration. A set of 600 labeled samples is used for calibrating the net to the
contact states. The network response is analyzed for all inputs, and each network
unit is labeled with the contact state for which it has been more frequently selected
as the closest unit.

3. Testing. The performance of the network is tested with an independent set of 600
samples. For each sample, the most responsive unit is selected, and the output
contact state is given by that unit’s label. An uncertain response occurs if the unit
is unlabeled.

Results from a typical experiment are shown in Table 3.1. Two states, F2 and F§,
are perfectly identified. State F4 is correctly identified in the 97 % of cases and F1
is properly classified in the 94 % of the cases. States F3 and F6 seem to be more
difficult to identify, and the correct classification percentages are smaller. The average
network performance, 88 % success, is anyway very good, and it has to be taken into
account that only force information has been used.

After establishing the correspondence between force sensor data and symbols
denoting contacts, the peg-in-hole insertion problem can be solved in a number of
ways. These are depicted in Fig. 3.4, that shows a perception-based diagram in which
the increments inside the nodes denote the actions to be performed for reaching the
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Fig. 3.4 Perception-based ()

motion plan for solving the @

peg-in-hole task. The
increments within the nodes

symbolize the possible m

actions and the arrows the '
consequent state transitions (‘m’

neighbor nodes. The transitions are defined so that the goal position D can be reached
from any state. Several tests were performed with a real robot and sensors using the
transition rules of Fig.3.4, and following different sequences of contact states. The
good experimental results demonstrated that the task could actually be performed by
using direct sensory data only, without the need for information about the position
and orientation of the peg.

This example shows how self-organizing neural networks were able to automati-
cally extract a number of symbolic states that represent relevant real-world situations
useful in a transition graph for the solution of a relatively complex problem. Most
importantly, such symbolic knowledge derived directly from sensory information
regarding ongoing actions.

3.3.4 Symbolic Value of Hand-Object Interactions

The two case studies exposed above show how symbolic meanings can naturally
arise from the physical interaction between an agent and objects in its environment,
suggesting that motor primitives constitute a consistent source of symbolic knowl-
edge.

Looking once more at cut-edge research in neurophysiology, the existence of a
parieto-premotor mirror system (Sect. 2.5) supports the idea of extending the symbol
concept to motor behaviors and sensorimotor interactions. In fact, the symbols man-
aged by AIP do not codify objects, but action-oriented visual representations, and
association patterns between objects and distal subject effectors (Tunik et al. 2007).
Taking a step further in the analysis of the mirror mechanisms, it has been proposed
that symbolic communication and language evolved from a neural motor system
involved in action recognition (Keysers et al. 2003; Hamilton and Grafton 2006).
Moreover, the mirror system seems to play a critical role in learning by imitation,


http://dx.doi.org/10.1007/978-3-319-20303-4_2

3.3 Symbol Grounding Through Robotic Manipulation 51

a skill that we are only beginning to develop in robots. Broca’s area in humans,
traditionally related to language production, is the most likely correspondent of F5,
where mirror neurons were first discovered (Binkofski and Buccino 2004; Grézes
et al. 2003). This would confirm that action understanding, recognition and mental
imagery of actions do not differ conceptually from object recognition or imaging, and
that complex cognitive processes emerge from simple behaviors which firstly evolved
in order to endow the organism with skills for better interacting in its environment.

3.4 Toward Intelligent Robotic Grasping

In the previous section, the existence of symbols that are grounded in the physical
sensorimotor interactions between the robot and the objects in the world has been
discussed. The two presented case studies show how symbolic meaning can describe,
and be extracted from, visuomotor experiences regarding manipulation tasks, allow-
ing the robot to build a representation of the possible interactions with its surrounding
environment. The merging of different sensory modalities, such as vision and touch,
in the exploration of the environment is probably the most necessary further develop-
ment of the proposed approach. A fundamental conclusion, consistent with findings
about the action-oriented human dorsal visuomotor stream, is that in a robotic sys-
tem there is no need to model, recognize or classify an object in order to physically
interact with it, since the symbols derived from sensorimotor experience identify
particular physical interactions between the robot hand and the target object.

As previously explained, classical robotic approaches do not follow this path.
Instead, they consider either object recognition or full visual reconstruction previous
to grasp analysis, which is normally based on an object model (Bicchi 2000). This
pattern corresponds to the scheme of Fig. 3.5a, in which perception-synthesis-action

(a) Vision for Grasp
Modeling Object Synthesis
Object model Action
(b) Vision for Glrasp
Action : Selection
Object Cagﬂf:te Action
Ventral
(C) Stream Object
. recognition
Object Stream _
(basic visual Dorsal Integration ) Grasp Action
features) Stream Grasp
features

Fig. 3.5 Different approaches in vision-based grasping: a is the traditional perception-reason-act
paradigm; b represents an action-based vision approach; c is the integrated methodology proposed
in this work
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are sequentially executed, and vision is general purpose rather than goal-oriented.
There are works in the literature which exploit visual features in a manner focused on
grasp purposes, but without the aid of “cognitive” information about objects (see e.g.
Morales et al. 2006; Saxena et al. 2008 and Sect. 3.3.2). This approach is symbolized
in Fig.3.5b. The first method lacks of flexibility, as it builds on a nearly general-
purpose visual processing stage. The second method partially resembles the job of
the dorsal stream, and is thus more biologically plausible and often very efficient.
Nevertheless, it does not exploit the kind of cognitive information that makes human
grasping skills largely transcend a geometric or kinematic analysis.

The review presented in this chapter shows that the grasp problem in robotics
is still largely unsolved. The proposal put forth in this book for obtaining a more
reliable and meaningful interaction with real world objects is to integrate in a robotic
grasping system instantaneous visual information gathered in an action oriented-
manner (dorsal pathway) with experience-mediated information (ventral pathway).

In Fig.3.5c a representation of this solution, which somehow encompasses the
two previous ones, is depicted. This integration process is what human beings do
all the time: we join our knowledge about the objects we are going to grasp, and
the experience of previous actions, with the analysis of the actual, concrete situation
we are facing. The model introduced in the next chapter goes toward this direction,
and analyzes the indications of neuroscience research from a practical point of view,
in order to devise a set of mechanisms able to endow a robot grasping system with
increased capabilities in interacting with its nearby environment.
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