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Abstract. The Outerplanar Diameter Improvement problem
asks, given a graph G and an integer D, whether it is possible to add edges
to G in a way that the resulting graph is outerplanar and has diameter at
most D. We provide a dynamic programming algorithm that solves this
problem in polynomial time. Outerplanar Diameter Improvement
demonstrates several structural analogues to the celebrated and chal-
lenging Planar Diameter Improvement problem, where the resulting
graph should, instead, be planar. The complexity status of this latter
problem is open.
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1 Introduction

A graph completion problem asks whether it is possible to add edges to a given
graph in order to make it satisfy some target property. There are two differ-
ent ways of defining the optimization measure for such problems. The first,
and most common, is the number of edges to be added, while the second is
the value of some graph invariant on the resulting graph. Problems of the first
type are Hamiltonian Completion [14], Interval Graph Completion [16],
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Proper Interval Graph Completion [15,20], Chordal Graph Comple-
tion [20,24], and Strongly Chordal Graph Completion [20].

We focus our attention on the second category of problems where, for some
given parameterized graph property Pk, the problem asks, given a graph G and
an integer k, whether it is possible to add edges to G such that the resulting
graph belongs to Pk. Usually Pk is a parameterized graph class whose graphs
are typically required (for every k) to satisfy some sparsity condition. There are
few problems of this type in the bibliography. Such a completion problem is
the Planar Disjoint Paths Completion problem that asks, given a plane
graph and a collection of k pairs of terminals, whether it is possible to add edges
such that the resulting graph remains plane and contains k vertex-disjoint paths
between the pairs of terminals. While this problem is trivially NP-complete, it
has been studied from the point of view of parameterized complexity [1]. In
particular, when all edges should be added in the same face, it can be solved in
f(k) · n2 steps [1], i.e., it is fixed parameter tractable (FPT in short; for details
about fixed parameter tractability, refer to the monographs [10,12,21]).

Perhaps the most challenging problem of the second category is the Planar
Diameter Improvement problem (PDI in short), which was first mentioned
by Dejter and Fellows [7] (and made an explicit open problem in [10]). Here we
are given a planar graph G and we ask for the minimum integer D such that some
completion (by addition of edges) of G is a planar graph with diameter at most
D. Note that according to the general formalism, all planar graphs with diameter
at most D verify this parameterized property PD. The computational complexity
of Planar Diameter Improvement is open, as it is not even known whether
it is an NP-complete problem, even in the case where the embedding is part
of the input. Interestingly, Planar Diameter Improvement is known to be
FPT: it is easy to verify that, for every D, its Yes-instances are closed under
taking minors1 which, according to the meta-algorithmic consequence of the
Graph Minors series of Robertson and Seymour [22,23], implies that Planar
Diameter Improvement is FPT. Unfortunately, this implication only proves
the existence of such an algorithm for each D, while it does not give any way to
construct it. Whether this problem is uniformly FPT2 remains as one of the most
intriguing open questions in parameterized algorithm design. To our knowledge,
when it comes to explicit algorithms, it is not even clear how to get an O(nf(D))-
algorithm for this problem (in parameterized complexity terminology, such an
algorithm is called an XP-algorithm).

Notice that, in both aforementioned problems of the second type, the pla-
narity of the graphs in PD is an important restriction, as it is essential for gener-
ating a non-trivial problem; otherwise, one could immediately turn a graph into

1 To see this, if a graph G can be completed into a planar graph G′ of diameter D,
then G′ is also a valid completion of any subgraph H ⊆ G. Similarly, by merging
two adjacent vertices uv in both G and G′, the latter is still a completion of the first
and their diameters can only decrease.

2 As opposed to having a possibly different algorithm for each D, a problem is uni-
formly FPT if the algorithm solving the problem is the same for each D.
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a clique that trivially belongs to P1. For practical purposes, such problems are
relevant where instead of generating few additional links, we mostly care about
maintaining the network topology. The algorithmic and graph-theoretic study on
diameter improvement problems has focused both on the case of minimizing the
number (or weight) of added edges [2–4,9,11,17], as well as on the case of mini-
mizing the diameter [3,13]. In contrast, the network topology, such as acyclicity
or planarity, as a constraint to be preserved has received little attention in the
context of complementing a graph; see for example [11]. See also [18,19] for other
completion problems in outerplanar graphs, where the objective is to add edges
in order to achieve a prescribed connectivity.

In this paper we study the Outerplanar Diameter Improvement prob-
lem, or OPDI in short. An instance of OPDI consists of an outerplanar graph
G = (V,E) and a positive integer D, and we are asked to add a set F of missing
edges to G so that the resulting graph G′ = (V,E ∪ F ) has diameter at most D,
while G′ remains outerplanar. Note that we are allowed to add arbitrarily many
edges as long as the new graph is outerplanar. Given a graph G = (V,E), we
call G′ = (V,E ∪ F ) a completion of G.

It appears that the combinatorics of OPDI demonstrate some interesting
parallelisms with the notorious PDI problem. We denote by opdi(G) (resp.
pdi(G)) the minimum diameter of an outerplanar (resp. planar) completion of
G. It can be easily seen that the treewidth of a graph with bounded pdi(G) is
bounded, while the pathwidth of a graph with bounded opdi(G) is also bounded.
In that sense, the OPDI can be seen as the “linear counterpart” of PDI. We
stress that the same “small pathwidth” behavior of OPDI holds even if, instead
of outerplanar graphs, we consider any class of graphs with bounded outerpla-
narity. Note also that both pdi(G) and opdi(G) are trivially 2-approximable
in the particular case where the embedding is given. To see this, let G′ be a
triangulation of a plane (resp. outerplane) embedding of G where, in every face
of G, all edges added to it have a common endpoint. Then, for each edge uv in
each shortest path in an optimal completion of G, a u-v-path of length at most
two exists in G′. Thus, for both graph invariants, the diameter of G′ does not
exceed twice the optimal value.

Our Results. In this work, we show that Outerplanar Diameter Improve-
ment is polynomial-time solvable. Our algorithm, described in Sect. 2, is based
on dynamic programming and works in full generality, even when the input graph
may be disconnected. Also, our algorithm does not assume that the input comes
with some specific embedding (in the case of an embedded input, the problem
becomes considerably easier to solve).

2 Description of the Algorithm

The aim of this section is to describe a polynomial-time dynamic program that,
given an outerplanar graph G and an integer D, decides whether G admits
an outerplanar completion with diameter at most D, denoted diameter-D out-
erplanar completion for simplicity. By repeated use of this algorithm, we can
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thus determine in polynomial time the smallest integer D such that G admits a
diameter-D outerplanar completion.

Before describing the algorithm, we show some properties of outerplanar com-
pletions. In particular, Subsect. 2.1 handles the case where the input outerplanar
graph has cut vertices. Its objective is to prove that we can apply a reduction rule
to such a graph which is safe for the OPDI problem. In Subsect. 2.2 we deal with
2-vertex separators, and in Subsect. 2.3 we present a polynomial-time algorithm
for connected input graphs. Finally, we present the algorithm for disconnected
input graphs in Subsect. 2.4.

Some Notation. We use standard graph-theoretic notation, see for instance [8].
It is well known that a graph is outerplanar if and only if it excludes K4 and
K2,3 as a minor. An outerplanar graph is triangulated if all its inner faces (in an
outerplanar embedding) are triangles. An outerplanar graph is maximal if it is
2-connected and triangulated. Note that, when solving the OPDI problem, we
may always assume that the completed graph G′ is maximal.

2.1 Reducing the Input Graph When There Are Cut Vertices

Given a graph G, let the eccentricity of a vertex u be ecc(u,G) = maxv∈V (G)

distG(u, v). Given an outerplanar graph G, a vertex u ∈ V (G), and an integer D,
let us define ecc∗

D(u,G) as minH ecc(u,H) over all the diameter-D outerplanar
completions H of G. We set this value to +∞ if no such completion of G exists.
Unless said otherwise, we assume henceforth that D is a fixed given integer, so
we may just write ecc∗(u,G) instead of ecc∗

D(u,G). (The value of D will change
only in the description of the algorithm at the end of Subsect. 2.3, and in that
case we will make the notation explicit).

As admitting an outerplanar completion with bounded eccentricity (for a
fixed vertex u) is a minor-closed property, let us observe the following:

Lemma 1. (�)3 For any connected outerplanar graph G, any vertex v ∈ V (G),
and any connected subgraph H of G with v ∈ V (H), we have that ecc∗(v,H) ≤
ecc∗(v,G).

Consider a connected graph G with a cut vertex v, and let C1, . . . , Ct be the
vertex sets of the connected components of G \ {v}. For 1 ≤ i ≤ t, we call
the vertex set Bi = Ci ∪ {v} a branch of G at v. To shorten notations, we
abbreviate Bi ∪ . . . ∪ Bj =: Bi...j . Also, when referring to the eccentricity, we
simply write Bi to denote the subgraph of G that is induced by Bi (i.e. G[Bi]).
Thus, the value ecc∗(v,B1...i) refers to the minimum eccentricity with respect
to v that a diameter-D outerplanar completion of the graph G[B1...i] can have.
The following lemma, crucial in our polynomial-time algorithm, implies that it
is safe to ignore most of the branches of G at a cut vertex v.

Lemma 2. (�) Consider a connected outerplanar graph G with a cut vertex
v that belongs to at least 7 branches. Denote these branches B1, . . . , Bt with
3 The proofs of results annotated with (�) appear in the Appendix. For the full version

of the paper, see [5].
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t ≥ 7, in such a way that ecc∗(v,B1) ≥ . . . ≥ ecc∗(v,Bt). The graph G has an
outerplanar completion with diameter at most D if and only if ecc∗(v,B1...6) +
ecc∗(v,B7) ≤ D.

Our algorithm computes the minimal eccentricity of a given “root” vertex r
in a diameter-D outerplanar completion of G, i.e. ecc∗(r,G). Then, however,
the branch containing the root (B0 in Algorithm 1, Subsect. 2.3) should not be
removed. Therefore, although Lemma 2 already implies that G has a diameter-D
outerplanar completion if and only if G[B1...7] does, we instead use the following
corollary to identify removable branches.

Corollary 1. (�) Let G be a connected outerplanar graph with a cut vertex v
that belongs to at least 8 branches. Denote these branches B1, . . . , Bt, with t ≥ 8,
in such a way that ecc∗(v,B1) ≥ . . . ≥ ecc∗(v,Bt). For each 8 ≤ i ≤ t, the graph
Gi =

⋃
j∈{1,...,7,i} Bj has a diameter-D outerplanar completion if and only if

G does.

2.2 Dealing with 2-Vertex Separators

In this subsection, we extend the definition of eccentricity to the pairs (u, v) such
that uv ∈ E(G). Namely, ecc(u, v,G) is defined as the set of pairs obtained by
taking the maximal elements of the set {(distG(u,w),distG(v, w)) | w ∈ V (G)}.
The pairs are ordered such that (d1, d2) ≤ (d′

1, d
′
2) if and only if d1 ≤ d′

1 and
d2 ≤ d′

2. As u and v are adjacent, note that distG(u,w) and distG(v, w) differ
by at most one. Hence, ecc(u, v,G) is equal to one of {(d, d)}, {(d, d + 1)},
{(d + 1, d)}, and {(d, d + 1), (d + 1, d)}, for some positive integer d. As before,
we abbreviate ecc(u, v,G[X]) by ecc(u, v,X). Given a graph G and a subset
S ⊆ V (G), we denote by ∂(S) the set of vertices in S that have at least one
neighbor in V (G) \ S.

Lemma 3. (�) Consider a connected graph G with V (G) =: X and a triangle
uvw and two sets Xu,Xv ⊆ X such that Xu ∪ Xv = X, Xu ∩ Xv = {w},
∂(Xu) ⊆ {u,w}, and ∂(Xv) ⊆ {v, w}. Then ecc(u, v,G) equals the maximal
elements of the set

{(du,min{du + 1, dw + 1}) | (du, dw) ∈ ecc(u,w,Xu)} ∪
{(min{dw + 1, dv + 1}, dv) | (dw, dv) ∈ ecc(w, v,Xv)}.

Given a connected outerplanar graph G, for any two vertices u, v ∈ V (G) and
any vertex set X ⊆ V (G) with u, v ∈ X such that ∂(X) ⊆ {u, v}, let us define
ecc∗

D(u, v,X) (or ecc∗(u, v,X)) as the minimal elements of the set
{

ecc(u, v,H)
∣
∣
∣
∣
H is a diameter-D outerplanar completion of G[X] such
that uv ∈ E(H) and such that uv lies on the outer face.

}

If this set is empty, we set ecc∗
D(u, v,X) to {{(∞,∞)}}. Here, ecc(u, v,H) ≤

ecc(u, v,H ′) if and only if for any (d1, d2) ∈ ecc(u, v,H) there exists (d′
1, d

′
2) ∈
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ecc(u, v,H ′) such that (d1, d2) ≤ (d′
1, d

′
2). According to the possible forms of

ecc(u, v,H), we have that ecc∗(u, v,X) is of one of the following five forms (for
some positive integer d):

• {{(d, d)}},
• {{(d, d + 1)}},
• {{(d + 1, d)}},
• {{(d, d + 1), (d + 1, d)}}, or
• {{(d, d+1)}, {(d+1, d)}} (when the minima come from different values of H)

Considering ecc∗(u,X) for some u and X, note that u has at least one incident
edge uv on the outer face in an outerplanar completion achieving ecc∗(u,X).
Thus, we can observe the following.

Observation 1. ecc∗(u,X) = minv∈X minS∈ecc∗(u,v,X) max(du,dv)∈S du.

2.3 The Algorithm for Connected Outerplanar Graphs

We now proceed to describe a polynomial-time algorithm that solves Outerpla-
nar Diameter Improvement when the input outerplanar graph is connected.
In Subsect. 2.4 we will deal with the disconnected case. In a graph, a block is
either a maximal 2-vertex-connected component or a bridge. Before proceeding
to the formal description of the algorithm, let us provide a high-level sketch.

Algorithm 1 described below receives a connected outerplanar graph G, an
arbitrary non-cut vertex r of G, called the root (such a vertex is easily seen
to exist in any graph), and a positive integer D. In order to decide whether G
admits a diameter-D outerplanar completion, we compute in polynomial time
the value of ecc∗

D(r,G), which by definition is finite if and only if G admits a
diameter-D outerplanar completion.

In order to compute ecc∗
D(r,G), the algorithm proceeds as follows. In the

first step (lines 1–9), we consider an arbitrary block B of G containing r (line 1),
and in order to reduce the input graph G, we consider all cut vertices v of G
in B. For each such cut vertex v, we order its corresponding branches according
to their eccentricity w.r.t. v (line 8), and by Corollary 1 it is safe to keep just
a constant number of them, namely 8 (line 9). For computing the eccentricity
of the branches not containing the root (lines 5–7), the algorithm calls itself
recursively, by considering the branch as input graph, and vertex v as the new
root.

In the second step of the algorithm (lines 10–17), we try all 2-vertex separa-
tors u, v in the eventual completed graph G′ (note that G′ cannot be 3-connected,
as otherwise it would contain a K2,3-minor or a K4-minor), together with a set
X consisting of a subset of the connected components of G′ \ {u, v}, not con-
taining the root r. For each such triple (u, v,X), our objective is to compute
the value of ecc∗

D(u, v,X). To this end, after initializing its value (lines 11–12),
we consider all possible triples w,Xu,Xv chosen as in Lemma 3 after adding
the triangle uvw to G[X] (line 13), for which we already know the values of
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ecc∗
D(u,w,Xu) and ecc∗

D(w, v,Xv), since the sets X are processed by increas-
ing size. Among all choices of one element in ecc∗

D(u,w,Xu) and another in
ecc∗

D(w, v,Xv) (line 14), only those whose corresponding completion achieves
diameter at most D are considered for updating the value of ecc∗

D(u, v,X)
(line 15). For updating ecc∗

D(u, v,X) (line 17), we first compute eccD(u, v,X)
using Lemma 3 (line 16).

Finally, once we have computed all values of ecc∗
D(u, v,X), we can easily

compute the value of ecc∗
D(u,X) by using Observation 1 (line 18). The formal

description of the algorithm can be found in Fig. 1.
The correctness of Algorithm 1 follows from the results proved in Subsects. 2.1

and 2.2, and the following fact (whose proof is straightforward), which guarantees
that the value of ecc∗

D(u, v,X) can indeed be computed as done in lines 13–17.

Fact 1. There exists an outerplanar completion H of G[X] with the edge uv on
the outer boundary if and only if there is w ∈ X and two sets Xu,Xv such that:

(a) Xu ∪ Xv = X, Xu ∩ Xv = {w},
(b) ∂G(Xu) ⊆ {u,w} and ∂G(Xv) ⊆ {v, w}, and
(c) there exists an outerplanar completion Hu of G[Xu] with the edge uw on the

outer boundary, and an outerplanar completion Hv of G[Xv] with the edge
vw on the outer boundary.

It remains to analyze the running time of the algorithm.

Running Time Analysis of Algorithm 1. Note that at line 6 each Bi is
recursively replaced by an equivalent (by Corollary 1) subgraph such that its cut
vertices have at most 8 branches attached.

Let us first focus on the second step of the algorithm, that is, on lines 10–17.
The algorithm considers in line 10 at most O(n2) pairs {u, v}. As each of u
and v has at most 7 attached branches avoiding the root, and G \ {u, v} has
at most 2 connected components with vertices adjacent to both u and v (as
otherwise G would contain a K2,3-minor), there are at most 27 · 27 · 22 = 216

possible choices for assigning these branches or components to X or not. In
line 13, the algorithm considers O(n) vertices w. Similarly, as w belongs to at
most 7 branches not containing u nor v, there are at most 27 choices for assigning
these branches to Xu or Xv. In lines 14–17, the algorithm uses values that have
been already computed in previous iterations, as the sets X are considered by
increasing order. Note that each of ecc∗

D(u,w,Xu) and ecc∗
D(w, v,Xv) contains

at most 2 elements, so at most 4 choices are considered in line 14. Again, at
most 4 choices are considered in line 15. Therefore, lines 14–17 are executed in
constant time.

As for the first step of the algorithm (lines 1–9), the algorithm calls itself
recursively. The number of recursive calls is bounded by the number of blocks of
G, as by construction of the algorithm each block is assigned a single root. There-
fore, the number of recursive calls is O(n). Once the algorithm calls itself and
the corresponding branch has no cut vertex other than the root, the algorithm
enters in lines 10–17, whose time complexity has already been accounted above.
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Fig. 1. The algorithm OPDI-Connected

(Note that each triple (u, v,X) is considered only once, and the value of
ecc∗

D(u, v,X) is stored in the tables.)
Finally, in line 18, the algorithm considers O(n) vertices, and for each of

them it chooses among constantly many numbers. Summarizing, we have that
the algorithm has overall complexity O(n3).

It is worth mentioning that Algorithm1 can also compute the actual comple-
tion achieving diameter at most D, if any, within the same time bound. Indeed,
it suffices to keep track of which edges have been added to G when considering
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the guessed triangles uvw (recall that we may assume that the completed graph
is triangulated).

Theorem 1. Algorithm1 solves Outerplanar Diameter Improvement for
connected input graphs in time O(n3).

Note that we can compute opdi(G) by calling Algorithm 1 with an arbitrary
root r ∈ V (G) (such that G \ {r} is connected) for increasing values of D, or
even binary search on these values.

Corollary 2. Let G be a connected outerplanar graph. Then, opdi(G) can be
computed in time O(n3 log n).

2.4 The Algorithm for Disconnected Outerplanar Graphs

In this subsection we will focus on the case where the input outerplanar graph is
disconnected. The radius of a graph is defined as the eccentricity of a “central”
vertex, that is, the minimum eccentricity of any of its vertices.

Lemma 4. ([6], Theorem 3). Let G be a maximal outerplanar graph of diam-
eter D and radius r. Then, r ≤ 	D/2
 + 1.

In the following, we denote the minimum radius of a diameter-D outerplanar
completion of a graph or connected component G by r∗(G). If G has no diameter-
D outerplanar completion, then let r∗(G) = ∞.

Definition 1. Let G be a connected graph and let D be an integer. Let G′

be the graph resulting from G by adding an isolated vertex v. Let G∗ be a
diameter-D outerplanar completion of G′ that minimizes the eccentricity of v.
Then, G∗ is called escalated completion of (G,D) with respect to v and the eccen-
tricity ecc(v,G∗), denoted by r+(G), is called escalated eccentricity of (G,D).
Again, if such a G∗ does not exist, let r+(G) = ∞.

We will apply Definition 1 also to connected components of a graph and, if clear
from context, we omit D. Note that we can compute r+(G) by guessing an
edge between the isolated vertex v and G and running OPDI-Connected, the
algorithm for connected graphs. Hence this can be done in O(n4) time. Also
note that r∗(G) ≤ r+(G) ≤ r∗(G) + 1.

Lemma 5. (�) Given a graph G with a connected component C such that
r+(C) < D/2, then G has a diameter-D outerplanar completion if and only
if G \ C does.

Observation 2. (�) Let C be a connected component of G, let G′ be an out-
erplanar completion of G and let C ′ be a connected component of G′ \ C. Then,
there is a vertex v ∈ C at distance at least r+(C) to each vertex of C ′ in G′.

Observation 2 immediately implies that any cutset separating two connected
components C1 and C2 of G in G′ has distance at least r+(C1) and r+(C2) to
some vertex in C1 and C2, respectively. Thus, these two vertices are at distance
at least r+(C1) + r+(C2) in G′.
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Corollary 3. Let C1 and C2 be connected components of G such that r+(C1) +
r+(C2) > D and let G′ be a diameter-D outerplanar completion of G. Then, C1

and C2 are adjacent in G′, i.e. G′ has an edge with an end in C1 and an end in C2.

Corollary 3 allows us to conclude that all connected components C with r+(C) >
D/2 have to be pairwise adjacent in any diameter-D outerplanar completion
of G. Thus, there cannot be more than three such components.

Lemma 6. (�) An outerplanar graph G with more than 3 connected components
C such that r+(C) > D/2 has no diameter-D outerplanar completion. On the
other hand, if G has no connected component C such that r+(C) > D/2, then
G necessarily has a diameter-D outerplanar completion.

Hence, assume G has p = 1, 2, or 3 connected components C such that r+(C) >
D/2. By Corollary 3 these p components are pairwise adjacent in the desired
completion. Note that with O(n2p−2) tries, we can guess p − 1 edges connecting
all such components into one larger component. Thus, in the following, we assume
that there is only one component C with r+(C) > D/2, denoted Cmax.

Lemma 7. (�) Consider an outerplanar graph G with exactly one connected
components Cmax such that D/2 < r+(Cmax) < ∞. If r∗(Cmax) ≤ D/2, then G
necessarily has a diameter-D outerplanar completion.

Let us now distinguish two cases according to the parity of D.

Lemma 8. (�) For odd D, if an outerplanar graph G has at most one compo-
nent Cmax such that D/2 < r+(Cmax) < ∞, then G has a diameter-D outerplanar
completion.

The case where D is even is more technical.

Lemma 9. (�) For even D, Let p and q respectively denote the number of con-
nected components C such that D/2 < r+(C) < ∞ and r+(C) = D/2, of an
outerplanar graph G. If p ≥ 2 and p + q ≥ 5, then G has no diameter-D outer-
planar completion.

Lemma 10. (�) For even D, if an outerplanar graph G has one component,
denoted Cmax, such that D/2 < r∗(Cmax) < ∞, and at least 4 other components C
such that D/2 ≤ r+(C) < ∞, then G has no diameter-D outerplanar completion.

Hence, assume G has q = 0, 1, 2, or 3 connected components C such that r+(C) =
D/2. By Corollary 3 these q components are adjacent to each of the p components
such that r+(C) > D/2. Note that with O(n2q) tries, we can guess q edges
connecting each of the q components to one of the p component. Then we are
left with a connected graph, and we can call OPDI-Connected.

The Algorithm Itself. We now describe a polynomial-time algorithm that
solves the Outerplanar Diameter Improvement problem when the input
contains a disconnected outerplanar graph. Algorithm2 described in Fig. 2
receives a (disconnected) outerplanar graph G, and a positive integer D.
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Fig. 2. The algorithm OPDI-Disconnected.

At the beginning, the algorithm computes r+(C) and r∗(C) for each con-
nected component C of G. For computing r+(C) the algorithm adds a ver-
tex v, guessing (with O(n) tries) an edge connecting v to C, and then calls
OPDI-Connected for this component and root v. For computing r∗(C) the algo-
rithm guesses a root u (with O(n) tries), and then calls OPDI-Connected for C
and root u.

If r∗(C) = ∞ for some component C then, as r∗(G) ≥ r∗(C), G has no
diameter-D outerplanar completion.

Then, as they could be added in a diameter-D outerplanar completion (by
Lemma 5), the algorithm removes the components C with small escalated eccen-
tricity, that is those such that r+(C) < D/2.
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Then the algorithm tests if there is no component C such that r+(C) > D/2,
or if there is only one component C such that r+(C) > D/2, and if r∗(C) ≤ D/2.
In both cases by Lemmas 6 and 7, G is a positive instance.

Then the algorithm tests if there are more than 3 components C such that
r+(C) > D/2. In this case, by Lemma 6, G is a negative instance. Otherwise, G
has p = 1, 2, or 3 such connected components, and the algorithm guesses p − 1
edges (in time O(n2p−2)) to connect them (as they should be by Corollary 3).
For each such graph we call algorithm OPDI-Connected to check that this graph
has a diameter-D outerplanar completion.

Then the algorithm proceeds differently according to D’s parity. If D is odd,
then G is a positive instance (By Lemma 8). If D is even, if G has (still) more
than 5 − p connected components (by Lemmas 9 and 10), then G is a negative
instance. Then we are left with a graph G with 1+q connected components, and
again the algorithm guesses q edges (in time O(n2q)), connecting G. For each of
these graphs the algorithm calls OPDI-Connected(G, v,D) (for any v) to check
whether this graph admits a diameter-D outerplanar completion.

Finally if none of these “guessed” connected graphs has a diameter-D outer-
planar completion, then the algorithm concludes that G is a negative instance.

Theorem 2. (�) Algorithm 2 solves Outerplanar Diameter Improve-
ment for disconnected input graphs in polynomial time. For odd D the running
time is O(n7), while it is O(n9) for even D.

3 Conclusions and Further Research

Our algorithm for OPDI runs in time O(n3) for connected input graphs, and in
time O(n7) or O(n9) for disconnected input graphs, depending on whether D is
odd or even, respectively. The main contribution of our work is to establish the
computational complexity of OPDI and there is room for improvement of the
running time.

We believe that our approach might be interesting for generalizations or
variations of the OPDI problem, such as the one where we demand that the
augmented graph has fixed outerplanarity or is series-parallel.

By the Graph Minors series of Robertson and Seymour [22,23], we know that
for each fixed integer D, the set of minor obstructions4 of OPDI is finite. We
have some preliminary results in this direction, but we managed to obtain a
complete list only for small values of D. Namely, we obtained a partial list of
forbidden substructures (not necessarily minimal), by using the notion of parallel
matching. These partial results can be found in the arXiv version of this article,
see [5].

Settling the computational complexity of PDI remains the main open prob-
lem in this area. An explicit FPT-algorithm, or even an XP-algorithm, would

4 The minor obstruction set of OPDI for some D is the smallest family F of graphs
such that a graph G has an outerplanar completion of diameter D if and only if no
graph of F is a minor of G.
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also be significant. The interested reader can find in the arXiv version [5] of this
paper a NP-completeness result for a modified version of PDI involving edge
weights.

Appendix

Proof (of Lemma1). Let G′ be an outerplanar completion of G such that
ecc(v,G′) = ecc∗(v,G). Contracting the edges of G′ that have at least one
endpoint out of V (H) one obtains an outerplanar completion H ′ of H (as
outerplanar graphs are minor-closed). As contracting an edge does not elon-
gate any shortest path, we have that distH′(v, u) ≤ distG′(v, u) for any vertex
u ∈ V (H), and in particular the diameter of H ′ is at most the diameter of G′,
so ecc∗(v,H) ≤ ecc(v,H ′) ≤ ecc(v,G′) = ecc∗(v,G). ��
Proof (of Lemma2). “⇐”: If ecc∗(v,B1...6) + ecc∗(v,B7) ≤ D, gluing on v
the outerplanar completions of G[B1...6], G[B7], . . . , G[Bt], respectively achieving
ecc∗(v,B1...6), ecc∗(v,B7), . . . , ecc∗(v,Bt), one obtains a diameter-D outerplanar
completion G′ of G. Indeed,

• The graph obtained is outerplanar and contains G.
• Two vertices x, y of G[B1...6] (resp. of G[Bi] for 7 ≤ i ≤ t) are at distance at

most D from each other, as ecc∗(v,B1...6) < ∞ (resp. as ecc∗(v,Bi) < ∞).
• Any vertex x of G[B1...6] and y of G[Bi], with 7 ≤ i ≤ t, are respectively at

distance at most ecc∗(v,B1...6) and ecc∗(v,Bi) ≤ ecc∗(v,B7) from v. They are
thus at distance at most ecc∗(v,B1...6) + ecc∗(v,B7) ≤ D from each other.

• Any vertex x of G[Bi] and y of G[Bj ], with 7 ≤ i < j ≤ t, are respectively
at distance at most ecc∗(v,Bi) ≤ ecc∗(v,B1) ≤ ecc∗(v,B1...6) (By Lemma 1)
and ecc∗(v,Bj) ≤ ecc∗(v,B7) from v. They are thus at distance at most D
from each other.

“⇒”: In the following, we consider towards a contradiction an outerplanar graph
G admitting a diameter-D outerplanar completion, but such that

ecc∗(v,B1...6) + ecc∗(v,B7) > D. (1)

Among the triangulated diameter-D outerplanar completions of G, let G′ be
one that maximizes the number of branches at v. Let t′ > 0 be the num-
ber of branches at v in G′, and denote these branches B′

1, . . . , B
′
t′ , in such

a way that ecc∗(v,G′) = ecc∗(v,B′
1) ≥ ecc∗(v,B′

2) ≥ . . . ≥ ecc∗(v,B′
t′).

Let Si′ := {i | Bi ⊆ B′
i′} for all 1 ≤ i′ ≤ t′ (note that {S1, . . . , St′} is a

partition of {1, . . . , t}). Furthermore, among all B′
i′ maximizing ecc∗(v,B′

i′), we
choose B′

1 such that min S1 is minimal. Then, since G′ has diameter at most D
and shortest paths among distinct branches of G′ contain v, it is clear that

∀
1≤i′<j′≤t′

ecc∗(v,B′
i′) + ecc∗(v,B′

j′) ≤ D. (2)

The branches B′
i′ with |Si′ | = 1 are called atomic.
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Claim 1. Let B′
i′ be a non-atomic branch and let S′ � Si′ . Then,

ecc∗(v,
⋃

i∈S′ Bi) + ecc∗(v,
⋃

i∈Si′\S′ Bi) > D.

Proof. Let B :=
⋃

i∈S′ Bi and B̄ := B′
i′ \B. If the claim is false, then ecc∗(v,B)+

ecc∗(v, B̄) ≤ D. Furthermore, for all j′ �= i′,

ecc∗(v,B) + ecc∗(v,B′
j′)

Lemma 1≤ ecc∗(v,B′
i′) + ecc∗(v,B′

j′)
(2)

≤ D

and, likewise, ecc∗(v, B̄)+ecc∗(v,B′
j′) ≤ D. Thus, the result of replacing G′[B′

i′ ]
with the disjoint union of an outerplanar completion achieving ecc∗(v,B) and
an outerplanar completion achieving ecc∗(v, B̄) yields a diameter-D outerplanar
completion containing more branches than G′, contradicting our choice of G′.

In the following, we abbreviate |S1| =: s.

Claim 2. S1 = {j | 1 ≤ j ≤ s}.
Proof. Towards a contradiction, assume that there is some i /∈ S1 with i +
1 ∈ S1. Let i′ > 1 be such that Bi ⊆ B′

i′ . Note that B′
1 is not atomic, as

otherwise ecc∗(v,B′
1) = ecc∗(v,Bi+1) ≤ ecc∗(v,Bi) ≤ ecc∗(v,B′

i′), contradicting
the numbering of the B′

j ’s. Then,

ecc∗(v,B′
1 \ (Bi+1 \ v))) + ecc∗(v,Bi+1)

Lemma 1≤ ecc∗(v,B′
1) + ecc∗(v,Bi+1)

≤ ecc∗(v,B′
1) + ecc∗(v,Bi)

≤ ecc∗(v,B′
1) + ecc∗(v,B′

i′)
(2)

≤ D,

contradicting Claim 1.

Claim 3. For all i, we have ecc∗(v,B1...i) + ecc∗(v,Bi+1) > D if and only
if i < s.

Proof. “⇐”: Towards a contradiction, assume there is some i < s such that
ecc∗(v,B1...i)+ecc∗(v,Bi+1) ≤ D. Then the graph obtained from the diameter-D
outerplanar completions of B1...i and Bj for all i < j ≤ t, respectively achieving
ecc∗(v,B1...i) and ecc∗(v,Bj), would be a diameter-D outerplanar completion of
G with more branches than G′, a contradiction.

“⇒”: Assume towards a contradiction that there is some i ≥ s such
that ecc∗(v,B1...i) + ecc∗(v,Bi+1) > D. By (2) and Lemma 1, we have D ≥
ecc∗(v,B1...s)+ecc∗(v,Bi+1) and, hence ecc∗(v,B1...i) > ecc∗(v,B1...s). But this
contradicts Lemma 1, as ecc∗(v,B1...s) = ecc(v,G′) ≥ ecc∗(v,G).

By (1), Claim 3 implies that s ≥ 7.

Claim 4. Let S′ ⊆ {1, . . . , t} and let B :=
⋃

i∈S′ Bi. Then, there is a vertex in B
that is, in G′, at distance at least ecc∗(v,B) to every vertex of V (G) \ (B \ v).
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Proof. Towards a contradiction, assume that for every vertex u ∈ B there exists
a vertex w ∈ V (G) \ (B \ v)) such that distG′(u,w) < ecc∗(v,B). From G′,
contracting all vertices of V (G)\B onto v yields a graph H with a path between u
and v of length strictly smaller than ecc∗(v,B). As this argument holds for every
vertex u ∈ B, it implies that ecc(v,H) < ecc∗(v,B). Since H is an outerplanar
completion of G[B], this contradicts the definition of ecc∗.

Two sub-branches Bi and Bj of B′
1 are linked if G′ contains an edge from a

vertex of Bi \ {v} to a vertex of Bj \ {v}.

Claim 5. Let 1 ≤ i < j ≤ s and let ecc∗(v,B1...i) + ecc∗(v,Bj) > D. Then
ecc∗(v,B1...i) + ecc∗(v,Bj) = D + 1, and Bj is linked to one of B1, . . . , Bi.

Proof. By Claim 4, there is a vertex x ∈ Bj that is, in G′, at distance at least
ecc∗(v,Bj) to every vertex in B1...i ⊆ V (G) \ (B \ v). Likewise, there is a vertex
y ∈ B1...i that is, in G′, at distance at least ecc∗(v,B1...i) to every vertex in
Bj . Let P be any shortest path of G′ between x and y (hence P has length at
most D). By construction, the maximal subpath of P in Bj \ v containing x
has length at least ecc∗(v,Bj) − 1 and the maximal subpath of P in B1...i \ v
containing y has length at least ecc∗(v,B1...i)−1. Since these subpaths are vertex
disjoint the remaining part of P has length dP ≥ 1. Hence D ≥ ecc∗(v,Bj) +
ecc∗(v,B1...i)+dP −2. As ecc∗(v,B1...i)+ecc∗(v,Bj) > D, we have that dP = 1,
and thus there is a single edge in P linking Bj and B1...i. This also yields to
ecc∗(v,Bj) + ecc∗(v,B1...i) = D + 1.

In the following, consider the graph L on the vertex set {1, . . . , t} such that ij
is an edge of L if and only if Bi is linked to Bj in G′. For all 1 ≤ k ≤ t, let Lk

be the subgraph of L that is induced by {1, . . . , k}. A consequence of the next
claim will be that Bi+1 is linked to exactly one of these branches.

Claim 6. For each 1 ≤ k ≤ s, the graph Lk is a path.

Proof. Let 1 ≤ k ≤ s. Then,

1. Lk is connected. Indeed Claims 3 and 5 clearly imply that for any 1 ≤ i < s,
Bi+1 is linked to one of B1, . . . , Bi, i.e. that there is a path from any k to
1 in Lk.

2. Lk has maximum degree 2: towards a contradiction, assume that some branch
Bi is linked to three branches Bj1 , Bj2 , and Bj3 . As each of Bi \ v, Bj1 \ v,
Bj2 \ v, and Bj3 \ v induces a connected graph in G′, these four sets together
with v induce a K2,3-minor in G′, contradicting its outerplanarity.

3. Lk is not a cycle since otherwise, as each Bi \ v induces a connected graph in
G′, these sets together with v would induce a K4-minor in G′ (since s ≥ 3),
contradicting its outerplanarity.

Hence, for any 1 ≤ i ≤ s, the graph G′[B1...i \ v] is connected.

Claim 7. For any 3 ≤ i < s, ecc∗(v,B1...i) > ecc∗(v,B1...i−2).
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Proof. The monotonicity property given by Lemma1 implies that ecc∗(v,B1...i) ≥
ecc∗(v,B1...i−1) ≥ ecc∗(v,B1...i−2). Towards a contradiction suppose that
ecc∗(v,B1...i) = ecc∗(v,B1...i−1) = ecc∗(v,B1...i−2) =: c. Then, Claim 3 implies
that c+ecc∗(v,Bj) > D for all j ∈ {i−1, i, i+1}. Thus, by Claim 5, each of Bi−1,
Bi, and Bi+1 is linked to one of B1, . . . , Bi−2. As each of B1...i−2\v, Bi−1\v, Bi\v,
and Bi+1 \ v induces a connected graph in G′, these sets together with vertex v
induce a K2,3-minor, contradicting the outerplanarity of G′.

In the following let q be any integer such that 3 ≤ q ≤ s and Bq is not linked
to B1. Let p < q be such that Bp and Bq are linked. Note that p is unique since
otherwise, Lq would not be a path, contradicting Claim6.

Consider a shortest cycle containing v, a vertex u ∈ Bp and some vertex
of Bq. Since G′ is triangulated, this cycle is a triangle. Thus, u is a neighbor of v
(in G′) with u ∈ Bp and u is adjacent to some vertex in Bq \ v (see Fig. 3 for an
illustration).

v

Bp

BqB1

u

Fig. 3. Structure of G′[B1...q].

Since, by Claim 6, all paths in G′ between a vertex in B1 and a vertex in Bq

contain u or v, it is clear that {v, u} separates B1 \v and Bq \v. Let (X,Y ) be a
separation of G′ (that is, two sets X,Y ⊆ V (G′) such that X ∪ Y = V (G′) and
such that there are no edges between X \Y and Y \X) such that X ∩Y = {v, u},
B1...q−1 \ Bp � X and Bq ⊆ Y (such a separation exists by Claim 6).

Claim 8. ecc∗(v,B1...q) = ecc∗(v,B1...q−1).

Proof. By Lemma 1, it suffices to show ecc∗(v,B1...q) ≤ ecc∗(v,B1...q−1). To this
end, let H be the outerplanar completion of B1...q obtained from G′ by contract-
ing every branch Bi, with i > q, onto v. Since H is a minor of G′, H is a diameter-
D outerplanar completion of B1...q. We show ecc(v,H) ≤ ecc∗(v,B1...q−1).

Consider any vertex x ∈ X, and let y ∈ Bq ⊆ Y be a vertex that is at distance
at least ecc∗(v,Bq) to both v and u (such a vertex y exists by Claim 4). As all
shortest paths between x and y (of length at most D) contain v or u, the vertex
x is at distance at most D − ecc∗(v,Bq) to v or u. As v and u are adjacent, the
vertex x is at distance at most D+1−ecc∗(v,Bq) (= ecc∗(v,B1...q−1) by Claim 5,
which is applicable since, by Claim 3, ecc∗(v,B1...q−1) + ecc∗(v,Bq) > D) to v.
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Since x is chosen arbitrarily in X, every vertex in X is at distance at most
ecc∗(v,B1...q−1) to v in H.

Consider now any vertex y ∈ Y ∩ V (H), and let x ∈ B1 � X be a vertex
that is at distance at least ecc∗(v,B1) to both v and u (such a vertex x exists by
Claim 4). As a shortest path between x and y (of length at most D) goes through
v or u, the vertex y is thus at distance at most D−ecc∗(v,B1) to v or u. As v and u
are adjacent, the vertex y is at distance at most D+1−ecc∗(v,B1) (= ecc∗(v,B2)
by Claim 5, which is applicable since, by Claim 3, ecc∗(v,B1)+ecc∗(v,B2) > D)
to v. As ecc∗(v,B2) ≤ ecc∗(v,B1...q−1) by Lemma 1, every vertex y ∈ Y ∩ V (H)
is at distance at most ecc∗(v,B1...q−1) to v in H. ��
We now claim that there exist two consecutive such values q between 3 and 6.
Indeed, by Claim 6 B1 is linked to at most two other branches, and by Claims 3
and 5 B2 is linked to B1, so it follows that B1 is linked to at most one branch Bj

with j ≥ 3. Therefore, for 3 ≤ q ≤ 6, there are at least two consecutive values of
q such that Bq is not linked to B1. Once we have these two consecutive values,
say i − 1 and i, we have by Claim 8 that ecc∗(v,B1...i−2) = ecc∗(v,B1...i), for
some i ≤ 6, contradicting Claim 7. This concludes the proof of the lemma. ��
Proof (of Corollary 1). Recall that the property of having an outerplanar com-
pletion with bounded diameter is minor closed. Thus Gi being a minor of G, we
have that if G admits a diameter-D outerplanar completion, then so does Gi.

On the other hand, if Gi admits a diameter-D outerplanar completion, by
Lemma 2 applied to Gi we have that ecc∗(v,B1...6)+ecc∗(v,B7) ≤ D. Thus glu-
ing on v the outerplanar completions of G[B1...6], G[B7], . . . , G[Bt], respectively
achieving ecc∗(v,B1...6), ecc∗(v,B7), . . . , ecc∗(v,Bt), one obtains a diameter-D
outerplanar completion of G. ��
Proof (of Lemma3). It is clear from the fact that a shortest path from Xu \ {u}
to u does not go through Xv \{w} (as it should go through w ∈ N(u)), from the
fact that a shortest path from Xu to v goes through {u,w} ⊆ N(v), and from
the fact that any subpath of a shortest path is a shortest path (for some pair of
vertices). ��
Proof (of Lemma5). In a diameter-D outerplanar completion of G \ C there is
a vertex v with eccentricity at most 	D/2
+1, by Lemma 4. In this completion,
adding the completion of C + v achieving r+(C) < D/2, yields a diameter-D
outerplanar completion of G. ��
Proof (of Observaton 2). Let the result of contracting all vertices in G′ \ (C ∪C ′)
onto vertices in C and contracting C ′ onto a single vertex u be G′′. Then, G′′

is a subgraph of an outerplanar completion of the result of adding u as isolated
vertex to G′[C]. By definition, ecc(u,G′′) ≥ r+(C), implying that there is a
vertex v ∈ C at distance at least r+(C) to u in G′′. Thus, v is at distance at
least r+(C) to each vertex of C ′ in G′. ��
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Proof (of Lemma6). The first statement comes from the above comments. The
proof of the second statement is similar to the one of Lemma 5. For some com-
ponent C of G, let v be such that ecc(v, C) = r∗(C) ≤ r+(C) ≤ D/2, and
complete C in order to achieve this value. Then for the other components C ′

consider their escalated completion with respect to v. As r+(C ′) ≤ D/2 this
graph has diameter at most D. ��
Proof (of Lemma7). Same proof as Lemma 6 ��
Proof (of Lemma8). Indeed, by Lemma 5 it is sufficient to consider the compo-
nent Cmax alone. As r+(Cmax) < ∞, Cmax has a diameter-D outerplanar comple-
tion, and so does G. ��
Proof (of Lemma9). By Corollary 3, in a diameter-D outerplanar completion G′

of G the p components are pairwise adjacent, and any of the q components is adja-
cent to every of the p ones. For p = 2, as q ≥ 3, this would induce a K2,3-minor in
G′, a contradition. For the other cases, this would induce a K4-minor. ��
Proof (of Lemma10). Let us denote C1, C2, C3, and C4 the connected compo-
nents such that r+(Ci) ≥ D/2, distinct from Cmax. Assume for contradiction
that G admits a diameter-D outerplanar completion, denoted G′.

Claim 9. For each Ci, Cj, either Ci and Cj are adjacent in G′, or Ci and Cj

have a common neighbor in G′.

Proof. Assume for contradiction that Ci and Cj are not adjacent and do not
have a common neighbor in G′. Let us now construct the graph G′′ from G′ as
follows. For any component C of G′ \ (Ci ∪ Cj) that is not adjacent to both
Ci and Cj , contract C onto vertices of Ci or Cj (According to the one C is
neighboring). As G′′ is obtained from G′ by contracting edges, G′′ also is a
diameter-D outerplanar completion (for some graph containing Ci and Cj). Let
Ni := NG′′(Ci), let Nj := NG′′(Cj), and note that Ci ∩Nj = ∅, Ni ∩Cj = ∅, and
Ni ∩ Nj = ∅. Then, by Observation 2 (as G′′ \ Ci and G′′ \ Cj are connected),
there are vertices vi ∈ Ci and vj ∈ Cj at distance at least D/2 to each vertex
in Ni and Nj , respectively, in G′′. Since Ni and Nj are at distance at least one,
vi and vj are at distance at least D + 1, contradicting G′′ having diameter D.

Claim 10. There is a vertex u ∈ Cmax that is adjacent in G′ to 3 of the compo-
nents C1, C2, C3, and C4.

Proof. First, note that there is a vertex u and 3 components, say C1, C2, C3,
with u ∈ NG′ [Ci] for all 1 ≤ i ≤ 3, since otherwise, there would be internally
vertex-disjoint paths between each two of the four components Ci, implying the
existence of a K4-minor in G′.

If u is neither in Cmax nor in Ci, for 1 ≤ i ≤ 3, then, since all the Ci are
adjacent to Cmax (by Corollary 3), G′ would have a K2,3-minor on the vertex
sets {u, Cmax} and {C1, C2, C3}.

Hence, in the following, we assume that u ∈ C1. Let z be a neighbor of C1

in Cmax and, for i ∈ {2, 3} let wi denote a neighbor of C4 in N [Ci]. We note
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that w2 �= z and w3 �= z, since otherwise, the claim follows and we are done.
Furthermore, w2 �= u and w3 �= u, since otherwise there is a K2,3-minor on the
vertex sets {u, Cmax} and {C2, C3, C4}. Let X := (C4 ∪ {w2, w3}) \ (C2 ∪ C3)
and note that X is adjacent to C2 and C3, respectively. Let Y be the connected
component of Cmax\{w2, w3} containing z, and note that Y is adjacent to C1 and
X. Finally, since X, Y , C1, C2, and C3 are pairwise disjoint, G′ has a K2,3-minor
on the vertex sets {X,C1} and {C2, C3, Y }.

Let v denote a vertex of Cmax that is at distance at least D/2 + 1 to u in G′ and
consider the result G′ \ {u} of removing u from G′. Let C denote the connected
component of G′ \{u} that contains v. Towards a contradiction, assume there is
a connected component Ci that is adjacent to u but not to C in G′, then all paths
between v and any vertex in Ci contain u. Since G′ has diameter D, all vertices
in Ci are at distance at most D/2 − 1 to u in G′, contradicting r+(Ci) ≥ D/2.
Thus there is a K2,3-minor in G′ on the vertex sets {C1, C2, C3} and {u,X}
where X is the connected component of G′ \ (C1 ∪ C2 ∪ C3 ∪ {u}) containing v.
This concludes the proof of the lemma. ��
Proof (of Theorem2). Indeed, the algorithm runs in time O(n7) for odd D (at
most O(n4) at line 16, times O(n3) for the call to OPDI-Connected in line 18).
The algorithm runs in O(n2p+2q+1) time for even D (O(n2p−2) in line 16, times
O(n2q) in line 22, times O(n3) for the call to OPDI-Connected in line 23), where
p and q respectively denote the number of connected components C such that
r+(C) > D/2 and r+(C) = D/2. As p + q ≤ 4, we are done.

References

1. Adler, I., Kolliopoulos, S.G., Thilikos, D.M.: Planar disjoint-paths completion. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 80–93. Springer,
Heidelberg (2012)
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