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Preface

Until recently, neuroscience and robotics were utterly unrelated subjects, requiring
completely different background, skills and methodologies. Nowadays, the distance
between the two fields is being constantly shortened by the progress in computa-
tional modeling, and the construction of increasingly skilled autonomous artificial
agents inspired by the abilities and behavior of living beings. The astounding
discoveries that are being recently achieved by brain scientists constitute the fun-
damental building blocks for computational neuroscience and biomimetic robotics.
This book presents interdisciplinary research which pursues the mutual enrichment
of neuroscience and robotics research.

Grasping and manipulation of every kind of object is arguably the most dis-
tinctive practical skill of human beings, and erect posture has likely evolved in
order to free the upper limbs and make of the hands two unmatchable tools. Despite
the great efforts that are being put on it, grasping in robotics is largely an unsolved
problem, due to its inherent complexity and the still limited adaptive skills of
present day robots in visual and visuomotor behaviors. In our approach, the task of
object grasping is dealt with by mimicking, as accurately as possible, the brain
mechanisms which underlie planning and execution of grasping actions in humans
and other skilled primates.

The principal contribution of the presented research is the definition and
implementation of a functional model of the brain areas involved in vision-based
grasping actions. The model constitutes a bridge between cognitive science and
robotics research, and includes all the steps required for performing a successful
grasping action from visual data. The subdivision of visual processing into the
dorsal and ventral cortical streams, respectively dedicated to action-oriented and
perception-oriented vision, is thoroughly taken into account. Hypotheses regarding
the mechanisms that allow to achieve complex interactions with the peripersonal
space, through the integration of the data provided by the streams, are put forth.
Transfer functions are proposed for modeling the visuomotor transformations
performed by the brain areas most critical in grasp planning and execution.

The particular attention payed to the functional role of brain areas makes the
model especially suitable for implementation on a real robotic setup, and a full
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vision-based robotic grasping system has been developed following its guidelines.
Visual information regarding an unknown target object is acquired and transformed
into a basic representation onto which two concurrent processing mechanisms are
performed. The dorsal stream extracts and analyzes possible grasping features,
while the ventral stream performs object classification. Dorsal and ventral visual
data are merged for estimating shape, size and position of the object, and a grasping
plan is devised which takes into account both visual data and proprioceptive
information on the state of the arm and hand. Grasp execution is performed with the
aid of tactile feedback in order to achieve a stable final hand configuration.

Grasping experiments have been performed on real objects unknown to the
system, and the obtained results attest the achievement of our two concurrent goals.
On the one hand, the system can safely perform grasping actions on different
unmodeled objects, denoting especially reliable visual and visuomotor skills. This
confirms that the new research path we propose, according to which robotic
grasping can be based on the integration of the two visual processing channels
of the primate brain, is significant and worth further exploration. On the other hand,
the computational model and the robotic experiments help in validating theories on
the mechanisms employed by the brain areas more directly involved in grasping
actions. This book offers new insights and research hypotheses regarding such
mechanisms, especially for what concerns the interaction between the streams.
Moreover, it helps in establishing a common research framework for neuroscientists
and roboticists regarding research on brain functions.

London Eris Chinellato
April 2015 Angel P. del Pobil
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Chapter 1
Introduction

Life sciences and engineering research have been long considered as two unrelated
and independent subjects. Researchers of either fields are rarely required to possess
more than basic notions regarding the other. Moreover, it is often perceived as point-
less for a scientist to delve into themes that are seemingly not directly relevant for
her/his research. The implicit assumption is that not much can be learnt from other
fields that is useful for the advancement of one’s studies. Nevertheless, illustrious
exceptions to this way of thinking can be found throughout human history, like Aris-
totle, Averroes, Leonardo Da Vinci, Gottfried Leibniz, and for the last century John
von Neumann, Herbert Simon, Bertrand Russell, just to mention a few universally
known names of true interdisciplinary scientists. Compared to the pioneering work
of such geniuses, it is nowadays much easier to access all kinds of human knowledge,
for anyone that is just curious enough to do it. Also in the scientific and engineer-
ing communities the trend is clearly changing, and it is getting more common to
find researchers who deal with problems from different points of view provided by
complementary disciplines.

Two seemingly unrelated communities that are increasing their mutual interest are
neuroscience and robotics. The rapidly growing number and quality of conferences
and projects dedicated to robotic applications inspired by neuralmechanisms confirm
the interest of roboticists in cognitive sciences. On the other hand, the increasing
attention of the neuroscience community regarding robotics research is corroborated
by the trend in the number of research papers indexed in PubMed that cite the word
robotics, depicted in Fig. 1.1. The fundamental importance of technological aspects
in life science research nowadays partly explains such trend. Another explanation
lies in the greatly improved biological plausibility of the newest artificial systems,
which are becoming of interest for the people who study the natural systems that
inspired them.

Artificial intelligence constitutes the natural bridge between cognitive science
and autonomous robotics. The field was born with the idea of emulating human
capabilities in problemsolving.Amazing advancements have been achieved through-
out the years, and control systems based on artificial intelligence techniques are
nowadays common in every house. Nevertheless, artificial sensorimotor skills have
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2 1 Introduction

Fig. 1.1 Trend of the number of papers indexed in PubMedwhich cite the word robotics (generated
from http://dan.corlan.net/medline-trend.html)

not developed nearly as fast as reasoning ones, due to engineering constraints, but
also to the basic differences between brainmechanisms and artificialmachines. Com-
putational neurosciences are trying to bridge this gap, providing artificial agents
with abilities more deeply inspired by natural mechanisms, in order to achieve, in a
medium-long term, better efficiency and more adaptive behaviors.

Robotics often aims at reproducing in artificial beings the most relevant skills
characterizing animals in general and humans above all. One of the most distinctive
abilities of humans, and to a minor extent of other primates, is the handling of
every kind of objects in a dexterous way. Grasping and manipulating skills have
been constantly pursued in robotics for their theoretical and practical implications.
Nevertheless, in spite of the amount of research and technological efforts, the gap
between the prehension performances of primates and that of autonomous robots is
still wide, especially in unstructured, real environments. Structural reasons explain
such gap. In the first place, technological development in the building of artificial
hands and limbs is progressing fast, but the dexterity and versatility of the human
hand is still out of reach for the moment. As a consequence, not only technological
applications but also modeling efforts are affected, because detailed models of the
capabilities of real hands cannot yet be applied to artificial ones.

In addition, the software approach is inherently unsuitable for the emulation of
brain functions. The extraordinary skills of the brain are inextricably related to its
structure and its tight interconnections with the rest of the body. The distinction
between software and hardware simply does not hold if referred to the brain. Still,
keeping with the current technology, computational models of brain mechanisms
help in twoways. They complement neuroscience findings aiding in the proposal and
validation of hypothesis and theories, building on the laws of physics and chemistry,
and on fundamental biological concepts such as adaptation through evolution or
embodiment. On the other hand, they provide practical insights on how artificial
agents, both software and hardware, can be built in order to achieve certain skills.

http://dan.corlan.net/medline-trend.html
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Following a truly multidisciplinary approach, this book deals with the task of
vision-based grasping pursuing two interconnected and complementary goals. The
first goal is to obtain a unified schema of the mechanisms and functionality of the
brain areas most important for the planning and execution of grasping actions. Imple-
mentation of such schema on a real robotic setup allows to verify the appropriateness
and plausibility level of the hypothesizedmechanisms. As a second goal, thosemech-
anisms endow the robotic system with advanced grasping capabilities not attainable
with different approaches. In fact, although biomimetic robotics is a rapidly devel-
oping field, the limited literature about biological inspiration in robot grasping at
cognitive level suggests that the subject has still much to offer.

Our proposal is based on the two streams theory (Goodale and Milner 1992),
according to which visual information in the brain is processed along two main
parallel pathways. The pathways evolved for different purposes, being the ventral
stream dedicated to perceptual tasks such as object recognition, and the dorsal stream
to action-oriented visual tasks, such as motion detection or distance estimation. Nev-
ertheless, recent findings point out the existence of strict relations between them, and
the contribution of both pathways is necessary in order to allow proper interaction
of human beings with the world, such as in grasping actions.

This book introduces a full framework of the sequence of sensorimotor trans-
formations required to plan and execute hand movements suitable to grasp nearby
objects. Present day research on robotic vision-based grasping has been compared
with up-to-date neuroscience findings. The proposed framework has been conceived
to be applied on a robotic setup, and the analysis of neuroscience findings has been
performed taking into account not only biological plausibility, but also practical
issues related to implementation constraints. The first contribution of the research
presented in this book is thus a model of the brain mechanisms behind vision-based
grasping. Such model is faithful to the neuroscience data, but also focused on prac-
tical aspects, in order to get a functional understanding of the information flow, and
the way it is actually transformed by brain areas, beyond general explanations. The
second contribution is a new approach to vision for grasping in robotics, which aims
at improving the emulation of human skills through the integration of the information
flows proceeding from the two visual pathways.

In the developed model, special attention has been devoted to how visual data are
represented and processed at different stages along the dorsal stream. Ventral stream
modeling is mainly aimed at extracting information useful for grasping actions, and
many details of its processing are not considered. Hand dexterity is obtained joining
pure manipulating skills with a visual system especially suitable for estimating the
features of nearby objects. In fact, an efficient interaction with the environment
requires the ability of estimating distance, size and shape of surrounding objects.
Such ability can only be achieved through the use of binocular vision. Not only
mammals, but even those birds most skilled in picking up objects (or animals) with
their beaks have frontally placed eyeswhich allow for stereoscopic vision. Sometimes
though, stereopsis alone is not enough, and there is the need to complement it with
other sorts of visual information, such as motion-related cues, texture, shading and
so on. Neuroscience research on primates showed that visual information is indeed
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processed in a highly parallel way.Different cues for the same stimulus are processed,
compared and optimally merged in order to provide increased estimation reliability
through redundancy. Cue integration is a major principle in the processing of sensory
stimuli, and vision is not an exception.

The first part of the model implements the integration of monocular and binocular
retinal information for estimating object pose. The obtained modular computational
structure is composedof various stereoscopic andperspective estimators anddifferent
merging methods. The framework has been implemented on a real robotic setup at
the Robotic Intelligence Lab of Universitat Jaume I, and provides the system with
precise and reliable pose estimation capabilities. Experimental results suggest that
the principle of cue integration can make robot sensory systems more reliable and
robust. The same results show that the model is able to reproduce experimental data
obtained in human studies.

The second part of the model is focused on the coding and transformation of
visual features into suitable hand shapes. The task to perform is a safe object grasp-
ing action, based mainly on visual input. The integration of sensory information of
different modalities, visual, tactile and proprioceptive, is complemented with data
regarding object identity, and with criteria for action selection. Tactile response is
employed in order to adjust the hand configuration to the object and make the grip
more stable even in the case of perturbation of the working environment. Again, the
approach is coherent with research on primates but also directly suitable for robotic
implementation. The obtained artificial grasping behavior is relevant for the robotic
community and useful for the interpretation of brain functions.

Summarizing, this book describes the definition and implementation of a model
of the extraction and integration of information relevant for grasp planning and exe-
cution. The model is both biologically plausible and carefully tailored to be applied
to a robotic setup. Experimental results show that, while the robot is provided with
advanced grasping skills, effects predicted by neuroscience research are reproduced.

The book is organized as follows. Chapter 2 reviews the neuroscience literature
of brain areas involved in grasping actions, following a logical sequence from visual
acquisition to action execution, and paying special attention to the possible inter-
actions between the streams. The current approaches to vision-based grasping in
robotics are exposed and compared to neuroscience research in Chap.3. The chapter
includes a proposal for grounding sensorimotor interactions to symbolic representa-
tions in robotic grasping, in Sect. 3.3. Chapter 4, after a description of related models
and a methodological discussion, outlines the modeling proposal, describing briefly
the brain areas involved, the basic functions they perform and their connectivity. The
model is then detailed in the following two chapters. In Chap.5 the mechanisms
for extracting and merging visual cues to grasping features are described. Chapter 6
presents the transformation from visual input to hand configurations, and the plan-
ning and execution of grasping actions. Both chapters provide modeling details and
experimental results of the application of the proposed mechanisms to the robotic
setup. In Chap.7, complementary research, alternative interpretations and modeling
approaches, and possible future research directions are presented and discussed.

http://dx.doi.org/10.1007/978-3-319-20303-4_2
http://dx.doi.org/10.1007/978-3-319-20303-4_3
http://dx.doi.org/10.1007/978-3-319-20303-4_3
http://dx.doi.org/10.1007/978-3-319-20303-4_4
http://dx.doi.org/10.1007/978-3-319-20303-4_5
http://dx.doi.org/10.1007/978-3-319-20303-4_6
http://dx.doi.org/10.1007/978-3-319-20303-4_7
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Chapter 2
The Neuroscience of Action and Perception

The visual cortex of humans and other primates is composed of twomain information
pathways, called ventral stream and dorsal stream in relation to their location in the
brain, depicted in Fig. 2.1. The traditional distinction put forth by Ungerleider and
Mishkin (1982) and detailed by Goodale and Milner (1992) talks about the ventral
“what” and the dorsal “where/how” visual pathways. In fact, the ventral stream is
devoted to perceptual analysis of the visual input, such as in recognition, categoriza-
tion, assessment tasks. The dorsal stream is instead concerned with providing the
subject the ability of interacting with its environment in a fast, effective and reli-
able way. This second stream is directly involved in estimating position, shape and
orientation of target objects for reaching and grasping purposes.

The two cortical systems related to the visual streams were previously considered
to act nearly independently (Milner and Goodale 1995). However, although recent
studies confirm that the dorsal stream is more oriented toward action-based vision,
whilst the ventral one is more suitable for categorization, their interaction seems to
be extremely important for allowing both of them to function properly (Goodale and
Milner 2004).

The tasks performed by the two streams, their duality and interaction, constitute
the neuroscientific basis of the research described in this thesis, and this chapter is
devoted to a detailed explanation of the related concepts.

2.1 The Two Cortical Streams of Visual Elaboration,
Fundamental Roles and Proofs of Dissociation

Looking at an object with grasping purposes activates a neural pathway which is not
active when grasping actions are not involved. This activation seems to represent a
potential grasping action, and is reinforced when the action is actually performed.
Some neurons in the anterior intraparietal area (AIP) of posterior parietal cortex
in monkeys are found to be active when grasping some particular objects, but also
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(a) (b)

Fig. 2.1 Visual streams and cortical lobes of the human brain. a Dorsal and ventral streams. b
Cortical lobes and cerebellum

when looking at them with the purpose of grasping (Sakata et al. 1998). Some other
neurons of the same area are sensitive to the size or orientation of objects, and to
hand postures. Area AIP is not activated when the task is to recognize or classify
objects and no practical interaction is required. A very similar pattern has been found
in humans as well (Culham 2004; Cohen et al. 2009; Hoeren et al. 2013), thanks to
fMRI and TMS research (see boxes below).

fMRI is a non-invasive neuroimaging technique that infers the activity of brain
areas from their hemodynamic response. The most common type of fMRI,
called BOLD (Blood Oxygen Level Dependent), measures regional differ-
ences in oxygenated blood. BOLD-fMRI is by far the most used neuroimaging
technique due to its very high spatial and temporal resolution, although the
exact relation between neuronal activity and blood oxygenation is still a mat-
ter of debate (Culham 2001; Logothetis et al. 2001; Heeger and Ress 2002;
Snow et al. 2011).

Transcranial magnetic stimulation (TMS) is a non-invasive brain study tech-
nique that creates localized, completely reversible lesions to the brain cortex
through the induction of weak currents by rapidly changing magnetic fields
(Pascual-Leone et al. 2002). The technique allows to study the functionality
and connectivity of brain areas by inactivating them during the execution of
certain tasks. The advantage of TMS over imaging methods is that an observed
disruption implies the direct involvement of the stimulated area in the tested
function. On the other hand, TMS spatial resolution is lower than in fMRI, and
the results are strongly dependent on the exact stimulation, in space and time,
of the target area.
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In the dorsal visual stream of the primate brain, there is thus an area especially
dedicated to encode the 3D features of objects in a format suitable to be used for
planning and executing grasping actions. Similarly, a large part of the human brain
close to the lateral-occipital sulcus (the lateral-occipital complex, LOC) is dedicated
to recognize visually-presented stimuli, such as objects or faces, but is not directly
involved in action execution toward them (Kourtzi and Kanwisher 2001). LOC is
probably the most typical ventral stream area.

2.1.1 A Dual Mechanism for Vision

Thedualismbetween “vision for action” and “vision for perception”hadbeenhypoth-
esized long time before neuroimaging research (Goodale et al. 1991; Milner and
Goodale 1993). Studies with neurally-impaired people, especially on two categories
of brain damages, visual agnosia and optic ataxia (see box), suggested such dualism.

Visual agnosia (fromGreek: a-gnosis, lack of knowledge) is the namegiven to a
number of different disorders and syndromes inwhich visual object recognition
is impaired (Farah 2004). Of particular interest for the two streams research
is visual form agnosia, a type of agnosia that affects identification of shapes
even though the subjects have preserved visual acuity, color vision, tactile
recognition, and are able tomove correctly andproperly graspobjects presented
in their peripersonal space (Milner et al. 1991; Rice et al. 2006a).

Optic ataxia (fromGreek: a-taxis, lack of order) occurswhen the patient has
a deficit in visually-guided armmovements that cannot be explained by motor,
somatosensory, or visual acuity deficits (Buxbaum and Branch Coslett 1997;
Glover 2003). People affected by optic ataxia are unable to grasp common
objects if not very clumsily and unreliably, although their recognition and
classification skills are totally spared (Milner and Goodale 1995).

The apparent complementarity of the two impairments have been of great help
for the elaboration of the two streams theory. Recent neuroimaging studies revealed
that visual agnosia is caused by damages to the LOC and nearby areas, whereas
damages to the dorsal stream around AIP provoke optic ataxia. For example, the
brain of patient DF, suffering from visual form agnosia, does not show activation
related to object identification, because her ventral stream is damaged (James et al.
2003; Whitwell et al. 2014). Nevertheless, she is able to correctly perform grasping
actions, and her parietal activation is rather similar to control subjects, including in
the anterior intraparietal sulcus during grasping. The opposite behavioral patterns
are observed in optic ataxic patients (Goodale and Milner 2004).
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Evidence for the different role and processing mechanisms of the two pathways
has been provided during the last two decades by plenty of studies following different
research approaches and techniques. Recent fMRI research showed the complemen-
tary responsiveness of the two streams in identification and spatial analysis of visual
stimuli (Valyear et al. 2006; Thoma and Henson 2011). Such dissociation is con-
firmed for situations in which the action is observed and not directly performed
by the subject (Shmuelof and Zohary 2005), or only pantomimed Makuuchi et al.
(2012). Considering two of the most representative areas of the streams, AIP for
the dorsal, and LOC for the ventral stream, the former shows differential activity
during grasping movements with respect to reaching, whilst the latter does not. On
the other hand, LOC activates whenever a recognizable object is visible (compared
to scrambled images), whilst AIP only when a potentially graspable object is in view
(Culham et al. 2003).

Behavioral studies based on optical illusions, distractor stimuli and concurrent
tasks suggest that visual information is analyzed and processed differently by the
streams (Winkler et al. 2005; Plewan et al. 2012). According to Westwood and
Goodale (2003a), explicit object perception in the ventral stream is “scene-based”
and the size and location of an object is represented contextually with the size and
location of nearby objects. The control of object-directed actions by the dorsal stream
follows instead an “actor-based” frame of reference, in which object location and
size are represented with respect to the subject body, and especially to hand and arm.
Dorsal visual analysis is driven by the absolute dimensions of the target object, and
other objects in the environment are likely to be considered and hence taken into
account only as potential obstacles (Ansuini et al. 2007b). Another distinction talks
about holistic and analytical visual representations (Ganel and Goodale 2003; Red
et al. 2012): object dimensions that are perceived globally by the ventral stream are,
in the same situation, processed locally by the dorsal stream if a visually-guided
action is directed at the object.

Several studies (see e.g. Grill-Spector et al. 1999; James et al. 2002) demon-
strated that ventral stream areas such as LOC show adaptation for different views of
the same object, denoting viewpoint invariance. On the contrary, areas of the intra-
parietal sulcus do not exhibit such invariance, and respond to different views as they
were different objects. This suggests a more “pragmatic”, action-oriented on-line
processing along the dorsal stream, focused on the actual situation of the environ-
ment rather than on objects’ implicit quality. Even access to memory seems to be
different for the two streams, and working memory related to spatial location and
visual appearance is probably located in different subsystems (Darling et al. 2006;
Kawasaki et al. 2008).

The streams dissociation has thus been confirmed, but also criticized, by the
neuroscientific community, and the original theory is constantly being revised and
updated. The trend is toward a more integrated view of the functioning of the two
streams, that have inmany cases complementary tasks (Goodale andWestwood 2004;
Zachariou et al. 2014).
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2.1.2 Brain Pathways for Vision-Based Grasping

The anatomy of the visual and motor cortices of human and closer superior primates
is well known. Although the knowledge regarding associative regions of the brain,
such as the posterior parietal or the inferior temporal cortices, is less established, it
is possible to outline a simplified schema of the brain areas more directly involved in
vision-based grasping actions. Those areas more thoroughly considered in this work
are depicted in Fig. 2.2. A longer list of brain areas, with acronyms or short names
and references to the sections in which they are described is provided in Table2.1.
Here, only an overview of the two pathways is given, and more details are provided
in the rest of this chapter.

Visual data in primates flows from the retina to the lateral geniculate nucleus
(LGN) of the thalamus, and then mainly to the primary visual cortex (V1) in the
occipital lobe. The two main visual pathways go from V1 and the neighbor area V2
to the posterior parietal cortex (PPC) and the inferior temporal (IT) cortex. Through
the dorsal pathway, object related visual information flows through area V3A and the
caudal intraparietal area (CIP), which extracts action-related spatial visual properties
of objects. Visual data then reaches the anterior intraparietal sulcus (AIP), in which
visual features are analyzed in order to plan and monitor the execution of suitable
grasping actions. Area AIP projects mainly to the ventral premotor area (PMv),
that selects and composes motor primitives (see box on motor primitives) to form
complete grasping actions,which execution signals are released by the primarymotor
cortex (M1).

Object information flowing through the ventral pathway passes through V3 and
V4 to the lateral occipital complex (LOC), that is in charge of object recognition.
According to recent interpretations of the two streams hypothesis (Goodale and
Milner 2004; Ellison and Cowey 2009), the LOC itself is implied in some action-
related processing, although the way the two streams communicate is still mostly
unknown.

The neuroscience concepts most relevant for the current research are described
in the next sections, separated in early visual processing, dorsal, and ventral stream
areas. Exhaustive reviews of grasp-related research are Castiello (2005) and Culham
et al. (2006). For details regarding visual areas, fundamental studies are Felleman
and Essen (1991) and Chalupa and Werner (2003). Most brain regions cited in the
text can be localized in Fig. 2.2.

Fig. 2.2 Brain areas
involved in vision-based
grasping actions
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Table 2.1 Principal cited brain areas, with acronym and reference to the section in which they are
described

Brain area Acronym Sections

Visual areas

Primary visual cortex V1 2.2

Visual area 2 V2 2.2

Visual area 3 V3 2.2

Middle-temporal area MT/V5 2.2

Dorsal stream areas

V3 Accessory area V3A 2.2

Intraparietal sulcus IPL 2.3

Caudal intraparietal sulcus CIP 2.3.1

Anterior intraparietal sulcus AIP 2.3.2

Lateral intraparietal sulcus LIP 2.3.4

Ventral intraparietal sulcus VIP 2.3.4

Parietal reach region PRR 2.3.4

Ventral stream areas

Visual area 4 V4 2.4

Lateral occipital complex LOC 2.4.1

Ventral occipital temporal area vTO 2.4.1

Lateral occipital cortex LO 2.4.1

Motor areas

Primary motor cortex M1 2.3.3

Ventral premotor cortex PMv/F5 2.3.3

Dorsal premotor cortex PMd 2.3.3

Other areas and structures

Lateral geniculate nucleus LGN 2.2

Posterior parietal cortex PPC 2.3

Somatosensory cortex SI/SII 2.4.2

Prefrontal cortex PFC 2.4.2

Basal ganglia 2.4.2

Cerebellum 2.4.2

Differences between humans and other primates are discussed in the text

2.2 Visual Areas and Stream Separation

The retina is the visual receptor of the human body. Visual information gathered by
the retina is sent through ganglion cells to the lateral geniculate nucleus (LGN) of
the thalamus. Ganglion cells are of two types: parvocellular (P) and magnocellular
(M); the former are smaller, slower and carry many details such as color, the latter
are larger and faster, and rather rough in their representations. Although these two
types of cells seem to correspond nicely to the ventral and dorsal stream distinction,
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Fig. 2.3 Visual areas in the brain, adapted from Logothetis (1999)

evidence is clearly against a simple correspondence between the subcortical and
the cortical pathways, and M and P signals mix largely inside V1 (Maunsell 1992;
Ferrera et al. 1992).

The LGN performs a first processing of the visual data and forwards them almost
entirely to the primary visual cortex (V1) in the occipital lobe (Lee 2003). The
primary visual cortex and neighbor visual areas can be localized in Fig. 2.3.

Area V1, also called the striate cortex, is organized in a retinotopic manner,
respecting the topological distribution of stimuli on the retina. In V1 basic visual
features such as colors, bars or edges and their orientation are detected. Visual areas
downstream from V1 are called extrastriate. The first extrastriate area, V2, receives
most of V1 output and projects mainly to visual areas V3 and V4. Area V2 is
retinotopic, has receptive fields that are larger thanV1’s and realizes amatching ofV1
features in order to performmoderately complexvisual tasks, such as detecting spatial
frequencies and textures or separating foreground frombackground.Visual areaV3 is
still retinotopic and elaborates on the job of V2 to generate more complex invariant
representations. V3 has large receptive fields and ability to detect more complex
features regarding orientation, motion, depth and color of stimuli (Gegenfurtner et al.
1997; Adams and Zeki 2001). In V3 the data stream splits into the two pathways:
dorsally towards the posterior parietal cortex (PPC) and ventrally to the inferior
temporal (IT) cortex. Comparative studies between human and monkey (usually
macaques) visual cortices reveal that their brains differmostly in higher-order cortical
regions, downstream from V3-V3A, and are more similar in lowest areas, such as
V1 and V2 (Van Essen et al. 2001; Tootell et al. 2003; Tsao et al. 2003).

For what concerns stereoptic processing, binocular disparities (see box on dispar-
ities) are present in all visual areas, starting from V1 (Poggio et al. 1988; Cumming
and DeAngelis 2001; Parker 2004). Areas V2 and V3 are increasingly capable of
depth processing, in accordance with the size of their receptive fields (Backus et al.
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2001; Rutschmann and Greenlee 2004). Both in humans and monkeys, area V3A is
specialized for stereoptic depth, and computes also relative disparities between pairs
of visual stimuli (Tootell et al. 1997; Backus et al. 2001; Tsao et al. 2003). Evidence
regarding the role of disparity processing in visual areas is not conclusive though,
as the distribution of different disparity tuning curves is rather smooth across areas
(Adams and Zeki 2001).

Links between various disparity-selective cells allow to obtain more sophisticated
response properties. For example, selectivity for absolute distance is obtained from
disparities using additional information about eye position. Computation of disparity
gradients is very likely performed in V3A and CIP using the outputs of many simple
disparity selective cells (Adams and Zeki 2001; Tsutsui et al. 2005).

Visual area V5, more commonly known as themiddle temporal area (MT), is very
likely themost important brain region for the detection ofmoving visual stimuli. Both
in humans and monkeys MT is selective for speed and direction of moving features
(Orban et al. 2003), and its responsiveness to stereopsis signals suggests that it
codes also for changes in object orientation (DeAngelis et al. 1998; Nguyenkim and
DeAngelis 2003). Even though the contribution of MT is required for performing
grasping actions toward moving targets (Schenk et al. 2005), there is no evidence for
an involvement of MT in detailed 3D analysis of objects, and thus of its relevance
for grasping actions toward static targets (Backus et al. 2001; Tsao et al. 2003).

Most projections in the visual cortex follow the described processing sequence,
from V1 to higher order areas, but backprojections are widespread, and visual elab-
oration in the early visual areas is subject to global context influence, task require-
ments, and to higher order perception (Lee 2003). According to the modern view, the
early visual cortex does not only perform the first, simple stages of visual processing,
but is also involved in many higher levels of visual elaboration (Vanni et al. 2004).
The visual cortex has been found to be more temporally compact than expected,
and transmission times between areas spatially and hierarchically distant are very
low (Bullier 2001). Primary areas are thus constantly involved in all stages of visual
processing, and higher areas such as MT are in a position to modulate the response
of V1 and V2 neurons and suit their response to the requirement of the visual task in
a reactive way. Even the LGN seems to be integrated with higher areas, and a short-
cut channel of M cells between LGN and MT might be the instrument used by the
dorsal stream to quickly separate objects from background, and bias the processing
in V1-V2 (Bullier 2001).

2.3 The Action-Oriented Dorsal Stream

Visual region V3A can be considered as pertaining to the dorsal stream, which
continues in the posterior parietal cortex, toward the top and sides of the brain. The
posterior parietal cortex (PPC) is largely recognized as the main associative area
of the brain dedicated to the coordination between sensory information and motor
response (Sakata et al. 1997). The intraparietal sulcus (IPS) separates the superior



2.3 The Action-Oriented Dorsal Stream 15

and inferior lobes of the PPC. Several areas within and close to the IPS are dedicated
to different visuomotor tasks (Sereno et al. 2014). Some of these areas are described
in this chapter, but special focus is put on its most posterior and anterior sections,
CIP and AIP respectively.

Many of the findings explained below concern monkey data, as single cell studies
allowed to collect a great deal of evidence regarding the role of intraparietal areas
in macaques. Only recently, although in an ever-growing fashion, brain imaging and
TMS studies (see box) began to clarify the structure and tasks of the posterior parietal
areas in humans.

Differences in control strategies depend also on structure, morphology and kine-
matics of body and limbs, and it is therefore very difficult to draw a full interspecies
parallel (Christel and Billard 2002). The current evidence suggests that the human
intraparietal cortex is more complex, and contains visuospatial processing areas that
are not present, or much reduced, in monkeys (Grefkes and Fink 2005; Orban et al.
2006a). Neuroscientists argue that, under evolutionary pressure, parietal but not ear-
lier regions adapted to endowhumanswith specific abilities (Striem-Amit et al. 2012),
such as an improved motion-dependent 3D vision for tool manipulation (Vanduffel
et al. 2002; Orban et al. 2006a).

Despite the differences, a rather clear parallel between monkey and human AIP
is established (Grefkes et al. 2002; Choi et al. 2006; Orban and Caruana 2014).
Also, many fundamental connections correspond across species, such as the anterior
intraparietal—ventral premotor and the medial intraparietal—superior colliculus
links (Rushworth et al. 2006). Hence, it is a common procedure to consider data
of similar species in order to try and work out the mechanisms behind vision-based
grasping in humans (Rizzolatti andLuppino 2001;Grefkes andFink 2005). Important
interspecies differences are nevertheless taken into account and discussed in the
following sections.

2.3.1 Posterior Intraparietal Sulcus

The most posterior part of the IPS is the caudal intraparietal sulcus CIP, which is
also referred to as cIPS, pIPS, PI or hCIP in the human case. Area CIP is mainly
dedicated to local 3D shape and orientation processing. It receives projections from
visual area V3 and V3A and is also active during visually guided grasping.

Neurons in CIP are strongly selective for the orientation of visual stimuli. Two
exhaustive studies (Taira et al. 2000; Tsutsui et al. 2001) showed that selectiv-
ity toward disparity based orientation cues is predominant, but many neurons also
respond (some exclusively) to perspective based orientation cues. Indeed, it seems
that cue integration for obtaining better estimates of orientation is performed in this
area (Welchman et al. 2005). This sort of processing by CIP neurons is the logical
continuation of the simpler orientation responsiveness found in V3 and V3A. Sim-
ilarly to V3A, CIP is not concerned with general purpose scene segmentation, but
rather with processing the 3D layout of target local features (Tsao et al. 2003; Tsutsui
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et al. 2005). In CIP, orientation of features is represented in a viewer-centered way,
so that the coding is especially suitable for visuomotor transformations for reaching-
grasping purposes, rather than for feature integration with the purpose of composing
complex scene interpretations (Sakata et al. 2005). This is consistent with the posi-
tion of CIP in a central stage of the dorsal stream. As a further proof of this, CIP
does not recognize the same object seen from two different viewpoints (James et al.
2002).

Neurons in CIP have been found to maintain a short-term memory of 3D surface
orientation (Tsutsui et al. 2003). This suggests a possible role of CIP in visual track-
ing and feature matching processes. For example, they might maintain memory of
surfaces during active vision, for tracking suitable grasping surfaces.

2.3.1.1 Surface Orientation Selective and Axis Orientation
Selective Neurons

Two main neuronal populations have been distinguished in CIP: surface orientation
selective and axis orientation selective neurons. Surface orientation selective (SOS)
neurons were first studied, and their responsiveness described, by Shikata et al.
(1996). They respond to a 2D shape in different orientations, but extract the signal
of 3D surface orientation from a 2D contour viewed in a linear perspective: i.e.,
these neurons interpret the stimuli as the silhouette of a square plate slanted in
depth (Sakata et al. 2005). Experiments executed changing the proportions of the
visual features showed that the responsiveness is maximum for “square” shapes, in
which the two major dimensions are similar, and elongation in either width or length
inhibits the response. Regarding the third,minor dimension, it seems not affecting the
response up to a certain thickness, but if this threshold is overcome a clear decrease
in responsiveness can be noted.

The second class of CIP neurons, axis orientation selective (AOS) neurons, rep-
resent the 3D orientation of the longitudinal axes of elongated objects. According
to Sakata et al. (1998), their response increases with decreasing thickness (the two
minor dimensions) and with increasing length (the major dimension), showing com-
plementarity with SOS neurons. It is not clear from the provided data if the reduced
responsiveness with thicker objects is only due to the relative proportion between the
object dimensions or also by some comparison with the hand size. This issue will be
discussed in Sect. 6.1.

Some AOS neurons are shape selective, and distinguish for example between
cylinders and square columns of similar length and thickness. This suggests that
disparity gradients are used in CIP to detect also the curvature of objects (Katsuyama
et al. 2005; Naganuma et al. 2005; Sakata et al. 2005). Shape-selective AOS neurons
inCIP are thus likely tomaintain a prototype of 3D shape representation, as all curved
surfaces can be characterized by a shape index and a curvedness index (de Vries et al.
1994).

http://dx.doi.org/10.1007/978-3-319-20303-4_6
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2.3.1.2 Human CIP

The correspondence betweenmonkeyCIP and areas of the human intraparietal sulcus
is still problematic, especially if compared with the rather well accepted interspecies
matching of early visual and anterior intraparietal areas. Neuroimaging research
showed nevertheless that a posterior region of the IPS activates for stimuli similar
to those processed by CIP in monkeys, although human CIP seems to be located
more medially in the human intraparietal sulcus than in monkeys, as stressed by
Grefkes and Fink (2005). An area located in the posterior part of IPS and clearly
involved in complex orientation discrimination and coding of 3D object features have
been observed by Tsao et al. (2003). The authors call it caudal parietal disparity
region (CPDR), and suggest that it might be part of the human correspondent of
CIP. A similar responsiveness to stereopsis defined stimuli has been registered in
other studies (Shikata et al. 2003; Brouwer et al. 2005). Activation in the posterior
part of the human IPS has been found using fMRI during orientation discrimination
tasks, for both monocular and binocular stimuli (Shikata et al. 2001; Naganuma et al.
2005). Although a clear correspondence is yet to be achieved, the data collected by
Shikata et al. (2001, 2003) and other studies clearly indicate that, similarly to its
role in macaques, the function of human CIP is that of coding 3D features of target
objects for providing AIP with the information necessary for visually-guided hand
movements.

2.3.1.3 CIP as a First Meeting Place for the Two Streams

Some findings (see e.g. the work of Tsutsui et al. 2003) suggest that the role of
CIP might be more complex than just extracting object visual data and forwarding
it to AIP. Memory related activity of CIP neurons indicates that this area might be
involved in higher-order 3D visual perception. For example, visual areas V1/V4 do
not have such sustained activity, whilst higher ventral stream area LOC has. There
are also cues regarding direct connections between CIP and ventral stream areas.
Firstly, CIP probably receives input from V4 (Baizer et al. 1991), and this would
be the first connection between ventral and dorsal pathways after the splitting (see
also Zanon et al. 2010). Moreover, some LOC neurons are selective for orientation
and curvature of surfaces, but LOC receives most input from area V4, which is not
sensitive to curved surfaces (Orban et al. 2006b). A link between CIP and LOC is
the most likely explanation for such findings (Tsutsui et al. 2003). The first link, in
the ventral → dorsal direction, could represent a ventral contribution to the process
of pose and shape estimation in CIP. In fact, shape recognition allows to follow
basic assumptions about objects’ geometry and exploit common knowledge about
the world in order to estimate size and pose of objects (e.g. to know that an object has
square faces permits to use perspective in order to estimate its orientation). The dorsal
→ ventral link might instead accelerate object identification providing LOC with
precise geometric information of local object features. Overall, 3D shape processing
seems to possess a contextual nature, and on-line information is probably integrated
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with abstract representations in order to obtain the most likely interpretations of the
visual data (Todd 2004).

Summarizing, CIP has a very precise 3D orientation response, probably obtained
through the integration of disparity based, stereoptic cues (prevalent) and monocu-
lar, perspective cues. Overall, a population of mixed CIP neurons, including different
types of SOS and AOS neurons, is able to provide full information about 3D propor-
tion and orientation of a target shape. This information is forwarded to AIP, where
3D orientation and shape can be coded as a unique, combined feature, and possible
affordances (see box below) can be generated.

The original definition of affordance was introduced to indicate any possible
action that an agent can perform in the environment (Gibson 1979). An affor-
dance is related to an object, or to a set of objects, and to the agent abilities.
A grasping affordance exists only if a graspable object is present in the envi-
ronment and if the agent is actually able to grasp it. In this book the term
affordance is used with a restricted meaning, to refer to a grasping possibility
offered by an object to the human or the robot hand.

2.3.2 Anterior Intraparietal Sulcus

The most frontal part of the IPS is the anterior intraparietal sulcus, AIP, sometimes
called aIPS or, for humans, hAIP. Both for monkeys and humans, AIP is largely
recognized as the area of the brain dedicated to the visuomotor transformations
necessary to map visual stimuli onto hand configurations suitable for grasping target
objects.

Several electrophysiological studies on macaques monkeys showed that AIP acti-
vates at the visualization of a possible target object, and remains active during pre-
shaping and manipulation (Taira et al. 1990; Sakata et al. 1995; Murata et al. 2000).
On the contrary, AIP is not explicitly involved in spatial analysis that is not related
to action: e.g., it is not active during perceptual size discrimination, for 2D pictures,
or for non-graspable objects.

Different AIP neurons are tuned to different objects, to different views of the same
object, and to different grips. Although some AIP neurons are specific to one spatial
aspect only, similarly to CIP’s, axis orientation and shape are often represented as a
combined 3D feature in AIP, an probably constitute the full coding of a graspable
feature (Sakata et al. 2005). Moreover, some neurons in area AIP discriminate not
only between simple solid shapes, but also between complex objects composed of
two or more components. According to Sakata et al. (1999), these neurons may be
sensitive to very small details critical for the selection of a grip pattern.

In Murata et al. (2000) a detailed description of experiments performed with
several different conditions is provided. Neurons in AIP are found to be selectively
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activated according to shape (one ormore of a set including ring, plate, cube, cylinder,
cone and sphere), size and orientation of stimuli. Different activation patterns were
observed during fixation and visually-guided grasping tasks. Again, selectivity for
shape/size/orientation is oftenmerged in a combined selectivity that can be identified
as a grasp configuration.

2.3.2.1 Classification of AIP Neurons

Although AIP keeps active from object observation to the end of movement execu-
tion, some AIP neurons are selective for one of the following grasping sub-phases:
set, preshape, enclose, hold, release (Ro et al. 2000; Debowy et al. 2001). This sub-
division is much clearer though in the premotor cortex.

A better documented classification of AIP neurons in subpopulations can be done
according to their preferential response in different acting conditions (Sakata et al.
1995; Murata et al. 2000). Three main types of AIP neurons were first classified,
visual (V), visuomotor (VM) and motor (M), and the first two classes have been
further subdivided into two, object (O) and non-object (NO), for a total of five
neuronal classes:

object type visual-dominant neurons, O-V, respond equally to simple visual pre-
sentation (fixation) of graspable 3D objects and during visually-guided grasping
actions; these neurons show no activity during grasping in the dark or when direct
view of the ongoing action is unavailable;

non-object type visual-dominant neurons, NO-V, respondduringvisually-guided
grasping only, and their activation starts just before hand-object contact; they show
no activation during fixation and grasping in the dark;

object type visuomotor neurons, O-VM, are selective during fixation and during
grasping actions both in the light and in the dark, but show a clear preference for
visually-guided actions compared to fixation and grasping in the dark;

non-object type visuomotor neurons, NO-VM, are selective for grasping actions
both in the light and in the dark, with a clear preference for visually-guided actions
compared to grasping in the dark; they show no activation during fixation;

motor-dominant neurons, M, are equally responsive during grasping in the light
and in the dark, showing no preferential activation between the two cases; they
show no activation during fixation.

On a temporal scale, object type neurons, bothO-VandO-VMstart their activation
at the sight of the target object, and seem thus to be in charge of planning the action,
transforming the spatial visual information coming from CIP into a more purely
grasp-related form. At the action onset and until the contact, visuomotor neurons,
both O-VM and NO-VM, reach the top of their activity, revealing a crucial role in
the execution of the hand preshaping movement. Neurons NO-V andM also increase
their activity during action execution, NO-V neurons only if vision is available, M
neurons also in the dark. All five types of neurons remain active during the hold
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phase until object release, but all of them show a gradually decreasing activation. In
the dark, only VM and M neurons stay active, and for the first the responsiveness
is reduced compared to the light condition. Hence, neurons in AIP are not only
dedicated to plan and begin grasping actions, but also to monitor them during their
evolution.

Regarding neural coding, it seems that object type neurons (O-V and O-VM)
describe a shape-based representation of objects, whilst motor neurons (M) code
for the hand configuration suitable for grasping. Non-object type neurons (NO-V
and NO-VM) maintain a someway intermediate representation. Summarizing, it
appears that the classification object/non-object/motor accounts for the transforma-
tions required to pass from a visual to a motor representation of the target object. The
traditional visual/visuomotor/motor classification is more likely related to temporal
aspects of action execution.

2.3.2.2 Human AIP

In humans, AIP is located at the junction between anterior IPS and inferior PCS
(postcentral sulcus). Again, it is considered the most important area involved in the
planning and monitoring of grasping actions. The coincidence with monkey AIP
is rather uncontroversial, as many fMRI studies have been consistently showing
grasping-related activation in the anterior part of the IPS for more than a decade
(Binkofski et al. 1998; Culham et al. 2003; Cavina-Pratesi et al. 2007a). For detailed
reviews of such studies, refer to Castiello and Begliomini (2008) and Tunik et al.
(2007).

The most relevant difference between species is likely the absence of tactile
response in macaque AIP (Murata et al. 2000), contrasted to the clear responsive-
ness during haptic exploration and purposive manipulation for human AIP (Jäncke
et al. 2001; Grefkes and Fink 2005). In fact, AIP is increasingly activated during
multimodal processing, suggesting that it might play a specific role in cross-modal
transformations of object representation between visual and tactile modalities dur-
ing grasping (Grefkes et al. 2002). Indeed, the current view of AIP as an associative
“visual” area is probably biased by the amount of research on vision, and AIP might
finally reveal itself to be as much tactile as visual (Roland et al. 1998).

In humans, AIP is preferentially activated during grasping with precision grips
in comparison with full-hand power grips, suggesting a fundamental role in the fine
calibration of finger positioning, as required in precision grip tasks (Ehrsson et al.
2000; Begliomini et al. 2007; Cavina-Pratesi et al. 2007b). AIP is probably involved
also in controlling action executionbymonitoring thedifferencebetween an efference
copy of the motor command and visual and tactile sensory experience (Rice et al.
2006b). Various studies assign a more dynamic role to AIP beyond grasp planning.
For example, transcranial magnetic stimulation of AIP ends in a clear disruption of
online grasp control (Glover et al. 2005; Tunik et al. 2005), suggesting that the job
of AIP is critical in the online monitoring/adjustment of hand movements.
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There are also insights that AIP may execute more “cognitive” tasks and be con-
nected to ventral stream regions. First of all, AIP and nearby areas respond to action
recognition when grasping is involved (Fogassi et al. 2005; Shmuelof and Zohary
2005), indicating a more perceptual role than traditionally thought (Culham and
Valyear 2006). Also, a region close to the intraparietal sulcus has been found active
during object recognition from non-canonical viewpoints (Sugio et al. 1999). The
authors suggest that recognition in those cases may be supported by information
regarding functional properties of the object, extracted in the CIP-AIP circuit.

Other studies mention direct connections from the inferior temporal cortex to
AIP (Fogassi and Luppino 2005; Borra et al. 2007) and other areas of the IPL,
suggesting that AIP could use some ventral information in order to plan and execute
appropriate grasping actions. Thus, after CIP, also AIP is probably connected, maybe
even bidirectionally, to ventral areas, confirming the view that the collaboration
between the streams is more strict than previously thought.

2.3.3 Ventral Premotor Cortex (PMv) and Other Motor Areas

The motor cortex occupies the posterior half of the frontal cortex. It is composed of
anterior and posterior motor areas, the former connected to the prefrontal cortex, the
latter to the posterior parietal cortex. Posterior motor areas can be further subdivided
in the primary motor cortex M1 (also called F1), and premotor areas F2-F5. AreaM1,
upon reception of signals coming from the premotor cortex, activates and controls
movements of specific body parts. The primary motor cortex is closely linked to
corresponding areas in the primary somatosensory cortex S1, which in the case of
grasping provides the tactile feedback necessary to adapt the grip to the inertial forces
and the object structure (Rizzolatti and Luppino 2001).

A modern view of the organization, function and connectivity of the motor cortex
has been proposed by Rizzolatti et al. (1998). The main concept is that the motor
cortex is formed by a mosaic of separate areas containing independent body move-
ment representations, which are used in motor control according to the requirements
specified by corresponding areas of the posterior parietal cortex (Luppino and Riz-
zolatti 2000). Thus, parieto-premotor connections form a series of circuits devoted to
specific sensorimotor transformations. Rizzolatti et al. (1998) define these circuits as
the basic functional units of the motor system, which transform sensory information
into action. According to the authors, although their hypothesis is mostly derived
from monkey data, brain-imaging and anatomical evidence suggest that the same
principles underlie the organization of the human motor cortex as well.

Two such circuits that have been clearly identified in monkeys connect ventral
premotor areas F4 and F5 with intraparietal areas VIP and AIP respectively. The
former circuit performs the sensorimotor transformations necessary for arm, neck
and face movements, the latter permits the execution of hand and mouth movements,
and is directly responsible for grasping actions (Luppino et al. 1999). Although
their tasks are clearly related, these two circuits are described as anatomically seg-
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regated, suggesting a parallel processing between reaching and grasping actions,
which are integrated only in the initial planning and the final execution phase, not in
the intermediate sensorimotor transformation steps. In humans, kinematic and lesion
studies support a parallel and concurrent parieto-premotor processing for reaching
and grasping movements (Jeannerod 1997).

The literature description of F5 is consistent with its direct link with AIP. About
half of F5 neurons can be considered visuomotor, as their activation begins during
object fixation. Although their responsiveness is very similar to the visuomotor neu-
rons of AIP (Murata et al. 1997, 2000), motor specificity of F5 neurons does not
depend on the object shape but on the grip used to grasp the object (Raos et al.
2006). Additionally, neurons in F5 can code for full actions, such as grasping or
pulling, and for action segments, such as preshaping or holding. Moreover, many
F5 neurons are selective for one of precision grip (predominant), finger prehension
or whole hand prehension (Rizzolatti et al. 1988). According to Rizzolatti and Lup-
pino (2001), neurons in F5 code for spatial characteristics and temporal segments of
grasping movements, hence constituting a vocabulary of motor prototypes to select
and compose in the final action.

One of the most popularly known neuroscientific discoveries of the last decades
concerns F5. This region is in fact the place where mirror neurons were observed
for the first time (Di Pellegrino et al. 1992; Rizzolatti et al. 1996). Mirror neurons
fire when the subject is performing a certain action, as normal premotor neurons
of the same area, but also when the subject observes someone else performing the
same action. They have been related to the ability of social interactions through
understanding/prediction of other people’s movements (Rizzolatti and Arbib 1998),
to learning by imitation, and to the explanation of social behavior impairments as in
autism (Williams et al. 2001).

The ventral premotor cortex (PMv) is still poorly characterized in humans. In fact,
fMRI research failed to show consistent activation in the putative human equivalent
of F5 during grasping movements (Castiello and Begliomini 2008). Nevertheless,
PMv is still believed to play a key role in the preparation and execution of grasping
actions. TMS studies showed its importance for grasping, and its task sharing with
the dorsal premotor cortex (PMd) (Davare et al. 2006). Although the homology with
macaque F5 remains controversial, there is a distinct evidence for a dissociation
between PMv and PMd roles in controlling precision grasping in humans. Similarly
to F5, PMv seems to perform the visuomotor transformations necessary to shape the
hand to a target grip (Chao and Martin 2000), whilst PMd may control the correct
timing of the action (Davare et al. 2006).

2.3.4 Other Dorsal Stream Areas

Consistently with the view of Sakata et al. (1997); Rizzolatti et al. (1998) and other
studies (e.g. Buneo and Andersen (2006)), premotor-parietal circuits perform both
direct and inverse coordinate transformation between vision and effector systems, to
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allow programming and monitoring of complex motor actions. The circuit linking
AIP with F5 is not the only one necessary for the execution of accurate grasping
actions, as proximal limbmovements, eye and head coordination, and various posture
movements are all required in order to allow the hand to perform a correct shaping
sequence. Someotherwell-recognized areas of the posterior parietal cortex are briefly
described below (for more detailed descriptions please refer to Culham et al. (2006)
and Grefkes and Fink (2005)).

LIP is the lateral intraparietal area, also called parietal eye field, PEF and, for
humans, hLIP or hPEF. Evidence for the role of this region in humans, and inter-
species analogies are well recognized, although most studies indicate a more
medial location of human LIP compared to monkey LIP. Area LIP aids in the exe-
cution of saccadic eye movements and transformation between retinotopic and
head-centered coordinates (Grefkes et al. 2004; Scherberger and Anderson 2004;
Sereno et al. 2014). Neurons in LIP have been found to be modulated by both
proprioceptive and retinal stimuli, suggesting that LIP contributes to distance
estimation combining vergence and disparity through a gain modulation effect
(Naganuma et al. 2005; Genovesio and Ferraina 2004).

VIP is the ventral intraparietal area, involved in head movements coordination
and near-head space analysis. Area VIP receives strong input from the motion
selective area MT and responds to optic flow, detecting movements in head-
center coordinates during self-motion (Bremmer et al. 2001). It is also likely that
VIP contributes to multimodal integration in the dorsal stream, as it is activated
by visual, tactile and auditory stimuli, showing congruent receptive fields across
modalities (Bremmer et al. 2002; Lewis and Essen 2000). Although many of its
properties have been observed in human cortical areas, consistent data are not yet
available for defining a clear human correspondent of monkey VIP.

PRR is the parietal reach region, the area of the PPC dedicated to perform the
reference-frame transformations and the sensorimotor coordinations necessary
for pointing and reaching movements (Grefkes et al. 2004). Most probably, PRR
performs also a monitoring of ongoing actions and adjust them according to an
efference copy of the motor signal (Kalaska et al. 2003; Gréa et al. 2002). In
monkeys this area is quite well circumscribed, it includes MIP—the medial intra-
parietal sulcus—and visual area V6A. On the other hand, pointing and reaching
movements in humans seem to involve several disjunct areas of the superior pari-
etal lobe, such as: V6A (Pitzalis et al. 2013), MIP/mIPS (medial intraparietal
sulcus, Reichenbach et al. (2014)), PCu (precuneus) and POJ (parieto-occipital
junction); the exact purpose of the movement (reaching vs. pointing) and the
position of the target (central vs. peripheral vision) are among the factors that
differentiate the cortical activation (Grefkes et al. 2004; Davare et al. 2012).
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2.4 Object Recognition and Stream Integration

Compared to early visual areas, neurons in higher order areas such asV4 and the LOC
have larger receptive fields, and can integrate information across long distances in the
visual field (Grill-Spector et al. 1998; Bullier 2001). Object areas along the ventral
stream can thus represent visual stimuli with increasingly complex and invariant
representations.

2.4.1 The Lateral Occipital Complex

The lateral occipital complex (LOC) is the region of the human brain in which
viewpoint invariant object representation for immediate visual recognition is per-
formed (Grill-Spector et al. 2001). The LOC receives high level visual input from
V4 and integrates visual elements that share similar attributes of orientation, color,
or depth into objects and extract them from the background (Grill-Spector 2003).
Object representation in LOC is highly invariant with respect to the stimulus type,
showing equally good performances with either 3D or silhouette images, different
color maps, lightning and so on. This suggests a higher level, conceptual representa-
tion of objects, independent of the actual stimulus that allowed recognition (Kourtzi
and Kanwisher 2000).

The LOC is constituted by two different areas, anterior and posterior, which seem
to maintain slightly different object representations (Malach et al. 2002). The ante-
rior or ventral part is called ventral temporo-occipital area (vTO/VOT, Grill-Spector
2003), but also posterior fusiform (pFs, Kourtzi et al. 2003), and responds more
invariantly to position and size, suggesting a volumetric 3D object representation
(Moore and Engel 2001). The posterior area, the lateral occipital cortex, LO, is
instead more invariant to the orientation of 2D shapes and to illumination changes.
Similar subdivisions have been found in the monkey inferior temporal cortex IT
(Janssen et al. 2000; Gattass et al. 2005). The occipito-temporal transition TEO,
which shows a highly invariant response to object identity, is the most likely corre-
spondent of human LOC (Webster et al. 1994; Denys et al. 2004). Although these
findings need to be completed and clarified, they suggest a possible mechanisms for
object identification and recognition which involves both structural and image-based
processing (Tarr and Bülthoff 1998). Object recognition would be achieved integrat-
ing, through feature correlation and saliency maps, a partially viewpoint-dependent
3D information (fromvTO)with a silhouette classification performed byLO (Kourtzi
and Huberle 2005). This solution would solve the long-standing issue on the nature
of object recognition, confirming the validity of both the multiple view object rep-
resentation model (Bülthoff et al. 1995) and the viewpoint invariance hypothesis
(James et al. 2002).

Thus, the assumption that ventral stream object representations should be highly
viewpoint invariant would not collide with findings suggesting that in active object
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exploration for recognition subjects search for “preferred” views (James et al. 2001).
Similarly, the integrated model would partially explain why 3D orientation response
in V4—compatible with both viewpoint dependent and viewpoint invariant models
(Hinkle and Connor 2002)—is stimulus-dependent (Hegdé and Essen 2005). On the
other hand, object recognition is very likely a gradual process rather than a binary
one. Bar et al. (2001) and Grill-Spector et al. (2000) observed that activation in the
anterior LOC is modulated by the actual level of recognition, and not by the nature of
the stimulus. In any case, geometric data are integrated with additional information,
regarding for example color and texture of objects, to speed up and make object
recognition more reliable (Humphrey et al. 1994).

Regarding possible connections of ventral stream areas with the intraparietal sul-
cus, a direct link has been found in themacaque brain between themost 3D responsive
ventral inferior temporal area (the lower bank of the superior temporal sulcus) with
CIP (Janssen et al. 2000). This link could indicate both a ventral contribution to pose
estimation and a dorsal help in object recognition, as explained in Sect. 2.3.1.3.

2.4.2 Other Brain Areas Involved in Grasping

Several areas of the brain not belonging to the two streams are involved in the
preparation and/or execution of vision-based grasping actions. A brief description
of some very important ones is provided below.

Somatosensory cortex. Located in the anterior part of the parietal cortex, just behind
the central sulcus, it is composed of the primary somatosensory cortex SI, the
equivalent of V1 for the sense of touch, and the secondary somatosensory cortex
SII. The former is active in correspondence to any tactile stimulation on the
body, the second performs an elaboration of the sensory input in order to detect
more complex patterns such as roughness, hardness, compliance estimation in
hand haptic exploration (Reed et al. 2004; Newman et al. 2005). Activation of
somatosensory areas during grasping is consistently observed (see e.g. Ehrsson
et al. 2000; Gardner et al. 2002; Begliomini et al. 2007) and, for what concerns
the spatial aspects of grasping and manipulation, higher level processing of tactile
information is very likely performed byAIP and nearby areas (Roland et al. 1998).

Prefrontal cortex. The basic role of the prefrontal cortex, PFC, is the organization
and orchestration of thoughts and actions in accordance with internal goals and
attentional mechanisms (Lebedev et al. 2004). In the specific case of grasping,
the PFC is believed to mediate action selection with information on the specific
task to perform (Passingham and Toni 2001; Johnson-Frey et al. 2005).

Basal ganglia. Although much is still unrevealed regarding the exact function of
this ancient part of the brain, the basal ganglia are probably involved in mediating
between rival perceptions and/or competing motor actions. Both area AIP and
the ventral premotor cortex receive inputs from the basal ganglia, but from non-
overlapping regions, suggesting that they use different selection/evaluation signals
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that canbeused in deciding amongcandidate target features or hand configurations
in grasping (Clower et al. 2005).

Cerebellum. The function of the cerebellum is still under debate. Nevertheless, its
involvement in the coordination of action execution and in adaptive sensorimotor
control is well recognized (Ramnani et al. 2001; Barlow 2002). In particular, it has
been argued that the cerebellum is where internal forward models, largely used
in sensorimotor control, are located (Kawato et al. 2003). The cerebellum has an
important common feature with the posterior parietal cortex, as both play a role in
sensorimotor prediction, more during action execution for the cerebellum, more
planning-related for the parietal cortex (Blakemore and Sirigu 2003). Moreover,
a considerable component of cerebellar output is devoted to influencing the func-
tional operations of posterior parietal cortex, and neurons of the cerebellum that
project to AIP overlap the output channel to the PMv, indicating the existence of
a three-way circuit AIP-PMv-Cerebellum (Clower et al. 2005; Tunik et al. 2005).

2.4.3 The Visual Streams in Action

The underlying idea of the original two streams theory (Goodale and Milner 1992;
Milner and Goodale 1995) is that visual information has direct control over action
in the dorsal stream, without any intervening mental representations. According to
this view, neural activity in the dorsal stream does not reflect the representation of
objects or events, but rather the direct transformation of visual information into the
required coordinates for action.As stated by Jeannerod et al. (1995): “object attributes
are processed differently according to the task in which a subject is involved. To
serve object-oriented action, these attributes are subjected to a pragmatic mode of
processing, the function of which is to extract parameters that are relevant to action,
and to generate the corresponding motor commands”.

A basic assumption of the processing dualism is that the ventral streammakes use
of a contextual coding system for size, distance and orientation of objects, while the
dorsal stream needs “real-world” metrics to properly interact with the environment.
The patterns of activity of LOC, AIP and other areas of the two streams strongly
support this hypothesis, confirming the contrast between the conceptual and the
pragmatic ways of processing of the two streams.

On the other hand, there is a growing experimental evidence for multiple interac-
tion between the streams (Zanon et al. 2010; Verhoef et al. 2011; Perry et al. 2014;
Wokke et al. 2014). The original theory has to be constantly updated and suited to
new findings (Goodale and Haffenden 2003; Goodale andWestwood 2004; Goodale
2008;Cloutman 2013). Forwhat concerns grasping, there is probably a ventral stream
contribution to the grip selection process, through semantic knowledge and memo-
ries of past events (Goodale and Milner 2004). Human research demonstrated that
choosing a grip depends not only on its visual properties, but also on the meaning we
attach to it (Creem and Proffitt 2001; Tankus and Fried 2012) (ventral stream data)
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and the expected task consequent to the grip (Ansuini et al. 2006; Ikkai et al. 2011)
(prefrontal cortex data).

As mentioned in Sect. 2.1.1, visual agnosia patient DF shows normal grasping
abilities, as her dorsal stream correctly computes grasping parameters. Nevertheless,
her grips on tools are functionally inappropriate, as she does not identify the target
object due to her damaged ventral stream, at least until haptic exploration allows
her to properly recognize the object (Goodale and Milner 2004). It looks as the
decision on exactly “where” to grasp the object can be taken independently from the
ventral stream, but with no selection of the object feature or part more suitable for the
interaction with the hand, as any semantic meaning of the action is extraneous to the
dorsal stream. Moreover, DF cannot scale her grip aperture properly when she has
to grasp an object that was removed from view only two seconds earlier (Goodale
et al. 1994). According to the authors, this is likely due to the need of accessing
object memories stored in, or accessible through, the ventral stream. Patients with
optic ataxia exhibit the opposite pattern, as their grasping performances improve if a
delay is introduced between target presentation and movement onset, suggesting that
memory-mediated action are likely to use different mechanisms in which the dorsal
pathway is less critical (Milner et al. 1999, 2001). Psychophysical experiments on
delayed grasping in different conditions with normal subjects support the idea that
memory-guided grasping relies on the processing of stored information shared with
the perception-based ventral system (Singhal et al. 2007).

2.5 The Third Stream of Visual Processing

As explained above, AIP is the cortical region in which visual information is used
to code an appropriate grasping configuration for a target object, and the detailed
parameters of the selected action are determined by processing in the dorsal stream.
Nevertheless, action selection is very likely aided by visual processing in the ventral
stream. For example, a full object description might be necessary for specifying grip
and load forces through estimation or recall of the object weight. Such representation
could be used also to avoid grasping objects that can not be grasped, because they are
heavy, uncomfortable to handle or even dangerous (Goodale and Humphrey 1998;
Westwood et al. 2002).

Considering possible different acting conditions, although some basic grasping
movements may be made without the influence of the context or any top-down
visual knowledge (Goodale and Milner 2004), in most cases parietal grasp selection
is probably driven top-down by semantic information, especially for tools and well
known objects (Creem and Proffitt 2001; Frey et al. 2005). In support of this view,
Sugio et al. (2003a) showed that different brain areas activate depending on the
familiarity with the object, confirming that AIP elaboration is less critical if the
object is well known, suggesting that in these cases the ventral stream does most
of the job and the action is mainly memory-driven. Other findings (Himmelbach
and Karnath 2005) suggest that, although there may be a dramatic shift between the
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dorsal and ventral systems instantly after the target has disappeared, there also seems
to be a progressive change depending on the time delay between target presentation
and movement onset.

The above described interaction mechanisms between the streams might be
explained by the existence of a so called “third pathway” (Rizzolatti and Matelli
2003; Hoeren et al. 2013). In fact, it has been proposed that the areas of the posterior
parietal cortex constituting the classical dorsal pathway should be subdivided into
two different sub-systems separated by the intraparietal sulcus (Fogassi and Lup-
pino 2005; Jeannerod and Jacob 2005; Kravitz et al. 2011; Binkofski and Buxbaum
2013). Areas of the superior parietal lobe above the IPS, would perform the sen-
sorimotor transformations traditionally assigned to the dorsal stream, related to the
online analysis of visual data aimed at generating suitable motor reactions. The sec-
ond system would contain the inferior parietal lobe, below the IPS, including AIP,
LIP and regions that seem to be especially human and not matched by structures in
other primate’s brains (Rushworth et al. 2006). These areas would be dedicated to
higher level visuomotor representations, such as those related to the mirror system,
which seems to include this part of the PPC (Rizzolatti and Craighero 2004). Indi-
cations for a cognitive role of the IPL (and especially AIP) beyond the traditional
pragmatic processing have been put forth by several studies (Gallese et al. 1999;
Chao and Martin 2000; Derbyshire et al. 2005; Culham and Valyear 2006; Hamil-
ton and Grafton 2006; Durand et al. 2007; Tunik et al. 2007; Schintu et al. 2014).
According to this view, a grasp for AIP is a sensorimotor transformation from visual
information about the object to motor commands for grasping the object, but also a
meaningful action that puts in relation the agent with a feature of the environment.
The new, ventro-dorsal stream of the inferior parietal lobe would constitute an ideal
convergence focus for the integration of conceptual ventral information with tradi-
tional online dorsal data (Rozzi et al. 2006; Gallese 2007). More research is though
needed to assess and develop this hypothesis.

This chapter introduced the main neuroscience concepts which will be used and
referred to throughout the book. Additional details regarding functions and con-
nectivity of brain areas useful for modeling purposes will be provided in the next
chapters.
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Chapter 3
Intelligent Robotic Grasping?

Mutual interest between the fields of robotics and cognitive sciences has been steadily
growing in the recent years, especially through the bridging of artificial intelligence
research. Nevertheless, the differences in goals and methodology and the lack of a
common language make of true interdisciplinary research still a pioneering work.
As the following review will expose, grasping is not an exception to this situation.

A brief description of traditional and bio-inspired research in robotic vision-based
grasping is presented and critically discussed in this chapter, with the purpose of
defining a few important guidelines required to achieve fruitful cross-disciplinary
research. The chapter includes a proposal for grounding symbolic representations in
sensorimotor interactions for robotic grasping, synthesized in Sect. 3.3.

3.1 Vision-Based Robotic Grasping, A Brief Outline

The field of robot grasping and manipulation has been steadily growing and devel-
oping, as can be noticed comparing the most important research of the near past.
The fundamental studies of the eighties (Cutkosky 1985; Mason and Salisbury 1985;
Nguyen 1988) defined the basic concepts, both physical and technological, on which
most of the later research built upon. In parallel, classical works on grasping in
humans and primates were published (Napier 1983; Iberall 1987). A view of the
robotic grasping problem more related to biological research and artificial intelli-
gence goals and techniques was developed in the early nineties (Venkataraman and
Iberall 1990; Stansfield 1991; Bekey et al. 1993). Interdisciplinary research became
more common, and works such asMackenzie and Iberall (1994), with a real interdis-
ciplinary stance, is still among the most cited in robot grasping. Nevertheless, engi-
neering issues and approaches clearly keeps dominating the field (Shimoga 1996),
and the currently most cited reviews on the subject, Bicchi (2000) and Okamura et al.
(2000), are purely technical.

The survey of Bohg et al. (2014) reviews the most recents advances on grasp
planning using data-driven methods. Grasping techniques are classified depending
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on whether the target objects are previoulsy known, unknown or similar to a familiar
category. Up to six different functional architectures are identified for organizing
and structuring the necessary parts of a grasping system. For what concerns the
planning of grasping actions through the use of visual information, a number of
simplifications have commonly been used in robotics. The most common approach
is to start from a model of the object to grasp, obtained or defined in an off-line
stage, and to perform object recognition if necessary. A grasp synthesis process (see
box below) can be thus performed on the model (Lopez-Damian et al. 2005), or
pre-defined grasp programs can be accessed (Taylor and Kleeman 2004). Felip et al.
(2013) propose a functional organization of grasping which relies on the concept
of manipulation primitive. A primitive is an independent controller focused on a
specific manipulation action. Primitives are coordinated through automatas which
implement complete manipulation tasks. The same plan can be used on different
hardware embodiments to execute the same task.

In the robotic literature (Bicchi 2000), a grasp is usually defined as the set of
locations (points or regions) on an object surface where the effector—a simple
gripper or an artificial hand—has to contact the object for grasping it. A grasp
definition may include the configuration of the hand, which depends on its
kinematics and degrees of freedom (DOF). Grasp synthesis is the problem of
determining a proper set of contacts on the target object, and a corresponding
suitable hand configuration. See Sahbani et al. (2012) for a review of grasp
synthesis techniques. The inverse problem, grasp analysis, involves the study
and evaluation of a given grasp.

The object model can be approximated with a set of shape primitives (Miller et al.
2003), or a 3D representation useful for grasp synthesis can be built performing
a visual reconstruction of the object. Due to the implicit complexity of the task
(Chaumette et al. 1996), visual reconstruction is often performed using range data
(Ade et al. 1995; Rutishauser and Stricker 1995). As in these works, grasp synthesis
often consists of searching for antipodal regions on the reconstructed object surfaces.
Otherwise, the 3D model can be decomposed into basic structural components and
grasps on object parts can be either generated (Goldfeder et al. 2007) or retrieved,
according to predefined preshape primitives (Miller et al. 2003).Works that try to bias
visual analysis with grasping aspects, without relying on models, have often dealt
with simplified worlds, such as sets of planar objects (Stanley et al. 2000; Morales
et al. 2006).

Only a few ambitious works have ever been developed for visual inspection of
real 3D objects aimed at grasping actions. Taylor et al. (1994) deal with the problem
of how a possible grip changes with the viewpoint, whereas Cipolla and Hollinghurst
(1997) look for planar surfaces within a set of possible target objects and perform a
grasping action with a parallel gripper. In Seitz (1999) a visual system is introduced
that moves around a target object and is able to identify its major axis and extract
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a symbolic representation of the contour. On such representation, suitable grasping
features, both parallel and curved, are searched for. The systemof Saxena et al. (2008)
learns to match visual object features to suitable grasping postures, showing a high
adaptability and generalization capabilities in grasping with a parallel jaw-gripper.
Preliminary results of the same method in which grasping experiments are executed
with a three-finger Barrett Hand are also provided, and show that the technique is
promising but need adaptation to the hand kinematics. Industrial applications of
autonomous vision-based grasping, such as Sanz et al. (2005), are very rare. For the
cases in which a set of candidate grasps are generated, quality measures focused
on aspects related to the object and effector geometry and kinematics are often
used in order to assess and select the most reliable and stable grasp configurations
(Markenscoff et al. 1900; Ferrari and Canny 1992; Ponce and Faverjon 1995; Xiong
et al. 1999; Borst et al. 2004; Chinellato et al. 2005).

Visual control of reaching and grasping movements and of manipulation actions
is a very active area, often referred to as “visual servoing”. The basic principle is that
the movement follows a vision-based control law, with respect to either the Cartesian
space or the image space (Hutchinson et al. 1996; Cervera et al. 2003; Recatalá et al.
2008a). These methods are not focused on the visual analysis of the object, but rather
on the transport action and the fine adjustment of the movement. Such detailed visual
tracking of the arm and handmovements is usually not performed by primates, unless
in the case of sudden changes in the environment, or for very fine manipulation tasks.
The most common solution in nature is the use of ballistic movements supported by
extremely reliable proprioceptive and tactile information.

In fact, the use of visual information alone, without touch feedback, is as limiting
in robotics as it is in primates. Nowadays, many works that deal not only with the
synthesis but also with the execution of grasping actions, make use of force or tactile
sensors on the fingers of the robot hand (Hollerbach 2000; Tegin and Wikander
2005). For instance, in Platt et al. (2002), force-based controllers are concurrently
used to find an appropriate placement of the fingers on the object, and in Natale and
Torres-Jara (2006) a robotic hand performs tactile exploration of the object, based
on a set of exploratory primitives, in order to find a good grasp. More rarely, tactile
information is used to recognize an object (Allen and Roberts 1989; Petriu et al.
2004) while active haptic exploration for detecting and modeling object features is
practically a novel area in robotics (Petriu et al. 1992; Johnsson and Balkenius 2006).
In any case, multimodal integration is a rapidly developing topic both at the practical
and at the theoretical level (Pouget et al. 2002; Prats et al. 2013), and represents
a fundamental issue for the future of grasping (Coelho et al. 2001; Lippiello et al.
2006; Grzyb et al. 2008; Prats et al. 2009) and robotic research in general (Barakova
and Lourens 2005; Wermter et al. 2005).
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3.2 Biological Inspiration for Robot Grasping
and Manipulation

Many international research projects and meetings around the world are nowadays
devoted to the interplay between robotics and life sciences (Dario et al. 2005). The
use of robotic solutions for medical applications is themost developed and promising
direction of such interdisciplinary approach, from aided microsurgery to prosthetics.
Regarding upper limb mobility and grasping, brain guidance of artificial arms and
hands has been performed with monkeys (Carmena et al. 2003), and the technology
is being developed in order to achieve the same for humans (Andersen et al. 2005;
Acharya et al. 2007). Pursuing this goal, very complex prosthetic hands are being
constructed which join the dexterity of the most advanced robotic hands with new
material technology for providing them with the best comfort and aspect (Buterfass
et al. 2001; Huang et al. 2006; Cipriani et al. 2008). A review of the field, completed
by a biomechanical comparison between the human hand and state of the art robotic
manipulators provides a valuable framework for the study of the grasp both in nature
and engineering (Leon et al. 2014).

For what concerns another aspect of the interplay between robotics and
neuroscience—such as the use of insights regarding brain functions and natural solu-
tions in general in order to implement better robotic systems—biologically inspired
robotics is a rapidly developing field (Bar-Cohen and Breazeal 2003; Habib et al.
2007).Nevertheless, the limited literature about biological inspiration in visual-based
robot grasping at the functional level suggests that the subject has still much to offer.
In fact, formost biology-inspired grasping research available in the literature, the link
with neuroscience is usually a general inspiration with limited impact on the final
implementation (Kragic and Christensen 2003; Laschi et al. 2006). On the opposite
end are works that appear as more biologically plausible, but which relation to life
sciences is not clarified. For example, Kamon et al. (1998) propose a quite flexible
and adaptable learning framework for grasping, but do not explicitly cite or men-
tion any neuroscience research or biological inspiration. Systems that do implement
neural mechanisms, such as Hoffmann et al. (2005), are rare, and work only with
simplified environments and ad-hoc conditions.

In the development of systems which model or imitate natural skills, either cog-
nitive or practical, two approaches are usually cited as contrary options: bottom-
up and top-down. Modern robotics favors the former, in which complex behaviors
emerge from simple, hierarchically organized ones (Brooks 1999). According to the
paradigm of behavior-based robotics (Arkin 1998), complex tasks can be executed
through the composition of simpler ones in a bottom-up direction, to the extent that
some basic components are simple stimulus-effect reflexes of the agent with the
environment (Braitenberg 1984).

Behavior-based grasping andmanipulation robotic research is expanding (Zöllner
et al. 2005; Recatalá et al. 2008b), but the paradigm is less widespread in grasping
than it is in other areas of robotics. In fact, although some kinds of problems such
as basic navigation of obstacle avoidance can be solved with simple and elegant
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behavior-based solutions, the high complexity of the vision, motor and especially the
sensorimotor processing behind grasping actions are hard to be dealt with following
such techniques.

While behavior-based robotics seems to follow the right direction toward mim-
icking biological systems, epigenetic robotics takes one step further in approaching
natural intelligence, trying to evolve high-level abilities frombasic ones as in an infant
developing process (Berthouze andGoldfield 2008). This developmental process can
be catalyzed by imitation or human teaching (Schaal 1999; Billard andMataric 2000;
Maistros and Hayes 2000; Ito et al. 2006). For what concerns manipulation, if not
proper grasping, “baby” robots which learn simple manipulation skills from explo-
ration and observation of their actions have been already built following this trend
(Metta and Fitzpatrick 2003; Natale et al. 2005), and a possible future development
is imitation between robots, which could accelerate the learning process without the
need of humans to intervene. Some imitation processes used for robotic systems are
also biologically plausible (Demiris 2002), as they are inspired by the mirror system
of the primate brain, introduced in Sect. 2.3.3, and by the concept of motor primitives
(see box).

Motor primitives are basic motor components used to generate more complex
behaviors in all kinds of movements. The composition and functionality of
the motor cortex described in Sect. 2.3.3 supports their use in primate visuo-
motor transformations. Motor primitives can be extracted from the thorough
analysis of human motion (Drumwright et al. 2004), and used to form a motor
vocabulary that can be employed to produce complex movements and action
sequences (Nori and Frezza 2004).

Similarly to what happens in animals, the composition of simple behaviors as motor
primitives can endow robotic systems with notable skills, dexterous manipulation
being one of them (Mataric 2000). On this line, Kyota et al. (2005) use artificial neural
networks to match simple voxel-based object representations to grasp configurations
derived from basic human hand postures learnt with a data glove.

Even though the bottom-up approach has been usually considered more plausible
from a physiological point of view, backprojections from associative to primary areas
are widespread in the brain. Examples of bidirectional links, such as the premotor-
parietal circuit, or the recurrent connections between visual areas, were given in the
previous chapter. A mixed approach in which bottom-up mechanisms are triggered
by top-down, cognitive style information, is therefore more faithful to the neurolog-
ical reality. In artificial systems, whilst top-down solutions are implemented follow-
ing knowledge engineering methodologies, bottom-up approaches are often coded
with connectionist methods, more or less inspired by biological neural networks.
Nowadays—and until artificial neural systems will resemble more closely the nat-
ural networks of neurons—more intelligent systems are probably better achieved
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with mixed approaches, in which pre-wired knowledge complements the connec-
tionist mechanisms.

With the goal of linking bottom-up approaches with top-down cognitive represen-
tations, one of the most important issues is that of associating consistent symbolic
meanings to aspects of the environment or of the agent-environment interaction. This
issue is commonlyknown in cognitive science research as the symbol grounding prob-
lem. Though proposals have been put forth to solve the symbol grounding problem
through robotic sensorimotor interactions, only little progress has been achievedwith
actual working systems. In the next section, a possible solution to the problem based
on manipulation and grasping research is provided. Such approach can be useful in
order to endow a robotic system with an implicit ability in merging practice with
conceptual reasoning and thus “interpreting” its actions.

3.3 Symbol Grounding Through Robotic Manipulation

In this section, the problem of symbol grounding is addressed in the context of
robotic manipulation. The goal is to obtain a more natural integration between the
top-down and the bottom-up approaches by showing that there are symbols which do
not refer simply to physical objects, but rather to the interactions between the robot
and the objects in its environment. The description of two grasping and manipulation
experiments performed at the Robotic Intelligence Lab of Universitat Jaume I, and
summarized in this section, serves as a base on which to build a theory of symbolic
representations for physical interactions. It will be shown that the symbols related to
the interaction between agent and target object can be directly inferred from the exe-
cution of a planned action, and that neural networks can provide a suitablemethod for
mapping complex perceptual signals to symbols. The proposal is sustained by impor-
tant neuroscience studies, especially those related to the two streams of the visual
cortex and the mirror system. Implementation details and further considerations can
be found in Chinellato et al. (2007).

3.3.1 Symbol Grounding and Neuroscience

The symbol grounding problem is a classical challenge for cognitive science (Harnad
1990). In a traditional AI system, symbol interpretation is not intrinsic to the system,
and the meaning of a symbol is always given by an external interpreter (e.g. the
designer of the system). A really “intelligent” system should be able to assign sym-
bolic meaning to an object or an action without being thought, as human beings can
normally do. Harnad (1995) and del Pobil (1998) suggest that robotic sensorimotor
interactions can represent a solution to this problem. In a cognitive robotic system,
the symbols could be grounded in the system own capacity to interact physically
with its environment.
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So far, progress in symbol grounding by means of actual working robotic systems
has been mostly related to visual recognition of individual objects. There is never-
theless an additional class of symbols, fundamental for cognitive robotics, which do
not refer simply to physical objects but rather to the embodied physical interactions
between the robot itself and the objects in the world. This kind of symbols would be
more related to sensorimotor transformations, and they seem to have appeared in the
evolutionary landscape long before vision as “sight” (Goodale andWestwood 2004).

The strategies employed by the brain when we interact with the world, and the
moreor less explicit symbolicmeanings assigned to such interactions are an insightful
source of inspiration for dealing with the symbol grounding problem in artificial
agents. As explained above,motor primitives showdifferent levels of complexity, and
compose hierarchically to form a motor vocabulary. Complex movements and action
sequences are composed in an almost linguistic way from this motor vocabulary. The
question is whether motor and visuomotor primitives can be considered as symbols,
extending the symbol grounding problem to a larger domain.

As explained in Chap.2, visual processes related to specific actions in primates
are different from visual processes not explicitly oriented to interaction of the subject
with the environment. Area AIP codifies visual information in a grasp oriented way,
associating visual features of a target objectwith a specific joint configuration suitable
to guide themovements for grasping them,movements that are stored in the premotor
cortex (Sakata et al. 2005).According to recent findings, in the inferior parietal lobule,
and very likely even in AIP itself, actions are coded not only in a pragmatic way, but
also in a semantic one (Gallese 2007). The activation of the dorsal stream areas of the
mirror system, both parietal and premotor, when a subject is looking at an object with
the purpose of interacting with it (e.g. reaching, hitting, pushing, grasping) seems to
represent a “potential action”. The emerging relation between sensory information
andmotor responsemay thus represent a symbolic correspondent of a grasping action
(Hamilton and Grafton 2006). The dorsal stream involvement in action recognition
suggests that actions are indeed associated with a symbolic meaning (Culham and
Valyear 2006).

The lessons that robotics researchers can draw from these findings are: (1) the
plausibility of a “dorsal style” visual elaboration that is exclusively dedicated to acting
purposes; (2) the need of an emergent attribution of semantic meaning to synthesized
grips. The next section introduces a robot system capable of object grasping in which
visual analysis is dedicated to action, as in the primate dorsal stream, and in which
a grasp codifies a relation between the hand and the object, as in humans.

3.3.2 An Emerging Categorization of Synthesized Robot Grips

Within the context of a robotic application for grasping and manipulation in a semi-
structured environment, a framework was defined for characterizing candidate grips
in a natural way, according to their properties in relation with the execution of a
grasping action. Clustering of the candidate grip configurations occurs due to implicit

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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Fig. 3.1 Examples of three hand configurations found for two different objects

properties of grips, and an eventual symbolicmeaning emerges through interaction of
the agent with its world. The experimental setup used for the experiments described
here is the one defined in Sect. 5.4.1.

The grasping action can be subdivided in four main modules or steps:

1. Image processing: The stereo vision system of the robot estimates the two-
dimensional location of an unknown planar object placed on the table, which is
the grasping target. A monocular image of the object is provided and analyzed to
extract the object contour and identify on it regions suitable for finger contact.

2. Grasp synthesis: Several feasible candidate grasps (see some examples in
Fig. 3.1) are generated, by selecting the target contact points for each triplet of
grasp regions. Hand configurations for reaching the target points are computed
taking into account the kinematic and geometric constraints of the Barrett Hand.

3. Grasp evaluation:The candidate grasps are characterized according to properties
related to the geometry of the target object, the kinematics of the hand and their
interaction, in order to perform a reasoned selection of the grasp to execute.

4. Execution: The hand is preshaped and positioned above the object, it moves
down, closes the fingers so that the object is grasped, lifted and transported to
a designated location. All this is performed with support of visual and tactile
feedback.

Regarding grasp evaluation (step 3), a characterization scheme which includes
nine high-level features was defined for providing an object-independent way to
describe candidate grasps. In this way, each grasp is represented by nine measure-
ments and thus by a point in a 9-dimensional space. The features regard visual and
motor aspects related to properties of the object contour, hand kinematics and nature

http://dx.doi.org/10.1007/978-3-319-20303-4_5
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of the contacts. The nine features derive from a set of quality criteria defined for
assessing candidate grasp configurations (Chinellato et al. 2005).

A practical measurement of the reliability of a grasp was defined to characterize
candidate configurations. After selecting a candidate grasp to execute, if the robot
has been able to lift the object safely, a set of stability tests are applied in sequence.
They consist of three consecutive shakingmovements of the handwhich are executed
with an increasing acceleration. After each movement the tactile sensors are used to
check whether the object has been dropped off. In this way the stability of the current
grasp is measured.

An extensive experimental data gatheringwas realized following this protocol, and
provided a qualitative measure of the success of many different grasps. A learning
schema has been applied that makes use of the hyperspace described by the nine
characterizing features, and tries to predict the reliability of a novel grip exploiting
the information previously gathered on the outcome of already executed grasping
actions. Different predicting methods have been applied and compared, with quite
satisfying performances (Chinellato et al. 2003; Morales et al. 2004). These results
showed that grasp reliability could be implicitly related to the characterizing features.

Summarizing, in this example each grip is represented as a point in a multidi-
mensional space, and a procedure is introduced to predict a query point based on its
similarity to previous grasping experiences. This is a case of instance-based, also
known as memory-based learning (Aha 1997), which is a numeric version of the
explicitly symbolic case-based reasoning (Waltz 1995). Although in this approach
there is no explicit representation of the target function when training samples are
provided, a natural characterization of the grips evolve from experience. The “char-
acter” of a new grip is recognized from the system as similar to some experience
it already passed through, and the validity of such emerging associating ability is
proved by the consequent predicting capacity of the system.

The system thus assigns each novel grip a symbolic value originating directly from
its visuomotor character. Also, the visual analysis performed is only oriented toward
action related features, as in the cortical dorsal stream, and there is no recognition of
the target object. In this way, symbols are not related to the identity of objects, but
rather to the different sensory experiences that objects can provide.

The next section proposes a procedure for extracting symbolic meaning from
sensorimotor interactions through the use of connectionist methods.

3.3.3 Extracting Symbolic Meanings from Physical
Interactions

In the previous section, a symbolic representation of sensorimotor experience was
used to compare grips and predict the reliability of upcoming actions. This section
describes an approach for extracting explicit symbolic meaning from sensor data
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Fig. 3.2 System setup for
the peg-in-hole task

through the use of artificial neural networks. In this case, the symbolic relation refers
to the contact states between an already grasped object and the goal position.

The study is based on the classical two-dimensional peg-in-hole insertion task
(Cervera and del Pobil 2000), performed using the setup depicted in Fig. 3.2. The
task is to insert a peg hold with the gripper in a chamferless hole. Wrist-mounted
force sensors are used to measure the external forces and torques applied to the peg
as the manipulator interacts with the environment.

Symbol grounding in this experiment is required to assign symbolic values to the
physical interactions between the robot—the peg can be considered as a prolonga-
tion of the robot gripper—and the environment. The correct identification of such
interactions is of fundamental importance for the adequate execution of the task: in
this particular case the insertion of the peg into the hole. Physical interactions are
modeled as contact states between peg and hole, that have to be identified with the
help of the force sensors. In Fig. 3.3, all possible contact states and the corresponding
forces are shown. The no-contact state, F0, shows the weight force, while all the oth-
ers only show the reaction forces, but weight is considered too. In order to identify
the contact states, only the direction of forces is relevant, not their magnitude. The
sensors provide only three raw signals of force and torque, and the problem is to

Fig. 3.3 Set of contact states for the peg-in-hole task, showing the contact forces between peg and
hole. State F0 shows only the weight force which is omitted in all other graphs
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Table 3.1 Contact states
classification percentages

State Right Wrong Unknown

F1 94 5 1

F2 100 − −
F3 59 34 7

F4 97 − 3

F5 100 − −
F6 78 21 1

Average 88 10 2

appropriately map these signals to one symbolic contact state. This is not a trivial
problem due to the variability of the forces and the superposition of the peg weight
and one or several reaction forces.

In order to perform the matching between sensory data and symbolic states,
Self-Organizing Maps were used (Kohonen 1990). The experiments consist of three
phases:

1. Training. The neural network is trained with a set of 1200 random input samples
equally distributed across contact states, according to the procedure described in
Kohonen (1990). In this way the net learns in an unsupervised way the natural
structure of the data.

2. Calibration. A set of 600 labeled samples is used for calibrating the net to the
contact states. The network response is analyzed for all inputs, and each network
unit is labeledwith the contact state for which it has beenmore frequently selected
as the closest unit.

3. Testing. The performance of the network is tested with an independent set of 600
samples. For each sample, the most responsive unit is selected, and the output
contact state is given by that unit’s label. An uncertain response occurs if the unit
is unlabeled.

Results from a typical experiment are shown in Table3.1. Two states, F2 and F5,
are perfectly identified. State F4 is correctly identified in the 97% of cases and F1
is properly classified in the 94% of the cases. States F3 and F6 seem to be more
difficult to identify, and the correct classification percentages are smaller. The average
network performance, 88% success, is anyway very good, and it has to be taken into
account that only force information has been used.

After establishing the correspondence between force sensor data and symbols
denoting contacts, the peg-in-hole insertion problem can be solved in a number of
ways. These are depicted in Fig. 3.4, that shows a perception-based diagram in which
the increments inside the nodes denote the actions to be performed for reaching the
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Fig. 3.4 Perception-based
motion plan for solving the
peg-in-hole task. The
increments within the nodes
symbolize the possible
actions and the arrows the
consequent state transitions

neighbor nodes. The transitions are defined so that the goal position D can be reached
from any state. Several tests were performed with a real robot and sensors using the
transition rules of Fig. 3.4, and following different sequences of contact states. The
good experimental results demonstrated that the task could actually be performed by
using direct sensory data only, without the need for information about the position
and orientation of the peg.

This example shows how self-organizing neural networks were able to automati-
cally extract a number of symbolic states that represent relevant real-world situations
useful in a transition graph for the solution of a relatively complex problem. Most
importantly, such symbolic knowledge derived directly from sensory information
regarding ongoing actions.

3.3.4 Symbolic Value of Hand-Object Interactions

The two case studies exposed above show how symbolic meanings can naturally
arise from the physical interaction between an agent and objects in its environment,
suggesting that motor primitives constitute a consistent source of symbolic knowl-
edge.

Looking once more at cut-edge research in neurophysiology, the existence of a
parieto-premotor mirror system (Sect. 2.5) supports the idea of extending the symbol
concept to motor behaviors and sensorimotor interactions. In fact, the symbols man-
aged by AIP do not codify objects, but action-oriented visual representations, and
association patterns between objects and distal subject effectors (Tunik et al. 2007).
Taking a step further in the analysis of the mirror mechanisms, it has been proposed
that symbolic communication and language evolved from a neural motor system
involved in action recognition (Keysers et al. 2003; Hamilton and Grafton 2006).
Moreover, the mirror system seems to play a critical role in learning by imitation,

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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a skill that we are only beginning to develop in robots. Broca’s area in humans,
traditionally related to language production, is the most likely correspondent of F5,
where mirror neurons were first discovered (Binkofski and Buccino 2004; Grèzes
et al. 2003). This would confirm that action understanding, recognition and mental
imagery of actions do not differ conceptually from object recognition or imaging, and
that complex cognitive processes emerge from simple behaviorswhich firstly evolved
in order to endow the organism with skills for better interacting in its environment.

3.4 Toward Intelligent Robotic Grasping

In the previous section, the existence of symbols that are grounded in the physical
sensorimotor interactions between the robot and the objects in the world has been
discussed. The two presented case studies show how symbolic meaning can describe,
and be extracted from, visuomotor experiences regarding manipulation tasks, allow-
ing the robot to build a representation of the possible interactionswith its surrounding
environment. The merging of different sensory modalities, such as vision and touch,
in the exploration of the environment is probably the most necessary further develop-
ment of the proposed approach. A fundamental conclusion, consistent with findings
about the action-oriented human dorsal visuomotor stream, is that in a robotic sys-
tem there is no need to model, recognize or classify an object in order to physically
interact with it, since the symbols derived from sensorimotor experience identify
particular physical interactions between the robot hand and the target object.

As previously explained, classical robotic approaches do not follow this path.
Instead, they consider either object recognition or full visual reconstruction previous
to grasp analysis, which is normally based on an object model (Bicchi 2000). This
pattern corresponds to the scheme of Fig. 3.5a, in which perception-synthesis-action

(a)

(b)

(c)

Fig. 3.5 Different approaches in vision-based grasping: a is the traditional perception-reason-act
paradigm; b represents an action-based vision approach; c is the integrated methodology proposed
in this work
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are sequentially executed, and vision is general purpose rather than goal-oriented.
There are works in the literature which exploit visual features in a manner focused on
grasp purposes, but without the aid of “cognitive” information about objects (see e.g.
Morales et al. 2006; Saxena et al. 2008 and Sect. 3.3.2). This approach is symbolized
in Fig. 3.5b. The first method lacks of flexibility, as it builds on a nearly general-
purpose visual processing stage. The second method partially resembles the job of
the dorsal stream, and is thus more biologically plausible and often very efficient.
Nevertheless, it does not exploit the kind of cognitive information that makes human
grasping skills largely transcend a geometric or kinematic analysis.

The review presented in this chapter shows that the grasp problem in robotics
is still largely unsolved. The proposal put forth in this book for obtaining a more
reliable and meaningful interaction with real world objects is to integrate in a robotic
grasping system instantaneous visual information gathered in an action oriented-
manner (dorsal pathway) with experience-mediated information (ventral pathway).

In Fig. 3.5c a representation of this solution, which somehow encompasses the
two previous ones, is depicted. This integration process is what human beings do
all the time: we join our knowledge about the objects we are going to grasp, and
the experience of previous actions, with the analysis of the actual, concrete situation
we are facing. The model introduced in the next chapter goes toward this direction,
and analyzes the indications of neuroscience research from a practical point of view,
in order to devise a set of mechanisms able to endow a robot grasping system with
increased capabilities in interacting with its nearby environment.
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Chapter 4
Vision-Based Grasping, Where Robotics
Meets Neuroscience

In the previous chapters, the current knowledge on the neuroscience of vision-based
grasping in humans and other primates was analyzed, with the goal of establish-
ing the computational bases for a robotic system able to achieve advanced grasping
skills in the real world. The way chosen to achieve such goal is through the integra-
tion of on-line, action-oriented visual information (dorsal pathway) with knowledge
about the target object and memories of previous grasping experiences and object
characteristics (ventral pathway).

Previous models of vision-based grasping have built so far mainly, when not
exclusively, on monkey data. Recent neuropsychological and neuroimaging research
has shed a new light on how visuomotor coordination is organized and performed in
the human brain. Thanks to such research, a model of vision-based grasping which
integrates knowledge coming from single-cell monkey studies with human data can
be developed. The basic framework of the proposed model is outlined in this chapter.
Final goal of the proposal is to mimic, in a robotic setup, the coordination between
sensory, associative and motor cortex of the human brain in vision-based grasping
actions.

In the following section, previous related models are reviewed. Then, basic issues
regarding robotic and human grasping, their differences and similarities, and the way
to link them through computational modeling are discussed. Next, the full outline of
the model is presented.

4.1 Previous Models and Related Approaches

Computational modeling of visual mechanisms in mammals is a wide and developed
area (Rolls and Deco 2002), that dates back to the sixties (Hubel and Wiesel 1962).
Strongly biologically inspired models of visual areas have been implemented, focus-
ing mainly on the primary visual cortex (see e.g. Sabatini et al. 2001; McLaughlin
et al. 2003; Lourens and Barakova 2007), or on increasingly invariant object represen-
tations for recognition as performed along the ventral stream (Ullman 1996; O’Reilly
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Fig. 4.1 Model framework of Fagg and Arbib (1998)

and Munakata 2000; Riesenhuber and Poggio 2000; Cadieu et al. 2007). Bio-inspired
systems for object recognition (Khosla et al. 2014) and biological motion detection
(Yousefi and Loo 2014a, b) are also available Complex agent-object interactions—
such as in grasping actions—are not a usual target of computational models. The
integration between the contributions of the two visual pathways is a subject almost
unexplored (Rolls and Deco 2002; Rolls and Webb 2014), and only a few studies
explicitly deal with dorsal stream processing.

The most complete attempt to computationally describe the sensorimotor mech-
anisms of visual-based grasping in primates is the FARS (Fagg-Arbib-Rizzolatti-
Sakata) model (Fagg and Arbib 1998), whose framework is depicted in Fig. 4.1.
The FARS model focuses especially on the interaction between AIP and F5, and
is oriented to the action execution part of the process. The model is implemented
using biologically inspired neural networks, and includes a large number of different
brain areas (mainly inspired on monkey physiology), even though only areas AIP,
F5 and the primary motor cortex F1 are modeled in detail. For AIP, the distinction
between visual, visuomotor and motor neurons is taken into account, but the most
recent classification of object and non-object type neurons (Sect. 2.3.2.1) is not.

The main achievement of the FARS model is the reproduction, at a qualitative
level, of the variety of cell behaviors observed in F5 and AIP. Coordination in time
between the two areas is well implemented: AIP assumes the role of action planner
and working memory, while F5 composes action execution at a high level, the motor
commands being elaborated by F1. In the FARS model, a task is given also to
the inferior temporal cortex IT, the area of a monkey’s brain in charge of object
recognition: IT takes into account the object identity, and recall a related affordance

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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Fig. 4.2 Model framework
of Rizzolatti and Luppino
(2001)

if the association is available. This represents a plausible, although simple, modeling
of the two streams interaction. Previous robotic research, developed as a collaboration
between the Robotic Intelligence Lab of Universitat Jaume I and Andrew Fagg (at
that time at the Laboratory for Perceptual Robotics of University of Massachusetts)
was loosely inspired by the FARS model, but computational mechanisms were not
thoroughly considered (Chinellato et al. 2003a; Morales et al. 2004, 2006). An
interesting extension of the FARS model includes a mirror neuron module (Oztop
and Arbib 2002), suggesting a role in the development of language for the two streams
(Arbib 2010).

Rizzolatti and Luppino (2001) suggested that the FARS model should be modified,
as the hypothesis that action selection is obtained in a loop F5-AIP, using information
coming from the ventral stream and the prefrontal cortex, seems to be not coherent
with more recent findings. According to the authors (see Fig. 4.2), AIP is the site of
action selection, as it receives direct input from the ventral stream and the prefrontal
cortex, whilst F5 does not. AIP would send the coordinates of only the selected
affordance to F5, and the action would remain potential until a release signal is
received.

Fukuda et al. (2000) propose a model for grasp synthesis from visual information
based on observation of real human movements. The authors use a neural network
to match sampled images to grasp configurations, concluding that it is possible to
generate the proper hand preshaping relying only on information extracted from
visual data. The different role of the two visual streams in the process is not taken
into account. This work will be more throughly discussed in Sect. 6.2. Fukui et al.
(2006) experiment and model on the control of preshaping, and get to similar con-
clusions. Although the work does not explicit deal with grasp planning, it is argued

http://dx.doi.org/10.1007/978-3-319-20303-4_6
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Fig. 4.3 Model framework
of Lebedev and Wise (2002)

that preshaping and finger closing are related to purely visuomotor mechanisms, and
driven by a control of predictive nature. Tactile input enters the process only when
the object is touched, even though there is probably a prediction of the expected
tactile feedback.

The model of Lebedev and Wise (2002) distinguishes between a vision for action
(VFA) and a vision for perception (VFP) systems, that can be approximately identi-
fied with the dorsal and ventral streams respectively. According to the authors, the
interaction between the systems takes place as a bidirectional process. The VFA
system tries to develop the target action so as to better fulfill the contingent sensor-
ial situation, and gets help from the VFP system which in turn biases the selection
towards stored, recognizable patterns (Fig. 4.3). Dorsal stream areas also seem to
participate in more perceptual processes. The model proposed in this book extends
these assumptions, postulating a bidirectional connection between ventral and dorsal
areas, as indicated by the most recent research on the two streams (Sect. 2.4.3). The
basic idea is that not only the LOC helps AIP in the action selection process, but
AIP and/or CIP support object recognition, providing the ventral stream with data
on possible object affordances, and facilitating in this way the identification process.
Interesting in Lebedev and Wise (2002) is also the role assigned to basal ganglia and
prefrontal cortex, areas that affect the working of both streams. A drawback of the
model is that no details for computational implementation of the proposed concepts
are given.

The model of Zhonget al. (2014) is based on a Recurrent Neural Network with
Parametric Bias units (RNNPB) and can run either in Learning, Recognition and
Prediction mode (Fig. 4.4). It is exemplified through a robot passively observing
an object to learn its features and movements. The information in the dorsal and
ventral streams is separately encoded in two network streams, and the predictions
of both streams are brought together via the horizontal product while the PB units
act as a conceptualization of both streams. Even though no details on brain areas

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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Fig. 4.4 Model framework of Zhonget al. (2014)

are considered, the model helps in shedding light on the feasibility of linking the
conceptualization of the two streams and the predictive function of a sensorimotor
system.

Another interesting model outline (Passingham and Toni 2001) defends that the
prefrontal cortex (PFC) is critical for the integration between the streams. The moti-
vation for this proposal is that the PFC lies at the top of the hierarchy of information
processing, and receives information about cues, actions, and rewards. It is thus in
the ideal position for integrating information about the external context, the action
target and its outcome. The authors insist on the importance of the final goal on
action selection. They point out that, when actions have to be mediated by explicit
decisions, the contribution of cognitive information from the ventral stream and
the PFC is required. Again, this model offers very plausible explanations of neuro-
science findings, but does not suggest according to what mechanisms the integration
between inferotemporal, posterior parietal and prefrontal cortices would actually be
performed.

Cisek (2005) proposed a computational model for action selection in which the
decision is taken through the interaction of posterior parietal, prefrontal and pre-
motor cortex. The model is focused only on reaching movements, and although the
implementation partially contradicts the indications given in Rizzolatti and Luppino
(2001), some of the concepts introduced in this work could be adapted to action
selection issues in grasping.
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Recently, Oztop et al. (2006) have modeled the development of some neurons of
the IPS (there is no explicit distinction between the tasks of CIP and AIP), matching
depth maps directly to joint space. The model is built on a previous infant learning
model (Oztop et al. 2004) which learns to match object affordances to hand pos-
tures. The main limits of these works are that affordances are very simplified, and
actual visual features not considered, and the models are hence hardly transportable
to a robotic setup. Nevertheless, the approach is interesting as the neural network
implementation is able to learn visuomotor transformations and generalize to novel
stimuli.

A similar visuomotor matching is developed in Uno et al. (1995), in which an
artificial neural network learns the coupling between visual object data and hand
postures. Again, both visual and motor representations are very basic, and although
the model produces very relevant computational results, it seems to be not suitable
for robotic implementation.

Overall, comparing the biologically-inspired robotic literature of Sect. 3.2 with
the computational models regarding vision-based grasping, it looks as they work on
different assumptions and with different goals. On the one hand, biological or neuro-
scientific inspiration in robotics is often too superficial and conditioned by pragmatic
goals and technological constraints. On the other hand, computational models are
usually focused on specific issues and simulate low-level processes that are hard to
scale in order to produce complex behaviors, such as grasping. The model proposed
in this work tries to achieve an intermediate and really interdisciplinary solution
that—while maintaining biological plausibility, and the focus on neuroscience data,
for the implementation of different visuomotor functions—provides the robot with
the ability of performing efficient, flexible and reliable vision-based grasping.

4.2 Basic Modeling Concepts

In this section, fundamental computational principles, methodological decisions,
restrictions and basic assumptions regarding implementation guidelines are provided.

4.2.1 Methodological Issues

A first important decision before beginning any implementation is to establish the
level of detail and the techniques most suitable for the different stages of the model.
It is critical to implement computational modules with the right level of abstraction.
Models can be developed at virtually any level of detail, with different approaches
and goals. For example, Bryson and Stein (2001) provide architectural guidelines for
an implementation of brain areas as artificial agents. Such proposal has a strong point
in the flexibility of the architecture, in which modules, like brain areas, can recruit
one another according to actual requirements. An implementation of this kind would

http://dx.doi.org/10.1007/978-3-319-20303-4_3
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require nevertheless a complete homogeneity in the development of the different
modules. We favor an approach focused on function rather than on structure.

In general, very detailed, low level implementations, as for example integrate and
fire neuron models, are very good for reproducing neurophysiological data, but are
not easily scalable for obtaining practical skills. On the other hand, very high level
implementations rarely reproduce interesting effects. In fact, the functioning of the
whole model should be robust, but also continuous, i.e., if noise is introduced, or
links between areas modified, performance should degrade only gradually. Simple
connectionist solutions may represent the required trade-off, as for example feed-
forward neural networks, better with a biologically plausible architecture, such as
radial basis functions (Pouget and Sejnowski 1997; Pouget and Snyder 2000). In any
case, the suitability of the model to actual robot implementation has to be always
taken into account. Modules can even have alternative implementations, as long as
this does not affect the functioning of the whole system. As a criterion, an imple-
mentation that allows to emulate both high level and low level phenomena with good
approximation should be favored. Chapter 5 provides results that exemplify this level
of implementation.

As explained in the previous chapter, neuroscience research suggests that the
bottom-up approach is suitable to model high-order cognitive processes. In fact, it
seems that motor systems strongly contribute to the formation of processes tradition-
ally considered to be “high level” or cognitive, such as action understanding, mental
imagery of actions, perceiving and discriminating objects (Gallese et al. 1999). Mir-
ror neurons are surely the best (and most famous) example of this. On the other hand,
although bottom-up mechanisms account for much of the observable psychophysical
data, the contribution of top-down stimuli can not be disregarded. Indeed, it has been
argued (Goodale and Milner 2004; Freyet al. 2005; Arbib 2010) that classification,
recognition and other more cognitive processes are used to trigger and accelerate the
formation of brain-activity patterns relative to visuomotor tasks, including grasping
(Sect. 2.5). The classification of an object within a certain class can facilitate or even
partially bypass the process of grasp related feature extraction (Sugio et al. 2003a, b;
Valyear and Culham 2010). In this book, although dorsal mechanisms are modeled
with a higher level of detail, the contribution of the ventral stream is considered
equally important and thus thoroughly taken into account.

4.2.2 Object, Hand, Task

In the grasping literature, three main factors affecting grasping actions are often cited:
the object, the hand and the task (Mackenzie and Iberall 1994). The way in which
each of these factors is taken into account in the proposed framework is described
below.

http://dx.doi.org/10.1007/978-3-319-20303-4_5
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4.2.2.1 Object

Two kinds of properties have to be considered for a potential target object. Spatial
properties related to its current situation, such as distance and pose, can only be
assessed through actual estimation. Implicit properties like its size, weight and con-
sistence are instead obtained through the integration of on-line, instantaneous visual
information with memory of previously acquired knowledge about the object. For
grasping purposes, the on-line, dorsal elaboration consists mainly in a search for
graspable zones, and the estimation of their size and position. Most often, graspable
features can be found looking for approximately flat surfaces facing each others, or
for cylindrical and spherical features.

It is commonly accepted that grip generation is a hierarchical process of vari-
able complexity (Jeannerod 1997; Baud-Bovy and Soechting 2001; Gentilucci et al.
2003). The first processing step is the identification of an opposition axis on the
target object (Iberallet al. 1986). It has been suggested that such opposition axis is
effector independent, and it can be used for hand actions but also for other grasping
means, such as biting (Castiello et al. 2000; Quinlan et al. 2005). Restraining to the
hand case, opposing forces are applied by two virtual fingers (see box), selected
accordingly to object geometry and task requirements.

A virtual finger is defined as an abstract functional representation of a collec-
tion of fingers and other hand parts applying an oppositional force (Arbib et al.
1985; Iberall 1987). Usually, the opposition is created between fingers and
palm or between the thumb and one or more other fingers variably abducted.
The thumb is likely the reference point for the movement in this last case (Galea
et al. 2001; Ansuini et al. 2007a).

For identifying contact areas on the object surface, additional constraints have
to be taken into account. Usually, an estimation of the object center of mass affects
the grasp plan. Such estimation relies on data coming from the ventral pathway, as
the expected object composition and density. Similarly, surface texture and thus the
expected contact friction, which affect the required grasping force, are ventral stream
information (McIntosh et al. 2004). Extraction and integration of different kinds of
object properties is a central issue in the present model.

4.2.2.2 Hand

The geometry, kinematics and strength of the hand are of extreme importance in the
task of grasp planning. Several taxonomies for classifying grasp types have been
proposed, both in robotics and human studies (Cutkosky and Howe 1990).

Many different criteria can be used to define grasp categories, such as joint space,
type of contact with the object, stability and so on. The only distinction that stands
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Power grip 1 Power grip 2 Precision grip 1 Precision grip 2

(d)(c)(b)(a)

Fig. 4.5 Examples of power grips and precision grips. Images adapted from: http://www.bsu.edu/
web/jkshim/handfinger/overview/overview.htm

up to all criteria is the separation between power and precision grips (Mackenzie
and Iberall 1994). In power, or full-hand grips, the fingers create opposition with the
palm of the hand. According to object shape and task, the thumb can either provide
control (Fig. 4.5a) or reinforce the opposition space (Fig. 4.5b). The main opposition
axis varies depending on object size and shape, but in general the grip includes support
by the palm. The opposition axis in precision, or pinch grips, is created between the
thumb and one or more fingers, especially the index finger. Again, control and force
can be modulated: pure fingertip grips are extremely precise (Fig. 4.5c), while grips
including finger pads are more stable (Fig. 4.5d).

Recent imaging studies show a differential activity in AIP between precision and
power grips (Ehrsson et al. 2000; Begliomini et al. 2007; Cavina-Pratesi et al. 2007b),
which seems to be not present in pantomimed grasping (see box).

The expression pantomimed grasping is used to refer to simulated hand shap-
ing, as for grasping, but without the presence of real objects. Despite the amount
of research on simulated grasping and reaching movements, the mechanisms
subserving pantomimed actions are still controversial (Westwood et al. 2000a;
Tessari and Rumiati 2002; Milner et al. 2003; Makuuchi et al. 2012). Recent
findings suggest that, at least for grasping, there is a visuomotor activation
directly related to the presence of possible targets which is not observable in
simulated actions without real goals (Takasawa et al. 2003; Cattaneo et al.
2005; Króliczak et al. 2007; Snow et al. 2011).

Two non-exclusive hypotheses, backed by other findings, can explain the different
patterns of activity between real and pantomimed grasping. The first explanation is
that differential activity between power and precision grips is strictly related to the
visual analysis of the target object, even more than to the motor component. Preci-
sion grips require a more detailed visual analysis and hence the increased activity.
Pantomimed grasping does not require visual analysis and no differential activation

http://www.bsu.edu/web/jkshim/handfinger/overview/overview.htm
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should be observed in this case. AIP fine responsiveness to orientation discrimination
(Shikata et al. 2003) supports this hypothesis.

The second hypothesis regards the task component of the action. The fundamental
influence of post-grasp tasks on hand shaping has been repeatedly proved (Ansuini
et al. 2006, 2008). The basic distinction between power and precision grasping, fun-
damentally related to the action task, makes sense only if the action is performed with
a real goal. In pantomimed grasping there is no actual goal provided by the interac-
tion with the object, and no differential activation related to grip formation should
then be observed. In fact, the distinction between power and precision grips has been
regarded as mainly functional, and not separable from the initial goal of the action
(Napier 1956). Power grips are performed, and the corresponding hand configura-
tion designed for, exerting force on the target object, in order to achieve stability and
security in the holding phase. Precision grips are instead suitable for accurate tactile
response, and are executed pursuing the goals of dexterity and sensitivity (Cutkosky
and Howe 1990).

The previous considerations indicate that it is very reductive to distinguish power
and precision grips only on the basis of visual object features, unless in the case of
extreme object size, like for very big or very small objects, that only afford large
full-hand and small pinch grips respectively. The issue of grasp taxonomy related to
object characteristics is further discussed in Sect. 7.1.

In any case, for most common tasks human grasping actions do not need an
extremely high precision at first contact, as possible small misplacements are nor-
mally corrected on-line through tactile feedback. This simplifies grasp planning and
leads to a reduced grip taxonomy, as similar grasping actions would be classified
within the same grip class. In robotic grasping, small differences in finger position-
ing can lead to big changes in the quality of the grip (Morales et al. 2004), and
thus precision is more critical, unless a haptic system to adjust the grip is available.
Arguably, a real-world robotic grasping system can not prescind from good tactile
skills, and furthermore, the generation of a big number of grips slightly different
from each other is not only biologically implausible, but also extremely costly for
an on-line grasping action. Therefore, a reduced grip taxonomy is the solution most
plausible for neuroscience and most convenient for implementation.

The proposed model framework is based on the human hand, but restrictions posed
by artificial robotic hands are taken into account where necessary. As explained in
Sect. 7.1, the limits of a robotic hand strongly affect the number and quality of
possible experiments.

4.2.2.3 Task

As already pointed out, the task is a critical, determinant factor in grasp planning
(Ansuini 2008; Kawasaki et al. 2008; Ellison and Cowey 2009; Hoeren et al. 2013).
There may be many appropriate ways of grasping an object, but if a given action
has to be performed with it, it has to be grasped in a way that allows for the correct
execution of that action. The concept of task is thus additional to visual grasp analysis,
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and surely biases the grip selection process. The handling of information about the
task involves explicit knowledge regarding the object that has to be grasped and its
potential use. Access to memories stored in the ventral pathway is thus required, but
it is most likely the prefrontal cortex which deals with the complexity of integrating
dorsal and ventral information while pursuing the execution of the required task
(Binkofski et al. 1999; Lebedev and Wise 2002; Sereno et al. 2002).

In this work, the effect of task on grasp planning is simplified considering that a
neutral task, such as “stably lift the object”, has to be performed. Eventual require-
ments posed by subsequent actions are thus not taken into account.

4.2.3 Role of the Dorsal and Ventral Streams and Possible
Interactions

The two streams perform different kinds of visual processing on primary visual
input. The ventral stream performs a global, situation-invariant visual analysis and
associates visual information to object identity, extracting perceptive information
about the object nature. Ventral areas provide data about the object class, and its
expected weight, roughness and compliance. Through recognition, previous grasping
actions experienced on such object can also be recalled. The dorsal stream is instead
oriented to a pragmatic spatial analysis of object local features. The products of its
visual elaboration are precise information about position, shape and size of graspable
object parts.

Using the extracted visual features, and possibly additional information derived
from object identity, the dorsal pathway is responsible for generating possible affor-
dances, or grip candidates, represented in a reference frame that can be directly used
for action. Merging of circumstantial criteria with previous experience provides the
mean through which the final action is selected and planned: on-line, perceptual data
referred to geometry and position of the target object and perceptual information
on relevant object properties have to be integrated in an efficient and robust way, in
order to plan, execute and evaluate an appropriate grasping action. The complemen-
tary contributions of the two streams to this process are summarized in Table 4.1.

As mentioned in Sects. 2.4.3 and 2.5, many aspects affect the quantity and quality
of tasks assigned to each stream in a given condition. In most cases the work partition
between the streams is rather progressive, depending for example on task, action
delay or on object familiarity (Sugio et al. 2003b; Himmelbach and Karnath 2005;
Cohen et al. 2009; Tankus and Fried 2012; Wokke et al. 2014). An explanation for
this last case is that contribution of the ventral stream on the formation of the grip
is modulated by the confidence achieved by the LOC in the recognition of the target
object. A higher confidence in object recognition reflects in a stronger influence of
ventral stream data, such as knowledge of object weight and compliance. On the
opposite, a more uncertain recognition leads to a more exploratory behavior, giving
more importance to actual observation and dorsal analysis.
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http://dx.doi.org/10.1007/978-3-319-20303-4_2


68 4 Vision-Based Grasping, Where Robotics Meets Neuroscience

Table 4.1 Complementary tasks of the two streams

Ventral stream Dorsal stream

Object recognition Visuomotor control

Global, invariant analysis Local, feature analysis

Object weight, roughness, compliance Object local shape, size

Object meaning Object location

Previous experiences Actual working conditions

Scene-based frame of reference Effector-based frame of reference

Long-term representation On-line computation

The quality of the previous grasping experiences with an object has a similar effect.
Proper action patterns can be recovered if recognition succeeds and consolidated
experience of previous actions is available (Tucker and Ellis 2004). In these cases,
there can be a strong bias toward learnt motor representations, that allows to partially
bypass visual analysis. In any case, stored visuomotor patterns need to be refined
with information gathered by the dorsal visual stream, which keeps its central role
in detailed action planning and execution. For example, an object can be correctly
recognized and immediately associated to a hand shape suitable for grasping it, but
its location and orientation have still to be estimated employing on-line visual data.

It has been shown that humans are able to generate motor commands exactly suited
to the weight of familiar objects (Eastough and Edwards 2007). Instead, for unfamiliar
objects, subjects estimate their weight joining size information with assumptions on
the possible object density, and perform an “average” grasp in order to reduce the
risk of slipping or crushing the object (Gordon et al. 1993). In both cases there seem
to be an important ventral contribution, either for recalling previous experience after
object recognition, or for estimating object properties that can only be inferred if
object composition is identified. The relation between the two streams in the proposed
model builds on these concepts.

4.3 Model Framework

In the previous section, the scope and methodology of the proposal have been cir-
cumscribed. This section presents the framework of the whole model, which will
be detailed in Chaps. 5 and 6. It is important to stress that, although the proposed
approach is based on the neuroscience concepts introduced in Chap. 2, the following
description of the system includes a number of hypotheses that should be confirmed
by further neurophysiological and behavioral research.

Figure 4.6 shows the graphical schema of the whole model. The fundamental data
flow is the following. After the extraction of basic visual information in V1/V2,
higher level features are generated in V3/V3A and sent to the two streams. Along
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Fig. 4.6 Model Framework depicting all principal areas involved in the planning and execution of
vision-based grasping actions

the ventral stream, an invariant representation of object shape is generated in order
to perform a gradual recognition of the object. Area V4 is in charge of classifying
the object as pertaining to a given class, and only later full recognition is performed
in LOC. In the dorsal stream, area CIP integrates stereoptic and perspective data
in order to detect pose and proportion of the target object, using also information
regarding object classification. Area LIP estimates object location integrating retinal
data with proprioceptive information about eye position. Both CIP and LIP project to
AIP, which transforms object visual data in hand configurations suitable for grasping.
A grasping plan is devised by AIP in collaboration with PMv, considering also the
information on object identity coming from the ventral stream, and task requirements
given by the prefrontal cortex, PFC. Dorsal areas are supported by proprioceptive
information coming from somatosensory areas SI/SII, and action selection in AIP
and PMv is modulated by the basal ganglia (BG). The signals for action execution
are sent to the motor cortex M1, and an AIP-PMv-Cerebellum loop is in charge of
monitoring action execution in accordance to the plan.

Blocks in the diagram correspond to brain areas, according to the findings
described in Chap. 2, but also to implementable functional modules. In the following
sections, basic concepts regarding the functioning, the role and the interactions of the
brain areas which appear in the model are given. The basic interest is directed toward
the integration of different types of information as it is thought to happen through
the connections between the dorsal and the ventral streams. Transfer functions and
implementation details will be provided in the next two chapters.

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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4.3.1 Processing of Basic Visual Information

The first step is the extraction of fundamental visual data regarding the target object.
Starting from visual acquisition, an attentional mechanism is needed to focus on the
object to grasp, for isolating it from the background and possible other objects. Once
the object is unambiguously identified, visual elaboration can begin.

Visual areas V1 and V2 receive images and provide as output basic features, such
as edges, corners, and absolute disparities. These features are used by downstream
areas to build more complex ones. The most advanced visual representation common
to both streams is a basic binocular description of the target object, composed for
both eyes of its contour as a 2D silhouette and the retinal position of salient features,
such as sharp corners. After this stage, the visual analysis is performed in parallel
concurrent ways by the two pathways.

The ventral stream performs a gradual classification and identification of objects,
probably through the integration of volumetric descriptions with 2D ones, as
described in Sect. 2.4.1. On the other hand, the search of the dorsal stream for places
on which to put the fingers is better done on descriptions of objects represented by
2D surfaces disposed in the 3D space (see Sect. 2.3.1). Color information, processed
by area V3, can be used by the ventral stream to recognize objects more easily, and
by the dorsal stream to track objects, but also to extract surface properties through
shading and textures.

4.3.2 Extraction of Visual Features Suitable for Grasping

The description of visual object features relevant for grasping purposes is the next
processing stage. The posterior parietal cortex, in charge of this task, does not con-
struct any model or global representation of the object, but rather extract properties of
visual features that are suitable for a potential action. In order to elaborate a proper
action on an external target, two main inputs are required, the object shape and
pose and its location with respect to the eyes and thus to the hand. These inputs are
obtained by integrating retinal information regarding the object with proprioceptive
data referred to eyes, head and hand. All this information is managed contextually
by the dorsal stream.

4.3.2.1 Estimation of Geometry and Location of the Target Object

Visual area V3A is retinotopically organized, so that topological distribution of the
observed scene, and the relative position of object features are directly represented.
Relative disparities, fundamental for pose estimation, are also calculated in V3A.
Basic representations of visible surfaces coming from V3A are the input of intra-
parietal areas. In humans, the intraparietal sulcus is where visual input begins to
be coded in a head-based spatial representation. The lateral intraparietal area LIP
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seems to be responsible for remapping retinal visual data in eye-centered coordi-
nates (Sect. 2.3.4), and for estimating object location and distance. Cues to distance
estimation are retinal data, accommodation and vergence, this last being probably
more influent in the dorsal stream, especially for grasping distances (Tresilian et al.
1999; Goodale and Milner 2004). A model of distance estimation from proprioceptive
vergence data is proposed in Chap. 5.

Area CIP elaborates the visual input it receives, mainly from V3A, in order to pro-
duce features that are possibly suitable for grasping purposes. This area is in charge
of performing complex orientation discrimination of 3D object features, and codes
visual information in a format suitable to be used by AIP for generating appropri-
ate hand configurations and grasping movements. The outstanding human grasping
abilities in open-loop conditions suggest that visual analysis of object features is per-
formed very accurately. Increased reliability in estimation can be achieved using a
multiple cue approach, in which concurrent cues are optimally integrated to produce
a better estimate. Details on the integration of stereoptic and perspective cues for
pose estimation in CIP are given in Chap. 5.

Features extracted by CIP are coded using the response properties of SOS and
AOS neurons, which are selective for the orientation and relative proportion of object
parts (Sect. 2.3.1). Some responsiveness to actual object size has also been observed,
suggesting that at least a part of AOS and SOS neurons code for absolute object
dimensions. Although an exact object size representation is most likely maintained
in AIP, approximate size data could be used in CIP to rule out ungraspable features, as
discussed in Sect. 6.2.1. Summarizing, the output of CIP, conveyed by AOS and SOS
neurons, are the orientation and relative dimensions of features, filtered according
to their suitability for grasping actions. This is the major input to AIP, which will
transform it in suitable hand shapes. Reference frame transformation from head-
based to hand-based is probably executed in AIP as well.

4.3.2.2 First Interaction Between the Streams

Visual processing in the ventral stream is based on the production of increasingly
invariant representations aimed at object recognition. During grasping actions, ven-
tral visual areas are in charge of identifying the object, and facilitating access to
memorized properties which can be useful for the oncoming action. Region V4
codes at the same time shape, color and texture of features, which are then composed
in the LOC to form more complex representations recognizable as objects. Output
from area V3 is thus used by V4 to build a viewpoint invariant simple coding of the
object, that can be used to classify it as belonging to one of a number of known object
classes. Basic computational representations for this purpose are for example chain
codes or 2D shape indexes, as explained in Sect. 5.2.3.

Information on the basic shape of the object is probably forwarded to the dorsal
stream, to CIP or AIP or both, to facilitate the feature extraction process. For exam-
ple, if the object is recognized as roughly box-like, it can be assumed that its edges
are parallel. Such assumption would facilitate the process of size and pose estima-
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tion, because reliable perspective estimation can be used in this case in addition to
stereopsis.

Downstream from V4, the LOC compares spatial and color data with stored infor-
mation about previously observed objects, to finally recognize the target as a single,
already encountered object. Object identification is thus performed in a hierarchical
fashion (see Sect. 5.1.3), where the target is first classified into a given class and, only
later, exactly identified as a concrete object. In each of these steps, recognition is not
a true/false decision, but rather a probabilistic process, in which an object is classi-
fied or identified only up to a given confidence level. Thus, confidence values should
be provided by the classification and identification procedures. In this way, ventral
information can be given more or less credit. If recognition confidence is high, visual
analysis can be simplified, as most required information regarding the target object
is already available in memory. If recognition is instead considered unreliable, more
importance is given to the on-line visual analysis performed by the dorsal stream.

Final output of the object recognition process are its identity and composition,
which in turn allows to estimate its weight distribution and the roughness of its
surface, that are valuable information at the moment of planning the action. More-
over, besides the recovery of memorized object properties, recognition allows to
access stored knowledge regarding previous grasping experiences. Old actions on
that object can be recalled and used to bias grasp selection, giving preference to
learnt hand configurations which ended in successful action executions. Similarly to
the classification confidence, the number and outcome of previous encounters with
the same object will determine the reliability of the stored information.

4.3.3 Transformation of Visual Features into Hand Shapes

Although some AIP neurons code for specific spatial aspects, similarly to CIP’s, ori-
entation and shape are often represented as a combined 3D feature in AIP. Researchers
concord in the interpretation that such combined coding is suitable for representing
graspable features at a visuomotor level (Castiello 2005; Sakata et al. 2005). As
largely justified in Chap. 2, AIP is the area of the primate brain which performs the
visuomotor transformations necessary for grasping actions. Less clear is how much
of the information that AIP requires in order to plan an action is provided by CIP,
and how much needs to be complemented by other areas. Apart for the known circuit
linking AIP to the ventral premotor cortex, several other brain regions show major
projections to the anterior intraparietal area. AIP surely receives information from
other areas of the intraparietal sulcus, from the ventral stream, the inferior parietal
lobe, the basal ganglia, the cerebellum and the prefrontal cortex. The information
coming from LIP and the inferior parietal lobe is of visual nature, and the data pro-
ceeding from the ventral stream are about characteristics of the object. Connections
with PMv and cerebellum are more related with motor aspects of the action, and the
basal ganglia probably participates in action selection. The prefrontal cortex orga-
nizes action plans according to the context, and sets goals and tasks. The relevance
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and effect of such inputs to data processing in AIP will be discussed in the next two
chapters. In the next section, some visual and motor aspects used in grasp synthesis
and assessment are described.

4.3.3.1 Grasping Constraints and Grasp Quality

Provided that AIP is mostly concerned with precision grasping (Sect. 4.2.2.2), it
makes sense that its major source of information in order to generate suitable hand
shapes for the selected target feature is the precise responsiveness of SOS and AOS
neurons of CIP. Features can be classified, although not exclusively, as flat or elon-
gated ones according to such responsiveness. Exact size estimation, likely provided
by LIP, and CIP output are used to establish a hand shape suitable for the selected
feature. Integration of these data with proprioceptive input regarding the relative loca-
tion of object and hand, and the current position and state of hand and arm, allows
to perform the transformations necessary to recode visual data in an actor-based
reference frame.

For what concerns the selection of contact places between hand and object, humans
usually try to grasp objects so that the opposition axis passes close to the estimated
center of mass, and perpendicular to the main inertia axes (Bingham and Muchisky
1993a; Wagman and Carello 2003; Freyet al. 2005). More exactly, subjects tend to
align the grip axis with the minor axis of the object (Cuijpers et al. 2004). For flat
objects, having predominant SOS activations, the preferred opposition axis is parallel
to the minor size (Fig. 4.7a). For elongated objects, corresponding to high AOS
activations, the grasping axis is usually perpendicular to the major size (Fig. 4.7b).
In this way, misalignment errors have less effect on the possible consequent torques
as compared with grasping aligned to the major axes.

Another subgoal of grasp selection is to place the fingers in safe positions on the
object. In many cases this is not an issue, especially for large and regular objects.

Fig. 4.7 Preferred opposition axes in human grasping for flat and elongated objects. a Flat (SOS)
objects. b Elongated (AOS) objects
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Moreover, grasping close to the center of mass very often ensures that contacts are far
from the edges as well. If the object is small though, the risk of placing a finger on an
edge, and thus reducing the grasp reliability, is real. This same example also reveals
the preference toward concave compared to convex features for improving grasping
stability (Jenmalm et al. 2000). Curvature is very likely included in information
forwarded from CIP to AIP, which can use it during the selection of contact areas.
For complex, asymmetric and irregular objects, all these aspects have to be taken
thoroughly into account.

Regarding arm and hand posture, subjects tend to pursue a sort of reaching “com-
fort”, adapting to a natural grasp axis which minimizes the rotation of hand and arm
with respect to the starting position (Cuijpers et al. 2004). Such preferred approach-
ing direction is respected as much as the object allows for it. In the case of spherical
objects, or of cylindrical objects placed vertically, the grasp axis is found to be
always consistent with this preferred reaching orientation (Paulignan et al. 1997). If
objects are not symmetrical, and possess for example a clear opposition axis, then a
modulation between effect of shape and position is observed (Ledermana nd Wing
2003). Both visual and motor criteria hence constrain the selection of the grip shape
and the contact with the object. It appears that, if AOS activation is prevailing, the
motor criterion of comfortable reaching is probably dominant. Instead, in case of
stronger SOS response, the reaching direction will have to adapt to the opposition
axis afforded by the object. Visual and motor criteria similar to those described in
this section can also be exploited to select between different candidate grasping fea-
tures pertaining to the same object. There is most probably a contribution of the basal
ganglia to this action selection process, namely of its output nucleus substantia nigra
pars reticulata (Clower et al. 2005). More details on the criteria for action selection
and their use are provided in Sect. 6.2.2.

Together with the selected grip, an initial grasping force is also provided in the
grasp planning process. In effect, it seems that AIP is also responsible for deter-
mining the initial force of grips (Ehrsson et al. 2003; Goodale and Milner 2004), as
this is strictly related to the geometry of the grasping configuration and the nature
of the target object. Force is later adapted to the task requirements and to object
characteristics after contact has been established and tactile feedback is available.

4.3.3.2 Second Interaction Between the Streams

The general problem of selecting a hand configuration and a set of contact points
for grasping geometric shapes is common in robotics and in neuroscience experi-
ments. Nevertheless, in real grasping this rather abstract selection is not common, and
cognitive reasoning about the object quality and the task to perform usually comes
before grasp decisions. Hence, in everyday life actions are strongly affected, if not
dominated, by ventral stream processing, and the influence of LOC on AIP is very
strong. Still, for most objects, only excluding extremely symmetrical ones, a visual
analysis for grasping is necessary in order to detect their pose, and if high precision
is required in finger placing, such analysis has to be quite accurate. The continuous
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interaction between the perceptual and visuomotor systems is thus the most likely
normal way of functioning for vision based grasping (Goodale et al. 2004; Wokke
et al. 2014; Zachariou et al. 2014).

The visuomotor factors affecting grasp planning, described in Sect. 4.3.3.1, are
constantly biased by experience and conceptual knowledge provided by the ventral
stream. As explained in Sect. 4.3.2.2, once the object has been recognized, informa-
tion concerning its properties and memories of previous grasping experiences can be
recalled. Confidence in the recognition and quality of memories modulate the effect
that ventral stream data has on the grasping action. If the recognition confidence
is high, more importance can be given to some visuomotor criteria with respect to
others. An object recognized as heavy will elicit a grasping action in which close-
ness to the center of mass is very important, even though the reaching movement is
less comfortable. Similarly, initial grasping force will be high in order to adapt to the
characteristics of the target. In the case of uncertain object recognition, or encounters
with unknown objects, a more conservative approach is probably used. The initial
force will probably be lighter, in order to avoid crushing the object, and the action
will be slower. After contact, tactile feedback complements the missing information
and allows to properly carry out the planned action.

The same happens with knowledge regarding the roughness of the object, which
drives the contact friction, and hence again the force required to grasp it. Many
other ventral factors can bias the importance of the different visuomotor criteria. For
example, object fragility or the presence of potentially dangerous features such as
sharp edges, affect finger placement and contact force.

4.3.4 Grasp Execution

The final grasping plan is likely devised by AIP in collaboration with PMv and with
the ventral stream, which has to build the memory of previous encounters with the
target object for future reference. The AIP → LOC projection in Fig. 4.6 symbolizes
this process. A mechanism like the one introduced in Sect. 3.3 could stand behind
the symbolic representation of grasping actions required to store their memory both
at a sensorimotor and at a cognitive level.

As mentioned in Sect. 2.3.2, AIP plays an active role in action execution. The
action progress can be followed visually and, after contact, also haptically. AIP is
most probably in charge of both monitoring modalities, and the same motor pro-
gram is probably shared by AIP and PMv, maybe as a corollary discharge sent from
the latter to the former. PMv is in charge of sending motor signals to the primary
motor area and keeping it updated with the most recent motor plans. Meanwhile,
AIP performs a comparison between expected sensory states and real visual and
somatosensory stimuli, monitoring the progress of the ongoing action with respect
to the plans (Ogawa et al. 2007). Such monitoring can be performed using forward
models, likely maintained in the cerebellum. The same signals that PMv sends to
M1 are sent also to the cerebellum, that is able to build a prediction of the sen-
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sory feedback in each instant of the execution. The cerebellum is believed to be the
place in which forward models are computed, and evidence for projections from the
cerebellum to AIP supports this schema (Clower et al. 2005). In case of sensory dis-
crepancies or changes in the environment, suitable motor commands for correction
are calculated, and the motor plan is updated. The ventral premotor cortex of the
human brain has often been considered to make large use of inverse model for motor
programming purposes (Kawato 1999; Miall 2003) and is probably able to change
dynamically its motor plans according to AIP requirements.

In case of imprecise grasping, tactile adjustment after contact can also be based
upon a closed-loop finger position updating, in which a goal state is calculated through
forward models, and compared to the actual sensory feedback. Inverse models are
used to devise the motor plan most appropriate for reducing the discordance between
expected and real stimuli, and thus achieve the final stable state. A simple example
of this mechanism is provided in Sect. 6.2.4.2. Once grasp is secured, the object can
be lifted and any post-grasping task can be executed.

The quality of the contacts between fingers and objects can be immediately
assessed, as will be shown in Sect. 6.2.4.2. This assessment is an important source
of information for future actions. If the object was slightly displaced with respect to
the expected position, it means that pose estimation was probably affected by some
imprecision. Contextual aspects of the action will be associated with such impreci-
sion, and after a few misplaced executions a pattern of error causes can be extracted
from experience. In this way, the actual outcome of action execution is used to update
the memory of accumulated grasping experience for future reference. The reward
system, that establishes the most important goals to pursue in each condition, is also
updated at this stage.

4.4 Conclusions

Computational models of the human visual system are largely available, especially
for the first stages of visual processing, before the splitting of the two streams. At
the same time, research on object recognition keeps involving a large part of the
computer vision community. Nevertheless, few resources have been dedicated to the
exploration of the mechanisms underlying the functioning of the action-related visual
cortex, and the integration between the contributions of the two visual pathways is
nearly unexplored at the computational level and even more in robotics. Thanks to
recent neuroscience findings, the outline of a model of the brain mechanisms upon
which vision-based grasp planning relies could be drawn in this chapter.

With respect to the available models, the proposed framework has been conceived
to be applied on a robotic setup, and the analysis of the functions of each brain area has
been performed taking into account not only biological plausibility, but also practical
issues related to engineering constraints. In the next two chapters, implementation
details and experimental results will be provided.
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Chapter 5
Extraction of Grasp-Related Visual Features

A model for visual cue extraction and merging strongly inspired on primate, and
especially human, psychophysiology is described in this chapter. This implements
the part of the framework of Chap. 4 dedicated to the extraction of object visual
features relevant for grasping purposes. The areas and connections of the model of
Fig. 4.6 involved in this process are highlighted in Fig. 5.1.

The distance of a target object is estimated, similarly as in the lateral intraparietal
sulcus LIP, using proprioceptive vergence data. The advantages of expressing and
calculating distances in nearness units are discussed. Object orientation estimation,
executed in the posterior intraparietal sulcus CIP, is performed combining binocular
(stereoptic) andmonocular (perspective) visual data. A theoretical analysis for deriv-
ing plausible expressions for slant estimation is accompanied by an implementation
with a set of artificial neural networks. The behavior of the system in simulated noisy
conditions suggests that the model is faithful to biological reality.

A first interaction between the two streams is implemented at this point. An
object recognition module, representing area V4, classifies the target object into one
of three basic shapes: boxes, cylinders and spheres. Even though such classification
provides no direct information on object size and proportion, it allows to access a
basic knowledge about the target shape which helps in the pose estimation process.

The outcome of applying the computational model to a real robotic platform is
presented and discussed. The robot is required to observe target shapes of differ-
ent size and proportion and estimate the features useful for a potential grasping
action. The comparison of the obtained results with experiments described in the
neuroscience literature confirms the effect of different driving factors on estimation
reliability, showing how stereoscopic, perspective and merged estimators behave in
different conditions. The same comparison is done for distance estimation obtained
from proprioceptive vergence data.

In order to complement the background information provided in the previous
chapters, some important concepts regarding cue extraction and integration, object
recognition, and artificial vision methods for pose estimation, are given in the next
section.
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Fig. 5.1 Areas of the model framework involved in extraction of grasp-related visual features

5.1 Extraction and Integration of Object-Related Visual
Cues in the Primate Cortex and in Robotics

For both natural and artificial agents, the interaction with the environment requires
the ability of estimating distance, size and shape of surrounding objects. Such skill is
highly supported by, if not fully dependent on, the use of binocular, or stereoscopic
vision (Marotta et al. 1995; Watt and Bradshaw 2003; Bradshaw et al. 2004; Loftus
et al. 2004). Binocular vision consists in the contemporaneous acquisition of two
different images taken from viewpoints that are always at the same, short distance—
the eyes. Theprocess allows to obtain a fast and accurate estimationof object distance,
size, motion, through the interpretation of binocular disparities (see box).

The difference between the left and right retinal representations of visual fea-
tures is called binocular disparity (Howard and Rogers 2002; Parker 2004).
Absolute disparities are simple distances, either horizontal or vertical, between
the two retinal positions of the same point-like feature. Various types of higher
order disparities can be computed from absolute ones. First order relative dis-
parities represent the difference in disparity between two image points, and
thus directly code for feature depth and slant. Horizontal relative disparities
are used for estimating object slant about a vertical axis, the most common in
nature. Orientation disparities allow instead to calculate slants about horizontal
axes (Heeley et al. 2003). Second order disparities are used to estimate object
curvature.
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Despite its fundamental importance, stereoptic information alone is often not
enough, and motion, texture, shading and other cues are used to complement it.
Indeed, in each modality the brain seems to efficiently use a large set of differ-
ent cues at the same time (Norman et al. 1995). Evaluation and integration of all
available cues is performed in order to obtain the most likely final estimates. Cue
integration is amajor principle in the primate sensory cortex, and especially in vision.
Visual information is processed in a highly parallel way, different cues for the same
stimulus are processed, compared and merged in order to provide increased estima-
tion reliability through redundancy (Landy et al. 1995; Tsutsui et al. 2001). In this
section, vision science concepts related to cue generation and integration which help
in complementing the review of Chap.2 are provided.

5.1.1 Feature Extraction

The basic mechanisms of stereoscopic vision have been studied for long time, and
are discussed in fundamental works such as Julesz (1971), Marr (1982). Neuronal
responses to disparity stimuli in cortical visual areas have also been throughly inves-
tigated (Poggio et al. 1988; Cumming and DeAngelis 2001). Disparity detection is a
fundamental aspect of visual processing that begins already in V1 and V2 (Gonzalez
and Perez 1998; von der Heydt et al. 2000; Thomas et al. 2002; Trotter et al. 2004;
Read 2005). It is though from V3 that disparity coding spans areas of the visual
field wide enough to provide a proper interpretation of stereoptic information, both
in monkeys (Adams and Zeki 2001; Tsao et al. 2003) and in humans (Backus et al.
2001; Welchman et al. 2005; Anzai et al. 2011). For what concerns the processing
of higher order disparities, there is a general consensus regarding a prominent role
of V3A in representing relative disparities (Backus et al. 2001; Tsao et al. 2003;
Rutschmann and Greenlee 2004; Brouwer et al. 2005). An initial, basic perspective
processing could also be performed in area V3A (Welchman et al. 2005; Georgieva
et al. 2009).

As explained in Sect. 2.3.1, the caudal intraparietal sulcus CIP is dedicated to
the extraction and description of visual features suitable for grasping purposes. Its
neurons are strongly selective for the orientation of visual stimuli, represented in
a viewer-centered way. Selectivity toward disparity-based orientation cues is pre-
dominant in macaque’s CIP, which neurons are selective for first and second order
disparities (Sakata et al. 1998; Endo et al. 2000; Tairaet al. 2000). fMRI studies
showed that the human posterior intraparietal sulcus is responsive to disparity-coded
orientation, too (Tsao et al. 2003; Rutschmann and Greenlee 2004; Naganuma et al.
2005). On the other hand, many CIP neurons also respond (some exclusively) to
perspective-based orientation cues, both in monkeys (Tsutsui et al. 2001, 2005) and
humans (Taira et al. 2001).

The evidence suggests that CIP integrates stereoptic and perspective cues for
obtaining better estimates of orientation (Tsutsui et al. 2005; Welchman et al. 2005).
This sort of processing performed by CIP neurons is the logical continuation of the
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simpler orientation responsiveness found in V3 and V3A, and makes of CIP the ideal
intermediate stage toward the grasping-based object representations of AIP (Sakata
et al. 1999; Shikata et al. 2001; Bray et al. 2013; Konen et al. 2013).

Another area that projects to CIP is the lateral intraparietal sulcus LIP, which
performs distance and location estimation of target objects. More exactly, according
to psychophysiological research in humans (Tresilian andMon-Williams 2000),what
is actually estimated and used in the parietal cortex is the reciprocal of distance, that
is, nearness. In the intraparietal sulcus, distance and disparity are processed together,
the former acting as a gain modulation variable on the latter (Salinas and Thier
2000; Genovesio and Ferraina 2004). This mechanism allows to properly interpret
stereoscopic visual information (Dobbins et al. 1998; Mon-Williams et al. 2000), as
described in Sect. 5.2.2.

5.1.2 Cue Integration

Cue integration, or combination, is one of the main working principles of the human
sensory systems. Restricting to unimodal cue integration, vision is probably the
best example of the complexity reached in the process of getting the best estimate
of a stimulus from concurring and often discordant cues. Several models have been
proposed for explaining how such best estimate is obtained, but most phenomena can
bemodeled by a simple linear weighting of concurrent cues, aimed atmaximizing the
likelihood of the final estimate (Landy et al. 1995). The main underlying principles
that allow to achieve this goal seem to be two: cue reliability and cue correlation, or
discrepancy (Tresilian and Mon-Williams 2000; Jacobs 2002).

Cue reliability is probabilistic, it depends on environmental conditions, on the
estimate itself and sometimes on other, ancillary measures (Landy et al. 1995). Con-
sidering the case of interest for our research, i.e. orientation estimation, stereoscopic
cues are considered less reliable outside a certain range of disparity, but also at
longer distances, being distance in this case an ancillary cue. Often, ancillary cues
directly affect the estimation process through gain modulation, such as in the men-
tioned distance/disparity example (Trotter et al. 1996). This seemingly simple and
safe mechanism may nevertheless suffer because of a second-order uncertainty, the
problem of assessing the reliability of the ancillary cue itself. In any case, reliability
rules have to be learnt by a subject in her/his interaction with the environment, and
can be misleading in the case of unusual situations, such as in optical illusions.

The second principle, cue correlation, considers the degree to which concurrent
cues conflict or coincide, and gains importance with increasing number of cues. In
fact, there is no way to choose between two conflicting cues only on the base of cue
correlation, but if a cue is the only one in disagreement with a number of coincident
cues, it is very reasonable to consider it untrustworthy. Fortunately, vision systems
often provide many cues quite different from each other, so that correlation can be
a perfect criterion for weighting the cues in the final estimate (Backus and Banks
1999).
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The available models for extraction and integration of visual cues usually focus
on very specific aspects, such as disparity responsiveness with changing distance
(Lehky et al. 1990; Lehky and Sejnowski 1990), conflicting stimuli (van Ee et al.
1999), maximum-likelihood cue integration (Hillis et al. 2004), temporal integration
according to cue reliability (Greenwald et al. 2005), extraction of local surface slant
(Jones and Malik 1992). Apparently, no published models on the subject provide
details for practical implementation on robotic vision setups.

5.1.3 Object Recognition in the Ventral Stream

As pointed out in Sect. 2.4.1, object recognition in the ventral stream is performed
gradually and hierarchically (Grill-Spector et al. 1998; Bar et al. 2001). Recent find-
ings indicate that object recognition is composed of at least two subsequent stages,
categorization and identification (Grill-Spector and Kanwisher 2005). In the first
stage, an object is classified as belonging to a given class or family of objects, and
such process is strikingly fast. The classification delay is so short that there is proba-
bly time to feed category information to the dorsal stream, for improving the online
estimation of action-related features. This mechanism is represented by the link pro-
jecting from areaV4 toCIP in Fig. 5.1. As pointed out in Sect. 2.3.1.3, anatomical and
functional evidence supports this early integration between the streams (Perry et al.,
2014). The second stage of object recognition is proper identification, performed by
LOC, in which object identity is recognized within its category.

A second aspect, relevant for modeling purposes, is the method employed by the
ventral stream for performing object recognition (Ullman 1996). At least for the first
classification stage, visual input is very likely compared to memorized 2D represen-
tations (Bülthoff et al. 1995; Orban et al. 2006), and complex objects are identified
by composing simpler features (Thoma and Henson 2011). A classification based on
3D representations would require mental rotation, and this can hardly be performed
with the quickness observed in the experiments of Grill-Spector and Kanwisher
(2005). Moreover, the consistent preference of some “canonical” views during free
and classification-oriented object exploration indirectly supports the existence (if not
the dominance) of 2D object representations (Blanz et al. 1999; James et al. 2001).

Various biologically inspired methods for object recognition have been developed
in computer vision, and different models of ventral stream processing are available
(O’-Reilly and Munakata 2000; Riesenhuber and Poggio 2000; Rolls and Webb
2014). Someof themare strongly inspired by neurosciencefindings, and use plausible
approaches such as radial basis function networks (Pouget and Sejnowski 1997;
Deneve and Pouget 2003) or a temporal coherence principle in unsupervised learning
(Einhäuser et al. 2005). For the purposes of this work, object recognition is functional
to grasping actions, and the interest is not in detailed modeling of ventral stream
mechanisms. A simple viewpoint invariant classification is implemented, based on
basic 2D global object representations (see Sects. 5.2.3 and 5.4.2).

http://dx.doi.org/10.1007/978-3-319-20303-4_2
http://dx.doi.org/10.1007/978-3-319-20303-4_2
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5.1.4 Orientation Estimation in Artificial Vision and Robotics

Object orientation (or slant) estimation is a common, and difficult, problem in arti-
ficial vision (Lippiello et al. 2006). Nevertheless, no research works similar to the
proposed approach are available in the literature.

A detailed overview of existing techniques for pose estimation can be found
in Goddard (1998). The available approaches differ depending on the type and loca-
tion of the sensors, the illumination requirements, the object or scene feature on
which the pose is calculated, the relative motion between robot and object. Some-
times, noise sources and uncertainty factors are modeled in an attempt to improve the
robustness and accuracy of the results. Among various methods, geometry or model
based techniques are most common. These methods use an explicit model for the
geometry of the object in addition to its image in determining the pose. The object
is modeled in terms of points, lines, curves, planar surfaces, or quadric surfaces
(Rosenhahn et al. 2004). Methods of this kind have been proved useful even with
moving targets (Lippiello et al. 2001). Often, the use of markers substitute explicit
modeling (Gehrig et al. 2006). These techniques can be combined with others, where
appearance based methods are used for the rough initial estimate and followed by a
refinement step usingmodel based technique (Ekvall et al. 2003). In Peters (2004) the
rough initial estimate is determined on the viewing hemisphere as an initial guess,
and then also refined. A model based approach can also be connected with range
images, for example matching a 3D model to a range representation of the scene
(Germann et al. 2007). The managing of range data is anyway quite different from
vision research, and works which locate parallel surfaces to grip from range images,
such as Weigl et al. (1995), are interesting but unrelated to the current approach.

For what concerns stereo slant estimation inspired on human physiology, Ferrier
(1999) describes a method based on disparities which makes use of a model for
computing orientation of features. With the support of camera calibration, which
is not used in this work, they obtained similar results. Regarding the integration of
stereoptic and perspective cues in artificial vision, although the idea is not novel
(Clark and Yuille 1990), there are very few robotic platforms that make use of both
visual cues at the same time. For example, in Saxena et al. (2007) a vision system is
trained to estimate scene depth through monocular data using supervised learning,
and a joint monocular/binocular estimator is generated. The authors show that inte-
gration of monocular and stereopsis data performs better than either cue alone. Other
works, focused on object tracking (Taylor and Kleeman 2003) and on visual servoing
(Kragic and Christensen 2001), perform cue integration, but their visual analysis is
model-based, and their goal is feature matching and not feature extraction.
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5.2 A Model of Distance and Orientation Estimation
of Graspable Objects

This section introduces a proposal for distance estimation based on proprioceptive
vergence data, and two different orientation estimators obtained from stereoscopic
and perspective cues. A hierarchical approach to object classification is also pre-
sented.

5.2.1 Distance Estimation Through Proprioceptive Data

The distance of a fixated object from the viewer can be estimated by either retinal
and/or proprioceptive cues, accommodation and vergence (see box).

The movement performed by the eyes in order to converge on a given visual
target is called vergence, or convergence. The resultant angle is called vergence
angle. The adaptation of the shape of the eye crystalline lens in order to change
the eye focus is called accommodation. Accommodation and vergence are both
directly related to the distance of the visual target, and are linked by a reflex. In
distance estimation, accommodation and vergence are preferably used when
retinal data are not available or considered not reliable, and for short distances
(Mon-Williams and Tresilian 1999; Tresilian et al. 1999).

The relation between distance and vergence angle γP is simple and depends only
on the interocular distance I , which is constant (see Fig. 5.2). The distance d between
the fixated point P and the cyclopean eye O, middle point between the two eyes, is
given by:

d = I

2 tan(γP/2)
(5.1)

Psychophysiological experiments (Tresilian and Mon-Williams 2000) suggest
that distance estimation is most probably performed in the human brain using near-
ness units instead of distance units. Nearness is the reciprocal of distance, and a
point at infinite distance has 0 nearness. The nearest distance at which vergence
can be maintained, called the near point of vergence, is usually between 60 and
70mm (Brautaset and Jennings 2005). Average interocular distance for adults is
considered to be between 63 and 65mm, and thus approximately coincident with
the near point of vergence. Setting I = d yields a maximum vergence angle of:
γ = 2 · arctan(I/(d · 2)) = 2 · arctan(1/2)) = 0.927rad = 53◦8′. The following
expression for computing nearness from vergence hence produces nearness values
between 0 (for γP → ∞) and 1 (for γP = 0.927 rad, the maximum vergence angle):
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Fig. 5.2 Relation between
vergence angle γP and
distance d. I is the
interocular distance, O the
position of the cyclopean eye

nearness = 2 tan(γP/2) (5.2)

Such measure is more precise for close distances, and thus especially suitable for
dealing with objects in the peripersonal space. Moreover, it is based on the relation
between I and the near point of vergence, and does not depend on any constant or
auxiliary measures.

Two radial basis function (RBF) networks were designed, for learning the associ-
ation between vergence and nearness and between vergence and distance. The results
can be seen in Fig. 5.3. On the top left, the distance/vergence curve corresponding
to (5.1) is shown. Equation (5.2) between vergence and nearness is depicted on the
top right of the image, and the corresponding learnt curve appears on the bottom
right of Fig. 5.3 (lighter, dashed curve). The reciprocal of the learnt relation is finally
depicted on the bottom left, where it can be compared with the true mathematical
relation (they practically coincide). In this simplified example, to obtain a similar
performance in the estimation of distance, the distance/vergence network requires
11 RBF units, while the nearness/vergence net requires only 4 neurons. This is not
surprising, considering the approximate linearity of the relation vergence/nearness,
and considering that the brain often employs an economy principle, minimizing the
resources required to perform a given task. In the current model, object distance is
represented in nearness units, and is used in the next section to modulate the effect
of disparity on orientation estimation.

5.2.2 Object Orientation Estimation Through Retinal Data

For estimating object pose, humans combine estimators provided by different visual
and proprioceptive cues, both binocular (mainly horizontal and gradient disparity
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Fig. 5.3 Distance to vergence and nearness to vergence relations: theoretical equations (upper
diagrams) and learnt curves (superposed dashed lines in the lower diagrams)

cues) and monocular (texture or edge perspective cues) (Backus et al. 1999). In this
section, the problem of orientation estimation according to different cues is analyzed.
First, a couple of expressions both neurologically plausible and useful for a practical
implementation are derived. Next, the neural network architecture implemented for
the solution of the problem is introduced. Finally, some results which allow to discuss
the theoretical and practical implications of the proposed approach are described.

The proposed object orientation estimation process makes use of simple visual
information for achieving a geometric 3Dselectivity similar to that observed in neuro-
science studies. The goal is to develop a modular computational structure, composed
of various estimators, which makes use of proprioceptive and retinal cues in order
to obtain the geometrical parameters needed for grasp planning. This approach dif-
fers from related research (e.g. Jones and Malik 1992) in that it builds upon retinal
data: instead of using pixelated images and projective matrices, the only inputs are
retinal angles and proprioceptive eye data. The center of the coordinate system is the
cyclopean eye, as for humans.

For orientation and basic shape discerning, the approach relies upon one monocu-
lar information source, that is, perspective under the assumption of edge parallelism,
and one kind of binocular information, width disparity. As explained in the previ-
ous section, these data are coded by visual areas V3 and V3A and combined in the
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posterior intraparietal cortex CIP. One basic assumption is that objects recognized
as boxes or cylinders have actually straight, parallel edges, and are laying on a hori-
zontal table. This is very plausible from a neuropsychological point of view, as the
primate brain is actually “programmed” to better assess vertical and horizontal edges,
most common in nature. Indeed, experiments on monkeys (Tsutsui et al. 2001) and
humans (Brouwer et al. 2005) have shown that, even for purely perspective pose
estimations, a frontoparallel trapezoid is usually interpreted as a rectangular shape
slanted in depth.

Next, we analyze the sort of computation performed by the human brain during
orientation estimation, in the binocular and in the monocular case, and propose
plausible transfer functions to obtain estimators from simple retinal angles.

5.2.2.1 Stereoscopic Slant Estimation

In Fig. 5.4a a viewing scene is seen from above: object PQ of length l is slanted
about a vertical axis with an orientation θ . Its extreme P is the fixation point, placed
straight ahead from the cyclopean eye (in this way γP corresponds to the vergence
angle). All α angles represent the retinal projections of points P and Q on the left
and right eyes, I is the interocular distance, ψQ the binocular separation of points P
and Q (being ψP = 0).

The change in slant of segment PQas pointQmoves on the xz reference systemcan
be observed in Fig. 5.5. In the graph, the position of P is fixed at (xP = 0, zP = 30).
The dot represents θ for Q positioned as in Fig. 5.4a.

(a) (b)

Fig. 5.4 Schemes for deriving slant from stereopsis and perspective. a Stereopsis. b Perspective
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Fig. 5.5 Slant θ as a
function of the position of
point Q in the xz space
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The horizontal slant θ of an object can be computed only from retinal angles using
the following expression, which can be derived from Fig. 5.4a:

tan θ = (tan αr Q − tan αl Q) − (tan αr P − tan αl P )

tan αl P tan αr Q − tan αl Q tan αr P
(5.3)

Reminding that P is the fixation point, so that αl P = −αr P = γP/2, the equation
can simplified in this way:

tan θ = 1

2 tan(γP/2)
· (tan αr Q − tan αl Q) − (tan αr P − tan αl P )

(tan αr Q + tan αl Q)/2
(5.4)

Recalling (5.2) and the definitions in the disparities text box, this relation can be
expressed by using only quantities that are actually computed in the visual brain
areas:

tan θ = 1

nearness
· relative dispari t y

separation
(5.5)

Separating θ , a biologically plausible stereoptic orientation estimator θ̂S is obtained:

θ̂S = arctan
relative dispari t y

nearness · separation
(5.6)

The interpretation of (5.6) is that the component due to disparity (the fraction relative
disparity/separation, which is also called disparity gradient) is modulated by the
viewing distance (or nearness), as indicated by neuroscience research. Nearness is
probably computed from proprioceptive data, as discussed in the previous section.



94 5 Extraction of Grasp-Related Visual Features

20

30

40

0
10

20

−50

0

50

zQ

(a)

−xQ

θ

20

30

40

0
10

20

−50

0

50

zQ

(b)

−xQ

θ

Fig. 5.6 Distorted estimation of θ (b) obtained by approximating tan α with α

The separation which appears in the formula is binocular, referred to the cyclopean
eye.

Other works (Banks et al. 2001; Howard and Rogers 2002) propose expressions
similar to (5.6), starting from slightly different assumptions. It is important to point
out though that common approximations found in the literature carry to unaccept-
ably wrong estimations in most cases. An example of this can be seen in Fig. 5.6,
where an exact reproduction of Fig. 5.5 (Fig. 5.6a), obtained with (5.6), is compared
to a distorted one (Fig. 5.6b), obtained with the same equation in which the common
solution of approximating the exact value of tan α with α is employed. The compar-
ison demonstrates that for a real application, and a faithful model, exact expressions
need to be used.

5.2.2.2 Perspective Slant Estimation

The slant of an object can be estimated using only monocular data, as depicted in
Fig. 5.4b, in which the origin of the axes is one of the eyes. The frontal object face is
considered as rectangular, exploiting the reasonable assumption of parallelism and
equality of opposite edges (PS and QR in the image). The angles β in the figure
represent the vertical retinal angles associated to such edges. The function which
leads from retinal angles to orientation estimation can be derived from the draw, and
can be referred entirely to either the left or the right eye:

tan θ = tan βQ R

tan βP S sinψQ
− 1

tanψQ
(5.7)

In this case the monocular separation is: ψQ = (αQ − αP )/2.
Approximating sinψQ to tanψQ , which is plausible for reasonably small sepa-

rations, a formula for perspective estimation of θ is obtained:

θ̂P = arctan
perspective dispari t y

separation
(5.8)



5.2 A Model of Distance and Orientation Estimation … 95

Perspective disparity is the quantity tan βQ R
tan βP S

− 1, which represents the proportion
between the projected sizes of edges QR and PS. Therefore, again, the estimator
depends on a separation factor and a disparity factor, this time monocular.

Equations (5.8) and (5.6) will be used, both separately and merged, for simulated
(Sect. 5.3) and real orientation estimation on a robotic setup (Sect. 5.4).

5.2.3 Hierarchical Object Classification

The approach to object classification proposed in the model is composed of a three
stages process. These stages are initial shape classification, proper object recognition
and actual identification of a known object.

1. Shape classification. In this stage the target object is classified into one of a
number of known classes. For example, a bottle would be classified in the class
of cylinders. Simple visual information such as shape silhouette or a basic topo-
graphic relation between object features is enough for this task. No actual data
regarding the size and the proportion of the object are considered. Nothing is
inferred at this point about object composition, utility, meaning. The information
recovered at this stage is used by early areas of the dorsal stream in order to
estimate the size and pose of the object.

2. Object Recognition. Actual object recognition is the goal of this stage. The target
object is identified as if the task was to name it. What was a general cylindrical
shape in the previous stage is now identified as a bottle. Additional conceptual
knowledge is thus added to the previous basic information. Composition, rough-
ness, weight of the object can be inferred if not known for sure. The object proper
use in different tasks is also recalled at this point. Object recognition directly
affects the process of grip selection, providing a bias toward grasp configurations
better suited to the object weight distribution, possible friction and common use.

3. Object Recall. In this final stage, a subject recalls a single well-known object
which was encountered, and possibly grasped, before. Going back to the cylinder
example, here it can be recognized as a wine bottle recently bought, and thus
previously known and dealt with by the subject. Compared to the previous one,
this stage adds security to the estimation of the object characteristics. To recognize
an object as a bottle helps in estimating its weight, whilst to identify a previously
encountered bottle provides an exact value of that weight.

In all stages, the classification process has to be viewpoint invariant. A very impor-
tant issue is that object classification and recognition is always a gradual process,
not a binary one, and each classification is accompanied by a confidence value, nec-
essary to clarify its reliability. Any classification having a low confidence should be
used prudentially, and if no class or object are clearly identified the system should
rather provide a failed classification answer, to clarify that the situation is uncertain
and needs further exploration. Feedback from execution outcome can later be used
to complete and improve the world knowledge in these situations.
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5.3 Neural Network Implementation of a Multiple Cue Slant
Estimator

A neural architecture for estimating the orientation θ of a target object according to
the concepts described in the previous section has been implemented. The framework
includes two sets of neural networks, for stereoscopic estimation and for monocular
estimation based on perspective data.

5.3.1 Neural Network Estimators

The whole framework of the neural network implementation is depicted in Fig. 5.7,
where the nets are associated to the brain areas that probably perform their functions.
Apart from nearness estimation, implemented with the RBF network described in
Sect. 5.2.1, all networks are feedforward backpropagation, trained with the
Levenberg-Marquardt algorithm. Four neural networks constitute the module for
orientation estimation based on stereopsis: they compute nearness, relative disparity
and separation (two nets represented as a unique one in the scheme), and the final
estimate of θ̂S from the outputs of the previous three networks (according to expres-
sion (5.6)). The module for orientation estimation based on perspective makes use
of two networks for computing the two components of (5.8), and a third for the final
calculation of θ̂P .

5.3.2 Merging the Estimators

Following the insights provided by the neuroscience literature, the final orientation
estimator is computed by combining the stereoscopic estimator θ̂S and the perspective

Fig. 5.7 Scheme of the neural network architecture for slant estimation
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estimator θ̂P . A first merging can be done through a simple average of the two output
values:

θ̂A = θ̂S + θ̂P

2
(5.9)

Looking for better performances and improved biological plausibility, the two
principal driving factors for cue merging, correlation and reliability, have been taken
into account. In the present case, cue correlation could not be used, as only two differ-
ent estimators are available. The chosen solution was thus to experimentally simulate
cue combination using only cue reliability. The stereoptic and perspective estimators
were trained to learn how their reliability changes in different conditions. According
to the literature, the driving factors for the accurateness of orientation estimation are
distance and orientation itself (this is not a contradiction: the estimated value can be
used as output and, at the same time, as reliability index for the estimation). In fact,
although it is known that stereopsis quickly looses its reliability with distance, here
the interest is on the near space defined by the arm reaching distance, within which
the variation of distance affects the two methods in similar ways. For this reason, the
focus is rather put on the effect of orientation, and the goal is to devise a merging
method that optimizes the weights given to the two estimators when changing the
estimated value of θ .

How the human brain can predict cue reliability is still a matter of debate. Never-
theless, it has been shown that stereoscopic andperspective cues are actuallyweighted
through a maximum-likelihood process (Knill 2007). To emulate this process, the
error patterns obtained with the estimation methods alone were saved, and used to
generate a joint estimator which is a weighted average of the original ones:

θ̂W = wS θ̂S + wP θ̂P (5.10)

In (5.10), wS and wP are functions of θ computed in the following way:

wS = SSEP

SSES + SSEP
; wP = SSES

SSES + SSEP
(5.11)

where SSES and SSEP are the previously learnt summed squared errors of stereopsis
and perspective respectively.

5.3.3 Results of the ANN Simulation

In principle, the neural network implementation allows to achieve any arbitrary pre-
cision in the estimation. The study of estimators reliability can thus be done either in
the real world or simulating the effect of natural imprecisions introducing stochastic
variability in the computation. Before the implementation on a real robotic setup, a
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Table 5.1 ANN slant
estimation results for
different estimators

Method Estimator Error (◦)
Perspective θ̂P 4.49

Stereopsis θ̂S 4.17

Simple average θ̂A 3.05

Weighted average θ̂W 2.93

simulation was performed to study the effect of noise on slant estimation performed
with stereoptic and perspective methods.With this purpose, random noise was added
to all retinal angles which constitute input values for the nets. The error representing
the average difference between estimation and true value was calculated all over the
test space (10◦ < θ < 70◦, 450mm < d <850mm).

In Table5.1 the improvement of joining the two estimators in this way can be
observed. For comparison, consider that the nets were trained so that the average
error of the two original estimators θ̂S and θ̂P before the introduction of noise was
less than one degree. Although stereopsis seems to suffer less from the insertion of
noise, the contribution of both perspective and stereoptic predictors is very important
for improving the final result. In fact, the weighted average θ̂W allows to obtain an
improvement of almost 30% on the best single cue estimator θ̂S , suggesting that the
combination of different cues is the best solution for pursuing a reliable estimation.
Even the simple average θ̂A, that can be used a priori without exploiting previous
experience, improves the θ̂S performance by more than 25%. The performance dif-
ference between θ̂W and θ̂A, which is rather small in this example, sensibly increases
especially in the most extreme situations, when one of the estimators is much better
than the other, and the simple average would not take this aspect into account.

Experiments with human subjects tell that distance, as an ancillary cue, and
slant itself are the two most important driving factors for slant estimation reliability.
Figure5.8, taken from Hillis et al. (2004), depicts the precision of two orientation
estimators, perspective and disparity based, as a function of distance and slant. With
increasing distance, both estimators become less reliable, but the stereoscopic cue
(blue) is clearlymore affected. The effect of orientation ismore complex. Perspective
methods are more sensitive and precise for pronounced slants, that generate higher
differences in vertical disparities. At long distances, disparity methods also prefer
high slants. On the contrary, for the short distances typical of grasping actions their
error is minimum for low slant values, which grant higher binocular disparities.

To check if this pattern of behavior could be reproduced in the simulation, the
estimators accurateness was plotted as a function of distance d and as a function
of orientation θ . The outcome can be observed in Fig. 5.9, in which the error in
stereoptic and perspective estimation is plotted against orientation (Fig. 5.9a) and
distance (Fig. 5.9b). The similarity of the obtained results to what is described in the
literature is remarkable, as can be observed by comparing the corresponding ranges
of Figs. 5.8 and 5.9. Notice that, being Fig. 5.8 symmetrical with respect to slant,
in Fig. 5.9a only positive slants are plotted, and Fig. 5.9b considers just reachable
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Fig. 5.8 Precision of texture
(orange) and disparity (blue)
cues as a function of distance
and slant. JND is the Just
Noticeable Difference,
corresponding to the smaller
detectable slant variation.
From Hillis et al. (2004)

distances, up to 850mm. The proposed model looks thus appropriate to reproduce
the behavior of stereoptic and perspective estimators.

The second effect that could be reproduced is the improved performance obtained
through amaximum likelihoodmerged estimator in which cues are weighted accord-
ing to their reliability (experimentally learnt), as explained in Sect. 5.1.2. The better
results obtained with the weighted estimator θW can also be observed in Fig. 5.9.

The implemented neural architecture hence constitutes an orientation estimator
both biologically plausible and practically reliable. The quantities used are employed
by the human visual system, but also computationally useful for artificial implemen-
tation (e.g. retinal angles). The proposed equations for computing orientation from
stereopsis and perspective are plausible transfer functions useful to model the esti-
mation process. The trained neural networks are someway emulating the behavior
of modules pertaining to higher visual brain areas. Indeed, inputs and intermediate
results represent quantities that have been observed andmeasured, and are part of real
brain processes (Welchman et al. 2005). This suggests that functions (5.6) and (5.8)
are plausible models for stereoptic and perspective slant estimation in the human
cortex.

The simulation results indicate that the proposed approach can be suitable for
improving the reliability of a real application. The next immediate step is the practical
experimentation on a robotic platform.

5.4 Robotic Validation

Orientation and pose estimation are very complex problems in machine vision, espe-
cially when the goal is to develop a reliable robotic system which makes use of
visual estimates to interact with the environment, such as in object grasping actions
(Wandell 1995; Trucco and Verri 1998). In this section, the computational method
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Fig. 5.9 Slant estimation error as a function of slant and distance; neural network simulation (for
distance the value is the class lower bound). a. Error (◦) versus slant (◦). b Error (◦) versus distance
(mm)

described above is implemented on a robotic setup. The goal is to obtain an orienta-
tion estimator robust and reliable enough to be used in vision-based robotic grasping.
A number of different experiments to verify how the ideal results change when the
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model has to face the uncertainties of the real world are executed. As a second goal,
the implementation tries to reproduce the effects obtained with the ANN simulation
with real experimental data, and hence further validate the model.

5.4.1 Robotic Setup

The robotic setup, shown in Fig. 5.10a, consists of a seven degrees-of-freedom (DOF)
Mitsubishi PA-10 arm endowed with a Barrett Hand and a JR3 force/torque and
acceleration sensor mounted at the wrist, between hand and arm. A stereoscopic,
black and white camera Videre Design is coupled to the wrist, eye-in-hand style
(Fig. 5.10b). This configuration allows for controlledmovements of the vision system
without the need of a pan-tilt-vergence robotic head.

The Barrett Hand (see schema in Fig. 5.11) has three-fingers with a total of four
controllable degrees of freedom. Each finger possesses two joints which are driven
by a single motor. The controlled variables are thus the three finger extensions e1,
e2 and e3. The fourth degree of freedom controls the opening angle θ of fingers 2
and 3, which are symmetrically placed on either side of finger 1, the thumb, which
is fixed. When fully abducted, for θ = 0◦, fingers 2 and 3 oppose the thumb, when
adducted (θ = 180◦) they flex in parallel to the thumb.

As it can be observed in Fig. 5.10b, the hand fingertips are equipped with arrays
of pressure sensors, designed and implemented by Weiss Robotics (Weiss and Wörn
2004). The sensors are 8 × 5 cell matrices that cover the inner parts of the distal
phalanxes of the fingers. Each sensor is able to detect a complete two dimensional
force profile by the use of a homogeneousmaterial connected to an adequate electrode
matrix.

Fig. 5.10 Robotic setup with arm, hand and stereoscopic camera. a Robotic arm and hand. b Detail
of hand with stereo camera
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Fig. 5.11 Barrett hand
kinematics

The robot world is a dark environment in which clear shapes are placed on a table
at variable positions and orientations (see Fig. 5.12). The range of possible positions
are those that allow to view the object and also keep it at reaching distance for the
hand. Using the estimators previously introduced, the system is able to estimate
distance, pose and size of objects without using explicit models, but only common
knowledge regarding basic shapes it recognizes, such as the assumption of edge
parallelism.

The grasping action begins with the stereo camera facing straight ahead, and
having an object in its field of view. Both left and right images are continuously
binarized and the object contour tracked. The choice of object and background color
is driven by the need of keeping image processing as fast and lean as possible. The
point in the image having minimum y coordinate, called P , is selected as reference
and starting point for the contour, and one of the images is centered on it. Let us

Fig. 5.12 Workspace with robot fixating an object and possible target objects as seen from the
robot camera. a Robot at fixation position. b Workspace with examples of target objects
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Fig. 5.13 Left and right object images from the initial position, with labels of detected corners

assume from now on that processing begins from the left eye, hence point P is
centered on the left image (see Fig. 5.13 in Sect. 5.4.3).

The images at this position are processed by two parallel modules, one concerned
with classifying the object in a number of known categories, the other dedicated to
pose estimation. The first module, emulating the processing of the medium ventral
stream, makes use of a global visual representation of the object in order to perform
a viewpoint invariant classification. The second module integrates different cues for
estimating object distance, size and pose.

5.4.2 Object Classification Experiments

The object classification module has to categorize objects seen from different poses
and distances. With this purpose, it has to consider object images globally, rather
than focusing on local features. The goal is to classify an object as pertaining to
one of three known object classes: parallelepipeds (boxes), cylinders and spheres.
This has to be done using only a couple of stereo images, without changing the
viewpoint. Moreover, it is important to retrieve a value measuring the confidence
in the classification, represented by the percentage of likeliness assigned to each
class. Two different approaches were tested, using the extracted object contour as a
silhouette of the object.

The first tested method consisted in computing a chain code of the contour, which
constitutes a representation that is invariant with respect to size and distance, while
maintaining the feature topology necessary to identify the object. The chain was
generated extracting a pre-defined, finite number of points regularly spaced along
the contour, starting from P . The code ci corresponding to point Pi is thus the
following, normalized so that the range is [−1, 1]:
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ci = atan

(
yi − yi−1

xi − xi−1

)
(5.12)

The number of points to use can be chosen according to the application. The selection
of 20–30 points gave the best results. The chain codes of different objects from
different points of view constituted the training data. A probabilistic neural network
was used to classify the object in one of the three classes. For training, 10 different
objects were used, each seen from 19 different positions (apart for the spheres).

This solution did not provide the required behavior. In fact, results on training
objects (form different viewpoints) and on different test objects gave recognition
success very close to 100%, but test objects were often misclassified. Moreover,
even in the wrong cases, confidence was always very high, often above 98–99%.
The conclusion is that the method is very good in recognizing known objects, but not
in generalizing. The sequential order of different object features, like straight and
curved segments, or corners, would be enough for classification. Instead, the chain
code representation takes into account and hence classify objects also according
to the feature length, distinguishing for example a short cylinder from a long one.
Moreover, classification should be much more shaded, with confidence percentages
not always close to 100%. As justified in Sect. 5.2.3, a missed classification due to
high uncertainty is preferred to a wrong categorization.

For these reasons, a different classification method was tested, based this time
on the curvedness of objects. This method is based on only one index represent-
ing each object, the curved fraction of its contour, ratio between the length of its
curved features and the total contour length. For the shapes in use, experimental data
showed that parallelepipeds, cylinders and spheres normally possess linearly separa-
ble curvedness values. The classification process begins with a training phase during
which the system is presented with five different boxes (B), three cylinders (C) and
two spheres (S), again from 19 viewpoints distributed along a 90◦ range. Average
curvedness values μK and corresponding standard deviations σK are calculated for
the three classes, K ∈ {B, C, S}.

Given a test point ci , the curvedness coefficient of object i , its degree of mem-
bership mi K to class K is computed as the reciprocal of the relative distance to the
class center:

mi K = σK

|ci − μK | (5.13)

At this point, classification percentages for the three classes K = B, C, S are given
by:

pi K = mi K

mi B + miC + mi S
(5.14)

As explained above, a missing recognition response is better than a misclassifica-
tion. To favor the former over the latter, a high confidence value of 70% is required
to assign the object to any class. If no class reach this value, the object is not classi-
fied. In such cases, only distance and approximated center of mass (that is in reality
the centroid of the visible 2D silhouette) can be estimated and used for grasping.
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An exception is the case of uncertainty between boxes and cylinders. If the sum
pi B + piC > 70%, then the object is classified in the less restrictive class, i.e., as
a cylinder. For cylinders, only one face can be computed for slant estimation, while
for boxes two visible faces are used. A misclassification of a cylinder as a box would
thus provide a wrong orientation estimation, whilst a misclassification of a box as a
cylinder would just imply that some available information is not used.

Classification results for objects in the training set are provided in Table5.2.
Cases of misclassification are highlighted in bold whilst uncertain cases are marked
in italics. For the training set, only two problematic cases are identified, both for
cylinders seen from a 0◦ angle (objects 5 and 6). It is not surprising that this is
a difficult condition for the recognition system, as the contour provides limited if
any information on curvature, and more elaborate methods which take into account
shading would be required for proper classification.

Classification results for test objects are given in Table5.3. Most cases of missing
classification regard the problem observed for the training set. Cylinders seem to be
difficult to recognize, especially for extreme viewing angles, in which their silhouette
appears as a rectangle or as a circle. Nevertheless, the prudential decision of assigning
the object to classC in case of uncertainty between box and cylinder, works in nearly
all conditions, and provide reliability to the whole pose estimation system. Only
objects 14 and 16 from the 0◦ viewpoint are finally misclassified, the first as a sphere
and the second as a cylinder. Object 18 cannot be clearly put in any of the three
classes, but it has one face that can be used for slant estimation, as cylinders, hence
its classification as a cylinder is the most appropriate from a practical point of view.

5.4.3 Object Pose and Distance Estimation

5.4.3.1 Orientation Estimation

For what concerns pose estimation, this requires the extraction of features as those
used in the model. For this reason, a number of salient points on the contour have
to be extracted. Object classification biases this process, modeling the influence of
ventral stream data on dorsal stream processing, and the contextual nature of 3D
perception (Todd 2004).

For boxes, the salient points usually correspond to the object corners (Fig. 5.13).
Object faces are not segmented separately, so the number of detected corners ranges
from 4 to 6 depending on point of view and object pose. Possible missing points
are added according to the shape class. For example, if a box is detected by the
classification process and, due to a bad perspective position only five points of the
contour are chosen as corners, the sixth will be set according to simple geometric
considerations. For a cylinder, only four points are necessary, as those on the curved
parts of the contour are not used. For spheres only centroid and apparent diameter
are computed.
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Table 5.2 Object classification percentages for different slants; training shapes

# Object Class 0° 30° 60° 90°

1
Box
Cylinder
Sphere

98.16
1.64
0.20

86.63
11.57
1.80

84.81
13.12
2.07

94.90
4.44
0.66

2
Box
Cylinder
Sphere

92.97
6.13
0.90

85.90
12.19
1.91

84.81
13.12
2.07

91.22
7.63
1.15

3
Box
Cylinder
Sphere

93.94
5.29
0.77

84.81
13.12
2.07

84.84
13.10
2.06

87.25
11.04
1.71

4
Box
Cylinder
Sphere

99.87
0.11
0.02

86.88
11.36
1.76

84.81
13.12
2.07

99.23
0.68
0.09

5
Box
Cylinder
Sphere

86.20
12.44
1.36

0.59
98.65
0.76

0.26
97.91
1.83

0.81
92.94
6.25

6
Box
Cylinder
Sphere

58.07
38.70
3.23

1.68
96.85
1.47

20.81
74.97
4.22

0.35
97.96
1.69

7
Box
Cylinder
Sphere

2.74
95.19
2.07

2.42
95.73
1.84

0.63
94.59
4.77

9.01
88.51
2.48

8
Box
Cylinder
Sphere

0.48
25.46
74.07

9
Box
Cylinder
Sphere

0.37
24.23
75.40
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Table 5.3 Object classification percentages for different slants; test shapes

# Object Class 0° 30° 60° 90°

10
Box
Cylinder
Sphere

98.83
1.05
0.12

85.80
12.53
1.67

85.07
13.16
1.77

85.55
12.75
1.70

11
Box
Cylinder
Sphere

94.60
4.81
0.59

89.97
8.88
1.15

85.07
13.16
1.77

91.08
7.90
1.02

12
Box
Cylinder
Sphere

80.49
17.75
1.76

96.20
3.38
0.42

86.02
12.33
1.65

91.72
7.54
0.74

13
Box
Cylinder
Sphere

94.48
4.98
0.54

95.59
3.92
0.49

90.59
8.33
1.08

99.43
0.51
0.06

14
Box
Cylinder
Sphere

0.59
30.85
68.56

5.86
91.42
2.72

0.33
96.56
3.11

0.51
51.93
47.56

15
Box
Cylinder
Sphere

60.35
36.20
3.45

61.66
35.02
3.32

35.89
59.45
4.66

0.32
99.16
0.52

16
Box
Cylinder
Sphere

57.89
38.63
3.48

84.91
13.04
2.05

93.33
5.77
0.90

98.05
1.73
0.22

17
Box
Cylinder
Sphere

0.82
98.29
0.89

1.03
87.37
11.60

0.42
95.07
4.51

0.71
90.31
8.98

18
Box
Cylinder
Sphere

17.89
77.30
4.81

0.20
97.37
2.43

3.69
94.28
2.03

3.81
93.78
2.41
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Even with this simplified setup, to reliably detect the salient points a double
search is performed on the contour, combining the information given by different
algorithms for corner (Teh and Chin 1989; Chetverikov and Szabo 1999) and edge
detection (Ray and Ray 1995), to maximize the chance of finding all visible corners
of the object when possible. A system able to segment the three faces of the object
separately would provide a better estimate, but the results obtained with this simpler
approach, presented below, match the application requirements.

Three variables identify object position and orientation. The distance d is mea-
sured between point P and the camera, and is enough to represent full 3D object
location, as the object is centered in the image, and there is thus no lateral or vertical
displacement. The other two variables are slant angle with respect to the frontopar-
allel position θ (see Fig. 5.4), and the direction of view with respect to the horizontal
plane, φ. This last variable is known by the robot, and is computed by the vestibular
system in primates. The viewing direction angle is restricted in the experiments, to
allow a clear perspective view without simplifying too much the task as it happens
for large angles (in such cases, the slant is very similar to what can be estimated
simply using the inclination of segments in the 2D image). The final working range
is about 15◦ < φ < 50◦, and these are very plausible values even for a human
subject looking at an object with grasping purposes. For what concerns the slant θ ,
only those situations that would reduce the interest of the slant estimation (for angles
very close to 0◦ and 90◦) are ruled out. These conditions can anyway be detected
quite easily by the system, from the number and distribution of the defining corners.

The process of distance, pose and size estimation begins with the arm moving
until point P of the object is placed horizontally at the center of the image, in order to
minimize distortions due to the cameras’ optics. Left and right images at this position
are then processed: corners P, Q, R, W, T and U are found as explained above, and
the position of S is estimated through a two point perspective method (Fig. 5.13).
At this point, the coordinates of the defining points are transformed into angles with
respect to the center of the image, using the camera focal lens and image size in
pixels as parameters. The non-linearity of the camera optics is the reason to avoid
getting close to the image borders, where distortions could affect the transformation
process.

Once the six points identifying the two frontal faces of the object for both cameras
have been detected, the actual slant estimation process can begin. Eight different esti-
mators are calculated using the equations provided in Sect. 5.2.2: (5.8) is applied to
the couples of segments PS/QR andUT/PS for both the left and right eye, whilst (5.6)
is applied to segments PQ, SR, TS andUP. The first eight estimators, four perspective
and four stereoscopic, of Table5.4 are obtained at this point.

Before calculating the final, merged estimator it is useful to check for possible
outliers (completely wrong estimations). In nature, bad estimations could be due to
momentary occlusions, unusual light conditions, sudden movements, etc. In the sim-
ple setup used, any previous processing step can affect the final results, so again illu-
mination issues, imperfections in the binarization or corner detection can cause one
or more cues to deviate hugely from the average estimate. Outlier detection is a full
sub-branch of statistics (Rousseeuw and Leroy 1987), and many different methods
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Table 5.4 Slant estimators

# Estimator Computation method

1 Perspective I Segments PS/QR, left eye

2 Perspective II Segments PS/QR, right eye

3 Perspective III Segments UT/PS, left eye

4 Perspective IV Segments UT/PS, right eye

5 Stereopsis I Segment PQ

6 Stereopsis II Segment SR

7 Stereopsis III Segment UP

8 Stereopsis IV Segment TS

9 Merged (θ̂P ) Perspective Only Average, #
1–4

10 Merged (θ̂S) Stereopsis Only Average, #
5–8

11 Merged (θ̂A) θ̂P and θ̂S Simple Average, #
9–10

12 Merged (θ̂G ) Global Simple Average, # 1–8

13 Merged (θ̂W ) Global Weighted Average, #
1–8

are available. Various techniques were explored, and they did not give significantly
different results. The classical Rosner’s many outliers test (Rosner 1975), widely
used in the literature for similar problems, was finally chosen. The best results were
obtained for a significance level α = 0.01, which gave a final estimation improved
of more than 5% compared to the implementation without outlier rejection.

Following the model, monocular and binocular cues have to be merged according
to their expected reliability and correlation. The starting point of the experiments is
a situation in which no information is available regarding reliability of the different
cues in the various working conditions. Therefore, to begin with, there are only two
solutions readily available without the need of performing a training session for
learning the cue weights. The first is to compute a simple, non-weighted average of
a set of simple estimators (Estimators 9–12 of Table5.4). The second is to compute
an average in which weights are calculated using cue correlation (Estimators 13), in
this case simply using the deviation of each cue from the simple average of all cues.

5.4.3.2 Nearness and Size Estimation

As no previous knowledge regarding the target object is assumed, it is not possible to
disambiguate the pair distance/size only from retinal data. The nearness of the object
can be calculated making use of expression (5.1), after estimating the proprioceptive
vergence angle γP . The available stereo camera does not allow for vergence move-
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ments of the eyes, so they have to be simulated. The simple procedure adopted is to
center point P of the object in one of the images first, and rotate the camera around
the cyclopean eye, in order to center again P on the other image without changing
the actual distance. To take advantage of this movement left and right images are
taken both from the initial and the final position, and they are considered as two
independent slant estimation experiments. No significant differences were observed
regarding the estimation precision from the initial and the final position.

For what concerns size estimation, the relative size of the object (proportion
between its edges) can be detected from orientation and separation angles alone.
Once distances have been estimated, the actual dimensions of the object can be
computed through simple geometric equations, as the ambiguity size/distance has
been resolved.

5.4.4 Experimental Results

Overall, 422 experimentswere executedwith different values of slant and distance, as
shown in Table5.5. The global average estimation errors of all executed experiments
are provided in Table5.6. Perspective estimator θ̂P and stereopsis estimator θ̂S are
calculatedmerging the four estimators of eachmodality alone. The simple average θ̂A

is the mean between the two, and the global average θ̂G is the mean of all eight initial
estimators. It is quite apparent how the combination of multiple cues, especially
when they come from different kinds of visual information, strongly improves the
estimation performance. The worst merged estimator θ̂P performs better than the
best single cue estimator, Stereopsis I; the global average θ̂G improves the merged
stereopsis estimator θ̂S by more than 25%. The cue correlation weighted average
estimator θ̂W shows a further improvement of around 8% compared to θ̂G , bringing
the overall mean error close to 2.5◦, which constitutes quite a good pose estimation
for a robotic system, even in these restricted conditions.

Table 5.5 Number of
experiments per distance and
slant

Distance Count Slant Count

450–500 14 10 12

500–550 40 20 80

550–600 66 30 96

600–650 74 40 80

650–700 88 50 92

700–750 94 60 48

750–800 28 70 14

800–850 18

Total 422 Total 422
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Table 5.6 Experimental slant
estimation results, overall
average errors

# Estimator Error(◦)
1 Perspective I 8.63

2 Perspective II 6.67

3 Perspective III 12.75

4 Perspective IV 9.59

5 Stereopsis I 4.73

6 Stereopsis II 7.89

7 Stereopsis III 6.31

8 Stereopsis IV 5.41

9 Merged (θ̂P ) 4.71

10 Merged (θ̂S) 3.92

11 Merged (θ̂A) 3.78

12 Merged (θ̂G ) 2.91

13 Merged (θ̂W ) 2.68

5.4.4.1 Comparison with Human and Neural Network Simulation Data

It is interesting to compare error distributions obtained in the real practical experi-
ments with the theoretical ones of Sect. 5.3.3. Figure5.14 shows the average error
plotted as a function of slant (Fig. 5.14a) and distance (Fig. 5.14b), similarly to
Fig. 5.9. Some slant and distance values are probably affected by the use of different
objects and viewpoints, which were not regularly distributed across conditions; see
for example the bad quality of stereopsis, and consequently of themerged estimators,
for slant =60◦. Nevertheless, the trends are quite clear, and the expected effect of
slant and distance on the different estimators is once again reproduced. In Fig. 5.14a
the improvement in perspective estimation and the deterioration in stereoptic estima-
tion with increasing slant are clearly visible, and the weighted average is definitely
the best available estimator. Figure5.14b shows that stereoptic estimation gradually
decreases its precision with distance, whilst perspective seems nearly uncorrelated
with it, apart for extreme values. Again the weighted average presents a clearly
advantageous behavior in all cases.

It can be noted from both graphs how the weighted estimator maintains its reli-
ability across conditions. Error bars of θW are always small apart from extreme
conditions (which are also affected by a reduced number of trials). Errors for other
estimators, which could not be plotted for clarity reasons, are always quite larger.
This is a very important aspect for a robotic application, as there are no “blind spots”
for which its estimation capabilities become unreliable. The implementation of a
multiple cue estimation method thus provides a robotic system with a robustness
hardly achievable with perspective or stereopsis alone.
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Fig. 5.14 Slant estimation error as a function of slant and distance; experimental results. For clarity,
errors on errors are plotted only for θW . a Error (◦) versus slant (◦). b Error (◦) versus distance (mm)

Forwhat concerns distance estimation, the global average error for all experiments
is of 33.4mm, and the error distribution shown in Fig. 5.15, although noisy, follows
the expected trend, showing decreasing estimation precisionwith increasing distance.

Size estimation revealed to be less precise compared to slant and distance esti-
mation. In part, this is due to the fact that it makes use of two estimators and the
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Fig. 5.15 Experimental distance estimation error; Error (mm) versus distance (mm)

theoretical final error is the product of the two initial errors. Moreover, for high slants
and for small objects, the edges of the least visible side have very short separation
angles, for which the relative error is much higher. Anyway, the worst case error is
never larger than a few centimeters, and this is enough for reliable grasping by the
robot hand, as shown in Sect. 6.2.4.

5.4.4.2 Additional Experiments

The second class of objects used to test the system were approximately cylindrical
shapes, which still offer parallel edges. In the experimental setup, cylinders are lying
on a plane, and the slant to estimate is that of their axis. Four salient points are
detected on cylinder contours, those points in which curvature changes from 0 to
some positive value, i.e., the transition from straight to curved segments. Those four
points are treated as they were the P, Q, R and S of the box shapes (see Fig. 5.16). In
this way, estimators 1, 2, 5 and 6 of Table5.4 can be computed. The results of just few
experiments are encouraging, as the average orientation estimation error is around
3.5◦. It must be said though that the values chosen for viewpoint, slant and distance
were those that gave the most consistent results in the experiments with boxes, and
the method has not been tested exhaustively in various different conditions.

For spheres, only centroid, size and distance can be estimated. As for spheres there
is no reliable point P with minimum y coordinate, the centroid was used instead in
order to detect the vergence angle γP and hence the distance of the object. Distance
computed with this method was found to have higher precision than for boxes and

http://dx.doi.org/10.1007/978-3-319-20303-4_6
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Fig. 5.16 Contour and
salient points extraction for
cylindrical shapes, left and
right images

cylinders, and this reflects in an improved size estimation for spheres compared to
the other classes.

5.5 Conclusions

The robotic implementationof the computationalmodel for estimatingobject features
in 3D permitted to achieve two important results. On the one hand, the robotic
grasping system was provided with a very reliable and robust visual estimation of
slant, distance and size of target objects. On the other hand, effects described in
human experiments could be reproduced at a reasonable level of approximation. Cue
integration is the fundamental principle which allowed to obtain such results, through
the efficient merging of stereoscopic and perspective estimators.

The experimental results obtained with the robotic visual system confirm the
hypothesis that integration of monocular and binocular data provide a robot with
superior estimation capabilities. The final merged estimator obtained appropriately
weighting the different cues is robust across working conditions, in a way that is
probably not attainable by a simple estimator alone.

The following step is to make use of the extracted information regarding object
potential grasping features to generate suitable action plans. This is the subject of
next chapter.
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Chapter 6
Visuomotor Transformations for Grasp
Planning and Execution

The previous chapter was dedicated to the processing of basic visual information
aimed at extracting object properties, both spatial and cognitive, relevant for grasp-
ing purposes. This chapter deals with the tasks of transforming such properties into
suitable hand configurations, and executing an appropriate grasping action on the
target object. As a first step, the data extracted so far have to be expressed in a format
especially dedicated to transformation into hand shapes. In Sect. 6.1, new computa-
tional descriptions are offered of the tasks performed by CIP as a fundamental relay
station between the visual cortex and the visuomotor areas downstream. Analytical
expressions of the transfer functions realized by surface and axis orientation selec-
tive neurons (SOS and AOS) of CIP are derived and discussed. Section 6.2 has a
more practical stance, and describes how the obtained representations are used in
grasp planning and execution. The different projections to AIP and its job as the
fundamental hub in programming and monitoring grasping actions are discussed.
Practical solutions are proposed for a working model of its connections with ven-
tral stream, premotor cortex, somatosensory areas, basal ganglia and cerebellum
(Fig. 6.1). Robotic grasping experiments based on such connections and exploiting
tactile feedback for increased reliability are described.

6.1 Neural Coding in the Caudal Intraparietal Sulcus

The caudal intraparietal area, CIP, constitutes a central node in the spatial analysis
processing of the dorsal stream, which endows the subject with the ability of interact-
ing with her/his surrounding peripersonal environment. Neuroscience studies both
on monkeys and humans have depicted a rather clear image of the sort of processing
performed by CIP (see Sect. 2.3.1). At the computational level, though, this area
has been rather neglected compared to its downstream neighbor AIP, more directly
related to grasping actions.

As explained in Sect. 2.3.1, two main neuronal populations have been distin-
guished in CIP: surface orientation selective (SOS) and axis orientation selective
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Fig. 6.1 Areas of the model framework involved in the planning and execution of grasping actions.
The function of all highlighted areas is discussed in the text, but the implementation is especially
focused on the job of AIP and its connections to the other areas

(AOS) neurons. SOS neurons code for the orientation of rather flat objects. Square
shapes are preferred, and elongation in either width or length inhibits the neuronal
response. The thickness of the object strongly inhibits the response only above a cer-
tain threshold. It can be hypothesized that such threshold represents the graspability
of the feature, as it appears close to the size of the hand.

AOS neurons represent the 3D orientation of elongated objects, preferring thin and
long features. It is not clear from the provided data if the reduced responsiveness to
thicker objects is only due to the relative proportion between the object dimensions
or also by a comparison with the hand size. The proposed model promotes this
last possibility, for consistency with the role of CIP in providing AIP information
regarding graspable features. Indeed, at least an approximate absolute object size
estimation is available to CIP. Curvature coding, very likely also maintained in CIP,
is not modeled at this point.

Overall, a population of mixed CIP neurons, including differently tuned SOS and
AOS neurons, is able to provide full information about 3D proportion and orientation
of a target shape. This information is forwarded to AIP, where 3D orientation, shape
and size are jointly coded, and possible grip configurations generated.

Let us consider the situation in which a simple object (possibly box-like, or cylin-
drical) lies on a table, slanted about a vertical axis, as the ideal objects in Fig. 6.2.
The goal is to generate, using only binocular visual information, possible grips on
the object, emulating as much as possible the data flow connecting V3/V3A—CIP—
AIP. In particular, the focus is on the tasks performed by the caudal intraparietal area,
which can be schematized as in Fig. 6.3. The module on the left of the schema is the
integration of proprioception with stereoscopic and perspective visual information
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Fig. 6.2 Examples of SOS and AOS dominant objects and size naming convention. a Flat (SOS
dominant) object. b Long (AOS dominant) object

in order to estimate position, orientation and size of simple 3D objects, introduced
in the previous chapter.

The following step (right module of Fig. 6.3) requires an action-based point of
view, to assess the intermediate level object features with the purpose of evaluating
their suitability for grasping. Orientation, relative and absolute size of the major axes
of the object are thus compared and the response is synthesized in the SOS and
AOS neurons output. The activation of these two kinds of neurons depends on the
relation between object dimensions. Considering the three main inertia axes, if two
dimensions are similar and the third clearly smaller there is a high SOS activation;
if two dimensions are similar and the third bigger AOS activation will prevail. In
the case of three different dimensions, SOS and AOS responsiveness is modulated
by the actual proportion between sizes. As a convention, from now on the three
dimensions are called a, b and c, where a and b are close in size, whereas c is the
smaller dimension for SOS activation (Fig. 6.2a) and the bigger dimension for the
AOS case (Fig. 6.2b).

6.1.1 Understanding and Interpreting the Available Data

Despite the recent efforts and encouraging advancements (Naganuma et al. 2005),
the most important insights regarding the nature of 3D object representation by CIP
neurons date back to the second half of the last decade (Shikata et al. 1996; Sakata
et al. 1998). The basic concepts were clear from the beginning, such as the distinction
between the two classes of orientation responsive neurons, SOS and AOS, and their

Fig. 6.3 Elaboration of visual data in the posterior intraparietal sulcus CIP
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responsiveness trend as a function of an object relative dimensions. The number and
variety of different experiments is nevertheless reduced, and their characterization
remains at most qualitative. The current goal is to analyze such experiments with
modeling purposes, and possibly advance new interpretation hypotheses deriving
from a pragmatic point of view. One such hypothesis concerns the quality of absolute
size representation in CIP, which will be more thoroughly discussed in Sect. 6.2.1.

Figure 6.4a reproduces the response of an AOS neuron to the view of a slanted
elongated object as a function of object width (Sakata et al. 1998). The authors
of the original study briefly comment on it suggesting that neuronal response and
object width are inversely proportional. A sigmoidal, or logistic response function
constitutes an alternative explanation. This solution fits very well with the observed
data, as can be observed in Fig. 6.4b, where two differently parameterized sigmoidals
are superposed to the data of Fig. 6.4a. The sigmoidal is a transfer function very
commonly found in brain mechanisms (see e.g. Hu et al. 2005), especially when
some threshold effects have to be taken into account. Indeed, in this case there is
a very important threshold to consider, that is, the size of the grasping hand. The
assumption is that the cut-off value for the sigmoid is the dimension of the open
hand or even better the extension of a comfortable grip. For the monkey performing
the experiment of Fig. 6.4a this value is reasonably around 12–15 cm. Indeed, CIP
neurons seem to be sensitive not only to relative object dimensions (and thus shape)
but also to its absolute size (Sakata et al. 1997). Available experimental data are not
conclusive to this regard though. In any case, if the size of a potentially graspable
object has to be represented in the brain, hand size is a very useful and convenient
unit of measure to use. In the next section, this principle is further developed and
exploited for defining the analytic expressions which model the function of SOS and
AOS neurons.

Overall, CIP is responsive for all the following features of an object: relative
size of main axes, absolute size, orientation in 3D, local curvature. Studies reported
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Fig. 6.4 Response of an AOS neuron as a function of object width (length c = 300 mm). Experimen-
tal data (adapted from Sakata et al. 1998) and interpolation with sigmoidal functions. a Experimental
data. b Sigmoidal interpolation
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in the literature describe SOS and AOS neurons that are selective only for width
and not for thickness, or only for relative and not for absolute size. Indeed, just
a minority of CIP neurons are selective for all the features at the same time, but
globally, at a population level, all relevant information regarding object shape in
relation to potential grasping actions is processed by the posterior intraparietal area
(Sakata et al. 2005). The proposed transfer functions take into account dimensional
aspects at a neural population level, leaving aside orientation extraction (modeled in
Chap. 5) and curvature.

6.1.2 SOS Neurons Transfer Function

As a general principle, SOS neurons are preferentially activated when two dimensions
of the object are similar, while the third is sensibly smaller: a ≥ b � c. Experi-
ments performed varying the width and the thickness of the object gave the results
reproduced in Fig. 6.5 (Shikata et al. 1996). These graphs and the comments of the
authors, together with the principles previously introduced, are the bases for defining
a transfer function which models the behavior of a population of SOS neurons.

The proposed transfer function depends on three main factors represented by three
penalty, or inhibition terms, that take into account different aspects of SOS neurons
responsiveness. In a hypothetical ideal situation, all inhibition terms would be zero
and activation maximal.

The first component of the transfer function is Is , the symmetry inhibition term.
This term takes into account the difference between the two major dimensions of the
object a and b: responsiveness is maximal, and inhibition minimal, for equal major
axes. Asymmetrical situations are given higher penalties. The value of Is is 0 when
the major dimensions are equal, and increases with their difference:

Is =
(

a − b

a + b

)ks

(6.1)

Constant ks modulates the effect of the difference between a and b on Is . The exact
value of ks can be deduced only experimentally, and is not necessarily stable across
conditions.

The second term considers the relation between the minor, most easily graspable
dimension, c and the major ones a and b. It is called I f , flatness inhibition term, and
it increases with dimension c, representing the thickness of the object:

I f = c

a + b
(6.2)

The two previous terms are independent from the absolute size of the object. As
discussed in the previous section, it is though likely that the hand size is playing
an important role in determining the global responsiveness of CIP to a given target

http://dx.doi.org/10.1007/978-3-319-20303-4_5
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object. The graspability inhibition term Ig was thus introduced. As anticipated, it
is expressed as a sigmoidal function. Ig decreases when increasing the graspable
dimension c, and its symmetry point is the limit of a comfortable hand opening,
called H :

Ig = σ(c, H) = 1

1 + e−kg(c−H)
(6.3)

Constant kg affects in this case the non-linearity of the equation: the larger kg , the
steepest the slope of the sigmoid function, and thus the influence of hand size H on
SOS activation.

The global response RSO S of a population of SOS neurons is thus estimated
detracting the inhibitory quantities, appropriately weighted, from the theoretical
100 % activation:

RSO S = 1 − ws · Is − w f · I f − wg · Ig (6.4)

The given expression is still undetermined, as the two parameters ks and kg and the
three weights w have not been assigned any value yet. Starting with the symmetry
term alone, least squares fitting can be used to compute the value of ks and ws that
best fits (6.1) to the data corresponding to Fig. 6.5a. This gives ks = 1.948, and
ws = 1.059. It looks reasonable to simplify setting ks = 2 and ws = 1. In this
way, Is is the square of the fraction (a − b)/(a + b) and its weight can be omitted.
Similarly, (6.3) can be fitted to the data of Fig. 6.5b. A value of 0.042 is obtained
for the estimation of kg , and 0.458 for wg . With a little approximation, kg = 0.04
and wg = 0.5. Finally, the only remaining coefficient w f is estimated through least
squares fitting of (6.2) to the data of Fig. 6.5b (taking into account the contribution
of (6.3)). The final result is w f = 0.030. After substituting all these values in the
corresponding formulas, the response of (6.4) remains more explicitly defined as:
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Fig. 6.5 Response of an SOS neuron as a function of object width and thickness. For width, the two
major size responses and their average are plotted; the constant major size is 200 mm. Experimental
data adapted from Shikata et al. (1996). a Width response (thickness c = 20 mm). b Thickness
response (width a = b = 200 mm)
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Fig. 6.6 Response of an SOS neuron as a function of object width and thickness. Simulated
data obtained with (6.5), for the same width and thickness values of Fig. 6.5. a Width response
(b = 200 mm, c = 20 mm). b Thickness response (a = b = 200 mm)

RSO S = 1 −
(

a − b

a + b

)2

− 0.03
c

a + b
− 0.5

1

1 + e−0.04(c−H)
(6.5)

The global SOS response according to 6.5 was calculated as a function of object
width and thickness. The results depicted in Fig. 6.6 show how the proposed model,
properly parameterized, nicely fits the experimental data of Fig. 6.5 (H = 150 mm).

6.1.3 AOS Neurons Transfer Function

Axis orientation selective (AOS) neurons activate when one of the three dimensions
of the object is quite larger than the other two, which are closer in size: c � a ≥ b.
Compared to SOS, less numerical results are available in the literature, and the
main source of information is Fig. 6.4a, with the description of the corresponding
experiments (Sakata et al. 1998). SOS and AOS neurons are intermixed in CIP, and it
is thus plausible to assume that their response functions are similar. The hypothetical
transfer function of AOS neurons was thus composed starting from the same three
inhibition terms introduced in the previous section.

AOS symmetry inhibition term is equal to 0 when dimensions a and b are equal,
and increases proportionally with their difference, exactly as in (6.1):

Is =
(

a − b

a + b

)ks

(6.6)

No experiments explicitly designed to verify the effect of differences between the two
minor dimensions have been carried out for AOS neurons. This effect is probably not
very strong, but it can be reasonably assumed that a large asymmetry would indeed



126 6 Visuomotor Transformations for Grasp Planning and Execution

affect the perception of the elongated object. Such reduced influence of the fraction
(a − b)/(a + b) on the total response can be obtained changing the constant ks .

Similarly to (6.2), the next term compares the major and minor dimensions of the
object. This time, it is called Il , length inhibition term, as it decreases with increasing
the major dimension c of the object:

Il = a

c
(6.7)

The graspable dimension, a in this case, is again the numerator of the fraction, as
was c in (6.2). In this case the numerator could also be (a + b)/2, but if a and b are
very similar this would likely be a pointless calculation.

The graspability inhibition term is again a sigmoidal function decreasing with
the increasing of the minor dimension a, having as symmetry point the limit of a
comfortable hand opening H .

Ig = σ(a, H) = 1

1 + e−kg(a−H)
(6.8)

Again, the activation of a population of AOS neurons is estimated detracting the
inhibition quantities from the theoretical 100 % activation:

RAO S = 1 − ws · Is − wl · Il − wg · Ig (6.9)

Due to the limited availability of data, a bigger extrapolation effort is needed in the
AOS case to estimate appropriate values for parameters and coefficients. The case of
the symmetry term is the most critical, as there is no published numerical data which
can help in determining the values of ks and ws . This second coefficient can be set to
the same value as for SOS neurons, ws = 1, whilst ks should be assigned a value such
that the influence of the term on the overall response is reduced with respect to the
SOS case. The easiest solution, but certainly no the only possible one, is to set ks = 1,
and leave only the fraction component. Response would thus linearly increase when
reducing the difference between a and b. Regarding graspability, there are no reasons
to believe that parameter kg and weight wg should be much different from the SOS
case. Least squares fitting of (6.8) to the data of Fig. 6.4a gives values included in
[0.02, 0.05] for kg and in [0.5, 0.8] for wg , depending on the initial conditions. It
seems thus reasonable, for symmetry and ecological reasons, to set kg = 0.04 and
wg = 0.5, as in (6.5).

Sakata et al. (1998) state that: “discharge rate of the AOS neurons increased
monotonically with increasing length of the stimulus”. The authors did not provide
further information on this issue, but this comment describes how to generate addi-
tional data which could help in fitting the functions. A small additional dataset of
6 points in which response linearly increases with c was thus prepared. The newly
generated dataset was used to fit (6.7) and thus set the value of wl . Values between
0.2 and 1 were obtained using different graspable sizes of a. There is no reason why
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Fig. 6.7 Response of an AOS neurons as a function of object width and length. Simulated data
obtained with (6.10). a Width response (c = 300 mm). b Length response (a = b = 80 mm)

the value of wl should not change dynamically, but for the moment an intermediate
value of wl = 0.374, obtained for a = 80, is chosen. The overall formula for AOS
response is thus defined as:

RAO S = 1 − a − b

a + b
− 0.37

a

c
− 0.5

1

1 + e−0.04(a−H)
(6.10)

The behavior of (6.10) with changing thickness and length of the object is shown in
Fig. 6.7 (H = 150 mm). Figure 6.7a tries to reproduce the effect depicted in Fig. 6.4a,
whilst Fig. 6.7b shows how the response grows when increasing c. Again, the effects
described in the neuroscience literature are well reproduced.

6.1.4 Robotic SOS and AOS

After definition of the transfer functions and comparison with the available neuro-
science data, the CIP neuron model can be tested on the robotic setup with images
of real objects. Using the object pose estimation procedure described in Chap. 5,
the dimensions of twelve shapes, depicted in Fig. 6.8, were estimated and used to
compute simulated AOS and SOS activations for each shape. The shapes used for
this purpose were eight boxes and four cylinders of different size and proportions.
In principle, the modeled activations do not take into account curvature and do not
distinguish between cylinders and parallelepipeds. Nevertheless, all cylinders have
the same a and b dimensions (their diameter), and this increases their AOS respon-
siveness, because the length inhibition term (6.7) is always 0.

The constants of the final activation functions were employed, with the exception
of ks in (6.5), which was set to 1 as in (6.10), in order to improve the equilibrium
between SOS and AOS activations. Average activation across 10 trials for all the

http://dx.doi.org/10.1007/978-3-319-20303-4_5
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6.8 Shapes for which experimental SOS and AOS activations are computed

Fig. 6.9 Experimental
SOS/AOS activation for the
shapes of Fig. 6.8

shapes in Fig. 6.8 is mapped on an SOS/AOS graph displayed in Fig. 6.9. Standard
deviations are very low and hence not plotted. The comfortable grasp size H was
maintained equal to 150 mm: although the robot can grasp larger objects, 150 mm is
about the limit that allows for full contact of the tactile sensors placed on the robot
hand fingertips.

Even though there is no direct comparison available for validating the obtained
results, a visual assessment of the activations plotted in Fig. 6.9 reveals that acti-
vations look appropriate for the objects’ characteristics. The only clearly elongated
box, (h), shows a clear dominance of AOS over SOS response. On the other extreme,
boxes (a) and (b) are undoubtedly assessed as completely flat. For box (c) the SOS
activation is still clearly superior to the AOS activation, whilst for (d) and (f) the
difference is much reduced. Boxes (d), (e) and (g) demonstrate a substantial equi-
librium between activations, with a light bias toward SOS for (d) and toward AOS
for (g). It is interesting to observe that nearly all boxes are disposed along an arc
from (a) to (h), with only (e) and (f) deviating from the main path. Such deviations
can be simply a side-effect of the model approximation, but could also reflect an
increased suitability for grasping actions of (f) with respect to (e). For what con-
cerns cylinders, (i) is the only one having a larger SOS activation, while for (j) it is
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the AOS responsiveness that is slightly prevailing. Cylinders (k) and (l) are clearly
elongated, and their AOS activation is dominant. Qualitatively, these results seem
to properly represent the range of possible object proportions. From a robotic point
of view, they show that the system is able to properly detect and code absolute and
relative dimensions of target objects. For the model, these results suggest that it goes
in the right direction, but more neuroscience experiments of different kinds would
be needed for refinement and further validation.

Anticipating the possible use of SOS and AOS activations for the generation of
hand configurations, the analyzed objects can be easily clustered in three groups.
Objects on the top left of the graph, (a), (b) and (c), are definitely flat and will likely
be grasped with a pad opposition between thumb and fingers. Elongated objects
(k), (l) and (h) form the bottom right cluster, denoting AOS dominance, and can be
grasped with either a precision grip or an involving grip. More complicated is the
situation for the six objects in the central cluster. In fact, for hand shaping, they seem
to be more different one another than represented in the graph. Size and curvature
are probably the factors that would further distinguish between them to drive the
selection of suitable grips.

6.1.5 Discussion and Future Developments

The above model offers some solutions to the problem of identifying the transfer
functions of the different areas of the dorsal stream, but opens at least as many
questions. More experiments are needed to validate the proposal. The actual impor-
tance of hand size on SOS and AOS activation should be explicitly analyzed, through
experimental protocols designed to distinguish the effect of relative and absolute size
of features. For example, no experiments are reported in the CIP literature regarding
non graspable (or strangely shaped) objects, and these are definitely required at this
point. Similarly, there is the need to disambiguate the influence of shape and size on
neuronal response. This can be done by gradually changing the proportion and size
of objects, and analyzing the response as a function of only one driving variable at
a time. The responsiveness to object curvature should also be further explored. As
the robotic simulation pointed out, it is very likely that the proposed functions will
need to be updated and suited to new findings and requirements, but they constitute a
helpful tool for orienting the future studies on the subject. The next step in the grasp
planning process, performed by AIP, is to join SOS and AOS activations with data
coming from other brain areas for deciding how to grasp possible target objects.

6.2 Planning and Executing the Grasping Action

The coding of SOS and AOS neurons for the visual characteristics of objects relevant
for grasping purposes is the ideal input for AIP so that it can process the visual data
and transform it to suitable hand configurations. A critical question is how much
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of the information that AIP needs is provided by CIP and how much needs to be
complemented by other areas.

6.2.1 Characteristics of the Visual Input to AIP

Fukuda et al. (2000) accurately measured, with a data glove, human grasping con-
figurations on fifteen different objects of three classes (spheres, cylinders and par-
allelepipeds) and five different sizes for each class. They registered the values of
18 joint angles of the hand at the time of contact in real and pantomimed grasping
(see related text box), extracting the two principal components of the joint space
for each condition. They found statistically significant differences between real and
pantomimed grasping. To a minor extent, they also found a difference between real
and 2D object stimuli in pantomimed grasping. Both findings are consistent with the
two streams literature. They also demonstrated with a neural network implementa-
tion that the visual information provided to the subject could account for 99 % of
the variability observed in joint configurations, suggesting that indeed grasping was
purely based on the available visual data. These results would have probably been
very different if task and object identity were taken into account.

A comparison of the modeled SOS/AOS representation with the work of Fukuda
et al. (2000) can help in drawing some conclusions on the completeness of the pro-
posed model. In Fig. 6.10 an adaptation of the results provided in the cited work is
compared with a representation of the same objects in a simulated SOS/AOS activa-
tion space. Figure 6.10a shows an average, across the three experimental subjects, of
the first and second principal components of the joint space when grasping spheres
of different sizes and cylinders and parallelepipeds of different thicknesses. Objects

(a) (b)

Fig. 6.10 Comparison between principal components of joint space during grasping (adapted from
Fukuda et al. 2000) and AOS/SOS coding of similar objects. a Grasping joint space. b AOS/SOS
representation
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of the same dimensions were used to calculate the AOS and SOS activations of
Fig. 6.10b.

The model does not recognize curvature, so parallelepipeds and cylinders with
similar proportions have similar representations, and the same happens for cubes
and spheres. The comparison between joint spaces for grasping cylinders and paral-
lelepipeds (Fig. 6.10a), which are very similar, partially justifies this simplification.
Whereas Fig. 6.10a represents an output of AIP processing, Fig. 6.10b constitutes a
possible, probably partial, input. A qualitative comparison suggests that, while for
cylinders the visual information provided by AOS and SOS neurons seems to be
enough for generating an appropriate joint space for grasping, spheres of different
sizes show nearly the same representation, suggesting that there is not enough data for
deciding on how to grasp them. The reason for this discrepancy is probably twofold.
First, AOS and SOS activation models were built on the existing data, which do not
take into account all aspects of shape estimation. Size effects in the model are clearly
observable only for the biggest shapes, close to the hand opening threshold. Indeed,
activations of CIP neurons for equal objects of different sizes are not provided in the
literature, and such aspect is not fully taken into account.

The second reason is related to the tasks and connectivity of AIP. Distance esti-
mation, performed in LIP, is critical for the reliability of objects’ size estimation.
Ventral stream information regarding recognized objects also carries very good size
estimates derived from experience. Some CIP neurons also code for distance (Shikata
et al. 1996; Sakata et al. 1998), but it is likely that projections from LIP and from
the ventral stream provide AIP with more exact estimates of the object size. It is
thus likely that CIP uses a distance, and hence a size estimate, less precise than the
one available to AIP. A possible hypothesis is that object size representation in CIP
is exploited only with the purpose of filtering graspable from non graspable fea-
tures, leaving exact estimation to LIP and AIP. The coding of potentially graspable
object features, conveyed by the firing of SOS and AOS neurons, needs hence to be
completed by accurate data on object size and location.

In spite of its critical importance, visual information is only one ingredient of the
complex grasping recipe. In the next section, additional important factors, such as
the criteria to follow in order to obtain reliable grasping actions, are described.

6.2.2 The Search for Grasp Quality

After AIP has gathered the available visual data regarding a target object, a number
of issues have to be taken into account in order to produce an appropriate grasp. A
very important aspect that strongly affects grasp planning is the search for quality in
a grasping action. The same definition of quality is controversial, as strictly related
to the task to execute. If the task is to handle a pen for writing, quality is measured
in terms of manipulability. If the goal is to lift a heavy object, stability in the grip
has to be pursued. For the limited scope of robotic grasping, often quality has been
interpreted as a synonym of stability, or reliability of the action. The reduced tactile
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skills of robots compared to primates makes of reliability a critical factor for the
selection of a grip. Especially if no or little experience is available, deciding among
candidate affordances represents a key task (Borst et al. 2004; Morales et al. 2004).
Human beings take into account a number of aspects which help in ensuring at least
a minimum level of reliability to their grasping actions, as described in Sect. 4.3.3.1.

Multiple criteria and measures have been employed for assessing and predicting
robot grasp quality (Roa and Surez 2015). In Chinellato et al. (2005), a set of visual
criteria for the reliability assessment of planar grips was defined, taking as reference
physiological studies of human grasping, and robotic research on grasp stability. The
criteria were used to predict the outcome of future robot grasping actions (Chinellato
et al. 2003; Morales et al. 2004). Some of those criteria can be extended, maintaining
their plausibility and usefulness, to the three-dimensional case, and are presented
below. An important conceptual difference is that in Chinellato et al. (2005) criteria
were computed for a number of pre-defined candidate grips, in order to globally
evaluate them and select one of them for execution, whilst here the task is to generate
a grasp plan that implicitly achieves good quality values. The criteria are consistent
with the findings described in Sect. 4.3.3.1, and it can be hypothesized that there
is an important contribution of the basal ganglia in providing AIP with the signals
required to select between alternative grasping patterns (Clower et al. 2005). In fact,
it has been suggested that the basal ganglia is a key area in the development of action
selection tasks through reinforcement learning (Doya 1999).

The quality criteria can be subdivided into two classes: visual criteria, that mostly
affect the selection of the contact points on the object; and motor criteria, that mostly
affect hand shaping.

6.2.2.1 Visual Criteria

At least three visual criteria important in human grasping are also useful for robotic
implementation.

Center of mass. The opposition axis of the grip should always pass close to the
object center of mass, in order to minimize the effect of gravitational and inertial
torques, especially if the object is heavy. If possible, grasping along the main
inertia axes is preferred for the same reasons. Moreover, heavy objects are often
grasped above the center of mass for increased stability (Bingham and Muchisky
1993). In many cases, this criterion is predominant in human grasping.

Grasping margin. This criterion aims at minimizing the risk of placing the fingers
on unsuitable object features which could result in unstable contacts. It builds
on the assumption that fingers should be placed far from edges, and that large
grasping surfaces, at least above a given threshold, should be chosen if available.

Curvature. Grips on slightly concave surfaces are normally considered more reli-
able than grips on convex ones, because contact surface and thus friction is higher
in the first case (Jenmalm et al. 2000). To implement this criterion computationally,
the curvature of graspable features could be calculated at different frequencies, as

http://dx.doi.org/10.1007/978-3-319-20303-4_4
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a slowly changing curvature is normally preferred. On the other hand, very high
frequency curvature changes may indicate the presence of a rough surface, which
is good to grasp because it offers high contact friction.

6.2.2.2 Motor Criteria

Finger extension This criterion aims at maximizing the contact surface between
fingertips and object. The goal is to have a substantial equilibrium between the
opening of all fingers. Moreover, an average finger aperture is preferred as it allows
for bigger contact surfaces. Even though for humans this aspect is less important,
because of the number of degrees of freedom of the hand and the high compliance
of the fingertips, a grasping action in which some fingers are extended and other
flexed is usually clumsy.

Force distribution In many cases, the optimization of the previous criterion ends in
an optimal distribution of forces as well. Nevertheless, in case of complex objects
and grasps with abducted fingers, a homogeneous distribution of the contact forces
can be a critical issue. Usually, badly equilibrated grips can be improved through
tactile feedback, but if the force asymmetry is too high, the object could slip or
rotate due to unwanted torques.

An estimation of the movement cost should be added to these criteria to take into
account the reaching comfort (see Sect. 4.3.3.1). This can be done by computing the
expected joint rotations required to achieve a given goal position.

6.2.2.3 Modulation of the Effect of Quality Criteria

The ventral stream contribution provides the use of the quality criteria with an impor-
tant flexibility. Knowledge regarding object characteristics, such as weight or compli-
ance, and the outcome of previous grasping experiences can be used as modulation
factors which assign different importance to the above criteria in different condi-
tions. Default, prudential solutions are adopted in the case of failed recognition or
low classification confidence, to respect the uncertainty of the situation. If the object
properties are known, the biasing toward one criteria or another can be much stronger.
To give a simple example, if the object is big and heavy, the center of mass crite-
rion and the force distribution are very important, whilst for a small light object the
grasping margin is probably the critical criterion. Recent psychophysiological find-
ings support this hypothesis (Eastough and Edwards 2007). Computationally, criteria
weighting can be initially hard-wired, but when the system increases its knowledge of
the graspable world, this aspect should acquire a more dynamical behavior, especially
if feedback is available regarding the appropriateness of grasping decisions.

http://dx.doi.org/10.1007/978-3-319-20303-4_4
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6.2.3 Grasp Planning

All elements necessary to generate a grasping action suitable to a given condition
have been described, and they have now to be joined in a grasp plan. Area AIP is
in charge of transforming the visual data provided by CIP and other areas into an
appropriate hand configuration for grasping the target feature. The goal is to translate
information about size, location and AOS/SOS representation into hand joint space.
The specification of exact contact locations is not necessary, the finger placing and
the movement trajectory being dependent on contextual optimization of the quality
criteria. Grasp planning can be performed following a short sequence of logical steps.

The task-driven decision on the type of grip to perform (precision or power) is
taken in advance. If the goal is to perform a power grip, visual analysis is usually very
simplified (as suggested by the reduced activity in AIP), and only the object center of
mass has to be approximately calculated. In this case, the hand has to move toward
the object center, and the opposition axis of the fingers on the object is determined
by the motor cost, which is minimized avoiding unnecessary rotations. The reaching
action that requires minimum joint movements is thus executed, and once the palm
gets in contact with the objects, the fingers close around it.

For precision grips, the requirements are different according to the AOS/SOS
coding. If the object has a prevailing AOS activation, and the long axis is free for
grasping, like for a standing cylinder, there is no preferential approaching direction
apart from the one provided by the hand pose. The grasp action will be performed so
that the opposition axis between thumb and fingers passes close to the center of mass,
maximizing the correspondent criterion, and in a way that minimizes the cost of the
movement, maintaining the trajectory as straight as possible and avoiding unnec-
essary rotations (Fig. 6.11a). If the object with prevailing AOS activation is laying
on its long axis then wrist rotation is required, as only one approaching direction
carries to the correct grasping position, from above and toward the center of mass
(Fig. 6.11b). In the former case, an involving grip which includes contact between
object and hand palm can be executed if required, in the latter case only fingertip
grips are possible.

Fig. 6.11 Grasp approaching direction for standing and lying AOS dominant objects. a Standing
AOS object. b Lying AOS object
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Fig. 6.12 Grasp approaching direction for standing and lying SOS dominant objects. a Standing
SOS object. b Lying SOS object

If the object has a prevailing SOS activation, and the thin, grasping dimension is
free, the direction of grasping is the one which makes the fingers oppose on the minor
dimension of the object. The final part of the reaching movement is constrained to
a plane, and there is still one degree of freedom for optimizing movement cost and
center of mass approaching. Both visual and motor criteria have thus to be taken into
account. If there are no other constraints, it is safer in this case to grasp an object from
above and not from the side, in order to minimize the effect of gravitational torques.
For light objects destabilizing torques are unlikely, and reaching comfort prevails
(Fig. 6.12a). Object identification would help in this case. If the object is laying on
its preferred graspable feature, the grasping action will have to be performed on a
different dimension, along the main inertia axis (Fig. 6.12b), or not performed at all.

As can be observed in Fig. 6.9, some shapes show no clear dominance of either
SOS or AOS activation. Objects with this characteristic can be grasped with both
strategies, and again movement economy can be the determinant factor for establish-
ing the final grasping position. Activation thresholds could be employed to distinguish
the cases of SOS dominant, AOS dominant and neutral objects.

The described procedure leaves out the cases of objects that are approximately
spherical, or that simply do not offer clearly graspable axes or surfaces. In such
cases, a grasp in which fingers are abducted is preferable, to distribute the grasping
force around the object surface. Most commonly in these situations, the ring and
small fingers are used just for providing support and additional stability, whilst the
index and medium fingers create a triangular force distribution with the thumb (see
Fig. 6.13). For this reason the resulting grasp is called the tripod grasp.

Human grasping experimental results are consistent with a two virtual-fingers,
hierarchical model of the control of a tripod grasp. First, an opposition space is
selected between the thumb and the index and medium fingers, which form together
the second virtual finger. Index-medium finger abduction depends on the object size
(Gentilucci et al. 2003), and the direction of the forces exerted by the two fingers are
symmetric with respect to the opposition axis (Baud-Bovy and Soechting 2001). If
the object is irregular, tactile feedback is required in order to adjust finger position
and force distribution in order to find a stable configuration before lifting the object.
fMRI research support a substantial identity in the processing of two finger precision
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Fig. 6.13 Tripod grasping
on a spherical object

grasps, tripod grasps and extended tripod grasps in which all five fingers contact the
object (Cavina-Pratesi et al. 2007).

The above description, although valid for robotic implementation, is just a qualita-
tive description of the results of AIP processing. Suggestions for an implementation
closer to the cortical mechanisms are provided in Sect. 7.1.

6.2.4 Grasp Execution

The final grasping action is executed following the above guidelines, making use
of visual information regarding object pose and location, and taking into account
relevant grasp quality criteria. The grasping system introduced in Sect. 5.4.1 allows
for the execution of differently shaped precision grips, including the tripod grasp.
Power grips, although possible, are not controllable and thus avoided, as the hand
palm is not endowed with tactile sensors necessary to detect the contact with the
object. A wrong positioning could hence result in an excessive solicitation of the
hand, with risk of damaging it.

6.2.4.1 The Reach and Grasp Movement

Before the movement onset, the goal position and direction of the opposition axis
are defined as described in the previous section, and computed using the estimated
location, pose and size of the object. The initial position of the arm, corresponding
to the fixation period, before the movement starts, is shown in Fig. 6.14a. The first
part of the reaching movement is just aimed at reducing the distance between object
and effector. The final stage of the reaching action is more precise, and has to be
performed moving perpendicularly to the opposition axis, from a short distance
to the goal position. A via posture, i.e. an intermediate position and orientation
goal (Meulenbroek et al. 2001), is defined in order to allow the correct execution
of such stage, ensuring at the same time that no collisions with the target object
are possible. The intermediate goal position has the hand in the correct grasping

http://dx.doi.org/10.1007/978-3-319-20303-4_7
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Fig. 6.14 First stages of grasping action execution, during object fixation before movement onset,
and during reaching, before the hand closes on the object. a Fixation position. b Via-posture

direction, and the distance from the object is such that movements different from
the approaching one would not result in unwanted contacts. Figure 6.14b shows an
example of appropriate via-posture. A safety margin is also added to the expected
object size to compensate for possible estimation errors. This is consistent with the
findings of Hu et al. (1999), suggesting that hand preshape is performed taking into
account also the object dimensions not directly involved in grasping. Such dimensions
affect the security of the transport movement, which could be at risk of collision if
during hand approaching the fingers pass too close to the object.

During the first stage of the transport movement the hand rotates toward the
correct orientation while the arm moves to the intermediate position. Once the via-
posture is reached, the hand is in the correct direction and, without stopping the
movement, the robot arm reaches further toward the object until the fingertips are at
level with the estimated object center of mass (Fig. 6.15a). Until this point the process

Fig. 6.15 Last stages of grasping action execution, during finger closing and object lifting.
a Closing position. b Grasping. c Lifting
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is fully open-loop, and only driven by the initial grasp plan. Once the estimated final
position is reached, the fingers close, and tactile sensors are used to determine the
moment of contact between fingertips and object. As soon as a contact is detected, the
corresponding finger stops moving. The grasping movement is completed when all
fingertips have contacted the object, as depicted in Fig. 6.15b. The grasp configuration
is then checked, as described in the next section, and if it is considered correct, the
object is lifted (Fig. 6.15c). If a finger misses the object, and thus no contact is
ever detected, it stops as a security measure when it reaches a minimum extension
threshold, currently set to 54 mm.

For what concerns tripod grasping, it is at the moment executed for objects clas-
sified as spheres (Sect. 5.4.2), which are approached from above, and grasped so that
the opposition axis passes ideally through their center of mass. The only addition to
the usual procedure is the separation between the fingers. This is done setting the
finger opening angle θ (see Fig. 5.11) proportional to the object size: the bigger the
object, the higher the finger separation. The opening angle, in radians, is given by:

θ = D − i

D
(6.11)

where D is the object diameter and i the inter-finger distance (see Fig. 6.19). The
outcome of using (6.11) can be observed in Fig. 6.16, in which finger positions and
force directions for spheres of different sizes are shown. This solution allows to
homogeneously distribute the contact points around the shape while maintaining the
force directions as orthogonal as possible to the object side. In all other cases of
normal opposition grips, in which fingers e2 and e3 are parallel, θ = 0.

Examples of via-posture and grasp execution for a vertically placed cylindrical
shape and a spherical shape are shown in Fig. 6.17.

Fig. 6.16 Finger positions
and force directions obtained
with expression (6.11) for
grasping spheres of different
sizes (80, 130, 180 mm)
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Fig. 6.17 Via-postures and grasp execution for a vertically placed cylindrical shape and a spherical
shape. a Via-posture for cylinder. b Cylinder grasping. c Via-posture for sphere. d Sphere grasping

6.2.4.2 A Helping Tactile Hand

When the fingers close on the object, they stop at the moment of contacting the object
surface. If the pose estimation was correct, the movement performed as required, and
the object did not move, the fingers should present a substantial equilibrium in their
final extensions. The expected proprioceptive state of the hand, corresponding to a
symmetric grasp with respect to the object grasping axis, is of equal extensions for the
three fingers. This constitutes a basic forward model of the expected action outcome.
If, for a divergence between the estimated and the real values of distance, pose and
size of the object, or for any other unexpected factor, the fingers touch the object with
different extensions and orientations, the grasp could be unstable (see Fig. 6.18). In
these cases, differences between finger extensions are detected, and proprioceptive
hand feedback is used to adjust the grasping action to the real conditions, and thus
achieve the necessary grip stability. An adaptation of the finger extension criterion
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Fig. 6.18 Example of
unstable grasp requiring a
correction movement

provides the feedback on the actual conditions and suggests a correction movement
if necessary. A proper action for adapting the hand pose to the new situation can be
computed from the difference between finger extensions. As represented in Fig. 6.19,
any correction movement is made of two components: z for translation and α for
rotation.

Orientation correction is necessary when the orientation of the object is different
from expected. This situation is identified by comparing the extensions of the two
parallel fingers e2 and e3. The required rotation correction α is given by:

α = arctan
e3 − e2

i
(6.12)

where i is the inter-finger distance. If the hand is rotated by α in the direction of the
finger with shorter extension, it will get in the situation in which the parallel fingers
should contact the object with the same extension. A threshold is used to allow for
minimum unavoidable extension differences which do not affect grasp stability. With
the current settings, the correction movement is executed only if |α| > 2◦.

Translation correction is performed when the position of the object is different
from the estimation. This case corresponds to a difference in extension between the
thumb and the opposing fingers. The thumb extension is compared to the average
extension of the opposing fingers, taking into account also possible extension differ-
ences between them. The displacement required for position correction is computed
with the following expression (see again Fig. 6.19):

z = 1

2
(
e2 + e3

2
− e1) (6.13)

Again, this is the displacement that would carry the hand to the planned grasping
axis. The threshold for moving is set at |z| > 5 mm. This threshold value and the one
for rotation correction could be more appropriately set through a learning framework
driven by the results of experiments performed in different conditions. Different
thresholds could also be used for different objects.
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Fig. 6.19 Representation of
the correction movements in
rotation, α, and translation, z

e

α
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i
z

e2 3
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During action execution, once all fingers have contacted the object and stopped
moving, (6.12) and (6.13) are computed. If at least one of them is above threshold, the
fingers open again, and the movement that compensates for the required orientation
and translation correction is calculated and executed. If needed, the process repeats
until no other corrections are required, then the fingers close firmly on the object and
lift it.

The described grasping technique has been tested in two different conditions, i.e.,
without or with object displacement. The first condition, corresponding to a normal
working situation, usually ends with a successful grasping action without performing
any correction movement. In fact, in almost all cases the input provided by the visual
system is good enough to allow the execution of the grasping action without the need
of correcting hand position or orientation.

During the second type of tests, in perturbed conditions, changes in the object
position and/or orientation were introduced on purpose, to check if the system was
able to deal with unexpected and suddenly changing situations. The changes were
applied after the visual analysis had been finished so that the real pose of the object
was different from the estimated one, like in the example of Fig. 6.18. In this situations
the robot might not be able to grasp the object without the support of the tactile
feedback. Using information about finger extensions and hand contacts with the
object surface, hand orientation and position are corrected as described above. When
the difference between the real and estimated object pose is big, more than one
correction movement might be required.

This framework presents two major limits. The first is that only displacement
errors parallel to the grasping axis can be corrected. Any deviations from the object
center of mass along the other two directions will not be detected, unless one of the
fingers misses the contact. The second problem is with objects which edges are not
parallel. In such cases, a rotation correction movement will be performed although
not required, as α is always above threshold. A possible solution is to increase the
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threshold to a trade-off value which does not affect the reliability of normal grasping
actions and, at the same time, is suitable for many unusual conditions.

This correction method models, in a simple way and at high level, the compar-
ison between expected and real somatosensory input, described in Sect. 4.3.4, and
determines a correction movement that aims at reducing such difference. In this way,
grasp stability is implicitly achieved, through minimization of the difference between
detected proprioceptive state and expected goal state given by a basic forward model.
Following a simplified version of the schema of Demiris and Hayes (2002), very sim-
ple inverse models (Eqs. 6.12 and 6.13) compare the goal state of the hand with its
actual condition and generate a motor command suitable to approach the goal. The
forward model evaluates the outcome of the current motor command and guides
the following step in order to keep improving the quality of the ongoing situation
estimated by the finger extension criterion.

6.3 Conclusions

Compared to its neighbor grasping area AIP, the knowledge, and especially the
modeling regarding one of the most fundamental areas of the dorsal stream, the
posterior intraparietal area CIP, remains relatively undeveloped. In the first part of
this chapter, a detailed analytical interpretation of CIP tasks is provided which takes
into account both the computational and the neurophysiological points of view. The
coding of visual features as it is thought to be performed by CIP neurons is employed
in the second part of the chapter for generating appropriate grasp configurations.
The integration of different kinds of grasp-related information and constraints, as
performed by area AIP, is modeled and adapted to the requirements of the robotic
system. Grasping experiments, performed with the aid of tactile feedback, confirm
the suitability of the model to real robotic setups.

Neuroscientific plausibility and practical usefulness of the proposed vision-based
grasping model have been justified, but several directions for further development
in both regards can be devised. The next chapter will present a number of optional
developments and required improvements for the robotic application. Issues regard-
ing necessary refinements and possible alternatives for the model are also discussed.
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Chapter 7
An Ever-Developing Research Framework

This chapter presents a number of issues and developments that could not fit in
the presentation of the model in Chaps. 4, 5 and 6. Some aspects are controversial
and need additional neuroscience data to be modeled, others would need a different
robotic setup to be properly tested. Some ideas have simply not been implemented
yet, or have been implemented only partially, and thus do not fit in the mainmodeling
framework.

In Sect. 7.1, the sort of visuomotor transformations performed by AIP are further
discussed and suggestions for additional modeling provided. Section7.2 presents
a detailed modeling proposal for the interaction between the streams. A research
work performed on the subject in collaboration with Blaise Pascal University is
summarized. Finally, in Sect. 7.3, the fRI interface for visualizing the activity of a
robot as in a simulated fMRI experiment is presented. In general, implications for
further studies in neuroscience, computational modeling and robotic applications are
discussed.

7.1 Purely Visual and Visuomotor Transformations in AIP

The proposal for generating suitable hand configurations from visual data advanced
in Sect. 6.2 is constrained by the implementation of other modules and by limitations
of the robotic hardware. The job ofAIP in grasp planning and execution is surelymore
complex and nuanced. All ventral stream information, such as weight or friction, and
task related issues are left aside for the moment, and discussed in Sect. 7.2.

7.1.1 Visual-Visual Transformations

Object type neurons in AIP seem to encode 3D object geometry in a grasp-oriented
way (see Sect. 2.3.2). Following the suggestions of Rizzolatti and Luppino (2001)
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Fig. 7.1 Principal
components of visual object
representation for object type
neurons of the anterior
intraparietal sulcus AIP.
From Murata et al. (2000)

and the experiments of Fukuda et al. (2000), they should perform a purely visual
transformation of the SOS/AOS coding received from CIP. Figure7.1, taken from
Murata et al. (2000), represents the two principal components of the activation of
AIP object type neurons during fixation of different target objects.

The authors performed the samemapping for object type neurons during grasping,
and for non-object and motor type neurons. The first is very similar to the one
displayed in Fig. 7.1, the other two are different but very close to each other. The shape
distribution may be interpreted in many ways, but a first qualitative analysis suggests
that the AOS/SOS distinction is approximately represented in the first dimension. It
is less clear what object qualities are discerned by the second axis. There seems to
be an important symmetry component, but also a curvature effect. Moreover, it is not
clear how the extremely important aspect of object size enters the schema. In any
case, there is in principle a direct mapping between this representation and the input
coming from CIP.

A second, more complex transformation has to be performed for matching visual
properties to hand configurations.

7.1.2 Visuomotor Transformations

The above data refer to experiments with macaques. Although the basic concepts are
not expected to change, the greater dexterity of the human hand and the increased
complexity of the human intraparietal sulcus suggest that the situation is more com-
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Fig. 7.2 A basic 2D space
of grip taxonomy

plex for human grasping. It is reasonable to assume that a representation similar to
the SOS/AOS, although somewhat more elaborated, is used in the human IPS as well.
Similarly, the graphs of Murata et al. (2000) probably show a simplified version of
what could be found in human AIP. A simple proposal on which to build a theory of
visuomotor transformations in human AIP is provided below.

In Fig. 7.2, a 2D space is depicted which jointly represents SOS and AOS activa-
tions and a basic grasp taxonomy. Such taxonomy is very likely a multidimensional
joint space described by all possible combinations of joint angles, in which only the
extreme cases can be clearly identified with recognizable basic hand shapes. In the
proposal of Fig. 7.2 the basic grips of the taxonomy are, on the vertical direction, the
full-hand or power grip and the smallest pinch or precision grip. In the horizontal
direction, there are the ideal flat grip in which only the metacarpal-finger phalanges
are flexed, so that all fingers are parallel and opposed to the thumb, and the ideal
involving or cylindrical grip, in which all phalanges are flexed and the hand closed
in a fist. These two last grips correspond to the ideal maximum activation of SOS
and AOS neurons, as the former is suitable to grasp a perfectly flat surface, and the
latter a thin elongated shape.

Summarizing, the list of theoretical extreme grips from which all hand configu-
rations derive are:

flat grip: SOS neurons are dominant; predominant flexion of proximal phalanges,
pad opposition between thumb and other fingers;

cylindrical grip: AOS neurons are dominant; all phalanges are flexed, involving
the object, finger pad and palm opposition;

precision grip: strong activation of one or both kinds of orientation selective neu-
rons; adapt for small features requiring thorough visual analysis, the thumb is
opposing the index or middle finger, the other fingers can be used for support;

power grip: limited activation of SOS and AOS neurons; full hand, spherical grip,
maximum contact of fingers and palm, used for default when no other grips are
considered appropriate, or if visual analysis is considered unreliable or incom-
plete.
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All possible grasping configurationswould thus be found inside the parallelogram,
classified either as a precision or a power grip, with a continuous separation between
the two, and also somewhere in between the involving and flat grips. Indeed, the
four ideal grasps are just abstractions, and it is reasonable to assume that the edges
and corners of the parallelogram do not correspond to real grasping configurations.
Moreover, whilst “pure” cylindrical grips are more easily associated to power tasks,
opposition grips appear more dexterous, suggesting that there is no real symmetry
as the graph would indicate.

From an ecological point of view, the plausibility of the proposed representation
is supported by a sort of economy principle for grasping, according to which more
general purpose and less precise grips do not need detailed visual analysis. In fact,
small, precision grips probably need detailed information fromboth kinds of neurons,
whilst power, full hand grips are likely to represent a default choice.

Unfortunately, this proposal cannot be tested at the current stage of development of
the model. Firstly, as already pointed out, curvature and size coding of CIP neurons
have not been properly characterized yet. Then, AIP studies did not analyze the
same objects used for CIP. It would be very helpful for example if cylinders and
parallelepipeds of the same size and proportion could be presented to CIP and AIP
and their activations compared, to study the effect of curvature changes on the two
areas. The same should be done for other types of objects, and the effect of size
should be studied in a similar way.

Further limitations are posed by the robotic hand. In fact, the Barrett Hand does
not allow for voluntary, independent movements of the finger phalanges, so that,
unless for very large objects, the grip is practically always cylindrical.Moreover,
palm opposition can not be performed properly, because there are no touch sensors
on the palm which would detect object contact.

7.1.3 The Reaching and Grasping Action

The best solution to construct the visuomotor matching between visual data and hand
shapes is probably to develop a robotic experimental framework in which suitability
of hand shapes to visual data is gradually learnt, for example through a reinforcement
learning process in which grasp stability is positively rewarded. Such framework
would allow to analyze naturally emerging visuomotor transformations, and test
the efficiency of different alternative visual representations. Bootstrapping for the
learning process could be provided by basic postures identified through examples of
human joint spaces extracted with a data glove.

The same postures could constitute an ideal starting point for building truly
human-based motor primitives for the robot arm and hand. Lim et al. (2005) extract
movement primitives from the analysis of human movements, and propose a method
for joining them and implementing motions in robotic applications. Their guidelines,
togetherwith the experience provided by other relatedworks (see e.g.Nori andFrezza
2005), could constitute the starting point for merging accurate visual analysis with
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biologically plausible action execution. A framework of this kind would also be par-
ticularly suitable for monitoring of action execution through an implementation of
the forward model/inverse model principle more accurate than the one proposed in
Sect. 6.2.4.2. Such implementation could be done following the guidelines ofKawato
(1999), Wolpert and Ghahramani (2000) and Miall (2003) and forward models can
be learnt from experience as in Dearden and Demiris (2005).

Timing and coordination between action components, which are not dealt with in
the model, would benefit from this sort of modeling improvement. For example, the
correct coupling between the reaching and grasping movements is an issue that has
not been considered, as often happens in robotics applications. This is instead a fun-
damental and largely studied aspect in human grasping, and various plausible models
on the relation between reaching and preshaping have been developed (Shadmehr and
Wise 2005). The hypothesis of parallel visuomotor channels for the transport and the
preshaping components of the reach-to-grasp action is well recognized (Jeannerod
1999). Alternative models, such as the multiple finger reaching idea (Smeets et al.
2002), are not given much credit, due to the quantity and quality of evidence support-
ing the mainstream hypothesis (see e.g. Tanné-Gariépy et al. 2002; van de Kamp and
Zaal 2007). In any case, the coupling between the two subsystems linking parietal
and premotor cortex is tight, and they must share a common mechanism for coordi-
nating with each other (Jeannerod 1999; Roy et al. 2002; Fattori et al. 2010).Various
computational models of reaching and grasping coordination that might be suited to
robotic implementation are available (Mon-Williams and Tresilian 2001; Jiang et al.
2002; Ulloa and Bullock 2003; Hu et al. 2005). Primates often perform coordinated
eye and arm movements, contextually fixating and reaching towards nearby objects.
Taking inspiration from such visuomotor mechanisms (Chinellato et al. 2010; Bosco
et al. 2009), (Chinellato et al. 2011) designed and developed a model for learning
and producing the coordinated control of gazing and reaching movements.

7.1.4 After Contact

A more immediate extension to the developed framework is the use of post-contact
information for improving the reliability of the vision modules. In fact, after tactile
adjustment, the exact position, orientation, and one of the object dimensions can
be exactly measured, through proprioceptive feedback on the hand and arm state.
These values can be compared to the initial estimations, and the error magnitude
and sign of each measure memorized, in association with the object class. Even
more, errors can be calculated for each one of the different estimators presented in
Sect. 5.4.3. In this way, for each estimator a reliability function dependent on object
size, distance and pose can be defined, and used in the following experiments. Human
experiments support this proposal, as it has been demonstrated that cue weighting
in slant perception can be modified by haptic experience (Ernst et al. 2000). The
next-generation estimator will thus perform cue integration using both correlation
and reliability, as it is done in the primate brain.
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Summarizing, an improved modeling of the visual and visuomotor transforma-
tions performed in AIP should consider learning processes in which multimodal
tactile and visual feedback is used to bias the matching between different represen-
tation levels.

7.2 A Tighter Interaction Between the Streams

Even though it is widely accepted that the dorsal and ventral streams tightly interact
with each other, the mechanisms underlying such interaction are still largely under
debate (Goodale 2008; Cloutman 2013). In the neuroscience review, two levels of
direct integration between the streams were mentioned, one for the ventral connec-
tions of CIP and the second for those of AIP.

7.2.1 Links Between CIP and the Ventral Stream

Section2.3.1.3 described the possible bidirectional links of CIP with ventral stream
areas (Zanon et al. 2010; Perry et al. 2014). The dorsal use of information regard-
ing object class was explicitly modeled in Chap.5. On the other hand, the second
step in the framework of Sect. 5.2.3, full object recognition, is not dealt with in
the implemented system, and can be simplified and accelerated by dorsal input.
Object recognition could rely for example on a chain code invariant representa-
tion as the one initially used for classification, and which revealed more suitable
for single object identification than for class discrimination (see Sect. 5.4.2). Various
researchers pointed out though that action-related information maintained in the dor-
sal stream is likely to play an important role in the object recognition process, as a set
of possible affordances constitutes an additional way of identifying an object (Sugio
et al. 1999; Shmuelof and Zohary 2005). The SOS and AOS responsiveness found
for the target object could be one possible format used by the dorsal stream to help
the ventral areas in the recognition task. It is in fact very unlikely that two objects
share the same SOS and AOS activations. CIP projections would thus provide the
ventral stream with additional information for improving the reliability and speed of
object recognition. For what concerns the representation of known objects, in their
first years of development, human beings accumulate experience on properties such
as color, texture, material, object identity, learning the likelihood of different rela-
tions among them. A working model of this recognition and generalization capacity
should rely on a knowledge base founded on these properties (see e.g. the proposal
of Metzinger and Gallese 2003).

There is a second ventral→ dorsal link that could involve intraparietal areas other
thanAIP. This projectionwould occur after object recognition, andwould provide the
dorsal stream with the exact object size as memorized in ventral areas. In fact, object
identificationwould allow to recover specific stored knowledge on object dimensions

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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that can be used to resolve more easily and accurately the size/distance ambiguity.
This mechanism is supported by several different studies comparing grasping accu-
racy using monocular and binocular data and different kinds of objects (Loftus et al.
2004). For example, it has been shown that proprioceptive cues such as vergence
and accommodation are relied upon especially for novel objects, suggesting that
for known objects retinal data, inherently ambiguous otherwise, are predominant
(Mon-Williams and Tresilian 1999).

7.2.2 Links Between AIP and the Ventral Stream

The second stage of integration between the streams refers to the direct links between
ventral areas and AIP (Zanon et al. 2010; Verhoef et al. 2011), which have been
repeatedly pointed out in the book. An explanation of how properties related to the
object identity would affect the selection of grasp features and contact points have
been provided in Sect. 6.2.2, but the proposal has not been implemented in all its
details yet. As explained, a higher confidence in the object recognition/classification
process reflects in a stronger influence of past grasping experiences, whilst a more
uncertain recognition leads to a more exploratory behavior, giving more importance
to actual observation. Recognition of object identity can affect dorsal processing at
three levels.

The first level, described above, is the ventral contribution to object size and
distance estimation.At the second level, the ventral streamcanprovide the dorsalwith
the exact object weight, roughness, compliance, and consequently orient the criteria
employed for action selection, as described in Sect. 6.2.2. Hand preshape, target
contact points and initial grasping force would be contextually defined according to
the ventral information (Perry et al. 2014). The third and final level refers to the third
stage of object recognition (Sect. 5.2.3), in which grasping has to be executed on a
familiar object. It can be supposed that in this case the motor coding of a grasping
action is already associated with the object. In fact, such patterns has been observed
for tools, which seem to elicit dedicated learnt motor representations (Creem-Regehr
and Lee 2005; Johnson-Frey et al. 2005; Valyear et al. 2007). While in the previous
stages therewas a variable balance between recalling and exploration, for this case the
process of grasp planning is reduced to its minimum. Only object pose and distance
have to be estimated, as the preshape movement, and the expected contact with the
object are recovered from previous experiences.

The implementation of this mechanism has to be based on two modeling ele-
ments already cited above: an appropriate knowledge base of objects and a suitable
vocabulary of motor primitives that can be associated to such objects. At this level of
detail in the modeling of grasping behaviors, the task could not be disregarded, and
thementioned object knowledge base should include their possible utility. Therefore,
different tasks can be associated with different motor programs, and amotor program
can be associated to a given task even for different objects. If a hammer is not avail-
able, another tool will be used “as a hammer”, emphasizing that the motor program

http://dx.doi.org/10.1007/978-3-319-20303-4_6
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is associated to the task, and can be transferred to novel objects. The final goal is a
three-way model in which visuomotor coding, object identity and task requirements
modulate the level of interaction between the streams (Plewan et al. 2012; Tankus
and Fried 2012; Wokke et al. 2014).

The additional information provided by the tactile feedback upon contact of the
hand with the object is critical in this process. The only way to learn the exact object
size is through proprioceptive feedback after grasping, and the same happens for its
weight and compliance. The above mentioned method for learning the reliability of
the various visual cues in different conditions can hence be extended to associate with
each object properties that are relevant for graping purposes. This can be achieved
through a cross-modal object representation in which visual and tactile information
complement each other, and which is directly related to the task to perform. A
representation of this kind is likely maintained in the human LOC (Amedi et al.
2001; Binkofski et al. 2004).

7.3 fRI, Functional Robotic Imaging: Visualizing a Robot
Brain

In this section, an auxiliary tool aimed at improving the integration between neuro-
science, computational modeling and robotic systems is presented. This tool is the
fRI (functional Robotic Imaging) interface for the functional visualization of a robot
activity, described in detail in Chinellato and Pobil (2008).

The fRI interface associates each task performed by the robot to a brain area
and visualizes its activation on a brain image, similarly to what happens in fMRI
experiments (see text box on fMRI). The information flow can thus be monitored at a
very high level, and especially non-roboticists can benefit from this kind of functional
visualization. The scanning of the “robot brain” is much easier, faster and cheaper
than real imaging, and far from representing an alternative to real experiments, it may
help researchers in two important ways. First, fRI can be used to check in advance
the appropriateness of experimental protocols, reducing expensive and complicate
preliminary tests with human subjects (Culham 2006). Second, it represents a way
for comparing, and validating, possible explanations of experimental results derived
from different models. The ambitious goal is to make the tool useful for both the
definition of experimental protocols and the interpretation of results according to
alternative models. The tool is suitable for models that are applicable to robotic
setups while maintaining a strong functional resemblance with brain areas. In this
way, the rigorous model design is likely to represent an ideal inspiration source for
planning completely new experiments.

An additional feature of the fRI tool and the associatedmodeling architecture is the
possibility of performing “impossible experiments”. As mentioned in Chap.2, neu-
roscience theories often derive from observations done on neurally-impaired people.
Logically, such experiments cannot be reproduced, neither it is possible to decide

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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beforehand the type of brain damage on which to investigate. If properly imple-
mented, a layout as the proposed one would allow for such critical experiments.

The fRI approach presents two main differences with the only related work in the
literature (Arbib et al. 2000), which deals with large computational models and the
possibility of simulating brain imaging experiments with them. First, the proposed
modeling paradigm is focused on the function of computational modules, and not
on their structure or on particular implementation techniques. The second funda-
mental difference is the application-oriented stance of the current approach, which
is designed to be implemented on a robotic setup, and not only computationally.

The part of the model dedicated to extract and map visual features to hand con-
figurations, exposed in Sect. 6.2 and further discussed in Sect. 7.1, is used as a first
testbed for showing how the fRI instrument works, and how it may constitute an
additional tool for depicting the functioning of a relatively complex neural model.

7.3.1 Modeling Requirements

There are a number of restrictions for a model in order to be coupled with the fRI
visualization tool. First of all, it has to be a functional model, implemented at the
proper level of abstraction (see Sect. 4.2), and composed of various modules. The
modules should be provided with the flexibility necessary for simulating different
behaviors and skills through re-configuration, and not through re-programming.Only
in this way can they be used to test theories and assumptions. This goal can be
achieved using a distributed architecture of interconnected modules, which have to
be simple and robust in order to allow easy modification of the data flow.

Recruitment between modules is driven by a set of connectivity rules and by
the current data flow. A module corresponds to a neuronal population performing a
certain function, and is associated with amodeled brain area, which can be composed
of one or more modules. For example, there may be two modules for SOS and AOS
activations upon visual presentation of a target object, and both modules would
belong to area CIP. The rules that determine the connectivity of the set of modules
represent a model of how the brain performs a given task. The projection of SOS and
AOS activations to an AIP module representing object type neurons is an example
of connectivity between modules. The pattern of activation of the different modules
will thus depend on the programmed connectivity and on the input set.

For the recruitment of amodule, it may be necessary to havemoremodules calling
on it at the same time. Also, some modules could facilitate the activity of a specific
module, others could inhibit it. For example, in a grasping task, the module which
computes the distance of the object would inhibit grasp planning if the object is out
of reach.

http://dx.doi.org/10.1007/978-3-319-20303-4_6
http://dx.doi.org/10.1007/978-3-319-20303-4_4
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7.3.2 The fRI Interface

The purpose of the fRI interface is to visualize the actions performed by a robot as
they were executed by a human subject during an fMRI experiment. The activity of
the robot is thus displayed through a series of activations of brain areas, in a simulated
fMRI analysis screen. The result is similar to what can be obtained after data analysis
in a real fMRI experiment, like the one shown in Fig. 7.3.

From the list of implemented modules, and the relative brain areas, a library of
locations is created, representing the position in the brain of the areas correspond-
ing to the various modules available. Locations can be obtained from the literature,
and are kept in Talairach coordinates, which allow an easy mapping on normalized
anatomical images (Talairach and Tournoux 1988). For example, the anterior intra-
parietal sulcus AIP has been located with a 95% confidence interval by averaging
the results of different studies (Frey et al. 2005). Figure7.3 represents the contrast

Fig. 7.3 Example of real fMRI activation, the larger activated area is the right anterior intraparietal
sulcus (AIP). The views are as follows. Top-left image sagittal view (from the left side of the head);
top-right image coronal view (from the back of the head); bottom-right image transversal view
(from the top of the head)
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Fig. 7.4 Simulated fRI activation; no activation on the left, right AIP activation in the center, right
AIP and left cerebellum activations on the right

obtained in an fMRI grasping experiment, in which the strongest of the visible acti-
vations corresponds to the right AIP. Using a high-resolution anatomical MRI scan
as base, and extracting from it the required layers, activations can be superimposed
and visualized by color-coding the coordinates corresponding to the areas that are
active during the execution of a certain task. Being an area composed of one or more
modules, its level of activation depends on the number of modules which are active
at a given moment.

In Fig. 7.4 an example of the simulated functional imaging is given: a coronal layer
of an anatomical scan is shown on the left with no activations, in the center with a
superposed activation in the right AIP area, and on the right with two activations,
one again in AIP, but with a lighter color and thus stronger, and another one in the
left side of the cerebellum.

The dynamical behavior of themodules during a given task should be such that the
pattern of activations is not known beforehand. Only in this way, the visualization of
the activity of the “robot brain” allows to make a prediction of how a humanmodel of
connectivity would behave in a certain case (i.e. with a given input set). The choices
taken during the modeling process will thus reflect in the activation observed in the
simulated fMRI environment.

7.3.3 Reproducing and Predicting Experiments

The first step for fine-tuning the connectivity methods and test the real value of the
tool is to use it for replicating real fMRI experiments. This process starts from a set of
modules which supposedly allows for the execution of a number of tasks. An fMRI
experiment regarding one such tasks is then chosen from the literature.Different input
sets, corresponding to the conditions of the experimental protocol, are defined, and
the robot performs the given task with all possible inputs. The behavior of the robot
during the experimental session as visualized in the fRI is thus expected to reflect
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the activation of the same areas of the brain as in the original fMRI experiment. Of
course, only the subset of areas included in the model can be considered: it is not
plausible to include all areas normally activated by a given experiment, as this would
imply the use of a largely implausible model of the whole brain. The following step
would be to predict the outcome of new experiments, using the fRI in conjunction
with the appropriate model. An example of how this can be achieved is provided in
the next section.

7.3.4 fRI of the Posterior Parietal Cortex

The literature of neuroscience studies on vision-based grasping offers various exper-
iments which can be reproduced with the fRI platform. A very interesting case is the
analysis of the different patterns of activation obtained during power and precision
grips. So far, no extensive results were available until recent research showed that
AIP is much more active during precision grips than for power grips (Begliomini
et al. 2007; Cavina-Pratesi et al. 2007). Previously, only Ehrsson et al. (2000) per-
formed this experiment in the dark, observing that precision grips activate AIP more
than power grips. Results for CIP are still not available.

The starting point for the test is the mapping of CIP neuronal activation to the
fundamental grip taxonomy described in Sect. 7.1. According to the described frame-
work, precision grips should activate either one or both of SOS and AOS neurons,
depending on the exact size and shape of the target feature, whilst full-hand power
grips would not consistently activate any orientation selective neurons. This would
reflect in a higher activation of CIP for precision grips compared to power grips. It is
also very plausible that grasp planning in AIP is going to be much more complex for
precision than for power grips, as in the latter case no elaborate analysis for finger
positioning is necessary, which should reflect in a lower activation. Robot grasping
experiments based on the model are thus very likely to show increasing activation
in both CIP and AIP for precision compared to power grips. It would be interesting
though to observe the modulation in the observed activation according to gradually
changing shapes and sizes of the objects. Performing these same grasping experi-
ments on a real fMRI setup with human subjects could provide a comparison for
testing the appropriateness of the model.

For illustration purposes, Fig. 7.5 shows the activation pattern expected in this
example: left AIP is shown on the left, left CIP on the right. The Tailarach coordinates
of the areas are those provided by Shikata et al. (2003).

As anticipated above, this pattern of activity has recently been confirmed for AIP,
but not yet for CIP, which is anyway a more controversial area in human studies.
Future studies could thus assess the problem of more clearly identifying where in
the human brain feature extraction is performed. Also, differential activations of AIP
in various conditions can provide further cues on how exactly visual information is
used for generating grasp configurations according to the model framework.
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Fig. 7.5 fRI activations of left AIP (left) and left CIP (right)

7.3.5 The Brain-Damaged Robot

Brain lesions have probably been the best source of information for neuroscientists
before the advent of brain imaging techniques. As mentioned in Chap.2 the two
streams theory, was first proposed byGoodale andMilner after observing the singular
behavior of visual agnosia and optic ataxia patients (Goodale and Milner 1992).
Reproducing the behavior of such patients can be an interesting test for the model
and the fRI interface. This could be done in two complementary ways: modifying
the connectivity of models, and introducing different quantities of noise in the data
flow. The outcome may be used to determine which patterns of connectivity, when
appropriately damaged, would actually generate the behavior observed in impaired
humans. Nowadays, only transcranial magnetic stimulation (see text box on TMS)
experiments can partially reproduce the effect of local brain lesions, but the tool is
controversial as potentially unsafe, and it suffers from low resolution and limited
access to a large part of the brain.

Several interesting experiments on brain lesion modeling could be performed.
For example, optic ataxia, which is a consequence of dorsal stream damages, should
strongly affect the grip generation and execution process, so that grasping actions
may fail or being clumsily executed. Different effects would be produced by different
connectivity changes, and hypothesis on exactly what parts of the dorsal stream may
be affected can be made.

Computational modeling of brain lesions is not a completely new approach
(Pouget and Sejnowski 2001; Salinas and Sejnowski 2001), and a model of impaired
brain functions in grasping could be applied to a simulated environment. Neverthe-
less, the uncertainty of the real world can never be properly reproduced with only
computational models, and even a simplified embodiment provides a different sig-
nificance to the experimental validation. Implementation on a robotic setup surely

http://dx.doi.org/10.1007/978-3-319-20303-4_2
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requires an additional effort, but this is balanced by the more general value of the
obtained results.

Summarizing, the proposed modeling approach and the fRI tool for interfacing
computational models with robotic experiments aim at facilitating the interplay and
the mutual positive influence between the research fields of robotics and neuro-
science. The fRI interface can be used as an aid for the design of fMRI experiments
and for the validation of functional brain models. Also, it can be used for “impos-
sible experiments”, as local temporary brain damaging, which cannot be performed
on human subjects.

7.4 Further Extensions

In the previous sections, fundamental developments to thework presented in the book
have been introduced and thoroughly discussed. There are other relevant aspects that
have not been included in the current research. A few of them are summarized below.

7.4.1 Temporal Coordination

The dynamic aspects of visuomotor transformations and movement coordination
have not been thoroughly considered in the current research. All steps from visual
acquisition to object lifting are executed sequentially, following the data flow, and in
the case of concurrent processes (such as in ventral and dorsal visual analysis), the
adopted solution is simply that the faster process waits for the slower.

For what concerns visual cue integration, it seems that binocular cues are
processed faster than monocular ones (Greenwald et al. 2005. This can be explained
by the fact that interpretation of monocular cues normally requires semantic knowl-
edge and hence some ventral stream processing, whilst stereoptic analysis is per-
formed entirely within the dorsal stream. The consequence is that temporal con-
straints affect cue integration, and binocular cues are especially dominant during
online action control.

Regarding coordination in action execution, it surely involves IPS and PMv, but
other areas too. The supplementary motor area (Picard and Strick 2003; Ogawa et al.
2006) and the dorsal premotor cortex (Davare et al. 2006) are almost certainly part
of the circuit dedicated to the sequencing of action components in reaching and
grasping, but the most important role in action coordination is very likely played
by the cerebellum (Doya 1999; Cotterill 2001; Ramnani et al. 2001). More complex
mechanisms, and the contribution of other areas, seem to be required when grasping
involves moving objects (Schenk et al. 2005; Sakata et al. 1997). An additional
aspect that should be taken into account is the coordination between eye and arm
movements (Johansson et al. 2001). In a researchwork largely complementary to that
presented in this book, Chinellato et al. (2011) have developed a bio-inspired system
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for visuomotor integration based on the contextual learning and the coordinated
control of eye gazing and arm reaching movements. This has allowed to produce
a robotic system able to create its own internal model and its representation of the
surrounding space by interacting with the environment directly, through a mutual
adaptation of perception and action (Antonelli et al. 2014).

7.4.2 Tools

Although other primates can successfully learn how to use simple tools, humans are
the only species specialized for tool manipulation. Indeed, most of our every-day
activities require the handling of purposely manufactured objects. Tool use is thus an
extremely revealing aspect for studying the evolution of the human brain as compared
to monkeys’.

Familiarity with objects surely affect the way we interact with them (Gentilucci
2003), but tools seem to constitute a completely autonomous class of objects to this
regard (Creem-Regehr and Lee 2005; Hoeren et al. 2013). It has been suggested that
there are neural mechanisms especially dedicated to tool handling (Johnson-Frey
et al. 2005; Orban and Caruana 2014), and that tools at reachable distances seem to
constitute a focus of attention more powerful than other graspable objects (Handy
et al. 2003). Sugioet al. (2003a) compared the fMRI activation of grasping familiar
objects with explicit graspable features, such as handles, and other graspable objects
without handles. The latter were found to elicit the usual AIP–PMv circuit, but the
former apparently activated learned visuomotor associations at subcortical areas, like
the rostral cingulate motor area. The same area is not activated for geometric objects
with handle-like parts, implying that the activation is related to semantic meanings
rather than to geometric features (Sugio et al. 2003b). According to the authors these
results suggest the existence of a “direct” route from vision to action especial for
tools, which is essentially affected by semantic and associative factors.

7.4.3 Grasping Force

The grasping literature distinguishes between grip and lift force, suggesting that,
although related, they are controlled by parallel processes (Quaney et al. 2005), and
that they are both independent from the reachingmovement (Biegstraaten et al. 2006).
The use of force has been much simplified in the proposed framework, but there are
many factors which affects force distribution, and many of them are unpredictable
before contact (Baud-Bovy and Soechting 2002). The influence of object weight,
expected friction and compliance have already been mentioned, and the control of
grasping forces, probably performed by AIP (Ehrsson et al. 2003), takes into account
all of them (Gordonet al. 1993). Indeed, complex interactions between the streams
seem to underlie the anticipatory scaling and the subsequent monitoring of grasping
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forces (Westwoodet al. 2000; Reichenbach et al. 2014). Nevertheless, the nature of
the contact and the exact situation can be assessed only after touching the object,
and two different control strategies for balancing forces and moments seem to be
contextually pursued, and the resulting commands summed up (Zatsiorsky et al.
2004). The biggest challenge in modeling force control in grasping is probably the
fast adaptation exhibited by subjects in learning the most appropriate force patterns
in each condition. Salimi et al. (2000) suggest that this is achieved through the
modulation of multiple internal representations, and Ulloa et al. (2003) implemented
a plausible model of force learning based on cerebellar mechanisms.

7.4.4 Illusions

Visual and visuomotor illusions constitute interesting tools for studying complex per-
ceptual mechanisms. For what concerns the two streams theory, common illusions
have been found not to affect grip scaling as they do with size judgment (Servos et al.
2000). Force scaling seems to be also largely spared by illusions, but several factors
such as relative size, delays and environmental conditions all affect the response to
illusions (Westwood and Goodale 2003; Handlovsky et al. 2004). Some researchers
argue that the observed effects are not due to the dualism between the dorsal and
ventral streams (Franz et al. 2001; Dassonville and Bala 2004). Nevertheless, recent
studies appositely designed to disambiguate the effect of illusions and solve the con-
troversy, support the perception/action dualism (Kwok andBraddick 2003; Stöttinger
and Perner 2006; Plewan et al. 2012).

As for brain damages, the modeling and simulation of illusory effects can be of
great interest for the validation of modeling hypotheses on the function and connec-
tivity of visual and visuomotor areas.

Other aspects related to vision based grasping and to the two streams theory
that are worth further exploration and modeling efforts are: laterality and the task
sharing between the left and right brain hemispheres (Cavina-Pratesi et al. 2006;
Culham et al. 2006; Rice et al. 2007; Vainio et al. 2007); the controversial issue of
visuomotor priming (Craighero et al. 2002; Cant et al. 2005; Yoon and Humphreys
2007) and the related problem of attention allocation (Craighero et al. 1999; Handy
et al. 2003; Lavie 2005).

7.5 Conclusions

Interdisciplinary research involving high technology fields and life sciences is get-
ting nowadays more and more common. Artificial intelligence has been from its
very foundation a meeting-place for scientists of seemingly unrelated disciplines.
Two such disciplines which met thanks to artificial intelligence are robotics and neu-
roscience, and although their encounter is producing very interesting developments,



7.5 Conclusions 161

fundamental differences in research goals, methodologies and language prevent a
more proficuous collaboration. To this regard, the main achievement of our work is
to present in a real unified framework two approaches to the issue of vision-based
grasping, neuroscientific and robotic, that are usually completely independent from
each other.
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