
Asymptotically Precise Ranking Functions
for Deterministic Size-Change Systems

Florian Zuleger(B)

Vienna University of Technology, Vienna, Austria
zuleger@forsyte.at

Abstract. The size-change abstraction (SCA) is a popular program
abstraction for termination analysis, and has been successfully imple-
mented for imperative, functional and logic programs. Recently, it has
been shown that SCA is also an attractive domain for the automatic
analysis of the computational complexity of programs. In this paper,
we provide asymptotically precise ranking functions for the special case
of deterministic size-change systems. As a consequence we also obtain
the result that the asymptotic complexity of deterministic size-change
systems is exactly polynomial and that the exact integer exponent can
be computed in PSPACE.

1 Introduction

The size-change abstraction (SCA) is a popular program abstraction for the
automated termination analysis of functional [8,9], logical [10] and imperative [1]
programs as well as term rewriting systems [5]; SCA is implemented in the
industrial-strength systems ACL2 [9] and Isabelle [7]. Recently SCA has also
been used for computing resource bounds of imperative programs [11]. SCA is
a predicate abstract domain that consists of Boolean combinations of inequality
constraints of shape x ≥ y′ or x > y′ in disjunctive normal form. SCA vari-
ables take values in the natural numbers and should be considered as norms on
the program state. The main reason, that makes SCA an attractive domain for
practical termination analysis is that size-change predicates such as x ≥ y′ can
be extracted locally from the program and that termination for abstracted pro-
grams can be decided in PSPACE [8]. However, the termination proofs obtained
by SCA through the decision procedures in [8] do not immediately allow to under-
stand why the program makes progress and eventually terminates. In contrast,
the traditional method of proving termination by a ranking function provides
such an understanding. A ranking function maps the program states to a well-
founded domain (W,>) such that every program step decreases the value of the
current program state. A ranking function provides a global argument for termi-
nation and makes the program progress apparent. Ranking functions also allow
to obtain a bound on the runtime of a program. If a ranking function maps to a
well-founded domain (W,>), the height |W | of the well-founded domain provides
a bound on the number of program steps. We say a ranking function is precise,
if the transition relation of the program also has height |W |.
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 426–442, 2015.
DOI: 10.1007/978-3-319-20297-6 27

Asymptotically Precise Ranking Functions for Deterministic SCSs 427

Important predecessor work has studied the construction of ranking func-
tions for the abstract programs obtained by SCA [2–4]. Unfortunately, the cited
constructions do not discuss the precision of the obtained ranking function and
it is not clear how to modify these constructions to be precise. In this paper, we
provide asymptotically precise ranking functions for the special case of deter-
ministic size-change systems (which have been called fan-out free size-change
systems in previous work [4]). As a consequence we obtain the additional result
that the asymptotic complexity of deterministic size-change systems is exactly
polynomial and that the exact integer exponent can be computed in PSPACE.
We give a precise statement of our contributions at the end of Sect. 2.

1.1 Related Work

Our iterated power-set construction for lexicographic ranking functions bears
strong similarities with [4], which also studies the special case of deterministic
size-change systems. In contrast to our approach, the ranking function in [4] is
obtained via a single monolithic construction. This makes it very hard to analyze
the precision of the obtained ranking function.

The size of a set of local ranking functions vs the size of a single global ranking
function is studied in [2]. Interestingly this study includes the sum of variables as
local ranking function, which is a crucial building block in our construction for
obtaining asymptotically precise ranking functions. However, [2] restricts itself
to the special case of strict inequalities x > y′ and does not use the sum operator
in the construction of the global ranking function.

In [3] variables are allowed to take values over the integers and general-
izes size-change predicates to monotonicity constraints which can express any
inequality between two variables in a transition. The ranking function construc-
tion in [3] is elegant, but it is unclear how to obtain precise ranking functions
from this construction.

A complete characterization of the asymptotic complexity bounds arising
from SCA is given in [6] and a method for determining the exact asymptotic
bound of a given abstract program is provided. For general SCA these bounds
are polynomials with rational exponents. Reference [6] does not consider the
special case of deterministic size-change systems whose bounds are shown to be
polynomial with integral exponents in this paper. Moreover, the construction
in [6] does not allow to extract ranking functions. Further, [6] does not include
a complexity result.

2 Size-Change Systems (SCSs)

We fix some finite set of size-change variables Var . We denote by Var ′ the
set of primed versions of the variables in Var . A size-change predicate (SCP)
is a formula x � y′ with x, y ∈ Var , where � is either > or ≥. A size-change
transition (SCT) T is a set of SCPs. An SCT T is deterministic, if for every
variable x ∈ Var there is at most one variable y, such that x � y′ ∈ T , where

428 F. Zuleger

� is either > or ≥. A size-change system (SCS) A = (Locs(A),Edges(A)) is a
directed labeled graph with a finite set of locations Locs(A) and a finite set of
labeled edges Edges(A), where every edge is labeled by an SCT. We denote an
edge of an SCS by �

T−→ �′. An SCS A is deterministic, if T is deterministic for
every edge �

T−→ �′. In the rest of the paper, we will always assume SCSs to be
deterministic. We will mention determinism, when we use it. A path of an SCS
A is a sequence �1

T1−→ �2
T2−→ · · · with �i

Ti−→ �i+1 for all i. An SCS A is strongly
connected, if for all locations �, �′ ∈ Locs(A) there is a path from � to �′.

We define the semantics of size-change systems by valuations σ : Var →
[0, N] of the size-change variables to natural numbers in the interval [0, N],
where N is a (symbolic) natural number. We also say σ is a valuation over
[0, N]. We denote the set of valuations by ValN . We write σ, τ ′ |= x � y′ for
two valuations σ, τ , if σ(x) � τ(y) holds over the natural numbers. We write
σ, τ ′ |= T , if σ, τ ′ |= x � y′ holds for all x � y′ ∈ T . A trace of an SCS A is
a sequence (�1, σ1)

T1−→ (�2, σ2)
T2−→ · · · such that �1

T1−→ �2
T2−→ · · · is a path

of A and σi, σ
′
i+1 |= Ti for all i. The length of a trace is the number of edges

that the trace uses, counting multiply occurring edges multiple times. An SCS
A terminates, if A does not have a trace of infinite length for any N .

Definition 1. Let A be an SCS and let (W,>) be a well-founded domain. We
call a function rank : Locs(A) × ValN → WN a ranking function for A, if for
every trace (�1, σ1)

T−→ (�2, σ2) of A we have rank(�1, σ1) > rank(�2, σ2). We call
the ranking function rank asymptotically precise, if the length of the longest trace
of A is of order Ω(|WN |).

Contributions: In this paper we develop an algorithm, which either returns that
a given SCS A does not terminate or computes a function rank and an integer
k ∈ [0, |Var |] such that rank : Locs(A) × ValN → WN is a ranking function
for A with |WN | = O(Nk) and there is a sequence of paths Loop1, . . . ,Loopk in
A such that the path ((· · · (Loopk)N · · ·Loop2)NLoop1)N can be completed to a
trace of length Ω(Nk). The upper and lower complexity bounds show that our
ranking function construction is asymptotically precise. As a corollary we get
that deterministic SCSs exactly have asymptotic complexity Θ(Nk) for some
k ∈ [0, |Var |]. Additionally, we show that the witness Loop1, . . . ,Loopk for the
lower complexity bound can be guessed in PSPACE giving rise to a PSPACE
algorithm for deciding the asymptotic complexity of deterministic SCSs.

Example 1. We consider the SCS A1 with a single location � and edges �
T1−→

�, �
T2−→ � with T1 = {x1 ≥ x′

2, x2 > x′
2, x3 ≥ x′

3, x4 ≥ x′
3} and T2 = {x1 ≥

x′
1, x2 > x′

1, x3 ≥ x′
4, x4 > x′

4}. Our algorithm computes the ranking function
rank1 = min{〈x2 + x3, 1〉, 〈x1 + x4, 2〉} (slightly simplified) for A1, where 〈a, b〉
denotes tuples ordered lexicographically. We point out that the image of rank1

has height O(N); thus rank1 proves that A1 has linear complexity.

Asymptotically Precise Ranking Functions for Deterministic SCSs 429

Example 2. We consider the SCS A2 with a single location � and edges �
T1−→

�, �
T2−→ �, �

T3−→ � with T1 = {x1 > x′
1, x2 > x′

1, x3 ≥ x′
3}, T2 = {x1 ≥ x′

1, x2 >
x′
2, x3 ≥ x′

2} and T3 = {x1 > x′
3, x2 ≥ x′

2, x3 > x′
3}. Our algorithm computes the

ranking function rank2 = min{〈x1, x2〉, 〈x2, x3〉, 〈x3, x1〉} (slightly simplified) for
A2. We point out that the image of rank2 has height O(N2); thus rank2 proves
that A2 has quadratic complexity.

Extension to arbitrary well-founded orders: The results in this paper can eas-
ily be extended to valuations over ordinal numbers. It would only be necessary
to introduce suitable machinery for dealing with arithmetic over ordinal num-
bers; the construction of the ranking function and the witness for the lower
bound would essentially remain the same. We refrain in this paper from this
extension because we want to keep the development elementary. For comparison
with earlier work on SCA, where variables can take values over arbitrary well-
founded orders, we sketch these extended results below: We consider valuations
σ : Var → α that map the size-change variables to ordinal numbers below α.
We denote the set of valuations by Valα. We will assume α ≥ ω in the following
(the case α < ω corresponds to the results discussed in the previous paragraph).
Let A be some SCS. We define the transition relation of A by

RA = {((�1,σ1), (�2, σ2)) ∈ (Locs(A) × Valα)2 |
there is an SCT T with �1

T−→ �2 ∈ Edges(A) and σ1, σ
′
2 |= T}.

Let α be some ordinal. Let βα be the maximal ordinal such that ωβα ≤ α.
We set ᾱ = ωβα . We note that we always have ᾱ ≤ α ≤ ᾱc for some natural
number c. The algorithm in this paper can be adapted such that it either returns
that a given SCS A does not terminate or computes a function rank and an
integer k ∈ [0, |Var |] such that rank : Locs(A) × Valα → Wα is a ranking
function for A with |Wα| ≤ αkd for some natural number d and there is a
sequence of paths Loop1, . . . ,Loopk in A such that every path in P (i1, . . . , ik)
can be completed to a trace, where (i1, . . . , ik) ∈ ᾱk, P (i1, . . . , ik) = {Loopjπ |
π ∈ P (i′1, . . . , i

′
k) and i1 = i′1, . . . , ij−1 = i′j−1, ij > i′j} and P (0, . . . , 0) = {ε},

with ε being the empty path. This establishes ᾱk ≤ |RA| ≤ αkd and thus
our construction characterizes the height or the transition relation of A up to
a constant factor d < ω. Additionally, the witness Loop1, . . . ,Loopk for the
lower bound can be guessed in PSPACE giving rise to a PSPACE algorithm for
deciding the height of the transition relation of a given SCS up to a constant
factor d < ω.

Structure of the paper: In Sect. 3 we develop our main technical tool, an iter-
ated application of the well-known powerset construction from automata theory.
In Sect. 4 we define for-loops, which will be employed for establishing the lower
complexity bounds. In Sect. 5 we develop several technical devices for the con-
struction of ranking functions. In Sect. 6 we state our construction of ranking
functions for SCSs; we apply our algorithm to Examples 1 and 2. We refer the
reader to these examples for an illustration of the concepts in this paper.

430 F. Zuleger

3 Adding Contexts to SCSs

In the following we define a construction for adding context to SCSs. This con-
struction mimics the powerset construction in automata theory.

Let T be an SCT. We define sucT : 2Var → 2Var by sucT (V) = {y ∈ Var |
exists x ∈ Var with x � y′ ∈ T}. Let A be an SCS and let π = �1

T1−→ �2
T2−→ · · ·

be a finite path of A. We define sucπ : 2Var → 2Var by sucπ = · · ·◦sucT2 ◦sucT1 .
We have the following property from the powerset-like construction of suc:

Proposition 1 (Monotonicity). Let V1 ⊆ V2 ⊆ Var. We have sucT (V1) ⊆
sucT (V2) for every SCT T and sucπ(V1) ⊆ sucπ(V2) for every path π.

For deterministic SCTs and SCSs we have the following property:

Proposition 2 (Decrease of Cardinality). Let V ∈ 2Var . We have |V | ≥
|sucT (V)| for every deterministic SCT T . We have |V | ≥ |sucπ(V)| for every
path π of an deterministic A.

Definition 2 (Context). A context of length k ∈ [0, |Var |] is a sequence
〈C1, . . . , Ck〉 ∈ (2Var)k with Ci ⊆ Cj for all 1 ≤ i < j ≤ k. We denote the con-
text of length k = 0 by ε. Let C = 〈C1, . . . , Ck〉 be a context of length k. We call C
proper, if Ci � Cj for all 0 ≤ i < j ≤ k, setting C0 = ∅. We define the operation
of retrieving the last component of C by last(C) = Ck for k ≥ 1 and last(C) = ∅
for k = 0. Given C ∈ 2Var , we define the operation C :: C = 〈C1, . . . , Ck, C〉 of
extending C by C to a context of length k+1. For k ≥ 1, we define the operation
of removing the last component tail(C) = 〈C1, . . . , Ck−1〉 from C. For k ≥ 1, we
define the current variables of C by curr(C) = Ck \ Ck−1, setting C0 = ∅.
We fix a finite set of locations locs. In the following we define SCSs with contexts
over this set of locations locs. In the rest of the paper SCSs with contexts will
always refer to this set of locations locs.

Definition 3 (SCSs with Contexts). An SCS A has contexts of length k, if
Locs(A) ⊆ locs × (2Var)k, if C is a context for every (�, C) ∈ Locs(A), and
if for every edge (�, 〈C1, . . . , Ck〉) T−→ (�′, 〈C ′

1, . . . , C
′
k〉) ∈ Edges(A) we have

sucT (Ci) = C ′
i for all 1 ≤ i ≤ k.

Lemma 1. Let A be an SCS with contexts of length k. Let (�, 〈C1, . . . , Ck〉) and
(�′, 〈C ′

1, . . . , C
′
k〉) be two locations of Locs(A) that belong to the same SCC of A.

We have |Ci| = |C ′
i| for all 1 ≤ i ≤ k.

Proof. Because (�, 〈C1, . . . , Ck〉) and (�′, 〈C ′
1, . . . , C

′
k〉) are in the same SCC of A,

there is a path π from (�, 〈C1, . . . , Ck〉) to (�′, 〈C ′
1, . . . , C

′
k〉) with sucπ(Ci) = C ′

i

for all 1 ≤ i ≤ k. By Proposition 2 we have |Ci| ≥ |C ′
i| for all 1 ≤ i ≤ k. By a

symmetrical argument we also get |C ′
i| ≥ |Ci| for all 1 ≤ i ≤ k.

Definition 4. (Adding Contexts to SCSs). Let A be an SCS with contexts
of length k. We define A′ = History(A) to be the SCS with contexts of length k+1
whose set of locations Locs(A′) and edges Edges(A′) is the least set such that

Asymptotically Precise Ranking Functions for Deterministic SCSs 431

– (�, C :: Var) ∈ Locs(A′) for every (�, C) ∈ Locs(A), and
– if (�, C :: C) ∈ Locs(A′) and (�, C) T−→ (�′, C′) ∈ Edges(A) then (�, C :: C) T−→

(�′, C′ :: sucT (C)) ∈ Edges(A′) and (�′, C′ :: sucT (C)) ∈ Locs(A′).

Lemma 2. Let A be a strongly connected SCS with proper contexts of length k.
Then History(A) has at most 2|locs||Var |! locations.

Proof. Let (�, 〈C1, . . . , Ck〉) ∈ Locs(A) be some location of A. We set t = |Ck|.
By Lemma 1 we have for all locations (�′, 〈C ′

1, . . . , C
′
k〉) ∈ Locs(A) that |Ci| =

|C ′
i| for all 1 ≤ i ≤ k. It is easy to see that there are at most |Var |

(|Var |−t)!

proper contexts 〈C ′
1, . . . , C

′
k〉 with |Ci| = |C ′

i| for all 1 ≤ i ≤ k. We get
|Locs(History(A))| ≤ |locs| |Var |!

(|Var |−t)!2
|Var |−t ≤ 2|locs||Var |!, because there are

at most 2|Var |−t possibilities for the last component of a context in History(A).

Lemma 3. If A is strongly connected, History(A) has a unique sink SCC.

Proof. Let A′ = History(A). We show that A′ has a unique sink SCC by the
following argument: Let (�1, C1 :: C1), (�2, C2 :: C2) ∈ Locs(A′) be arbitrary
locations in sink SCCs of A′. Then (�2, C2 :: C2) is reachable from (�1, C1 :: C1).

By Definition 4 there is a location (�, C) ∈ Locs(A) and a path π in A from
(�, C) to (�2, C2) with sucπ(Var) = C2. Because A is strongly connected, there
is a path π′ from (�1, C1) to (�, C). Let π1,2 be the concatenation of π′ and π,
which is a path from (�1, C1) to (�2, C2). By definition, History(A) has a path
from (�1, C1 :: C1) to (�2, C2 :: sucπ1,2(C1)). We show that sucπ1,2(C1) = C2.

By definition of π1,2 and by Proposition 1 we have

sucπ1,2(C1) = sucπ(sucπ′(C1)) ⊆ sucπ(Var) = C2. (∗)

Because (�2, C2 :: sucπ1,2(C1)) is reachable from (�1, C1 :: C1) and because
(�1, C1 :: C1) belongs to a sink SCC, (�2, C2 :: sucπ1,2(C1)) must belong to the
same SCC as (�1, C1 :: C1). By Lemma 1 we have |C1| = |sucπ1,2(C1)|. With
(*) we get |C1| ≤ |C2|. By a symmetrical argument we get |C2| ≤ |C1|. From
|C1| = |C2| and (*) we finally get sucπ1,2(C1) = C2.

Lemma 3 allows us to make the following definition:

Definition 5. Let A be a strongly connected SCS. We denote by Context(A)
the unique sink SCC of History(A).

Definition 6 (Loop). Let A be an SCS with contexts. We call a cyclic path
π of A a loop for a location (�, C) ∈ Locs(A), if (1) π starts and ends in � and
(2) sucπ(Var) = last(C).

We obtain from Lemma 3 that all locations of Context(A) have loops:

432 F. Zuleger

Lemma 4. Let A be a strongly connected SCS. Every location (�, C) ∈
Locs(Context(A)) has a loop.

Proof. Because (�, C) belongs to the unique sink SCC of History(A) by Lemma 3
there is a path π from (�, tail(C)) to (�, tail(C)) in A such that sucπ(Var) =
last(C). From Proposition 1 and last(C) ⊆ Var we get

sucπ(last(C)) ⊆ last(C). (∗)

By definition, History(A) has a path from (�, C) = (�, tail(C) :: last(C)) to
(�, tail(C) :: sucπ(last(C))). Because (�, C) belongs to the unique sink SCC,
also (�, tail(C) :: sucπ(last(C))) belongs to this SCC and we get |last(C)| =
|sucπ(last(C))| from Lemma 1. With (*) we get last(C) = sucπ(last(C)).

4 For-Loops

Let π = �1
T1−→ �2

T2−→ · · · �l be a path. We write x � y ∈ π, if there is a chain of
inequalities x = x1 �1 x2 �2 · · · xl = y with xi �i xi+1 ∈ Ti for all i; we note that
in a deterministic SCS there is at most one chain of such inequalities. Moreover,
we set � = >, if there is at least one i with �i = >, and � = ≥, otherwise.

Definition 7 (For-loop). Let A be an SCS. We call a location � ∈ Locs(A), a
proper context 〈C1, . . . , Ck〉 and a sequence of cyclic paths Loop1, . . . ,Loopk that
starts and ends in � a for-loop of A with size k, if (1) sucLoopi

(Cj) = Cj for all
1 ≤ j ≤ i ≤ k, (2) x�y ∈ Loopj and x, y ∈ Ci imply � = ≥ for all 1 ≤ j < i ≤ k
and x, y ∈ Var, and (3) sucLoopi

(Var) = Ci for all 1 ≤ i ≤ k.

Intuitively, for-loops give rise to a trace for the path

((· · · (Loopk)N · · ·Loop2)
NLoop1)

N

for valuations over [0, N] and thus provide a lower complexity bound. The proof
of the following lemma is given in the appendix.

Lemma 5. Let A be an SCS. Let �, 〈C1, . . . , Ck〉 and Loop1, . . . ,Loopk be a
for-loop of A with size k. Then A has a trace of length Ω(Nk).

5 Ranking Functions for SCSs

Lemma 6. Let A be a strongly connected SCS with contexts and let A′ =
Context(A). For a given location (�, C) ∈ Locs(A) we denote by ext(�, C) =
{(�, C′) ∈ Locs(A′) | tail(C′) = C} the set of all locations of A′ that extend the
context C by an additional component. Let rank : Locs(A′) × ValN → W be a
ranking function for A′. Let fold(rank) : Locs(A) × ValN → W be the function
fold(rank)(�, σ) = min�′∈ext(�) rank(�′, σ). Then fold(rank) is a ranking function
for A.

Proof. Let (�1, σ1)
T−→ (�2, σ2) be a trace of A. Let �′

1 ∈ Locs(A′) be chosen
such that �′

1 achieves the minimum in min�′∈ext(�1) rank(�′, σ1). By construc-

tion of Context(A) there is a path �′
1

T−→ �′
2 of A′ such that �′

2 = (�, C) and

Asymptotically Precise Ranking Functions for Deterministic SCSs 433

�2 = (�, tail(C)) for some context C. Because rank is a ranking function for
Context(A), we have rank(�′

1, σ1) > rank(�′
2, σ2). Thus,

fold(rank)(�1, σ1) = min
�′∈ext(�1)

rank(�′, σ1) = rank(�′
1, σ1) > rank(�′

2, σ2) ≥

min
�′∈ext(�2)

rank(�′, σ2) = fold(rank)(�2, σ2).

Definition 8 (Descending Edge, Stable SCS). Let A be an SCS with
contexts. We call an edge (�, C) T−→ (�′, C′) ∈ Edges(A) descending, if there
are variables x, y ∈ Var with x ∈ curr(C), y ∈ curr(C′) and x > y′ ∈ T .
We denote by B = DeleteDescending(A) the SCS with Locs(B) = Locs(A) and
Edges(B) = {�1

T−→ �2 ∈ Edges(A) | �1
T−→ �2 is not descending}. We call A

unstable, if there is an edge (�, C) T−→ (�′, C′) ∈ Edges(A) and variables x, y ∈ Var
with x ∈ last(C), y ∈ last(C′) and x > y′ ∈ T ; otherwise, we call A stable.

We note that a stable SCS A does not have descending edges.

Definition 9 (Quasi-ranking Function). We call a function

rank : Locs(A) × ValN → W

a quasi-ranking function for A, if for every trace (�1, σ1)
T−→ (�2, σ2) of A we

have rank(�1, σ1) ≥ rank(�2, σ2).

Lemma 7. Let A be an SCS with contexts. Let sum(A) : Locs(A) × ValN → N

be the function sum(A)((�, C), σ) =
∑

x∈curr(C) σ(x). Then, sum(A) is a quasi-
ranking function for A. Further, the value of sum(A) is decreasing for descending
edges of A.

Proof. Let ((�1, C1), σ1)
T−→ ((�2, C2), σ2) be a trace of A. By definition of SCSs

with contexts, we have that for every y ∈ curr(C2) there is a x ∈ curr(C1) such
that x � y′ ∈ T . Moreover, we have |curr(C1)| ≥ |curr(C2)| by Proposition 2.

Then,

sum(A)(�1, σ1) =
∑

x∈curr(C1)

σ1(x) ≥
∑

x∈curr(C2)

σ2(x) = sum(A)(�2, σ2).

If �1
T−→ �2 is descending, we have

sum(A)(�1, σ1) =
∑

x∈curr(C1)

σ1(x) >
∑

x∈curr(C2)

σ2(x) = sum(A)(�2, σ2).

Definition 10. Let A be an SCS. A function rto : Locs(A) → [1, |Locs(A)|] is
a reverse topological ordering for A, if for every edge �

T−→ �′ ∈ A we have either
rto(�) > rto(�′) or rto(�) = rto(�′) and � and �′ belong to the same SCC of A.

434 F. Zuleger

We will use reverse topological orderings as quasi-ranking functions. It is well-
known that reverse topological orderings can be computed in linear time.

Definition 11. We denote by N∗ the set of finite sequences over N, where N∗

includes the empty sequence ε. Given two sequences 〈x1, . . . , xk〉, 〈y1, . . . , yl〉 ∈
N∗, we denote their concatenation by 〈x1, . . . , xk〉 ⊕ 〈y1, . . . , yl〉 = 〈x1, . . . ,
xk, y1, . . . , yl〉. Given two functions f, g : A → N∗, we denote their concate-
nation by f ⊕ g : A → N∗, where (f ⊕ g)(a) = f(a) ⊕ g(a). We denote by N≤k

the sequences with length at most k. We say a function f : A → N∗ has rank k,
if f(A) ⊆ N≤k.

We denote by (N∗, >) the lexicographic order, where 〈x1, . . . , xk〉 >
〈y1, . . . , yl〉 iff there is an index 1 ≤ i ≤ min{k, l} such that xi > yi and xj = yj

for all 1 ≤ j < i. We remark that (N∗, >) is not well-founded, but that every
restriction (N≤k, >) to sequences with length at most k is well-founded.

Let A be an SCS. We call a ranking function rank : Locs(A) × ValN → W
for A a lexicographic ranking function, if W = N≤k for some k.

Lemma 8. Let A be an SCS. Let rto be a reverse topological ordering for A.
Let rankS : Locs(S) → N∗ be a lexicographic ranking function with rank k for
every non-trivial SCC S of A. Let union(rto, (rankS)SCC S) : Locs(A) → N∗ be
the function union(rto, (rankS)SCC S)(�, σ) = rto(�) ⊕ rankS (�, σ), if � belongs
to some non-trivial S , and union(rto, (rankS)SCC S)(�, σ) = rto(�), otherwise.
Then, union(rto, (rankS)SCC S) is a lexicographic ranking function for A with
rank k + 1.

Proof. Let (�1, σ1)
T−→ (�2, σ2) be a trace of A. Assume there is no SCC S

such that �1, �2 ∈ S . By Definition 10 we have rto(�1) > rto(�2). Otherwise
�1, �2 ∈ S and �1

T−→ �2 ∈ Edges(S) for some SCC S . By Definition 10 we have
rto(�1) = rto(�2). Moreover, rankS (�1, σ1) > rankS (�2, σ2) because rankS is a
ranking function for S . In both cases we get union(rto, (rankS)SCC S)(�1, σ1) >
union(rto, (rankS)SCC S)(�2, σ2). Clearly, the function union(rto, (rankS)SCC S)
has rank k + 1.

Lemma 9. Let A be an SCS with contexts and let B = DeleteDescending(A).
Let rank be a lexicographic ranking function for B with rank k. Then sum(A) ⊕
rank is a lexicographic ranking function for A with rank k + 1.

Proof. Let (�1, σ1)
T−→ (�2, σ2) be a trace of A. Assume �1

T−→ �2 is descending.
Then we have sum(A)(�1, σ1) > sum(A)(�2, σ2) by Lemma 7. Assume �1

T−→ �2
is not descending. Then we have sum(A)(�1, σ1) ≥ sum(A)(�2, σ2) by Lemma 7.
Moreover �1

T−→ �2 is a transition of B. Thus rank(�1, σ1) > rank(�2, σ2).
In both cases we get (sum(A)⊕rank)(�1, σ1) > (sum(A)⊕rank)(�2, σ2). Clearly
sum(A) ⊕ rank has rank k + 1.

6 Main Algorithm

In the following we describe our construction of ranking functions and for-loops
for SCSs. Algorithm 1 states the main algorithm main(A, i), which expects a

Asymptotically Precise Ranking Functions for Deterministic SCSs 435

stable SCS A with contexts of length i as input. Algorithm 2 states the helper
algorithm mainSCC (A, i), which expects a strongly connected stable SCS A
with contexts of length i as input. main and mainSCC are mutually recursive.
Algorithm 3 states the wrapper algorithm ranking(A), which expects an SCS
A with Locs(A) = locs and simply adds contexts of length zero to all location
before calling main. All three algorithms return a tuple (rank ,witness, C, k) for
a given SCS A. In Theorem 1 below we state that rank is a ranking function
for A with rank 2k +1, which proves the upper complexity bound O(Nk) for A.
In Theorem 2 below we state that there is a sequence of paths Loop1, . . . ,Loopk

in A such that witness, C and Loop1, . . . ,Loopk is a for-loop for A with size k,
which proves the lower complexity bound Ω(Nk) for A.

Example 3. We consider the SCS A1 from Example 1. We will identify A1 with
the SCS obtained from A1 by adding contexts of zero length. Consider the call
main(A1, 0). A1 has a single SCC, namely A1. We consider the recursive call
mainSCC (A1, 0). Let A′

1 := Context(A1). Locs(A′
1) has two locations, namely

�1 = (�, {x2, x3}) and �2 = (�, {x1, x4}). Edges(A′
1) has four edges, namely

�1
T1−→ �1, �1

T2−→ �2, �2
T2−→ �2 and �2

T1−→ �1. Let B1 := DeleteDescending(A′
1).

Edges(B1) has the single remaining edge �2
T1−→ �1. Thus, B1 does not have a

non-trivial SCC and main(B1, 1) returns the reverse topological ordering rtoB1 =
{�1 → 1, �2 → 2}. Then, rankA′

1
= sum(B1) ⊕ rtoB1 = {(�1, σ) → 〈σ(x2) +

σ(x3), 1〉, (�2, σ) → 〈σ(x1) + σ(x4), 2〉} is a ranking function for A′
1. Finally,

rankA1 = fold(rankA′
1
) = (�, σ) → min{〈σ(x2) + σ(x3), 1〉, 〈σ(x1) + σ(x4), 2〉} is

a ranking function for A1.

Example 4. We consider the SCS A2 from Example 2. We will identify A2

with the SCS obtained from A2 by adding contexts of zero length. A2 has a
single SCC, namely A2. We consider the recursive call mainSCC (A2, 0). Let
A′

2 := Context(A2). Locs(A′
2) has three locations, namely �1 = (�, {x1}) and

�2 = (�, {x2}) and �1 = (�, {x3}). Edges(A′
2) has nine edges, namely �1

T1−→ �1,
�1

T2−→ �1, �1
T3−→ �3, �2

T1−→ �1, �2
T2−→ �2, �2

T3−→ �2, �3
T1−→ �3, �3

T2−→ �2, and
�3

T3−→ �3. Let B2 := DeleteDescending(A′
2). Edges(B2) has the three remaining

edges �1
T2−→ �1, �2

T3−→ �2 and �3
T1−→ �3. Thus, B2 has three non-trivial SCCs

consisting of a single location each. main(B2, 1) returns the ranking function
rankB2 = (union(rtoB2 , (rankS)SCC S of B2) = {(�1, σ) → 〈1, σ(x2), 1〉, (�2, σ) →
〈1, σ(x3), 1〉, (�3, σ) → 〈1, σ(x1), 1〉}. Then,

rankA′
2

= sum(B2) ⊕ rankB2 =

{(�1, σ) → 〈σ(x1), 1, σ(x2), 1〉,
(�2, σ) → 〈σ(x2), 1, σ(x3), 1〉, (�3, σ) → 〈σ(x3), 1, σ(x1), 1〉}

is a ranking function for A′
2. Finally,

436 F. Zuleger

rankA2 = fold(rankA′
2
) =

(�, σ) → min{〈σ(x1), 1, σ(x2), 1〉, 〈σ(x2), 1, σ(x3), 1〉, 〈σ(x3), 1, σ(x1), 1〉}
is a ranking function for A2.

Procedure: main(A, i)
Input: a stable SCS A with contexts of length i
if there is a loop in A then

raise an exception for non-termination;

foreach non-trivial SCC S do
(rankS ,witnessS , CS , kS) := mainSCC (S , i);

if A has a non-trivial SCC then
let k := 1 + max{kS | non-trivial SCC S of A};
let witness := witnessS and C := CS for some S that achieves the maximum;

else
let k := 0;
choose an arbitrary location witness ∈ Locs(A) and let C := ε;

compute a reverse topological ordering rto for A;
return (union(rto, (rankS)SCC S),witness, C, k);

Algorithm 1. the main algorithm main(A, i)

Procedure: mainSCC (A, i)
Input: a strongly connected stable SCS A with contexts of length i
let B := DeleteDescending(Context(A));
let (rankB,witnessB, CB, kB) := main(B, i + 1);
let (�, C) := witnessB and 〈C1, . . . , CkB〉 := CB;
return (fold(sum(B) ⊕ rankB), (�, tail(C)), 〈last(C), C1, . . . , CkB〉, kB);

Algorithm 2. the helper algorithm mainSCC (A, i)

Lemma 10. Let A be a stable SCS with proper contexts of length i. Algorithm
main(A, i) terminates.

Proof. Let n = |Var |. We proceed by induction on n−i. Base case: i = n. Assume
A has a non-trivial SCC S . We choose some location (�, C) ∈ Locs(S). Let π be
some cyclic path for (�, C) in S . By definition of an SCS with contexts, we have
sucπ(last(C)) = last(C). Because C is proper and i = n, we have last(C) = Var .
Thus π is a loop for (�, C) and main terminates with an exception. Otherwise A
does not have a non-trivial SCC S . Then main terminates because there is no
recursive call.

Induction step: i < n. If A has a loop, main terminates with an exception.
Otherwise A does not have a loop. If there is no non-trivial SCC S , main ter-
minates because there is no recursive call. Assume there is a non-trivial SCC S .
By definition B := DeleteDescending(Context(A)) has contexts of length i + 1.
Moreover, B has proper contexts, because A does not have a loop. Thus, we
can infer from the induction assumption that the recursive call main(B, i + 1)
terminates.

Asymptotically Precise Ranking Functions for Deterministic SCSs 437

Procedure: ranking(A)
Input: an SCS A with Locs(A) = locs
let B be the SCS obtained from A by setting Locs(B) := {(�, ε) | � ∈ Locs(A)}
and Edges(B) = {(�1, ε)

T−→ (�2, ε) | �1
T−→ �2 ∈ Edges(A)};

return main(B, 0);

Algorithm 3. the wrapper algorithm ranking(A)

The proof of the following lemma is given in the appendix.

Lemma 11. If ranking(A) terminates with an exception, then A does not
terminate.

Let n = |Var | and let m = |locs|. We say a lexicographic ranking function
rank is N,n,m-bounded, if for every 〈x1, . . . , xl〉 in the image of rank we have
xi ∈ [0, nN] for every odd index i and xi ∈ [1, 2mn!] for every even index i.

Theorem 1. Assume (rank , , , k) := main(A,). Then rank is a N,n,m-
bounded ranking function for A with rank 2k + 1.

Proof. We note for later use that by Lemma 2 we have

|Locs(A)| ≤ 2mn! . (∗)

The proof proceeds by induction on k. Base case k = 0: Then A does
not have non-trivial SCCs, otherwise we would have k ≥ 1. Thus rank =
union(rto, (rankS)SCC S) = rto. By Lemma 8 rank is a ranking function for
A with rank 1. By (*) we have that the image of rto is contained in the interval
[1, 2mn!]. Thus rank is N,n,m-bounded.

Induction case k ≥ 1: A has non-trivial SCCs, otherwise we would have
k = 0. Let k := max{kS | non-trivial SCC S of A} (*). Let S be a non-trivial
SCC of A. We consider the recursive call (rankS , , , kS) := mainSCC (S ,). Let
A′ := Context(S) and B := DeleteDescending(A′). We consider the recursive
call (rankB, , , kB) := main(B,) in mainSCC . By (*) we have kB = kS < k.
Thus we can apply the induction assumption: we obtain that rankB is a N,n,m-
bounded ranking function for B with rank 2kB + 1. Let rankA′ = sum(B) ⊕
rankB. We note that the image of sum(S) is contained in the interval [0, nN]
for valuations σ over [0, N]. By Lemma 9 rankA′ is a ranking function for A′

with rank 2kB + 2. Let rankS = fold(rankA′). By Lemma 6 rankS is ranking
function for S with rank 2kB + 2 ≤ 2k. Because this holds for every non-trivial
SCC S of A, we infer by Lemma 8 that rank = union(rto, (rankS)SCC S is a
ranking function for A with rank 2k + 1. By (*) we have that the image of rto
is contained in the interval [1, 2mn!]. Thus rank is N,n,m-bounded.

438 F. Zuleger

Corollary 1. Let A be a stable SCS with (rank , , , k) := ranking(A). Then A
has complexity O(Nk).

Proof. By Theorem 1 rank is a N,n,m-bounded ranking function for A with
rank 2k + 1. Thus the image of rank is of cardinality O(Nk). Because the value
of rank needs to decrease along every edge in a trace, the length of the longest
trace of A is of asymptotic order O(Nk).

Theorem 2. Let A be a strongly connected stable SCS. Assume (,witness, C,
k) := main(A,). Then there is a sequence of cyclic paths Loop1, . . . ,Loopk in
A such that witness, C and Loop1, . . . ,Loopk is a for-loop for A with size k.

Proof. We proceed by induction on k. Base case k = 0: A does not have non-
trivial SCCs, otherwise we would have k ≥ 1. Let witness ∈ Locs(A) be the
location chosen by main. Clearly witness and C := ε is a for-loop with size 0.

Induction case k ≥ 1: A has non-trivial SCCs, otherwise we would
have k = 1. For each non-trivial SCC S we define (,witnessS , CS , kS) :=
mainSCC (S , i). We consider the non-trivial SCC S that is selected by
main for the maximum in k := 1 + max{kS | non-trivial SCC S of A}.
Let B := DeleteDescending(Context(S)). We consider the recursive call
(,witnessB, CB, kB) := main(B,) in mainSCC (S ,). Because of kB = kS = k−1
we obtain from the induction assumption that there is a sequence of paths
Loop1, . . . ,LoopkB in B such that witnessB, CB and Loop1, . . . ,LoopkB is a for-
loop for B with size kB. Let (�, C) := witnessB and let 〈C1, . . . , CkB〉 := CB.
We set C = last(C). By Lemma 4 there is a cyclic path Loop for (�, C) in
Context(S) with sucLoop(Var) = C (1). Because every Loopi is a cyclic path
in B = DeleteDescending(Context(S)) we have sucLoopi

(C) = C (2) and
x � y ∈ Loopi and x, y ∈ C implies � = ≥ for all x, y ∈ Var (3). We have
Ci � Cj for all 0 ≤ i < j ≤ kB, setting C0 = ∅, because CB is a proper context.
Moreover, sucLoopi

(Var) = Ci for all i ∈ [1, kB]. From sucLoopi
(C) = C and

Proposition 1 we get C = sucLoopi
(C) ⊆ sucLoopi

(Var) = Ci. No cyclic path
Loopi is a loop in B, otherwise main(B,) would have terminated with an excep-
tion. Thus, C �= Ci and 〈C,C1, . . . , CkB〉 is a proper context (4). From (1) - (4)
we get that (�, C), 〈C,C1, . . . , CkB〉 and Loop,Loop1, . . . ,LoopkB is a for-loop for
Context(S) with size k = kB + 1.

Finally, we obtain the cyclic paths Loop′,Loop′
1, . . . ,Loop′

kB for (�, tail(C))
in A from the cyclic paths Loop,Loop1, . . . ,LoopkB for (�, C) in Context(S)
by removing the last component from the context for every location. Then
(�, tail(C)), 〈C,C1, . . . , CkB〉 and Loop′,Loop′

1, . . . ,Loop′
kB is a for-loop for A

with size k = kB + 1.

From Theorem 2 and Lemma 5 we obtain the following corollary:

Corollary 2. Let A be an SCS with (,witness, C, k) := ranking(A). Then A
has complexity Ω(Nk).

Let A be an SCS. In the following we describe a PSPACE algorithm that either
returns that A does not terminate or that computes a number k ∈ [1, n] such

Asymptotically Precise Ranking Functions for Deterministic SCSs 439

that A has complexity Θ(Nk). We first describe a nondeterministic PSPACE
algorithm P that decides whether A has a for-loop for some given size k.
P nondeterministically guesses a location � and a context 〈C1, . . . , Ck〉. P further
guesses k cyclic paths Loop1, . . . ,Loopk for location � and then checks that (1)
sucLoopi

(Cj) = Cj for all 1 ≤ j ≤ i ≤ k, (2) x � y ∈ Loopj and x, y ∈ Ci implies
� = ≥ for all 1 ≤ j < i ≤ k and all x, y ∈ Var , and (3) sucLoopi

(Var) = Ci for
all 1 ≤ i ≤ k. If all checks hold, P returns true, otherwise P returns false. � and
〈C1, . . . , Ck〉 are of linear size. Loop1, . . . ,Loopk are of exponential size in the
worst case. However, Loop1, . . . ,Loopk do not have to be constructed explicitly.
Rather, the cyclic paths Loop1, . . . ,Loopk can be guessed on the fly during the
checks (1), (2) and (3). For illustration, we consider the construction of Loopi

and the check (1): P maintains a location �′ and a set Sj for each 1 ≤ j ≤ i.
P initializes these variables by �′ := � and Sj := Cj for each 1 ≤ j ≤ i. P

repeats the following operation: P guesses some edge �′ T−→ �′′ of A, computes
Sj := sucT (Sj) for each 1 ≤ j ≤ i and sets �′ := �′′. P stops this iteration,
if �′ = � and Sj = Cj for each 1 ≤ j ≤ i. Clearly, P can be implemented in
polynomial space. The checks (2) and (3) can be implemented in a similar way
and need to be performed simultaneously with check (1) in order to make sure
the same cyclic paths Loopi satisfy all three conditions. By Savitch’s Theorem P
can be turned into a deterministic PSPACE algorithm, which we will also denote
by P for convenience. Similarly, we also construct a PSPACE algorithm Q that
decides termination by searching for a loop that witnesses non-termination of A.
The overall PSPACE algorithm R first calls Q on A and checks whether A ter-
minates. If A terminates, R iteratively calls P with increasing values for k on A.
R returns the value k such that P returns true for k and false for k + 1. In the
following we state the correctness of algorithm R:

Theorem 3. Let A be an SCS. It is decidable in PSPACE, whether A does not
terminate or has complexity Θ(Nk).

Proof. If ranking(A) returns with an exception, then there is a loop that
witnesses non-termination. Thus, algorithm Q can find a loop that wit-
nesses non-termination. Assume ranking(A) terminates normally and returns
(rank ,witness, C, k). By Theorem 2 there is a sequence of paths Loop1, . . . ,Loopk

in A such that witness, C and Loop1, . . . ,Loopk is a for-loop with size k. By
Lemma 5 A has complexity Ω(Nk). By Corollary 1 A has complexity O(Nk).
Then, A cannot have a for-loop with size k + 1 because such a for-loop would
imply a trace of length Ω(Nk+1) by Lemma 5. Thus, algorithm P can find a
for-loop with size k but no for-loop of size k + 1.

A Proof of Lemma 5

Proof. Let l1, . . . , lk be the length of the cyclic paths Loop1, . . . ,Loopk. We set
z = max{l1, . . . , lk} and t = N/(2nz). We set t = N/(2nz). Because we are
interested in the asymptotic behavior w.r.t. N we can assume N ≥ 8nz.

440 F. Zuleger

We define a path π = ((· · · (Loopk)t · · ·Loop2)tLoop1)t. We note that π
has length Ω(Nk). We define a set I = [0, t]k and consider the lexico-
graphic order > ⊆ I × I, where (i1, . . . , ik) > (j1, . . . , jk), if there is a
1 ≤ a ≤ k such that ia > ja and ib = jb for all 1 ≤ b < a. We
note that > is a linear order on I. We define I1 = I \ {(0, . . . , 0)}. We
denote the predecessor of an element e ∈ I1 w.r.t. to > by pred(e). We use
I1 to enumerate the cyclic paths in π, i.e., π = π(t, . . . , t, t)π(t, . . . , t, t −
1) · · · π(t, . . . , t, 0)π(t, . . . , t − 1, t) · · · π(0, . . . , 0, 2)π(0, . . . , 0, 1). We note that by
the above definitions π(i1, · · · , ik) = Loopd, if and only if id �= 0 and iu = 0 for
all d < u ≤ k.

We define a function bwT : ValN → ValN that takes an SCT T and a
valuation σ ∈ ValN and returns a valuation σ′ with σ′(x) = σ(y)+1, if x > y′ ∈
T , σ′(x) = σ(y), if x ≥ y′ ∈ T , and σ′(x) = 0, otherwise.

We will recursively define valuations σ(e) for e ∈ I and traces ρ(e) for e ∈ I1.
We define σ(0, . . . , 0)(x) = 0 for all x ∈ Var . Let e ∈ I1. Let d ∈ [1, k] be chosen

such that π(e) = Loopd. Let �
Tld−−→ �ld−1

Tld−1−−−−→ · · · �1 T1−→ � be the path denoted

by Loopd. We define the trace ρ(e) by (�, σld)
Tld−−→ (�ld−1, σld−1) · · · (�1, σ1)

T1−→
(�, σ0), where σ0 := σ(pred(e)) and σi+1 := bwTi+1(σi) for all 0 < i ≤ ld. We set
σ(e) := σld and σi(e) := σi for all 0 < i < ld.

Let x ∈ Var be some variable. We define c(x) = u, if x ∈ Cu \ Cu−1, setting
C0 = ∅, or c(x) = ⊥, if there is no u with x ∈ Cu. Let (i1, · · · , ik) ∈ I. We
claim that

σ(i1, · · · , ik)(x) ≤ iu · z + (u − 1) · N/n + N/(8n),
if there is a u = c(x) �= ⊥, and

σ(i1, · · · , ik)(x) ≤ 3N/(4n) + (n − 1) · N/n, if c(x) = ⊥.

(*)

We proceed by induction on e = (i1, · · · , ik). Clearly the claim holds for e =
(0, . . . , 0). Now consider e ∈ I1. Let d ∈ [1, k] be chosen such that π(e) = Loopd.
Let (j1, . . . , jk) = pred(i1, · · · , ik). We have iu = ju for all 1 ≤ u < d and
jd + 1 = id. Let x ∈ Var be some variable. Assume there is an y ∈ Var with
x�y ∈ Loopd. Let u = c(x) and v = c(y). By the definition of a for-loop we have
sucLoopd

(Var) = Cd, and thus ⊥ �= v ≤ d. By induction assumption, we have
σ(j1, . . . , jk)(y) ≤ jv · z + (v − 1) · N/n. If 1 ≤ u ≤ d, we have sucLoopj

(Cu) =
Cu and sucLoopj

(Cu−1) = Cu−1 by the definition of a for-loop. Because A is
deterministic and 〈C1, . . . , Ck〉 is a proper context, we get u = v. For 1 ≤ u <
d we have � = ≥ by the definition of a for-loop. We get σ(i1, . . . , ik)(x) =
σ(j1, . . . , jk)(y) ≤ jv ·z +(v −1) ·N/n+N/(8n) = iu ·z +(u−1) ·N/n+N/(8n).
If u = d we have σ(i1, . . . , ik)(x) ≤ σ(j1, . . . , jk)(y) + z ≤ jv · z + (v − 1) · N/n +
N/(8n)+z = (jd +1) ·z+(d−1) ·N/n+N/(8n) = iu ·z+(u−1) ·N/n+N/(8n).
Assume that 1 ≤ u ≤ d does not hold. If u �= ⊥ we have d < u ≤ k, and thus
σ(i1, . . . , ik)(x) ≤ σ(j1, . . . , jk)(y) + z ≤ jv · z + (v − 1) · N/n + z + N/(8n) ≤
N/(2n)+(v−1)·N/n+z+N/(8n) ≤ (u−1)·N/n ≤ iu ·z+(u−1)·N/n+N/(8n).
If u = ⊥, we have σ(i1, . . . , ik)(x) ≤ σ(j1, . . . , jk)(y)+z ≤ jv ·z+(v−1)·N/n+z+
N/(8n) ≤ N/(2n)+(v−1)·N/n+z+N/(8n) = (3N/4n)+(n−1)·N/n. Otherwise,

Asymptotically Precise Ranking Functions for Deterministic SCSs 441

there is no y with x�y ∈ Loopj . We have σ(i1, . . . , ik)(x) ≤ z ≤ N/(8n). We have
established (*).

By (*) we have σ(e)(x) ≤ N − N/(4n) ≤ N for all e ∈ I and x ∈ Var .
Moreover, we have that σi(e)(x) ≤ N − N/(4n) + i ≤ N for all e ∈ I1 and
0 < i < ld. Thus,

ρ(t, . . . , t, t)ρ(t, . . . , t, t − 1) · · ·ρ(t, . . . , t, 0)
ρ(t, . . . , t − 1, t) · · · ρ(0, . . . , 0, 2)ρ(0, . . . , 0, 1)

is a trace over [0, N] of length Ω(Nk).

B Proof of Lemma 11

Proof. We assume the exception has been raised in some recursive call
main(A, i). We have that there is a loop Loop for some location (�, C) of A
such that (1) sucLoop(Var) = last(C) and (2) x � y ∈ Loop and x, y ∈ last(C)
imply that � = ≥ because A is stable.

We define a function bwT : ValN → ValN that takes an SCT T and a
valuation σ ∈ ValN and returns a valuation σ′ with σ′(x) = σ(y)+1, if x > y′ ∈
T , σ′(x) = σ(y), if x ≥ y′ ∈ T , and σ′(x) = 0, otherwise.

Let �l
Tl−→ �l−1

Tl−1−−−→ · · · �1 T1−→ �0 with � = �l = �0 be the path denoted
by Loop. We define a valuation σ0(x) = 0 for all x ∈ Var . We define
a trace ρ0 by (�, σl)

Tl−→ (�l−1, σl−1) · · · (�1, σ1)
T1−→ (�, σ0), where σi+1 :=

bwTi+1(σi) for all 0 < i ≤ l. Moreover, we define a trace ρ by (�, σ2l)
Tl−→

(�2l−1, σ2l−1) · · · (�l+1, σl+1)
T1−→ (�, σl), where σi+1 := bwTi+1(σi) for all l < i ≤

2l. By induction we get σi ∈ [0, i] for all 0 ≤ i ≤ 2l.
We will show σ2l = σl. This is sufficient to show that ρω = ρρ · · · is an infinite

trace of A with valuations over [0, 2l].

We denote by Loop|i = �
Tl−→ �l−1

Tl−1−−−→ · · · �i+1
Ti+1−−−→ �i the prefix of Loop

until position i. We claim that σl+i(x) = σi(x) for all x ∈ sucLoop|i(Var). The
proof proceeds by induction on i. Base case i = 0: From (1) and (2) we get
that σl(x) = σ0(x) = 0 for all x ∈ sucLoop(Var) = last(C). Induction step:
We consider some x ∈ sucLoop|i(Var). Assume x does not have a successor
in Ti. Then σl+i(x) = σi(x) = 0. Assume x does have a successor in Ti, i.e.,
x � y ∈ T for some y ∈ Var . Then we have y ∈ sucLoop|i−1(Var) and thus
σl+(i−1)(y) = σi−1(y) by induction assumption. By the definition of bwT we get
σl+i(x) = bwT (σl+(i−1))(x) = bwT (σi−1)(x) = σi(x).

References

1. Anderson, H., Khoo, S.-C.: Affine-based size-change termination. In: Ohori, A.
(ed.) APLAS 2003. LNCS, vol. 2895, pp. 122–140. Springer, Heidelberg (2003)

2. Ben-Amram, A.M.: A complexity tradeoff in ranking-function termination proofs.
Acta Inf. 46(1), 57–72 (2009)

442 F. Zuleger

3. Ben-Amram, A.M.: Monotonicity constraints for termination in the integer domain.
Logical Methods Comput. Sci. 7(3), 1–43 (2011)

4. Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination ii.
Logical Methods Comput. Sci. 5(2), 1–29 (2009)

5. Codish, M., Fuhs, C., Giesl, J., Schneider-Kamp, P.: Lazy abstraction for size-
change termination. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 217–232. Springer, Heidelberg (2010)

6. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014)

7. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

8. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

9. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

10. Vidal, G.: Quasi-terminating logic programs for ensuring the termination of partial
evaluation. In: PEPM, pp. 51–60 (2007)

11. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

	Asymptotically Precise Ranking Functions for Deterministic Size-Change Systems
	1 Introduction
	1.1 Related Work

	2 Size-Change Systems (SCSs)
	3 Adding Contexts to SCSs
	4 For-Loops
	5 Ranking Functions for SCSs
	6 Main Algorithm
	References

