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Preface

This volume consists of the refereed papers and abstracts of the invited talks presented
at the 10th International Computer Science Symposium in Russia (CSR 2015) that was
held during July 13–17, 2015, in Listvyanka (lake Baikal, Irkutsk region), Russia. The
symposium was hosted by Irkutsk State University. It was the tenth event in the series
of regular international meetings following CSR 2006 in St. Petersburg, CSR 2007 in
Ekaterinburg, CSR 2008 in Moscow, CSR 2009 in Novosibirsk, CSR 2010 in Kazan,
CSR 2011 in St. Petersburg, CSR 2012 in Nizhny Novgorod, CSR 2013 in Ekate-
rinburg, and CSR 2014 in Moscow.

The opening lecture was given by Moshe Vardi (Rice), and three other invited
plenary lectures were given by Sam Buss (UCSD), Phokion Kolaitis (UCSC and IBM
Research–Almaden), and Vladimir V. Podolskii (Steklov Mathematical Institute,
Moscow).

The scope of the topics of the symposium is quite broad and covers a wide range of
areas in theoretical computer science and its applications. We received 61 submission
in total, and out of these the Program Committee selected 25 papers for presentation at
the symposium and for publication in the proceedings.

The Program Committee selected the winners of the Yandex Best Paper Awards.

– Best Paper Award:
Volker Diekert, Florent Martin, Geraud Senizergues and Pedro V. Silva,
“Equations over Free Inverse Monoids with Idempotent Variables”

– Best Student Paper Award, split between two papers:
Vincent Penelle, “Rewriting Higher-Order Stack Trees”
Alexey Milovanov, “Some Properties of Antistochastic Strings”

We are grateful to our financial and organizational sponsors:

– Yandex
– Russian Foundation for Basic Research
– Steklov Mathematical Institute of Russian Academy of Sciences
– National Research University Higher School of Economics

We also acknowledge the scientific sponsorship of the European Association for
Theoretical Computer Science (EATCS).

We would like to express our gratitude to Andrei Mantsivoda and his team of local
organizers from Irkutsk State University, Andrei Raigorodsky from Yandex, and Ivan
Arzhantsev from the Faculty of Computer Science of the National Research University
Higher School of Economics.

The work of the Program Committee was greatly facilitated by the use of the
EasyChair conference management system created by Andrei Voronkov.



This volume could not have been produced without the dedicated editorial work by
Evgeny Dashkov (MIPT, Moscow).

April 2015 Lev D. Beklemishev
Daniil V. Musatov
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A Theory of Regular Queries

Moshe Y. Vardi

Rice University, Department of Computer Science, Rice University,
Houston, TX 77251-1892, USA

vardi@cs.rice.edu

http://www.cs.rice.edu/*vardi

Abstract. The classical theory of regular languages was initiated in the 1950s
and reached a mature and stable state in the 1970s. In particular, the
computational complexity of several decision problems for regular expressions,
including emptiness, universality, and equivalence, is well understood.

A new application area for regular languages emerged in the 1990s in the
context of graph databases, where regular expressions provide a way to
formulate queries over graphs. In this new context, the classical theory needs to
be reconsidered. It turns out that the new context is a fertile area, and gives rise
to an elegant theory of regular queries, which is inspired and informed, but quite
different than the theory of regular languages. In this talk I will describe the class
of regular queries and its well-behavedness.

References

1. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular path
queries. SIGMOD Rec. 32(4), 83–92 (2003)

2. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: View-based
querycontainment. In: Proceedings of 22nd ACM Symposium on Principles of Database
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247–258 (2002)

8. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of reg-ular
expressions and regular path queries. J. Comput. Syst. Sci. 64(3), 443–465 (2002)
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Propositional Proofs in
Frege and Extended Frege Systems

(Abstract)

Samuel R. Buss

Department of Mathematics
University of California, San Diego

La Jolla, California 92130-0112, USA
sbuss@math.ucsd.edu

http://math.ucsd.edu/*sbuss

Abstract. We discuss recent results on the propositional proof complexity of
Frege proof systems, including some recently discovered quasipolynomial size
proofs for the pigeonhole principle and the Kneser-Lovász theorem. These are
closely related to formalizability in bounded arithmetic.

Supported in part by NSF grants CCF-121351 and DMS-1101228, and a Simons Foundation
Fellowship 306202.



The Ubiquity of Database Dependencies

Phokion G. Kolaitis1,2

1 UC Santa Cruz
2 IBM Research – Almaden

Abstract. Database dependencies are integrity constraints, typically expressed in a
fragment of first-order logic, that the data at hand are supposed to obey. From the
mid 1970s to the late 1980s, the study of database dependencies occupied a central
place in database theory, but then interest in this area faded away. In the past
decade, how- ever, database dependencies have made a striking comeback by
finding new uses and applications in the specification of critical data interoper-
ability tasks and by also surfacing in rather unexpected places outside databases.
This talk will first trace some of the early history of database dependencies and then
survey more recent developments.



Circuit Complexity Meets Ontology-Based Data Access

Vladimir V. Podolskii1,2

1 Steklov Mathematical Institute, Moscow, Russia
2 National Research University Higher School of Economics, Moscow, Russia

podolskii@mi.ras.ru

Abstract. Ontology-based data access is an approach to organizing access to a
database augmented with a logical theory. In this approach query answering
proceeds through a reformulation of a given query into a new one which can be
answered without any use of theory. Thus the problem reduces to the standard
database setting.

However, the size of the query may increase substantially during the
reformulation. In this survey we review a recently developed framework on
proving lower and upper bounds on the size of this reformulation by employing
methods and results from Boolean circuit complexity.

This work is supported by the Russian Science Foundation under grant 14-50-00005 and
performed in Steklov Mathematical Institute of Russian Academy of Sciences.
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Propositional Proofs in Frege and Extended
Frege Systems (Abstract)

Samuel R. Buss(B)

Department of Mathematics, University of California,
San Diego, La Jolla, CA 92130-0112, USA

sbuss@math.ucsd.edu

http://math.ucsd.edu/ sbuss

Abstract. We discuss recent results on the propositional proof complex-
ity of Frege proof systems, including some recently discovered quasipoly-
nomial size proofs for the pigeonhole principle and the Kneser-Lovász
theorem. These are closely related to formalizability in bounded arith-
metic.

Keywords: Proof complexity · Frege proofs · Pigeonhole principle ·
Kneser-Lovász theorem · Bounded arithmetic

1 Introduction

The complexity of propositional proofs has been studied extensively both because
of its connections to computational complexity and because of the importance
of propositional proof search for propositional logic and as an underpinning for
stronger systems such as SMT solvers, modal logics and first-order logics. Frege
systems are arguably the most important fully expressive, sound and complete
proof system for propositional proofs: Frege proofs are “textbook” propositional
proof systems usually formulated with modus ponens as the sole rule of inference.
Extended Frege proofs allow the use of the extension rule which permits new
variables to be introduced as abbreviations for more complex formulas [26].

(This abstract cannot do justice to the field of propositional proof complexity.
There are several surveys available, including [4,5,12,13,23,25].)

We will measure proof complexity by counting the number of symbols appear-
ing in a proof. We are particularly interested in polynomial and quasipolynomial
size Frege and extended Frege proofs, as these represent proofs of (near) feasible
size. Frege proofs are usually axiomatized with modus ponens and a finite set of
axiom schemes. However, there are a number of other natural ways to axiomatize
Frege proofs, and they are all polynomially equivalent [15,24]. Thus, Frege proof
systems are a robust notion for proof complexity. The same holds for extended
Frege proofs.

S. Buss—Supported in part by NSF grants CCF-121351 and DMS-1101228, and a
Simons Foundation Fellowship 306202.

c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 1–6, 2015.
DOI: 10.1007/978-3-319-20297-6 1



2 S. Buss

Formulas in a polynomial size Frege proof are polynomial size of course, and
hence express (nonuniform) NC1 properties. By virtue of the expressiveness of
extension variables, formulas in polynomial size extended Frege proofs represent
polynomial size Boolean circuits.1 Boolean circuits express nonuniform polyno-
mial time (P) predicates. It is generally conjectured NC1 �= P and that Boolean
circuits are more expressive than Boolean formulas, namely that converting a
Boolean circuit to a Boolean formula may cause an exponential increase in size.
For this reason, it is generally conjectured that Frege proofs do not polynomially
or quasipolynomially simulate extended Frege proofs:

Definition 1. The size |P | of a proof P is the number of occurrences of symbols
in P . Frege proofs polynomially simulate extended Frege proofs provided that
there is a polynomial p(n) such that, for every extended Frege proof P1 of a
formula ϕ there is a Frege proof P2 of the same formula ϕ with |P2| ≤ p(|P1|).

Frege proofs quasipolynomially simulate extended Frege proofs if the same
holds but with p(n) = 2lognO(1)

.

However, the connection between the proof complexity of Frege and extended
Frege systems and the expressiveness of Boolean formulas and circuits is only an
analogy. There is no known direct connection. It could be that Frege proofs can
polynomially simulate extended Frege proofs but Boolean formulas cannot poly-
nomially express Boolean circuits. Likewise, it could be that Boolean formulas
can express Boolean circuits with only a polynomial increase in size, but Frege
proofs cannot polynomially simulate extended Frege proofs.

Bonet, Buss, and Pitassi [7] considered the question of what kinds of com-
binatorial tautologies are candidates for exponentially separating proof sizes for
Frege and extended Frege systems, that is for showing Frege systems do not
polynomially or quasipolynomially simulate extended Frege systems. Surpris-
ingly, only a small number of examples were found. The first type of examples
were based on linear algebra, and included the Oddtown Theorem, the Graham–
Pollack Theorem, the Fisher Inequality, the Ray-Chaudhuri–Wilson Theorem,
and the AB = I ⇒ BA = I tautology (the last was suggested by S. Cook). The
remaining example was Frankl’s Theorem on the trace of sets.

The five principles based on linear algebra were known to have short extended
Frege proofs using facts about determinants and eigenvalues of 0/1 matrices.
Since there are quasipolynomial size formulas defining determinants over 0/1
matrices, [7] conjectured that all these principles have quasipolynomial size Frege
proofs. This was only recently proved by Hrubeš and Tzameret [16], who showed
that the five linear-algebra-based tautologies have quasipolynomial size Frege
proofs by showing that there are quasipolynomial size definitions of determinants
whose properties can be established by quasipolynomial Frege proofs.

The remaining principle, Frankl’s Theorem, was shown to have polynomial
size extended Frege proofs by [7], but it was unknown whether it had polynomial
size Frege proofs. Recently, Aisenberg, Bonet and Buss [1] showed that it also has
1 See Jeřábek [18] for an alternative formulation of extended Frege systems based

directly on Boolean circuits.
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quasipolynomial size Frege proofs. Thus, Frankl’s theorem does not provide an
example of tautologies which exponentially separate Frege and extended Frege
proofs.

Istrate and Crãciun [17] recently proposed the Kneser-Lovász Theorem as
a family of tautologies that might be hard for (extended) Frege systems. They
showed that the k = 3 versions of these tautologies have polynomial size extended
Frege proofs, but left open whether they have (quasi)polynomial size Frege
proofs. However, as stated in Definition 3 and Theorem 5 below, [2] have now
given polynomial size extended Frege proofs and quasipolynomial size Frege
proofs for the Kneser-Lovász tautologies, for each fixed k. Thus these also do
not give an exponential separation of Frege from extended Frege systems.

Other candidates for exponentially separating Frege and extended Frege sys-
tems arose from the work of Ko�lodziejczyk, Nguyen, and Thapen [19] in the
setting of bounded arithmetic [9]. They proposed as candidates various forms of
the local improvement principles LI, LIlog and LLI. The results of [19] include
that the LI principle is many-one complete for the NP search problems of V 1

2 ;
it follows that LI is equivalent to partial consistency statements for extended
Frege systems. Beckmann and Buss [6] subsequently proved that LIlog is prov-
ably equivalent (in S1

2) to LI and that the linear local improvement principle
LLI is provable in U1

2 . The LLI principle thus has quasipolynomial size Frege
proofs. Combining the results of [6,19] shows that LIlog and LLI are many-one
complete for the NP search problems of V 1

2 and U1
2 , respectively, and thus equiv-

alent to partial consistency statements for extended Frege and Frege systems,
respectively.

Cook and Reckhow [14] showed that the partial consistency statements for
extended Frege systems characterize the proof theoretic strength of extended
Frege systems; Buss [11] showed the same for Frege systems. For this reason,
partial consistency statements do not provide satisfactory combinatorial prin-
ciples for separating Frege and extended Frege systems. The same is true for
other statements equivalent to partial consistency statements. (But, compare to
Avigad [3].)

This talk will discuss a pair of recently discovered families of quasipolynomial
size Frege proofs. The first is based on the pigeonhole principle; the second on
the Kneser-Lovász principle.

Definition 2. The propositional pigeonhole principle PHPn+1
n is the tautology

n∧

i=0

n−1∨

j=0

pi,j →
∨

0≤i1<i2≤n

n−1∨

j=0

(pi1,j ∧ pi2,j).

Theorem 1. (Cook-Reckhow [15]) PHPn+1
n has polynomial size extended Frege

proofs.

Theorem 1 was proved by a induction proof. Later, the following was proved by
using a “counting” proof:

Theorem 2. [10] PHPn+1
n has polynomial size Frege proofs.
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Since the proofs of Theorems 1 and 2 were so different, this was sometimes
taken as evidence that Frege proofs cannot polynomially simulate extended Frege
proofs. However, recently the present author showed that the proof of Theorem1
can be carried out with Frege proofs, and established a weaker result, but with
a proof based on the proof of [15]:

Theorem 3. [8] PHPn+1
n has quasipolynomial size Frege proofs.

This is weaker than Theorem 2: the point is that its proof shows that the con-
struction underlying the proof of Theorem1 can be carried by quasipolynomial
size Frege proofs.

We next state the results about the Kneser-Lovász principle.

Definition 3. Fix k ≥ 1. Let
(
n
k

)
denote the set of subsets of [n] := {0, . . . , n−1}

of cardinality k. The (n, k)-Kneser graph is the undirected graph (V,E) where the
vertex set V is the set

(
n
k

)
, and E is the set of edges {A,B} such that A,B ∈ (

n
k

)

and A ∩ B = ∅.
It is not hard to show that the (n, k)-Kneser graph can be colored with n−2k+2
colors. (That is, so that no two adjacent vertices receive the same color.) This is
the optimal number of colors:

Theorem 4. (Lovász [21]) Let k ≥ 1 and n ≥ 2k. The (n, k)-Kneser graph
cannot be colored with n−2k+1 colors.

Note that the k = 1 case of the Theorem 4 is just the usual pigeonhole principle.
It is straightforward to translate the Kneser-Lovász principle as expressed by

Theorem 4 into a family of polynomial size tautologies:

Definition 4. Let n ≥ 2k > 1, and let m = n − 2k + 1 be the number of
colors. For A ∈ (

n
k

)
and i ∈ [m], the propositional variable pA,i has the intended

meaning that vertex A of the Kneser graph is assigned the color i. The Kneser-
Lovász principle is expressed propositionally by

∧

A∈(nk)

∨

i∈[m]

pA,i →
∨

A,B∈(nk)
A∩B=∅

∨

i∈[m]

(pA,i ∧ pB,i).

Theorem 5. [2] For each k ≥ 1, the tautologies based on the Kneser-Lovász
principle have polynomial size extended Frege proofs and quasipolynomial size
Frege proofs.

The proof of Theorem 5 is based on a simple counting argument which avoids the
usual topologically-based combinatorial arguments of Matoušek [22] and others.

As already discussed, we now lack many good combinatorial candidates for
super-quasipolynomially separating Frege and extended Frege systems, apart
from partial consistency principles or principles which are equivalent to partial
consistency principles. At the present moment, we have only a couple potential
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combinatorial candidates. The first candidate is the rectangular local improve-
ment principles RLI2 (or more generally, RLIk for any constant k ≥ 2). For
the definitions of these in the setting of bounded arithmetic, plus characteriza-
tions of the logical strengths of the related principles RLI1, RLIlog and RLI, see
Beckmann-Buss [6]. RLI1 is provable in U1

2 and is many-one complete for the NP
search problems of U1

2 , and thus has quasipolynomial size Frege proofs (for the
latter connection, see Kraj́ıček [20]). RLIlog and RLI are provable in V 1

2 and are
many-one complete for the NP search problems of V 1

2 ; hence they are equivalent
to partial consistency statements for extended Frege. The second candidate is the
truncated Tucker lemma defined by [2]. These are actively under investigation
as this abstract is being written; some special cases are known to have extended
Frege proofs [Aisenberg-Buss, work in progress], but it is still open whether they
has quasipolynomial size Frege proofs.

It seems very unlikely however that Frege proofs can quasipolynomially sim-
ulate extended Frege proofs.

Acknowledgments. We thank Lev Beklemishev and Vladimir Podolskii for helpful
comments.
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Abstract. Ontology-based data access is an approach to organizing
access to a database augmented with a logical theory. In this approach
query answering proceeds through a reformulation of a given query into
a new one which can be answered without any use of theory. Thus the
problem reduces to the standard database setting.

However, the size of the query may increase substantially during the
reformulation. In this survey we review a recently developed framework
on proving lower and upper bounds on the size of this reformulation by
employing methods and results from Boolean circuit complexity.

1 Introduction

Ontology-based data access is an approach to storing and accessing data in a
database1. In this approach the database is augmented with a first-order logical
theory, that is the database is viewed as a set of predicates on elements (entities)
of the database and the theory contains some universal statements about these
predicates.

The idea of augmenting data with a logical theory has been around since at
least 1970s (the Prolog programming language, for example, is in this flavor [19]).
However, this idea had to constantly overcome implementational issues. The
main difficulty is that if the theory accompanying the data is too strong, then
even standard algorithmic tasks become computationally intractable.

One of these basic algorithmic problems will be of key interest to us, namely
the query answering problem. A query to a database seeks for all elements in
the data with certain properties. In case the data is augmented with a theory,
query answering cannot be handled directly with the same methods as for usual
databases and new techniques are required.

Thus, on one hand, we would like a logical theory to help us in some way
and, on the other hand, we need to avoid arising computational complications.

V.V. Podolskii—This work is supported by the Russian Science Foundation under
grant 14-50-00005 and performed in Steklov Mathematical Institute of Russian Acad-
emy of Sciences.

1 We use the word “database” in a wide informal sense, that is a database is an
organized collection of data.
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Ontology-based data access (OBDA for short) is a recent approach in this
direction developed since around 2005 [8,10,12,21]. Its main purpose is to help
maintaining large and distributed data and make the work with the data more
user-friendly. The logical theory helps in achieving this goal by allowing one to
create a convenient language for queries, hiding details of the structure of the
data source, supporting queries to distributed and heterogeneous data sources.
Another important property is that data does not have to be complete. Some
of information may follow from the theory and not be presented in the data
explicitly.

A key advantage of OBDA is that to achieve these goals, it is often enough in
practice to supplement the data with a rather primitive theory. This is important
for the query answering problem: the idea of OBDA from the algorithmic point
of view is not to develop a new machinery, but to reduce query answering with
a theory to the standard database query answering and use the already existing
machinery.

The most standard approach to this is to first reformulate a given query in
such a way that the answer to the new query does not depend on the theory any-
more. This reformulation is usually called a rewriting of the query. The rewriting
should be the same for any data in the database. Once the rewriting is built we
can apply standard methods of database theory. Naturally, however, the length
of the query typically increases during the reformulation and this might make
this approach (at least theoretically) inefficient.

The main issue we address in this survey is how large the rewriting can be
compared to the size of the original query. Ideally, it would be nice if the size
of the rewriting is polynomial in the size of the original query. In this survey
we will discuss why rewritings can grow exponentially in some cases and how
Boolean circuit complexity helps us to obtain results of this kind.

In this survey we will confine ourselves to data consisting only of unary and
binary predicates over the database elements. If data contains predicates of larger
arity, the latter can be represented via binary predicates. Such representations
are called mappings in this field and there are several ways for doing this. We
leave the discussion of mappings aside and refer the reader to [18] and references
therein. We call a data source with unary and binary predicates augmented with
a logical theory a knowledge base.

As mentioned above, in OBDA only very restricted logical theories are con-
sidered. There are several standard families of theories, including OWL 2 QL
[2,9,20] and several fragments of Datalog± [3,5–7]. The lower bounds on the
size of rewritings we are going to discuss work for even weaker theories con-
tained in all families mentioned above. The framework we describe also allows
one to prove upper bounds on the size of the rewritings that work for theories
given in OWL 2 QL. We will describe the main ideas for obtaining upper bounds,
but will not discuss them in detail.

To give a complete picture of our setting, we need also to discuss the types
of queries and rewritings we consider. The standard type of queries (as a logi-
cal formulas) considered in this field is conjunctive queries, i.e. conjunctions of
atomic formulas prefixed by existential quantifiers. In this survey we will discuss
only this type of queries.
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As for rewritings, it does not make sense to consider conjunctive formulas
as rewritings, since their expressive power is rather poor. The simplest type
of rewritings that is powerful enough to provide a rewriting for every query
is a DNF-rewriting, which is a disjunction of conjunctions with an existential
quantifiers prefix. However, it is not hard to show (see [11]) that this type of
rewriting may be exponentially larger than the original query. More general stan-
dard types of rewritings are first-order (FO-) rewritings, where a rewriting can
be an arbitrary first-order formula, positive existential (PE-) rewritings, which
are first-order formulas containing only existential quantifiers and no negations
(this type of rewritings is motivated by its convenience for standard databases),
and the nonrecursive datalog rewriting, which are not first-order formulas but
rather are constructed in a more circuit-flavored way (see Sect. 3 for details).

For these more general types of rewritings it is not easy to see how the
size of the rewriting grows in size of the original query. The progress on this
question started with the paper [17], where it was shown that the polynomial
size FO-rewriting cannot be constructed in polynomial time, unless P = NP.
Soon after that, the approach of that paper was extended in [11,15] to give a
much stronger result: not only there is no way to construct a FO-rewriting in
polynomial time, but even there is no polynomial size FO-rewriting, unless NP ⊆
P/poly. It was also shown (unconditionally!) in [11,15] that there are queries and
theories for which the shortest PE- and NDL-rewritings are exponential in the
size of the original query. They also obtained an exponential separation between
PE- and NDL-rewritings and a superpolynomial separation between PE- and
FO-rewritings.

These results were obtained in [11,15] by reducing the problems of lower
bounding the rewriting size to some problems in computational complexity the-
ory. Basically, the idea is that we can encode a Boolean function f ∈ NP into a
query q and design the query and the theory in such a way that a FO-rewriting
of q will provide us with a Boolean formula for f , a PE-rewriting of q will corre-
spond to a monotone Boolean formula, and an NDL-rewriting — to a monotone
Boolean circuit. Then by choosing an appropriate f and applying known results
from circuit complexity theory, we can deduce the lower bounds on the sizes of
the rewritings.

The next step in this line of research was to study the size of rewritings for
restricted types of queries and knowledge bases. A natural subclass of conjunctive
queries is the class of tree-like queries. To define this class, for a given query
consider a graph whose vertices are the variables of the query and an edge
connects two variables if they appear in the same predicate in the query. We
say that a query is a tree-like if this graph is a tree. A natural way to restrict
theories of knowledge bases is to consider their depth. Informally, the theory is of
depth d if, starting with a data and generating all new objects whose existence
follows from the given theory, we will not obtain in the resulting underlying
graph any sequences of new objects of length greater than d. These kinds of
restrictions on queries and theories are motivated by practical reasons: they are
met in the vast majority of applications of knowledge bases. On the other hand,
in papers [11,15] non-constant depth theories were used to prove lower bounds
on the size of rewritings.
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Subsequent papers [4,16] managed to describe a complete picture of the sizes
of the rewritings in restricted cases described above. To obtain these results, they
determined, for each case mentioned above, the class of Boolean functions f that
can be encoded by queries and theories of the corresponding types. This estab-
lishes a close connection between ontology-based data access and various classes
in Boolean circuit complexity. Together with known results in Boolean circuit
complexity, this connection allows one to show various lower and upper bounds
on the sizes of rewritings in all described cases. The precise formulation of these
results is given in Sect. 4.

To obtain their results, [4,16] also introduced a new intermediate computa-
tional model, the hypergraph programs, which might be of independent interest.
A hypergraph program consists of a hypergraph whose vertices are labeled by
Boolean constants, input variables x1, . . . , xn or their negations. On a given input
�x ∈ {0, 1}n, a hypergraph program outputs 1 iff all its vertices whose labels are
evaluated to 0 on this input can be covered by a set of disjoint hyperedges. We
say that a hypergraph program computes f : {0, 1}n → {0, 1} if it outputs f(�x)
on every input �x ∈ {0, 1}n. The size of a hypergraph program is the number of
vertices plus the number of hyperedges in it.

Papers [4,16] studied the power of hypergraph programs and their restricted
versions. As it turns out, the class of functions computable by general hyper-
graph programs of polynomial size coincides with NP/poly [16]. The same is
true for hypergraph programs of degree at most 3, that is for programs in which
the degree of each vertex is bounded by 3. The class of functions computable
by polynomial size hypergraph programs of degree at most 2 coincides with
NL/poly [16]. Another interesting case is the case of tree hypergraph programs
which have an underlying tree and all hyperedges consist of subtrees. Tree hyper-
graph programs turn out to be equivalent to SAC1 circuits [4]. If the underlying
tree is a path, then polynomial size hypergraph programs compute precisely the
functions in NL/poly [4].

The rest of the survey is organized as follows. In Sect. 2 we give the necessary
definitions from Boolean circuit complexity. In Sect. 3 we give the necessary
definitions and basic facts on knowledge bases. In Sect. 4 we describe the main
idea behind the proofs of bounds on the size of the rewritings. In Sect. 5 we
introduce hypergraph programs and explain how they help to bound the size of
the rewritings. In Sect. 6 we discuss the complexity of hypergraph programs.

2 Boolean Circuits and Other Computational Models

In this section we provide necessary information on Boolean circuits, other com-
putational models and related complexity classes. For more details see [13].

A Boolean circuit C is an acyclic directed graph. Each vertex of the graph is
labeled by either a variable among x1, . . . , xn, or a constant 0 or 1, or a Boolean
function ¬, ∧ or ∨. Vertices labeled by variables and constants have in-degree
0, vertices labeled by ¬ have in-degree 1, vertices labeled by ∧ and ∨ have in-
degree 2. Vertices of a circuit are called gates. Vertices labeled by variables or
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constants are called input gates. For each non-input gate g its inputs are the
gates which have out-going edges to g. One of the gates in a circuit is labeled
as an output gate. Given �x ∈ {0, 1}n, we can assign the value to each gate of
the circuit inductively. The values of each input gate is equal to the value of
the corresponding variable or constant. The value of a ¬-gate is opposite to the
value of its input. The value of a ∧-gate is equal to 1 iff both its inputs are 1.
The value of a ∨-gate is 1 iff at least one of its inputs is 1. The value of the
circuit C(�x) is defined as the value of its output gate on �x ∈ {0, 1}n. A circuit
C computes a function f : {0, 1}n → {0, 1} iff C(�x) = f(�x) for all �x ∈ {0, 1}n.
The size of a circuit is the number of gates in it.

The number of inputs n is a parameter. Instead of individual functions,
we consider sequences of functions f = {fn}n∈N, where fn : {0, 1}n → {0, 1}.
A sequence of circuits C = {Cn}n∈N computes f iff Cn computes fn for all n.
From now on, by a Boolean function or a circuit we always mean a sequence of
functions or circuits.

A formula is a Boolean circuit such that each of its gates has fan-out 1.
A Boolean circuit is monotone iff there are no negations in it. It is easy to see
that any monotone circuit computes a monotone Boolean function and, on the
other hand, any monotone Boolean function can be computed by a monotone
Boolean circuit.

A circuit C is a polynomial size circuit (or just polynomial circuit) if there
is a polynomial p ∈ Z[x] such that the size of Cn is at most p(n).

Now we are ready to define several complexity classes based on circuits. A
Boolean function f lies in the class P/poly iff there is a polynomial size circuit C
computing f . A Boolean function f lies in the class NC1 iff there is a polynomial
size formula C computing f . A Boolean function f lies in the class NP/poly iff
there is a polynomial p(n) and a polynomial size circuit C such that for all n
and for all �x ∈ {0, 1}n

f(�x) = 1 ⇔ ∃�y ∈ {0, 1}p(n) Cn+p(n)(�x, �y) = 1. (1)

Complexity classes P/poly and NP/poly are nonuniform analogs of P and NP.
We can introduce monotone analogs of P/poly and NC1 by considering only

monotone circuits or formulas. In the monotone version of NP/poly it is only
allowed to apply negations directly to �y-inputs.

The depth of a circuit is the length of the longest directed path from an input
to the output of the circuit. It is known that f ∈ NC1 iff f can be computed
by logarithmic depth circuit [13]. By SAC1 we denote the class of all Boolean
functions f computable by a polynomial size logarithmic depth circuit such that
∨-gates are allowed to have arbitrary fan-in and all negations are applied only
to inputs of the circuit [24].

A nondeterministic branching program P is a directed graph G = (V,E),
with edges labeled by Boolean constants, variables x1, . . . , xn or their negations.
There are two distinguished vertices of the graph named s and t. On an input
�x ∈ {0, 1}n a branching program P outputs P (�x) = 1 iff there is a path from s to
t going through edges whose labels evaluate to 1. A nondeterministic branching
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program P computes a function f : {0, 1}n → {0, 1} iff for all �x ∈ {0, 1}n we
have P (�x) = f(�x). The size of a branching program is the number of its vertices
plus the number of its edges |V |+ |E|. A branching program is monotone if there
are no negated variables among labels.

Just as for the functions and circuits, from now on by a branching program
we mean a sequence of branching programs Pn with n variables for all n ∈ N.

A branching program P is a polynomial size branching program if there is a
polynomial p ∈ Z[x] such that the size of Pn is at most p(n).

A Boolean function f lies in the class NBP iff there is a polynomial size
branching program P computing f . It is known that NBP coincides with
nonuniform analog of nondeterministic logarithmic space NL, that is NBP =
NL/poly [13,23].

For every complexity class K introduced above, we denote by mK its
monotone counterpart.

The following inclusions hold between the classes introduced above [13]

NC1 ⊆ NBP ⊆ SAC1 ⊆ P/poly ⊆ NP/poly. (2)

It is a major open problem in computational complexity whether any of these
inclusions is strict.

Similar inclusions hold for monotone case:

mNC1 ⊆ mNBP ⊆ mSAC1 ⊆ mP/poly ⊆ mNP/poly. (3)

It is also known that mP/poly 	= mNP/poly [1,22] and mNBP 	= mNC1 [14].
We will use these facts to prove lower bounds on the rewriting size.

3 Theories, Queries and Rewritings

In this survey a data source is viewed as a first-order theory. It is not an arbitrary
theory and must satisfy some restrictions, which we specify below.

First of all, in order to specify the structure of data, we need to fix a set of
predicate symbols in the signature. Informally, they correspond to the types of
information the data contains. We assume that there are only unary and binary
predicates in the signature. The data itself consists of a set of objects (entities)
and of information on them. Objects in the data correspond to constants of the
signature. The information in the data corresponds to closed atomic formulas,
that is predicates applied to constants. These formulas constitute the theory
corresponding to the data. We denote the resulting set of formulas by D and the
set of constants in the signature by ΔD.

We denote the signature (the set of predicate symbols and constants) by Σ.
Thus, we translated a data source into logical terms. To obtain knowledge base,
we introduce more complicated formulas into the theory. The set of these formu-
las will be denoted by T and called an ontology. We will describe which formulas
can be presented in T a bit later. The theory D ∪ T is called a knowledge base.
Predicate symbols and the theory T determines the structure of the knowledge
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base and thus will be fixed. Constants ΔD and atomic formulas D, on the other
hand, determine the current containment of the data, so they will be varying.

As we mentioned in Introduction, we will consider only conjunctive queries.
That is, a query is a formula of the form

q(�x) = ∃�yϕ(�x, �y),

where ϕ is a conjunction of atomic formulas (or atoms for short). For simplicity
we will assume that q does not contain constants from ΔD.

What does the query answering mean for standard data sources without
ontology? It means that there are values for �x and �y among ΔD such that the
query becomes true on the given data D. That is, we can consider a model ID
corresponding to the data D. The elements of the model ID are constants in ΔD

and the values of predicates in ID is given by formulas in D. That is, a predicate
P ∈ Σ is true on �a from ΔD iff P (�a) ∈ D. The tuple of elements �a of ID is an
answer to the query q(�x) if

ID |= ∃�yϕ(�a, �y).

Let us go back to our setting. Now we consider data augmented with a logical
theory. This means that we do not have a specific model. Instead, we have a
theory and we need to find out whether the query is satisfied in the theory. That
is, the problem we are interested in is, given a knowledge base D∪T and a query
q(�x), to find �a in ΔD such that

D ∪ T |= q(�a).

If �x is an empty tuple of variables, then the answer to the query is ‘yes’ or ‘no’.
In this case we say that the query is Boolean.

The main approach to solving the query answering problem is to first refor-
mulate the query in such a way that the answer to the new query does not
depend on the theory T and then apply the machinery for standard databases.
This leads us to the following definition. A first-order formula q′(�x) is called a
rewriting of q(x) w.r.t. a theory T if

D ∪ T |= q(�a) ⇔ ID |= q′(�a) (4)

for all D and for all �a. We emphasize that on the left-hand side in (4) the
symbol ‘|=’ means logical consequence from a theory, while on the right-hand
side it means truth in a model.

We also note that in (4) only predicate symbols in Σ and the theory T are
fixed. The theory D (and thus, the set of constants in the signature) may vary,
so the rewriting should work for any data D. Intuitively, this means that the
structure of the data is fixed in advance and known, and the current content of
a knowledge base may change. We would like the rewriting (and thus the query
answering approach) to work no matter how the data change.

What corresponds to a model of the theory D ∪ T? Since the data D is not
assumed to be complete, it is not a model. A model correspond to the content
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of the “real life” complete data, which extends the data D. We assume that all
formulas of the theory hold in the model, that is all information in the knowledge
base (including formulas in T ) is correct.

However, if we allow to use too strong formulas in our ontology, then the
problem of query answering will become algorithmically intractable. So we have
to allow only very restricted formulas in T . On the other hand, for the practical
goals of OBDA also only very simple formulas are required.

There are several ways to restrict theories in knowledge bases. We will use
the one that fits all most popular restrictions. Thus our lower bounds will hold
for most of the considered settings. As for the upper bounds, we will not discuss
them in details, however, we mention that they hold for substantially stronger
theories and cover OWL 2 QL framework [20].

Formulas in the ontology T are restricted to the following form

∀x(ϕ(x) → ∃yψ(x, y)), (5)

where x and y are (single) variables, ϕ is a unary predicate and ψ(x, y) is a
conjunction of atomic formulas.

It turns out that if T consists only of formulas of the form (5), then the
rewriting is always possible. The (informal) reason for this is that in this case
there is always a universal model MD for given D and T .

Theorem 1. For all theories D,T such that T consists of formulas of the
form (5) there is a model MD such that

D ∪ T |= q(�a) ⇔ MD |= q(�a)

for any conjunctive query q and any �a.

Remark 1. Note that the model MD actually depends on both D and T . We do
not add T as a subscript since in our setting T is fixed and D varies.

The informal meaning of this theorem is that for ontologies T specified by (5)
there is always the most general model. More formally, for any other model M
of D ∪ T there is a homomorphism from the universal model MD to M . We
provide a sketch of the proof of this theorem. For us it will be useful to see how
the model MD is constructed.

Proof (Proof sketch). The informal idea for the existence of the universal model
is that we can reconstruct it from the constants presented in the data D. Namely,
first we add to MD all constants in ΔD and we let all atomic formulas in D to be
true on them. Next, from the theory T it might follow that some other predicates
should hold on the constants in ΔD. We also let them to be true in MD. What
is more important, formulas in T might also imply the existence of new elements
related to constants (the formula (5) implies, for elements x that satisfy ϕ(x),
the existence of a new element y). We add these new elements to the model and
extend predicates on them by deducing everything that follows from T . Next,
T may imply the existence of further elements that are connected to the ones
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obtained on previous step. We keep adding them to the model. It is not hard
to see that the resulting (possibly infinite) model is indeed the universal model.
We omit the formal proof of this and refer the reader to [11].

So, instead of considering a query q over D∪T we can consider it over MD. This
observation helps to study rewritings.

It is instructive to consider the graph underlying the model MD. The vertices
of the graph are elements of the model and there is a directed edge from an
element m1 to an element m2 if there is a binary predicate P such that MD |=
P (m1,m2). Then in the process above we start with a graph on constants from
ΔD and then add new vertices whose existence follows from T . Note that the
premise of the formula (5) consists of a unary predicate. This means that the
existence of a new element in the model is implied solely by one unary predicate
that holds on one of the already constructed vertices. Thus for each new vertex
of the model we can trace it down to one of the constants a of the theory and
one of the atomic formulas B(a) ∈ D.

The maximal (over all D) number of steps of introducing new elements to
the model is called the depth of the theory T . This parameter will be of interest
to us. We note that MD and thus the depth of T are not necessarily finite.

In what follows it is useful to consider, for each unary predicate A ∈ Σ, the
universal model MD for the theory D = {A(a)}. As we mentioned, the universal
model for an arbitrary D is “build up” from these simple universal models.
We denote this model by MA (instead of M{A(a)}) and call it the universal tree
generated by A. The vertex a in the corresponding graph is called the root of the
universal tree. All other vertices of the tree are called inner vertices. To justify
the name “tree” we note that the underlying graph of MA in all interesting cases
is a tree, though not in all cases. More precisely, it might be not a tree if some
formula (5) in T does not contain any binary predicate R(x, y).

Example 1. To illustrate, consider an ontology T describing a part of a student
projects organization:

∀x
(
Student(x) → ∃y (worksOn(x, y) ∧ Project(y))

)
,

∀x
(
Project(x) → ∃y (isManagedBy(x, y) ∧ Professor(y))

)
,

∀x, y
(
worksOn(x, y) → involves(y, x)

)
,

∀x, y
(
isManagedBy(x, y) → involves(x, y)

)
.

Some formulas in this theory are of the form different than (5), but it will not be
important to us. Moreover, it is not hard to see that this theory can be reduced
to the form (5) (along with small changes in data).

Consider the query q(x) asking to find those who work with professors:

q(x) = ∃y, z
(
worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)

)
. (6)

It is not hard to check that the following formula is a rewriting of q:

q′(x) = ∃y, z
[
worksOn(x, y) ∧

(
worksOn(z, y) ∨ isManagedBy(y, z) ∨ involves(y, z)

) ∧ Professor(z)
] ∨

∃y
[
worksOn(x, y) ∧ Project(y)

] ∨ Student(x).
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That is, for any data D and any constant a in D, we have

D ∪ T |= q(a) ⇔ ID |= q′(a).

To illustrate the universal model, consider the data

D =
{

Student(c), worksOn(c, b), Project(b), isManagedBy(b, a)
}
.

The universal model MD is presented in Fig. 1. The left region corresponds to
the data D, the upper right region corresponds to the universal tree generated
by Project(b) and the lower right region corresponds to the universal tree gener-
ated by Student(c). The label of the form P− on an edge, where P is a predicate of
the signature, means that there is an edge in the opposite direction labeled by P .

Fig. 1. An example of a universal model

We note that for our query q(x) we have that q(c) follows from D ∪ T and
we can see that the rewriting q′(c) is true in MD. Note, however, that q(c) is not
true in D due to the incompleteness of the data D: it is not known that a is a
professor.

From the existence of the universal model (and simplicity of its structure) it can
be deduced that for any q there is a rewriting q′ having the form of (existentially
quantified) disjunction of conjunctions of atoms. However, it is not hard to pro-
vide an example that this rewriting is exponentially larger than q (see [11]). By
the size of the rewriting we mean the number of symbols in the formula.

So to obtain shorter rewriting it is helpful to consider more general types of
formulas. A natural choice would be to allow arbitrary first-order formula as a
rewriting. This type is called a first-order rewriting, or a FO-rewriting. Another
option is a positive existential rewriting, or a PE-rewriting. This is a special case
of FO-rewriting in which there are no negations and there are only existential
quantifiers. PE-rewritings are more preferable than FO-rewritings since they are
more accessible to algorithmic machinery developed for usual databases. The
size of a PE- or a FO-rewriting is a number of symbols in the formula.

Another standard type of rewriting is a nonrecursive datalog rewriting, or
NDL-rewriting. This rewriting does not have a form of first-order formula and
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instead has the form of DAG-representation of a first-order formula. Namely,
NDL-rewriting consists of the set Π of formulas of the form

∀�x (A1 ∧ . . . ∧ An → A0) ,

where Ai are atomic formulas (possibly new, not presented in the original sig-
nature Σ) not necessarily of arity 1 or 2. Each Ai depends on (some of) the
variables from �x and each variable in A0 must occur in A1 ∧ . . . ∧ An. Finally,
we need the acyclicity property of Π. To define it, consider a directed graph
whose vertices are predicates A of Π and there is an edge from A to B iff there
is a formula in Π which has B as the right-hand side and contains A in the
left-hand side. Now Π is called acyclic if the resulting graph is acyclic. Also an
NDL-rewriting contains a goal predicate G and we say that �a in ΔD satisfies
(Π,G) over the data D iff

D ∪ Π |=G(�a).

Thus, a (Π,G) is called an NDL-rewriting of the query q if

D ∪ T |= q(�a) ⇔ D ∪ Π |= G(�a)

for all D and all �a. The size of an NDL-rewriting (Π,G) is the number of symbols
in it.

Example 2. To illustrate the concept of NDL-rewriting we provide explicitly a
rewriting for the query q from Example 1:

∀y, z (worksOn(z, y) → N1(y, z)) ,

∀y, z (isManagedBy(y, z) → N1(y, z)) ,

∀y, z (involves(y, z) → N1(y, z)) ,

∀x, y, z (worksOn(x, y) ∧ N1(y, z) ∧ Professor(z) → G(x)) ,

∀x, y (worksOn(x, y) ∧ Project(y) → G(x)) ,

∀x (Student(x) → G(x)) ,

where N1 is a new binary predicate and G is the goal predicate of this NDL-
rewriting.

It is not hard to see that this rewriting is similar to the PE-rewriting q′ from
Example 1. Indeed, N1(y, z) is equivalent to the subformula

(
worksOn(z, y) ∨ isManagedBy(y, z) ∨ involves(y, z)

)

of q′ and G(x) is equivalent to q′(x).

It turns out that NDL-rewritings are more general than PE-rewritings. Indeed,
a PE-rewriting q′ has the form ∃�yϕ(�x, �y), where ϕ is a monotone Boolean formula
applied to atomic formulas (note that the existential quantifiers can be moved
to the prefix due to the fact that there are no negations in the formula). The
formulas in Π can model ∨ and ∧ operations and thus can model the whole
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formula ϕ. For this, for each subformula of ϕ we introduce a new predicate
symbol that depends on all variables on which this subformula depends. We
model ∨ and ∧ operations on subformulas one by one. In the end we will have
an atom F (�x, �y). Finally, we add to Π the formula

∀�x, �y
(
F (�x, �y) → G(�x)

)
. (7)

Then we have that, for any �a,�b, ϕ(�a,�b) is true on D iff F (�a,�b) is true over D∪Π.
Finally, ∃�yϕ(�a, �y) is true over D iff there is �b among constants such that ϕ(�a,�b)
is true. On the other hand, in Π we can deduce G(�a) iff there is �b such that
F (�a,�b) is true. Thus, given a PE-rewriting, we can construct an NDL-rewriting
of approximately the same size.

It is unknown whether NDL-rewritings and FO-rewritings are comparable.
On the one hand, NDL-rewritings correspond to Boolean circuits and FO-
rewritings—to Boolean formulas. On the other hand, FO-rewritings can use
negations and NDL-rewritings are monotone.

As we said above, we will consider only conjunctive queries q(x) to knowl-
edge bases. However, in many cases queries have even simpler structure. To
describe these restricted classes of queries, we have to consider a graph under-
lying the query. The vertices of the graph are variables appearing in q. Two
vertices are connected iff their labels appear in the same atom of q. If this graph
is a tree we call a query tree-like. If the graph is a path, then we call a query
linear.

4 Rewriting Size Lower Bounds: General Approach

In this section we will describe the main idea behind the proofs of lower bounds
on the size of query rewritings.

Very informally, we encode Boolean functions inside of queries in such a way
that the rewritings correspond to Boolean circuits computing these functions. If
we manage to encode hard enough function, then there will be no small circuits
for them and thus there will be no small rewritings.

How exactly do we encode functions inside of queries? First of all we will
restrict ourselves to the data D with only one constant element a. This is a
substantial restriction on the data. But since our rewritings should work for any
data and we are proving lower bounds, we can make our task only harder. On
the other hand, this restriction makes our lower bounds more general.

Next, we introduce several unary predicates A1, A2, . . . , An and consider the
formulas Ai(a). These predicates correspond to Boolean variables x1, . . . , xn of
encoded function f : the variable xi is true iff Ai(a) ∈ D. There are other pred-
icates in the signature and other formulas in D. Their role would be to make
sure that

D ∪ T |= q(x)

iff the encoded function f is true on the corresponding input.



Circuit Complexity Meets Ontology-Based Data Access 19

depth 1 depth d > 1 arbitrary depth

linear queries � NC1 [16] NL/poly [4] NL/poly [4]

tree-like queries � NC1 [16] SAC1 [4] NP/poly [11]

general queries NL/poly [16] NP/poly [16] NP/poly [11]

This approach allows us to characterize the expressive power of various
queries and theories. This characterization is summarized in the following table.

The columns of the table correspond to the classes of the theories T . The
rows of the table correspond to the classes of the queries q. An entry of the table
represents the class of functions that can be encoded by queries and theories of
these types. The results in the table give both upper and lower bounds. However,
in what follows we will concentrate on lower bounds, that is we will be interested
in how to encode hard functions and we will not discuss why harder functions
cannot be encoded.

Next, we need to consider a rewriting of one of the types described above
and obtain from it the corresponding computational model computing f . This
connection is rather intuitive: rewritings has a structure very similar to certain
types of Boolean circuits. Namely, FO-rewritings are similar to Boolean formulas,
PE-rewriting are similar to monotone Boolean formulas and NDL-rewritings are
similar to monotone Boolean circuits. Thus, polynomial size FO-rewriting means
that f is in NC1, polynomial size PE-rewriting means that f is in mNC1, and
polynomial size NDL-rewriting means that f is in mP/poly. We omit the proofs
of these reductions.

Together with the table above this gives the whole spectrum of results on
the size of rewritings. We just need to use the results on the relations between
corresponding complexity classes. For example, in case of depth 1 theories and
path-like or tree-like queries there are polynomial rewritings of all three types. In
case of depth 2 theory and path-like or tree-like queries there are no polynomial
PE-rewriting, there are no polynomial FO-rewritings under certain complexity-
theoretic assumption, but there are polynomial NDL-rewritings. In case of depth
2 theories and arbitrary queries there are no polynomial PE- and NDL-rewritings
and there are no polynomial FO-rewritings under certain complexity-theoretic
assumption.

Below we provide further details of the proofs of aforementioned results. The
paper [11] used an add-hoc construction to deal with the case of unbounded
depth and non-linear queries. Subsequent papers [4,16] provided a unified app-
roach that uses the so-called hypergraph programs.

In the next section we proceed to the discussion of these programs.

5 Hypergraph Programs: Origination

For the sake of simplicity we will restrict ourselves to Boolean queries only.
Consider a query q = ∃�yϕ(�y) and consider its underlying graph G. Vertices of
G correspond to the variables of q. Directed edges of G correspond to binary
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predicates in q. Each edge (u, v) is labeled by all atomic formulas P (u, v) in q.
Each vertex v is labeled by A if A(v) is in q.

Let us consider data D. We can construct a universal model MD just by
adding universal trees to each element of D. Let us see how the query can be
satisfied by elements of the universal model. For this we need that for each
variable t of the query we find a corresponding element in MD satisfying all the
properties of t stated in the query. This element in MD can be an element of the
data and also can be an element of universal trees.

Thus, for a query q to be satisfied we need an embedding of it into the univer-
sal model. That is we should map vertices of G into the vertices of the universal
model MD in such a way that for each label in G there is a corresponding label
in MD. We call this embedding a homomorphism.

Now let us see how a vertex v of G can be mapped into an inner element
w of a universal tree R. This means that for all labels of v the vertex w in a
universal tree R should have the same labels and for all adjacent edges of v
there should be corresponding edges adjacent to w in a universal tree. Thus all
vertices adjacent to v should be also mapped in the universal tree R. We can
repeat this argument for the neighbors of v and proceed until we reach vertices
of G mapped into the root of R. So, if one of the vertices of G is embedded into
a universal tree R, then so is a set of neighboring vertices. The boundary of this
set of vertices should be mapped into the root of the universal tree.

Let us summarize what we have now. An answer to a query corresponds to
an embedding of G into the universal model MD. There are connected induced
subgraphs in G that are embedded into universal trees. The boundaries of these
subgraphs (the vertices connected to the outside vertices) are mapped into the
root of the universal tree. Two subgraphs can intersect only by boundary vertices.
These subgraphs are called tree witnesses.

Given a query we can find all possible tree witnesses in it. Then, for any
given data D there is an answer to the query if we can map the query into the
universal model MD. There is such a mapping if we can find a set of disjoint tree
witnesses such that we can map all other vertices into D and the tree witnesses
into the corresponding universal trees.

Now assume for simplicity that there is only one element a in D. Thus D
consists of formulas A(a) and P (a, a). To decide whether there is an answer to
a query we need to check whether there is a set of tree witnesses which do not
intersect (except by boundary vertices), such that all vertices except the inner
vertices of tree witnesses can be mapped in a. Consider the following hypergraph
H: it has a vertex for each vertex of G and for each edge of G; for each tree
witness there is a hyperedge in H consisting of vertices corresponding to the
inner vertices of the tree witness and of vertices corresponding to the edges
of the tree witness. For each vertex v of the hypergraph H let us introduce a
Boolean variable xv and for each hyperedge e of the hypergraph H — a Boolean
variable xe. For a given D (with one element a) let xv be equal to 1 iff v can
be mapped in a and let xe be equal to 1 iff the unary predicate generating the
tree witness corresponding to the hyperedge e is true on a. From the discussion
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above it follows that there is an answer to a rewriting for a given D iff there is
a subset of disjoint hyperedges such that xe = 1 for them and they contain all
vertices with xv = 0.

This leads us to the following definition.

Definition 1 (Hypergraph Program). A hypergraph program H is a hyper-
graph whose vertices are labeled by Boolean variables x1, . . . , xn, their negations
or Boolean constants 0 and 1. A hypergraph program H outputs 1 on input
�x ∈ {0, 1}n iff there is a set of disjoint hyperedges covering all vertices whose
labels evaluates to 0. We denote this by H(�x) = 1. A hypergraph program com-
putes a Boolean function f : {0, 1}n → {0, 1} iff for all �x ∈ {0, 1}n we have
H(�x) = f(�x). The size of a hypergraph program is the number of vertices plus
the number of hyperedges in it. A hypergraph program is monotone iff there are
no negated variables among its labels.

Remark 2. Note that in the discussion above we obtained somewhat different
model. Namely, there were also variables associated to hyperedges of the hyper-
graph. Note, however, that our definition captures also this extended model.
Indeed, we can introduce for each hyperedge e a couple of new fresh vertices
ve and ue and a new hyperedge e′. We add ve to the hyperedge e and we let
e′ = {ve, ue}. The label of ve is 1 and the label of ue is the variable xe. It is easy
to see that xe = 0 iff we cannot use the hyperedge e in our cover.

So far we have discussed how to encode a Boolean function by a query and a
theory. We have noted that the resulting function is computable by a hypergraph
program. We denote by HGP the class of functions computable by hypergraph
programs of polynomial size (recall, that we actually consider sequences of func-
tions and sequences of programs).

Various restrictions on queries and theories result in restricted versions of
hypergraph programs. If a theory is of depth 1, then each tree witness has one
inner vertex and thus two different hyperedges can intersect only by one vertex
corresponding to the edge of G. Thus each vertex corresponding to the edge of
G can occur in at most two hyperedges and the resulting hypergraph program
is of degree at most 2. We denote by HGPk the set of functions computable by
polynomial size hypergraph programs of degree at most k.

If a query is tree-like (or linear), then the hypergraph program will have
an underlying tree (or path) structure and all hyperedges will be its subtrees
(subpaths). We denote by HGPtree (HGPpath) the set of functions computable
by hypergraph programs of polynomial size and with underlying tree (path)
structure.

However, to prove lower bounds we need to show that any hypergraph pro-
gram in certain class can be encoded by a query and a theory of the corresponding
type. These statements are proved separately by various constructions of queries
and theories. We will describe a construction for general hypergraph programs
as an example.

Consider a hypergraph program P and consider its underlying hypergraph
H = (V,E). It would be more convenient to consider a more general hypergraph
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program P ′ which has the same underlying hypergraph H and each vertex v in V
is labeled by a variable xv. Clearly, the function computed by P can be obtained
from the function computed by P ′ by fixing some variables to constant and
identifying some variables (possibly with negations). Thus it is enough to encode
in a query and a theory the function computed by P ′. We denote this function
by f .

To construct a theory and a query encoding f consider the following directed
graph G. It has a vertex zv for each vertex v of the hypergraph H and a vertex
ze for each hyperedge e of the hypergraph H. The set of edges of G consists of
edges (zv, ze) for all pairs (v, e) such that v ∈ e. This graph will be the underlying
graph of the query. For each vertex ze the subgraph induced by all vertices on
the distance at most 2 from ze will be a tree witness. In other words, this tree
witness contains vertices zv for all v ∈ e and ze′ for all e′ such that e′ ∩ e 	= ∅.
The latter vertices are boundary vertices of the tree witness.

The signature contains unary predicates Av for all v ∈ V , unary predicates
Ae, Be and binary predicates Re for all e ∈ E. Intuitively, the predicate Ae

generates tree-witness corresponding to ze, the predicate Be encodes that its
input correspond to zv with v ∈ e, the predicate Re encodes that its inputs
correspond to (ze, zv) and v ∈ e, the predicate Av encodes the variable xv of f .

Our Boolean query q consists of atomic formulas

{Av(zv) | v ∈ V } ∪ {Re(ze, zv) | v ∈ e, for v ∈ V and e ∈ E}.

Here zv and ze for all v ∈ V and e ∈ E are existentially quantified variables of
the query.

Theory T consists of the following formulas (the variable x is universally
quantified):

Ae(x) → ∃y
∧

e∩e′ �=∅
e�=e′

(
Re′(x, y) ∧ Be(y)

)
,

Be(x) →
∧

v∈e

Av(x), Be(x) → ∃yRe(y, x).

In particular, each predicate Ae generates a universal tree of depth 2 consisting
of 3 vertices a,we

vertex, we
edge and of the following predicates (a is a root of the

universal tree):
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There are other universal trees generated by predicates Be, but we will con-
sider only data in which Be are not presented, so the corresponding universal
trees also will not be presented in the universal model.

There is one constant a in our data and we will restrict ourselves only to the
data containing Ae(a) for all e and Re(a, a) for all e and not containing Be for all
e. For convenience denote D0 = {Ae(a), Re(a, a) for all e ∈ E}. The predicates
Av will correspond to the variables xv of the function f . That is the following
claim holds.

Claim. For all �x ∈ {0, 1}n f(�x) = 1 iff D∪T |= q for D = D0∪{Av(a) | xv = 1}.

Proof. Note first that if Av(a) is true for all v then the query is satisfiable. We
can just map all vertices ze and zv to a. However, if some predicate Av(a) is not
presented, then we cannot map zv to a and have to use universal trees.

Suppose f(�x) = 1 for some �x ∈ {0, 1}n and consider the corresponding data
D. There is a subset of hyperedges E′ ⊆ E of H such that hyperedges in E′ do
not intersect and all v ∈ V such that xv = 0 lie in hyperedges of E′. Then we
can satisfy the query in the following way. We map the vertices ze with e /∈ E′ to
a. We map all vertices zv such that v is not contained in hyperedges of E′ also
into a. If for zv we have v ∈ e for e ∈ E′, then we send zv to the we

vertex vertex in
the universal tree MAe

. Finally, we send vertices ze with e ∈ E′ to we
edge vertex

of the universal tree MAe
. It is easy to see that all predicates in the query are

satisfied.
In the other direction, suppose for data D the query q is true. It means that

there is a mapping of variables zv and ze for all v and e into universal model
MD. Note that the vertex ze can be sent either to a, or to the vertex we

edge in
the universal tree MAe

. Indeed, only these vertices of MD has outgoing edge
labeled by Re. Consider the set E′ = {e ∈ E | ze is sent to we

edge}. Consider
some e ∈ E′ and note that for any e′, such that e′ 	= e and e′ ∩ e 	= ∅, ze′ is on
the distance 2 from ze in G and ze′ should be mapped in a. Thus hyperedges
in E′ are non-intersecting. If for some zv the atom Av(a) is not in D, then zv
cannot be mapped into a. Thus it is mapped in the vertex we

vertex in some MAe

for some e containing v. But then ze should be mapped into we
edge of the same

universal tree (there is only one edge leaving we
vertex labeled by Re). Thus e ∈ E′

and thus v is covered by hyperedges of E′. Overall, we have that hyperedges in
E′ give a disjoint cover of all zeros in P ′ and thus f(x) = 1.

6 Hypergraph Programs: Complexity

We have discussed that hypergraph programs can be encoded by queries and
theories. Now we need to show that there are hard functions computable by
hypergraph programs. For this we will determine the power of various types
of hypergraph programs. Then the existence of hard functions will follow from
known results in complexity theory.

We formulate the results on the complexity of hypergraph programs in the
following theorem.
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Theorem 2 ([4,16]). The following equations hold both in monotone and non-
monotone cases:

1. HGP = HGP3 = NP/poly;
2. HGP2 = NBP;
3. HGPpath = NBP;
4. HGPtree = SAC1.

Together with the discussion of two previous sections this theorem gives the
whole picture of proofs of lower bounds on the rewriting size for considered
types of queries and theories.

We do not give a complete proof of Theorem 2 here, but in order to present
ideas behind it, we give a proof of the first part of the theorem.

Proof. Clearly, HGP3 ⊆ HGP.
Next, we show that HGP ⊆ NP/poly. Suppose we have a hypergraph pro-

gram of size m with variables �x. We construct a circuit C(�x, �y) of size poly(m)
satisfying (1). Its �x-variables are precisely the variables of the program, and cer-
tificate variables �y correspond to the hyperedges of the program. The circuit C
will output 1 on (�x, �y) iff the family {e | ye = 1} of hyperedges of the hypergraph
forms a disjoint set of hyperedges covering all vertices labeled by 0 under �x. It
is easy to construct a polynomial size circuit checking this property. Indeed, for
each pair of intersecting hyperedges (e, e′) it is enough to compute disjunction
¬ye ∨ ¬ye′ , and for each vertex v of the hypergraph with label t and contained
in hyperedges e1, . . . , ek it is enough to compute disjunction t ∨ ye1 ∨ · · · ∨ yek .
It then remains to compute a conjunction of these disjunctions. It is easy to see
that this construction works also in monotone case (note that applications of ¬
to �y-variables in the monotone counterpart of NP/poly are allowed).

Now we show that NP/poly ⊆ HGP3. Consider a function f ∈ NP/poly
and consider a circuit C(�x, �y) satisfying (1). Let g1, . . . , gn be the gates of C
(including the inputs �x and �y). We construct a hypergraph program of degree
≤ 3 computing f of size polynomial in the size of C. For each i we introduce a
vertex gi labelled with 0 and a pair of hyperedges ēgi and egi , both containing
gi. No other hyperedge contains gi, and so either ēgi or egi should be present in
any cover of zeros in the hypergraph program. Intuitively, if the gate gi evaluates
to 1 then egi is in the cover, otherwise ēgi is there. To ensure this property for
each input variable xi, we add a new vertex vi labelled with ¬xi to exi

and a
new vertex ui labelled with xi to ēxi

. For a non-variable gate gi, we consider
three cases.

– If gi = ¬gj then we add a vertex labelled with 1 to egi and ēgj , and a vertex
labelled with 1 to ēgi and egj .

– If gi = gj∨gj′ then we add a vertex labelled with 1 to egj and ēgi , add a vertex
labelled with 1 to egj′ and ēgi ; then, we add vertices hj and hj′ labelled with
1 to ēgj and ēgj′ , respectively, and a vertex wi labeled with 0 to ēgi ; finally,
we add hyperedges {hj , wi} and {hj′ , wi}.

– If gi = gj ∧ gj′ then we use the dual construction.
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In the first case it is not hard to see that egi is in the cover iff ēgj is in the
cover. In the second case egi is in the cover iff at least one of egj and egj′ is
in the cover. Indeed, in the second case if, say, the cover contains egj then it
cannot contain ēgi , and so it contains egi . The vertex wi in this case can be
covered by the hyperedge {hj , wi} since ēgj is not in the cover. Conversely, if
neither egj nor egj′ is in the cover, then it must contain both ēgj and ēgj′ and
so, neither {hj , wi} nor {hj′ , wi} can belong to the cover and we will have to
include ēgi to the cover. Finally, we add one more vertex labelled with 0 to eg
for the output gate g of C. It is not hard to show that, for each �x, there is �y
such that C(�x, �y) = 1 iff the constructed hypergraph program returns 1 on �x.

For the monotone case, we remove all vertices labelled with ¬xi. Then, for
an input �x, there is a cover of zeros in the resulting hypergraph program iff there
are �y and �x′ � �x with C(�x′, �y) = 1.

Acknowledgments. The author is grateful to Michael Zakharyaschev, Mikhail
Vyalyi, Evgeny Zolin and Stanislav Kikot for helpful comments on the preliminary
version of this survey.
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Abstract. We provide a lower complexity bound for the satisfiability
problem of a multi-agent justification logic, establishing that the general
NEXP upper bound from our previous work is tight. We then use a simple
modification of the corresponding reduction to prove that satisfiability for
all multi-agent justification logics from there is Σp

2 -hard – given certain
reasonable conditions. Our methods improve on these required condi-
tions for the same lower bound for the single-agent justification logics,
proven by Buss and Kuznets in 2009, thus answering one of their open
questions.

1 Introduction

Justification Logic is the logic of justifications. Where in Modal Epistemic Logic
we use formulas of the form �φ to denote that φ is known (or believed, etc.), in
Justification Logic, we use t :φ to denote that φ is known for reason t (i.e. t is a
justification for φ). Artemov introduced LP, the first justification logic, in 1995
[6], originally as a link between Intuitionistic Logic and Peano Arithmetic. Since
then the field has expanded significantly, both in the variety of logical systems
and in the fields it interacts with and is applied to (see [7,8] for an overview).

In [22] Yavorskaya introduced two-agent LP with agents whose justifications
may interact. We studied the complexity of a generalization in [3,4], discov-
ering that unlike the case with single-agent Justification Logic as studied in
[1,9,13,14,16], the complexity of satisfiability jumps to PSPACE- and EXP-
completeness when two or three agents are involved respectively, given appropri-
ate interactions. In fact, the upper bound we proved was that all logics in this
family have their satisfiability problem in NEXP – under reasonable assumptions.

The NEXP upper complexity bound was not met with the introduction of a
NEXP-hard logic in [4]. The main contribution of this paper is that we present
a NEXP-hard justification logic from the family that was introduced in [4], thus
establishing that the general upper bound is tight.

In general, the complexity of the satisfiability problem for a justification logic
tends to be lower than the complexity of its corresponding modal logic1 (given

An extended version with omitted proofs can be found in [5].
1 That is, the modal logic that is the result of substituting all justification terms in

the axioms with boxes and adding the Necessitation rule.
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the usual complexity-theoretic assumptions). For example, while satisfiability for
K, D, K4, D4, T, and S4 is PSPACE-complete, the complexity of the corresponding
justification logics (J, JD, J4, JD4, JT, and LP respectively) is in the second level
of the polynomial hierarchy (in Σp

2 ). In the multi-agent setting we have already
examined this remains the case: many justification logics that so far demonstrate
a complexity jump to PSPACE- or EXP-completeness have corresponding modal
logics with an EXP-complete satisfiability problem (c.f. [1,2,10,21]). It is notable
that, assuming EXP �= NEXP, this is the first time a justification logic has a
higher complexity than its corresponding modal logic; in fact, the reduction we
use relies on the effects of the construction of a justification term.

In a justification logic, the logic’s axioms are justified by constants, a kind
of minimal (not analyzable) justification. A constant specification is part of the
description of a justification logic and specifies exactly which constants justify
which axioms. There are certain standard assumptions we often need to make
when studying the complexity of a justification logic. One is that the logic has an
axiomatically appropriate constant specification, which means that all axioms
of the logic are justified by at least one justification constant. Another is that
the logic has a schematic constant specification, which means that each constant
justifies a certain number of axiom schemes (perhaps none) and nothing else.
Finally, the third assumption is that the constant specification is schematically
injective, that is, it is schematic and each constant justifies at most one scheme.

It is known that for (single-agent) justification logics J, JT, J4, and LP, the
satisfiability problem is in Σp

2 for a schematic constant specification [13] and
for JD, JD4, the satisfiability problem is in Σp

2 for an axiomatically appropriate
and schematic constant specification [1,14]. As for the lower bounds, Milnikel
has proven [18] that J4-satisfiability is Σp

2 -hard for an axiomatically appropriate
and schematic constant specification and that LP-satisfiability is Σp

2 -hard for
an axiomatically appropriate, (schematic,) and schematically injective constant
specification. Following that, Buss and Kuznets gave a general lower bound in [9],
proving that for all the above logics, satisfiability is Σp

2 -hard for an axiomatically
appropriate, (schematic,) and schematically injective constant specification. This
raised the question of whether the condition that the constant specification is
schematically injective is a necessary one, which is answered in this paper.2

We present a general lower bound, which applies to all logics from [4]. This
includes all the single-agent logics whose complexity was studied in [1,9,13,14].
In fact, Buss and Kuznets gave the same general lower bound for all the single-
agent cases in [9] and it is reasonable to expect that we could simply apply their
techniques and achieve the same result in this general multi-agent setting. Our
method, however, presents the following two advantages: it is a relatively simple
reduction, a direct simplification of the more involved NEXP-hardness reduction
and very similar to Milnikel’s method from [18]; it is also an improvement of
their result, even if it does not improve the bound itself in that for our results
the requirements are that the constant specification is axiomatically appropriate
and schematic – and not that it is schematically injective as well. In particular
2 The answer is ‘no’.
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this means that we provide for the first time a tight lower bound for the full
LP (LP where all axioms are justified by all constants). The disadvantage of our
method is that, unlike the one of Buss and Kuznets, it cannot be adjusted to
work on the reflected fragments of justification logic, the fragment which includes
only the formulas of the form t :φ.

2 Background

We present the family of multiagent justification logics of [4], its semantics and
∗-calculus. All definitions and propositions in this section can be found in [3,4].

2.1 Syntax and Axioms

The justification terms of the language Ln include constants c1, c2, c3, . . . and
variables x1, x2, x3, . . . and t ::=x | c | [t + t] | [t · t] |!t. The set of terms is called
Tm. The n agents are represented by the positive integers i ∈ N = {1, . . . , n}.
The propositional variables will usually (but not always, as will be evident in
the following section) be p1, p2, . . .. Formulas of the language Ln are defined:
φ ::=⊥ | p | ¬φ | φ → φ | φ ∧ φ | φ ∨ φ | t :i φ, but depending on convenience
we may treat some connectives as constructed from others. We are particularly
interested in rLn = {t :i φ ∈ Ln}. Intuitively, · applies a justification for a
statement A → B to a justification for A and gives a justification for B. Using +
we can combine two justifications and have a justification for anything that
can be justified by any of the two initial terms – much like the concatenation
of two proofs. Finally, ! is a unary operator called the proof checker. Given a
justification t for φ, !t justifies the fact that t is a justification for φ.

If ⊂, ↪→ are binary relations on the agent set N and for every agent i, F (i)
is a (single-agent) justification logic (we assume F (i) ∈ {J, JD, JT}), then justi-
fication logic J = (n,⊂, ↪→, F )CS has the axioms as seen on Table 1 and modus
ponens. The binary relations ⊂, ↪→ determine the interactions among the agents:
⊂ determines the instances of the Conversion axiom, while ↪→ the instances of
the Verification axiom, so if i ⊂ i, then the justifications of agent j are also
valid justifications for agent i (i.e. we have axiom t :j φ → t :i φ), while if i ↪→ i,
then the justifications of agent j can be verified by agent i (i.e. we have axiom
t :j φ →!t :i t :j φ). F assigns a single-agent justification logic to each agent.
We would assume F (i) is one of J, JD, JT, J4, JD4, and LP, but since Positive
introspection is a special case of Verification, we can limit the choices for F (i) to
logics without Positive Introspection (i.e. J, JD, and JT). CS is called a constant
specification (cs). It introduces justifications for the axioms and is explained in
Table 1 with the axioms. We also define i ⊃ j iff j ⊂ i and i ←↩ j iff j ↪→ i.

In this paper we make the assumption that a cs is axiomatically appropriate:
each axiom is justified by at least one constant; and schematic: every constant jus-
tifies only a certain number (0 or more) of the logic’s axiom schemes (Table 1) – as
a result, every constant justifies a finite number of axiom schemes, but either 0 or
infinite axioms, while it is closed under (propositional) substitution.



30 A. Achilleos

Table 1. The axioms of (n, ⊂, ↪→, F )CS

General axioms (for every agent i):

Propositional Axioms: Finitely many schemes of classical propositional logic;
Application: s :i (φ → ψ) → (t :i φ → [s · t] :i ψ);
Concatenation: s :i φ → [s + t] :i φ, s :i φ → [t + s] :i φ.

Agent-dependent axioms (depending on F (i)):

Factivity: for every agent i, such that F (i) = JT, t :i φ → φ;
Consistency: for every agent i, such that F (i) = JD, t :i ⊥ → ⊥.

Interaction axioms (depending on the binary relations ⊂ and ↪→):

Conversion: for every i ⊃ j, t :i φ → t :j φ;
Verification: for every i ←↩ j, t :i φ →!t :j t :i φ.

A constant specification for (n, ⊂, ↪→, F ) is any set of formulas of the form c :i A, where
c a justification constant, i an agent, and A an axiom of the logic from the ones above.
We say that axiom A is justified by a constant c for agent i when c :i A ∈ CS.

Axiom Necessitation (AN): t :i φ, where either t :i φ ∈ CS or t =!s and φ = s :j ψ
an instance of Axiom Necessitation.

We use the following conventions: for k > 2, justification terms t1, . . . , tk, and
formulas φ1, . . . , φk, [t1 + t2 + · · · + tk] is defined as [[t1 + t2 + · · · + tk−1] + tk],
[t1 · t2 · · · tk] is defined as [[t1 · t2 · · · tk−1] · tk], and (φ1 ∧ φ2 ∧ · · · ∧ φk) as
((φ1 ∧ φ2 ∧ · · · ∧ φk−1) ∧ φk). We identify conjunctions of formulas with sets
of such formulas, as long as these can be used interchangeably. For set of indexes
A and Φ = {ta :ia φa | a ∈ A}, we define Φ#i = {φa | a ∈ A, ia = i} and
∗Φ = {∗ia(ta, φa) | a ∈ A}. Often we identify 0, 1 with ⊥,� respectively, as long
as it is not a source of confusion.

Lemma 1 (Internalization Property, [4], but Originally [6]). If the cs is
axiomatically appropriate, i ∈ N , and  φ, the there is a term t such that  t :i φ.

The Internalization Property demonstrates three important points. One is that
a theorem’s proof can be internalized as a justification for that theorem. Another
point is that Modal Logic’s Necessitation rule survives in Justification Logic –
in a weakened form as an axiom and in its full form as a property of the logic.
The third point is the importance of the assumption that the cs is axiomatically
appropriate as it is necessary for the lemma’s proof.

2.2 Semantics

We present Fitting (F-) models for J = (n,⊂, ↪→, F )CS . These are Kripke models
with an additional machinery to accommodate justification terms. They were
introduced by Fitting in [11] with variations appearing in [15,20].
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Definition 1. An F-model M for J is a quadruple (W, (Ri)i∈N , (Ei)i∈N ,V),
where W �= ∅ is a set, for every i ∈ N , Ri ⊆ W 2 V : Pvar −→ 2W and
for every i ∈ N , Ei : (Tm × Ln) −→ 2W . W is called the universe of M and
its elements are the worlds or states of the model. V assigns a subset of W
to each propositional variable, p, and Ei assigns a subset of W to each pair
of a justification term and a formula. (Ei)i∈N is often seen and referred to as
E : N × Tm × Ln −→ 2W and E is called an admissible evidence function (aef).
For any i ∈ N , formulas φ, ψ, and justification terms t, s, E and (Ri)i∈N must
satisfy the following conditions:

Application closure: Ei(s, φ → ψ) ∩ Ei(t, φ) ⊆ Ei(s · t, ψ).
Sum closure: Ei(t, φ) ∪ Ei(s, φ) ⊆ Ei(t + s, φ).
AN-closure: for any instance of AN, t :i φ, Ei(t, φ) = W.
Verification Closure: If i ↪→ j, then Ej(t, φ) ⊆ Ei(!t, t :i φ).
Conversion Closure: If i ⊂ j, then Ej(t, φ) ⊆ Ei(t, φ).
Distribution: for j ↪→ i and a, b ∈ W , if aRjb and a ∈ Ei(t, φ), then b ∈ Ei(t, φ).3

– If F (i) = JT, then Ri must be reflexive.
– If F (i) = JD, then Ri must be serial (∀a ∈ W ∃b ∈ W aRib).
– If i ↪→ j, then for any a, b, c ∈ W , if aRibRjc, we also have aRjc.4

– For any i ⊂ j, Ri ⊆ Rj.

Truth in the model is defined in the following way, given a state a:

– M, a �|= ⊥ and if p is a propositional variable, then M, a |= p iff a ∈ V(p).
– M, a |= φ → ψ if and only if M, a |= ψ, or M, a �|= φ.
– M, a |= t :i φ if and only if a ∈ Ei(t, φ) and M, b |= φ for all aRib.

A formula φ is called satisfiable if there are M, a |= φ; we then say that M
satisfies φ in a. A pair (W, (Ri)i∈N ) as above is a frame for (n,⊂, ↪→, F )CS . We
say that M has the Strong Evidence Property when M, a |= t :i φ iff a ∈ Ei(t, φ).
J is sound and complete with respect to its F-models;5 it is also complete with
respect to F-models with the Strong Evidence property. J also has a “small”
model property, as Proposition 1 demonstrates. Completeness is proven in [3,4]
by a canonical model construction; Proposition 1 is then proven by a modification
of that construction which depends on the particular satisfiable formula φ.

Proposition 1 [3,4]. If φ is J-satisfiable, then φ is satisfiable by an F-model
for J of at most 2|φ| states which has the strong evidence property.

2.3 The ∗-Calculus

The ∗-calculus gives an axiomatization of rJ = {φ ∈ rLn | J  φ}, the reflected
fragment of J . It is an invaluable tool in the study of the complexity of Justi-
fication Logic and when we handle aefs and formulas in rLn. A ∗-calculus was
3 If we have M, a |= t :i φ – and thus a ∈ Ei(t, φ) – we also want M, a |=!t :j t :i φ to

happen and therefore also M, b |= t :i φ – so b ∈ Ei(t, φ) must be the case as well.
4 Thus, if i has positive introspection (i.e. i ↪→ i), then Ri is transitive.
5 That CS is axiomatically appropriate is a requirement for completeness.
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introduced in [12], but its origins can be found in [19]. If t is a term, φ a formula,
and i ∈ N , then ∗i(t, φ) is a ∗-expression. Given frame F = (W, (Ri)i∈N ) for J ,
the ∗F -calculus for J is the derivation system on ∗-expressions prefixed by states
from W (∗F -expressions) with the axioms and rules that are shown in Table 2.

Table 2. The ∗F -calculus for J : where F = (W, (Ri)i∈N ) and i, j ∈ N

∗CS(F) Axioms: w ∗i (t, φ), where t :i φ
an instance of AN

∗App(F):

w ∗i (s, φ → ψ) w ∗i (t, φ)

w ∗i (s · t, ψ)

∗Sum(F):

w ∗i (t, φ)

w ∗i (s + t, φ)

w ∗i (s, φ)

w ∗i (s + t, φ)

∗ ↪→ (F): For any i ←↩ j,

w ∗i (t, φ)

w ∗j (!t, t :i φ)

∗ ⊂ (F): For any i ⊃ j,

w ∗i (t, φ)

w ∗j (t, φ)

∗ ↪→Dis(F): For any i ←↩ j, (a, b) ∈ Rj ,

a ∗i (t, φ)

b ∗i (t, φ)

For Φ ⊆ rLn, the ∗-calculus (without a frame) for J can be defined as Φ ∗ e
if for every frame F , state w of F , {w e | e ∈ ∗Φ} ∗F w ∗i (t, φ). Notice that for
any v, w, if {w e | e ∈ ∗Φ} ∗F v ∗i (t, φ), then {w e | e ∈ ∗Φ} ∗F w ∗i (t, φ),
therefore the ∗-calculus is the resulting calculus on ∗-expressions after we ignore
the frame and world-prefixes (and thus rule ∗ ↪→Dis(F)) in Table 2. For an aef
E , we write E |= w ∗i (t, φ) when w ∈ Ei(t, φ); for set Φ of ∗F - (or ∗-)expressions,
E |= Φ when E |= e for every e ∈ Φ. If E |= e, we may say that E satisfies e.

Proposition 2 ([4], but Originally [12,14]).

1. Let Φ ⊆ rLn. Then, ∗Φ ∗ e iff for any aef E |= ∗Φ, E |= w e.
2. For frame F , set of ∗F -expressions Φ, Φ ∗F e iff E |= e for every aef E |= Φ.

Proposition 3 ([4], but Originally [12,14]). If CS ∈ P and is schematic, the
following problems are in NP:

1. Given a finite frame F , a finite set S ∪ {e} of ∗F -expressions, is it the case
that S ∗F e?

2. Given a finite set S ∪ {e} of ∗-expressions, is it the case that S ∗ e?

We can use t to extract the general shape of a ∗-calculus derivation – the term
keeps track of the applications of all rules besides ∗ ⊂ and ∗ ↪→Dis. We can then
plug in to the leaves of the derivation either axioms of the calculus or members
of S and unify (CS is schematic, so the derivation includes schemes) trying to
reach the root. Using Propositions 3 and 1, we can conclude with Corollary 1.
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Corollary 1 ([4], but 1 was Originally Proven in [12]).

1. If CS ∈ P and is schematic, then deciding for t :i φ that J  t :i φ is in NP.
2. If CS ∈ P and is schematic and axiomatically appropriate, then the satisfia-

bility problem for J is in NEXP.

3 A Universal Lower Bound

The main result this section proves is Theorem 1, which gives a lower bound
for the complexity of satisfiability for any multiagent justification logic with an
axiomatically appropriate, schematic cs. We give the main theorem first.

Theorem 1. If J has an axiomatically appropriate and schematic cs, then J-
satisfiability is Σp

2 -hard.

Kuznets proved in [13] that, under a schematic cs, satisfiability for J, JT, J4, and
LP is in Σp

2 – an upper bound which was also successfully established later for
JD [16] and JD4 [1] under the assumption of a schematic and axiomatically appro-
priate cs. In that regard, the lower bound of Theorem1 is optimal. Kuznets’ algo-
rithm is composed of a tableau procedure which breaks down signed formulas of
the form T φ, intuitively meaning that φ is true in the constructed model, and F φ,
meaning that φ is false, with respect to their propositional connectives (and from
T t :i φ gives T φ in the presence of Factivity). Eventually it produces formulas
of the form T p, F p, T ∗ (t, φ), and F ∗ (t, φ), where T ∗ (t, φ) means that the
aef of the constructed model satisfies ∗(t, φ). The process so far takes polynomial
time and makes nondeterministic choices to break the connectives. Then we need
to make sure that there is a model (E ,V) such that E |= ∗(t, φ) (resp. V(p) = true)
if T ∗(t, φ) (resp. T p) is in the branch, E �|= ∗(t, φ) (resp. V(p) = false) if F ∗(t, φ)
(resp. F p) is in the branch. The propositional variable part is easy to check – just
check that not both T p and F p are in the branch. The branch can give a valid
aef if and only if from all ∗-expressions e, where T e is in the branch we cannot
deduce some ∗-expression f using the ∗-calculus, where F f in the branch. By
Proposition 3, this can be verified using an NP-oracle.

The idea behind the reduction we use to prove Theorem 1 is very similar to
Milnikel’s proof of Πp

2 -completeness for J4-provability [18] (which also worked
for J-provability). Both Milnikel’s and our reduction are from QBF2. The main
difference has to do with the way each reduction transforms (or not) the QBF
formula. Milnikel uses the propositional part of the QBF formula as it is and
he introduces existential nondeterministic choices on a satisfiability-testing pro-
cedure (think of Kuznets’ algorithm as described above) using formulas of the
form x : p ∨ y :¬p and universal nondeterministic choices using formulas of the
form x :p ∧ y :¬p and term [x + y] in the final term, forcing a universal choice
between x and y during the ∗-calculus testing.

This approach works well for J and J4, but it fails in the presence of the
Consistency or Factivity axiom, as x : p ∧ y : ¬p becomes inconsistent. For the
case of LP, he used a different approach and made use of his assumption of a
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schematically injective cs (i.e. that all constants justify at most one scheme)
to construct a term t to specify an intended proof of a formula of the form∧

i(x : p ∧ y : ¬p) → s : ψ – which is always provable, since the left part
of the implication is inconsistent. In this paper we bypass the problem of the
inconsistency of x : p ∧ y : ¬p by replacing each propositional formula by two
corresponding propositional variables, [χ]� and [χ]⊥ to correspond to “χ is true”
and to “χ is false” respectively. Therefore, we use x : [p]� ∧ y : [p]⊥ instead of
x : p ∧ y :¬p and we have no inconsistent formulas. As a side-effect we need to
use several extra formulas to encode the behavior of the formulas with respect
to a truth-assignment – for instance, [p]� → [p ∨ q]� is not a tautology, so we
need a formula to assert its truth (see the definitions of Evalj below).

Buss and Kuznets in [9] use the same assumption as Milnikel on the cs
to give a general lower bound by a reduction from Vertex Cover and a Σp

2 -
complete generalization of that problem. Their construction has the advantage
that it additionally proves an NP-hardness result for the reflected fragment of
the logics they study, while ours does not. On the other hand we do not require
a schematically injective cs, as, much like Milnikel’s construction for J4, we do
not need to limit a ∗-calculus derivation.

Lemma 2 is a simple observation on the resources (number of assumptions)
used by a ∗-calculus derivation: if there is a derivation of ∗i(t, φ) and t only has
one appearance of term s, then the derivation uses at most one premise of the
form ∗j(s, ψ). In fact, this observation can be generalized to k appearances of s
using at most k premises, but this is not important for the proof of Theorem1.

Lemma 2. Let i be an agent, φ a justification formula, t a justification term in
which ! does not appear, and s a subterm of t which appears at most once in t.
Let Ss = {s :i φ1, . . . , s :i φk} and S ⊂ rLn, such that S ∪ Ss is consistent. Then,
S ∪Ss  t :i φ if and only if there is some 1 ≤ a ≤ k such that S ∪{s :i φa}  t :i φ.

Proof. Easy, by induction on the ∗-calculus derivation (on t). ��
The proof of Theorem1 is by reduction from QBF2, which is the following (Σp

2 -
complete) problem: given a Quantified Boolean Formula,

φ = ∃x1∃x2 · · · ∃xk∀y1∀y2 · · · ∀yk′ψ,

where ψ is a propositional formula on variables x1, . . . , xk, y1, . . . , yk′ , is φ true?
That is, are there truth-values for x1, . . . , xk, such that for all truth-values for
y1, . . . , yk′ , a truth-assignment that gives these values makes ψ true?

As mentioned above, for every ψa ∈ Ψ , let [ψa]�, [ψa]⊥ be new propositional
variables. As we argued earlier, we need formulas to help us evaluate the truth of
variables under a certain valuation in a way that matches the truth of the original
formula, ψ – [ψ]⊥ → [¬ψ]� for instance. These kinds of formulas (prefixed by a
corresponding justification term) are gathered into S(φ). T J(φ) is constructed
in such a way that under the formulas of S(φ) and given a valuation v

∧

v(pa)=true

xa :i [pa]� ∧
∧

v(pa)=false

xa :i [pa]⊥ ∧ S(φ)  T J(φ) :i [φ]�
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if and only if v makes φ true. In other words, T J(φ) encodes the method we
would use to evaluate the truth value of φ.

To construct T J(φ), we first need certain justification terms to encode needed
operations to manipulate conjuncts of formulas which we can view as a string of
formulas. We start by providing these terms.

We define terms projr
x (for x ≤ r), append, hypappend, and appendconc, to

be such that
t :i (φ1 ∧ φ2 ∧ · · · ∧ φr)  [projr

x · t] :i φx,

t :i φ1, s :i φ2  [append · t · s] :i (φ1 ∧ φ2),

t :i (φ1 → φ2)  [hypappend · t] :i (φ1 → φ1 ∧ φ2), and

t :i (φ1 → φ2), s :i (φ1 → φ3)  [appendconc · t · s] :i (φ1 → φ2 ∧ φ3),

append, hypappend, and appendconc can simply be any terms such that

 append :i (φ1 → (φ2 → φ1 ∧ φ2)),

 hypappend :i ((φ1 → φ2) → (φ1 → φ1 ∧ φ2)), and

 appendconc :i ((φ1 → φ2) → ((φ1 → φ3) → (φ1 → φ2 ∧ φ3))).

Such terms exist, because they justify propositional tautologies and the cs is
schematic and axiomatically appropriate (see Lemma 1). To define projr

x, we
need terms left, right, id, tran, so that

 left :i (φ1 ∧ φ2 → φ1),  right :i (φ1 ∧ φ2 → φ2),

 id :i (φ1 → φ1), and

 tran :i ((φ1 → φ2) → ((φ2 → φ3) → (φ1 → φ3)).

Again, such terms exist, because they justify propositional tautologies. Then,
proj11 = id; for r > 1, projr

r = right; and for l < r, projr+1
l = [trans·left·projr

l ].
Now we provide the formulas that will help us with evaluating the truth of the

propositional part of the QBF formula under a valuation. These were axioms
provided by the cs in Milnikel’s proof [18], but as we argued before, we need
the following formulas in our case. Let Ψ = {ψ1, . . . , ψl} be an ordering of all
subformulas of ψ, such that if a < b, then |ψa| ≤ |ψb|6. We assume ψ is built
only from ¬,→. Let ρ = |{χ ∈ Ψ | |χ| = 1}| and for every 1 ≤ j ≤ l,

if ψj = ¬γ, then Evalj = truthj :i ([γ]� → [ψj ]⊥) ∧ truthj :i ([γ]⊥ → [ψj ]�);
if ψj = γ → δ, then

Evalj = truthj :i ([γ]� ∧ [δ]� → [ψj ]�) ∧ truthj :i ([γ]� ∧ [δ]⊥ → [ψj ]⊥)

∧truthj :i ([γ]⊥ ∧ [δ]� → [ψj ]�) ∧ truthj :i ([γ]⊥ ∧ [δ]⊥ → [ψj ]�).

6 assume a | · |, such that |pj | = 1 and if γ is a proper subformula of δ, then |γ| < |δ|.
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We now construct term T J(φ). To do this we first construct terms T a, where
1 ≤ a ≤ l. Given a valuation v in the form x1 :i [p1]v1 , . . . , xk :i [pk]vk , T 1 through
T k simply gather these formulas in one large conjunct (or string). Then for
k + 1 ≤ a ≤ l, T a evaluates the truth of ψa, resulting in either [ψ]� or [ψ]⊥ and
appending the result at the end of the conjunct.

Let T 1 = x1 and for every 1 < a ≤ k, T a = [append · T a−1 · xa]. It is not
hard to see that for v1, . . . , vk ∈ {�,⊥},

x1 :i [p1]v1 , . . . , xk :i [pk]vk  T k :i ([p1]v1 ∧ · · · ∧ [pk]vk). (1)

If ψa = ¬ψb, then T a = hypappend · [trans · proja−1
b · trutha] · T a−1 and if

ψa = ψb → ψc, then

T a = hypappend · [trans · [appendconc · proja−1
b · proja−1

c ] · trutha] · T a−1.

Let
S(φ) =

∧

ρ<j≤l

Evalj

and given a truth valuation v, let

Sv(φ) =
∧

v(pj)=true

xj :i [pj ]� ∧
∧

v(pj)=false

xj :i [pj ]⊥ ∧
∧

ρ<j≤l

Evalj .

By induction on a, for every truth assignment v,

Sv(φ)  T a :i ([ψ1]v1 ∧ · · · ∧ [ψa]va),

where if ψb is true under v, then vb = � and vb = ⊥ otherwise. The cases
where a ≤ k are easy to see from (1). For the remaining cases it is enough to
demonstrate that
if ψa = ¬ψj , then S(φ)  [trans · proja−1

j · trutha · T a−1] :i [ψa]va and
if ψa = ψb ◦ ψc, then

S(φ)  [trans · [appendconc · proja−1
b · proja−1

c ] · trutha · T a−1] :i [ψa]va ,

which is not hard to see by the way we designed each term.
Finally, let T J(φ) = [right · T l]. We can now prove Lemma 3:

Lemma 3. For every n ∈ N and agent i ∈ N , T J(φ), S(φ) are computable in
polynomial time with respect to |φ|. φ is true under truth assignment v if and
only if

∧

v(pa)=true

xa :i [pa]� ∧
∧

v(pa)=false

xa :i [pa]⊥ ∧ S(φ)  T J(φ) :i [φ]�.

Proof. From the above construction we can see that if φ is true under v then
Sv(φ)  T J(φ) :i [φ]�. On the other hand, if Sv(φ)  T J(φ) :i [φ]�, then
∗Sv(φ) ∗ ∗i([right · T l], [φ]�), which in turn gives (Sv(φ))#i  [φ]� (the terms



NEXP-Completeness and Universal Hardness Results for Justification Logic 37

do not include the operator ! and thus the right side of a ∗-derivation is a
derivation in propositional logic). If φ is not true under v, then let v′ be the
valuation, such that v′([ψ]�) = true iff ψ is true under v and v′([ψ]⊥) = true
iff ψ is false under v. Then all of (Sv(φ))#i is true under v′ and [φ]� is not,
therefore(Sv(φ))#i � [φ]�, so Sv(φ) � T J(φ) :i [φ]�. ��
Corollary 2. The QBF formula ∃p1, . . . , pk∀pk+1, . . . , pk+lφ is true if and only
if the following formula is J-satisfiable:

k∧

j=1

(xj :i [pj ]�∨xj :i [pj ]⊥)∧
l∧

j=k+1

(xj :i [pj ]�∧xj :i [pj ]⊥)∧S(¬φ)∧¬T J(¬φ)[¬φ]�.

Theorem 1 is then a direct corollary of the above.

4 A NEXP-Complete Justification Logic

The justification logic we prove to have a NEXP-complete satisfiability problem
is the 4-agent logic JH = (4,⊂, ↪→, F )CS , where

– ⊂= {(3, 4)}, ←↩= {(1, 2), (2, 3), (4, 4)},
– F (1) = F (2) = J, F (3) = F (4) = JD, and
– CS is any axiomatically appropriate and schematic cs.

The agents of JH are based on justification logics J and JD – and essentially
JD4, as agent 4 has Positive Introspection. Agent 3 has a significant variety of
justifications. Since 1 ←↩ 2 ←↩ 3, 3 is aware of the justifications of 2, who in
turn is aware of the justifications of 1. Therefore, 3 can simulate the reasoning
of 2 who can simulate the reasoning of 1. Additionally, 3 accepts two types of
justifications: the ones 3 receives from 4, which come with Positive Introspection
and the other ones 3 accepts, which do not. As Theorem2 demonstrates, this
complex interaction results in the significant hardness of JH -satisfiability.

If we only focus on agents 3 and 4, we have a PSPACE-complete justification
logic [3,4]. In a tableau procedure which constructs a model for a given formula
(like the one in [4]), this means that we may have to consider a large number of
states. If we could simply explore smaller parts of the model as we can often do
for Modal Logic, we could still end up with an (alternating perhaps) polynomial
space algorithm. The satisfiability-testing procedures for Justification Logic have
another part, though, and that is testing whether certain ∗F -expressions can be
derived in a frame F from a certain set of ∗F -expressions using the ∗-calculus –
which corresponds to asking whether there is an aef that satisfies certain expres-
sions and not others. By Proposition 3, this can be done using a nondeterministic
procedure which takes time polynomial with respect to |F| and to the overall
size of the set of ∗F -expressions. Although the complexity of that procedure
is not something which increases the overall complexity of satisfiability-testing
[4], to run it we must keep the whole frame F in memory and F can be large,
which requires exponential time and more than polynomial space. Nondetermin-
ism is introduced as we apply the tableau rules, as some require nondeterministic
choices. Assuming PSPACE �= NEXP, this is a difficulty we cannot overcome.
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Theorem 2. JH-satisfiability is NEXP-hard.

The reduction we use is from a subproblem of the SCHÖNFINKEL-
BERNAYS SAT problem, which we call BINARY SCHÖNFINKEL-BERNAYS
SAT:

Given a first-order formula φ of the form ∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ, where
ψ contains no quantifiers or function symbols, is φ satisfiable by a first-
order model of exactly two elements?

The general SCHÖNFINKEL-BERNAYS SAT problem does not require that a
satisfying model has exactly two elements and is known to be NEXP-complete
[17]; BINARY SCHÖNFINKEL-BERNAYS SAT remains NEXP-complete.

The reduction for Theorem 2 is essentially an extended version of the reduc-
tion we used to prove Theorem 1. Like then, consider a construction of a satis-
fying model, only this time it is an F-model with several states and accessibility
relations for agents. Another difference is, of course, that now the original formula
is from the first-order language. However, in the BINARY SCHÖNFINKEL-
BERNAYS SAT formulation, each (first-order) variable is quantified over two
possible values (the elements of the two-element model), so they are essentially
propositional variables. Since this is satisfiability we must existentially quantify
each relation symbol over all 2r+1 r-ary relations. We can encode such a nonde-
terministic choice by forcing the existence of an exponential number of states,
each representing one r-tuple v = v1, . . . , vr of the two possible values 0 and 1
(as mentioned above, we can do this using agents 3 and 4) by having var :1 [pa]va

being true and then at each such state enforce the choice between rel :1 [R]� and
rel :1 [R]⊥, meaning that v ∈ R or v /∈ R respectively – where R an actual rela-
tion. In such a state conjunctions of the form gather :1 ([p1]v1 ∧· · ·∧ [pr]vr ∧ [R]	)
(where � = � or ⊥) encode this choice. Due to the particular interaction
among the agents and the logics they are based on, in the constructed model
gather :1 ([p1]v1∧· · ·∧[pr]vr ∧[R]	) is true in a state if and only if that state repre-
sents v and � = � iff v ∈ R. Already this JH -model encodes a first-order model.
The trick now is to be able to gather in one state all these formulas that encode
the relations through the aef closure conditions (i.e. through the ∗-calculus), but
making sure that individual conjuncts (i.e. something of the form var :1 [p]	 or
rel :1 [R]	) cannot be also transfered to that state through the calculus – in
that case we would be able to construct gather :1 ([p1]v1 ∧ · · · ∧ [pr]vr ∧ [R]	)
for additional, invalid combinations of (v,�). This is achieved by considering
formulas of the form !gather :2 gather :1 ([p1]v1 ∧ · · · ∧ [pr]vr ∧ [R]	). The con-
structed model has empty accessibility relations for agents 1 and 2, thus such
formulas can move freely through the accessibility relation of agent 3 (since
2 ←↩ 3 and because of Distribution), but this is not the case for anything of the
form t :1χ (since 1 �←↩ 3, 4). Using certain additional formulas we can make sure
that !gather :2 gather :1 ([p1]v1 ∧ · · · ∧ [pr]vr ∧ [R]	) → [R(x1, . . . , xr)]	 becomes
true if and only if x1, . . . , xr are interpreted as v1, . . . , vr. The remaining of the
formulas and methods we use are very similar to the ones we use for Theorem 1.
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By combining Corollary 1 and Theorem 2, we can claim the following:

Corollary 3. JH-satisfiability is NEXP-complete.

5 Final Remarks

We gave two lower bounds for the complexity of the satisfiability problem for
Justification Logic. Theorem 1 gives a general lower bound which applies to all
logics in the family, while Theorem2 gives a lower bound for a specific logic in
the family. From a technical point of view, the reduction from a fragment of
QBF that we used for the first result is a simplification of the reduction from a
fragment of First-order Satisfiability that we used for the second result.

The merit of the general Σp
2 -hardness result is that we established an

(expected) lower bound for all the logics in the family, which uses fewer assump-
tions than a previous proof of the same bound (for single-agent logics) by Buss
and Kuznets [9]. That is, we require a schematic and axiomatically appropriate
cs, while the proof in [9] requires that it is also schematically injective: each
constant justifies at most one scheme. It is perhaps a subtle distinction, but it
means that for the first time we established this lower bound for justification
logics J, JT, JD, JD4, and LP, the versions of these single-agent logics with the
total cs (i.e. the one where all constants justify all axioms). The necessity of
these properties of the cs for these results and their full effects on the complex-
ity of Justification Logic remain to be seen, but some insightful observations
were made in [9].

The NEXP-hardness result we present in this paper makes the general NEXP-
upper bound from [4] tight, answering the corresponding open question. It also
makes JH the first justification logic with known complexity having a harder
satisfiability problem (assuming EXP �= NEXP) than its corresponding modal
logic. In fact, if MH is the modal logic which corresponds to JH (the modal logic
with the same frame restrictions as JH), then MH -satisfiability is in EXP:

Proposition 4. Let MH be the 4-modalities modal logic associated with the
class of frames (W,R1, R2, R3, R4) where R3, R4 are serial, R3 ⊆ R4, and for
(i, j) ∈ {(1, 2), (2, 3), (4, 4)}, if aRjbRic, then aRic. MH-satisfiability is in EXP.

These results demonstrate a remarkable variability of the system. Although many
logics in the family, including the single-agent justification logics, have a Σp

2 -
complete satisfiability problem, which is lower than the complexity of satisfia-
bility for corresponding modal logics (assuming PH �= PSPACE), there are logics
with PSPACE-complete, EXP-complete, and as we demonstrated in this paper,
NEXP-complete satisfiability problems, which in the last case is a higher com-
plexity than the one for the corresponding modal logic (assuming EXP �= NEXP).
Still, even in this case the reflected fragment of the logic remains in NP.
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Appendix: Supplementary Proofs

Proof (Proof of Proposition 2). For 2, notice that the calculus rules correspond
to the closure conditions of the aef, so if Em |= e7 iff Φ ∗F e, then Em is an aef, so
the “if” direction is established; by induction on the calculus derivation, we can
also establish for every aef E , if Em |= e, then E |= e. 1 is a direct consequence.��
Proof (Proof of Corollary 2). If

k∧

j=1

(xj :i [pj ]�∨xj :i [pj ]⊥)∧
l∧

j=k+1

(xj :i [pj ]�∧xj :i [pj ]⊥)∧S(¬φ)∧¬T J(¬φ)[¬φ]�

is not satisfiable, then

k∧

j=1

(xj :i [pj ]� ∨xj :i [pj ]⊥)∧
l∧

j=k+1

(xj :i [pj ]� ∧xj :i [pj ]⊥)∧S(¬φ)  T J(¬φ)[¬φ]�,

and then for every choice c1 : {1, . . . , k} −→ {�,⊥},

k∧

j=1

(xj :i [pj ]c1(j)) ∧
l∧

j=k+1

(xj :i [pj ]� ∧ xj :i [pj ]⊥) ∧ S(¬φ)  T J(¬φ)[¬φ]�,

and then since every variable from x1, . . . , xk+l appears at most once in T J and
T J does not include !, by Lemma2 there is some choice c2 : {1, . . . , l} −→ {�,⊥}
such that

k∧

j=1

(xj :i [pj ]c1(j)) ∧
l∧

j=k+1

(xj :i [pj ]c2(j)) ∧ S(¬φ)  T J(¬φ)[¬φ]�.

Therefore, for every assignment of truth-values on p1, . . . , pk there truth-values
for pk+1, . . . , pl+k that make φ false.

On the other hand, if

k∧

j=1

(xj :i [pj ]�∨xj :i [pj ]⊥)∧
l∧

j=k+1

(xj :i [pj ]�∧xj :i [pj ]⊥)∧S(¬φ)∧¬T J(¬φ)[¬φ]�

is satisfiable, then there is some choice c1 : {1, . . . , k} −→ {�,⊥}, such that

k∧

j=1

(xj :i [pj ]c1(j)) ∧
l∧

j=k+1

(xj :i [pj ]� ∧ xj :i [pj ]⊥) ∧ S(¬φ) ∧ ¬T J(¬φ)[¬φ]�

7 E |= e has only been defined for aefs, but we slightly abuse the notation for
convenience.
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is satisfiable, and then since every variable from x1, . . . , xk+l appears at most
once in T J , for every choice c2 : {1, . . . , l} −→ {�,⊥},

k∧

j=1

(xj :i [pj ]c1(j)) ∧
l∧

j=k+1

(xj :i [pj ]c2(j)) ∧ S(¬φ) � T J(¬φ)[¬φ]�.

Therefore, there is some truth assignment on p1, . . . , pk such that every truth
assignment on pk+1, . . . , pl+k makes φ true. ��

Table 3. Tableau rules for MH . To test φ for MH -satisfiability, start from a branch
which only contains (0, 0) T φ and keep expanding according to the rules above.
A branch with σ T ψ and σ F ψ is propositionally closed. A (possibly infinite) branch
which is not propositionally closed, but is closed under the rules is an accepting branch.

σ T ♦iψ

σ.(g, i) T ψ

where (g, i) is new;

σ F ♦iψ

σ.(g, i) F ψ

where (g, i) has already
appeared and i < 4;

σ T �iψ

σ.(g, i) T ψ

where (g, i) has already
appeared and i < 4;

σ F �iψ

σ.(g, i) F ψ

where (g, i) is new;

σ T �iψ

σ T ♦iψ

where i ∈ {3, 4};

σ T �4ψ

σ T �3ψ

σ T �iψ

σ T �j�iψ

where 0 < i < j < 4;

σ F ♦4ψ

σ.(g, 4) F ψ
σ.(g, 4)F ♦4ψ

where (g, i) has already
appeared and i ∈ {3, 4};

σ T �4ψ

σ.(g, i) T ψ
σ.(g, i) T �4ψ

where (g, i) has already
appeared and i ∈ {3, 4};

Proof ( Brief proof of Proposition 4). We first prove that the tableau procedure
from Table 3 is sound and complete. From an accepting branch for φ we can
construct a model for φ: let W be the set of prefixes that have appeared in the
branch; let a ∈ V(p) iff a T p has appeared in the branch, let for i = 1, 2, 3, 4,
ri = {(a, a.(g, i)) ∈ W × W}, for i = 1, 2, Ri = ri, R3 is the transitive clo-
sure of r3, and R4 is the transitive closure of r3 ∪ r4. It is not hard to verify
that model M = (W,R1, R2, R3, R4) satisfies all necessary conditions and that
M, (0, 0) |= φ – by inductively proving that if a T ψ in the branch then M, a |= ψ
and if a F ψ in the branch then M, a �|= ψ.

On the other hand, from a model M = (W,R1, R2, R3, R4) for φ we can
make appropriate nondeterministic choices to construct an accepting branch for
φ. We map (0, 0) to a state w(0,0) such that M, w(0,0) |= φ; then, when σ.(g, i)
appears first, it must be because of a formula of the form σ T ♦iψ (or σ F �iψ,
but it is essentially the same case). If M, wσ |= ♦iψ, then there must be some
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state wσRiw, such that M |= ψ and thus we name w = wσ.(g,i). It is not hard
to see that we can make such choices when applying the rules, so that if a T ψ
in the branch then M, wa |= ψ if a F ψ in the branch then M, wa �|= ψ. In
fact the rules of Table 3 preserve this condition right away; we just need to make
sure that the same thing happens with the propositional rules – for instance, rule

σ T ψ∨χ
σ T ψ | σ T χ can make an appropriate choice depending on whether M, wσ |= ψ

or M, wσ |= χ. Thus the constructed branch cannot be propositionally closed.
What remains is to show that this tableau procedure can be simulated by an

alternating algorithm which uses polynomial space – thus MH -satisfiability is in
APSPACE = EXP. This can be done by applying the following method: always
keep the formulas prefixed by a certain prefix σ in memory (at first σ = (0, 0)).
First apply all the tableau rules you can on the formulas prefixed by σ – possibly
use existential nondeterministic choices for this. Then, using a universal choice,
pick one of the prefixes σ′ = σ.(g, i) that were just constructed and replace the
formulas you have in memory by the ones prefixed by σ′. Repeat these steps until
we either have σ T ψ and σ F ψ in memory or we see “enough” prefixes. In this
case, “enough” would mean “more than 26|φ|”, as φ has up to |φ| subformulas, so
in a branch there can only be up to 6|φ| formulas prefixed by some fixed σ – thus
the algorithm only needs to use O(|φ|) memory and if it goes through 6|φ| + 1
prefixes, then two of these have prefixed exactly the same set of formulas. If
the algorithm accepts φ, then we can easily reconstruct an accepting branch by
just taking the union of the constructed formulas, while if there is an accepting
branch, then the algorithm can explore only parts of that branch. ��

Proof of Theorem2

The reduction we use is from (a variation of) the SCHÖNFINKEL-BERNAYS
SAT problem: given a first-order formula φ of the form

∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ,

where ψ contains no quantifiers or function symbols, is φ satisfiable by a first-
order model?

SCHÖNFINKEL-BERNAYS SAT is known to be NEXP-complete [17]. Fur-
thermore, it is not hard to see that if

∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ,

is satisfiable, then it is satisfiable by a model of at most k elements. For the
coming reduction, we instead use for convenience a simplified version of this
problem, which we call BINARY SCHÖNFINKEL-BERNAYS SAT and is the
same problem, only instead we ask if ∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ is satisfiable by a
first-order model of exactly two elements.

For the reductions that follow we use the following notation: for a non-
negative integer x ∈ N, let bin(x) = bin0(g), . . . , binlog g(g) be its binary rep-
resentation. Furthermore, like in Sect. 3, for every propositional and first-order
formula ψ we introduce propositional variables [ψ]� and [ψ]⊥.
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Lemma 4. BINARY SCHÖNFINKEL-BERNAYS SAT is NEXP-complete.

Proof. Let φ be a first-order formula of the form

∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ,

where ψ contains no quantifiers or function symbols. Furthermore, we assume
that ψ contains no constants. We can replace each xa by xa = x1

a, x2
a, . . . , x

�log k�
a

and each yb by yb = y1
b , y2

b , . . . , y
�log k�
b in the quantifiers and wherever they

appear in a relation. Therefore ∃xa is replaced by ∃x1
a∃x2

a · · · ∃x
�log k�
a (∃xa

for short) and ∀xa is replaced by ∀x1
a∀x2

a · · · ∀x
�log k�
a (∀ya for short) and

R(z1, . . . , zr) is replaced by R(z1, . . . ,zr). Furthermore, every expression z = z′

where z, z′ are variables, is replaced by
∧

1≤a≤�log k� za = z′a (z = z′ for short).
The result of all these replacements in ψ is called ψ′. The new formula is:

φ′ = ∃x1 · · · ∃xk∀y1 · · · ∀yk′

⎛

⎝
k′∧

b=1

k∨

a=1

xa = yb → ψ′

⎞

⎠

We can also define a corresponding transformation of first-order models: assume
that the universe of model M for φ is a set of at most k natural numbers (each of
which is at most k −1 and an interpretation for some xa); then M′ is the model
with {0, 1} as its universe, where for every relation R (on tuples of naturals) of
M there is some R′, which is essentially the same relation, but on the binary
representations of the elements of M. That is,

R′ = {(bin(a1), . . . , bin(ar)) ∈ {0, 1}∗ | (a1, . . . , ar) ∈ R}
It is not hard to see that if M satisfies the original formula, then M′ satisfies
the new one: each xa can be interpreted as the binary representation of the
interpretation of xa in M and notice that the added equality assertions effectively
limit the y’s to range over the interpretations of the x’s, which are then exactly
the image of the elements of M.

On the other hand, if φ′ is satisfied by a model with {0, 1} as its universe,
then φ is satisfied by the model which has the �log k�-tuples of {0, 1} that are
the interpretations of x1, . . . ,xk as elements and as relations the restrictions of
the two-element model’s relations on these tuples. ��

Given a first-order formula φ as above, we construct a justification formula,
φJ , in polynomial time, such that φ is satisfiable by a two-element model if and
only if φ is satisfiable by a J-model. The reader will notice several similarities
to the proof of Theorem 1.

Let
φ = ∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ

be such a formula, where ψ contains no quantifiers or function symbols. Let
R1, . . . , Rm be the relation symbols appearing in ψ, a1, . . . , am their respective ari-
ties. Then, let α = {i ∈ N | ∃r ≤ m s.t. i ≤ ar}; then, |α| = max{a1, . . . , am}.
We also define: X = {x1, . . . , xk}; Y = {y1, . . . , yk′}; Z = X ∪ Y ; ρ0 = k + k′.
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For this reduction, in addition to the terms introduced in Sect. 3, we define the
following justification terms. If we expect a term to justify a tautological scheme
of fixed length, then we can just assume the term exists and has some constant
size. Otherwise we construct the term in a way that gives it size polynomial
with respect to the formula it (provably) justifies. Again we need certain terms
to encode manipulations of long conjunctions (which we can see as strings) and
we start with these.

addhyp is such that  addhyp :1 (φ → (ψ → φ));
replaceleft is such that  replaceleft :1 ((φ → φ′) → ((φ ∧ ψ) → (φ′ ∧ ψ))),

while
replaceright is such that  replaceright :1 ((ψ → ψ′) → ((φ ∧ ψ) → (φ ∧ ψ′)));
We define replacek

l in the following way:

replacek
k = replaceright,

while for l < k,

replacek
l = trans · replacek−1

l · replaceleft.

Then it is not hard to see by induction on k − l that

 replacek
l :1 ((φl → φ′

l) → ((φ1∧· · ·∧φl∧· · ·∧φk) → (φ1∧· · ·∧φ′
l∧· · ·∧φk))).

We define mphypoth to be such that

 mphypoth :1 ((φ → ψ) → ((φ → (ψ → χ)) → (φ → χ))).

We use justification variables var1, . . . , varar
, relr for every r ∈ [m].

For 1 ≤ r ≤ m we define gatherr in the following way:

gatherr = [append · [append · · · [append · var1] · · · varar
] · relr],

For every 1 ≤ j ≤ ar + 1, let vj , v
′
j ∈ {�,⊥}. Then, for propositional

variables p1, . . . , par
,

ar∧

j=1

varj :1 [pj ]vj ∧relr :1 [Rr]var+1  gatherr :1 ([p1]v
′
1∧· · ·∧[par

]v
′
ar ∧[Rr]v

′
ar+1)

if and only if for every 1 ≤ j ≤ ar + 1, vj = v′
j (see the proof of Lemma 3).

In fact it is not hard to see that if
ar∧

j=1

varj :1 [pj ]vj ∧ relr :1 [Rr]var+1  gatherr :1χ,

then
∧ar

j=1[pj ]vj ∧[Rr]var+1  χ: operator ! does not appear in gatherr, so the
right-hand side of a corresponding ∗-calculus derivation for ∗1(gatherr, χ) is
a propositional derivation of χ from [p1]v1 , . . . , [par

]var , [Rr]var+1 and some
propositional tautologies.

To give some intuition, conjunction
∧ar

j=1 varj :1 [pj ]vj ∧ relr :1 [Rr]var+1

means that (v1, . . . , var
) ∈ Rr in a corresponding first-order model.
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We use justification variables valuez and match(z, pl) for all z ∈ Z, l ∈ α.
For every z ∈ X, we define Vz = valuez :1 [z]� ∨ valuez :1 [z]⊥; for every
z ∈ Y , Vz = valuez :1 [z]� ∧ valuez :1 [z]⊥.

We also define

Match =
∧

l∈α
z∈Z

	∈{�,⊥}

match(z, pl) :1 ([z]	 → ([pl]	 → okl)).

For every Rr(z) which appears in ψ and 0 ≤ b ≤ ar, we define
match

Rr(z)
b in the following way:

match
Rr(z)
0 = addhyp · gatherr and if b > 0 and zb = xl or zb = yl−k, then

match
Rr(z)
b is defined to be the term

[mphypoth ·match
Rr(z)
b−1 · [tran · [tran ·projectρ1

l ·match(zb, b)] · replacear+1
b ]].

We can see by induction on b that for every 0 ≤ b ≤ ar,

Match, gatherr :1 ([p1]v
′
1 ∧ · · · ∧ [par

]v
′
ar ∧ [Rr]var+1) 

 match
Rr(z1,...,zar )
b :1

(
([x1]v1 ∧ · · · ∧ [xk]vk ∧ [y1]vk+1 ∧ · · · ∧ [yk′ ]vk′+k) →

→ (ok1 ∧ · · · ∧ okb ∧ [pb+1]v
′
b+1 ∧ · · · ∧ [par

]v
′
ar ∧ [Rr]var+1)

)

if and only if for every j ∈ [ar] and j′ ∈ [k + k′], if zj = xj′ or zj = yj′−k,
then v′

j = vj′ .

Match and term match
Rr(z)
b are used to confirm that given an assign-

ment v for variables x1, . . . , xk, y1, . . . , yk′ , a tuple z ∈ Zar , and a tuple
(v′

1, . . . , v
′
ar+1) ∈ {�,⊥}ar+1 , that (v(z1), . . . , v(zar

)) = (v′
1, . . . , v

′
ar

),
since this is a crucial condition to assert that [Rr(z)]var+1 must be true
(i.e. Rr(z) is true iff var+1 = �).

T !(match
Rr(z)
b ) is defined in the following way:

T !(match
Rr(z)
0 ) = c··!addhyph·!gatherr and for b > 0 and zb = yl−k,

T !(match
Rr(z)
b ) = c· · [c··!mphypoth · T !(match

Rr(z)
b−1 )] ·

· ![tran · [tran · projectρ1
l · match(yl, b)] · replacear+1

b ].

We can see by induction on b that for every 0 ≤ b ≤ ar,

Match, !gatherr :2 gatherr :1 ([p1]v
′
1∧· · ·∧[par

]v
′
ar ∧[Rr]var+1) 

 T !(match
Rr(z)
b ) :2match

Rr(z)
b :1

(∧
[xi]vi ∧

∧
[yi]vk+i →

→ (ok1 ∧ · · · ∧ okb ∧ [pb+1]v
′
b+1 ∧ · · · ∧ [par

]v
′
ar ∧ [Rr]var+1)

)
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if and only if

Match, gatherr :1 ([p1]v
′
1 ∧ · · · ∧ [par

]v
′
ar ∧ [Rr]var+1) 

 match
Rr(z1,...,zar )
b :1

(∧
[xi]vi ∧

∧
[yi]vk+i →

→ (ok1 ∧ · · · ∧ okb ∧ [pb+1]v
′
b+1 ∧ · · · ∧ [par

]v
′
ar ∧ [Rr]var+1)

)
,

which in turn, as we have seen above, is true if and only if for every j ∈ [ar]
and j′ ∈ [k + k′], if zj = xj′ or zj = yj′−k, then v′

j = vj′ .

Using the terms (and formulas) we have defined above, we can construct
terms T a, where 0 < a ≤ ρ1 and eventually tφ:

Let Ψ = {ψ1, . . . , ψl} be an ordering of all subformulas of ψ and of vari-
ables x1, . . . , xk, y1, . . . , yk′ , which extends the ordering x1, . . . , xk, y1, . . . , yk′ ,
such that if a < b, then |ψa| ≤ |ψb|.8 Furthermore, ρ0 = |{a ∈ [l] | |ψa| = 0}|
(= k + k′) and ρ1 = |{a ∈ [l] | |ψa| = 1}|.

Let T 1 = valuez1 and for every 1 < a ≤ ρ0, T a = [append · T a−1 · valueza
].

It is not hard to see that for v1, . . . , vk ∈ {�,⊥},

valuez1 :1 [z1]v1 , . . . , valuezk
:1 [zk]vk  T ρ0 :1 ([z1]v1 ∧ · · · ∧ [zk]vk). (2)

For every a ∈ [l],

if ψa = Rr(za
1 , . . . , za

ar
), then

Evala = trutha :2 ([matchψa
ar

· T ρ0 ] :1 (ok1 ∧ · · · ∧ okar
∧ [Rr]�) → [ψa]�)∧

∧trutha :2 ([matchψa
ar

· T ρ0 ] :1 (ok1 ∧ · · · ∧ okar
∧ [Rr]⊥) → [ψa]⊥);

if ψa = ¬γ, then

Evala = trutha :2 ([γ]� → [ψa]⊥) ∧ trutha :2 ([γ]⊥ → [ψa]�);

if ψa = γ ∨ δ, then

Evala = trutha :2 ([γ]� ∧ [δ]� → [ψa]�) ∧ trutha :2 ([γ]� ∧ [δ]⊥ → [ψa]�)

∧ trutha :2 ([γ]⊥ ∧ [δ]� → [ψa]�) ∧ trutha :2 ([γ]⊥ ∧ [δ]⊥ → [ψa]⊥);

if ψa = γ ∧ δ, then

Evala = trutha :2 ([γ]� ∧ [δ]� → [ψa]�) ∧ trutha :2 ([γ]� ∧ [δ]⊥ → [ψa]⊥)

∧ trutha :2 ([γ]⊥ ∧ [δ]� → [ψa]⊥) ∧ trutha :2 ([γ]⊥ ∧ [δ]⊥ → [ψa]⊥);

8 assume a | · |, such that |xj | = |yj | = 0, |Rj(v1, . . . , vaj )| = 1 and if γ is a proper
subformula of δ, then |γ| < |δ|.
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if ψa = γ → δ, then

Evala = trutha :2 ([γ]� ∧ [δ]� → [ψa]�) ∧ trutha :2 ([γ]� ∧ [δ]⊥ → [ψa]⊥)

∧ trutha :2 ([γ]⊥ ∧ [δ]� → [ψa]�) ∧ trutha :1 ([γ]⊥ ∧ [δ]⊥ → [ψa]�).

Let Eval =
∧l

a=ρ0+1 Evala.
For ρ0 < a ≤ ρ1, we define gathrela in the following way:

gathrelρ0+1 = c· · T !(matchψa
ara

)

and for ρ0 + 1 < a ≤ ρ1,

gathrelρ0+1 = appendconc · gathrela−1 · [c· · T !(matchψa
ara

)].

Then,
T ρ0+1 = replaceρ1−ρ0

1 · truthρ0+1 · [gathrelρ1 ·!T ρ0 ]

and for ρ0 + 1 < a ≤ ρ1,

T a = replaceρ1−ρ0
a · truthρ0+1 · T a−1.

if ψa = ¬ψ2, then

T a = hypappend · [trans · proja−ρ0−1
j · trutha] · T a−1 and

if ψa = ψb ◦ ψc, then

T a = hypappend · [trans · [appendconc · proja−ρ0−1
b · proja−1

c ] · trutha] · T a−1.

We then define tφ = [right · T l].

Lemma 5. For every b ∈ [ρ1], j ∈ [arb
], let lb = (lb1, . . . , lbarb

) ∈ {pj ,¬pj}arb

and vb ∈ {�,⊥}. Assume that for every b1, b2 ∈ [ρ1], if rb1 = rb2 and lb1 = lb2 ,
then it must also be the case that vb1 = vb2 . Then,9

∧

b∈[ρ1]

!gatherrb
:2 gatherrb

:1
(
lb ∧ [Rrb

]b
) ∧ Match ∧ Eval ∧

∧

z∈Z

valz :1 [z]vz 

 tφ :2 [φ]�

if and only if M |= φ for every model M with universe {�,⊥} and interpretation
I such that

– for every z ∈ Z, vz = I(z),
– for every b ∈ [ρ1], M |= Rrb

(f(lb1), . . . , f(lbarb
)) iff vb = �,

where for all j ∈ α, f(pj) = � and f(¬pj) = ⊥.

9 For convenience and to keep the notation tidy, we identify lb with lb1 ∧ · · · ∧ lbarb
and

ok with ok1 ∧ · · · ∧ okarb
.
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Proof. The if direction is not hard to see by (induction on) the construction of
the terms T a, tφ. For the other direction, notice that a ∗-calculus derivation for

∧

b∈[ρ1]

!gatherrb
:2 gatherrb

:1
(
lb ∧ [Rrb

]v
b
)

,

Match, Eval,
∧

z∈Z

valz :1 [z]vz  tφ :2 [φ]�

gives on the right hand side a derivation of
∧

b∈[ρ1]

gatherrb
:1

(
lb ∧ [Rrb

]v
b
)

,Match, Eval#2 ,
∧

z∈Z

valz :1 [z]vz  [φ]�.

Some χ = [Rr(za
r)]	, where Rr(za

r) = ψa, a subformula of φ, can be derived
from the assumptions above only if [matchψa

ara
· T ρ0 ] :1 (ok ∧ [Rra

]	) can be
derived as well – notice that the assumptions cannot be inconsistent and we can
easily adjust a model that does not satisfy [matchψa

ara
· T ρ0 ] :1 (ok ∧ [Rra

]	) so
that it does not satisfy χ either, by simply changing the truth value of χ.

The derivation of matchψa
ara

:1 (ok ∧ [Rra
]	) is not affected by Eval#2 :

if there is a model that satisfies all assumptions except for Eval#2 and not
matchψa

ara
:1 (ok ∧ [Rra

]	), we can assume the strong evidence property and
change the truth-values of every [ψb]	

′
to true, so the new model satisfies all the

assumptions and not [matchψa
ara

· T ρ0 ] :1 (ok ∧ [Rra
]	).

Therefore we have a ∗-calculus derivation of [matchψa
ara

· T ρ0 ] :1 (ok ∧ [Rra
]	)

and since gatherr only appears once in matchψa
ara

, there is some b ∈ [ρ1] such
that (see Lemma 2)

gatherrb
:1

(
lb ∧ [Rrb

]v
b
)

,Match,
∧

z∈Z

valz :1 [z]vz 

 [matchψa
ara

· T ρ0 ] :1 (ok ∧ [Rra
]	).

Similarly, we can remove the terms from this derivation, so

lb, [Rrb
]v

b

,Match#1 ,
∧

z∈Z

[z]vz  ok ∧ [Rra
]	.

From which it is not hard to see that for all z ∈ Z, vb = �, so every first-
order model as described in the Lemma satisfies χ. Then it is not hard to see
by induction that all such models satisfy all [ψa]	 derivable from these same
assumptions. ��
Now to construct the actual formula the reduction gives. For this let ρ be a fixed
justification variable. We define the following formulas.

start = ¬[active] ∧ ρ :3

⎛

⎝[active] ∧
∧

a∈[α]

vara :1¬pa

⎞

⎠
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forwardA = ρ :4

⎛

⎝
∨

a∈[α]

vara :1¬pa ∧ [active] → ρ :3 [active]

⎞

⎠

forwardB = ρ :4
∧

a∈[α]

⎛

⎝
∧

b∈[a−1]

varb :1 pb ∧ vara :1¬pa ∧ [active]

→ ρ :3

⎛

⎝
∧

b∈[a−1]

varb :1¬pb ∧ vara :1 pa

⎞

⎠

⎞

⎠

forwardC = ρ :4
∧

a∈[α]

⎛

⎝
∨

b∈[a−1]

varb :1¬pb ∧ vara :1¬pa ∧ [active]

→ ρ :3 vara :1¬pa)

forwardD = ρ :4
∧

a∈[α]

⎛

⎝
∨

b∈[a−1]

varb :1¬pb ∧ vara :1 pa ∧ [active]

→ ρ :3 vara :1 pa)

end = ρ :4

(
∧

a∈α

var :1 pa ∧ [active] → ρ :4¬[active]

)

choiceR = ρ :4
(
[active] → relr :1 [Rr]� ∨ relr :1 [Rr]⊥

)

choiceV = ρ :4

(
¬[active] →

∧

z∈X

(
valuez :1 [z]� ∨ valuez :1 [z]⊥

)

∧
∧

z∈Y

(
valuez :1 [z]� ∧ valuez :1 [z]⊥

)
)

test = ρ :4
(¬[active] → Match ∧ Eval ∧ ¬tφ :2 [¬φ]T

)

Then, φJ
FO, the formula constructed by the reduction is the conjunction of these

formulas above:

start ∧ forwardA ∧ forwardB ∧ forwardC ∧ forwardD ∧ end ∧
∧ choiceR ∧ choiceV ∧ test.

Theorem 3. φJ
FO is J-satisfiable if and only if φ is satisfiable by a two-element

first-order model.

Proof. First, assume φ is satisfiable by two-element first-order model, say M
with interpretation I, and assume that for every a ∈ [k], I(xa) is such that
M |= ∀y1, . . . ,∀yk′ψ. We construct a J-model for φJ

FO:

MJ = (W,R1, R2, R3, R4, E ,V), where:
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– W = {σ ∈ N | σ + 2 ∈ [2α + 2]} (i.e. σ ∈ {−1, 0, 1, 2, . . . 2α});
– R1 = R2 = ∅, R3 = {(σ, σ + 1) | σ < 2α} ∪ {(2α, 2α)}, and

R4 = {(σ, σ′) | σ < σ′} ∪ {(2α, 2α)};
– E is minimal such that

• E3(ρ, χ) = E4(ρ, χ) = W for any formula χ,
• E1(vara, pa) = {σ ∈ W | σ + 1 ∈ [2α] and bina(σ) = 1},
• E1(vara,¬pa) = {σ ∈ W | σ + 1 ∈ [2α] and bina(σ) = 0},
• E1(relr, [Rr]�) = {σ ∈ W | σ + 1 ∈ [2α] and

M |= Rr(bin0(σ), . . . , binar
(σ))},

• E1(relr, [Rr]⊥) = {σ ∈ W | σ + 1 ∈ [2α] and
M �|= Rr(bin0(σ), . . . , binar

(σ))},
• for every a ∈ [k], E1(valuexa

, [xa]�) = {2α}, if I(xa) = � and ∅ other-
wise,

• for every a ∈ [k], E1(valuexa
, [xa]⊥) = {2α}, if I(xa) = ⊥ and ∅ other-

wise,
• for every a ∈ [k′], E1(valueya

, [ya]�) = Ei(valueya
, [ya]⊥) = {2α}, and

• MJ , 2α |= Match,Eval;
– V([active]) = {σ ∈ W | σ +1 ∈ [2α]} and for any other propositional variable

q, V (q) = ∅.

It is not hard to verify that MJ ,−1 |= φJ
FO, as long as we establish that

MJ , 2α �|= tφ :2 [¬φ]T , for which it is enough that 2α /∈ Ej(tφ, [¬φ]�).
The definition of E is equivalent to σ ∈ Eg(s, χ) ⇔ S ∗ σ ∗g (s, χ), where

S =

{w ∗3 (ρ, F ) | w ∈ W,F a formula} ∪ {w ∗4 (ρ, F ) | w ∈ W,F a formula} ∪

{w ∗1 (vara, pa) | w + 1 ∈ [2α] and bina(w) = 1} ∪
{w ∗1 (vara,¬pa) | w + 1 ∈ [2α] and bina(w) = 0} ∪

{w ∗1 (relr, [Rr]�) | w + 1 ∈ [2α] and M |= Rr(bin0(w), . . . , binar
(w))} ∪

{w ∗1 (relr, [Rr]⊥) | w + 1 ∈ [2α] and M �|= Rr(bin0(w), . . . , binar
(w))} ∪

{2α ∗1 (valuexa
, [xa]�) | a ∈ [k], I(xa) = �} ∪

{2α ∗1 (valuexa
, [xa]⊥) | a ∈ [k], I(xa) = ⊥} ∪

{2α ∗1 (valueya
, [ya]�) | a ∈ [k′]} ∪ {2α ∗1 (valueya

, [ya]⊥) | a ∈ [k′]} ∪
{2α e | e ∈ ∗Eval ∪ ∗Match}

Then, 2α ∈ E2(tφ, [¬φ]�) iff S ∗ 2α ∗2 (tφ, [¬φ]�). Notice the following: since tφ

does not have ρ as a subterm, the ∗-expressions in

{w ∗3 (ρ, F ) | w ∈ W,F a formula} ∪ {w ∗4 (ρ, F ) | w ∈ W,F a formula}

cannot be a part of a derivation for S ∗ 2α ∗2 (tφ, [¬φ]�).
Since 1 ←↩ 2 ←↩ 3 and 1, 2 do not interact with any agents in any other way,

for any term s with no !, if for some a or r, vara or relr are subterms os s,
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if S ∗ w s :a χ, then a = 1, 0 ≤ w < 2α, and {w e ∈ S} ∗ w s :1 χ. tφ includes
exactly one !gatherrb

for every b and one of valuez for every z ∈ Z. Therefore,
if S ∗ 2α ∗2 (tφ, [¬φ]�), then there are

∧

b∈[ρ1]

!gatherrb
:2 gatherrb

:1Φ ∧ Match ∧ Eval ∧
∧

z∈Z

valz :1 [z]vz  tφ :2 [¬φ]�

and by Lemma 5, M |= ¬φ, a contradiction.
On the other hand, let there be some M′

J where φJ is satisfied. Then, we
name −1 a state where M′

J ,−1 |= φJ and let −1R30R31R3 · · · R32α. Then,

– E1(vara, pa) ⊆ {σ ∈ W | σ + 1 ∈ [2α] and bina(σ) = 1},
– E1(vara,¬pa) ⊆ {σ ∈ W | σ + 1 ∈ [2α] and bina(σ) = 0},
– MJ , 2α |= Match,Eval and for every a ∈ [k′],

MJ , 2α |= valueya
:1 [ya]�, valueya

:1 [ya]⊥;

as we can see by induction on σ - the conditions on A1(vara, pa), A1(vara,¬pa)
as imposed by forwardB , forwardC , forwardD are positive. Notice here that
if for some 0 ≤ w < 2α −1, w ∈ ⋂

a∈α E1(vara, pa), then we have a contradiction:
w + 1 |= ¬[active] and if w is minimal for this to happen, then w |= [active], so
since there is some a s.t. w ∈ E1(vara,¬pa), w + 1 |= [active] (by forwardA).

Then, {w | w + 1 ∈ [2α]} ⊆ E1(relr, [Rr]�) ∪ E1(relr, [Rr]⊥) and then we can
define a first-order model M such that:

– E1(relr, [Rr]�) ⊆ {σ ∈ W | σ+1 ∈ [2α] and M |= Rr(bin0(σ), . . . , binar
(σ))},

– E1(relr, [Rr]⊥) ⊆ {σ ∈ W | σ+1 ∈ [2α] and M �|= Rr(bin0(σ), . . . , binar
(σ))},

– for every a ∈ [k], E1(valuexa
, [xa]�) ⊆ {2α}, if I(xa) = � and ∅ otherwise,

– for every a ∈ [k], E1(valuexa
, [xa]⊥) ⊆ {2α}, if I(xa) = ⊥ and ∅ otherwise.

Since it must be the case that MJ , 2α �|= tφ :2 [¬φ], it cannot be the case that
∧

b∈[ρ1]

!gatherrb
:2 gatherrb

:1Φ ∧ Match ∧ Eval ∧
∧

z∈Z

valz :1 [z]vz  tφ :2 [¬φ]�

and since M satisfies the conditions from Lemma 5, M �|= ¬φ. ��

References

1. Achilleos, A.: A complexity question in justification logic. J. Comput. Syst. Sci.
80(6), 1038–1045 (2014)

2. Achilleos, A.: Modal logics with hard diamond-free fragments. CoRR, abs/1401.5846
(2014)

3. Achilleos, A.: On the complexity of two-agent justification logic. In: Bulling, N.,
van der Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA 2014.
LNCS, vol. 8624, pp. 1–18. Springer, Heidelberg (2014)

4. Achilleos, A.: Tableaux and complexity bounds for a multiagent justification logic
with interacting justifications. In: Bulling, N. (ed.) EUMAS 2014. LNCS, vol. 8953,
pp. 177–192. Springer, Heidelberg (2015)



52 A. Achilleos

5. Achilleos, A.: NEXP-completeness and universal hardness results for justification
logic. CoRR, abs/1503.00362 (2015)

6. Artemov, S.: Explicit provability and constructive semantics. Bull. Symb. Logic
7(1), 1–36 (2001)

7. Artemov, S.: Justification logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.)
JELIA 2008. LNCS (LNAI), vol. 5293, pp. 1–4. Springer, Heidelberg (2008)

8. Artemov, S.: The logic of justification. Rev. Symb. Logic 1(4), 477–513 (2008)
9. Buss, S.R., Kuznets, R.: Lower complexity bounds in justification logic. Ann. Pure

Appl. Logic 163(7), 888–905 (2012)
10. Demri, S.: Complexity of simple dependent bimodal logics. In: Dyckhoff, R. (ed.)

TABLEAUX 2000. LNCS, vol. 1847, pp. 190–204. Springer, Heidelberg (2000)
11. Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25

(2005)
12. Krupski, N.V.: On the complexity of the reflected logic of proofs. Theor. Comput.

Sci. 357(1–3), 136–142 (2006)
13. Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G.,

Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer,
Heidelberg (2000)

14. Kuznets, R.: Complexity issues in justification logic. Ph.D. thesis, CUNY Graduate
Center, May 2008

15. Kuznets, R.: Self-referentiality of justified knowledge. In: Hirsch, E.A., Razborov,
A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applica-
tions. LNCS, vol. 5010, pp. 228–239. Springer, Heidelberg (2008)

16. Kuznets, R.: Complexity through tableaux in justification logic. In: 2008 European
Summer Meeting of the Association for Symbolic Logic, Logic Colloquium 2008,
Bern, Switzerland, July 3–July 8 2008, vol. 15, no (1) Bulletin of Symbolic Logic,
p. 121. Association for Symbolic Logic, March 2009. Abstract

17. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

18. Milnikel, R.: Derivability in certain subsystems of the logic of proofs is Πp
2 -

complete. Ann. Pure Appl. Logic 145(3), 223–239 (2007)
19. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.)

Logical Foundations of Computer Science. Lecture Notes in Computer Science,
vol. 1234, pp. 266–275. Springer, Heidelberg (1997)

20. Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Pan-
hellenic Logic Symposium. University of Athens, Athens, Greece (2005)

21. Spaan, E.: Complexity of modal logics. Ph.D. thesis, University of Amsterdam
(1993)

22. Yavorskaya, T.: Interacting explicit evidence systems. Theor. Comput. Syst. 43(2),
272–293 (2008)



A Combinatorial Algorithm for the Planar
Multiflow Problem with Demands Located

on Three Holes

Maxim A. Babenko1 and Alexander V. Karzanov2(B)

1 Higher School of Economics, 20, Myasnitskaya, 101000 Moscow, Russia
maxim.babenko@gmail.com

2 Institute for System Analysis of the RAS, 9, Prospect 60 Let Oktyabrya,
117312 Moscow, Russia

sasha@cs.isa.ru

Abstract. We consider an undirected multi(commodity)flow demand
problem in which a supply graph is planar, each source-sink pair is
located on one of three specified faces of the graph, and the capaci-
ties and demands are integer-valued and Eulerian. It is known that such
a problem has a solution if the cut and (2,3)-metric conditions hold,
and that the solvability implies the existence of an integer solution. We
develop a purely combinatorial strongly polynomial solution algorithm.

Keywords: Multi(commodity)flow · Planar graph · Cut condition ·
(2,3)-metric condition · Strongly polynomial algorithm

1 Introduction

Among a variety of multi(commodity)flow problems, one popular class embraces
multiflow demand problems in undirected planar graphs in which the demand
pairs are located within specified faces of the graph. More precisely, a problem
input consists of: a planar graph G = (V,E) with a fixed embedding in the plane;
nonnegative integer capacities c(e) ∈ Z+ of edges e ∈ E; a subset H ⊆ FG of
faces, called holes (where FG is the set of faces of G); a set D of pairs st of
vertices such that both s, t are located on (the boundary of) one of the holes;
and demands d(st) ∈ Z+ for st ∈ D. A multiflow for G,D is meant to be a
pair f = (P, λ) consisting of a set P of D-paths P in G and nonnegative real
weights λ(P ) ∈ R+. Here a path P is called a D-path if {sP , tP } = {s, t} for
some st ∈ D, where sP and tP are the first and last vertices of P , respectively.
We call f admissible for c, d if it satisfies the capacity constraints:

∑(
λ(P ) : e ∈ P ∈ P

)
≤ c(e), e ∈ E, (1.1)

and realizes the demands:
∑(

λ(P ) : P ∈ P, {sP , tP } = {s, t}
)

= d(st), st ∈ D. (1.2)
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 53–66, 2015.
DOI: 10.1007/978-3-319-20297-6 4
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The (fractional) demand problem, denoted as D(G,H,D, c, d), or D(c, d) for
short, is to find an admissible multiflow for c, d (or to declare that there is none).
When the number of holes is “small”, this linear program is known to possess
nice properties. To recall them, we need some terminology and notation.

For X ⊆ V , the set of edges of G with one end in X and the other in V − X
is denoted by δ(X) = δG(X) and called the cut in G determined by X. We also
denote by ρ(X) = ρD(X) the set of pairs st ∈ D separated by X, i.e., such that
|{s, t} ∩ X| = 1. For a singleton v, we write δ(v) for δ({v}), and ρ(v) for ρ({v}).
For a function g : S → R and a subset S′ ⊆ S, g(S′) denotes

∑
(g(e) : e ∈ S′).

So c(δ(X)) is the capacity of the cut δ(X), and d(ρ(X)) is the total demand on
the elements of D separated by X.

A capacity-demand pair (c, d) is said to be Eulerian if c(δ(v)) − d(ρ(v)) is
even for all vertices v ∈ V .

The simplest sort of necessary conditions for the solvability of the multiflow
demand problem with any G,D is the well-known cut condition, saying that

Δc,d(X) := c(δ(X)) − d(ρ(X)) ≥ 0 (1.3)

should hold for all X ⊂ V . It need not be sufficient, and in general the solvability
of a multiflow demand problem is provided by metric conditions. In our case the
following results have been known.

(A) For |H| = 1, Okamura and Seymour [8] showed that the cut condition is
sufficient, and that if (c, d) is Eulerian and the problem D(c, d) has a solution,
then it has an integer solution, i.e., there exists an admissible multiflow (P, λ)
with λ integer-valued. Okamura [7] showed that these properties continue to hold
for |H| = 2.

(B) For |H| = 3, the cut condition becomes not sufficient and the solvability
criterion involves also the so-called (2,3)-metric condition. It is related to a map
σ : V → V (K2,3), where Kp,q is the complete bipartite graph with parts of
p and q vertices. Such a σ defines the metric m = mσ on V by m(u, v) :=
dist(σ(u), σ(v)), u, v ∈ V , where dist denotes the distance (the shortest path
length) between vertices in K2,3. It gives a partition of V into five sets, with
distances 1 or 2 between them, and m is said to be a (2,3)-metric on V . (When
speaking of a metric, we admit zero distances between different points, i.e.,
consider a semimetric in essence.) We denote

∑
(c(e)m(e) : e ∈ E) by c(m), and∑

(d(st)m(st) : st ∈ D) by d(m). Karzanov showed the following

Theorem 1 [4]. Let |H| = 3. Then D(c, d) has a solution if and only if cut
condition (1.3) holds, and

Δc,d(m) := c(m) − d(m) ≥ 0 (1.4)

holds for all (2,3)-metrics m on V (the (2,3)-metric condition). Furthermore, if
(c, d) is Eulerian and the problem D(c, d) has a solution, then it has an integer
solution.



A Combinatorial Algorithm for the Planar Multiflow Problem 55

We call Δc,d(X) in (1.3) (resp. Δc,d(m) in (1.4)) the excess of a set X (resp. a
(2,3)-metric m) w.r.t. c, d. One easily shows that Δc,d(X) and Δc,d(m) are even
if (c, d) is Eulerian.

(C) When |H| = 4, the situation becomes more involved. As is shown in [5],
the solvability criterion for D(c, d) involves, besides cuts and (2,3)-metrics, met-
rics m = mσ on V induced by maps σ : V → V (Γ ) with Γ running over a
set of planar graphs with four faces (called 4f-metrics), and merely the exis-
tence of a half-integer solution is guaranteed in a solvable Eulerian case. When
|H| = 5, the set of unavoidable metrics in the solvability criterion becomes ugly
(see [3, Sec. 4]), and the fractionality status is unknown so far.

In this paper we focus on algorithmic aspects. The first combinatorial strongly
polynomial algorithm (having complexity O(n3 log n)) to find an integer solu-
tion in the Eulerian case with |H| = 1 is due to Frank [1], and subsequently a
number of faster algorithms have been devised; a linear-time algorithm is given
in [10]. Hereinafter n stands for the number |V | of vertices of the graph. Efficient
algorithms for |H| = 2 are known as well. For a survey and references in cases
|H| = 1, 2, see, e.g., [9].

Our aim is to give an algorithm to solve problem D(c, d) with |H| = 3, which
checks the solvability and finds an integer admissible multiflow in the Eulerian
case. Our algorithm uses merely combinatorial means and is strongly polynomial
(though having a high polynomial degree). Its core is a subroutine for a certain
planar analogue of the (2,3)-metric minimization problem. We are able to fulfill
this task efficiently and in a combinatorial fashion, by reducing it to a series of
shortest paths problems in a dual planar graph.

Remark 1. The (2,3)-metric minimization problem in a general edge-weighted
graph with a specified set of five terminals can be solved in strongly polynomial
time (by use of the ellipsoid method) [2] or by a combinatorial weakly polynomial
algorithm [6].

This paper is organized as follows. Section 2 reviews needed facts from [4], which
refine the structure of cuts and (2,3)-metrics that are essential for the solvability
of our 3-hole demand problem. Using these refinements, Sects. 3 and 4 develop
efficient combinatorial procedures to verify the cut and (2,3)-metric conditions
for problem D(c, d) with initial or current c, d; moreover, these procedures deter-
mine or duly estimate the minimum excesses of regular cuts and (2,3)-metrics,
which is important for the efficiency of our algorithm for D(c, d). This algorithm
is described in Sect. 5.

To slightly simplify the further description, we will assume, w.l.o.g., that the
boundary of any hole H contains no isthmus. For if b(H) has an isthmus e, we
can examine the cut {e}. If it violates the cut condition, the problem D(c, d)
has no solution. Otherwise D(c, d) is reduced to two smaller demand problems,
with at most 3 holes and with Eulerian data each, by deleting e and properly
modifying demands concerning H.
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2 Preliminaries

Throughout the rest of the paper, we deal with G = (V,E),H,D, c, d as above
such that |H| = 3 and (c, d) is Eulerian. Let H = {H1,H2,H3}.

One may assume that the graph G = (V,E) is connected and its outer
(unbounded) face is a hole (say, H3). We identify objects in G, such as edges,
paths, subgraphs, and etc., with their images in the plane. A face F ∈ FG is
regarded as an open region in the plane. Since G is connected, the boundary
b(F ) of F is connected, and we identify it with the corresponding cycle (closed
path) considered up to reversing and shifting cyclically. Note that this cycle may
contain repeated vertices or edges (an edge of G may be passed by b(F ) twice,
in different directions). A subpath in this cycle is called a segment in b(F ).

We denote the subgraph of G induced by a subset X ⊆ V by [X] = [X]G,
the set of faces of G whose boundary is entirely contained in [X] by F(X), and
the region in the plane that is the union of [X] and all faces in F(X) by R(X).
We also need additional terminology and notation.

A subset X ⊂ V (as well as the cut δ(X)) is called regular if the region
R(X) is simply connected (i.e., it is connected and any closed curve in it can be
continuously deformed into a point), and for each i = 1, 2, 3, [X] ∩ b(Hi) forms
a (possibly empty) segment of b(Hi). In particular, the graph [X] is connected.

Let {t1, t2} and {s1, s2, s3} be the parts (color classes) in K2,3. Given σ :
V → V (K2,3), we denote the set σ−1(ti) by Ti = T σ

i , and σ−1(sj) by Sj = Sσ
j .

Then Ξσ = (T1, T2, S1, S2, S3) is a partition of V . The (2,3)-metric mσ is called
regular if:

(2.5) (i) all sets T1, T2, S1, S2, S3 in Ξσ are nonempty;
(ii) for i = 1, 2, 3, the region R(Si) is simply connected;
(iii) for i, j ∈ {1, 2, 3}, Si ∩ b(Hj) = ∅ holds if and only if i = j; and for

i 
= j, [Si] ∩ b(Hj) forms a segment of b(Hj).

Then the complement to R
2 of H1 ∪ H2 ∪ H3 ∪ R(S1) ∪ R(S2) ∪ R(S3) consists

of two connected components, one containing T1 and the other containing T2.
The structure described in (2.5) is illustrated in the picture.

The notions of regular sets (cuts) and (2,3)-metric are justified by the fol-
lowing important strengthening of the first assertion in Theorem 1 (cf. [4]).
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Theorem 2. D(c, d) has a solution if and only if cut condition (1.3) holds for
all regular subsets X ⊂ V , and (2,3)-metric condition (1.4) holds for all regular
(2,3)-metrics on V .

Remark 2. In fact, the refined solvability criterion for D(c, d) given
in [4, Stat. 2.1] involves a slightly sharper set of (2,3)-metrics compared with
that defined by (2.5); at the same time it does not restrict the set of cuts. Note,
however, that if X ⊂ V is not regular, then there are nonempty sets X ′,X ′′ ⊂ V
such that δ(X ′)∩δ(X ′′) = ∅, δ(X ′)∪δ(X ′′) ⊆ δ(X), and ρ(X) ⊆ ρ(X ′)∪ρ(X ′′).
Then X is redundant (it can be excluded from verification of (1.3)).

3 Verifying the Cut Condition

In this section and the next one we describe efficient procedures for checking
the solvability of D(G,H,D, c, d) (considering the initial or current data). By
Theorem 2, it suffices to verify validity of cut condition (1.3) for regular sets and
(2,3)-metric condition (1.4) for regular (2,3)-metrics.

A check-up of the cut condition is rather straightforward. Moreover, we can
duly estimate from below the minimum excess Δc,d(X) among the regular sets
X ⊂ V . In fact, we will compute the minimum excess in a somewhat larger
collection of sets.

Definition 1. We say that a subset X ⊂ V is semi-regular if |δ(X)∩b(Hi)| ≤ 2
for each i = 1, 2, 3.

One can see that any regular set X is semi-regular. Also for each i, the fact that
b(Hi) has no isthmus (as mentioned in the Introduction) implies that |δ(X) ∩
b(Hi)| is 0 or 2.

Based on Theorems 1 and 2, we are going to compute the minimum excess
Δc,d(X) among the semi-regular sets X; denote this minimum by μcut

c,d . In par-
ticular, if μcut

c,d < 0, then the problem D(c, d) has no solution.
To compute μcut

c,d , we fix a nonempty I ⊆ {1, 2, 3} and scan the possible
collections A = {Ai : i ∈ I}, where each Ai consists of two edges in b(Hi). We
say that a semi-regular set X is consistent with A (or with (I,A)) if δ(X) ∩
b(Hi) = Ai for each i ∈ I, and δ(X) ∩ b(Hi) = ∅ for i /∈ I. Also for i ∈ I, we
denote the set of demand pairs st ∈ D located on b(Hi) and spanning different
components (segments) in b(Hi) − Ai by D(Ai). Then for all semi-regular sets
X consistent with A, the right hand side value in (1.3) is the same, namely,
d(ρ(X)) =

∑
(d(D(Ai) : i ∈ I).

Using this, for each (I,A), we compute the minimum excess among the semi-
regular sets consistent with A in a natural way, by solving 2|I|−1 minimum s–t cut
problems. Here each problem arises by choosing one component Si in b(Hi)−Ai,
for each i ∈ I. We transform G by shrinking ∪(Si : i ∈ I) into a new vertex s,
shrinking the rest of b(Hi) − Ai, i ∈ I, into a new vertex t, and shrinking each
cycle b(Hj), j /∈ I, into a vertex. Solving the corresponding min cut problem
in the arising graph (with the induced edge capacities), we obtain the desired
minimum excess among those X satisfying δ(X) ∩ b(Hi) = Ai, i ∈ I.
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Thus, by applying the above procedure to all possible combinations (I,A)
(whose number is O(n6)), we can conclude with the following:

Proposition 3. The task of computing μcut
c,d reduces to finding O(n6) minimum

cuts in graphs with O(n) vertices and edges. In particular, this enables us to
efficiently verify cut condition (1.3) for D(c, d).

4 Verifying the (2,3)-Metric Condition

In this section we develop a procedure of verifying the (2,3)-metric condition
for D(G,H,D, c, d). Moreover, the procedure duly estimates from below the
minimum excess of a regular (2,3)-metric, which is crucial for our algorithm. We
use a shortest paths technique in a modified dual graph.

This graph is constructed as follows. First we take the standard planar dual
graph G∗ = (V ∗, E∗) of G, i.e., V ∗ is bijective to FG and E∗ is bijective to
E, defined by F ∈ FG �→ vF ∈ V ∗ and e ∈ E �→ e∗ ∈ E∗. Here a dual edge
e∗ connects vertices vF and vF ′ if F, F ′ are the faces whose boundaries share e
(possibly F = F ′). (Usually vF is visualized as a point in F , and e∗ as a line
crossing e.)

Next we slightly modify G∗ as follows. For i = 1, 2, 3, let Ei denote the
sequence of edges of the cycle b(Hi). (Recall that b(Hi) has no isthmus, hence
all edges in Ei are different.) Let zi denote the vertex of G∗ corresponding to
the hole Hi. Then zi has degree |Ei| and is incident with the dual edges e∗ for
e ∈ Ei. We split zi into |Ei| vertices zi,e of degree 1 each, where e ∈ Ei, making
zi,e be the end of e∗ instead of zi. These pendant vertices are called terminals.
They belong to the boundary of the same face, denoted as Ĥi, and the set of
terminals ordered clockwise around Ĥi is denoted by Zi.

This gives the desired dual graph for (G,H), denoted as Ĝ∗. An example
of transforming G into Ĝ∗ in a neighborhood of a hole Hi is illustrated in the
picture, where A, . . . , F are faces in G, and the terminals in b(Ĥi) are indicated
by bold circles.

The edges of Ĝ∗ are endowed with lengths c inherited from the capacities in
G; namely, we assign c(e∗) := c(e) for e ∈ E.
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Consider a regular (2,3)-metric m = mσ and its corresponding partition
(T1, T2, S1, S2, S3) (cf. (2.5)). By the regularity of m, for i = 1, 2, 3, the cycle
b(Hi) shares two edges with the cut δ(Si−1), say, g(i − 1) and h(i − 1), and two
edges with δ(Si+1), say, g′(i+1) and h′(i+1); let for definiteness g(i−1), h(i−1),
h′(i+1), g′(i+1) follow in this order clockwise in b(Hi) (taking indices modulo 3).
Note that, although the segments [Si−1] ∩ b(Hi) and [Si+1] ∩ b(Hi) are disjoint,
the edges g(i − 1) and g′(i + 1) may coincide, and similarly for h(i − 1) and
h′(i + 1).

So, for p = 1, 2, 3, the cut δ(Sp) meets b(Hp+1) by {g(p), h(p)}, meets b(Hp−1)
by {g′(p), h′(p)}, and does not meet b(Hp). Since the region R(Sp) is simply con-
nected, the cut δ(Sp) corresponds to a simple cycle C(Sp) in G∗; it passes the
elements g(p)∗, zp+1, h(p)∗, h′(p)∗, zp−1, g

′(p)∗ (in the counterclockwise order).
The cycle C(Sp) turns into two disjoint paths in Ĝ∗: path Pp connecting the ter-
minals zp+1,g(p) and zp−1,g′(p), and path Qp connecting zp+1,h(p) and zp−1,h′(p).
See the picture.

This correspondence gives c(δ(Sp)) = c(Pp) + c(Qp), implying

c(m) =
∑(

c(δ(Sp)) : p = 1, 2, 3
)

=
∑(

c(Pp) + c(Qp) : p = 1, 2, 3
)
,

taking into account the evident fact that no edge of G connects T1 and T2.
In order to express the “demand value” d(m), consider arbitrary edges b1, b2,

b3, b4 occurring in this order in a cycle b(Hi), possibly with bq = bq+1 for some q
(letting b5 := b1). Removal of these edges from the cycle produces four segments
ω1, ω2, ω3, ω4, where ωq is the (possibly empty) segment between bq and bq+1.
Let di(b1, b2, b3, b4) denote the sum of demands d(st) over the pairs st spanning
neighboring segments ωq, ωq+1 plus twice the sum of demands d(st) over st
spanning either ω1 and ω3, or ω2 and ω4.

Now for i = 1, 2, 3, take as b1, b2, b3, b4 the edges g(i − 1), h(i − 1), h′(i +
1), g′(i + 1), respectively. Then the contribution to d(m) from the demand pairs
on b(Hi) is just di(g(i − 1), h(i − 1), h′(i + 1), g′(i + 1)). Hence

d(m) =
∑(

di(g(i − 1), h(i − 1), h′(i + 1), g′(i + 1)) : i = 1, 2, 3
)
.

This prompts the idea to minimize c(m) over a class of (2,3)-metrics m
which, for each i = 1, 2, 3, deal with the same quadruple of edges in b(Hi), and
therefore have equal values d(m). (In reality, we will be forced to include in this
class certain non-regular (2,3)-metrics as well.)

On this way we come to the following task, which is solved by comparing
O(1) combinations of the lengths of c-shortest paths in Ĝ∗:
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(4.6) Given, for each i = 1, 2, 3, a quadruple Z̃i = (z1i , z2i , z3i , z4i = z0i ) of termi-
nals in Zi (with possible coincidences), find a set P of six (simple) paths
in Ĝ∗ minimizing their total c-length, provided that:
(∗) each path in P connects terminals zp

i and zq
j with i 
= j, and the set

of endvertices of the paths in P is exactly Z̃1 ∪ Z̃2 ∪ Z̃3 (respecting the
possible multiplicities).

Next we need some terminology and notation. For i = 1, 2, 3, let Ai be the
quadruple of edges in the cycle b(Hi) of G that corresponds to Z̃i (respecting the
possible multiplicities). Let A := (A1, A2, A3). Define ζ(A) to be the minimum
c-length of a path system in (4.6), and define d(A) to be the sum of corresponding
demand values d(Ai). Then d(A) = d(m) for any m ∈ M(A), and

ζ(A) ≤ min{c(m) : m ∈ M(A)}, (4.7)

where M(A) denote the set of regular (2,3)-metrics m = mσ in G agreeable to A,
i.e., such that for the partition Ξσ = (T1, T2, S1, S2, S3) and for each i = 1, 2, 3,
δ(Si−1) � δ(Si+1) meets b(Hi) by Ai.

In general, inequality (4.7) may be strong. Nevertheless, we can get a converse
inequality by extending M(A) to a larger class of (2,3)-metrics.

Definition 2. Let us say that a (2,3)-metric m = mσ is semi-regular if the sets
S1, S2, S3 in Ξσ are nonempty and satisfy (iii) in (2.5).

(Whereas T1, T2 may be empty and (ii) of (2.5) need not hold; in particular,
subgraphs [Si] need not be connected.) We show the following

Proposition 4. ζ(A) is equal to c(m) for some semi-regular (2,3)-metric m
agreeable to A.

(When a (2,3)-metric m is semi-regular but not regular, it is “dominated by two
cuts”, in the sense that there are X,Y ⊂ V such that Δc,d(m) ≥ Δc,d(X) +
Δc,d(Y ), cf. [3, Sec. 3].)

Proof. We use the observation that problem D(c, d) remains equivalent when
an edge e is subdivided into several edges in series, say, e1, . . . , ek (k ≥ 1) with
the same capacity: c(ei) = c(e). In particular, we can subdivide edges in the
boundaries of holes, due to which we may assume that each quadruple Ai consists
of different edges. Then all terminals in each Z̃i become different.

Another advantage is that when considering an optimal path system P
in (4.6), we may assume that the paths in P are pairwise edge-disjoint. Indeed,
if some edge e∗ of Ĝ∗ is used by k > 1 paths in P, we can subdivide the cor-
responding edge e of G into k edges in series. This leads to replacing e∗ by a
tuple of k parallel edges (of the same length c(e)) and we assign each edge to be
passed by exactly one of those paths.

We need to improve P so as to get rid of “crossings”. More precisely, consider
two paths P, P ′ ∈ P, suppose that they meet at a vertex v, let e, e′ be the edges
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of P incident to v, and let g, g′ be similar edges of P ′. We say that P and P ′ cross
(each other) at v if e, g, e′, g′ occur in this order (clockwise or counterclockwise)
around v, and touch otherwise.

For an inner (nonterminal) vertex v, let P(v) be the set of paths in P passing
v, and E(v) the clockwise ordered set of edges incident to v and occurring in P(v).
We assign to the edges in E(v) labels 1, 2 or 3, where an edge e is labeled i if
for the path P ∈ P(v) containing e, P begins or ends at a terminal z in Z̃i and
e belongs to the part of P between v and z. (So if P connects Z̃i and Z̃j and e′

is the other edge of P incident to v, then e′ has label j.)
We iteratively apply the following uncrossing operation. Choose a vertex v

with |E(v)| ≥ 4. Split each path of P(v) at v. This gives, for each edge e ∈ E(v)
with label i, a path containing e and connecting v with a terminal in Z̃i; denote
this path by Q(e). These paths are regarded up to reversing. Now we recombine
these paths into pairs as follows, using the obvious fact that for each i = 1, 2, 3,
the number of edges in E(v) with label i is at most |E(v)|/2.

Choose two consecutive edges e, e′ in E(v) by the following rule: e, e′ have
different labels, say, i, j, and the number of edges in E(v) having the third label
k (where {i, j, k} = {1, 2, 3}) is strictly less than |E(v)|/2. (Clearly such e, e′

exist.) We concatenate Q(e) and Q(e), obtaining a path connecting Z̃i and Z̃j ,
update E(v) := E(v) − {e, e′}, apply a similar procedure to the updated E(v),
and so on until E(v) becomes empty.

One can see that the resulting path system P ′ satisfies property (∗) in (4.6)
and has the same total c-length as before (thus yielding an optimal solution
to (4.6)), and now no two paths in P ′ cross at v. Note that for some vertices
w 
= v, edge labels in E(w) may become incorrect (this may happen with those
vertices w that belong to paths in P ′(v)). For this reason, we finish the procedure
of handling v by checking such vertices w and correcting their labels where
needed. In addition, if we reveal that one or another path in P ′(v) is not simple,
we cancel the corresponding cycle in it (which has zero c-length since P ′ is
optimal).

At the next iteration we apply a similar uncrossing operation to another
vertex v′, and so on. Upon termination of the process (taking < n iterations) we
obtain a path system P̃ such that

(4.8) P̃ is optimal to (4.6) and admits no crossings.

Property (∗) in (4.6) implies that for each p = 1, 2, 3, the sets Z̃p−1 and
Z̃p+1 are connected by exactly two paths in P̃. We denote them by Pp, Qp and
assume that both paths go from Z̃p−1 to Z̃p+1 (reversing paths in P̃ if needed).
Since Pp, Qp nowhere cross, we can subdivide the space R

2 − (Ĥp−1 ∪ Ĥp+1)
into two closed regions R,R′ such that R ∩ R′ = Pp ∪ Qp, R lies “on the right
from Pp” and “on the left from Qp”, while R′ behaves conversely. (Here we give
informal, but intuitively clear, definitions of R,R′, omitting a precise topological
description.) One of R,R′ does not contain the hole Ĥp; denote it by Rp. We
observe the following:
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(4.9) no path in P̃ meets the interior int(Rp) of Rp.

Indeed, if P ∈ P̃ goes across int(Rp), then P is different from Pp and Qp;
hence P has one endvertex in Z̃p. Since Z̃p ∩Rp = ∅, P must cross the boundary
of Rp. This implies that P crosses some of Pp, Qp, contrary to (4.8).

From (4.9) it follows that the interiors of R1,R2,R3 are pairwise disjoint
and that for p = 1, 2, 3, the paths Pp, Qp begin at consecutive terminals in Z̃p−1

and end at consecutive terminals in Z̃p+1 (thinking of both paths as going from
Z̃p−1 to Z̃p+1). So we may assume for definiteness that

(4.10) for i = 1, 2, 3, the terminals z1i , z2i , z3i , z4i of Z̃i are, respectively, the end
of Pi−1, the end of Qi−1, the beginning of Qi+1, and the beginning of
Pi+1;

see the picture, where for simplicity all paths are vertex disjoint.

Then the space R
2 − (Ĥ1 ∪ Ĥ2 ∪ Ĥ3 ∪ int(R1) ∪ int(R2) ∪ int(R3)) can be

subdivided into two closed regions L1 and L2, where the former lies “on the
right from P1, P2, P3” and the latter lies “on the left from Q1, Q2, Q3”. One can
see that

(4.11) each edge of Pp is shared by the regions Rp and L1, and each edge of Qp

is shared by Rp and L2.

Now the sets of faces in (the natural extensions to G∗ of) the regions L1,L2,
R1,R2,R3 induce vertex sets T1, T2, S1, S2, S3 in G, respectively, giving a par-
tition of V . Let m be the (2,3)-metric determined by this partition. Then (4.10)
implies that m is semi-regular and agreeable to A. By (4.11), for p = 1, 2, 3, each
edge of δ(Sp) connects Sp with one of T1, T2 (whereas no edge of G connects T1

and T2, or connects Si and Sj for i 
= j). Therefore,

ζ(A) =
∑

(c(Pp) + c(Qp) : p = 1, 2, 3) = c(m),

yielding the proposition. ��
Remark 3. Strictly speaking, the metric m in the above proof concerns the mod-
ified graph, obtained by replacing some edges e = uv of the original graph G by
paths Le connecting u and v. When returning to the original G, those elements
of Sp or Tq that are intermediate vertices of such paths Le disappear, and as
a result, there may appear (original) edge connecting T1 and T2, or Si and Sj ,
i 
= j. One can see, however, that this does not affect the value c(m) for the
corresponding m.
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Finally, define μ23
c,d(A) := ζ(A) − d(A). We conclude with the following

Corollary 1. (i) Let A = (A1, A2, A3), where Ai is a quadruple of edges in
b(Hi). Then Δc,d(m) ≥ μ23

c,d(A) for any regular (2,3)-metric m agreeable to
A, and there exists a semi-regular (2,3)-metric m′ agreeable to A such that
Δc,d(m′) = μ23

c,d(A). In particular, if μ23
c,d(A) < 0, then problem D(c, d) has no

solution.
(ii) The minimum μ23

c,d of excesses Δc,d(m) over all semi-regular (2,3)-metrics
m can be found in O(n12 + n · SP (n)) time, where SP (n′) is the complexity of
a shortest paths algorithm in a planar graph with n′ nodes.

5 Algorithm

As before, we consider a 3-hole demand problem D(G = (V,E),H,D, c, d) in
which the capacity-demand pair (c, d) is Eulerian.

The algorithm to solve this problem uses efficient procedures of Sects. 3
and 4 which find, for a current (c, d), the minimum excess μcut

c,d among the semi-
regular sets and the minimum excess μ23

c,d among the semi-regular (2,3)-metrics.
Let μc,d denote min{μcut

c,d , μ23
c,d} As mentioned above, Theorems 1 and 2 imply

the following

Proposition 5. Problem D(c, d) has a solution if and only if μc,d ≥ 0.

The algorithm starts with verifying the solvability of the problem, by finding μc,d

for the initial (c, d). If μc,d < 0, it declares that the problem has no solution.
Otherwise the algorithm recursively constructs an integer admissible multiflow.
We may assume, w.l.o.g., that all current capacities and demands are nonzero
(for edges e with c(e) = 0 can be immediately deleted from G, and similarly for
pairs st ∈ D with d(st) = 0), and that the boundary b(Hi) of each hole Hi is
connected and isthmusless, regarding it as a cycle.

An iteration of the algorithm applied to current G,H,D, c, d (with (c, d)
Eulerian) chooses arbitrarily i ∈ {1, 2, 3}, an edge e = uv in b(Hi), and a pair
st ∈ Di, where Di denotes the set of demand pairs for Hi.

Let for definiteness s, u, v, t follow in this order in b(Hi). Suppose that we
take a nonnegative integer ε ≤ min{c(e), d(st)} and transform (c, d) into the
capacity-demand pair (c′, d′) by

c′(e) := c(e) − ε, d′(st) := d(st) − ε, (5.12)
d′(su) := d(su) + ε, and d′(vt) := d(vt) + ε.

(Note that we add to D the demand pair su with d(su) := 0 if it does not exist
there, and similarly for vt. When s = u (v = t), the pair su (resp. vt) vanishes.)
Clearly (c′, d′) is Eulerian as well. We say that (c′, d′) is obtained by the (e, st, ε)-
reduction of (c, d). We call ε a feasible reduction number for (c, d, e, st), or, simply,
feasible, if the problem D(c′, d′) is still solvable (and therefore it has an integer
solution). The goal of the iteration is to find the maximum (integer) feasible ε
and then update c, d accordingly.
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Here we rely on an evident transformation of an integer admissible multiflow
f ′ for (c′, d′) into an integer admissible multiflow f for (c, d): extract from f ′ an
integer subflow g of value ε from s to u and an integer subflow h of value ε from
v to t, and increase the flow between s and t by concatenating g, h and the flow
of value ε through the edge e.

The maximum feasible ε for (c, d, e, st) is computed in at most three steps,
as follows.

First we try to take as ε the maximum possible value, namely, ε1 :=
min{c(e), d(st)}; let c1, d1 be defined as in (5.12) for this ε1. Compute the value
ν1 := μc1,d1 (step 1). If ν1 ≥ 0 then ε := ε1 is as required (relying on Proposi-
tion 5).

Next, if ν1 < 0, we take ε2 := ε1 + �ν1/4�, define c2, d2 as in (5.12) for this
ε2 and for c, d as before. Compute ν2 := μc2,d2 (step 2). Again, if ν2 ≥ 0 then ε2
is just the desired ε.

Finally, if ν2 < 0, we take as ε the number ε3 := ε2 + ν2/2 (step 3).

Lemma 1. The ε determined in this way is indeed the maximum feasible reduc-
tion number for c, d, e, st.

Proof. We argue in a similar spirit as for an integer splitting in [2]. For a semi-
regular set X ⊂ V , define

β(X) := ωX(s, u) + ωX(u, v) + ωX(v, t) − ωX(s, t),

where we set ωX(x, y) := 1 if X separates vertices x and y, and 0 otherwise.
Then β(X) ≥ 0 (since ωX is a metric). Also the fact that |δ(X) ∩ b(Hi)| ≤ 2 (as
X is semi-regular) implies that β(X) ∈ {0, 2}.

For a semi-regular (2,3)-metric m, define

γ(m) := m(su) + m(uv) + m(vt) − m(st).

Then γ(m) ≥ 0. Also the semi-regularity of m (cf. (iii) in (2.5)) implies that
γ(m) ∈ {0, 2, 4}.

One can check that if (c′′, d′′) is obtained by the (e, st, ε′)-reduction of a pair
(c′, d′) with an arbitrary ε′, then

Δc′′,d′′(X) = Δc′,d′(X) − ε′β(X) and Δc′′,d′′(m) = Δc′,d′(m) − ε′γ(m).
(5.13)

Let ε be the maximum feasible reduction number for c, d, e, st. When ν1 ≥ 0,
the equality ε = ε1 is obvious, so suppose that ν1 < 0. If ν1 is achieved by the
excess Δc1,d1(m) of a semi-regular (2,3)-metric m and if γ(m) = 4, then using
the second expression in (5.13) and the equality ε2 = ε1 + �ν1/4�, we have

Δc2,d2(m) = Δc,d(m) − ε2γ(m) = Δc,d(m) − ε1γ(m) − �ν̃1/4� · 4
= Δc1,d1(m) − �ν̃1/4� · 4 = ν̃1 − �ν̃1/4� · 4 = τ,

where τ equals 0 if ν1 is divided by 4, and equals 2 otherwise. (Recall that the
excess of any (2,3)-metric is even when the capacity-demand pair is Eulerian.)
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In this case we have ε ≤ ε2. Indeed for ε′ := ε2 + 1, the pair (c′, d′) obtained by
the (e, st, ε′)-reduction of (c, d) would give Δc′,d′(m) = Δc2,d2(m) − 4 < 0; so ε′

is infeasible.
As a consequence, in case ν2 ≥ 0 we obtain ε = ε2.
Now let ν2 < 0. Note that for any semi-regular metric m′ with γ(m′) = 4,

the facts that γ(m′) = γ(m) and Δc1,d1(m
′) ≥ ν1 = Δc1,d1(m) imply that

Δc′,d′(m′) ≥ Δc′,d′(m) ≥ 0 for any (c′, d′) obtained by the (e, st, ε′)-reduction of
(c, d) with ε′ ≤ ε2. Therefore, ν2 is achieved by the excess of either a semi-regular
set X with β(X) = 2 or a semi-regular (2,3)-metric m′′ with γ(m′′) = 2. This
implies ε = ε2 + ν2/2. ��
The above procedure of computing ε together with the complexity results in
Sects. 3 and 4 gives the following

Corollary 2. Each iteration (finding the corresponding maximum reduction
number and reducing c, d accordingly) takes O(n12) time.

Next, considering (5.13) and using the facts that β(X), γ(m) ≥ 0, we can con-
clude that under a reduction as above the excess of any set or (2,3)-metric does
not increase. This implies that

(5.14) if an iteration handles c, d, e, st, then for any capacity-demands (c′, d′)
arising on subsequent iterations, the maximum reduction number for
(c′, d′, e, st) is zero.

Therefore, it suffices to choose each pair (e, st) at most once during the
process.

Now we finish our description as follows. Suppose that, at an iteration with
i, e, st, the capacity of e becomes zero and the deletion of e from G causes merging
Hi with another hole Hj . Then we can proceed with an efficient procedure
for solving the corresponding Eulerian 2-hole demand problem. Similarly, if the
demand on st becomes zero and if the deletion of st makes Di empty, then we
can withdraw the hole Hi, again obtaining the Eulerian 2-hole case.

Finally, suppose that we have the situation when for some (c, d), the holes
H1,H2,H3 are different (and the capacities of all edges are positive), each
D1,D2,D3 is nonempty, but the maximum feasible reduction number for any
corresponding pair e, st is zero. We assert that this is not the case.

Indeed, suppose such a (c, d) exists. The problem D(c, d) is solvable, and one
easily shows that there exists an integer solution f = (P, λ) to D(c, d) such that:
for some path P ∈ P with λ(P ) > 0 and for the hole Hi whose boundary contains
sP , tP , some edge e of P belongs to b(Hi). But this implies that sP tP ∈ Di and
that ε = 1 is feasible for (c, d, e, sP tP ); a contradiction.

Thus, we obtain the following

Theorem 6. The above algorithm terminates in O(n3) iterations and finds an
integer solution to D(G,H,D, c, d) with |H| = 3 and (c, d) Eulerian.
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Further Algorithmic Results (to be presented in a forthcoming paper). (i) Recall
that when |H| = 4 and (c, d) is Eulerian, the solvability of D(c, d) implies the
existence of a half-integer solution, as is shown in [5] (see (C) in the Introduc-
tion). We can find a half-integer solution in strongly polynomial time by using
a fast generic LP method; the existence of a combinatorial (weakly or strongly)
polynomial algorithm for this problem is still open.

(ii) By a sort of polar duality, the demand problem D = D(G,H,D, c, d) with
|H| ∈ {3, 4} is interrelated to a certain problem on packing cuts and metrics so
as to realize the distances within each hole. More precisely, let � : E → Z+ be a
function of lengths of edges of G. The solvability criteria for D with |H| = 3, 4
imply (via the polar duality specified to our objects) that there exist metrics
m1, . . . , mk on V and nonnegative reals λ1, . . . , λk such that

λ1m1(e) + . . . + λkmk(e) ≤ �(e) for each e ∈ E;
λ1m1(st) + . . . + λkmk(st) = dist�(st) for all s, t ∈ V ∩ b(H), H ∈ H.

Here: dist� is the distance of vertices in (G, �); and each mi is a cut metric
or a (2,3)-metric if |H| = 3, and is a cut metric or a (2,3)-metric or a 4f-
metric if |H| = 4. Moreover, [3] shows the sharper property: if the lengths of all
cycles in (G, �) are even, then in both cases there exists an integer solution (i.e.,
with λ integer-valued). We develop a purely combinatorial strongly polynomial
algorithm to find such solutions.
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Abstract. The Generalized LR parsing algorithm for context-free gram-
mars is notable for having a decent worst-case running time (cubic in the
length of the input string), as well as much better performance on “good”
grammars. This paper extends the Generalized LR algorithm to the case
of “grammars with left contexts” (M. Barash, A. Okhotin, “An extension
of context-free grammars with one-sided context specifications”, Inform.
Comput., 2014), which augment the context-free grammars with special
operators for referring to the left context of the current substring, as well as
with a conjunction operator (as in conjunctive grammars) for combining
syntactical conditions. All usual components of the LR algorithm, such as
the parsing table, shift and reduce actions, etc., are extended to handle the
context operators. The resulting algorithm is applicable to any grammar
with left contexts and has the same worst-case cubic-time performance as
in the case of context-free grammars.

1 Introduction

The LR(k) parsing algorithm, invented by Knuth [5], is one of the most well-
known and widely used parsing methods. This algorithm applies to a subclass
of the context-free grammars, and, for every grammar from this subclass, its
running time is linear in the length of the input string. The Generalized LR
(GLR) algorithm is an extension of the LR parsing applicable to the whole
class of context-free grammars: wherever an LR(k) parser would not be able to
proceed deterministically, a Generalized LR parser simulates all available actions
and stores the results in a graph-structured stack. This simulation technique was
discovered by Lang [7], whereas Tomita [16,17] later independently reintroduced
it as a practical parsing algorithm. On an LR(k) grammar, a GLR parser always
works in linear time; it may work slower on other grammars, though, when
carefully implemented, its running time is at most cubic in the length of the
input [4]. These properties make the Generalized LR the most practical parsing
method for context-free grammars beyond LR(k).

The Generalized LR also applies to some extensions of the ordinary context-
free grammars. One such family are the conjunctive grammars [8], which allow
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a conjunction operation in any rules. The simplest example of using this opera-
tion is given by a rule A → B &C, which means that any string representable
both as B and as C therefore has the property A. The more general Boolean
grammars further allow a negation operation (A → B &¬C). Conjunctive and
Boolean grammars are notable for preserving the practically important proper-
ties of ordinary context-free grammars, such as parse trees and efficient parsing
algorithms. In particular, the Generalized LR algorithm for conjunctive gram-
mars works in time O(n3) [9], where n is the length of the input string, whereas
its extension to Boolean grammars has worst-case running time O(n4) [10]. For
more information on conjunctive and Boolean grammars, the reader is directed
to a recent survey paper [11].

Both conjunctive and Boolean grammars could be nicknamed “context-free”,
because the applicability of a rule to a substring does not depend on the context
in which the substring occurs. A further extension of conjunctive grammars
with new operators for referring to the left context of the current substring was
recently proposed by the authors [3]. The resulting grammars with left contexts
allow such rules as A → B &�D, which asserts that every substring of the form
B preceded by a substring of the form D therefore has the property A. These
grammars are particularly effective in defining such constructs as declaration
before use [3], and a full-sized example of a grammar for a typed programming
language was recently given by the first author [2]. In spite of the increased
expressive power, grammars with contexts still allow parsing in time O(n3) [3],
which can be further improved to O( n3

log n ) [12].
This paper extends the Generalized LR parsing algorithm to handle gram-

mars with left contexts. As compared to the familiar algorithm for ordinary
(context-free) grammars, the new algorithm has to check multiple conditions for
a reduction operation, some of them referring to the context of the current sub-
string. The conditions are represented as paths in a graph-structured stack, and
accordingly require table-driven graph searching techniques. In spite of these
complications, a direct implementation of the algorithm works in time O(n4),
whereas a more careful implementation leads to a O(n3) upper bound on its
running time. On “good” grammars, the running time can be as low as linear.
This algorithm becomes the first sign of possible practical implementation of
grammars with contexts.

2 Grammars with Left Contexts

Definition 1 ([3]). A grammar with left contexts is a quadruple G =
(Σ,N,R, S), where

– Σ is the alphabet of the language being defined;
– N is a finite set of auxiliary symbols (“nonterminal symbols” in Chomsky’s

terminology), disjoint with Σ, which denote the properties of strings defined
in the grammar;
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– R is a finite set of grammar rules, each of the form

A → α1 & . . . & α� & �β1 & . . . & �βm & �γ1 & . . . & �γn, (1)

with A ∈ N , � � 1, m,n � 0, αi, βi, γi ∈ (Σ ∪ N)∗;
– S ∈ N is a symbol representing syntactically well-formed sentences of the

language (in the common jargon, “the start symbol”).

If no context operators are ever used in a grammar (m = n = 0), then this is
a conjunctive grammar; if the conjunction is also never used (� = 1), this is an
ordinary (context-free) grammar.

Each term αi, �βi and �γi in a rule (1) is called a conjunct. Let conjuncts(R)
be the set of all conjuncts of the grammar. Denote by u〈v〉 a substring v ∈ Σ∗

that is preceded by u ∈ Σ∗. Intuitively, such a substring is generated by a
rule (1), if

– each base conjunct αi = X1 . . . Xr gives a representation of v as a concatena-
tion of shorter substrings described by X1, . . . , Xr, as in ordinary grammars;

– each conjunct �βi similarly describes the form of the left context u;
– each conjunct �γi describes the form of the extended left context uv.

Context operators (�, �) are defined to refer to the whole left context, which
begins with the first symbol of the entire string. Since one often needs to refer to
a left context beginning from an arbitrary position, at the first glance, context
operators could be defined in that way. However, those “partial contexts” can be
expressed using the proposed operator as �Σ∗β, and conversely, under certain
conditions, partial contexts can simulate full contexts [3, Sect. 1]. This makes the
above definition as expressive as its alternative, and more convenient to handle.

The semantics of grammars with left contexts are defined using a formal
deduction system dealing with elementary propositions of the form “a certain
substring has a property A ∈ N”. This kind of definition is known for ordinary
(context-free) grammars, where it gives a conceptually clearer understanding
than Chomsky’s string rewriting (see, for instance, Kowalski [6, Chap. 3]; this
approach was further developed in the works of Pereira and Warren [13] and of
Rounds [15]). For an ordinary grammar G = (Σ,N,R, S), consider elementary
propositions of the form “a string w ∈ Σ∗ has the property X ∈ Σ ∪ N”,
denoted by X(w) and essentially meaning that x ∈ LG(X). The axioms are of
the form “a has the property a”, that is, a(a), for all symbols a ∈ Σ. Every rule
A → X1 . . . Xr, with Xi ∈ Σ ∪ N , is regarded as a schema for deduction rules:

X1(u1), . . . , Xr(ur) � A(u1 . . . ur) (for all u1, . . . , ur ∈ Σ∗).

This setting easily extends to the case of grammars with contexts. The ele-
mentary propositions are now of the form “a string v ∈ Σ∗ written in a left
context u ∈ Σ∗ has the property X ∈ Σ ∪ N”, denoted by X(u〈v〉). The axioms
state that every symbol a ∈ Σ written in any context has the property a, that is,
� a(u〈a〉) for all u ∈ Σ∗. Each rule of the grammar is again regarded as a schema



70 M. Barash and A. Okhotin

for deduction rules. For instance, a rule A → BC allows making deductions of
the form

B(u〈v〉), C(uv〈w〉) �G A(u〈vw〉),
for all u, v, w ∈ Σ∗: this is essentially a concatenation of v and w that respects the
left contexts. A rule that uses left context operators, such as A → B & �D & �E,
requires extra premises to make a deduction:

B(u〈v〉),D(ε〈u〉), E(ε〈uv〉) �G A(u〈v〉).
The proposition D(ε〈u〉) expresses the fact that the substring u written in the
empty left context (that is, u is a prefix of the whole string) has the property
D. The other proposition E(ε〈uv〉) similarly states that E defines the prefix uv
of the input string. The general form of deduction schemata induced by a rule
in R can be found in the literature [3].

The language generated by a nonterminal symbol A ∈ N is defined as the
set of all strings with contexts u〈v〉, for which the proposition A(u〈v〉) can be
deduced from the axioms in one or more steps.

LG(A) = {u〈v〉 | u, v ∈ Σ∗, �G A(u〈v〉)}
The language generated by the grammar G is the set of all strings with left
context ε generated by S, that is, L(G) = {w | w ∈ Σ∗, �G S(ε〈w〉)}.

Example 1. Consider the following grammar with left contexts defining the sin-
gleton language {ab}.

S → aB

B → b & �aE

E → ε

The deduction below proves that the string ab has the property S.

� a(ε〈a〉) (axiom)
� b(a〈b〉) (axiom)
� E(a〈ε〉) (E → ε)

b(a〈b〉), a(ε〈a〉), E(a〈ε〉) � B(a〈b〉) (B → b & �aE)
a(ε〈a〉), B(a〈b〉) � S(ε〈ab〉) (S → aB)

3 Data Structure and Operations on It

The algorithm introduced in this paper is an extension of the Generalized LR
parsing algorithm for conjunctive grammars [9], which in its turn is an extension
of Tomita’s algorithm [17] for ordinary grammars. These algorithms are all based
on the same data structure: the graph-structured stack, which represents the
contents of the linear stack of a standard LR parser in all possible branches of a



Generalized LR Parsing for Grammars with Contexts 71

nondeterministic computation. The graph has a designated initial node, which
represents the bottom of the stack. The arcs of the graph are labelled with
symbols from Σ ∪ N . For each path in the graph, the concatenation of labels of
its arcs forms a string from (Σ ∪ N)∗.

Let a1 . . . an, with n � 0 and a1, . . . , an ∈ Σ, be the input string. Each node
in the graph-structured stack has an associated position in the input string. All
nodes associated with the same position form a layer of the graph. Every arc
from any node in an i-th layer to any node in a j-th layer labelled with a symbol
X ∈ Σ ∪ N indicates that the substring ai+1 . . . aj has the property X; such an
arc is possible only if i � j. The graph is accordingly drawn from left to right,
in the ascending order of layers. At the beginning of the computation, the initial
node forms layer 0. Each p-th layer is added to the graph when the p-th symbol
of the input is read. The layer corresponding to the last read input symbol is
called the top layer of the stack.

For the time being, let the nodes of the graph be unlabelled. Later on, once
the parsing table is defined, they will be labelled with the states of a finite
automaton, and a node will be uniquely identified by its layer number and its
label. Accordingly, the graph will contain O(n) nodes. The parser will use those
states to determine which operations to apply. This section defines those opera-
tions, but not the conditions of applying them.

The computation of the algorithm alternates between reduction phases, when
new arcs going to the existing top layer are added to the graph, and shift phases,
when an input symbol is read and a new top layer is created.

In the shift phase, the algorithm reads a new input symbol and makes a
transition from each node in the current top layer p to a node in next top layer
p+1 by the recently read (p+1)-th symbol of the input string. The nodes created
during a shift phase form the new top layer of the graph. Some transitions may
fail, and the corresponding branches of the graph are removed. This operation
is illustrated in Fig. 1(a). Note that the decisions made for each state of the
current top layer (that is, whether to extend it to the next layer, and to which
node) are determined by a finite automaton based on the node labels; this will
be discussed in the next section.

In the reduction phase, the algorithm performs all possible reduction oper-
ations. A reduction is done whenever there is a collection of paths leading to
the top layer that represent all conjuncts in a certain rule of the grammar. If
these paths are found, then a new arc labelled with the nonterminal on the left-
hand side of the rule is added to the graph. The application of this operation is
actually triggered by the states in the top layer nodes; this will be discussed in
Sect. 4.

The details of a reduction shall first be explained for an ordinary grammar.
A reduction by a rule A → α is done as follows. If there is a path α from some
node v to any node v1 in the top layer, then a new arc labelled A from v to
another node v̂ can be added, as shown in Fig. 1(b).

The case of a conjunctive grammar is illustrated in Fig. 1(c). Here a rule may
consist of multiple conjuncts, and the condition of performing a reduction has
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Fig. 1. (a) Shift phase; (b) reduction operation for an ordinary context-free grammar;
(c) reduction in the case of a conjunctive grammar

multiple premises, one for each conjunct in the rule. Consider a rule of the form
A → α1 & . . . &α�: if there are paths α1, . . . , α� from a node v to any nodes
v1, . . . , v� in the top layer, then a new arc labelled A going from v to another
node v̂ can be added.

The case of grammars with contexts is more complicated. To begin with,
consider a reduction by a rule without proper left contexts (extended contexts
are allowed): A → α1 & . . . & α� & �γ1 & . . . & �γn. The base conjuncts αi are
checked as in a conjunctive grammar: one has to ensure the existence of paths
α1, . . . , α� from a node v to any nodes v1, . . . , v� in the top layer. Furthermore,
for each context operator �γi, there should be a path γi from the initial node of
the graph to a node v′

i in the top layer, corresponding to the first p symbols of
the input. This case is illustrated in Fig. 2(a).

In order to handle proper left contexts within this setting, a new type of arc
labels is introduced. Arcs of the graph-structured stack shall now be labelled
with symbols from the alphabet Σ ∪ N ∪ C�, where the set C� contains special
symbols of the form (�β), each representing a proper context operator and
regarded as an indivisible symbol. Let C� = {(�β) | �β ∈ conjuncts(R)} and
C� = {(�γ) | �γ ∈ conjuncts(R)}.

An arc labelled with a special symbol (�β)
always connects two nodes in the same layer.
Such an arc indicates that the corresponding
context �β is recognized at this position, that is,
the preceding prefix of the string is of the form
β. This kind of arc is added to the graph by a
new operation called context validation. Assume
that some rule of the grammar contains a con-
junct �β. If there is a path β from the initial node v0 to some node v′ in the
top layer, then an arc labelled (�β) from any node v in the top layer to another
node v̂ in the top layer can be potentially added. A decision to perform a context
validation at some particular nodes, as always, is made by a finite automaton,
to be defined later on.

In the general case, a reduction is performed as follows. Consider a node v,
from which the paths α1, . . . , α� corresponding to a rule

A → α1 & . . . & α� & �β1 & . . . & �βm & �γ1 & . . . & �γn (2)
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Fig. 2. Reduction in case of grammars with contexts: (a) only extended contexts of
the form �γi are present; (b) both kinds of contexts are present

may potentially begin. Then, the paths α1, . . . , α� are worth being constructed
only if the proper contexts �β1, . . . , �βm hold true at this point. For that
purpose, at the time when the layer of v is the top layer, the algorithm applies
context validation for each of these contexts, creating a path (�β1) . . . (�βm)
beginning in the node v. This is done for a certain fixed order of conjuncts;
the exact order is unimportant. Let ṽ be the final node on this path; the paths
α1, . . . , α� begin at this point. Later on, a reduction by a rule (2) will be possible
under the following conditions. Assume that for every conjunct αi there is a path
(�β1) . . . (�βm)αi from v to any node in the top layer, and for every conjunct
�γj there is a path γj from the initial node v0 to some node in the top layer, as
illustrated in Fig. 2(b). Then one can add an arc labelled with A from the node
v to a node v̂ in the top layer.

4 Automaton Guiding a Parser

The set of operations on the graph performed by a parser was described in the
previous section. In order to decide which operation to apply at a particular
moment, the parser uses a deterministic finite automaton with a set of states Q,
which reads the sequence of labels on each path of the graph. The automaton is
constructed generally in the same way as Knuth’s [5] LR automaton. States of
this automaton essentially encode the information on the recognized bodies of
conjuncts; the state reached by the automaton in a node is stored in that node
as its label. The labels of the nodes in the top layer are used to decide on the
actions to perform, such as whether to shift the next input and to which state,
by which rule to reduce, etc.

In the case of ordinary grammars, each state of the automaton is a set of
rules with a marked position in its right-hand side: these objects A → μ · ν,
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for a rule A → μν, are called items. For grammars with contexts, even though
the form of the rules is expanded, the items remain simple: for a rule defining
a nonterminal symbol A, each conjunct μν of this rule, with a position marked,
gives rise to an item A → μ·ν. Conjuncts with context operators yield items with
A replaced with a special symbol representing this operator, like (�β) → μ · ν
and (�γ) → ξ · η, for corresponding partitions β = μν and γ = ξη. Let items(R)
denote the set of all items.

The LR automaton is then defined as follows.

Definition 2. Let G = (Σ,N,R, S) be a grammar with left contexts, and
assume that there is a dedicated initial symbol S′ ∈ N with a unique rule S′ → S.
The LR automaton of G is a deterministic finite automaton over an alphabet
Σ ∪ N ∪ C� with the set of states Q = 2items(R). Its initial state and transitions
are defined using the functions goto and closure.

– For every set I of items and for every symbol X ∈ Σ ∪ N ∪ C�, the function
goto selects all elements of I with the dot before the symbol X, and moves the
dot over that symbol. All other elements of I are discarded.

goto(I,X) = {V → αX · β | V → α · Xβ ∈ I, V ∈ N ∪ C� ∪ C�}
– The set closure(I) is defined as the least set of items that contains I and, for

each item V → μ ·Bν in closure(I), with V ∈ N ∪C� and with a nonterminal
symbol B ∈ N after the dot, every item of the form B → ·ξ, for each base
conjunct ξ in any rule for B (B → . . . & ξ & . . .), is in closure(I).

The initial state of the automaton is then

q0 = closure
({S′ → ·S} ∪ {(�β) → ·β |(�β) ∈ C�} ∪ {(�γ) → ·γ |(�γ) ∈ C�})

.

The transition from a state q ⊆ items(R) by a symbol X ∈ Σ ∪ N ∪ C� is

δ(q,X) = closure(goto(q,X)).

Every node of the graph is labelled by a state from Q. Whenever the graph
contains an arc labelled with a symbol X from a node labelled with a state q,
the label of the destination node is δ(q,X). The initial node is labelled with the
state q0, where the item S′ → ·S initiates the processing of the whole input,
whereas the items (�β) → ·β and (�γ) → ·γ similarly initiate the processing of
contexts.

With the automaton defined, consider how each shift operation is performed.
Let a ∈ Σ be the next input symbol, and let v be a node in the current top
layer, labelled with a state q. The goal is to connect v to a node in the next layer
(which becomes the new top layer after the shift phase is completed). Assume
that δ(q, a) is not empty, and let δ(q, a) = q′. If there is a node v′ in the next
layer labelled with q′, then the algorithm connects v to v′ with an arc labelled
with a. If no such node v′ yet exists, it is created. In case δ(q, a) is an empty
set, no new nodes are created, and the entire branch of the stack leading to v is
removed. All nodes created during a shift phase form the new top layer.
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In the reduction phase, the parser determines the rules to reduce by through
a so-called reduction function. This function maps pairs of a state q ∈ Q in a
top layer node and the next k input symbols to a set of conjuncts recognized
at this node. Denote by Σ�k the set of all strings of length at most k. The
reduction function is then of the form W : Q × Σ�k → 2completed(R), where
completed(R) ⊂ items(R) is the set of completed items with a dot in the end:
V → α·, with V ∈ N ∪ C� ∪ C� and α ∈ (Σ ∪ N ∪ C�)∗. In the graph, a state
containing a completed item marks the end-point of a path α.

In order to set the values of the reduction function, consider the sets
PFollowk (A) ⊆ Σ�k, defined for A ∈ N , which record all potential con-
tinuations of strings generated by A. These sets are determined by an algorithm
omitted due to space constraints. Now the set of possible reductions in a state q
with a lookahead string u ∈ Σ�k is defined as follows, for q ∈ Q and u ∈ Σ�k.

W (q, u) = {A → α · | A → α· ∈ q, u ∈ PFollowk (A) , A ∈ N ∪ C� ∪ C�}
Context validation is similarly determined by a function f : Q → 2Q×C� . For

a state q′ ∈ Q, f(q′) is the set of all possible pairs of the form (q, (�β)), with
q ∈ Q and (�β) ∈ C�, such that for the proper left context �β, the state q′

contains the completed item (�β) → β· and (q, (�β)) is a valid entry of δ.
The algorithm uses the functions W and f to decide when to make a reduction

or a context validation. Let the nodes of the graph be pairs v = (q, p), where q ∈
Q is the state in this node and p � 0 is the number of the layer. A reduction by a
rule A → α1 & . . . &α� &�β1 & . . . &�βm &�γ1 & . . . &�γn is done as follows.
Let p̂ be the number of the top layer, and let v1 = (q1, p̂), . . . , v� = (q�, p̂),
v′
1 = (q′

1, p̂), . . . , v′
n = (q′

n, p̂) be nodes in the top layer. Assume that each item
A → αi·, with i ∈ {1, . . . , k}, is in the corresponding table entry W (qi, u). Let
v = (q, p) be a node in any layer, from which there is a path (�β1) . . . (�βm)αi

to each node vi. Also assume that q′
i = δ(q0, γi), for all i ∈ {1, . . . , n}. Then an

arc labelled with A from v to v̂ = (δ(q,A), p̂) is added, as illustrated in Fig. 2(b).
Using the function f , a conjunct �β is validated as follows. Let v = (q, p̂)

and v′ = (q′, p̂) be nodes in the top layer. Assume that there is a path β from the
initial node v0 to v′, and let (q, (�β)) ∈ f(q′). Then, the context �β can be vali-
dated by adding an arc labelled (�β) from v to another node v̂ = (δ(q, (�β)), p̂).

The LR automaton for the grammar in Example 1 is given in Fig. 3(a); com-
pleted items in each state are emphasized, and a reduction function with k = 0
can be built from these data. The graph-structured stack at the beginning of the
computation is shown in Fig. 3(b), and Fig. 3(c) shows its configuration after
shift by a symbol a ∈ Σ. The stack after reduction by E → ε and validation of
the context �aE is given in Fig. 3(d). The last two figures represent the stack
after shift by b ∈ Σ and reductions by rules B → b & �aE and S → aB.

5 Implementation and Complexity

The Generalized LR parsing algorithm for grammars with contexts operates
on an input string w = a1 . . . an, with n � 0 and ai ∈ Σ. At the beginning
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Fig. 3. An LR automaton for the grammar in Example 1 and configurations of the
graph-structured stack on the input w = ab

of the computation, the graph-structured stack contains a single initial node
v0 = (q0, 0), which forms the top layer of the graph. The algorithm alternates
between reduction phases and shift phases. It begins with a reduction phase in
layer 0, using the first k symbols of the input as a lookahead string.

For each input symbol ai, the algorithm first performs a shift phase for ai.
If after that the top layer is empty, the input string is rejected. Otherwise,
the algorithm proceeds with a reduction phase using the next k input symbols
ai+1 . . . ai+k as a lookahead. In a reduction phase, the algorithm performs context
validations and reductions while any further arcs can be added.

All the nodes that cannot be reached from the initial node are removed.
Finally, when all the input symbols are consumed, the algorithm checks whether
there is an arc labelled with S from the initial node v0 to a node v = (δ(q0, S), n)
in the top layer. If such an arc exists, the input string is accepted; otherwise it
is rejected.

Each node v = (q, p) in the graph shall be represented as a data structure
that holds the number of the state q and a list of pointers to all predecessor
nodes, one for every node v′ connected to v.

The graph has O(n) nodes, where n is the length of the input string to be
parsed. A node in a p-th layer may have incoming arcs from any nodes in the
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Input: a string w = a1 . . . an, with a1, . . . , an ∈ Σ.
Let a node v0 labelled with q0 form the top layer of the graph.

1: do Reduction Phase using lookahead u = Firstk (w)
2: for i = 1 to n do
3: do Shift Phase using ai

4: if the top layer is empty then
5: Reject
6: do Reduction Phase using lookahead u = ai+1 . . . ai+k

7: remove the nodes unreachable from the source node
8: if there is an arc S from v0 to δ(q0, S) in the top layer then
9: Accept

10: else
11: Reject

layers 0, . . . , p; hence, the size of the graph is at most quadratic in n and the
algorithm uses at most O(n2) space.

A single shift phase only considers the nodes in the current top layer, and
the number of those nodes is bounded by the number of the states of the LR
automaton, that is, |Q|. Therefore, the complexity of performing a shift phase
does not depend on the size of the graph-structured stack or the length of the
input string, which means that the shift phase has constant time complexity.

During each reduction phase, the algorithm first performs context validations
in the way described in Sect. 4. When performing these operations, the parser
only considers nodes in the top layer, and since their number is bounded by the
constant |Q|, context validation takes constant time.

Before performing any reductions, the algorithm first searches the graph-
structured stack for any nodes that satisfy the conditions for reducing by any
rule.

This is done by a search procedure called conjunct gathering, originally intro-
duced for conjunctive grammars [9,10] and here applied to grammars with con-
texts.

Let T be an array of sets of nodes, indexed by completed LR items.
Conjunct Gathering:

1: for each node v = (q, p) of the top layer do
2: for each A → α· ∈ R(q, u) do
3: T [A → (�β1) . . . (�βm)α·] ∪ = pred|(�β1...(�βm)α|({v})

For a node v and a number i � 0, let predi(v) denote the set of all nodes
connected to v with a path that has exactly i arcs. This set can be computed
iteratively on i by letting pred0(v) = {v}, and then constructing consequent
sets predi+1(v) as the sets of all such nodes v′, for which there is an arc to
some v′′ ∈ predi(v). This involves processing O(n) nodes of the graph, each of
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which has at most O(n) predecessors. This implementation of conjunct gathering
requires O(n2) operations to compute.

There is a way of doing conjunct gathering in linear time, using the method of
Kipps [4] for ordinary grammars. For each node v, the algorithm shall maintain
data structures for the sets predi(v), for all applicable numbers i. Every time a
new arc from a node v to a node v′ is added to the graph, the predecessors of v
are inherited by v′ and by all successors of v′. Then, instead of computing the
set predi(v) every time, its value can be looked up in the memory. This enables
conjunct gathering in time O(n).

With the data on conjuncts gathered, the algorithm proceeds with performing
reductions.

Reductions:

1: for each rule A → α1 & . . . & α� & �β1 & . . . & �βm & �γ1 & . . . & �γm′ do
2: if there are nodes vj = (δ(q0, γj), p) in the top layer for all j ∈ {1, . . . , m′} then
3: for each node v = (q, p) ∈ ⋂�

h=1 T [A, |(�β1) . . . (�βm)αh|] do
4: if v is not connected to the top layer by A then
5: transition from v to v̂ = (δ(q, A), p) by A

Each individual reduction operation is concerned with a rule of the form A →
α1 & . . . &α� &�β1 & . . . &�βm & �γ1 & . . . & �γm′ in R. First, the algorithm
considers extended left context operators �γj in this rule and checks whether
for each operator �γj there is a node with a state δ(q0, γj) in the top layer of
the graph-structured stack. If this is true for all j ∈ {1, . . . , m′}, the algorithm
proceeds with checking the nodes corresponding to the gathered conjuncts. If
all the conditions for a reduction are met, then the parser performs a reduction
operation.

All in all, if conjunct gathering is implemented in the simple way, then the
complexity of the reduction phase is cubic, which means that the complexity
of the whole algorithm is bounded by O(n4). If Kipps’ method is used, then
conjunct gathering only takes linear time, the reduction phase is done in time
O(n2), and the complexity of the whole algorithm is cubic. A downside of Kipps’
approach is that the new data structures take time to update, and the addition
of every arc can no longer be done in constant time. But, as there will be at most
C · n2 arc additions, the time spent maintaining the stored values of predi(v)
sums up to O(n3) for the entire algorithm.

6 Conclusion

This completes the Generalized LR parsing algorithm for grammars with con-
texts, which can be used for a practical implementation of these grammars. The
idea of a rule applicable in a context has been cherished by computational lin-
guists since the early papers by Chomsky, and now there is a chance to try this
idea in practice.
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Another important approach to parsing is the deterministic LR [5], which has
recently been extended to conjunctive grammars by Aizikowitz and Kaminski [1];
could this method be further extended to grammars with contexts? Could either
of these algorithms be extended to grammars with two-sided contexts? (see an
existing algorithm by Rabkin [14])
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Abstract. We present new results on the size of OBDD representations
of structurally characterized classes of CNF formulas. First, we prove
that variable convex formulas (that is, formulas with incidence graphs
that are convex with respect to the set of variables) have polynomial
OBDD size. Second, we prove an exponential lower bound on the OBDD
size of a family of CNF formulas with incidence graphs of bounded degree.

We obtain the first result by identifying a simple sufficient condition—
which we call the few subterms property—for a class of CNF formulas
to have polynomial OBDD size, and show that variable convex formulas
satisfy this condition. To prove the second result, we exploit the combina-
torial properties of expander graphs; this approach allows us to establish
an exponential lower bound on the OBDD size of formulas satisfying
strong syntactic restrictions.

1 Introduction

The goal of knowledge compilation is to succinctly represent propositional knowl-
edge bases in a format that supports a number of queries in polynomial time [8].
Choosing a representation language generally involves a trade-off between suc-
cinctness and the range of queries that can be efficiently answered. In this paper,
we study ordered binary decision diagram (OBDD) representations of proposi-
tional theories given as formulas in conjunctive normal form (CNF). Binary
decision diagrams (also known as branching programs) and their variants are
widely used and well-studied representation languages for Boolean functions [24].
OBDDs in particular enjoy properties, such as polynomial-time equivalence test-
ing, that make them the data structure of choice for a range of applications.

Perhaps somewhat surprisingly, the question of which classes of CNFs can
be represented as (or compiled into, in the jargon of knowledge representation)
OBDDs of polynomial size is largely unexplored [24, Chapter 4]. We approach
this classification problem by considering structurally characterized CNF classes,
more specifically, classes of CNF formulas defined in terms of properties of their
incidence graphs (the incidence graph of a formula is the bipartite graph on
clauses and variables where a variable is adjacent to the clauses it occurs in).
Figure 1 depicts a hierarchy of well-studied bipartite graph classes as considered
by Lozin and Rautenbach [19, Fig. 2]. This hierarchy is particularly well-suited
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Fig. 1. The diagram depicts a hierarchy of classes of bipartite graphs under the inclu-
sion relation (thin edges). B, H, Dk, C, Cv, and Cc denote, respectively, bipartite graphs,
chordal bipartite graphs (corresponding to beta acyclic CNFs), bipartite graphs of
degree at most k (k ≥ 3), convex graphs, left (variable) convex graphs, and right
(clause) convex graphs. The class Cv ∩Cc of biconvex graphs and the class Dk of bipar-
tite graphs of degree at most k have unbounded clique-width. The class H ∩ Dk of
chordal bipartite graph of degree at most k has bounded treewidth. The green and
red curved lines enclose, respectively, classes of incidence graphs whose CNFs have
polynomial time OBDD compilation, and classes of incidence graphs whose CNFs have
exponential size OBDD representations; the right hand picture shows the compilability
frontier, updated in light of Results 1 and 2.

for our classification project as it includes prominent cases such as beta acyclic
CNFs [5] and bounded clique-width CNFs. When located within this hierarchy,
the known bounds on the OBDD size of structural CNF classes leave a large gap
(depicted on the left of Fig. 1):

– On the one hand, we have a polynomial upper bound on the OBDD size of
bounded treewidth CNF classes proved recently by Razgon [22]. The corre-
sponding graph classes are located at the bottom of the hierarchy.

– On the other hand, there is an exponential lower bound for the OBDD size
of general CNFs, proved two decades ago by Devadas [9]. The corresponding
graph class is not chordal bipartite, has unbounded degree and unbounded
clique-width, and hence is located at the top of the hierarchy.

Contribution. In this paper, we tighten this gap as illustrated on the right in
Fig. 1. More specifically, we prove new bounds for two structural classes of CNFs.

Result 1. CNF formulas with variable convex incidence graphs have polyno-
mial OBDD size (Theorem 7).

Convexity is a property of bipartite graphs that has been extensively studied in
the area of combinatorial optimization [13,14,23], and that can be detected in
linear time [4,18].

To prove Result 1, we define a property of CNF classes—called the few sub-
terms property—that is sufficient for polynomial-size compilability (Theorem4),
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and then prove that CNFs with variable convex incidence graphs have this prop-
erty (Lemma 6). The few subterms property naturally arises as a sufficient con-
dition for polynomial size compilability when considering OBDD representations
of CNF formulas (cf. Oztok and Darwiche’s recent work on CV-width [21], which
explores a similar idea). Aside from its role in proving polynomial-size compila-
tion for variable convex CNFs, the few subterms property can also be used to
explain the (known) fact that classes of CNFs with incidence graphs of bounded
treewidth have OBDD representations of polynomial size (Lemma9), and as such
offers a unifying perspective on these results. Both the result on variable convex
CNFs and the result on bounded treewidth CNFs can be improved to polyno-
mial time compilation by appealing to a stronger version of the few subterms
property (Theorems 7 and 10).

In an attempt to push the few subterms property further, we adopt the
language of parameterized complexity to formally capture the idea that CNFs
“close” to a class with few subterms have “small” OBDD representations. More
precisely, defining the deletion distance of a CNF from a CNF class as the number
of its variables or clauses that have to be deleted in order for the resulting formula
to be in the class, we prove that CNFs have fixed-parameter tractable OBDD
size parameterized by the deletion distance from a CNF class with few sub-
terms (Theorem 12). This result can again be improved to fixed-parameter time
compilation under additional assumptions (Theorem13), yielding for instance
fixed-parameter tractable time compilation of CNFs into OBDDs parameterized
by the feedback vertex set size (Corollary 14).

Result 2. There is a class of CNF formulas with incidence graphs of bounded
degree such that every formula F in this class has OBDD size at least 2Ω(size(F )),
where size(F ) denotes the number of variable occurrences in F (Theorem 18).

This substantially improves on a 2Ω(
√

size(F )) lower bound for the OBDD size of a
class of CNFs by Devadas [9]. Moreover, we establish this bound for a class that
satisfies strong syntactic restrictions: every clause contains exactly two positive
literals and each variable occurs at most 3 times.

The heavy lifting in our proof of this result is done by a family of expander
graphs. Expander graphs have found applications in many areas of mathematics
and computer science [15,20], including circuit and proof complexity [16]. In this
paper, we show how they can be used to derive lower bounds for OBDDs.

Organization. The paper is organized as follows. In Sect. 2, we introduce basic
notation and terminology. In Sect. 3, we prove that formulas with few subterms
have polynomial OBDD size and show that variable-convex CNFs (as well as
bounded treewidth CNFs) enjoy the few subterms property. Fixed-parameter
tractable size and time compilability results based on the few subterms prop-
erty are presented in Sect. 3.4. In Sect. 4, we prove a strongly exponential lower
bound on the OBDD size of CNF formulas based on expander graphs. We con-
clude in Sect. 5.

Due to space constraints, several proofs have been omitted.



On Compiling Structured CNFs to OBDDs 83

2 Preliminaries

Formulas. Let X be a countable set of variables. A literal is a variable x or a
negated variable ¬x. If x is a variable we let var(x) = var(¬x) = x. A clause
is a finite set of literals. For a clause c we define var(c) = {var(l) | l ∈ c}.
If a clause contains a literal negated as well as unnegated it is tautological.
A conjunctive normal form (CNF) is a finite set of non-tautological clauses.
If F is a CNF formula we let var(F ) =

⋃
c∈F var(c). The size of a clause c

is |c|, and the size of a CNF F is size(F ) =
∑

c∈F |c|. An assignment is a
mapping f : X ′ → {0, 1}, where X ′ ⊆ X; we identify f with the set {¬x |
x ∈ X ′, f(x) = 0} ∪ {x | x ∈ X ′, f(x) = 1}. An assignment f satisfies a
clause c if f ∩ c �= ∅; for a CNF F , we let F [f ] denote the CNF containing
the clauses in F not satisfied by f , restricted to variables in X \ var(f), that is,
F [f ] = {c\{x,¬x | x ∈ var(f)} | c ∈ F, f ∩c = ∅}; then, f satisfies F if F [f ] = ∅,
that is, if it satisfies all clauses in F . If F is a CNF with var(F ) = {x1, . . . , xn} we
define the Boolean function F (x1, . . . , xn) computed by F as F (b1, . . . , bn) = 1 if
and only if the assignment f(b1,...,bn) : var(F ) → {0, 1} given by f(b1,...,bn)(xi) = bi

satisfies the CNF F .

Binary Decision Diagrams. A binary decision diagram (BDD) D on variables
{x1, . . . , xn} is a labelled directed acyclic graph satisfying the following condi-
tions: D has at at most two vertices without outgoing edges, called sinks of
D. Sinks of D are labelled with 0 or 1; if there are exactly two sinks, one is
labelled with 0 and the other is labelled with 1. Moreover, D has exactly one
vertex without incoming edges, called the source of D. Each non-sink node of
D is labelled by a variable xi, and has exactly two outgoing edges, one labelled
0 and the other labelled 1. Each node v of D represents a Boolean function
Fv = Fv(x1, . . . , xn) in the following way. Let (b1, . . . , bn) ∈ {0, 1}n and let w
be a node labelled with xi. We say that (b1, . . . , bn) activates an outgoing edge
of w labelled with b ∈ {0, 1} if bi = b. Since (b1, . . . , bn) activates exactly one
outgoing edge of each non-sink node, there is a unique sink that can be reached
from v along edges activated by (b1, . . . , bn). We let Fv(b1, . . . , bn) = b, where
b ∈ {0, 1} is the label of this sink. The function computed by D is Fs, where s
denotes the (unique) source node of D. The size of a BDD is the number of its
nodes.

An ordering σ of a set {x1, . . . , xn} is a total order on {x1, . . . , xn}. If σ is
an ordering of {x1, . . . , xn} we let var(σ) = {x1, . . . , xn}. Let σ be the ordering
of {1, . . . , n} given by xi1 < xi2 < · · · < xin . For every integer 0 < j ≤ n, the
length j prefix of σ is the ordering of {xi1 , . . . , xij} given by xi1 < · · · < xij .
A prefix of σ is a length j prefix of σ for some integer 0 < j ≤ n. For orderings
σ = xi1 < · · · < xin of {x1, . . . , xn} and ρ = yi1 < · · · < yim of {y1, . . . , ym},
we let σρ denote the ordering of {x1, . . . , xn, y1, . . . , ym} given by xi1 < · · · <
xin < yi1 < · · · < yim . Let D be a BDD on variables {x1, . . . , xn} and let
σ = xi1 < · · · < xin be an ordering of {x1, . . . , xn}. The BDD D is a σ-ordered
binary decision diagram (σ-OBDD) if xi < xj (with respect to σ) whenever D
contains an edge from a node labelled with xi to a node labelled with xj . A BDD
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D on variables {x1, . . . , xn} is an ordered binary decision diagram (OBDD) if
there is an ordering σ of {x1, . . . , xn} such that D is a σ-OBDD. For a Boolean
function F = F (x1, . . . , xn), the OBDD size of F is the size of the smallest
OBDD on {x1, . . . , xn} computing F .

We say that a class F of CNFs has polynomial-time compilation into OBDDs
if there is a polynomial-time algorithm that, given a CNF F ∈ F , returns an
OBDD computing the same Boolean function as F . We say that a class F of
CNFs has polynomial size compilation into OBDDs if there exists a polynomial
p : N → N such that, for all CNFs F ∈ F , there exists an OBDD of size at most
p(size(F )) that computes the same function as F .

Graphs. For standard graph theoretic terminology, see [10]. Let G = (V,E) be
a graph. The (open) neighborhood of W in G, in symbols neigh(W,G), is defined
by

neigh(W,G) = {v ∈ V \ W | there exists w ∈ W such that vw ∈ E}.

We freely use neigh(v,G) as a shorthand for neigh({v}, G), and we write neigh(W )
instead of neigh(W,G) if the graph G is clear from the context. A graph G =
(V,E) is bipartite if it its vertex set V can be partitioned into two blocks V ′ and
V ′′ such that, for every edge vw ∈ E, we either have v ∈ V ′ and w ∈ V ′′, or
v ∈ V ′′ and w ∈ V ′. In this case we may write G = (V ′, V ′′, E). The incidence
graph of a CNF F , in symbols inc(F ), is the bipartite graph (var(F ), F,E) such
that vc ∈ E if and only if v ∈ var(F ), c ∈ F , and v ∈ var(c); that is, the blocks
are the variables and clauses of F , and a variable is adjacent to a clause if and
only if the variable occurs in the clause.

A bipartite graph G = (V,W,E) is left convex if there exists an ordering σ
of V such that the following holds: if wv and wv′ are edges of G and v < v′′ < v′

(with respect to the ordering σ) then wv′′ is an edge of G. The ordering σ is
said to witness left convexity of G. A CNF F is variable convex if inc(F ) =
(var(F ), F,E) is left convex.

For an integer d, a CNF F has degree d if inc(F ) has degree at most d. A class
F of CNFs has bounded degree if there exists an integer d such that every CNF
in F has degree d.

3 Polynomial Time Compilability

In this section, we introduce the few subterms property, a sufficient condition for
a class of CNFs to admit polynomial size compilation into OBDDs (Sect. 3.1).
We prove that the classes of variable convex CNFs and bounded treewidth CNFs
have the few subterms property (Sects. 3.2 and 3.3). Finally, we establish fixed-
parameter tractable size and time OBDD compilation results for CNFs, where
the parameter is the deletion distance to a few subterms CNF class (Sect. 3.4).
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3.1 The Few Subterms Property

Definition 1 (Subterm width). Let F be a CNF formula and let V ⊆ var(F ).
The set of V -subterms of F is defined st(F, V ) = {F [f ] | f : V → {0, 1}}. Given
an ordering σ of var(F ), the subterm width of F with respect to σ is

stw(F, σ) = max{|st(F, var(π))| | π is a prefix of σ}.

The subterm width of F is the minimum subterm width of F with respect to σ,
where σ ranges over all orderings of var(F ).

Definition 2 (Subterm Bound). Let F be a class of CNF formulas. A func-
tion b : N → N is a subterm bound of F if, for all F ∈ F , the subterm width
of F is bounded from above by b(size(F )). Let b : N → N be a subterm bound of
F , let F ∈ F , and let σ be an ordering of var(F ). We call σ a witness of the
subterm bound b with respect to F if stw(F, σ) ≤ b(size(F )).

Definition 3 (Few Subterms). A class F of CNF formulas has few subterms
if it has a polynomial subterm bound p : N → N; if, in addition, for all F ∈ F , an
ordering σ of var(F ) witnessing p with respect to F can be computed in polynomial
time, F is said to have constructive few subterms.

The few subterms property naturally presents itself as a sufficient condition for
a polynomial size construction of OBDDs from CNFs.

Theorem 4. There exists an algorithm that, given a CNF F and an ordering
σ of var(F ), returns a σ-OBDD for F of size at most |var(F )| stw(F, σ) in time
polynomial in |var(F )| and stw(F, σ).

Proof. Let F be a CNF and σ = x1 < · · · < xn be an ordering of var(F ). The
algorithm computes a σ-OBDD D for F as follows.

At step i = 1, create the source of D, labelled by F , at level 0 of the dia-
gram; if ∅ ∈ F (respectively, F = ∅), then identify the source with the 0-sink
(respectively, 1-sink) of the diagram, otherwise make the source an x1-node.

At step i + 1 for i = 1, . . . , n − 1, let v1, . . . , vl be the xi-nodes at level i − 1
of the diagram, respectively labelled F1, . . . , Fl. For j = 1, . . . , l and b = 0, 1,
compute Fj [xi = b], where xi = b denotes the assignment f : {xi} → {0, 1}
mapping xi to b. If Fj [xi = b] is equal to some label of an xi+1-node v already
created at level i, then direct the b-edge leaving the xi-node labelled Fj to v;
otherwise, create a new xi+1-node v at level i, labelled Fj [xi = b], and direct
the b-edge leaving the xi-node labelled Fj to v. If ∅ ∈ Fj [xi = b], then identify v
with the 0-sink of D, and if ∅ = Fj [xi = b], then identify v with the 1-sink of D.

At termination, the diagram obtained computes F and respects σ. We analyze
the runtime. At step i + 1 (0 ≤ i < n), the nodes created at level i are labelled
by CNFs of the form F [f ], where f ranges over all assignments of {x1, . . . , xi}
not falsifying F ; that is, these nodes correspond exactly to the {x1, . . . , xi}-
subterms st(F, {x1, . . . , xi}) of F not containing the empty clause, whose number
is bounded above by stw(F, σ). As level i is processed in time bounded above by
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its size times the size of level i−1, and |var(F )| levels are processed, the diagram
D has size at most |var(F )| · stw(F, σ) and is constructed in time bounded above
by a polynomial in |var(F )| and stw(F, σ). ��
Corollary 5. Let F be a class of CNFs with constructive few subterms. Then F
admits polynomial time compilation into OBDDs.

3.2 Variable Convex CNF Formulas

In this section, we prove that the class of variable convex CNFs has the construc-
tive few subterms property (Lemma 6), and hence admits polynomial time compi-
lation into OBDDs (Theorem 7); as a special case, CNFs whose incidence graphs
are cographs admit polynomial time compilation into OBDDs (Example 8).

Lemma 6. The class F of variable convex CNFs has the constructive few sub-
terms property.

Proof. Let F ∈ F , so that inc(F ) is left convex, and let σ be an ordering of var(F )
witnessing the left convexity of inc(F ). Let π be any prefix of σ. Call a clause
c ∈ F π-active in F if var(c)∩var(π) �= ∅ and var(c)∩(var(F )\var(π)) �= ∅. Let A
denote the set of π-active clauses of F . For all c ∈ A, let varπ(c) = var(c)∩var(π).

Claim 1. Let c, c′ ∈ A. Then, varπ(c) ⊆ varπ(c′) or varπ(c′) ⊆ varπ(c).

Proof (of Claim). Let c, c′ ∈ A. Assume for a contradiction that the statement
does not hold, that is, there exist variables v, v′ ∈ var(π), v �= v′, such that
v ∈ varπ(c) \ varπ(c′) and v′ ∈ varπ(c′) \ varπ(c). Assume that σ(v) < σ(v′); the
other case is symmetric. Since c is π-active, by definition there exists a variable
w ∈ var(F )\var(π) such that w ∈ var(c). It follows that σ(v′) < σ(w). Therefore,
we have σ(v) < σ(v′) < σ(w), where v, w ∈ var(c) and v′ �∈ var(c), contradicting
the fact that σ witnesses the left convexity of inc(F ). ��
We now argue that there is a function g with domain A such that the image
of A under g contains the set {A[f ] | f does not satisfy A} of terms induced
by assignments not satisfying A. Let L = {x,¬x | x ∈ var(π)} denote the set of
literals associated with variables in var(π). The function g is defined as follows.
For c ∈ A, we let

g(c) = {c′ \ L | c′ ∈ A, c′ ∩ L ⊆ c ∩ L}.

Let f : var(π) → {0, 1} be an assignment that does not satisfy A. Let c ∈ A
be a clause not satisfied by f such that varπ(c) is maximal with respect to
inclusion. We claim that g(c) = A[f ]. To see this, let c′ ∈ A be an arbitrary
clause. It follows from the claim proved above that either varπ(c) � varπ(c′) or
varπ(c′) ⊆ varπ(c). In the first case, c′ is satisfied by choice of c. In the second
case, c′ is not satisfied by f if and only if c′ ∩ L ⊆ c ∩ L. The formula A[f ] is
precisely the set of clauses in A not satisfied by f , restricted to variables not in
var(π), so g(c) = A[f ] as claimed.
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Taking into account that an assignment might satisfy A, this implies

|st(A, var(π))| ≤ |A| + 1 ≤ size(F ) + 1.

Let A′ = {c ∈ F |var(c) ⊆ var(π)} and A′′ = {c ∈ F |var(c)∩var(π) = ∅}, so that
F = A ∪ A′ ∪ A′′. For every assignment f : var(π) → {0, 1} we have A′′[f ] = A′′

and either A′[f ] = ∅ or A′[f ] = {∅}. Since F [f ] = A[f ′] ∪ A′[f ] ∪ A′′[f ] for every
assignment f : var(π) → {0, 1}, the number of subterms of F under assignments
to var(π) is bounded as

|st(F, var(π))| ≤ 2 · (size(F ) + 1).

This proves that the class of variable convex CNFs has few subterms. More-
over, an ordering witnessing the left convexity of inc(F ) can be computed in
polynomial (even linear) time [4,18], so the class of variable convex CNFs even
has the constructive few subterms property. ��
Theorem 7. The class of variable convex CNF formulas has polynomial time
compilation into OBDDs.

Proof. Immediate from Corollary 5 and Lemma 6. ��
Example 8 (Bipartite Cographs). Let F be a CNF such that inc(F ) is a cograph.
Note that inc(F ) is a complete bipartite graph. Indeed, cographs are character-
ized as graphs of clique-width at most 2 [7], and it is readily verified that if a
bipartite graph has clique-width at most 2, then it is a complete bipartite graph.
A complete bipartite graph is trivially left convex. Then Theorem7 implies that
CNFs whose incidence graphs are cographs have polynomial time compilation
into OBDDs.

3.3 Bounded Treewidth CNF Formulas

In this section, we prove that if a class of CNFs has bounded treewidth, then
it has the constructive few subterms property (Lemma 9), and hence admits
polynomial time compilation into OBDDs (Theorem10).

Let G be a graph. A tree decomposition of G is a triple T = (T, χ, r), where
T = (V (T ), E(T )) is a tree rooted at r and χ : V (T ) → 2V (G) is a labeling of
the vertices of T by subsets of V (G) (called bags) such that

1.
⋃

t∈V (T ) χ(t) = V (G),
2. for each edge uv ∈ E(G), there is a node t ∈ V (T ) with {u, v} ⊆ χ(t), and
3. for each vertex v ∈ V (G), the set of nodes t with v ∈ χ(t) forms a connected

subtree of T .

The width of a tree decomposition (T, χ, r) is the size of a largest bag χ(t)
minus 1. The treewidth of G is the minimum width of a tree decomposition of G.
The pathwidth of G is the minimum width of a tree decomposition (T, χ, r) such
that T is a path.
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Let F be a CNF. We say that inc(F ) = (var(F ), F,E) has treewidth (respec-
tively, pathwidth) k if the graph (var(F ) ∪ F,E) has treewidth (respectively,
pathwidth) k. We identify the pathwidth (respectively, treewidth) of a CNF
with the pathwidth (respectively, treewidth) of its incidence graph.

The next lemma essentially follows from a result by Razgon [22, Lemma 5].

Lemma 9. Let F be a class of CNFs of bounded treewidth. Then F has the
constructive few subterms property.

Theorem 10. Let F be a class of CNFs of bounded treewidth. Then, F has
polynomial time compilation into OBDDs.

Proof. Immediate from Lemma 9 and Corollary 5. ��

3.4 Almost Few Subterms

In this section, we use the language of parameterized complexity to formalize the
observation that CNF classes “close” to CNF classes with few subterms have
“small” OBDD representations [11,12].

Let F be a CNF and D a set of variables and clauses of F . Let E be the
formula obtained by deleting D from F , that is,

E = {c \ {l ∈ c | var(l) ∈ D} | c ∈ F \ D};

we call D the deletion set of F with respect to E.
The following lemma shows that adding a few variables and clauses does not

increase the subterm width of a formula too much.

Lemma 11. Let F and E be CNFs such that D is the deletion set of F with
respect to E. Let π be an ordering of var(E) and let σ be an ordering of var(F )∩D.
Then stw(F, σπ) ≤ 2k · stw(E, π), where k = |D|.
In this section, the standard of efficiency we appeal to comes from the framework
of parameterized complexity [11,12]. The parameter we consider is defined as
follows. Let F be a class of CNF formulas. We say that F is closed under variable
and clause deletion if E ∈ F whenever E is obtained by deleting variables or
clauses from F ∈ F . Let F be a CNF class closed under variable and clause
deletion. The F-deletion distance of F is the minimum size of a deletion set of
F from any E ∈ F . An F-deletion set of F is a deletion set of F with respect
to some E ∈ F .

Let F be a class of CNF formulas with few subterms closed under vari-
able and clause deletion. We say that CNFs have fixed-parameter tractable
OBDD size, parameterized by F-deletion distance, if there is a computable
function f : N → N, a polynomial p : N → N, and an algorithm that, given
a CNF F having F-deletion distance k, computes an OBDD equivalent to F in
time f(k) p(size(F )).
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Theorem 12. Let F be a class of CNF formulas with few subterms closed under
variable and clause deletion. CNFs have fixed-parameter tractable OBDD size
parameterized by F-deletion distance.

The assumption that F is closed under variable and clause deletion ensures that
the deletion distance from F is defined for every CNF. It is a mild assumption
though, as it is readily verified that if F has few subterms with polynomial
subterm bound p : N → N, then also the closure of F under variable and clause
deletion has few subterms with the same polynomial subterm bound.

Analogously, we say that CNFs have fixed-parameter tractable time com-
putable OBDDs (respectively, F-deletion sets), parameterized by F-deletion
distance, if an OBDD (respectively, a F-deletion set) for a given CNF F of
F-deletion distance k is computable in time bounded above by f(k) p(size(F )).

Theorem 13. Let F be a class of CNFs closed under variable and clause dele-
tion satisfying the following:

– F has the constructive few subterms property.
– CNFs have fixed-parameter tractable time computable F-deletion sets, para-

meterized by F-deletion distance.

CNFs have fixed-parameter tractable time computable OBDDs parameterized by
F-deletion distance.

Corollary 14 (Feedback Vertex Set). Let F be the class of formulas whose
incidence graphs are forests. CNFs have fixed-parameter tractable time com-
putable OBDDs parameterized by F-deletion distance.

4 Polynomial Size Incompilability

In this section, we introduce the subfunction width of a graph CNF, to which
the OBDD size of the graph CNF is exponentially related (Sect. 4.1), and prove
that expander graphs yield classes of graph CNFs of bounded degree with linear
subfunction width, thus obtaining an exponential lower bound on the OBDD
size for graph CNFs in such classes (Sect. 4.2).

4.1 Many Subfunctions

In this section, we introduce the subfunction width of a graph CNF (Defini-
tion 15), and prove that the OBDD size of a graph CNF is bounded below by an
exponential function of its subfunction width (Theorem16).

A graph CNF is a CNF F such that F = {{u, v} | uv ∈ E} for some graph
G = (V,E) without isolated vertices.

Definition 15 (Subfunction Width). Let F be a graph CNF. Let σ be an
ordering of var(F ) and let π be a prefix of σ. We say that a subset {c1, . . . , ce} of
clauses in F is subfunction productive relative to π if there exist {a1, . . . , ae} ⊆
var(π) and {u1, . . . , ue} ⊆ var(F )\var(π) such that for all i, j ∈ {1, . . . , e}, i �= j,
and all c ∈ F ,
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– ci = {ai, ui};
– c �= {ai, aj} and c �= {ai, uj}.

The subfunction width of F , in symbols sfw(F ), is defined by

sfw(F ) = min
σ

max
π

{|M | | M is subfunction productive relative to π},

where σ ranges over all orderings of var(F ) and π ranges over all prefixes of σ.

Intuitively, in the graph G underlying the graph CNF F in Definition 15, there
is a matching of the form aiui with ai ∈ var(π) and ui ∈ var(F ) \ var(π), i ∈
{1, . . . , e}; such a matching is “almost” induced, in that G can contain edges of
the form uiuj , but no edges of the form aiaj or aiuj , i, j ∈ {1, . . . , e}, i �= j.

Theorem 16. Let F be a graph CNF. The OBDD size of F is at least 2sfw(F ).

4.2 Bounded Degree

In this section, we use the existence of a family of expander graphs to obtain a
class of graph CNFs with linear subfunction width (Lemma17), thus obtaining
an exponential lower bound on the OBDD size of a class of CNFs of bounded
degree (Theorem 18).

Let n and d be positive integers, d ≥ 3, and let ε < 1 be a positive real.
A graph G = (V,E) is a (n, d, ε)-expander if G has n vertices, degree at most d,
and for all subsets W ⊆ V such that |W | ≤ n/2, the inequality

|neigh(W )| ≥ ε|W |. (1)

It is known that for all integers d ≥ 3, there exists a real 0 < ε, and a sequence

{Gi | i ∈ N} (2)

such that Gi = (Vi, Ei) is an (ni, d, ε)-expander (i ∈ N), and ni tends to infinity
as i tends to infinity [1, Sect. 9.2].

Lemma 17. Let F be a graph CNF whose underlying graph is an (n, d, ε)-
expander, where n ≥ 2, ε > 0, and d ≥ 3. Then

sfw(F ) ≥ ε

16d
n.

Proof. Let σ be any ordering of var(F ) and let π be the length �n/2� prefix of σ.

Claim. There exists a subset {c1, . . . , cl} of clauses of F , subfunction productive
relative to π, such that l ≥ ε

16d n.

Proof (of Claim). We will construct a sequence (a1, b1), . . . , (al, bl) of pairs
(ai, bi) ∈ var(π)× (var(F ) \ var(π)) of vertices such that ai /∈ neigh(aj), and such
that {ai, bj} ∈ F if and only if i = j, for 1 ≤ i, j ≤ l. Letting ci = {ai, bi}
for 1 ≤ i ≤ l, this yields a set {c1, . . . , cl} of clauses that are subfunction



On Compiling Structured CNFs to OBDDs 91

productive relative to π. Assume we have chosen a (possibly empty) sequence
(a1, b1), . . . , (aj , bj) of such pairs. For a vertex v in the underlying graph of F , let
N [v] = {v}∪neigh(v) denote its solid neighborhood. Let V =

⋃j
i=1(N [ai]∪N [bi])

and A = var(π) \ V . Then |A| ≤ n/2 and we can use the expansion prop-
erty (1) to conclude that |neigh(A)| ≥ ε|A|. Let B = neigh(A) \ V . If both A
and B are nonempty we pick (aj+1, bj+1) ∈ A × B so that aj+1bj+1 is an edge.
We have A ⊆ var(π) as well as B ⊆ var(F ) \ (A ∪ V ) ⊆ var(F ) \ var(π), so
(aj+1, bj+1) ∈ var(π)×(var(F )\var(π)). By construction, {aj+1, bj+1} is a clause
in F ; moreover, ai /∈ neigh(bj+1) as well as bi /∈ neigh(aj+1), for 1 ≤ i ≤ j. We
conclude that the sequence (a1, b1), . . . , (aj+1, bj+1) has the desired properties.
Otherwise, if either of the sets A or B is empty, we stop.

We now give a lower bound on the length l of a sequence constructed in
this manner. Let (a1, b1), . . . , (aj , bj) be such that one of the sets A and B as
defined in the previous paragraph is empty, so that j = l. Since the degree of
the underlying graph is bounded by d, we have |V | ≤ 2dj and |A| ≥ �n/2�−2dj.
If A is empty, we must have 2dj ≥ �n/2� and thus

j ≥
⌊n

2

⌋ 1
2d

≥ n − 1
4d

≥ n

8d
, (3)

where the last inequality follows from n ≥ 2. Now suppose B is empty. We have
|B| ≥ ε|A| − |V |, so

0 ≥ ε(�n/2� − 2dj) − 2dj = ε(�n/2�) − 2dj(1 + ε).

From this, we get

j ≥ ε(n − 1)
4d(1 + ε)

≥ ε(n − 1)
8d

≥ εn

16d
. (4)

Here, the last inequality follows again follows from n ≥ 2. Recalling that ε < 1
and taking the minimum of the bounds in (3) and (4), we obtain the lower bound
stated in the claim. ��
The lemma is an immediate consequence of the above claim. ��
Theorem 18. There exist a class F of CNF formulas and a constant c > 0
such that, for every F ∈ F , the OBDD size of F is at least 2c·size(F ). In fact, F
is a class of read 3 times, monotone, 2-CNF formulas.

5 Conclusion

In closing, we briefly explain why completing the classification task laid out in
this paper (and thus closing the gap depicted in Fig. 1) seems to require new
ideas.

On the one hand, our upper bound for variable convex CNFs appears to
push the few subterms property to its limits – natural variable orderings cannot
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be used to witness few subterms for (clause) convex CNFs and CNF classes of
bounded clique-width. On the other hand, our lower bound technique based on
expander graphs essentially requires bounded degree, but the candidate classes
for improving lower bounds in our hierarchy, bounded clique-width CNFs and
beta acyclic CNFs, have unbounded degree. In fact, in both cases, imposing a
degree bound leads to classes of bounded treewidth [17] and thus polynomial
bounds on the size of OBDD representations.
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Abstract. Recently, we proved that satisfiability for ECTL∗ with con-
straints over Z is decidable using a new technique based on weak monadic
second-order logic with the bounding quantifier (WMSO+B). Here we
apply this approach to concrete domains that are tree-like. We show
that satisfiability of ECTL∗ with constraints is decidable over (i) semi-
linear orders, (ii) ordinal trees (semi-linear orders where the branches
form ordinals), and (iii) infinitely branching order trees of height h for
each fixed h ∈ N. In contrast, we introduce Ehrenfeucht-Fräıssé-games
for WMSO+B (weak MSO with the bounding quantifier) and use them
to show that our approach cannot deal with the class of order trees.
Missing proofs and details can be found in the long version [6].

1 Introduction

In the last decades, there has been a lot of research on the question how temporal
logics like LTL, CTL or CTL∗ can be extended in order to deal with quantitative
properties. One such branch of research studies temporal logics with local con-
straints. In this setting, a model of a formula is a Kripke structure where every
node is assigned several values from some fixed structure C (called a concrete
domain). The logic is then enriched in such a way that it has access to the rela-
tions of the concrete domain. For instance, if C = (Z,=) then every node of the
Kripke structure gets assigned several integers and the logic can compare the
integers assigned to neighboring nodes for equality.

In our recent papers [4,5] we used a new method (called EHD-method) to
show decidability of the satisfiability problem for extended computation tree
logic (ECTL∗, which strictly extends CTL∗) with local constraints over the inte-
gers. This result greatly improves the partial results on fragments of CTL∗

obtained in [2,3,10]. The idea of the EHD-method is as follows. Let C be any
concrete domain over a relational signature σ. Then, satisfiability of ECTL∗ with
constraints over C is decidable if C has the following two properties:

– The structure C is negation-closed, i.e., the complement of any relation R ∈ σ
is definable in positive existential first-order logic.
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– There is a Bool(MSO,WMSO+B)-sentence ϕ such that for any countable σ-
structure A there is a homomorphism from A to C if and only if A |= ϕ.

Here, Bool(MSO,WMSO+B) is the set of all Boolean combinations of MSO-
formulas and formulas of WMSO+B, i.e., weak monadic second-order logic with
the bounding quantifier. The latter allows to express that there is a bound
on the size of finite sets satisfying a certain property. Our decidability result
uses the main result of [1] stating that satisfiability of WMSO+B over infinite
trees is decidable. In [4] we proved that the existence of a homomorphism into
(Z, <,=) can be expressed in Bool(MSO,WMSO+B), showing that ECTL∗ with
constraints over this structure is decidable.

These results gave rise to the hope that the EHD-method applies to other
concrete domains. An interesting candidate in this context is the infinite order
tree T∞ = (N∗, <,⊥,=), where < denotes the prefix order on N

∗ and ⊥ denotes
the incomparability relation with respect to < (we add the incomparability rela-
tion ⊥ in order to obtain a negation-closed structure). Unfortunately, this hope
is destroyed by one of the main results of this work, which is shown in Sect. 5
using a new Ehrenfeucht-Fräıssé-game for WMSO+B:

Theorem 1. There is no Bool(MSO,WMSO+B)-sentence ψ such that for every
countable structure A (over the signature {<,⊥,=}) we have: A |= ψ if and only
if there is a homomorphism from A to T∞.

Theorem 1 shows that the EHD-method cannot be applied to the concrete domain
T∞ (equivalently, to the infinite binary tree). Of course, this does not imply that
satisfiability for ECTL∗ with constraints over T∞ is undecidable, which remains
open. In fact, we conjecture that satisfiability for ECTL∗ with constraints over
T∞ is decidable. Upon finishing this paper we have become aware that Demri
and Deters proved decidability of satisfiability of CTL∗ with constraints over T∞
and PSPACE-completeness of the corresponding LTL-fragment (thereby solving
an open problem from [8]) [7]. We conjecture that their approach even solves
the satisfiability problem for ECTL∗ with constraints over T∞ but we have not
checked all details yet.

In this paper, we go into another direction and show that the EHD-method
can be applied to other tree-like structures, such as semi-linear orders, ordinal
trees, and infinitely branching trees of a fixed height. Semi-linear orders are
partial orders that are tree-like in the sense that for every element x the set of
all smaller elements form a linear suborder. If this linear suborder is an ordinal
(for every x) then one has an ordinal tree. Ordinal trees are widely studied
in descriptive set theory and recursion theory. Note that a tree is a connected
semi-linear order where for every element the set of all smaller elements is finite.

In the integer-setting from [4,5], we investigated satisfiability for ECTL∗-
formulas with constraints over one fixed structure (integers with additional rela-
tions). For semi-linear orders and ordinal trees it is more natural to consider
satisfiability with respect to a class of concrete domains Γ (over a fixed signa-
ture σ): The question becomes, whether for a given constraint ECTL∗ formula ϕ
there is a concrete domain C ∈ Γ such that ϕ is satisfiable by some model with
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concrete values from C? If a class Γ has a universal structure1 U , then satisfi-
ability with respect to the class Γ is equivalent to satisfiability with respect to
U because obviously a formula ϕ has a model with some concrete domain from
Γ if and only if it has a model with concrete domain U . A typical class with
a universal model is the class of all countable linear orders, for which (Q, <) is
universal. Similarly, for the class of all countable trees the tree T∞ as well as the
binary infinite tree are universal. There is also a universal countable semi-linear
order. We formulate our decidability result for classes instead of universal struc-
tures because there is no universal structure for the class of countable ordinal
trees (for a similar reason as the one showing that the class of countable ordi-
nals does not contain a universal structure). Application of the EHD-method to
semi-linear orders and ordinal trees gives the following decidability results.

Theorem 2. Satisfiability of ECTL∗-formulas with constraints over each of the
following classes is decidable:

(1) the class of all semi-linear orders (see Sect. 3),
(2) the class of all ordinal trees (see Sect. 4), and
(3) for each h ∈ N, the class of all order trees of height h (see Sect. 4).

Concerning complexity, let us remark that in [4,5] we did not present an upper
bound on the complexity of our decision procedure. The reason for this is that
there is no known upper bound for the complexity of satisfiability of WMSO+B
over infinite trees, even in the case that the input formula has bounded quanti-
fier depth. Here, the situation is different. Our applications of the EHD-method
for Theorem 2 do not use the bounding quantifier whence classical WMSO (for
(1)) and MSO (for (2) and (3)) suffice. Moreover, the formulas that express the
existence of a homomorphism have only small quantifier depth (at least for semi-
linear orders and ordinal trees; for trees of bounded height, the quantifier depth
depends on the height). These facts yield a triply exponential upper bound
on the time complexity in (1) and (2) from Theorem 2 for the corresponding
CTL∗-fragment. We skip the proof details because we still conjecture the exact
complexity to be doubly exponential.

2 Preliminaries

In this section we recall basics concerning Kripke structures, various classes of
tree-like structures, and the logics MSO, WMSO+B, and ECTL∗ with constraints.

2.1 Structures

Let P be a countable set of atomic propositions. A Kripke structure over P is a
triple K = (D,→, ρ), where:

1 A structure U is universal for a class Γ if there is a homomorphic embedding of
every structure from Γ into U and U belongs to Γ .
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– D is an arbitrary set of nodes,
– → is a binary relation on D such that for all u ∈ D there is a v ∈ D with

u → v, and
– ρ : D → 2P is a function that assigns to every node a set of atomic proposi-

tions.

A (finite relational) signature is a finite set σ = {r1, . . . , rn} of relation symbols.
Every relation symbol r ∈ σ has an associated arity ar(r) ≥ 1. A σ-structure
is a pair A = (A, I), where A is a non-empty set and I maps every r ∈ σ to
an ar(r)-ary relation over A. Quite often, we will identify the relation I(r) with
the relation symbol r, and we will specify a σ-structure as (A, r1, . . . , rn). Given
A = (A, r1, . . . , rn) and given a subset B of A, we define ri�B = ri ∩ Bar(ri) and
A�B = (B, r1�B , . . . , rn�B) (the restriction of A to the set B). For a subsignature
τ ⊆ σ, a τ -structure B = (B, J) and a σ-structure A = (A, I), a homomorphism
from B to A is a mapping h : B → A such that for all r ∈ τ and all tuples
(b1, . . . , bar(r)) ∈ J(r) we have (h(b1), . . . , h(bar(r))) ∈ I(r). We write B � A
if there is a homomorphism from B to A. Note that we do not require this
homomorphism to be injective.

We now introduce constraint graphs. These are two-sorted structures where
one part is a Kripke structure and the other part is some σ-structure called the
concrete domain. To connect the concrete domain with the Kripke structure, we
fix a set of unary function symbols F . The interpretation of a function symbol
from F is a mapping from the nodes of the Kripke structure to the universe
of the concrete domain. Constraint graphs are the structures in which we eval-
uate constraint ECTL∗-formulas. Formally, an A-constraint graph C is a tuple
(A,K, (fC)f∈F ) where:

– A = (A, I) is a σ-structure (the concrete domain),
– K = (D,→, ρ) is a Kripke structure, and
– for each f ∈ F , fC : D → A is the interpretation of the function symbol

f connecting elements of the Kripke structure with elements of the concrete
domain.

An A-constraint path P is an A-constraint graph P = (A,P, (fP)f∈F ), where
P = (N,S, ρ) is a Kripke structure such that S is the successor relation on N.

We use (A,K,FC) as an abbreviation for (A,K, (fC)f∈F ). Moreover, we often
drop the superscript C and also write constraint graph instead of A-constraint
graph if no confusion arises.

2.2 Tree-Like Structures

A semi-linear order is a partial order P = (P,<) with the additional property
that for all p ∈ P the suborder induced by {p′ ∈ P | p′ ≤ p} forms a linear order.
Note that all (order) trees are semi-linear orders, but not vice-versa. We call a
semi-linear order P = (P,<) an ordinal forest (resp., forest) if for all p ∈ P the
suborder induced by {p′ ∈ P | p′ ≤ p} is an ordinal (resp., a finite linear order).
A (ordinal) forest is a (ordinal) tree if it has a unique minimal element. A tree
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has height h (for h ∈ N) if it contains a linear suborder with h+1 many elements
but no linear suborder with h + 2 elements.

Given a partial order (P,<), we denote by ⊥< the incomparability relation
defined by p ⊥< q iff neither p ≤ q nor q ≤ p. Given a {<,⊥,=}-structure
P = (P,<,⊥,=) such that (P,<) is a semi-linear order (resp., ordinal tree, tree
of height h), = is the equality relation on P , and ⊥ = ⊥<, then we also say that
P is a semi-linear order (resp. ordinal tree, tree of height h).

2.3 Logics

As usual, MSO denotes monadic second-order logic and WMSO its variant Weak
monadic second-order logic where set quantifiers only range over finite sets.
Throughout the paper Var1 (Var2) denotes the set of element (set, resp.) vari-
ables. Finally, WMSO+B is the extension of WMSO by the bounding quantifier
BX ϕ (see [1]) whose semantics is given by A |= BX ϕ(X) if and only if there is a
bound b ∈ N such that |B| ≤ b for every finite subset B ⊆ A with A |= ϕ(B). The
quantifier rank of a WMSO+B-formula is the maximal number of nested quan-
tifiers (existential, universal, and bounding quantifiers) in the formula. We write
Bool(MSO,WMSO+B) for the set of all boolean combinations of MSO-formulas
and WMSO+B-formulas.

Extended computation tree logic (ECTL∗) is an extension of CTL∗ introduced
in [11,12]. Like CTL∗, ECTL∗ is interpreted on Kripke structures, but while CTL∗

allows to specify LTL properties of infinite paths of such models, ECTL∗ can
describe regular (i.e., MSO-definable) properties of paths. In [5] we introduced
an extension of ECTL∗, called constraint ECTL∗, which enriches ECTL∗ by local
constraints in path formulas.

We now first recall the definition of constraint path MSO-formulas, which take
the role of path formulas in constraint ECTL∗. Since we exclusively consider tree-
like concrete domains over the fixed signature τ = {<,⊥,=} we only introduce
Constraint path MSO(over a signature τ), denoted as MSO(τ).2 This is the usual
MSO for (colored) infinite paths (also known as word structures) with a successor
function S extended by atomic formulas that describe local constraints over the
concrete domain. Thus, MSO(τ) is evaluated over the class of A-constraint paths
for any τ -structure A. So fix a set P of atomic propositions and a set F of unary
function symbols. Formulas of MSO(τ) are defined by the following grammar:

ψ := p(x) | Si(x)=Sj(y) | x ∈ X | ¬ψ | (ψ ∧ ψ) | ∃xψ | ∃Xψ | f1S
i(x) ◦ f2S

j(x)

where ◦ ∈ τ , p ∈ P, x, y ∈ Var1, X ∈ Var2, i, j ∈ N and f1, f2 ∈ F . We
call formulas of the form f1S

i(x) ◦ f2S
j(x) for ◦ ∈ τ atomic constraints. It is

important to notice that in an atomic constraint only one first-order variable x
is used.

Let P = (A,P, (fP)f∈F ) be an A-constraint path where P = (N,S, ρ), and
let η : (Var1 ∪ Var2) → (N ∪ 2N) be a valuation function mapping first-order

2 For a presentation of the general case we refer the reader to [5] .
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variables to elements and second-order variables to sets. The satisfaction relation
|= is defined by induction as follows (we omitted the obvious cases for ¬ and ∧):

– (P, η) |= p(x) iff p ∈ ρ(η(x)).
– (P, η) |= Si(x1) = Sj(x2) iff η(x1) + i = η(x2) + j.
– (P, η) |= x ∈ X iff η(x) ∈ η(X).
– (P, η) |= ∃xψ iff there is an n ∈ N such that (P, η[x �→ n]) |= ψ.
– (P, η) |= ∃Xψ iff there is an E ⊆ N such that (P, η[X �→ E]) |= ψ.
– (P, η) |= f1S

i(x) ◦ f2S
j(x) iff A |= fP

1 (η(x) + i) ◦ fP
2 (η(x) + j).

For an MSO(τ)-formula ψ the satisfaction relation only depends on the free
variables of ψ. This motivates the following notation: If ψ(X1, . . . , Xm) is an
MSO(τ)-formula where X1, . . . , Xm ∈ Var2 are the only free variables, we write
P |= ψ(A1, . . . , Am) if and only if, for every valuation function η such that
η(Xi) = Ai, we have (P, η) |= ψ.

Having defined MSO(τ)-formulas we are ready to define constraint ECTL∗

over the signature τ (denoted by ECTL∗(τ)): ϕ ::= Eψ(ϕ, . . . , ϕ︸ ︷︷ ︸
mtimes

) | (ϕ ∧ ϕ) | ¬ϕ

where ψ(X1, . . . , Xm) is an MSO(τ)-formula in which at most the second-order
variables X1, . . . , Xm ∈ Var2 are allowed to occur freely.

ECTL∗(τ)-formulas are evaluated over nodes of A-constraint graphs. Let C =
(A,K, (fC)f∈F ) be an A-constraint graph, where K = (D,→, ρ). We define an
infinite path π in K as a mapping π : N → D such that π(i) → π(i + 1) for
all i ≥ 0. For an infinite path π in K we define the infinite constraint path
Pπ = (A, (N,S, ρ′), (fPπ )f∈F ), where ρ′(n) = ρ(π(n)) and fPπ (n) = fC(π(n)).
Note that we may have π(i) = π(j) for i �= j. Given d ∈ D and an ECTL∗(τ)-
formula ϕ, we define (C, d) |= ϕ inductively (again omitting the obvious cases
for ¬ and ∧) by (C, d) |= Eψ(ϕ1, . . . , ϕm) iff there is an infinite path π in K
with d = π(0) and Pπ |= ψ(A1, . . . , Am), where Ai = {j | j ≥ 0, (C, π(j)) |= ϕi}.
Note that for checking (C, d) |= ϕ we may ignore all propositions p ∈ P and all
functions f ∈ F that do not occur in ϕ.

Given a class of τ -structures Γ , SAT-ECTL∗(Γ ) denotes the following com-
putational problem: Given a formula ϕ ∈ ECTL∗(τ), is there a concrete domain
A ∈ Γ and a constraint graph C = (A,K, (fC)f∈F ) such that C |= ϕ? We also
write SAT-ECTL∗(A) instead of SAT-ECTL∗({A}).

2.4 Constraint ECTL∗ and Definable Homomorphisms

Remember that we focus our interest in this paper on the satisfiability problem
with respect to a class of structures over the signature τ = {<,⊥,=} where = is
always interpreted as equality and ⊥ as the incomparability relation with respect
to <. In [5], we provided a connection between SAT-ECTL∗(A) for a τ -structure A
and the definability of homomorphisms to A in the logic Bool(MSO,WMSO+B).
To be more precise, we are interested in definability of homomorphisms to the
{<,⊥}-reduct of A. In order to facilitate the presentation of this connection, we
fix a class Γ of {<,⊥}-structures.
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For every A = (A, I) ∈ Γ we denote by A= its expansion by equality, i.e., the
τ -structure (A, J) where J(<) = I(<), J(⊥) = I(⊥), and J(=) = {(a, a) | a ∈
A}. Similarly, we set Γ= = {A= | A ∈ Γ}. We call Γ= negation-closed if for every
r ∈ {<,⊥,=} there is a positive existential first-order formula ϕr(x1, . . . , xar(r))
(i.e., a formula that is built up from atomic formulas using ∧, ∨, and ∃) such that
for all A = (A, I) ∈ Γ=: Aar(r) \I(r) = {(a1, . . . , aar(r)) | A |= ϕr(a1, . . . , aar(r))}.
In other words, the complement of every relation I(r) must be definable by a
positive existential first-order formula.

Example 3. For any class Δ of {<,⊥}-structures such that in every A ∈ Δ,
(i) < is interpreted as a strict partial order and (ii) ⊥ is interpreted as the
incomparability with respect to < (i.e., x ⊥ y iff neither x ≤ y nor y ≤ x), Δ=

is negation-closed: For every A ∈ Δ= the following equalities hold:

– (A2 \ <) = {(x, y) | A |= y < x ∨ y = x ∨ x ⊥ y}
– (A2 \ ⊥) = {(x, y) | A |= x < y ∨ x = y ∨ y < x}
– (A2 \ =) = {(x, y) | A |= x < y ∨ x ⊥ y ∨ y < x}
In particular, the class of all semi-linear orders and all its subclasses are negation-
closed (to this end, ⊥ is part of our signature).

Definition 4. We say that Γ has the EHD-property (existence of a homo-
morphism to a structure from Γ is Bool(MSO,WMSO+B)-definable) if there
is a Bool(MSO,WMSO+B)-sentence ϕ such that for every countable {<,⊥}-
structure B: B |= ϕ iff B � A for some A ∈ Γ .

The following result connects SAT-ECTL∗(Γ=) with the EHD-property for the
class Γ .

Proposition 5 ([5]). Let Γ be a class of structures over {<,⊥}. If Γ= is
negation-closed and Γ has the EHD-property, then SAT-ECTL∗(Γ=) is decidable.

In the next two sections, we show that all classes mentioned in Theorem 2 have
the EHD-property. Together with Proposition 5 this implies Theorem 2.

3 Constraint ECTL∗ over Semi-Linear Orders

Let Γ denote the class of all semi-linear orders (over {<,⊥}). The aim of this
section is to prove that Γ has the EHD-property. For this purpose, we char-
acterize all those structures that admit homomorphism to some element of Γ .
The resulting criterion can be easily translated into WMSO. Hence, we do not
need the bounding quantifier from WMSO+B here (the same will be true in the
following Sect. 4).

It turns out that, in the case of semi-linear orders (and also ordinal forests)
the existence of such a homomorphism is in fact equivalent to the existence of a
compatible expansion. Let us fix a graph3 A = (A,<,⊥). We say that A can be
3 We call (A, <, ⊥) a graph to emphasize that here the binary relation symbols < and

⊥ can have arbitrary interpretations, whence we see them as two kinds of edges in
an arbitrary graph.
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Fig. 1. A <-cycle and an “incomparable triple-u”; ⊥-edges are dashed.

extended to a semi-linear order (ordinal forest) if there is a partial order � such
that (A,�,⊥�) is a semi-linear order (ordinal forest) compatible with A, i.e.,

x < y ⇒ x � y and x ⊥ y ⇒ x ⊥� y. (1)

Lemma 6. The following are equivalent for every structure A = (A,<,⊥):

1. A can be extended to a semi-linear order (to an ordinal forest, resp.).
2. A � B for some semi-linear order (ordinal tree, resp.) B.

The following compactness result is inspired by Wolk’s work on comparability
graphs of semi-linear orders [13,14]. It extends [[14], Theorem 2].

Lemma 7. A structure A = (A,<,⊥) can be extended to a semi-linear order if
and only if every finite substructure of A can be extended to a semi-linear order.

Thanks to Lemma 7, given a {<,⊥}-structure A, proving EHD only requires to
look for a necessary and sufficient condition which guarantees that every finite
substructure of A admits a homomorphism into a semi-linear order.

Given A′ ⊆ A, we say A′ is connected (with respect to <) if and only if, for
all a, a′ ∈ A′ , there are a1, . . . , an ∈ A′ such that a = a1, a′ = an and ai < ai+1

or ai+1 < ai for all 1 ≤ i ≤ n − 1. A connected component of A is an inclusion-
maximal connected subset of A. Given a subset A′ ⊆ A and c ∈ A′, we say that
c is a central point of A′ if and only if for every a ∈ A′ neither a ⊥ c nor c ⊥ a
nor a < c holds. In other words, a central point of a subset A′ ⊆ A is a node,
which has no incoming or outgoing ⊥-edges, and no incoming <-edges in A′.

Example 8. A <-cycle (of any number of elements) does not have a central point,
nor does an incomparable triple-u, see Fig. 1. Both structures do not admit any
homomorphism into a semi-linear order. While this statement is obvious for the
cycle, we leave the proof for the incomparable triple-u as an exercise.

Lemma 9. A finite structure A = (A,<,⊥) can be extended to a semi-linear
order if and only if every non-empty connected B ⊆ A has a central point.

Let us extract the main argument for the (⇒)-part of the proof for later reuse:

Lemma 10. Let (A,�,⊥�) be a semi-linear order extending A = (A,<,⊥). If
a connected subset B ⊆ A (with respect to <) contains a minimal element m
with respect to �, then m is central in B (again with respect to A).
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Proof. Let b ∈ B. Since B is connected, there are b1, . . . , bn ∈ B such that
b1 = m, bn = b and bi < bi+1 or bi+1 < bi for all 1 ≤ i ≤ n − 1. As � is
compatible with <, this implies that bi � bi+1 or bi+1 � bi for all 1 ≤ i ≤ n − 1.
Given that m is minimal, applying semi-linearity of �, we obtain that m = bi or
m� bi for all 1 ≤ i ≤ n. In particular, we have m = b or m� b. Since (A,�,⊥�)
is a semi-linear order, compatible with (A,<,⊥), we cannot have b < m, m ⊥ b
or b ⊥ m (since this would imply b � m or m ⊥� b). Hence, m is central. ��
Proof of Lemma9. For the direction (⇒) let B be any non-empty connected
subset of A. Since B is finite, there is a minimal element m. Using the previous
lemma we conclude that m is central in B.

We prove the direction (⇐) by induction on n = |A|. Suppose n = 1 and let
A = {a}. The fact that {a} has a central point implies that neither a < a nor
a ⊥ a holds. Hence, A is a semi-linear order.

Suppose n > 1 and assume the statement to be true for all i < n. If A is not
connected with respect to <, then we apply the induction hypothesis to every
connected component. The union of the resulting semi-linear orders extends A.
Now assume that A is connected and let c be a central point of A. By the
inductive hypothesis we can find �′ such that (A \ {c},�′,⊥�′) is a semi-linear
order extending A \ {c}. We define � := �′ ∪ {(c, x) | x ∈ A \ {c}} (i.e., we add
c as a smallest element), which is obviously a partial order on A.

To prove that � is semi-linear, let a1 �a and a2 �a. If a1 = c or a2 = c, then
a1 and a2 are comparable by definition. Otherwise, we conclude that a1, a2, a ∈
A \ {c}. Hence, a1 �′ a and a2 �′ a, and semi-linearity of �′ settles the claim.

We finally show compatibility. Suppose that a < b. If a = c, then a � b. The
case b = c cannot occur, because c is central in A. The remaining possibility
a �= c �= b implies that a �′ b and hence a � b as desired. Finally, suppose that
a ⊥ b. Then a �= c �= b, because c is central. We conclude that a ⊥�′ b and also
a ⊥� b. ��
We are finally ready to state the main result of this section which (together with
Proposition 5) completes the proof of the first part of Theorem2:

Proposition 11. The class of all semi-linear orders Γ has the EHD-property.

Proof. Take A = (A,<,⊥). Thanks to Lemmas 6, 7 and 9, it is enough to show
that WMSO can express the condition that every finite and non-empty connected
substructure of A has a central point. This is straightforward. ��

4 Constraint ECTL∗ over Ordinal Trees

Let Ω denote the class of all ordinal trees (over the signature {<,⊥}). The aim
of this section is to prove that Ω has the EHD-property as well. We use again the
notions of connected subset and central point introduced in the previous section.

Lemma 12. Let A = (A,<,⊥) be a structure. There exists O ∈ Ω with A � O
if and only if every non-empty (not necessarily finite) and connected B ⊆ A has
a central point.
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Proof. We start with the direction (⇒). Due to Lemma 6 we can assume that
there is a relation � that extends (A,<,⊥) to an ordinal forest. Let B ⊆ A be a
non-empty connected set. Since (A,�,⊥�) is an ordinal forest, B has a minimal
element c with respect to �. By Lemma 10, c is a central point of B.

For the direction (⇐) we first define a partition of the domain of A into
subsets Cβ for β � χ, where χ is an ordinal (whose cardinality is bounded by
the cardinality of A). Here � denotes the natural order on ordinals. Assume that
the pairwise disjoint subsets Cβ have been defined for all β � α (which is true
for α = 0 in the beginning). We define Cα as follows. Set C�α =

⋃
β�α Cβ ⊆ A.

If A\C�α is not empty, let CCα be the set of connected components of A\C�α.
Then

Cα = {c ∈ A \ C�α | c is a central point of some B ∈ CCα}.

Clearly, Cα is not empty. Hence, there is a smallest ordinal χ such that A = C�χ.
For every ordinal α � χ and each element c ∈ Cα we define the sequence

of connected components road(c) = (Bβ)(β�α), where Bβ ∈ CCβ is the unique
connected component with c ∈ Bβ . This ordinal-indexed sequence keeps record
of the road we took to reach c by storing information about the connected
components to which c belongs at each stage of our process.

Given road(c) = (Bβ)(β�α) and road(c′) = (B′
β)(β�α′) for some c ∈ Cα and

c′ ∈ Cα′ , let us define road(c) � road(c′) if and only if α � α′ and Bβ = B′
β

for all β � α. This is the prefix order for ordinal-sized sequences of connected
components.

Now let O = {road(c) | c ∈ A}. Note that O = (O,�,⊥�) is an ordinal forest,
because for each c ∈ Cα the order ({road(c′) | road(c′) � road(c)},�) forms the
ordinal α (for each β � α it contains exactly one road of length β).

Now we show that the mapping h with h(c) = road(c) is a homomorphism
from A to O. Take elements a, a′ ∈ A with a ∈ Cα, and a′ ∈ Cα′ for some
α, α′ � χ. Let road(a) = (Bβ)(β�α) and road(a′) = (B′

β)(β�α′).
If a < a′, then (i) α � α′, because a′ cannot be central point of a set which

contains a, and (ii) Bβ = B′
β for all β � α because a and a′ belong to the

same connected component of A \ C�β for all β � α. By these observations
we deduce that road(a) � road(a′). If a ⊥ a′, then, without loss of generality,
suppose that α � α′. At stage α, a is a central point of Bα ∈ CCα. Since α � α′,
the connected component B′

α exists. We must have Bα �= B′
α, since otherwise

we would have a ⊥ a′ ∈ Bα contradicting the fact that a is central for Bα.
Therefore, road(a) ⊥� road(a′).

We finally add one extra element road0 and make this the minimal element
of O, thus finding a homomorphism from A into an ordinal tree. ��
We can now complete the proof of the second part of Theorem2

Proposition 13. The class Ω of all ordinal trees has the EHD-property.

Proof. Given a {<,⊥}-structure A, it suffices by Lemma 12 to find an MSO-
formula expressing the fact that every non-empty connected subset of A has a
central point, which is straightforward. ��
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The procedure from the proof of Lemma 12 can be also used to embed a structure
A = (A,<,⊥) into an ordinary tree. For this, the ordinal χ has to satisfy χ ≤ ω,
i.e., every element a ∈ A has to belong to a set Cn for some finite n. We use
this observation in Sect. 5. Unfortunately, our results from Sect. 5 show that the
condition χ ≤ ω cannot be expressed in Bool(MSO,WMSO+B). On the other
hand, by unfolding the above fixpoint procedure for h steps (for a fixed h ∈ N),
we obtain an MSO-formula that expresses the existence of a homomorphism into
a tree of height h. This shows (3) from Theorem 2. Details can be found in the
long version [6].

5 Trees Do Not Have the EHD-Property

Let Θ be the class of all countable trees (over {<,⊥}). In this section, we prove
that the logic Bool(MSO,WMSO+B) cannot distinguish between graphs that
admit a homomorphism to some element of Θ and those that do not. Thus, Θ
does not have the EHD-property proving our second main result Theorem 1.

Heading for a contradiction, assume that ϕ is a sentence such that a countable
structure A = (A,<,⊥) satisfies ϕ if and only if there is a homomorphism from
A to some T ∈ Θ. Let k be the quantifier rank of ϕ. We construct two graphs
Ek and Uk such that Ek admits a homomorphism into a tree while Uk does not.
We then use the Ehrenfeucht-Fräıssé game for Bool(MSO,WMSO+B) to show
that ϕ cannot separate these two structures, contradicting our assumption.

5.1 The WMSO+B-Ehrenfeucht-Fräıssé-Game

The k-round WMSO+B-Ehrenfeucht-Fräıssé-game (k-round game in the follow-
ing) on a pair of structures (A,B) over the same finite relational signature σ
is played by spoiler and duplicator as follows.4 In the following, A denotes the
domain of A and B the domain of B.

The game starts in position p0 = (A, ∅, ∅,B, ∅, ∅). In general, before playing
the i-th round (for 1 ≤ i ≤ k) the game is in a position

p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2), (2)

where i1 + i2 = i − 1, aj ∈ A and bj ∈ B for all 1 ≤ j ≤ i1, and Aj ⊆ A and
Bj ⊆ B are a finite sets for all 1 ≤ j ≤ i2.

In the i-th round spoiler and duplicator produce the next position as follows.
Spoiler chooses to play one of the following three possibilities: either he plays an
element move or a set move like in the usual WMSO-game (see [9]), or a Bound
move, in which spoiler first chooses one of the structures A or B and a natural
number l ∈ N. Duplicator responds with another number m ∈ N. Then the game
continues as in the case of a set move with the restrictions that spoiler has to
choose a subset of size at least m from his chosen structure and duplicator has
to respond with a set of size at least l.
4 For the ease of presentation we assume that A and B are infinite structures.
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The game ends in p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2)
after k rounds. Duplicator wins the game if

1. aj ∈ Ak ⇔ bj ∈ Bk for all 1 ≤ j ≤ i1 and all 1 ≤ k ≤ i2,
2. aj = ak ⇔ bj = bk for all 1 ≤ j < k ≤ i1, and
3. for all relation symbols R ∈ σ (of arity n) and all j1, j2, . . . , jn ∈ {1, . . . , i1},

(aj1 , . . . , ajn
) ∈ RA iff (bj1 , . . . , bjn

) ∈ RB.

As one expects, the k-round game is closely connected to definability with
WMSO+B-formulas of quantifier rank k: If p is a position as in (2), the structures
(A, a1, . . . , ai1 , A1, . . . , Ai2) and (B, b1, . . . , bi1 , B1, . . . , Bi2) are indistinguishable
by all WMSO+B-formulas of quantifier rank k if and only if duplicator has a
winning strategy in the k-round WMSO+B-EF-game started in p.

l

b1

a1

b2

a2

b3

r

Fig. 2. The standard (5, 3)-triple-u, where we only draw the Hasse diagram for <D,
and where dashed edges are ⊥-edges.

5.2 The Embeddable and the Unembeddable Triple-U-Structures

In this section we define for every k ≥ 0 structures Ek and Uk with the following
properties:

– Ek can be mapped homomorphically into a tree, whereas Uk cannot, and
– duplicator wins the k-round EF-game for both WMSO+B and MSO on

(Ek,Uk).

Given the set P = {l, r, a1, a2, b1, b2, b3} and the relations ⊥ = {(l, r), (r, l)}
and < = {(l, b1), (a1, b1), (a1, b2), (a2, b2), (a2, b3), (r, b3)}, we define the standard
plain triple-u as P = (P,<,⊥). For n,m ∈ N, the standard (n,m)-triple-u is the
structure Gn,m = (D,<,⊥), where

D = {l, r, a1, a2, b1, b2, b3} ∪ ({1, 2, . . . , n} × {a1}) ∪ ({1, 2, . . . ,m} × {a2}),

and <,⊥ are the minimal relations such that < is transitive and

– Gn,m restricted to {l, r, a1, a2, b1, b2, b3} is the standard plain triple-u, and
– (a1, 1) < (a1, 2) < · · · < (a1, n) < a1, (a2, 1) < (a2, 2) < · · · < (a2,m) < a2.
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We call a structure (V,<,⊥) a plain triple-u (resp. (n,m)-triple-u) if it is iso-
morphic to the standard plain triple-u (resp., standard (n,m)-triple-u). Figure 2
depicts a (5, 3)-triple-u.

For all n,m ∈ N and each (n,m)-triple-u W we fix an isomorphism ψW
between W and the standard (n,m)-triple-u. This isomorphism is unique if
n �= m. If n = m, there is an automorphism of Gn,n exchanging the nodes
l and r. Thus, choosing ψW means to fix the left node of the triple-u. For
x ∈ {l, r, a1, a2, b1, b2, b3} we write W.x for the node w ∈ W such that
ψW(w) = x.

Let k ∈ N be a natural number. Fix a strictly increasing sequence (nk,i)i∈N

such that the linear order of length nk,i and the linear order of length nk,j are
equivalent with respect to WMSO+B-formulas of quantifier rank up to k for
all i, j ∈ N. Such a sequence exists because there are (up to equivalence) only
finitely many WMSO+B-formulas of quantifier rank k. Since the linear orders of
length nk,i are finite, they are equivalent with respect to both MSO-formulas and
WMSO-formulas of quantifier rank up to k. Using these linear orders, we define
two structures:

Let Ek (for embeddable) be the structure that consists of

1. the disjoint union of ℵ0 many (nk,1, nk,j)-triple-u’s and ℵ0 many (nk,j , nk,1)-
triple-u’s for all j ≥ 2, and

2. one extra node d, and for each triple-u W from 1. a <-edge from W.l to d.

The structure Uk (for unembeddable) is defined in the same way, except that in 1.
we take the disjoint union of ℵ0 many (nk,j , nk,j)-triple-u’s for all j ≥ 2. The
following lemma can be shown using the procedure on the central points from
the ordinal tree setting described in the proof of Lemma12.

Lemma 14. For all k ∈ N, Ek admits a homomorphism to a tree, whereas Uk

does not admit a homomorphism to a tree.

We prove that Θ does not have the EHD-property by showing that duplica-
tor wins the k-round MSO-EF-game and the WMSO+B-EF-game on the pair
(Ek,Uk) for each k ∈ N. Hence, the two structures are not distinguishable by
Bool(MSO,WMSO+B)-formulas of quantifier rank k. For MSO this is rather
simple. Since the linear orders of length nk,i and nk,j are indistinguishable up to
quantifier rank k, it is straightforward to compose the strategies on these pairs of
paths to a strategy on the whole structures for the k-round game. It is basically
the same proof as the one showing that a strategy on a pair (

⊎
i∈I Ai,

⊎
i∈I Bi)

of disjoint unions can be composed from strategies on the pairs (Ai,Bi).
Composing local strategies to a global strategy in the WMSO+B-EF-game is

more difficult because strategies are not closed under infinite disjoint unions. For
instance, let A be the disjoint union of infinitely many copies of the linear order
of size nk,1 and B be the disjoint union of all linear orders of size nk,j for all
j ∈ N. Clearly, duplicator has a winning strategy in the k-round game starting
on the pair that consists of the linear order of size nk,1 and the linear order of size
nk,j . But in A every linear suborder has size bounded by nk,1, while B has linear
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suborders of arbitrary finite size. This difference is expressible in WMSO+B.
Nevertheless, composition of local strategies to a global strategy on disjoint
unions A =

⊎
n∈N

An and, B =
⊎

n∈N
Bn works if we pose two restrictions:

1. An and Bn are finite for all n ∈ N.
2. For each n ∈ N duplicator has a strategy in the game on (An,Bn) that

preserves a first big set in the sense that there is a c ∈ N such that for all
n ∈ N we have: If spoiler starts the WMSO-EF-game on (An,Bn) with a set
move choosing a set of size m in An or Bn, then duplicator answers with a
set of size at least m

c .

Under these conditions, duplicator has the following strategy for bound moves
in the game on (A,B): If spoiler chooses w.l.o.g structure A and bound l ∈ N,
duplicator chooses the number m1+m2 where m1 is the sum of all the elements of
all parts Ai in which elements or sets have been chosen before and m2 = c·l where
c is the constant denoted above. This forces spoiler to choose m2 many elements
in fresh parts of A Thus, the first big set preserving strategies allow duplicator
to choose at least m2

c = l elements in corresponding fresh parts of B. Using a
variant of this composition result where we choose the pair (An,Bn) of the union
dynamically to be (Gnk,1,nk,j

,Gnk,j ,nk,j
) or (Gnk,j ,nk,1 ,Gnk,j ,nk,j

) (depending on
spoiler’s moves) we can prove the following result.

Proposition 15. For every k, duplicator has a winning strategy in the k-round
WMSO+B-EF-game on (Ek,Uk). Hence, Θ does not have the EHD-property.
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Abstract. An extension of abelian complexity, so called k-abelian com-
plexity, has been considered recently in a number of articles. This paper
considers two particular aspects of this extension: First, how much the
complexity can increase when moving from a level k to the next one.
Second, how much the complexity of a given word can fluctuate. For
both questions we give optimal solutions.

1 Introduction

Counting the factors of fixed lengths provides a natural measure of complexity of
infinite words. Doing that modulo some equivalence relation gives other variants
of complexity. For example, abelian complexity counts the number of factors
of length n which are commutatively pairwise inequivalent. As an extension of
abelian equivalence, k-abelian equivalence can be defined. Two words u and v
are k-abelian equivalent if they possess the same number of each factor of length
k (and as a technical requirement, start with the same prefix of length k − 1).
This then leads to the definition of the k-abelian complexity function Pk

w, which
counts the number of equivalence classes of factors of w of length n.

Among the first questions asked about k-abelian equivalence was the question
of avoidability of repetitions. As is well known, and proved already by Thue
[19,20], the smallest alphabets avoiding squares (resp. cubes) in infinite words
are of size three (resp. two). For abelian repetitions the corresponding values are
four and three, as shown by Keränen [12] and Dekking [4].

Do k-abelian repetitions behave like ordinary words or like abelian words?
This question was raised in the Oberwolfach minisymposium Combinatorics on
Words in August 2010, and written down in [8]. It turned out that with respect
to squares 2-abelian repetitions behave like abelian repetitions: There are only
finitely many words avoiding 2-abelian squares over a ternary alphabet. However,
the longest such word is of length 537, see [8]. The problem of avoiding cubes
was more challenging. Step by step, it was shown that k-abelian cubes could be
avoided over a binary alphabet for smaller and smaller values of k, see [7,13,14].
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Finally, Rao [18] showed that 2-abelian cubes can be avoided over a binary
alphabet, closing the problem. Hence, the avoidability of cubes is similar in the
k-abelian case as in the conventional case! The same is true for k-abelian squares
if k ≥ 3: These are avoidable over a ternary alphabet, as proved in [18].

Another natural research area is factor complexity. How are factor complex-
ity, abelian complexity and k-abelian complexity related? For factor complexity,
two fundamental results are as follows. First, the smallest complexity achieved
among aperiodic words is n + 1, see [15,16], which characterizes so-called Stur-
mian words. Second, there is a complexity gap from bounded complexity to the
complexity of Sturmian words. In other words, if the complexity of a word is
lower than the complexity of Sturmian words, then it is bounded by a constant.
For abelian complexity, there also exists a minimal complexity for aperiodic
words, namely the constant complexity 2. This follows from the results in [16],
see also [3]. Again this characterizes Sturmian words (among aperiodic words),
but there does not exist a similar complexity gap above bounded complexities.
In other words, there are arbitrarily slowly growing but unbounded complexity
functions.

For k-abelian complexity the situation is more challenging. It is shown in [10]
that there exists a minimal complexity among the aperiodic words. This is given
over binary words by the function f(n) = min(n+1, 2k), and again the Sturmian
words are exactly those aperiodic words which reach this. On the other hand, no
gap, whatsoever, exists above bounded complexities. Indeed for any monotonic
unbounded function g(n) there exists an infinite word of unbounded complexity
such that its complexity is bounded by g(n), for all large n, see [11].

We continue research on k-abelian complexity concentrating on the following
two questions:

Question 1. How much higher can the (k + 1)-abelian complexity of an infinite
word be compared to its k-abelian complexity? In particular, if the latter is
bounded, how large can the former be?

As shown in [11], this question is motivated by the properties of the Thue–
Morse word, whose abelian complexity is bounded by a constant (in fact, it
takes only the values 2 and 3), while its 2-abelian complexity is unbounded,
fluctuating between an upper limit of O(log n) and a lower limit of Ω(1). The
2-abelian complexity of the Thue-Morse word is also known to be 2-regular, see
[5] and [17].

Actually, we can find much bigger fluctuations. Let Maxm,k(n) be the func-
tion which gives the number of k-abelian equivalence classes over m-letter alpha-
bet. Then we can find an infinite word w such that its k-abelian complexity is
bounded but its (k + 1)-abelian complexity is Θ(Maxm,k+1(n)/Maxm,k(n)).

Our other question asks about the fluctuation of the k-abelian complexity of
a given word. As we already said, for the Thue–Morse word 2-abelian complexity,
or in fact also k-abelian complexity, for k ≥ 2, takes a constant value infinitely
often, and infinitely often a value of order log n. Hence its complexity values
fluctuate from O(1) to Ω(log n). For ordinary factor complexity, the fluctuation
can be very high, see Theorem 9 in [1].
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Question 2. How much can the k-abelian complexity of a word fluctuate?

We are able to give an exhaustive answer to this question. Our results are as
follows. Let g(n) = o(Maxm,k(n)). We can construct words w1 and w2 such that
their k-abelian complexity functions Pk

w1
and Pk

w2
satisfy

Pk
w1

(an) = Ω(g(an)), Pk
w1

(bn) = O(1)

and
Pk

w2
(cn) = Ω(Maxm,k(cn)), Pk

w2
(dn) = O(dn)

for infinite strictly increasing sequences a1, a2, a3, . . . , b1, b2, b3, . . . , c1, c2, c3, . . .
and d1, d2, d3, . . . . Moreover, we show that the above g(n) cannot be chosen
from Ω(Maxm,k(n)), and O(dn) cannot be replaced with o(dn). In other words,
we show that the fluctuation can go from minimal to almost maximal, or from
maximal to almost minimal, but cannot go all the way from minimal to maximal.

A brief summary of this paper is as follows. In Sect. 3 we show that k-
abelian equivalence classes are actually defined by a suitably chosen subset of
factors. This auxiliary lemma turns out to be very useful. Section 3 contains
also another independent lemma which relates abelian equivalence of words to
k-abelian equivalence of their much longer morphic images. With these lemmata,
and some simple observations made on k-abelian equivalence in Sect. 4, we move
to the main considerations of this paper. In Sect. 5 we deal with Question 1 and
Sect. 6 contains results on Question 2. Some proofs have been omitted because
of space constraints, but they can be found in the full version of this paper.

2 Preliminaries

For m ≥ 1, let Σm = {0, 1, . . . ,m − 1} be an alphabet of m letters. The empty
word is denoted by ε. For n ≥ 0 and a word u, let prefn(u) be the prefix of u of
length n and let suffn(u) be the suffix of u of length n. If n > |u|, it is convenient
to define prefn(u) = suffn(u) = u. For words u and v, we define δ(u, v) = 1 if
u = v and δ(u, v) = 0 if u �= v.

The set of positive integers is denoted by N≥1. For functions f, g : N≥1 →
R, we use the usual definitions for O(g(n)), Ω(g(n)), Θ(g(n)), o(g(n)), and the
following definitions that might be less common:

– f(n) = O′(g(n)) if ∃α > 0 such that f(n) < αg(n) for infinitely many n.
– f(n) = Ω′(g(n)) if ∃α > 0 such that f(n) > αg(n) for infinitely many n.

For k ≥ 1, words u and v are k-abelian equivalent if |u|t = |v|t for all words t
such that |t| ≤ k (|u|ε is defined to be |u|+1). Equivalently, u and v are k-abelian
equivalent if prefk−1(u) = prefk−1(v), suffk−1(u) = suffk−1(v), and |u|t = |v|t
for all words t such that |t| = k. The equivalence of these definitions, together
with many other properties of the k-abelian equivalence, is proved in [10]. The
k-abelian equivalence class of u is denoted by [u]k.
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For n ≥ 0 and an infinite word w, let Fn(w) be the set of factors of w of
length n. The factor complexity of w is the function

Pw : N≥1 → N≥1,Pw(n) = #Fn(w).

For k ≥ 1, the k-abelian complexity of w is the function

Pk
w : N≥1 → N≥1,Pk

w(n) = #{[u]k | u ∈ Fn(w)}.

Now we give some background for the results in this article. Generalizations
of the results of Morse and Hedlund form a starting point for our considerations.
The well-known theorem of Morse and Hedlund [15] can be stated as follows.

Theorem 3. If Pw(n) < n + 1 for some n, then w is ultimately periodic. If w
is ultimately periodic, then Pw is bounded.

This was generalized for k-abelian complexity in [10].

Theorem 4. If Pk
w(n) < min(2k, n + 1) for some n, then w is ultimately peri-

odic. If w is ultimately periodic, then Pk
w is bounded.

A particular consequence of the theorem of Morse and Hedlund is that there is a
gap between bounded complexity and complexity n+1. For k-abelian complexity
there is no such gap above bounded complexity; this was proved in [11].

There are many equivalent ways to define Sturmian words. We give three
such definitions (here k ≥ 2):

– w is Sturmian if Pw(n) = n + 1 for all n.
– w is Sturmian if P1

w(n) = 2 for all n and w is aperiodic.
– w is Sturmian if Pk

w(n) = min(2k, n + 1) for all n and w is aperiodic.

The first two characterizations were proved in [16] and the third one in [10].

3 Characterizing an Equivalence Class

From now on, we assume that m ≥ 2 is fixed. We mostly study words over the
alphabet Σm. We ignore the unary case m = 1, although many of the theorems
would trivially work also in this case.

The k-abelian equivalence class of a word u ∈ Σ∗
m is determined by the num-

bers |u|x, x ∈ ⋃k
i=0 Σi

m, or equivalently by the words prefk−1(u) and suffk−1(u)
and the numbers |u|x, x ∈ Σk

m. However, both these characterizations contain
a lot of redundant information. For example, if m = 2 and pref1(u) = suff1(u),
then |u|01 = |u|10. In this section we give a set Yk of minimal size such that the
equivalence class of every u is determined by the words prefk−1(u) and suffk−1(v)
and the numbers |u|y, y ∈ Yk. If it were possible to replace Yk by a smaller set, it
would easily lead to an upper bound for the number of equivalence classes that
would contradict Theorem8.
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For n ≥ 0, let

Xn = (Σn
m \ 0Σ∗

m) \ Σ∗
m0 and Yn =

n⋃

i=0

Xi.

In other words, Xn is the set of words of length n that do not begin with 0 and
do not end with 0, and Yn is the set of words of length at most n that do not
begin with 0 and do not end with 0. These sets will be used in many proofs in
this paper. The sizes of these sets are

#Xn =

⎧
⎪⎨

⎪⎩

1 if n = 0,

m − 1 if n = 1,

(m − 1)2mn−2 if n ≥ 2,

#Yn =

{
1 if n = 0,

(m − 1)mn−1 + 1 if n ≥ 1.

The following theorem gives another equivalent definition for k-abelian equiva-
lence, that is extensively used in this paper

Theorem 5. Let k ≥ 1 and u, v ∈ Σ∗
m. If prefk−1(u) = prefk−1(v), suffk−1(u) =

suffk−1(v), and |u|y = |v|y for all y ∈ Yk, then u and v are k-abelian equivalent.

Proof. We prove that |u|t = |v|t for all t ∈ Σk
m. The proof is by induction on k.

The case k = 1 is easy. Let k ≥ 2. We already know that |u|t = |v|t for t ∈ Xk,
so we have to consider the two cases t = 0rb, r ∈ Σk−2

m , b ∈ Σm \{0}, and t = s0,
s ∈ Σk−1

m .
For all r ∈ Σk−2

m and b ∈ Σm \ {0},

|u|rb =
∑

a∈Σm

|u|arb + δ(rb, prefk−1(u)).

It follows that

|u|0rb = |u|rb −
∑

a∈Σm,a�=0

|u|arb − δ(rb, prefk−1(u))

and a similar equation holds for v. It follows from the assumptions of the theorem
and the induction hypothesis that the right-hand side remains the same if every
u is replaced by v. Thus |u|0rb = |v|0rb. For s ∈ Σk−1

m , the equality |u|s0 = |v|s0
can be proved in a similar way. �	
Example 6. Consider the case m = 2. Then Y2 = {ε, 1, 11}. Words u, v ∈ Σ∗

m

are 2-abelian equivalent if and only if

pref1(u) = pref1(v), suff1(u) = suff1(v), |u|ε = |v|ε, |u|1 = |v|1, |u|11 = |v|11.
We get the following formulas:

|u|0 = |u|ε − |u|1 − 1 = |u| − |u|1, |u|01 = |u|1 − |u|11 − δ(1,pref1(u)),
|u|10 = |u|1 − |u|11 − δ(1, suff1(u)), |u|00 = |u|0 − |u|01 − δ(0, suff1(u)).
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Sometimes we are studying factors of length n of an infinite word that does not
contain 11 as a factor. If u, v are such factors, then they are 2-abelian equivalent
if and only if

pref1(u) = pref1(v), suff1(u) = suff1(v), |u|1 = |v|1.
The construction in the following lemma is essential for our results. It will be
used to relate the abelian complexity of a word to the k-abelian complexity of
its image under a certain morphism.

Lemma 7. Let k ≥ 1, M = (m−1)mk−1 +1, and y0, . . . , yM−1 be the elements
of the set Yk. Let h : Σ∗

M → Σ∗
m be the morphism defined by

h(i) = yi02k−1−|yi| for i ∈ {0, . . . , M − 1}.

If u, v ∈ Σ+
M , then h(u) and h(v) are k-abelian equivalent if and only if u and v

are abelian equivalent and prefk−1(h(u)) = prefk−1(h(v)).

Proof. If u and v are abelian equivalent and prefk−1(h(u)) = prefk−1(h(v)), then

suffk−1(h(u)) = 0k−1 = suffk−1(h(v)), |h(u)|ε = |h(v)|ε, and

|h(u)|y =
M−1∑

i=0

|u|i|yi|y =
M−1∑

i=0

|v|i|yi|y = |h(v)|y

for all y ∈ Yk \ {ε}, so h(u) and h(v) are k-abelian equivalent.
If prefk−1(h(u)) �= prefk−1(h(v)), then h(u) and h(v) are not k-abelian

equivalent. If u and v are not abelian equivalent, then let |yi| ≤ |yi+1| for all
i ∈ {0, . . . , M −2}, let j be the largest index such that |u|j �= |v|j , and let y = yj .
Then j > 0, |yi|y = 0 for i < j, and |yj |y = 1, so

|h(u)|y =
M−1∑

i=0

|u|i|yi|y = |u|j +
M−1∑

i=j+1

|u|i|yi|y

�= |v|j +
M−1∑

i=j+1

|u|i|yi|y = |v|j +
M−1∑

i=j+1

|v|i|yi|y =
M−1∑

i=0

|v|i|yi|y = |h(v)|y.

Thus h(u) and h(v) are not k-abelian equivalent. �	

4 Lemmas About k-Abelian Equivalence

It was proved in [10] that if m and k are fixed, then the number of k-abelian
equivalence classes of words in Σn

m is Θ(n(m−1)mk−1
). Here, and also later in this

article, the hidden constants in the Θ-notation can depend on the parameters m
and k. A shorter proof could be obtained in a fairly straightforward way by using
Theorem 5 and Lemma 7. The exact numbers of k-abelian equivalence classes of
words in Σn

m were calculated in [6] for small values of k,m, n.
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Theorem 8. Let k ≥ 1. The number of k-abelian equivalence classes of words
in Σn

m is Θ(n(m−1)mk−1
).

Every k-abelian equivalence class is a disjoint union of (k+1)-abelian equivalence
classes. In other words, for every word u there is a number r and words u1, . . . , ur

such that
[u]k = [u1]k+1 ∪ · · · ∪ [ur]k+1 (1)

and [ui]k+1 �= [uj ]k+1 for all i �= j. For some words u, the number r of equivalence
classes in the union is one (for example, if u is unary or shorter than 2k), but
usually it is much larger. Because the number of k-abelian equivalence classes
of words in Σn

m is Θ(n(m−1)mk−1
), it follows immediately that there are words

u ∈ Σn
m such that the number r in (1), interpreted as a function of n, is lower

bounded by a function that is in

Θ

(
n(m−1)mk

n(m−1)mk−1

)
= Θ(n(m−1)2mk−1

).

The next theorem proves that the value n(m−1)2mk−1
should only be multiplied

by an alphabet-dependent constant to get an upper bound for the number r
in (1).

Theorem 9. Let k, n ≥ 1 and u ∈ Σn
m. The number of (k + 1)-abelian equiva-

lence classes contained in [u]k is at most m2n(m−1)2mk−1
.

Proof. By Theorem 5, the (k + 1)-abelian equivalence class of v ∈ [u]k is char-
acterized by prefk(v), suffk(v), and |v|y for y ∈ Yk+1. Because prefk−1(v) =
prefk−1(u) and suffk−1(v) = suffk−1(u), there are at most m possible values for
each of prefk(v) and suffk(v). Because |v|y = |u|y for all y ∈ Yk, there is one
possible value for every |v|y, y ∈ Yk. There are at most n possible values for
every |u|x, x ∈ Yk+1 \ Yk = Xk+1. Multiplying these numbers gives the claimed
bound, because there are (m − 1)2mk−1 different words x ∈ Xk+1. �	
We end this section by stating two lemmas about k-abelian complexity. The
proof of the first one has been omitted to save space, but it is quite easy and
can be found in the full version of this article.

Often it is easier to estimate the k-abelian complexity of a word for some
particular values of n than for all n. In general, this is not sufficient for determin-
ing the growth rate of the complexity: If there is a strictly increasing sequence
of positive integers n1, n2, n3, . . . such that Pk

w(ni) = Θ(f(ni)), then it does not
necessarily follow that Pk

w(n) = Θ(f(n)), even if the function f is reasonably
well-behaving. This is discussed in Sect. 6. However, if ni+1−ni is bounded, then
we have the following lemma.

Lemma 10. Let k ≥ 1 and w ∈ Σω
m. Let n1, n2, n3, . . . be a strictly increasing

sequence of positive integers such that the difference ni+1 − ni is bounded from
above by a constant. Let f : N≥1 → R be a function such that f(n)/f(n + 1) =
O(1).
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– If Pk
w(ni) = O(f(ni)), then Pk

w(n) = O(f(n)).
– If Pk

w(ni) = Ω(f(ni)), then Pk
w(n) = Ω(f(n)).

If a construction works for abelian complexity on all alphabets, then it can often
be generalized for k-abelian complexities by the following lemma.

Lemma 11. Let k ≥ 2, M = (m − 1)mk−1 + 1, and W ∈ Σω
M . There exists a

word w ∈ Σω
m such that Pk

w(n) = Θ(P1
W (n/(2k − 1))) for n divisible by 2k − 1.

Proof. We can let h be the morphism in Lemma 7 and w = h(W ). Let n =
(2k − 1)n′.

If U1, . . . , UN ∈ Fn′(W ) and no two of them are abelian equivalent, then

h(U1), . . . , h(UN ) ∈ Fn(w)

and no two of them are k-abelian equivalent by Lemma 7. Thus Pk
w(n) ≥ P1

W (n′).
On the other hand, if u is a factor of w, then there are p, q ∈ Σ∗

m and
U ∈ Fn′−1(W ) such that u = ph(U)q and |pq| = 2k − 1. By Lemma 7, the
k-abelian equivalence class of u depends only on p, q, prefk−1(h(U)), and the
abelian equivalence class of U . The number of different possibilities for p, q, and
prefk−1(h(U)) does not depend on n′, while the number of different possibilities
for the abelian equivalence class of U is P1

W (n′−1) = Θ(P1
W (n′)). Thus Pk

w(n) =
O(P1

W (n′)). �	

5 k-Abelian Complexities for Different k

In this section we study the relations between the functions P1
w,P2

w,P3
w, . . . .

Bounds for the ratio Pk+1
w (n)/Pk

w(n) follow directly from Theorem 9.

Theorem 12. Let k, n ≥ 1 and w ∈ Σω
m. Then

1 ≤ Pk+1
w (n)
Pk

w(n)
≤ m2n(m−1)2mk−1

.

The bounds of Theorem12 are optimal up to a constant. In fact, there are infinite
words w such that

Pk+1
w (n)/Pk

w(n) = O(1) (2)

for all k (for example, ultimately periodic words and Sturmian words). There
are also infinite words w such that

Pk+1
w (n)/Pk

w(n) = Θ(n(m−1)2mk−1
) (3)

for all k (words w that have every word in Σ∗
m as a factor satisfy (3)).

It is also possible to construct infinite words w such that for some k we have
(2) and for some k we have (3). In fact, if we are considering only a finite number
of different values of k, then the growth rates of the ratios Pk+1

w (n)/Pk
w(n) can

be chosen quite freely and independently of each other. This is made precise in
the following theorem.
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Theorem 13. Let K ≥ 1 and 0 ≤ N1 ≤ m − 1 and 0 ≤ Nk ≤ (m − 1)2mk−2

for k ∈ {2, . . . , K}. There exists w ∈ Σω
m such that

Pk
w(n) = Θ(nN1+···+Nk) for k ∈ {1, . . . , K}.

Proof. Let Z be a subset of YK that contains ε and exactly Nk elements of
Xk for k ∈ {1, . . . , K}. Let Mk = N1 + · · · + Nk + 1 for all k, M = MK , and
Z = {z0, . . . , zM−1}. We can assume that z0 = ε and |zi| ≤ |zi+1| for all i. For
i ∈ {1, . . . , M − 1}, let

ui =

{
05K−5 if zi = a, a ∈ Σm,

0K−1as0K−1sb0K−1+2(K−|zi|) if zi = asb, a, b ∈ Σm,

vi =

{
0K−1a04K−5 if zi = a, a ∈ Σm,

0K−1asb0K−1s0K−1+2(K−|zi|) if zi = asb, a, b ∈ Σm.

Let L = (M − 1)(5K − 5) and let h : Σ∗
M → Σ∗

m be the L-uniform morphism
defined by

h(0) =
M−1∏

i=1

ui and h(j) =
j−1∏

i=1

ui · vj ·
M−1∏

i=j+1

ui (1 ≤ j ≤ M − 1).

Let W ∈ Σω
M be an infinite word that has a factor in every abelian equivalence

class. We can show that we can take w = h(W ).
First we make some observations about the words ui, vi and the morphism

h. If 1 ≤ i ≤ M − 1 and y ∈ YK , then |vi|y − |ui|y = δ(y, zi). If U ∈ Σn
M and

y ∈ YK \ {ε}, then

|h(U)|y =
M−1∑

i=0

((n−|U |i)|ui|y + |U |i|vi|y) =
M−1∑

i=0

n|ui|y +

{
|U |j if y = zj ,

0 if y /∈ Z.
(4)

For U, V ∈ Σn
M and k ∈ {1, . . . , K}, h(U) and h(V ) are k-abelian equivalent

if and only if |U |j = |V |j for all j ∈ {1, . . . , Mk − 1}. This follows from (4),
Theorem 5, and the fact that h(U) and h(V ) begin and end with 0k−1 and have
the same length.

For the rest of the proof, let k ∈ {1, . . . , K} be fixed. If U1, . . . , Uj ∈ Fn(W )∩
Σn

Mk
and no two of them are abelian equivalent, then h(U1), . . . , h(Uj) ∈ FLn(w)

and no two of them are k-abelian equivalent. We assumed that W has a factor in
every abelian equivalence class, and the number of classes of words of length n
is Θ(nMk−1), so we can assume that j = Θ(nMk−1). Thus Pk

w(Ln) = Ω(nMk−1).
On the other hand, if u is a factor of w of length Ln, then there are p, q ∈ Σ∗

m

and U ∈ Fn−1(W ) such that u = ph(U)q and |pq| = L. The k-abelian equivalence
class of u depends only on p, q, and the numbers |U |i for i ∈ {1, . . . , Mk−1}. The
number of different possibilities for the pair (p, q) is at most (L + 1)mL = O(1),
while the number of different possibilities for each |U |i is n. Multiplying these
numbers gives the upper bound Pk

w(Ln) = O(nMk−1).
We have proved Pk

w(Ln) = Θ(nMk−1). The claim follows from Lemma 10. �	
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The answer to Question 1 is given by Theorem 12 and the following special case
of Theorem 13.

Corollary 14. Let k ≥ 2. There exists w ∈ Σω
m such that

Pk−1
w (n) = O(1) and Pk

w(n) = Θ(n(m−1)2mk−2
).

Theorem 13 cannot be generalized to the case where infinitely many k’s are
considered at the same time. For example, (3) holds either for all values of k or
for only finitely many values k. This follows from the next theorem.

Theorem 15. If z ∈ Σ+
m is not a factor of w ∈ Σω

m, then

Pk+1
w (n)
Pk

w(n)
= O(n(m−1)2mk−1−(m−1)mk−|z|

) = o(n(m−1)2mk−1
)

for all k ≥ |z|.
Proof. We can assume that the first letter of z is not 0. Let u ∈ Fn(w). By
Theorem 5, the (k + 1)-abelian equivalence class of v ∈ [u]k ∩ Fn(w) is char-
acterized by prefk(v), suffk(v), and |v|y for y ∈ Yk+1. The number of possible
values for prefk(v) and suffk(v) is at most mk−1 = O(1). Because |v|y = |u|y
for all y ∈ Yk, there is one possible value for every |v|y, y ∈ Yk. There are
at most n possible values for every |v|x, x ∈ Yk+1 \ Yk = Xk+1. However, if
x ∈ zΣ

k−|z|
m (Σm \ {0}), then |v|x = 0, and the number of these words x is

(m − 1)mk−|z|. Thus we get the upper bound

Pk+1
w (n)/Pk

w(n) = O(n(m−1)2mk−1−(m−1)mk−|z|
). �	

6 Fluctuating Complexity

In [11], words w were given such that lim inf Pk
w < ∞ and Pk

w(n) = Ω′(log n). For
example, the Thue–Morse word has this property for k ≥ 2. Thus the numbers
Pk

w(n) can fluctuate between bounded and logarithmic values. In this section, we
study how big these kinds of fluctuations can be. We give an “optimal” answer
to Question 2. More specifically, we consider three questions:

1. If Pk
w is unbounded, then how small can lim inf Pk

w be?
2. If Pk

w = O′(1), then for how fast-growing functions f can we have Pk
w(n) =

Ω′(f(n))?
3. If Pk

w = Ω′(n(m−1)mk−1
), then for how slowly growing functions f can we

have Pk
w(n) = O′(f(n))?

Recall that the number of k-abelian equivalence classes of words in Σn
m is

Θ(n(m−1)mk−1
), so Pk

w(n) = O(n(m−1)mk−1
) for all words w ∈ Σω

m.
For the first question, it was proved in [10] that if lim inf Pk

w < 2k, then w
is ultimately periodic and thus Pk

w is bounded. We prove in Theorem16 that it
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is possible to have lim inf Pk
w = 2k but Pk

w unbounded. The constructed word
is a morphic image of the period-doubling word. In [10] it was proved that an
aperiodic word w is Sturmian if and only if Pk

w(n) = 2k for all n ≥ 2k − 1.
A consequence of our result is that having Pk

w(n) = 2k for infinitely many n is
not sufficient to guarantee that w is Sturmian, or even that Pk

w(n) is bounded.
For the second question, we prove in Theorems 17 and 19 that we can take

any f = o(n(m−1)mk−1
), but not f = Ω′(n(m−1)mk−1

). Here a Toeplitz-type
construction is used. For Toeplitz words, see, e.g., [9] and [2].

For the third question, we prove in Theorems 18 and 19 that we can take
f(n) = n, but not f = o(n).

Theorem 16. Let k ≥ 1. There exists w ∈ Σω
2 such that

lim inf Pk
w = 2k and Pk

w(n) = Ω′(log n).

Proof. It was proved in [11] that the period-doubling word S ∈ Σω
2 , defined as the

fixed point of the morphism 0 → 01, 1 → 00, satisfies the requirements for k = 1.
For k ≥ 2, we cannot use Lemma 11, because we want to prove lim inf Pk

w = 2k
and not just lim inf Pk

w < ∞. Instead, we prove that we can take w = h(S), where
h : Σ∗

2 → Σ∗
2 is the morphism defined by h(0) = 0k−11 and h(1) = 0k1. No factor

of w of length k contains two 1’s, so it follows from Theorem 5 that factors u and v
of w are k-abelian equivalent if and only if prefk−1(u) = prefk−1(v), suffk−1(u) =
suffk−1(v), and |u|1 = |v|1. In particular, this means that Pk

w(n) = Θ(P1
w(n)).

First we prove that lim inf Pk
w = 2k. It was proved in [11] that for all l,

P1
S(2l) = 2, so there is a number nl such that every factor of S of length 2l has

either nl or nl+1 occurrences of the letter 1. We prove that Pk
w(2lk+nl+k) = 2k.

Let u be a factor of w of length 2lk + nl + k. Then u begins with 0i1, where
0 ≤ i ≤ k. In w, this is followed by h(v)0k−1, where |v| = 2l and thus |h(v)| =
2lk + nl + c, c ∈ {0, 1}. There are the following possibilities:

– If i ≤ k − 2, then u = 0i1h(v)0k−i−1−c and

(prefk−1(u), suffk(u), |u|1) = (0i10k−2−i, 0i+c10k−i−1−c, nl + 1).

– If i = k − 1 and c = 0, then u = 0k−11h(v) and

(prefk−1(u), suffk−1(u), |u|1) = (0k−1, 0k−21, nl + 1).

– If i = k − 1 and c = 1, then u1 = 0k−11h(v) and

(prefk−1(u), suffk−1(u), |u|1) = (0k−1, 0k−1, nl).

– If i = k and c = 0, then u1 = 0k1h(v) and

(prefk−1(u), suffk−1(u), |u|1) = (0k−1, 0k−1, nl).

– If i = k and c = 1, then u01 = 0k1h(v). If it were v = v′0, then 1v′ would
be a factor of w of length 2l with |1v′|1 = nl + 2, which is a contradiction, so
v = v′1 and

(prefk−1(u), suffk−1(u), |u|1) = (0k−1, 0k−1, nl).
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In total, there are 2k different possibilities for (prefk−1(u), suffk−1(u), |u|1), so
P1

w(2lk + nl + k) = 2k.
We have already seen that Pk

w(n) = Θ(P1
w(n)), so it is sufficient to show

P1
w(n) = Ω′(log n). We will need the following simple fact, which is used fre-

quently when studying abelian complexity of binary words: For any infinite
binary word W ,

P1
W (n) = max{|u|1 | u ∈ Fn(W )} − min{|u|1 | u ∈ Fn(W )} + 1. (5)

We know that P1
S(n) = Ω′(log n), so there is a strictly increasing sequence

n1, n2, n3, . . . such that P1
S(ni) = Ω(log ni). By the definition of h and (5), for

every i there are ui, vi ∈ Fni
(S) such that

|h(vi)| − |h(ui)| = |vi|1 − |ui|1 = Ω(log ni).

Then |h(vi)|1 = |vi| = ni, and w has a factor x = h(ui)y such that |x| = |h(vi)|
and

|x|1 = |h(ui)|1 + |y|1 ≥ |ui| + �|y|/k + 1� = ni + Ω(log ni).

This means that P1
w(|h(vi)|) = Ω(log ni), which proves that Pk

w(n) = Ω′(log n)
because kni ≤ |h(vi)| ≤ (k + 1)ni. �	

Theorem 17. Let k ≥ 1. Let f be a function such that f(n) = o(n(m−1)mk−1
).

There exists w ∈ Σω
m such that

Pk
w(n) = O′(1) and Pk

w(n) = Ω′(f(n)).

Proof. If we prove the claim for k = 1, we can use Lemma 11 to get another
word with similar k-abelian complexity for n divisible by 2k − 1. Then we can
use Lemma 10 to prove that the complexity behaves in a similar way for all n
(the sequence ni of Lemma 10 is the sequence of numbers divisible by 2k − 1).
Thus it is sufficient to prove the claim for k = 1.

We define w by a Toeplitz-type construction. Let l1, l2, l3, . . . be a strictly
increasing sequence of positive integers. For every i, let ui be a word that has
a factor in every abelian equivalence class of words in Σli

m. Let v0 = � and, for
i ≥ 1, let vi be the word obtained from v

|ui|+1
i−1 by replacing the hole symbols

� with the letters of ui�. Because f(n) = o(nm−1) and |vi−1| depends only on
l1, . . . , li−1, we can define the sequence l1, l2, l3, . . . so that f(|vi−1|li) ≤ lm−1

i

for all i. Let w be the limit of the sequence v0, v1, v2, . . . .
For every i, let vi = v′

i�. Then w ∈ (v′
iΣm)ω, so every factor of w of length

|vi| is a conjugate of a word in v′
iΣm. Conjugates are abelian equivalent, so

P1
w(|vi|) = #v′

iΣm = m. This proves that Pk
w(n) = O′(1).

If a1, . . . , ali ∈ Σm and a1 · · · ali is a factor of ui, then
∏li

j=1 v′
i−1aj is a

factor of w. If two factors of the form a1 · · · ali are not abelian equivalent, then
the corresponding factors

∏li
j=1 v′

i−1aj are also not abelian equivalent. Thus
P1

w(|vi−1|li) ≥ P1
ui

(li) = Ω(lm−1
i ) = Ω(f(|vi−1|li)) for all i. This proves that

Pk
w(n) = Ω′(f(n)). �	
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Theorem 18. Let k ≥ 1. There exists w ∈ Σω
m such that

Pk
w(n) = O′(n) and Pk

w(n) = Ω′(n(m−1)mk−1
).

Proof. By Lemmas 11 and 10, it is sufficient to prove the claim for k = 1 (like in
Theorem 17). We define a sequence u0, u1, u2, . . . of finite words and show that
w = u0u1u2 · · · satisfies the requirements of the theorem. Let u0 = 0 and, for
j ≥ 0,

uj+1 =
∏

(n0,...,nm−1)

m−1∏

i=0

i|uj |+ni ,

where the outer product is taken over all sequences (n0, . . . , nm−1) of non-
negative integers such that

∑m−1
i=0 ni = m|uj | (the order in the product does not

matter). It can be proved that P1
w(2m|uj |) = Ω((m|uj |)m−1) and Pk

w(|uj |) =
O(|uj |). Details can be found in the full version of this article. �	
Theorem 19. Let k ≥ 1. There does not exist f(n) = o(n) and w ∈ Σω

m such
that

Pk
w(n) = O′(f(n)) and Pk

w(n) = Ω′(n(m−1)mk−1
).

Proof. We assume that Pk
w(n) = O′(f(n)) and f(n) = o(n), and prove that

Pk
w(n) = o(n(m−1)mk−1

). For every number n and word t, let

pt(n) = min{|u|t | u ∈ Fn(w)} and qt(n) = max{|u|t | u ∈ Fn(w)}.

BecausePk
w(n) = O′(f(n)) and f(n) = o(n), there is a strictly increasing sequence

n1, n2, n3, . . . such that qt(ni) − pt(ni) < Pk
w(ni) = o(ni) for all t of length at

most k. For n > n2
1, let g(n) = max{ni | ni <

√
n}. Every factor of w of length

n can be written as u = u0 · · · ur, where u0, . . . , ur−1 ∈ Σ
g(n)
m , r = �n/g(n)�, and

|ur| < g(n) <
√

n. For every factor t of length at most k,

rpt(g(n)) ≤
r−1∑

j=0

|uj |t ≤ |u|t ≤
r∑

j=0

|uj |t +
r−1∑

j=0

|suffk−1(uj)prefk−1(uj+1)|t

≤ r(qt(g(n)) + 2k) + |ur|,

so
qt(n) − pt(n) ≤ r(o(g(n)) + 2k) + |ur| = o(n) + |ur| = o(n).

By Theorem 5, there are o(n(m−1)mk−1
) possible k-abelian equivalence classes

for u. �	

References

1. Balogh, J., Bollobás, B.: Hereditary properties of words. RAIRO Inform. Theor.
Appl. 39(1), 49–65 (2005)



122 J. Cassaigne et al.

2. Cassaigne, J., Karhumäki, J.: Toeplitz words, generalized periodicity and periodi-
cally iterated morphisms. Eur. J. Comb. 18(5), 497–510 (1997)

3. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst.
Theory 7, 138–153 (1973)

4. Dekking, M.: Strongly nonrepetitive sequences and progression-free sets. J. Com-
bin. Theory Ser. A 27(2), 181–185 (1979)

5. Greinecker, F.: On the 2-abelian complexity of Thue-Morse subwords (Preprint).
arXiv:1404.3906

6. Harmaala, E.: Sanojen ekvivalenssiluokkien laskentaa (2010) (manuscript)
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10. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of abelian equiva-
lence and complexity of infinite words. J. Combin. Theory Ser. A 120(8), 2189–2206
(2013)
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Abstract. The Outerplanar Diameter Improvement problem
asks, given a graph G and an integer D, whether it is possible to add edges
to G in a way that the resulting graph is outerplanar and has diameter at
most D. We provide a dynamic programming algorithm that solves this
problem in polynomial time. Outerplanar Diameter Improvement
demonstrates several structural analogues to the celebrated and chal-
lenging Planar Diameter Improvement problem, where the resulting
graph should, instead, be planar. The complexity status of this latter
problem is open.
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1 Introduction

A graph completion problem asks whether it is possible to add edges to a given
graph in order to make it satisfy some target property. There are two differ-
ent ways of defining the optimization measure for such problems. The first,
and most common, is the number of edges to be added, while the second is
the value of some graph invariant on the resulting graph. Problems of the first
type are Hamiltonian Completion [14], Interval Graph Completion [16],
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Proper Interval Graph Completion [15,20], Chordal Graph Comple-
tion [20,24], and Strongly Chordal Graph Completion [20].

We focus our attention on the second category of problems where, for some
given parameterized graph property Pk, the problem asks, given a graph G and
an integer k, whether it is possible to add edges to G such that the resulting
graph belongs to Pk. Usually Pk is a parameterized graph class whose graphs
are typically required (for every k) to satisfy some sparsity condition. There are
few problems of this type in the bibliography. Such a completion problem is
the Planar Disjoint Paths Completion problem that asks, given a plane
graph and a collection of k pairs of terminals, whether it is possible to add edges
such that the resulting graph remains plane and contains k vertex-disjoint paths
between the pairs of terminals. While this problem is trivially NP-complete, it
has been studied from the point of view of parameterized complexity [1]. In
particular, when all edges should be added in the same face, it can be solved in
f(k) · n2 steps [1], i.e., it is fixed parameter tractable (FPT in short; for details
about fixed parameter tractability, refer to the monographs [10,12,21]).

Perhaps the most challenging problem of the second category is the Planar
Diameter Improvement problem (PDI in short), which was first mentioned
by Dejter and Fellows [7] (and made an explicit open problem in [10]). Here we
are given a planar graph G and we ask for the minimum integer D such that some
completion (by addition of edges) of G is a planar graph with diameter at most
D. Note that according to the general formalism, all planar graphs with diameter
at most D verify this parameterized property PD. The computational complexity
of Planar Diameter Improvement is open, as it is not even known whether
it is an NP-complete problem, even in the case where the embedding is part
of the input. Interestingly, Planar Diameter Improvement is known to be
FPT: it is easy to verify that, for every D, its Yes-instances are closed under
taking minors1 which, according to the meta-algorithmic consequence of the
Graph Minors series of Robertson and Seymour [22,23], implies that Planar
Diameter Improvement is FPT. Unfortunately, this implication only proves
the existence of such an algorithm for each D, while it does not give any way to
construct it. Whether this problem is uniformly FPT2 remains as one of the most
intriguing open questions in parameterized algorithm design. To our knowledge,
when it comes to explicit algorithms, it is not even clear how to get an O(nf(D))-
algorithm for this problem (in parameterized complexity terminology, such an
algorithm is called an XP-algorithm).

Notice that, in both aforementioned problems of the second type, the pla-
narity of the graphs in PD is an important restriction, as it is essential for gener-
ating a non-trivial problem; otherwise, one could immediately turn a graph into

1 To see this, if a graph G can be completed into a planar graph G′ of diameter D,
then G′ is also a valid completion of any subgraph H ⊆ G. Similarly, by merging
two adjacent vertices uv in both G and G′, the latter is still a completion of the first
and their diameters can only decrease.

2 As opposed to having a possibly different algorithm for each D, a problem is uni-
formly FPT if the algorithm solving the problem is the same for each D.
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a clique that trivially belongs to P1. For practical purposes, such problems are
relevant where instead of generating few additional links, we mostly care about
maintaining the network topology. The algorithmic and graph-theoretic study on
diameter improvement problems has focused both on the case of minimizing the
number (or weight) of added edges [2–4,9,11,17], as well as on the case of mini-
mizing the diameter [3,13]. In contrast, the network topology, such as acyclicity
or planarity, as a constraint to be preserved has received little attention in the
context of complementing a graph; see for example [11]. See also [18,19] for other
completion problems in outerplanar graphs, where the objective is to add edges
in order to achieve a prescribed connectivity.

In this paper we study the Outerplanar Diameter Improvement prob-
lem, or OPDI in short. An instance of OPDI consists of an outerplanar graph
G = (V,E) and a positive integer D, and we are asked to add a set F of missing
edges to G so that the resulting graph G′ = (V,E ∪ F ) has diameter at most D,
while G′ remains outerplanar. Note that we are allowed to add arbitrarily many
edges as long as the new graph is outerplanar. Given a graph G = (V,E), we
call G′ = (V,E ∪ F ) a completion of G.

It appears that the combinatorics of OPDI demonstrate some interesting
parallelisms with the notorious PDI problem. We denote by opdi(G) (resp.
pdi(G)) the minimum diameter of an outerplanar (resp. planar) completion of
G. It can be easily seen that the treewidth of a graph with bounded pdi(G) is
bounded, while the pathwidth of a graph with bounded opdi(G) is also bounded.
In that sense, the OPDI can be seen as the “linear counterpart” of PDI. We
stress that the same “small pathwidth” behavior of OPDI holds even if, instead
of outerplanar graphs, we consider any class of graphs with bounded outerpla-
narity. Note also that both pdi(G) and opdi(G) are trivially 2-approximable
in the particular case where the embedding is given. To see this, let G′ be a
triangulation of a plane (resp. outerplane) embedding of G where, in every face
of G, all edges added to it have a common endpoint. Then, for each edge uv in
each shortest path in an optimal completion of G, a u-v-path of length at most
two exists in G′. Thus, for both graph invariants, the diameter of G′ does not
exceed twice the optimal value.

Our Results. In this work, we show that Outerplanar Diameter Improve-
ment is polynomial-time solvable. Our algorithm, described in Sect. 2, is based
on dynamic programming and works in full generality, even when the input graph
may be disconnected. Also, our algorithm does not assume that the input comes
with some specific embedding (in the case of an embedded input, the problem
becomes considerably easier to solve).

2 Description of the Algorithm

The aim of this section is to describe a polynomial-time dynamic program that,
given an outerplanar graph G and an integer D, decides whether G admits
an outerplanar completion with diameter at most D, denoted diameter-D out-
erplanar completion for simplicity. By repeated use of this algorithm, we can
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thus determine in polynomial time the smallest integer D such that G admits a
diameter-D outerplanar completion.

Before describing the algorithm, we show some properties of outerplanar com-
pletions. In particular, Subsect. 2.1 handles the case where the input outerplanar
graph has cut vertices. Its objective is to prove that we can apply a reduction rule
to such a graph which is safe for the OPDI problem. In Subsect. 2.2 we deal with
2-vertex separators, and in Subsect. 2.3 we present a polynomial-time algorithm
for connected input graphs. Finally, we present the algorithm for disconnected
input graphs in Subsect. 2.4.

Some Notation. We use standard graph-theoretic notation, see for instance [8].
It is well known that a graph is outerplanar if and only if it excludes K4 and
K2,3 as a minor. An outerplanar graph is triangulated if all its inner faces (in an
outerplanar embedding) are triangles. An outerplanar graph is maximal if it is
2-connected and triangulated. Note that, when solving the OPDI problem, we
may always assume that the completed graph G′ is maximal.

2.1 Reducing the Input Graph When There Are Cut Vertices

Given a graph G, let the eccentricity of a vertex u be ecc(u,G) = maxv∈V (G)

distG(u, v). Given an outerplanar graph G, a vertex u ∈ V (G), and an integer D,
let us define ecc∗

D(u,G) as minH ecc(u,H) over all the diameter-D outerplanar
completions H of G. We set this value to +∞ if no such completion of G exists.
Unless said otherwise, we assume henceforth that D is a fixed given integer, so
we may just write ecc∗(u,G) instead of ecc∗

D(u,G). (The value of D will change
only in the description of the algorithm at the end of Subsect. 2.3, and in that
case we will make the notation explicit).

As admitting an outerplanar completion with bounded eccentricity (for a
fixed vertex u) is a minor-closed property, let us observe the following:

Lemma 1. (�)3 For any connected outerplanar graph G, any vertex v ∈ V (G),
and any connected subgraph H of G with v ∈ V (H), we have that ecc∗(v,H) ≤
ecc∗(v,G).

Consider a connected graph G with a cut vertex v, and let C1, . . . , Ct be the
vertex sets of the connected components of G \ {v}. For 1 ≤ i ≤ t, we call
the vertex set Bi = Ci ∪ {v} a branch of G at v. To shorten notations, we
abbreviate Bi ∪ . . . ∪ Bj =: Bi...j . Also, when referring to the eccentricity, we
simply write Bi to denote the subgraph of G that is induced by Bi (i.e. G[Bi]).
Thus, the value ecc∗(v,B1...i) refers to the minimum eccentricity with respect
to v that a diameter-D outerplanar completion of the graph G[B1...i] can have.
The following lemma, crucial in our polynomial-time algorithm, implies that it
is safe to ignore most of the branches of G at a cut vertex v.

Lemma 2. (�) Consider a connected outerplanar graph G with a cut vertex
v that belongs to at least 7 branches. Denote these branches B1, . . . , Bt with
3 The proofs of results annotated with (�) appear in the Appendix. For the full version

of the paper, see [5].
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t ≥ 7, in such a way that ecc∗(v,B1) ≥ . . . ≥ ecc∗(v,Bt). The graph G has an
outerplanar completion with diameter at most D if and only if ecc∗(v,B1...6) +
ecc∗(v,B7) ≤ D.

Our algorithm computes the minimal eccentricity of a given “root” vertex r
in a diameter-D outerplanar completion of G, i.e. ecc∗(r,G). Then, however,
the branch containing the root (B0 in Algorithm 1, Subsect. 2.3) should not be
removed. Therefore, although Lemma 2 already implies that G has a diameter-D
outerplanar completion if and only if G[B1...7] does, we instead use the following
corollary to identify removable branches.

Corollary 1. (�) Let G be a connected outerplanar graph with a cut vertex v
that belongs to at least 8 branches. Denote these branches B1, . . . , Bt, with t ≥ 8,
in such a way that ecc∗(v,B1) ≥ . . . ≥ ecc∗(v,Bt). For each 8 ≤ i ≤ t, the graph
Gi =

⋃
j∈{1,...,7,i} Bj has a diameter-D outerplanar completion if and only if

G does.

2.2 Dealing with 2-Vertex Separators

In this subsection, we extend the definition of eccentricity to the pairs (u, v) such
that uv ∈ E(G). Namely, ecc(u, v,G) is defined as the set of pairs obtained by
taking the maximal elements of the set {(distG(u,w),distG(v, w)) | w ∈ V (G)}.
The pairs are ordered such that (d1, d2) ≤ (d′

1, d
′
2) if and only if d1 ≤ d′

1 and
d2 ≤ d′

2. As u and v are adjacent, note that distG(u,w) and distG(v, w) differ
by at most one. Hence, ecc(u, v,G) is equal to one of {(d, d)}, {(d, d + 1)},
{(d + 1, d)}, and {(d, d + 1), (d + 1, d)}, for some positive integer d. As before,
we abbreviate ecc(u, v,G[X]) by ecc(u, v,X). Given a graph G and a subset
S ⊆ V (G), we denote by ∂(S) the set of vertices in S that have at least one
neighbor in V (G) \ S.

Lemma 3. (�) Consider a connected graph G with V (G) =: X and a triangle
uvw and two sets Xu,Xv ⊆ X such that Xu ∪ Xv = X, Xu ∩ Xv = {w},
∂(Xu) ⊆ {u,w}, and ∂(Xv) ⊆ {v, w}. Then ecc(u, v,G) equals the maximal
elements of the set

{(du,min{du + 1, dw + 1}) | (du, dw) ∈ ecc(u,w,Xu)} ∪
{(min{dw + 1, dv + 1}, dv) | (dw, dv) ∈ ecc(w, v,Xv)}.

Given a connected outerplanar graph G, for any two vertices u, v ∈ V (G) and
any vertex set X ⊆ V (G) with u, v ∈ X such that ∂(X) ⊆ {u, v}, let us define
ecc∗

D(u, v,X) (or ecc∗(u, v,X)) as the minimal elements of the set
{

ecc(u, v,H)
∣∣∣∣
H is a diameter-D outerplanar completion of G[X] such
that uv ∈ E(H) and such that uv lies on the outer face.

}

If this set is empty, we set ecc∗
D(u, v,X) to {{(∞,∞)}}. Here, ecc(u, v,H) ≤

ecc(u, v,H ′) if and only if for any (d1, d2) ∈ ecc(u, v,H) there exists (d′
1, d

′
2) ∈
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ecc(u, v,H ′) such that (d1, d2) ≤ (d′
1, d

′
2). According to the possible forms of

ecc(u, v,H), we have that ecc∗(u, v,X) is of one of the following five forms (for
some positive integer d):

• {{(d, d)}},
• {{(d, d + 1)}},
• {{(d + 1, d)}},
• {{(d, d + 1), (d + 1, d)}}, or
• {{(d, d+1)}, {(d+1, d)}} (when the minima come from different values of H)

Considering ecc∗(u,X) for some u and X, note that u has at least one incident
edge uv on the outer face in an outerplanar completion achieving ecc∗(u,X).
Thus, we can observe the following.

Observation 1. ecc∗(u,X) = minv∈X minS∈ecc∗(u,v,X) max(du,dv)∈S du.

2.3 The Algorithm for Connected Outerplanar Graphs

We now proceed to describe a polynomial-time algorithm that solves Outerpla-
nar Diameter Improvement when the input outerplanar graph is connected.
In Subsect. 2.4 we will deal with the disconnected case. In a graph, a block is
either a maximal 2-vertex-connected component or a bridge. Before proceeding
to the formal description of the algorithm, let us provide a high-level sketch.

Algorithm 1 described below receives a connected outerplanar graph G, an
arbitrary non-cut vertex r of G, called the root (such a vertex is easily seen
to exist in any graph), and a positive integer D. In order to decide whether G
admits a diameter-D outerplanar completion, we compute in polynomial time
the value of ecc∗

D(r,G), which by definition is finite if and only if G admits a
diameter-D outerplanar completion.

In order to compute ecc∗
D(r,G), the algorithm proceeds as follows. In the

first step (lines 1–9), we consider an arbitrary block B of G containing r (line 1),
and in order to reduce the input graph G, we consider all cut vertices v of G
in B. For each such cut vertex v, we order its corresponding branches according
to their eccentricity w.r.t. v (line 8), and by Corollary 1 it is safe to keep just
a constant number of them, namely 8 (line 9). For computing the eccentricity
of the branches not containing the root (lines 5–7), the algorithm calls itself
recursively, by considering the branch as input graph, and vertex v as the new
root.

In the second step of the algorithm (lines 10–17), we try all 2-vertex separa-
tors u, v in the eventual completed graph G′ (note that G′ cannot be 3-connected,
as otherwise it would contain a K2,3-minor or a K4-minor), together with a set
X consisting of a subset of the connected components of G′ \ {u, v}, not con-
taining the root r. For each such triple (u, v,X), our objective is to compute
the value of ecc∗

D(u, v,X). To this end, after initializing its value (lines 11–12),
we consider all possible triples w,Xu,Xv chosen as in Lemma 3 after adding
the triangle uvw to G[X] (line 13), for which we already know the values of



A Polynomial-Time Algorithm for Outerplanar Diameter Improvement 129

ecc∗
D(u,w,Xu) and ecc∗

D(w, v,Xv), since the sets X are processed by increas-
ing size. Among all choices of one element in ecc∗

D(u,w,Xu) and another in
ecc∗

D(w, v,Xv) (line 14), only those whose corresponding completion achieves
diameter at most D are considered for updating the value of ecc∗

D(u, v,X)
(line 15). For updating ecc∗

D(u, v,X) (line 17), we first compute eccD(u, v,X)
using Lemma 3 (line 16).

Finally, once we have computed all values of ecc∗
D(u, v,X), we can easily

compute the value of ecc∗
D(u,X) by using Observation 1 (line 18). The formal

description of the algorithm can be found in Fig. 1.
The correctness of Algorithm 1 follows from the results proved in Subsects. 2.1

and 2.2, and the following fact (whose proof is straightforward), which guarantees
that the value of ecc∗

D(u, v,X) can indeed be computed as done in lines 13–17.

Fact 1. There exists an outerplanar completion H of G[X] with the edge uv on
the outer boundary if and only if there is w ∈ X and two sets Xu,Xv such that:

(a) Xu ∪ Xv = X, Xu ∩ Xv = {w},
(b) ∂G(Xu) ⊆ {u,w} and ∂G(Xv) ⊆ {v, w}, and
(c) there exists an outerplanar completion Hu of G[Xu] with the edge uw on the

outer boundary, and an outerplanar completion Hv of G[Xv] with the edge
vw on the outer boundary.

It remains to analyze the running time of the algorithm.

Running Time Analysis of Algorithm 1. Note that at line 6 each Bi is
recursively replaced by an equivalent (by Corollary 1) subgraph such that its cut
vertices have at most 8 branches attached.

Let us first focus on the second step of the algorithm, that is, on lines 10–17.
The algorithm considers in line 10 at most O(n2) pairs {u, v}. As each of u
and v has at most 7 attached branches avoiding the root, and G \ {u, v} has
at most 2 connected components with vertices adjacent to both u and v (as
otherwise G would contain a K2,3-minor), there are at most 27 · 27 · 22 = 216

possible choices for assigning these branches or components to X or not. In
line 13, the algorithm considers O(n) vertices w. Similarly, as w belongs to at
most 7 branches not containing u nor v, there are at most 27 choices for assigning
these branches to Xu or Xv. In lines 14–17, the algorithm uses values that have
been already computed in previous iterations, as the sets X are considered by
increasing order. Note that each of ecc∗

D(u,w,Xu) and ecc∗
D(w, v,Xv) contains

at most 2 elements, so at most 4 choices are considered in line 14. Again, at
most 4 choices are considered in line 15. Therefore, lines 14–17 are executed in
constant time.

As for the first step of the algorithm (lines 1–9), the algorithm calls itself
recursively. The number of recursive calls is bounded by the number of blocks of
G, as by construction of the algorithm each block is assigned a single root. There-
fore, the number of recursive calls is O(n). Once the algorithm calls itself and
the corresponding branch has no cut vertex other than the root, the algorithm
enters in lines 10–17, whose time complexity has already been accounted above.
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Fig. 1. The algorithm OPDI-Connected

(Note that each triple (u, v,X) is considered only once, and the value of
ecc∗

D(u, v,X) is stored in the tables.)
Finally, in line 18, the algorithm considers O(n) vertices, and for each of

them it chooses among constantly many numbers. Summarizing, we have that
the algorithm has overall complexity O(n3).

It is worth mentioning that Algorithm1 can also compute the actual comple-
tion achieving diameter at most D, if any, within the same time bound. Indeed,
it suffices to keep track of which edges have been added to G when considering
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the guessed triangles uvw (recall that we may assume that the completed graph
is triangulated).

Theorem 1. Algorithm1 solves Outerplanar Diameter Improvement for
connected input graphs in time O(n3).

Note that we can compute opdi(G) by calling Algorithm 1 with an arbitrary
root r ∈ V (G) (such that G \ {r} is connected) for increasing values of D, or
even binary search on these values.

Corollary 2. Let G be a connected outerplanar graph. Then, opdi(G) can be
computed in time O(n3 log n).

2.4 The Algorithm for Disconnected Outerplanar Graphs

In this subsection we will focus on the case where the input outerplanar graph is
disconnected. The radius of a graph is defined as the eccentricity of a “central”
vertex, that is, the minimum eccentricity of any of its vertices.

Lemma 4. ([6], Theorem 3). Let G be a maximal outerplanar graph of diam-
eter D and radius r. Then, r ≤ 	D/2
 + 1.

In the following, we denote the minimum radius of a diameter-D outerplanar
completion of a graph or connected component G by r∗(G). If G has no diameter-
D outerplanar completion, then let r∗(G) = ∞.

Definition 1. Let G be a connected graph and let D be an integer. Let G′

be the graph resulting from G by adding an isolated vertex v. Let G∗ be a
diameter-D outerplanar completion of G′ that minimizes the eccentricity of v.
Then, G∗ is called escalated completion of (G,D) with respect to v and the eccen-
tricity ecc(v,G∗), denoted by r+(G), is called escalated eccentricity of (G,D).
Again, if such a G∗ does not exist, let r+(G) = ∞.

We will apply Definition 1 also to connected components of a graph and, if clear
from context, we omit D. Note that we can compute r+(G) by guessing an
edge between the isolated vertex v and G and running OPDI-Connected, the
algorithm for connected graphs. Hence this can be done in O(n4) time. Also
note that r∗(G) ≤ r+(G) ≤ r∗(G) + 1.

Lemma 5. (�) Given a graph G with a connected component C such that
r+(C) < D/2, then G has a diameter-D outerplanar completion if and only
if G \ C does.

Observation 2. (�) Let C be a connected component of G, let G′ be an out-
erplanar completion of G and let C ′ be a connected component of G′ \ C. Then,
there is a vertex v ∈ C at distance at least r+(C) to each vertex of C ′ in G′.

Observation 2 immediately implies that any cutset separating two connected
components C1 and C2 of G in G′ has distance at least r+(C1) and r+(C2) to
some vertex in C1 and C2, respectively. Thus, these two vertices are at distance
at least r+(C1) + r+(C2) in G′.
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Corollary 3. Let C1 and C2 be connected components of G such that r+(C1) +
r+(C2) > D and let G′ be a diameter-D outerplanar completion of G. Then, C1

and C2 are adjacent in G′, i.e. G′ has an edge with an end in C1 and an end in C2.

Corollary 3 allows us to conclude that all connected components C with r+(C) >
D/2 have to be pairwise adjacent in any diameter-D outerplanar completion
of G. Thus, there cannot be more than three such components.

Lemma 6. (�) An outerplanar graph G with more than 3 connected components
C such that r+(C) > D/2 has no diameter-D outerplanar completion. On the
other hand, if G has no connected component C such that r+(C) > D/2, then
G necessarily has a diameter-D outerplanar completion.

Hence, assume G has p = 1, 2, or 3 connected components C such that r+(C) >
D/2. By Corollary 3 these p components are pairwise adjacent in the desired
completion. Note that with O(n2p−2) tries, we can guess p − 1 edges connecting
all such components into one larger component. Thus, in the following, we assume
that there is only one component C with r+(C) > D/2, denoted Cmax.

Lemma 7. (�) Consider an outerplanar graph G with exactly one connected
components Cmax such that D/2 < r+(Cmax) < ∞. If r∗(Cmax) ≤ D/2, then G
necessarily has a diameter-D outerplanar completion.

Let us now distinguish two cases according to the parity of D.

Lemma 8. (�) For odd D, if an outerplanar graph G has at most one compo-
nent Cmax such that D/2 < r+(Cmax) < ∞, then G has a diameter-D outerplanar
completion.

The case where D is even is more technical.

Lemma 9. (�) For even D, Let p and q respectively denote the number of con-
nected components C such that D/2 < r+(C) < ∞ and r+(C) = D/2, of an
outerplanar graph G. If p ≥ 2 and p + q ≥ 5, then G has no diameter-D outer-
planar completion.

Lemma 10. (�) For even D, if an outerplanar graph G has one component,
denoted Cmax, such that D/2 < r∗(Cmax) < ∞, and at least 4 other components C
such that D/2 ≤ r+(C) < ∞, then G has no diameter-D outerplanar completion.

Hence, assume G has q = 0, 1, 2, or 3 connected components C such that r+(C) =
D/2. By Corollary 3 these q components are adjacent to each of the p components
such that r+(C) > D/2. Note that with O(n2q) tries, we can guess q edges
connecting each of the q components to one of the p component. Then we are
left with a connected graph, and we can call OPDI-Connected.

The Algorithm Itself. We now describe a polynomial-time algorithm that
solves the Outerplanar Diameter Improvement problem when the input
contains a disconnected outerplanar graph. Algorithm2 described in Fig. 2
receives a (disconnected) outerplanar graph G, and a positive integer D.
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Fig. 2. The algorithm OPDI-Disconnected.

At the beginning, the algorithm computes r+(C) and r∗(C) for each con-
nected component C of G. For computing r+(C) the algorithm adds a ver-
tex v, guessing (with O(n) tries) an edge connecting v to C, and then calls
OPDI-Connected for this component and root v. For computing r∗(C) the algo-
rithm guesses a root u (with O(n) tries), and then calls OPDI-Connected for C
and root u.

If r∗(C) = ∞ for some component C then, as r∗(G) ≥ r∗(C), G has no
diameter-D outerplanar completion.

Then, as they could be added in a diameter-D outerplanar completion (by
Lemma 5), the algorithm removes the components C with small escalated eccen-
tricity, that is those such that r+(C) < D/2.
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Then the algorithm tests if there is no component C such that r+(C) > D/2,
or if there is only one component C such that r+(C) > D/2, and if r∗(C) ≤ D/2.
In both cases by Lemmas 6 and 7, G is a positive instance.

Then the algorithm tests if there are more than 3 components C such that
r+(C) > D/2. In this case, by Lemma 6, G is a negative instance. Otherwise, G
has p = 1, 2, or 3 such connected components, and the algorithm guesses p − 1
edges (in time O(n2p−2)) to connect them (as they should be by Corollary 3).
For each such graph we call algorithm OPDI-Connected to check that this graph
has a diameter-D outerplanar completion.

Then the algorithm proceeds differently according to D’s parity. If D is odd,
then G is a positive instance (By Lemma 8). If D is even, if G has (still) more
than 5 − p connected components (by Lemmas 9 and 10), then G is a negative
instance. Then we are left with a graph G with 1+q connected components, and
again the algorithm guesses q edges (in time O(n2q)), connecting G. For each of
these graphs the algorithm calls OPDI-Connected(G, v,D) (for any v) to check
whether this graph admits a diameter-D outerplanar completion.

Finally if none of these “guessed” connected graphs has a diameter-D outer-
planar completion, then the algorithm concludes that G is a negative instance.

Theorem 2. (�) Algorithm 2 solves Outerplanar Diameter Improve-
ment for disconnected input graphs in polynomial time. For odd D the running
time is O(n7), while it is O(n9) for even D.

3 Conclusions and Further Research

Our algorithm for OPDI runs in time O(n3) for connected input graphs, and in
time O(n7) or O(n9) for disconnected input graphs, depending on whether D is
odd or even, respectively. The main contribution of our work is to establish the
computational complexity of OPDI and there is room for improvement of the
running time.

We believe that our approach might be interesting for generalizations or
variations of the OPDI problem, such as the one where we demand that the
augmented graph has fixed outerplanarity or is series-parallel.

By the Graph Minors series of Robertson and Seymour [22,23], we know that
for each fixed integer D, the set of minor obstructions4 of OPDI is finite. We
have some preliminary results in this direction, but we managed to obtain a
complete list only for small values of D. Namely, we obtained a partial list of
forbidden substructures (not necessarily minimal), by using the notion of parallel
matching. These partial results can be found in the arXiv version of this article,
see [5].

Settling the computational complexity of PDI remains the main open prob-
lem in this area. An explicit FPT-algorithm, or even an XP-algorithm, would

4 The minor obstruction set of OPDI for some D is the smallest family F of graphs
such that a graph G has an outerplanar completion of diameter D if and only if no
graph of F is a minor of G.
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also be significant. The interested reader can find in the arXiv version [5] of this
paper a NP-completeness result for a modified version of PDI involving edge
weights.

Appendix

Proof (of Lemma1). Let G′ be an outerplanar completion of G such that
ecc(v,G′) = ecc∗(v,G). Contracting the edges of G′ that have at least one
endpoint out of V (H) one obtains an outerplanar completion H ′ of H (as
outerplanar graphs are minor-closed). As contracting an edge does not elon-
gate any shortest path, we have that distH′(v, u) ≤ distG′(v, u) for any vertex
u ∈ V (H), and in particular the diameter of H ′ is at most the diameter of G′,
so ecc∗(v,H) ≤ ecc(v,H ′) ≤ ecc(v,G′) = ecc∗(v,G). ��
Proof (of Lemma2). “⇐”: If ecc∗(v,B1...6) + ecc∗(v,B7) ≤ D, gluing on v
the outerplanar completions of G[B1...6], G[B7], . . . , G[Bt], respectively achieving
ecc∗(v,B1...6), ecc∗(v,B7), . . . , ecc∗(v,Bt), one obtains a diameter-D outerplanar
completion G′ of G. Indeed,

• The graph obtained is outerplanar and contains G.
• Two vertices x, y of G[B1...6] (resp. of G[Bi] for 7 ≤ i ≤ t) are at distance at

most D from each other, as ecc∗(v,B1...6) < ∞ (resp. as ecc∗(v,Bi) < ∞).
• Any vertex x of G[B1...6] and y of G[Bi], with 7 ≤ i ≤ t, are respectively at

distance at most ecc∗(v,B1...6) and ecc∗(v,Bi) ≤ ecc∗(v,B7) from v. They are
thus at distance at most ecc∗(v,B1...6) + ecc∗(v,B7) ≤ D from each other.

• Any vertex x of G[Bi] and y of G[Bj ], with 7 ≤ i < j ≤ t, are respectively
at distance at most ecc∗(v,Bi) ≤ ecc∗(v,B1) ≤ ecc∗(v,B1...6) (By Lemma 1)
and ecc∗(v,Bj) ≤ ecc∗(v,B7) from v. They are thus at distance at most D
from each other.

“⇒”: In the following, we consider towards a contradiction an outerplanar graph
G admitting a diameter-D outerplanar completion, but such that

ecc∗(v,B1...6) + ecc∗(v,B7) > D. (1)

Among the triangulated diameter-D outerplanar completions of G, let G′ be
one that maximizes the number of branches at v. Let t′ > 0 be the num-
ber of branches at v in G′, and denote these branches B′

1, . . . , B
′
t′ , in such

a way that ecc∗(v,G′) = ecc∗(v,B′
1) ≥ ecc∗(v,B′

2) ≥ . . . ≥ ecc∗(v,B′
t′).

Let Si′ := {i | Bi ⊆ B′
i′} for all 1 ≤ i′ ≤ t′ (note that {S1, . . . , St′} is a

partition of {1, . . . , t}). Furthermore, among all B′
i′ maximizing ecc∗(v,B′

i′), we
choose B′

1 such that min S1 is minimal. Then, since G′ has diameter at most D
and shortest paths among distinct branches of G′ contain v, it is clear that

∀
1≤i′<j′≤t′

ecc∗(v,B′
i′) + ecc∗(v,B′

j′) ≤ D. (2)

The branches B′
i′ with |Si′ | = 1 are called atomic.
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Claim 1. Let B′
i′ be a non-atomic branch and let S′

� Si′ . Then,
ecc∗(v,

⋃
i∈S′ Bi) + ecc∗(v,

⋃
i∈Si′\S′ Bi) > D.

Proof. Let B :=
⋃

i∈S′ Bi and B̄ := B′
i′ \B. If the claim is false, then ecc∗(v,B)+

ecc∗(v, B̄) ≤ D. Furthermore, for all j′ �= i′,

ecc∗(v,B) + ecc∗(v,B′
j′)

Lemma 1≤ ecc∗(v,B′
i′) + ecc∗(v,B′

j′)
(2)

≤ D

and, likewise, ecc∗(v, B̄)+ecc∗(v,B′
j′) ≤ D. Thus, the result of replacing G′[B′

i′ ]
with the disjoint union of an outerplanar completion achieving ecc∗(v,B) and
an outerplanar completion achieving ecc∗(v, B̄) yields a diameter-D outerplanar
completion containing more branches than G′, contradicting our choice of G′.

In the following, we abbreviate |S1| =: s.

Claim 2. S1 = {j | 1 ≤ j ≤ s}.
Proof. Towards a contradiction, assume that there is some i /∈ S1 with i +
1 ∈ S1. Let i′ > 1 be such that Bi ⊆ B′

i′ . Note that B′
1 is not atomic, as

otherwise ecc∗(v,B′
1) = ecc∗(v,Bi+1) ≤ ecc∗(v,Bi) ≤ ecc∗(v,B′

i′), contradicting
the numbering of the B′

j ’s. Then,

ecc∗(v,B′
1 \ (Bi+1 \ v))) + ecc∗(v,Bi+1)

Lemma 1≤ ecc∗(v,B′
1) + ecc∗(v,Bi+1)

≤ ecc∗(v,B′
1) + ecc∗(v,Bi)

≤ ecc∗(v,B′
1) + ecc∗(v,B′

i′)
(2)

≤ D,

contradicting Claim 1.

Claim 3. For all i, we have ecc∗(v,B1...i) + ecc∗(v,Bi+1) > D if and only
if i < s.

Proof. “⇐”: Towards a contradiction, assume there is some i < s such that
ecc∗(v,B1...i)+ecc∗(v,Bi+1) ≤ D. Then the graph obtained from the diameter-D
outerplanar completions of B1...i and Bj for all i < j ≤ t, respectively achieving
ecc∗(v,B1...i) and ecc∗(v,Bj), would be a diameter-D outerplanar completion of
G with more branches than G′, a contradiction.

“⇒”: Assume towards a contradiction that there is some i ≥ s such
that ecc∗(v,B1...i) + ecc∗(v,Bi+1) > D. By (2) and Lemma 1, we have D ≥
ecc∗(v,B1...s)+ecc∗(v,Bi+1) and, hence ecc∗(v,B1...i) > ecc∗(v,B1...s). But this
contradicts Lemma 1, as ecc∗(v,B1...s) = ecc(v,G′) ≥ ecc∗(v,G).

By (1), Claim 3 implies that s ≥ 7.

Claim 4. Let S′ ⊆ {1, . . . , t} and let B :=
⋃

i∈S′ Bi. Then, there is a vertex in B
that is, in G′, at distance at least ecc∗(v,B) to every vertex of V (G) \ (B \ v).
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Proof. Towards a contradiction, assume that for every vertex u ∈ B there exists
a vertex w ∈ V (G) \ (B \ v)) such that distG′(u,w) < ecc∗(v,B). From G′,
contracting all vertices of V (G)\B onto v yields a graph H with a path between u
and v of length strictly smaller than ecc∗(v,B). As this argument holds for every
vertex u ∈ B, it implies that ecc(v,H) < ecc∗(v,B). Since H is an outerplanar
completion of G[B], this contradicts the definition of ecc∗.

Two sub-branches Bi and Bj of B′
1 are linked if G′ contains an edge from a

vertex of Bi \ {v} to a vertex of Bj \ {v}.

Claim 5. Let 1 ≤ i < j ≤ s and let ecc∗(v,B1...i) + ecc∗(v,Bj) > D. Then
ecc∗(v,B1...i) + ecc∗(v,Bj) = D + 1, and Bj is linked to one of B1, . . . , Bi.

Proof. By Claim 4, there is a vertex x ∈ Bj that is, in G′, at distance at least
ecc∗(v,Bj) to every vertex in B1...i ⊆ V (G) \ (B \ v). Likewise, there is a vertex
y ∈ B1...i that is, in G′, at distance at least ecc∗(v,B1...i) to every vertex in
Bj . Let P be any shortest path of G′ between x and y (hence P has length at
most D). By construction, the maximal subpath of P in Bj \ v containing x
has length at least ecc∗(v,Bj) − 1 and the maximal subpath of P in B1...i \ v
containing y has length at least ecc∗(v,B1...i)−1. Since these subpaths are vertex
disjoint the remaining part of P has length dP ≥ 1. Hence D ≥ ecc∗(v,Bj) +
ecc∗(v,B1...i)+dP −2. As ecc∗(v,B1...i)+ecc∗(v,Bj) > D, we have that dP = 1,
and thus there is a single edge in P linking Bj and B1...i. This also yields to
ecc∗(v,Bj) + ecc∗(v,B1...i) = D + 1.

In the following, consider the graph L on the vertex set {1, . . . , t} such that ij
is an edge of L if and only if Bi is linked to Bj in G′. For all 1 ≤ k ≤ t, let Lk

be the subgraph of L that is induced by {1, . . . , k}. A consequence of the next
claim will be that Bi+1 is linked to exactly one of these branches.

Claim 6. For each 1 ≤ k ≤ s, the graph Lk is a path.

Proof. Let 1 ≤ k ≤ s. Then,

1. Lk is connected. Indeed Claims 3 and 5 clearly imply that for any 1 ≤ i < s,
Bi+1 is linked to one of B1, . . . , Bi, i.e. that there is a path from any k to
1 in Lk.

2. Lk has maximum degree 2: towards a contradiction, assume that some branch
Bi is linked to three branches Bj1 , Bj2 , and Bj3 . As each of Bi \ v, Bj1 \ v,
Bj2 \ v, and Bj3 \ v induces a connected graph in G′, these four sets together
with v induce a K2,3-minor in G′, contradicting its outerplanarity.

3. Lk is not a cycle since otherwise, as each Bi \ v induces a connected graph in
G′, these sets together with v would induce a K4-minor in G′ (since s ≥ 3),
contradicting its outerplanarity.

Hence, for any 1 ≤ i ≤ s, the graph G′[B1...i \ v] is connected.

Claim 7. For any 3 ≤ i < s, ecc∗(v,B1...i) > ecc∗(v,B1...i−2).
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Proof. The monotonicity property given by Lemma1 implies that ecc∗(v,B1...i) ≥
ecc∗(v,B1...i−1) ≥ ecc∗(v,B1...i−2). Towards a contradiction suppose that
ecc∗(v,B1...i) = ecc∗(v,B1...i−1) = ecc∗(v,B1...i−2) =: c. Then, Claim 3 implies
that c+ecc∗(v,Bj) > D for all j ∈ {i−1, i, i+1}. Thus, by Claim 5, each of Bi−1,
Bi, and Bi+1 is linked to one of B1, . . . , Bi−2. As each of B1...i−2\v, Bi−1\v, Bi\v,
and Bi+1 \ v induces a connected graph in G′, these sets together with vertex v
induce a K2,3-minor, contradicting the outerplanarity of G′.

In the following let q be any integer such that 3 ≤ q ≤ s and Bq is not linked
to B1. Let p < q be such that Bp and Bq are linked. Note that p is unique since
otherwise, Lq would not be a path, contradicting Claim6.

Consider a shortest cycle containing v, a vertex u ∈ Bp and some vertex
of Bq. Since G′ is triangulated, this cycle is a triangle. Thus, u is a neighbor of v
(in G′) with u ∈ Bp and u is adjacent to some vertex in Bq \ v (see Fig. 3 for an
illustration).

v

Bp

BqB1

u

Fig. 3. Structure of G′[B1...q].

Since, by Claim 6, all paths in G′ between a vertex in B1 and a vertex in Bq

contain u or v, it is clear that {v, u} separates B1 \v and Bq \v. Let (X,Y ) be a
separation of G′ (that is, two sets X,Y ⊆ V (G′) such that X ∪ Y = V (G′) and
such that there are no edges between X \Y and Y \X) such that X ∩Y = {v, u},
B1...q−1 \ Bp � X and Bq ⊆ Y (such a separation exists by Claim 6).

Claim 8. ecc∗(v,B1...q) = ecc∗(v,B1...q−1).

Proof. By Lemma 1, it suffices to show ecc∗(v,B1...q) ≤ ecc∗(v,B1...q−1). To this
end, let H be the outerplanar completion of B1...q obtained from G′ by contract-
ing every branch Bi, with i > q, onto v. Since H is a minor of G′, H is a diameter-
D outerplanar completion of B1...q. We show ecc(v,H) ≤ ecc∗(v,B1...q−1).

Consider any vertex x ∈ X, and let y ∈ Bq ⊆ Y be a vertex that is at distance
at least ecc∗(v,Bq) to both v and u (such a vertex y exists by Claim 4). As all
shortest paths between x and y (of length at most D) contain v or u, the vertex
x is at distance at most D − ecc∗(v,Bq) to v or u. As v and u are adjacent, the
vertex x is at distance at most D+1−ecc∗(v,Bq) (= ecc∗(v,B1...q−1) by Claim 5,
which is applicable since, by Claim 3, ecc∗(v,B1...q−1) + ecc∗(v,Bq) > D) to v.
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Since x is chosen arbitrarily in X, every vertex in X is at distance at most
ecc∗(v,B1...q−1) to v in H.

Consider now any vertex y ∈ Y ∩ V (H), and let x ∈ B1 � X be a vertex
that is at distance at least ecc∗(v,B1) to both v and u (such a vertex x exists by
Claim 4). As a shortest path between x and y (of length at most D) goes through
v or u, the vertex y is thus at distance at most D−ecc∗(v,B1) to v or u. As v and u
are adjacent, the vertex y is at distance at most D+1−ecc∗(v,B1) (= ecc∗(v,B2)
by Claim 5, which is applicable since, by Claim 3, ecc∗(v,B1)+ecc∗(v,B2) > D)
to v. As ecc∗(v,B2) ≤ ecc∗(v,B1...q−1) by Lemma 1, every vertex y ∈ Y ∩ V (H)
is at distance at most ecc∗(v,B1...q−1) to v in H. ��
We now claim that there exist two consecutive such values q between 3 and 6.
Indeed, by Claim 6 B1 is linked to at most two other branches, and by Claims 3
and 5 B2 is linked to B1, so it follows that B1 is linked to at most one branch Bj

with j ≥ 3. Therefore, for 3 ≤ q ≤ 6, there are at least two consecutive values of
q such that Bq is not linked to B1. Once we have these two consecutive values,
say i − 1 and i, we have by Claim 8 that ecc∗(v,B1...i−2) = ecc∗(v,B1...i), for
some i ≤ 6, contradicting Claim 7. This concludes the proof of the lemma. ��
Proof (of Corollary 1). Recall that the property of having an outerplanar com-
pletion with bounded diameter is minor closed. Thus Gi being a minor of G, we
have that if G admits a diameter-D outerplanar completion, then so does Gi.

On the other hand, if Gi admits a diameter-D outerplanar completion, by
Lemma 2 applied to Gi we have that ecc∗(v,B1...6)+ecc∗(v,B7) ≤ D. Thus glu-
ing on v the outerplanar completions of G[B1...6], G[B7], . . . , G[Bt], respectively
achieving ecc∗(v,B1...6), ecc∗(v,B7), . . . , ecc∗(v,Bt), one obtains a diameter-D
outerplanar completion of G. ��
Proof (of Lemma3). It is clear from the fact that a shortest path from Xu \ {u}
to u does not go through Xv \{w} (as it should go through w ∈ N(u)), from the
fact that a shortest path from Xu to v goes through {u,w} ⊆ N(v), and from
the fact that any subpath of a shortest path is a shortest path (for some pair of
vertices). ��
Proof (of Lemma5). In a diameter-D outerplanar completion of G \ C there is
a vertex v with eccentricity at most 	D/2
+1, by Lemma 4. In this completion,
adding the completion of C + v achieving r+(C) < D/2, yields a diameter-D
outerplanar completion of G. ��
Proof (of Observaton 2). Let the result of contracting all vertices in G′ \ (C ∪C ′)
onto vertices in C and contracting C ′ onto a single vertex u be G′′. Then, G′′

is a subgraph of an outerplanar completion of the result of adding u as isolated
vertex to G′[C]. By definition, ecc(u,G′′) ≥ r+(C), implying that there is a
vertex v ∈ C at distance at least r+(C) to u in G′′. Thus, v is at distance at
least r+(C) to each vertex of C ′ in G′. ��
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Proof (of Lemma6). The first statement comes from the above comments. The
proof of the second statement is similar to the one of Lemma 5. For some com-
ponent C of G, let v be such that ecc(v, C) = r∗(C) ≤ r+(C) ≤ D/2, and
complete C in order to achieve this value. Then for the other components C ′

consider their escalated completion with respect to v. As r+(C ′) ≤ D/2 this
graph has diameter at most D. ��
Proof (of Lemma7). Same proof as Lemma 6 ��
Proof (of Lemma8). Indeed, by Lemma 5 it is sufficient to consider the compo-
nent Cmax alone. As r+(Cmax) < ∞, Cmax has a diameter-D outerplanar comple-
tion, and so does G. ��
Proof (of Lemma9). By Corollary 3, in a diameter-D outerplanar completion G′

of G the p components are pairwise adjacent, and any of the q components is adja-
cent to every of the p ones. For p = 2, as q ≥ 3, this would induce a K2,3-minor in
G′, a contradition. For the other cases, this would induce a K4-minor. ��
Proof (of Lemma10). Let us denote C1, C2, C3, and C4 the connected compo-
nents such that r+(Ci) ≥ D/2, distinct from Cmax. Assume for contradiction
that G admits a diameter-D outerplanar completion, denoted G′.

Claim 9. For each Ci, Cj, either Ci and Cj are adjacent in G′, or Ci and Cj

have a common neighbor in G′.

Proof. Assume for contradiction that Ci and Cj are not adjacent and do not
have a common neighbor in G′. Let us now construct the graph G′′ from G′ as
follows. For any component C of G′ \ (Ci ∪ Cj) that is not adjacent to both
Ci and Cj , contract C onto vertices of Ci or Cj (According to the one C is
neighboring). As G′′ is obtained from G′ by contracting edges, G′′ also is a
diameter-D outerplanar completion (for some graph containing Ci and Cj). Let
Ni := NG′′(Ci), let Nj := NG′′(Cj), and note that Ci ∩Nj = ∅, Ni ∩Cj = ∅, and
Ni ∩ Nj = ∅. Then, by Observation 2 (as G′′ \ Ci and G′′ \ Cj are connected),
there are vertices vi ∈ Ci and vj ∈ Cj at distance at least D/2 to each vertex
in Ni and Nj , respectively, in G′′. Since Ni and Nj are at distance at least one,
vi and vj are at distance at least D + 1, contradicting G′′ having diameter D.

Claim 10. There is a vertex u ∈ Cmax that is adjacent in G′ to 3 of the compo-
nents C1, C2, C3, and C4.

Proof. First, note that there is a vertex u and 3 components, say C1, C2, C3,
with u ∈ NG′ [Ci] for all 1 ≤ i ≤ 3, since otherwise, there would be internally
vertex-disjoint paths between each two of the four components Ci, implying the
existence of a K4-minor in G′.

If u is neither in Cmax nor in Ci, for 1 ≤ i ≤ 3, then, since all the Ci are
adjacent to Cmax (by Corollary 3), G′ would have a K2,3-minor on the vertex
sets {u, Cmax} and {C1, C2, C3}.

Hence, in the following, we assume that u ∈ C1. Let z be a neighbor of C1

in Cmax and, for i ∈ {2, 3} let wi denote a neighbor of C4 in N [Ci]. We note
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that w2 �= z and w3 �= z, since otherwise, the claim follows and we are done.
Furthermore, w2 �= u and w3 �= u, since otherwise there is a K2,3-minor on the
vertex sets {u, Cmax} and {C2, C3, C4}. Let X := (C4 ∪ {w2, w3}) \ (C2 ∪ C3)
and note that X is adjacent to C2 and C3, respectively. Let Y be the connected
component of Cmax\{w2, w3} containing z, and note that Y is adjacent to C1 and
X. Finally, since X, Y , C1, C2, and C3 are pairwise disjoint, G′ has a K2,3-minor
on the vertex sets {X,C1} and {C2, C3, Y }.

Let v denote a vertex of Cmax that is at distance at least D/2 + 1 to u in G′ and
consider the result G′ \ {u} of removing u from G′. Let C denote the connected
component of G′ \{u} that contains v. Towards a contradiction, assume there is
a connected component Ci that is adjacent to u but not to C in G′, then all paths
between v and any vertex in Ci contain u. Since G′ has diameter D, all vertices
in Ci are at distance at most D/2 − 1 to u in G′, contradicting r+(Ci) ≥ D/2.
Thus there is a K2,3-minor in G′ on the vertex sets {C1, C2, C3} and {u,X}
where X is the connected component of G′ \ (C1 ∪ C2 ∪ C3 ∪ {u}) containing v.
This concludes the proof of the lemma. ��
Proof (of Theorem2). Indeed, the algorithm runs in time O(n7) for odd D (at
most O(n4) at line 16, times O(n3) for the call to OPDI-Connected in line 18).
The algorithm runs in O(n2p+2q+1) time for even D (O(n2p−2) in line 16, times
O(n2q) in line 22, times O(n3) for the call to OPDI-Connected in line 23), where
p and q respectively denote the number of connected components C such that
r+(C) > D/2 and r+(C) = D/2. As p + q ≤ 4, we are done.
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Abstract. We consider the following graph modification problem. Let
the input consist of a graph G = (V, E), a weight function w : V ∪E → N,
a cost function c : V ∪E → N and a degree function δ : V → N0, together
with three integers kv, ke and C. The question is whether we can delete a
set of vertices of total weight at most kv and a set of edges of total weight
at most ke so that the total cost of the deleted elements is at most C and
every non-deleted vertex v has degree δ(v) in the resulting graph G′. We
also consider the variant in which G′ must be connected. Both problems
are known to be NP-complete and W[1]-hard when parameterized by
kv + ke. We prove that, when restricted to planar graphs, they stay NP-
complete but have polynomial kernels when parameterized by kv + ke.

1 Introduction

Graph modification problems capture a variety of graph-theoretic problems and
are well studied in algorithmic graph theory. The aim is to modify some given
graph G into some other graph H that satisfies a certain property by applying
a bounded number of operations from a set S of prespecified graph operations.
Well-known graph operations are the edge addition, edge deletion and vertex
deletion, denoted by ea, ed and vd, respectively. For example, if S = {vd} and H

The first and fourth author were supported by EPSRC Grant EP/K025090/1. The
research of the second author has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007–
2013)/ERC Grant Agreement n. 267959. The research of the fifth author was co-
financed by the European Union (European Social Fund ESF) and Greek national
funds through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research Funding Program:
ARISTEIA II.

c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 143–156, 2015.
DOI: 10.1007/978-3-319-20297-6 10



144 K.K. Dabrowski et al.

must be a clique or independent set then we obtain the basic problems Clique
and Independent Set, respectively. To give a few more examples, if H must
be a forest and S = {ed} or S = {vd} then we obtain the problems Feedback
Edge Set and Feedback Vertex Set, respectively. As discussed in detail
later, it is also common to consider sets S consisting of more than one graph
operation.

A property is hereditary if it holds for any induced subgraph of a graph
that satisfies it, and a property is non-trivial if it is both true for infinitely
many graphs and false for infinitely many graphs. A classic result of Lewis and
Yannakakis [21] is that a vertex deletion problem is NP-hard for any prop-
erty that is hereditary and non-trivial. In an earlier paper Yannakakis [27] also
showed that the edge deletion problem is NP-complete for several properties,
such as being planar or outer-planar. Natanzon, Shamir and Sharan [24] and
Burzyn, Bonomo and Durán [5] proved that the graph modification problem is
NP-complete when S = {ea, ed} and the desired property is to belong to some
hereditary graph class for a variety of such graph classes.

When a problem turns out to be NP-hard, a possible next step might be
to consider it in the more refined framework offered by parameterized complex-
ity. This is certainly an appropriate direction to follow for graph modification
problems, because the bound on the total number of permitted operations is a
natural parameter k. Cai [6] proved that for this parameter the graph modifi-
cation problem is FPT if S = {ea, ed, vd} and the desired property is to belong
to any fixed graph class characterized by a finite set of forbidden induced sub-
graphs. Khot and Raman [19] determined all non-trivial hereditary properties
for which the vertex deletion problem is FPT on n-vertex graphs with parameter
n − k and proved that for all other such properties the problem is W[1]-hard
(when parameterized by n − k).

From the aforementioned results we conclude that the graph modification
problem has been thoroughly studied for hereditary properties. However, for
other types of properties, much less is known. Dabrowski et al. [9] combined pre-
vious results [4,7,8] with new results to classify the (parameterized) complexity
of the problem of modifying the input graph into a connected graph where each
vertex has some prescribed degree parity for all S ⊆ {ea, ed, vd}.

In this paper we consider the case when the vertices of the resulting graph
must satisfy some prespecified degree constraints (note that such properties are
non-hereditary, so the results of Lewis and Yannakakis do not apply to this
case). Before presenting our results, we briefly discuss the known results and the
general framework they fall under.

Moser and Thilikos in [23] and Mathieson and Szeider [22] initiated an inves-
tigation into the parameterized complexity of such graph modification prob-
lems. In particular, Mathieson and Szeider [22] introduced the following general
problem.
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Degree Constraint Editing(S)
Instance: A graph G, integers d, k and a function δ : V (G) → {1, . . . , d}
Question: Can G be modified into a graph G′ such that dG′(v) = δ(v) for

each v ∈ V (G′) using at most k operations from the set S?

Mathieson and Szeider [22] classified the parameterized complexity of this prob-
lem for S ⊆ {ea, ed, vd}. In particular they showed the following results. If
S ⊆ {ea, ed} then the problem is polynomial-time solvable. If vd ∈ S then
the problem is NP-complete, W[1]-hard with parameter k and FPT with para-
meter d + k. Moreover, they proved that the latter result holds even for a more
general version, in which the vertices and edges have costs and the desired degree
for each vertex should be in some given subset of {1, . . . , d}. If S ⊆ {ed, vd}, they
proved that the problem has a polynomial kernel when parameterized by d + k.
Golovach [18] considered the cases S = {ea, vd} and S = {ea, ed, vd} and proved
(amongst other results) that for these cases the problem has no polynomial
kernel unless NP ⊆ coNP/poly. Froese, Nichterlein and Niedermeier [13] gave
more kernelization results for Degree Constraint Editing(S). Golovach [17]
introduced a variant of Degree Constraint Editing(S) in which we addi-
tionally insist that the resulting graph must be connected. He proved that, for
S = {ea}, this variant is NP-complete, FPT when parameterized by k, and has a
polynomial kernel when parameterized by k + d. The connected variant is read-
ily seen to be W[1]-hard when vd ∈ S by a straightforward modification of the
proof of the W[1]-hardness result for Degree Constraint Editing(S), when
vd ∈ S, as given by Mathieson and Szeider [22].

In the light of the above NP-completeness and W[1]-hardness results (when
vd ∈ S) it is natural to restrict the input graph G to a special graph class.
Hence, inspired by the above results, we consider the set S = {ed, vd} and study
weighted versions of both variants (where we insist that the resulting graph is
connected and where we don’t) of these problems for planar input graphs. In
fact the problems we study are even more general. The problem variant not
demanding connectivity is defined as follows.

Deletion to a Planar Graph of Given Degrees (DPGGD)
Instance: A planar graph G = (V,E), integers kv, ke, C and functions

δ : V → N0, w : V ∪ E → N, c : V ∪ E → N0.
Question: Can G be modified into a graph G′ by deleting a set U ⊆ V

with w(U) ≤ kv and a set D ⊆ E with w(D) ≤ ke such that
c(U ∪ D) ≤ C and dG′(v) = δ(v) for v ∈ V (G′)?

In the above problem, w is the weight and c is the cost function. The question
is whether it is possible to delete vertices and edges of total weight at most kv

and ke, respectively, so that the total cost of the deleted elements is at most C
and the obtained graph satisfies the degree restrictions prescribed by the given
function δ.

The second problem we consider is the variant of DPGGD, in which the
desired graph G′ must be connected. We call this variant the Deletion to a
Connected Planar Graph of Given Degrees problem (DCPGGD).
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Our Results. We note that DPGGD is NP-complete even if δ ≡ 3, w ≡ 1, c ≡ 0
and kv = |V (G)|− 1, and DCPGGD is NP-complete even if δ ≡ 2, w ≡ 1, c ≡ 0
and kv = 0. These observations follow directly from the respective facts that both
testing whether a planar graph of degree at most 7 has a non-trivial cubic sub-
graph [26] and testing whether a cubic planar graph has a Hamiltonian cycle [14]
is NP-complete. In contrast to the aforementioned W[1]-hardness results for gen-
eral graphs, our two main results are that both DPGGD and DCPGGD have
polynomial kernels when parameterized by kv + ke. Note that the integer C is
neither a constant nor a parameter but part of the input. In order to obtain
our results we first show that both problems are polynomial-time solvable for
any graph class of bounded treewidth. We then use the protrusion decomposi-
tion/replacement techniques introduced by Bodlaender at al. [2] (see [3] for the
full text). These techniques were successfully used for various problems on sparse
graphs [12,15,16,20]. We stress that DPGGD and DCPGGD do not fit in the
meta-kernelization framework of Bodlaender at al. [2]. Hence our approach is,
unavoidably, problem-specific.

2 Preliminaries

All graphs in this paper are finite, undirected and without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and the edge set is denoted
by E(G). For a set X ⊆ V (G), we let G[X] denote the subgraph of G induced
by X. We write G − X = G[V (G) \ X]; we allow the case where X �⊆ V (G).
If X = {x}, we may write G − x instead. For a set L ⊆ E(G), we let G − L
be the graph obtained from G by deleting all edges of L. If L = {e} then we
write G − e instead. For v ∈ V (G), let EG(v) = {e ∈ E(G) | e is incident to v}.
For X ⊆ V (G), let EG(X) =

⋃
v∈X EG(v). For e ∈ E(G) with e = uv, let

V (e) = {u, v}. For a set L ⊆ E(G) let V (L) = ∪e∈LV (e).
Let G be a graph. For a vertex v, we let NG(v) denote its (open) neigh-

bourhood, that is, the set of vertices adjacent to v. The degree of a vertex v
is denoted by dG(v) = |NG(v)|. For a set X ⊆ V (G), we write NG(X) =
(
⋃

v∈X NG(v)) \ X. The closed neighbourhood NG[v] = NG(v) ∪ {v}, and for
a positive integer r, Nr

G[v] is the set of vertices at distance at most r from v;
note that N0

G[v] = {v} and that N1
G[v] = NG[v]. For a set X ⊆ V (G) and

a positive integer r, let Nr
G[X] =

⋃
v∈X Nr

G[v]. For a positive integer r, a set
X ⊆ V (G) is an r-dominating set of G if V (G) ⊆ Nr

G[X]. For a set X ⊆ V (G),
∂G(X) = X ∩ NG(V (G) \ X) is the boundary of X in G.

A tree decomposition of a graph G is a pair (X , T ) where T is a tree and
X = {Xi | i ∈ V (T )} is a collection of subsets (called bags) of V (G) such that

(i)
⋃

i∈V (T ) Xi = V (G),
(ii) for each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
(iii) for each x ∈ V (G), the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G (denoted tw(G)) is the minimum width over all tree
decompositions of G.
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We need the following known observation, which is valid for every planar
bipartite graph G in which the vertices of one partition class V2 have degree
at least 3 (in order to prove this, note that 3|V2| ≤ ∑

v∈V2
dG(v) = |E(G)| ≤

2|V (G)| − 4, as G is bipartite and planar).

Lemma 1. Let V1 and V2 be bipartition classes of a planar bipartite graph G
such that dG(v) ≥ 3 for every v ∈ V2 and V2 is non-empty. Then |V2| ≤ 2|V1|−4.

Protrusion Decompositions. For a graph G a positive integer r, a set
X ⊆ V (G) is an r-protrusion of G if |∂G(X)| ≤ r and tw(G[X]) ≤ r. For
positive integers s and s′, an (s, s′)-protrusion decomposition of a graph G is a
partition Π = {R0, . . . , Rp} of V (G) such that

(i) max{p, |R0|} ≤ s,
(ii) for each i ∈ {1, . . . , p}, R+

i = NG[Ri] is an s′-protrusion of G, and
(iii) for each i ∈ {1, . . . , p}, NG(Ri) ⊆ R0 ∩ ∂G[R+

i ].

Originally, condition (iii) only demanded that NG(Ri) ⊆ R0 holds for each
i ∈ {1, . . . , p}. However, we can move every vertex in NG(Ri) \ ∂G[R+

i ] to Ri

without affecting any of the other properties. Hence we assume without loss
of generality that such vertices do not exist and may indeed state condition
(iii) as above (which is convenient for our purposes). The sets R+

1 , . . . , R+
p are

called the protrusions of Π.
The following statement is implicit in [3] (see Lemmas 6.1 and 6.2).

Lemma 2 ([3]). Let r and k be positive integers and let G be a planar graph
that has an r-dominating set of size at most k. Then G has an (O(kr), O(r))-
protrusion decomposition, which can be constructed in polynomial time.

Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and another one is a parameter k. It is said that a problem
is fixed parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some function f . A kernelization for a parameterized problem is a polynomial
algorithm that maps each instance (x, k) with the input x and the parameter k
to an instance (x′, k′) such that

(i) (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance, and
(ii) the size of x′ is bounded by f(k) for a computable function f .

The output (x′, k′) is called a kernel. The function f is said to be the size of
the kernel. A kernel is polynomial if f is polynomial. We refer to the books of
Downey and Fellows [10], Flum and Grohe [11], and Niedermeier [25] for detailed
introductions to parameterized complexity.
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3 The Polynomial Kernels

In this section we construct polynomial kernels for DPGGD and DCPGGD. We
say that a pair (U,D) with U ⊆ V (G) and D ⊆ E(G) is a solution for an instance
(G, kv, ke, C, δ, w, c) of DPGGD if w(U) ≤ kv, w(D) ≤ ke and c(U ∪D) ≤ C and
G′ = G−U −D satisfies dG′(v) = δ(v) for all v ∈ V (G′). If (G, kv, ke, C, δ, w, c) is
an instance of DCPGGD then (U,D) is a solution if in addition G′ is connected.
Notice that it can happen that U = V (G) for a solution (U,D).

In order to prove our main results, we first need to introduce some additional
terminology and prove some structural results. We say that a solution (U,D) for
an instance of DPGGD or DCPGGD is efficient if D has no edges incident to
the vertices of U . We say that a solution (U,D) is of minimum cost if c(Û , D̂) ≥
c(U,D) for every solution (Û , D̂). We make two observations.

Observation 1. Any yes-instance of DPGGD or DCPGGD has an efficient
solution of minimum cost.

Observation 2. Let (G, kv, ke, C, δ, w, c) be instance of DPGGD or DCPGGD
that has an efficient solution (U,D). If dG(v) = δ(v) for some v ∈ V (G) then v is
not incident to an edge of D.

We say that an instance (G, kv, ke, C, δ, w, c) of DPGGD (DCPGGD respec-
tively) is normalized if

(i) for every v ∈ V (G), δ(v) ≤ dG(v) ≤ δ(v) + kv + ke, and
(ii) every vertex v in the set S = {u ∈ V (G) | dG(u) = δ(u)} is adjacent to a

vertex in S = V (G) \ S.

Lemma 3. There is a polynomial-time algorithm that for each instance of
DPGGD or DCPGGD either solves the problem or returns an equivalent nor-
malized instance.

Proof. Let (G, kv, ke, C, δ, w, c) be an instance of DPGGD. To simplify notation,
we keep the same notation for the functions δ, w, c if we delete vertices or edges
and do not modify the values of the functions for the remaining elements if this
does not create confusion.

We say that a reduction rule is safe if by applying the rule we either solve
the problem or obtain an equivalent instance. It is straightforward to see that
the following reduction rules are safe.

Yes-instance rule. If S = V (G), then (∅, ∅) is a solution, return a
yes-answer and stop.

Vertex deletion rule. If G has a vertex v with dG(v) < δ(v) or dG(v) >
δ(v) + kv + ke, then delete v and set kv = kv − w(v), C = C − c(v). If
kv < 0 or C < 0, then stop and return a no-answer.
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Observe that by the exhaustive application of the vertex deletion rule and
applying the yes-instance rule whenever possible, we either solve the prob-
lem or we obtain an instance which satisfies (i) of the definition of normalized
instances, but where S �= V (G). Notice that, in particular, the yes-instance
rule is applied if the set of vertices becomes empty. To ensure (ii), we apply the
following two rules.

Contraction rule. If G has two adjacent vertices u, v ∈ S = {x ∈
V (G) | dG(x) = δ(x)} such that NG(v) ⊆ S, then we construct the
instance (G′, kv, ke, C, δ′, w′, c′) as follows.
– Contract uv. Denote the obtained graph G′ = G/uv and let z be the

vertex obtained from u and v.
– Set δ′(z) = dG′(z) and set δ′(x) = dG′(x) for any x ∈ S \ {u, v}. For

each x ∈ S, set δ′(x) = δ(x).
– Set w′(z) = w(u)+w(v) and c′(z) = c(u)+c(v). For x ∈ V (G)\{u, v},

set w′(x) = w(x) and c′(x) = c(x).
– For each xz ∈ E(G′), set w′(xz) = ke +1 and c′(xz) = 0. For all other

edges xy ∈ E(G′), set w′(xy) = w(xy) and c′(xy) = c(xy).

Let (U,D) be an efficient solution for (G, kv, ke, C, δ, w, c). By Observation 2,
D has no edges incident to u or v. Also either u, v ∈ U or u, v /∈ U ,
because u and v are adjacent and dG(u) = δ(u) and dG(v) = δ(v). Let
U ′ = (U \ {u, v}) ∪ {z} if u, v ∈ U and U ′ = U otherwise. We have that
(U ′,D) is a solution for (G′, kv, ke, C, δ′, w′, c′). If (U ′,D′) is an efficient solution
for (G′, kv, ke, C, δ′, w′, c′), then D′ has no edges incident to z by Observation 2.
If z ∈ U ′, let U = (U ′ \ {z}) ∪ {u, v} and U = U ′ otherwise. We obtain that
(U,D) is a solution for the original instance.

We exhaustively apply the above rule. Assume that it cannot be applied
for (G, kv, ke, C, δ, w, c). Then we have that this instance satisfies (i) and the
following holds: for any v ∈ S �= V (G), either v is adjacent to a vertex in S or v
is an isolated vertex. It remains to deal with isolated vertices.

Isolates removal rule. If G has an isolated vertex v, then delete v.

To see that above rule is safe, notice that, because the considered instance sat-
isfies (i), it follows that v ∈ S. Clearly, by the exhaustive application of the
isolates removal rule, we either solve the problem or obtain an instance that
satisfies (i) and (ii).

Now consider an instance (G, kv, ke, C, δ, w, c) of DCPGGD.
We replace the yes-instance rule by the following variant.

Yes-instance rule (connected). If S = V (G) and G is connected,
then (∅, ∅) is a solution, return a yes-answer and stop.

It is straightforward to verify that the vertex deletion rule and the con-
traction rule are safe for this problem. By applying these rules and by the
application of the connected variant of the yes-instance rule whenever possi-
ble, we either solve the problem or obtain an equivalent instance that satisfies(i)
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and has the property that for any v ∈ S, either v is adjacent to a vertex in S or v
is an isolated vertex. Suppose that (G, kv, ke, C, δ, w, c) satisfies these properties.
Observe that if H is a component of G, then for any solution (U,D), either
V (H) ⊆ U or V (G) \ V (H) ⊆ U . Therefore, it is safe to apply the following
variant of the isolates removal rule.

Isolates removal rule (connected). If G has an isolated vertex v, then
if w(V (G) \ {v}) ≤ kv and c(V (G) \ {v}) ≤ C, then (V (G) \ {v}, ∅) is a
solution, return a yes-answer and stop. Otherwise, if w(V (G)\{v}) > kv

or c(V (G)\{v}) > C, delete v and set kv = kv −w(v) and C = C −c(v);
if kv < 0 or C < 0, then stop and return a no-answer.

It is easy to see that if the input graph was planar then the graph formed after
applying the rules above will also be planar. �

Lemma 4. If (G, kv, ke, C, δ, w, c) is a normalized yes-instance of DPGGD
(DCPGGD respectively) then G has a 2-dominating set of size at most kv +2ke.

Proof. We prove the lemma for DPGGD; the proof for DCPGGD is the same.
Let (G, kv, ke, C, δ, w, c) be a normalized yes-instance of the problem. Let (U,D)
be a solution and W = U ∪ V (D). Clearly, |W | ≤ kv + 2ke, because the weights
are positive integers. We show that W is a 2-dominating set of G.

Let S = {v ∈ V (G) | dG(v) = δ(v)} and S = V (G)\S. For any vertex v ∈ S,
either v ∈ U or v is adjacent to a vertex of U or v is incident to an edge of D.
Hence, S ⊆ NG[W ]. Let v ∈ S. Because the considered instance is normalized, v
is adjacent to a vertex u ∈ S. It implies, that S ⊆ N2

G[W ]. �

The following is a direct consequence of Lemmas 2 and 4.

Lemma 5. There is a fixed constant α such that, if (G, kv, ke, C, δ, w, c) is a
normalized yes-instance of DPGGD (DCPGGD respectively), then G has an
(α(kv + 2ke), α)-protrusion decomposition. Moreover, if there is such a decom-
position, one can be constructed in O(n2) steps.

The next lemma states that, for both DPGGD and DCPGGD, an optimal
solution can be found in polynomial time on graphs of bounded treewidth. The
proof is based on the standard techniques for dynamic programming over tree
decompositions and is omitted due to the space restrictions.

Lemma 6. DPGGD (DCPGGD respectively) can be solved and an efficient
solution (U,D) of minimum cost can be obtained in (kv + ke)O(q) · poly(n) time
(in (q(kv + ke))O(q) · poly(n) time respectively) for instances (G, kv, ke, C, δ, w, c)
where G is an n-vertex graph of treewidth at most q and δ(v) ≤ dG(v) ≤ δ(v) +
kv + ke for v ∈ V (G).

We are now ready to present our two main results, starting with the one for
DPGGD.

Theorem 1. DPGGD has a polynomial kernel when parameterized by kv + ke.
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Proof. Let (G, kv, ke, C, δ, w, c) be an instance of DPGGD. By Lemma 3, we may
assume that this instance is normalized. By Lemma 4, if (G, kv, ke, C, δ, w, c) is
a yes-instance, then G has a 2-dominating set of size at most kv + 2ke. By
Lemma 5, there is a fixed constant α such that G has an (α(kv + 2ke), α)-
protrusion decomposition, and such a decomposition, if it exists, can be con-
structed in polynomial time. To simplify later arguments, we may assume α ≥ 3.
Clearly, if we fail to obtain such a decomposition, we return a no-answer and
stop. Hence, from now on we assume that an (α(kv +2ke), α)-protrusion decom-
position Π = {R0, . . . , Rp} of G is given. As before, we keep the same notation
δ, w, c for the restrictions of these functions. Again, we will introduce new reduc-
tion rules. We will keep the notation for G and for the parameters unchanged
where this is well-defined. We also assume that if we consider sets of vertices or
edges associated with the considered instance and delete vertices or edges from
the graph, then we also delete these elements from the associated sets.

For each i ∈ {1, . . . , p}, we construct Wi ⊆ Ri and Li ⊆ EG(Ri). To do this,
we consider the set Q of all possible quintuples q = (hv, he,X, Y, δ′) such that

– 0 ≤ hv ≤ kv and 0 ≤ he ≤ ke,
– X ⊆ NG(Ri) and Y ⊆ E(G[NG(Ri) \ X]), and
– We define F = G[R+

i ] − X − Y and require that δ′ : V (F ) → N0 is a function
such that δ′(v) ≤ dF (v) ≤ δ′(v)+kv +ke for v ∈ NG(Ri)\X and δ′(v) = δ(v)
for v ∈ Ri

Observe that there are at most 2α sets X, at most 23α−6 sets Y , at most
(kv + 1)(ke + 1) pairs hv, he, and for each X, there are at most (kv + ke + 1)α

possibilities for δ′. Therefore |Q| ≤ 2α23α−6(kv + 1)(ke + 1)(kv + ke + 1)α =
(kv + ke)O(α).

For each q = (hv, he,X, Y, δ′) ∈ Q, we construct an instance Iq =
(F, hv, he, C, δ′, w′, c) of DPGGD such that

– w′(v) = kv + 1, for v ∈ NG(Ri) \ X and w′(v) = w(v), for v ∈ Ri and
– w′(e) = ke + 1, for e ∈ E(G[NG(Ri) \ X]) \ Y and w′(e) = w(e), for all other

edges of F .

By Lemma 6, we can solve the problem for this instance in polynomial time. Let
(Uq,Dq) denote the obtained solution of minimum cost and set Uq = Dq = ∅ if
no solution exists for Iq. Let

Wi =
⋃

q∈Q
Uq and Li =

⋃

q∈Q
Dq.

Because each Uq has at most kv vertices and each Dq has at most ke edges, we
obtain that |Wi| ≤ |Q|kv ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · (kv + ke + 1)α · kv and
|Li| ≤ |Q|ke ≤ (kv + 1)(ke + 1) · 2α · 23α−6 · (kv + ke + 1)α · ke. Hence, the size
of Wi and Li is (kv + ke)O(α).

Let W = R0 ∪ ⋃
i∈[p] Wi and L = E(G[R0]) ∪ ⋃

i∈[p] Li. Because
max{p, |R0|} ≤ α(kv + 2ke), we have that |W | = (kv + ke)O(α) and |L| =
(kv + ke)O(α). We prove the following claim.
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Claim A. If (G, kv, ke, C, δ, w, c) is a yes-instance of DPGGD, then it has an
efficient solution (U,D) of minimum cost such that U ⊆ W and D ⊆ L.

We prove Claim A as follows. Let (U,D) be an efficient solution for
(G, kv, ke, C, δ, w, c) of minimum cost such that s = |U \ W | + |D \ L| is min-
imum. If s = 0, then the claim is fulfilled. Suppose, for a contradiction, that
s > 0. This means that there is an i ∈ {1, . . . , p} such that (U ∩ Ri) \ Wi �= ∅
or (D ∩ EG(Ri)) \ Li �= ∅. Let X = U ∩ NG(Ri), Y = D ∩ E(NG(Ri)) and
F = G[R+

i ] − X − Y . Let hv = |U ∩ V (F )| and he = |D ∩ E(F )|. For a vertex
v ∈ NG(Ri)\X, let dv be the total number of vertices in U \V (F ) adjacent to v
and edges in D \ E(F ) incident to v. Let δ′(v) = dF (v) − (dG(v) − δ(v) − dv) for
v ∈ NG(Ri) \ X and δ′(v) = δ(v) for other vertices of F .

Clearly, (F, hv, he, C, δ′, w′, c) = Iq is the instance of DPGGD when
q = (F, hv, he, C, δ′). Let U ′ = U ∩ V (F ) and D′ = D ∩ E(F ). Then (U ′,D′)
is a solution for the instance Iq and, therefore Iq is a yes-instance. In particu-
lar, this means that there is a solution (U ′′,D′′) for Iq = (F, hv, he, C, δ′, w′, c)
that was constructed by the aforementioned procedure for the construction
of Wi and Li. Clearly, U ′′ ⊆ Wi ⊆ W and D′′ ⊆ Li ⊆ L. Because our algo-
rithm for graphs of bounded treewidth finds a solution of minimum cost, it
follows that c(U ′′ ∪ D′′) ≤ c(U ′ ∪ D′). It remains to observe that (Û , D̂), where
Û = (U \ U ′) ∪ U ′′ and D̂ = (D \ D′) ∪ D′′, is a solution for (G, kv, ke, C, δ, w, c)
with c(Û ∪ D̂) ≤ c(U ∪ D), but this contradicts the choice of (U,D) because
|Û \ W | + |D̂ \ L| < s. This completes the proof of Claim A.
Let S = {v ∈ V (G) | dG(v) = δ(v)}\W and T = {v ∈ V (G) | dG(v) > δ(v)}\W ;
because the instance we consider is normalized, these sets form a partition of
V (G) \ W (note that these sets may be empty). If v ∈ S, then for any efficient
solution (U,D) such that U ⊆ W and D ⊆ L, v is not adjacent to a vertex
of U . This implies that it is safe to exhaustively apply the following rule without
destroying the statement of Claim A.

Set adjustment rule. If there is a vertex v ∈ S that is adjacent to a
vertex u ∈ W , then set W = W \{u} and set S = S∪{u} if dG(u) = δ(u)
and set T = T ∪ {u} if dG(u) > δ(u). If v ∈ S, remove any edge incident
to v from L.

By Claim A, it is safe to modify the weights as follows.

Weight adjustment rule. Set w(v) = kv +1 for v ∈ V (G)\W and set
w(e) = ke + 1 for e ∈ E(G) \ L.

After the exhaustive application of the set adjustment rule, we have that
NG(S) ⊆ T . Now it is safe to remove S.

S-reduction rule. If v ∈ S, then remove v and set δ(u) = δ(u) − 1 for
u ∈ NG(v). If δ(u) < 0 for some u ∈ NG(v), then return a no-answer
and stop.
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To show that the above rule is safe, let G′ = G − S and let δ′ be the function
obtained from δ by the application of the rule. Suppose that (G, kv, ke, C, δ, w, c)
is a yes-instance. Then we have a solution (U,D) such that U ⊆ W and D ⊆ L
by Claim A. Because NG(S) ⊆ T , T ∩ W = ∅ and the vertices of S are not
incident to edges of L, it follows that we do not stop and (U,D) is a solution
for (G′, kv, ke, C, δ′, w, c). Let now (U,D) is a solution for (G′, kv, ke, C, δ′, w, c).
Because of the application of the weight adjustment rule, U ⊆ W and D ⊆ L.
Because NG(S) ⊆ T , T ∩ W = ∅ and the vertices of S are not incident to edges
of L, we have that (U,D) is a solution for (G, kv, ke, C, δ, w, c). This completes
the proof that the S-reduction rule is safe.

Let W ′ = W ∪ V (L) and T ′ = T \ V (L). Clearly, |W ′| ≤ |W | + 2|L| =
(kv + ke)O(α).

Using similar arguments to those for the S-reduction rule, the following
rule is also safe.

T ′-reduction rule. If uv ∈ E(G[T ′]), then remove uv and set δ(u) =
δ(u) − 1 and δ(v) = δ(v) − 1. If δ(u) < 0 or δ(v) < 0, then return a
no-answer and stop.

After the exhaustive application of the above rule, T ′ is an independent set in
the obtained graph G. Some of the vertices of this independent set may have the
same neighbourhoods. We deal with them using the next rule.

Twin reduction rule. Suppose there are u, v ∈ T ′ with NG(u) =
NG(v). If δ(u) = δ(v), then remove v and set δ(x) = max{0, δ(x) − 1}
for x ∈ NG(u). If δ(u) �= δ(v) then return a no-answer and stop.

To prove that the above rule is safe, consider a pair of vertices u, v ∈ T ′ with
NG(u) = NG(v) and δ(u) = δ(v). Let G′ = G − v and let δ′ denote the func-
tion obtained from δ by the rule. Suppose that (G, kv, ke, C, δ, w, c) is a yes-
instance. Then we have a solution (U,D) such that U ⊆ W and D ⊆ L. Notice
that T ′ ∩ U = ∅ and the vertices of T ′ are not incident to the edges of L.
Note that u, v /∈ U and if x ∈ NG(u) then ux, vx /∈ D. We have that U con-
tains exactly dG(u) − δ(u) vertices that are adjacent to u. Therefore, (U,D) is
a solution for (G′, kv, ke, C, δ′, w, c). Assume now that (U,D) is a solution for
(G′, kv, ke, C, δ′, w, c). By the same arguments, U contains exactly dG′(u)−δ′(u)
vertices that are adjacent to u. Also if x ∈ NG(u) and δ′(x) = 0, then x ∈ U ,
because u /∈ U and ux /∈ D. Because NG(u) = NG(v), δ(u) = δ(v) and T ′ is
an independent set, U contains dG(u) − δ(u) vertices that are adjacent to u and
dG(v) − δ(v) vertices that are adjacent to v. It follows that (U,D) is a solu-
tion for (G, kv, ke, C, δ, w, c). Now consider the case when NG(u) = NG(v) and
δ(u) �= δ(v). Suppose, for contradiction that there is a solution (U,D). By the
above arguments, U contains exactly dG(u) − δ(u) vertices that are adjacent to
u and dG(v) − δ(v) vertices that are adjacent to v. Since NG(u) = NG(v) and
δ(u) �= δ(v), this is a contradiction, so there cannot be such a solution.

After the exhaustive application of the above rule for any two vertices
u, v ∈ T ′, we have that NG(u) �= NG(v). Let T ′

0, T
′
1, T

′
2, T

′
≥3 denote the sets
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of vertices in T ′ that are of degree 0, 1, 2 and at least 3 respectively. Observe
that dG(v) > δ(v) ≥ 0 for v ∈ T ′. Therefore, T ′

0 = ∅ and T ′
1, T

′
2, T

′
≥3 form

a partition of T ′ (note that these sets may be empty). By the twin reduc-
tion rule |T ′

1| = |NG(T ′
1)| ≤ |W ′| and |T ′

2| ≤ (|NG(T ′
2)|

2

) ≤ 1
2 |W ′|(|W ′| − 1).

By Lemma 1, |T ′
≥3| ≤ 2|NG(T ′)| − 4 ≤ 2|W ′| − 4 (or |T ′

≥3| = 0). We have that
|V (G)| = |W ′| + |T ′| = |W ′| + |T ′

1| + |T ′
2| + |T ′

≥3| ≤ 1
2 |W ′|2 + 7

2 |W ′|. Since, W ′

has (kv + ke)O(α) vertices, we obtain that the obtained graph G has size kO(1)

where k = kv + ke, i.e. we have a polynomial kernel for DPGGD.
To complete the proof, it remains to observe that the construction of the nor-

malized instance can be done in polynomial time by Lemma3, the construction
of W and L can be done in polynomial time by Lemma6, and all the subsequent
reduction rules can be applied in polynomial time. �

The proof of our second main result is based on the same approach as the proof
of Theorem 1, but it is more technically involved because we have to ensure
connectivity of the graph obtained by the editing. Hence, the proof is omitted
here and will appear in the journal version of our paper.

Theorem 2. DCPGGD has a polynomial kernel when parameterized by kv+ke.

4 Conclusions

We proved that DPGGD and DCPGGD are NP-complete but allow polynomial
kernels when parameterized by kv + ke. These problems generalize the Degree
Constrained Editing(S) problem and its connected variant for S = {ed, vd};
this can be seen, for instance, by testing all possible pairs kv, ke with kv +ke = k
or by a slight adjustment of our algorithms. Note that by setting kv = 0 or
ke = 0 we obtain the same results for S = {ed} and S = {vd}, respectively
(recall though that for S = {ed} this is not so surprising, as the less general
problem Degree Constrained Editing({ed}) is polynomial-time solvable for
general graphs).

Several open problems remain. We note that graph modification problems
that permit edge additions are less natural to consider for planar graphs, because
the class of planar graphs is not closed under edge addition. However, we could
allow other, more appropriate, operations such as edge contractions and vertex
dissolutions when considering planar graphs. Belmonte et al. [1] considered the
setting in which only edge contractions are allowed and obtained initial results for
general graphs that extend the work of Mathieson and Szeider [22] on Degree
Constrained Editing(S) in this direction.

References

1. Belmonte, R., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Parameterized com-
plexity of three edge contraction problems with degree constraints. Acta Informat-
ica 51(7), 473–497 (2014)



Editing to a Planar Graph of Given Degrees 155

2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S.,
Thilikos, D.M.: (meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE Com-
puter Society (2009)

3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S.,
Thilikos, D.M.: (meta) kernelization. In: CoRR abs/0904.0727 (2009)

4. Boesch, F.T., Suffel, C.L., Tindell, R.: The spanning subgraphs of Eulerian graphs.
J. Graph Theory 1(1), 79–84 (1977)

5. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

7. Cai, L., Yang, B.: Parameterized complexity of even/odd subgraph problems. J.
Discrete Algorithms 9(3), 231–240 (2011)

8. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized
complexity of Eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)

9. Dabrowski, K.K., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Editing to Eulerian
graphs. In: FSTTCS 2014. LIPIcs, vol. 29, pp. 97–108. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2014)

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Texts in Computer Science (2013)

11. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, Berlin (2006)

12. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Linear kernels for (con-
nected) dominating set on H-minor-free graphs. In: SODA 2012, pp. 82–93. SIAM
(2012)

13. Froese, V., Nichterlein, A., Niedermeier, R.: Win-win kernelization for degree
sequence completion problems. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS,
vol. 8503, pp. 194–205. Springer, Heidelberg (2014)

14. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

15. Garnero, V., Paul, C., Sau, I., Thilikos, D.M.: Explicit linear kernels via dynamic
programming. In: STACS 2014. LIPIcs, vol. 25, pp. 312–324. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2014)

16. Garnero, V., Sau, I., Thilikos, D.M.: A linear kernel for planar red-blue dominating
set. In: CoRR abs/1408.6388 (2014)

17. Golovach, P.A.: Editing to a connected graph of given degrees. In: Csuhaj-Varjú,
E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp.
324–335. Springer, Heidelberg (2014)

18. Golovach, P.A.: Editing to a graph of given degrees. In: Cygan, M., Heggernes, P.
(eds.) IPEC 2014. LNCS, vol. 8894, pp. 196–207. Springer, Heidelberg (2014)

19. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theory Comput. Sci. 289(2), 997–1008 (2002)

20. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.:
Linear kernels and single-exponential algorithms via protrusion decompositions.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013)

21. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

22. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parame-
terized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)



156 K.K. Dabrowski et al.

23. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

24. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Appl. Math. 113(1), 109–128 (2001)

25. Niedermeier, R.: Invitation to fixed-parameter algorithms, Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

26. Stewart, I.A.: Deciding whether a planar graph has a cubic subgraph is NP-
complete. Discrete Math. 126(1–3), 349–357 (1994)

27. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: STOC 1978,
pp. 253–264. ACM (1978)



On the Satisfiability of Quantum Circuits
of Small Treewidth

Mateus de Oliveira Oliveira(B)

Institute of Mathematics - Academy of Sciences of the Czech Republic,
Prague, Czech Republic

mateus.oliveira@math.cas.cz

Abstract. It has been known since long time that many NP-hard opti-
mization problems can be solved in polynomial time when restricted to
structures of constant treewidth. In this work we provide the first exten-
sion of such results to the quantum setting. We show that given a quan-
tum circuit C with n uninitialized inputs, poly(n) gates, and treewidth t,
one can compute in time (n

δ
)exp(O(t)) a classical assignment y ∈ {0, 1}n

that maximizes the acceptance probability of C up to a δ additive fac-
tor. In particular our algorithm runs in polynomial time if t is constant
and 1/poly(n) < δ < 1. For unrestricted values of t this problem is
known to be hard for the complexity class QCMA, a quantum general-
ization of NP. In contrast, we show that the same problem is already
NP-hard if t = O(log n) even when δ is constant. Finally, we show that
for t = O(log n) and constant δ, it is QMA-hard to find a quantum wit-
ness |ϕ〉 that maximizes the acceptance probability of a quantum circuit
of treewidth t up to a δ additive factor.

Keywords: Treewidth · Satisfiability of quantum circuits · Tensor
networks

1 Introduction

The notions of tree decomposition and treewidth of a graph [17] play a central
role in algorithmic theory. On the one hand, many natural classes of graphs have
small treewidth. For instance, trees have treewidth at most 1, series-parallel
graphs and outer-planar graphs have treewidth at most 2, Halin graphs have
treewidth at most 3, and k-outerplanar graphs for fixed k have treewidth O(k).
On the other hand, many problems that are hard for NP on general graphs, and
even problems that are hard for higher levels of the polynomial hierarchy, may
be solved in polynomial time when restricted to graphs of constant tree-width
[5,6,10]. In particular, during the last decade, several algorithms running in time
2O(t) · nO(1) have been proposed for the satisfiability of classical circuits1 and
boolean constraint satisfaction problems of size n and treewidth t [3,4,9,11].

1 In the case of classical circuits, it is assumed that each variable labels a unique input
of unbounded fan-out.
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DOI: 10.1007/978-3-319-20297-6 11
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In this work, we identify for the first time a natural quantum optimization
problem that becomes feasible when restricted to graphs of constant treewidth.
More precisely, we show how to find in polynomial time a classical assignment
that maximizes, up to an inverse polynomial additive factor, the acceptance
probability of a quantum circuit of constant treewidth. For quantum circuits of
unrestricted treewidth this problem is hard for QCMA, a quantum generaliza-
tion of MA [2]. Before stating our main result, we fix some notation. If C is a
quantum circuit acting on n d-dimensional qudits, and |ψ〉 is a quantum state
in (Cd)⊗n, then we denote by Pr(C, |ψ〉) the probability that the state of the
output of C collapses to |1〉 when the input of C is initialized with |ψ〉 and the
output is measured in the standard basis {|0〉, |1〉, ..., |d − 1〉}. If y is a string
in {0, ..., d − 1}n then we let |y〉 = ⊗n

i=1|yi〉 denote the basis state correspond-
ing to y. We let Pr cl(C) = maxy∈{0,...,d−1}n Pr(C, |y〉) denote the maximum
acceptance probability of C among all classical input strings in {0, ..., d − 1}n.
The treewidth of a quantum circuit is defined as the treewidth of its underlying
undirected graph.

Theorem 1.1 (Main Theorem). Let C be a quantum circuit with n unini-
tialized inputs, poly(n) gates and treewidth t. For any δ with 1/poly(n) < δ < 1
one may compute in time (n

δ )exp(O(t)) a classical string y ∈ {0, ..., d − 1}n such
that

|Pr(C, |y〉) − Pr cl(C)| ≤ δ.

We note that the algorithm for the computation of the string y ∈ {0, 1}n in
Theorem 1.1 is completely deterministic. The use of treewidth in quantum
algorithmics was pioneered by Markov and Shi [15] who showed that quan-
tum circuits of logarithmic treewidth can be simulated in polynomial time
with exponentially high precision. Note that the simulation of quantum circuits
[12,13,15,19,20] deals with the problem of computing the acceptance probabil-
ity of a quantum circuit when all inputs are already initialized, and thus may
be regarded as a generalization of the classical P-complete problem CIRCUIT-
VALUE. On the other hand, Theorem1.1 deals with the problem of finding an
initialization that maximizes the acceptance probability of a quantum circuit,
and thus may be regarded as a generalization of the classical NP-complete prob-
lem CIRCUIT-SAT. In this sense, Theorem 1.1 is the first result showing that a
quantum optimization problem can be solved in polynomial time when restricted
to structures of constant treewidth.

It is interesting to determine whether the time complexity of our algorithm
can be substantially improved. To address this question, we first introduce the
online-width of a circuit, a width measure for DAGs that is at least as large as
the treewidth of their underlying undirected graphs. If G = (V,E) is a directed
graph and V1, V2 ⊆ V are two subsets of vertices of V with V1 ∩ V2 = ∅ then
we let E(V1, V2) be the set of all edges with one endpoint in V1 and another
endpoint in V2. If ω = (v1, v2, ..., vn) is a total ordering of the vertices in V ,
then we let cw(G,ω) = maxi |E({v1, ..., vi}, {vi+1, ..., vn})|. The cutwidth of G
[18] is defined as cw(G) = minω cw(G,ω) where the minimum is taken over all
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possible total orderings of the vertices of G. If G is a DAG, then the online-
width of G is defined as ow(G) = minω cw(G,ω) where the minimum is taken
only among the topological orderings of G. Below we compare online-width with
other width measures. We write pw(G) for the pathwidth of G and tw(G) for
the treewidth of G.

tw(G) ≤ pw(G) ≤ cw(G) ≤ ow(G) (1)

Theorem 1.2 below states that finding a classical witness that maximizes the
acceptance probability of quantum circuits of logarithmic online-width is already
NP-hard even when δ is constant. Since tw(C) ≤ ow(C) for any quantum circuit
C, the same hardness result holds with respect to quantum circuits of logarithmic
treewidth.

Theorem 1.2. For any constant 0 < δ < 1, the following problem is NP-hard:
Given a quantum circuit C of online-width O(log n) with n uninitialized inputs
and poly(n) gates, determine whether Prcl(C) = 1 or whether Prcl(C) ≤ δ.

An analog hardness result holds when the verifier is restricted to have logarith-
mic online-width and the witness is allowed to be an arbitrary quantum state.
It was shown by Kitaev [14] that finding a δ-optimal quantum witness for a
quantum circuit of unrestricted width is hard for the complexity class QMA
for any constant δ. Interestingly, Kitaev’s hardness result is preserved when the
quantum circuits are restricted to have logarithmic online-width. If C is a quan-
tum circuit with n inputs, then we let Prqu(C) = max|ϕ〉 Prqu(C|ψ〉) be the
maximum acceptance probability among all n-qudit quantum states |ψ〉.
Theorem 1.3. For any 0 < δ < 1 the following problem is QMA-Hard: Given
a quantum circuit C of online-width O(log n) with n uninitialized inputs and
poly(n) gates, determine whether Prqu(C) ≥ 1 − δ or whether Prqu(C) ≤ δ.

We analyse the implications of Theorems 1.2 and 1.3 to quantum generalizations
of Merlin-Arthur protocols. In this setting, Arthur, a polynomial sized quantum
circuit, must decide the membership of a string x to a given language L by
analysing a quantum state |ψ〉 provided by Merlin. In the case that x ∈ L, there
is always a quantum state |ψ〉 that is accepted by Arthur with probability at
least 2/3. On the other hand, if x /∈ L then no state is accepted by Arthur
with probability greater than 1/3. The class of all languages that can be decided
via some quantum Merlin-Arthur game is denoted by QMA. The importance of
QMA stems from the fact that this class has several natural complete problems
[8,14]. Additionally, the oracle version of QMA contains problems, such as the
group non-membership problem [21] which are provably not in the oracle version
of MA and hence not in the oracle version of NP [7]. The class QCMA is defined
analogously, except for the fact that the witness provided by Merlin is a product
state encoding a classical string. Below we define width parameterized versions
of QMA.
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Definition 1.4. A language L ⊆ {0, 1}∗ belongs to the class QMA[tw, f(n)]
if there exists a polynomial time constructible family of quantum circuits
{Cx}x∈{0,1}∗ such that for every x ∈ {0, 1}∗, Cx has treewidth at most f(|x|) and
– if x ∈ L then there exists a quantum state |ψ〉 such that Cx accepts |ψ〉 with

probability at least 2/3,
– if x /∈ L then for any quantum state |ψ〉, Cx accepts |ψ〉 with probability at

most 1/3.

The class QCMA[tw, f(n)] is defined analogously, except that the witness is
required to be a classical string y encoded into a basis state |y〉.
Definition 1.4 can be extended naturally to other width measures such as online-
width. For instance, QMA[ow, f(n)] and QCMA[ow, f(n)] denote the classes of
languages that can be decided by quantum Merlin-Arthur games with respec-
tively quantum and classical witnesses, in which the verifier is required to have
online-width at most f(n). We note that the classes QMA and QCMA can be
defined respectively as QMA[ow, poly(n)] and QCMA[ow, poly(n)]. In the next
corollary we analyse the complexity of low-width quantum Merlin-Arthur pro-
tocols with classical and quantum witnesses.

Corollary 1.5:

(i) QCMA[tw, O(1)] ⊆ P.
(ii) QCMA[tw, O(log n)] = QCMA[ow, O(log n)] = NP.
(iii) QMA[tw, O(log n)] = QMA[ow, O(log n)] = QMA.

Corollary 1.5. (i) follows from Theorem 1.1. Corollary 1.5. (ii) is a consequence of
the hardness result stated in Theorem 1.2 together with Markov and Shi’s result
[15] stating that quantum circuits of logarithmic treewidth can be simulated in
polynomial time. Notice that by Eq. 1, the results in [15] also imply that circuits
of logarithmic online-width can be simulated in polynomial time. Corollary 1.5.
(iii) follows directly from Theorem1.3.

Under the plausible assumption that QMA 
= NP, Corollary 1.5 implies that
whenever Arthur is restricted to have logarithmic treewidth, quantum Merlin-
Arthur protocols differ in power with respect to whether the witness provided by
Merlin is classical or quantum. We observe that obtaining a similar separation
between the power of classical and quantum witnesses when Arthur is allowed to
have polynomial treewidth is equivalent to determining whether QMA 
= QCMA.
This question remains widely open.

2 Preliminaries

A d-dimensional qudit is a unit vector in the Hilbert space Hd = C
d. We fix an

orthonormal basis for Hd and label the vectors in this basis with |0〉, |1〉, ..., |d−1〉.
If M is a finite dimensional Hilbert space, then L(M) denotes the set of all lin-
ear operators on M. The identity operator on M is denoted by IM, or simply
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by I if M is implicit from the context. An operator X on L(M) is positive semi-
definite if all its eigenvalues are non-negative. A density operator on n qudits is
a positive semidefinite operator ρ ∈ L(H⊗n

d ) with trace Tr(ρ) = 1. For a string
y = y1y2...yn ∈ {0, 1, ..., d−1}n we let ρy =

⊗n
i=1 |yi〉〈yi| be the density operator

of the state |y〉 = ⊗n
i=1|yi〉. A map X : L(M1) → L(M2) is positive if X(ρ)

is positive semidefinite whenever ρ is positive semidefinite. The map X is com-
pletely positive if the map Ik ⊗ X is positive for every k ∈ N. A quantum gate
with q inputs and r outputs is a linear map Q : L(H⊗q

d ) → L(H⊗r
d ) that is com-

pletely positive, convex on density matrices, and such that 0 ≤ Tr(Q(ρ)) ≤ 1 for
any density matrix ρ. Linear maps satisfying these three properties formalize the
notion of physically admissible quantum operation. We refer to [16] (Sect. 8.2.4)
for a detailed discussion on physically admissible operations. A positive-operator
valued measure (POVM) is a set X = {X1,X2, ...,Xk} of positive semidefi-
nite operators such that

∑
i Xi = I. If X is a POVM then the probability

of measuring outcome i after applying X to ρ is given by tr(ρXi). Finally, a
single d-dimensional qudit measurement in the computational basis is the set
X = {|0〉〈0|, |1〉〈1|, ..., |d − 1〉〈d − 1|}.

2.1 Quantum Circuits

We adopt the model of quantum circuits with mixed states introduced in [1].
A quantum circuit is a connected directed acyclic graph C = (V,E, θ, ξ), where
V is a set of vertices, E a set of edges, θ is a vertex labeling function and
ξ : E → {1, ..., |E|} is an injective function that assigns a distinct number to
each edge of C. The vertex set is partitioned into a set In (input vertices), a
set Out (output vertices), and a set Mid = V \(In ∪ Out) (internal vertices).
Each input vertex has in-degree 0 and out-degree 1, and each output vertex
has in-degree 1 and out-degree 0. Each internal vertex has both in-degree and
out-degree greater than 0. If v is an internal vertex with k incoming edges and
l outgoing edges then v is labeled with a quantum gate θ(v) with k inputs
and l outputs. Each input vertex v is either labeled by θ with an element from
{|0〉〈0|, |1〉〈1|, ..., |d − 1〉〈d − 1|}, indicating that v is an initialized input, or with
the symbol ∗, indicating that v is not initialized. Finally, each output vertex
v is labeled with an one-qudit measurement element θ(v) ∈ L(Hd). We let
M(C) = ⊗v∈Outθ(v) denote the overall measurement element in L(H⊗|Out(C)|

d )
defined by C. A quantum circuit C with n uninitialized inputs and m outputs
can be regarded as a superoperator C : L(H⊗n

d ) → L(H⊗m
d ). If |ψ〉 is a quantum

state in H⊗n
d then the acceptance probability of C when |ψ〉 is assigned to the

inputs of C is defined as Pr(C, |ψ〉) = Tr(C(|ψ〉〈ψ|)M(C)).

2.2 Tree Decompositions and Treewidth

A tree is a connected acyclic graph width set of nodes nodes(T ) and set of arcs
arcs(T ). A tree decomposition of a graph G = (V,E) consists of a pair (T, β)
where T is a tree, and β : nodes(T ) → 2V is a function that associates a set of
vertices β(u) with each node u ∈ nodes(T ), in such a way that
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–
⋃

u∈nodes(T ) β(u) = V ,
– for every edge {v, v′} ∈ E, there is a node u ∈ nodes(T ) such that

{v, v′} ⊆ β(u),
– for every vertex v ∈ V , the set {u ∈ nodes(T ) | v ∈ β(u)} induces a connected

subtree of T .

The width of (T, β) is defined as w(T, β) = maxu{|β(u)| − 1}. The treewidth
tw(G) of a graph G is the minimum width of a tree decomposition of G.

3 Abstract Networks

In this section we introduce the notion of abstract network. In Sect. 4 we will use
abstract networks to model the well known notion of tensor network, a formalism
that is suitable for the simulation of quantum circuits. Subsequently, in Sect. 5,
abstract networks will be used to introduce the new notion of feasibility tensor
network, a formalism that is suitable for addressing the satisfiability of quantum
circuits. Below, we call a possibly empty finite set I of positive integers, an
index set.

Fig. 1. Left: the graph G(N ) of an abstract network N = {I1, I2, I3}. Middle: con-
tracting the index sets I1 and I2 yields the abstract network N = {I1 ⊕I2, I3}. Right:
after all pairs have been contracted, the only remaining index set is the empty index set.

Definition 3.1 (Abstract Network). An abstract network is a finite multiset
N = {I1, ..., In} of index sets satisfying the following property:

∀i ∈
⋃

I∈N
I, |{I ∈ N | i ∈ I}| = 2. (2)

In other words, in an abstract network N , each index i occurs in precisely two
index sets of N . The size |N | of an abstract network N is the number of index
sets in it. The rank rank(N ) of an abstract network is the size of its largest
index set.

rank(N ) = max
I∈N

|I|.

An abstract network N can be intuitively visualized as a graph G(N ) which
has one vertex vI for each index set I ∈ N , and one edge e with endpoints
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{I, I ′} and label i, for each pair of index sets I, I with I ∩ I ′ 
= ∅ and each
index i ∈ I ∩ I ′ (Fig. 1). Note that our notion of graph of an abstract network
admits multiple edges, but no loops. We say that an abstract network N is
connected if the graph G(N ) associated with N is connected. In this work we
will only consider connected abstract networks.

There is a very simple notion of contraction for abstract networks. Abstract
network contractions will be used to formalize both the well known notion of
tensor network contraction (Sect. 4), and the notion of feasibility tensor network
contraction, which will be introduced in Sect. 5. We say that a pair of index sets
I, I ′ of an abstract network N is contractible if I ∩ I ′ 
= ∅. In this case the
contraction of I, I ′ yields the abstract network

N ′ = N\{I, I ′} ∪ {I ⊕ I ′}
where I ⊕ I ′ = I ∪ I ′\(I ∩ I ′) is the symmetric difference of I and I ′. The
contraction of a pair of index sets in an abstract network N may be visualized
as an operation that merges the vertices vI and vI′ in the graph G(N ) associated
with N (Fig. 1). Observe that in a connected abstract network with at least two
vertices, there is at least one pair of contractible index sets. Additionally, when
contracting a pair I, I ′ of index sets, Eq. 2 ensures that the index set I ⊕ I ′ is
not in N . Thus we have that |N ′| = |N | − 1. Starting with an abstract network
N we can successively contract pairs of index-sets until we reach an abstract
network whose unique index set is the empty set ∅. In graph-theoretic terms,
starting from G(N ) we can successively merge pairs of adjacent vertices until we
reach the graph G({∅}) with a single vertex v∅. Below we define the notion of
contraction tree, which will be used to address both the problem of simulating
an initialized quantum circuit, and the problem of computing the maximum
acceptance probability of an uninitialized quantum circuit. If T is a tree, we
denote by leaves(T ) the set of leaves of T .

Definition 3.2 (Contraction Tree). Let N = {I1, ..., In} be an abstract net-
work. A contraction tree for N is a pair (T, ι) where T is a binary tree and
ι : nodes(T ) → 2N satisfies the following conditions:

(i) ι(leaves(T )) = N and |leaves(T )| = |N |.
(ii) For every internal node u, ι(u.l) ∩ ι(u.r) 
= ∅ and ι(u) = ι(u.l) ⊕ ι(u.r).

Intuitively, Condition (i) says that the restriction of ι to leaves(T ) is a bijection
from leaves(T ) to N , while Condition (ii) says that it is always possible to
contract the index sets labeling the children of an internal node of T . Note that
the root of T is always labeled with the empty index set ∅. The rank of (T, ι) is
the size of the largest index set labeling a node of T .

rank(T, ι) = max
u∈nodes(T )

|ι(u)|.

Theorem 3.3 below, which will be crucial for the proof of our main theorem,
states that if the graph of an abstract network N has treewidth t and maximum
degree Δ, then one can always find a contraction tree for N of rank O(Δ · t) and
height O(Δ · t · log |N |) (Fig. 2).
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Fig. 2. A contraction tree of rank 3 of the network N = {I1, I2, I3} of Fig. 1

Theorem 3.3 (Good Contraction Tree). Let N be an abstract network such
that the graph G(N ) has treewidth t and maximum degree Δ. Then one can
construct in time 2O(t) · |N |O(1) a contraction tree (T, ι) for N of rank O(Δ · t)
and height O(Δ · t · log |N |).

4 Tensor Networks

In this section we will redefine the well known notion of tensor network in func-
tion of abstract networks. Intuitively a tensor network is a pair (N , λ) where
N is an abstract network, and λ is a function that associates a tensor λ(I) of
rank |I| with each index set I ∈ N . We believe that defining tensor networks
in this way has the advantage of separating the algorithmic aspects of tensor
networks from their quantum aspects. Additionally, the formalism of abstract
networks will also be used in Sect. 5 to introduce the notion of feasibility ten-
sor networks which will be used to address the problem of approximating the
maximum acceptance probability of non-initialized quantum circuits.

Let Π(d) = {|b1〉〈b2| | b1, b2 ∈ {0, ..., d − 1}}. A d-state tensor with index set
I = {I1, ..., ik} is an array g consisting of |Π(d)|k = d2k complex numbers. The
entries

g(σi1 , ..., σik)

of g are indexed by a sequence of variables σi1 , ..., σik , each of which ranges over
the set Π(d). We note that if I = ∅ then a tensor with index set I is simply a
complex number g( ). If g is a tensor with index set I then we let rank(g) = |I|
be the rank of g. We denote by T(d, I) the set of all d-state tensors with index
set I and by T(d) =

⋃
I⊆N

T(d, I) the set of all d-state tensors.

Definition 4.1 (Tensor Network). A tensor network is a pair (N , λ) where
N is an abstract network and λ is a function that associates with each index set
I ∈ N , a tensor λ(I) ∈ T(d, I).

A tensor network (N , λ) is connected if N is connected. In this work we will
only deal with connected tensor networks. An important operation involving
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tensors is the operation of tensor contraction. If g is a tensor with index set
I = {I1, ..., ik, l1, ..., lr} and g′ is a tensor with index set I ′ = {J1, ..., jk′ , l1, ..., lr}
then the contraction of g and g′ is the tensor Contr(g, g′) with index set I ⊕
I ′ = {I1, ..., ik, j1, ..., jk′} where each entry Contr(g, g′)(σi1 , ..., σik , σj1 , ..., σjk′ )
is defined as

∑

l1,...,lr

g(σi1 , ..., σik , σl1 , ..., σlr ) · g′(σj1 , ..., σjk′ , σl1 , ..., σlr ).

If (N , λ) is a tensor network and I1, I2 is a pair of contractible sets in N
then we say that the tensor network (N ′, λ′) is obtained from (N , λ) by the
contraction of I1 and I2 if N ′ = (N\{I1, I2}) ∪ {I1 ⊕ I2} and λ′ is such that

1. λ′(I1 ⊕ I2) = Contr(λ(I1), λ(I2)),
2. λ′(I) = λ(I) for each I ∈ N ′\{I1 ⊕ I2}.

Any connected tensor network with n index sets can be contracted n − 1 times
yielding in this way a tensor network ({∅}, λ0) with a unique index set, namely
∅, which is labeled with a rank-0 tensor λ0(∅) (that is to say, a complex number).
We say that the absolute value |λ0(∅)| is the value of (N , λ), which is denoted
by val(N , λ). It is an easy exercise to show that the value of a tensor network
does not depend on the way in which tensors are contracted. Thus val(N , λ) is
well defined.

4.1 Mapping Quantum Circuits with Initialized Inputs to Tensor
Networks

One of the main reasons behind the popularity of tensor networks is the fact
that they can be used to simulate quantum circuits. First we note that both
density operators and quantum gates can be naturally regarded as tensors. If ρ
is a density operator acting on d-dimensional qudits indexed by I = {I1, ..., ik},
then the tensor ρ associated with ρ is defined as

ρ(σi1 , ..., σik) = Tr
(
ρ · [σ†

i1
⊗ ... ⊗ σ†

ik
]
)

. (3)

If Q is a quantum gate with inputs indexed by I = {I1, ..., ik} and outputs
indexed by I ′ = {J1, ..., jl} where I ∩ I ′ = ∅, then the tensor Q associated with
Q is defined as

Q(σi1 , ..., σik , σj1 , ..., σjl) = Tr
(
Q · [σi1 ⊗ ... ⊗ σik ] · [σ†

j1
⊗ ... ⊗ σ†

jl
]
)

. (4)

In the sequel we will not distinguish between gates or density matrices and
their associated tensors. If C = (V,E, θ, ξ) is a quantum circuit in which all
inputs are initialized, then the tensor network (NC , λC) associated with C is
obtained as follows. For each vertex v ∈ V , let I(v) be the index set consisting
of all integers labeling edges of C which are incident with v. Then we add I(v)
to NC and set λC(I(v)) to be the tensor associated with the gate θ(v) of C.
The following proposition establishes a close correspondence between the value
of tensor networks and the acceptance probability of quantum circuits.
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Proposition 4.2. Let C be a quantum circuit with n inputs initialized with the
state |y〉 for some y ∈ {0, ..., d − 1}n. Then val(NC , λC) = Pr(C, |y〉).
In other words, val(NC , λC) is the acceptance probability of C.

4.2 Computing the Value of a Tensor Network

The process of computing the value val(N , λ) of a tensor network (N , λ) is known
as simulation. Given a contraction tree (T, ι) of rank r for N , we can compute
val(N , λ) in time 2O(r) · |N |O(1) as follows: First, for each leaf u of T such that
ι(u) = I, we associate the tensor λ̂(u) = λ(I). Subsequently, for each internal
node u of T we associate the tensor λ̂(u) = Contr(λ̂(u.l), λ̂(u.r)). This process
is formalized in the following definition.

Definition 4.3 (Tensor Network Simulation). Let (N , λ) be a tensor net-
work and (T, ι) be a contraction tree for N . A simulation of (N , λ) on (T, ι) is
a function λ̂ : nodes(T ) → T(d) satisfying the following conditions:

1. For each leaf u of T , λ̂(u) = λ(ι(u)).
2. For each internal node u of T , λ̂(u) = Contr(λ̂(u.l), λ̂(u.r)).

Note that if u is the root of a contraction tree, then ι(u) = ∅. In this case the
tensor λ̂(u) is a rank-0 tensor (that is, a complex number). It is straightforward
to check that |λ̂(u)| = val(N , λ). If the contraction tree (T, ι) has rank r, then for
each node u of T we have that |ι(u)| ≤ r. In other words, for each u ∈ nodes(T ),
the tensor λ̂(u) has rank at most r, and for this reason can be represented by d2r

complex numbers. In this way, the simulation λ̂ can be inductively constructed
in time 2O(r) · |N |O(1). By Theorem 3.3, if the graph G(N ) associated with N
has treewidth t, then one can construct in polynomial time a contraction tree
for N of rank O(t). Therefore, Theorem 3.3 together with Definition 4.3 gives us
an algorithm running in time 2O(t) · |N |O(1) for computing the value of tensor
networks of treewidth t, and by Proposition 4.2, for computing the acceptance
probability of quantum circuits of treewidth t in which all inputs are initialized.

We note that the simulation algorithm described above has the same time
complexity as the contraction algorithm given in [15]. We also observe that
the fact that the contraction trees constructed in Theorem3.3 have logarithmic
height is inessential when dealing with the simulation of quantum circuits. In
the next section, when dealing with the problem of approximating the value of
quantum circuits whose inputs are uninitialized, contraction trees of logarithmic
height will be essential.

5 Feasibility Tensor Networks

In Sect. 4 we defined tensor networks in terms of abstract networks and showed
how contraction trees can be used to address the problem of computing the value
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of a tensor network. In this section we will use abstract networks to introduce
feasibility tensor networks. We will then proceed to show that feasibility ten-
sor networks can be used to address the problem of computing an assignment
that maximizes the acceptance probability of quantum circuits whose inputs are
uninitialized.

Definition 5.1 (Feasibility Tensor Network). A feasibility tensor network
is a pair (N , Λ) where N is an abstract network and Λ : N → 2T(d)) is a function
that associates with each index set I ∈ N a finite set of tensors Λ(I) ⊆ T(d, I).

Note that the only difference between tensor networks and feasibility tensor
networks is that while in the former we associate tensors with index sets, in the
latter we associate sets of tensors. If (N , Λ) is a feasibility tensor network, then
an initialization of (N , Λ) is a function λ : N → T(d) such that λ(I) ∈ Λ(I)
for each index set I ∈ N . Observe that for each such initialization λ, the pair
(N , λ) is a tensor network as defined in Sect. 4. The value of a feasibility tensor
network is defined as

VAL(N , Λ) = max{val(N , λ) | λ is an initialization of (N , Λ)}. (5)

Below we show that the problem of finding an initialization that maximizes
the acceptance probability of a quantum circuit can be reduced to the problem
of computing an initialization of maximum value for a feasibility tensor network.
Therefore the problem of computing the value of a feasibility tensor network is
QCMA hard. The conversion from quantum circuits to feasibility tensor networks
goes as follows: Each uninitialized input v corresponds to the set of tensors
{|0〉〈0|, |1〉〈1|, ..., |d − 1〉〈d − 1|}. Intuitively, this set of tensors consists of all
possible values that can be used to initialize v. On the other hand, each input
vertex v which is already initialized with a density matrix |i〉〈i| corresponds to
the singleton set {|i〉〈i|}. Finally, each gate g of the circuit corresponds to the
singleton set {g}. We formalize this construction in Definition 5.2 below.

Definition 5.2 (Uninitialized Quantum Circuits to Feasibility Tensor
Networks). Let C = (V,E, θ, ξ) be a quantum circuit in which some of the
inputs are uninitialized. The feasibility tensor network associated with C is
denoted by (NC , ΛC), where NC = {I(v) | v ∈ V } is the abstract network
associated with C, and ΛC is such that for each v ∈ V ,

ΛC(I(v)) =

⎧
⎨

⎩

{|0〉〈0|, |1〉〈1|, ..., |d − 1〉〈d − 1|} if v is an uninitialized input,

{θ(v)} otherwise.
(6)

Now let λ be an initialization of the feasibility tensor network (NC , ΛC). It
is immediate to check that the tensor network (NC , λ) is precisely the tensor
network associated with the circuit C in which the inputs are initialized with
the state |y〉 = ⊗v∈In(C)λ(v). Therefore the value VAL(NC , ΛC) of the feasibil-
ity tensor network (NC , ΛC) is equal to the maximum acceptance probability
Pr cl(C) of C.
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6 Approximating the Value of a Feasibility Tensor
Network

In this section we will devise an algorithm that can be used both to approx-
imate the value VAL(N , Λ) of a given feasibility tensor network (N , Λ)
up to a δ additive factor and to construct an initialization λ such that
|VAL(N , Λ) − val(N , λ)| ≤ δ. In particular, our algorithm runs in polynomial
time if we are given a contraction tree for N of constant rank and logarithmic
height.

6.1 Tensor ε-Nets

We start by defining suitable notions of norm and distance for tensors. If g is a
tensor with index-set I = {I1, ..., ik}, then the L1 norm of g is defined as

|g|1 = max
σi1 ...σik

|g(σi1 , ..., σik)|, (7)

where for each j ∈ {1, ..., k}, σij ranges over the set Π(d), and |g(σi1 , ..., σik)| is
the absolute value of the entry g(σi1 , ..., σik) of g. Having the definition of norm
of a tensor in hands, we define the distance between two tensors g and g′ as
|g − g′|1. The next step consists in defining a suitable notion of ε-net of tensors.

Definition 6.1 (Tensor (d, ε, I)-Net). Let I be an index set, d ∈ N and ε ∈ R

with 0 < ε < 1. A tensor (d, ε, I)-net is a set T(d, ε, I) of d-state tensors with
index set I such that for each g in T(d, I), there exists g′ ∈ T(d, ε, I) with
|g − g′| ≤ ε.

It is easy to construct a (d, ε, I)-net for tensors. We just need to consider the set
of all d-state tensors with index set I in which each entry is a complex number
of the form a+b ·i for −1 ≤ a, b ≤ 1 and a, b integer multiples of ε/2. We observe
that we do not need to assume that the tensors in our (d, ε, I)-net correspond
to physically realizable operations. Our approximation algorithm does not need
this assumption. Since a d-state tensor over the index set I has d2|I| entries, we
have the following proposition upper bounding the size of a tensor (d, ε, I)-net.

Proposition 6.2. For each index set I, each d ∈ N and each ε ∈ R with 0 <
ε < 1 one can construct a tensor (d, ε, I)-net T(d, ε, I) with (1/ε)exp(O(|I| log(d)))

tensors.

If g is a tensor in T(d, I), then we let Truncε(g) be an arbitrary tensor g′ in
T(d, ε, I) such that |g−g′| ≤ ε. Going further, if F is a set of tensors then we let

Truncε(F) = {Truncε(g) | g ∈ F}

be the truncated version of F .
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6.2 Approximation Algorithm

In this subsection we will address the problem of δ-approximating the value of
feasibility tensor networks and the problem of finding δ-optimal initializations
for feasibility tensor networks. First, we define the notion of contraction for pairs
of sets of tensors. Let I, I ′ be a pair of index sets with I∩I ′ 
= ∅. Let F ⊆ T(d, I)
be a finite set of tensors with index set I and F ′ ⊆ T(d, I ′) be a finite set of
tensors with index set I ′. The contraction of F and F ′ is defined as

Contr(F ,F ′) = {Contr(g, g′) | g ∈ F , g′ ∈ F ′}. (8)

Subsequently, we define a notion of simulation for feasibility tensor networks
that is analog to our definition of simulation for tensor networks introduced in
Sect. 4.2. The simulation of a feasibility tensor network (N , Λ) on a contraction
tree (T, ι) is a function Λ̂ that associates a set of tensors with each node of T .
First, with each leaf u of T such that ι(u) = I, we associate the set of tensors
Λ̂(I) = Λ(I). Then, with each internal node u of T , we associate the set of
tensors

Λ̂(u) = Truncε(Contr(Λ̂(u.l), Λ̂(u.r))).

We note that the truncation is necessary to keep the size of each set from growing
exponentially as the contractions take place. This construction is given more
formally in Definition 6.3 below.

Definition 6.3 (Feasibility Tensor Network Simulation). Let (N , Λ) be a
feasibility tensor network and (T, ι) be a contraction tree for N . The ε-simulation
of (N , Λ) on (T, ι) is the function Λ̂ : N → 2T(d,ε) satisfying the following
properties:

1. For each leaf u of T , Λ̂(u) = Λ(ι(u)),
2. For each internal node u of T , Λ̂(u) = Truncε(Contr(Λ̂(u.l), Λ̂(u.r))).

Intuitively, the simulation Λ̂ is a function that keeps track of all ways of simu-
lating tensor networks (N , λ) where λ is an arbitrary initialization of (N , Λ). In
particular, if u is the root of (T, ι) then u is labeled with a set Λ̂(u) of complex
numbers. The absolute value of each of these complex numbers is an approxi-
mation for the value of a tensor network (N , λ) in which λ is an initialization of
(N , Λ). Therefore, by selecting the largest of such numbers we get an approxi-
mation α of the value of (N , Λ). An actual initialization λ for (N , Λ) such that
val(N , λ) = α can be found by backtracking. Theorem6.4 below establishes an
upper bound for the time complexity and for the error of the approximation
scheme described above. The error of such process depends exponentially on the
height of the contraction tree while the time complexity depends exponentially
on the rank of the contraction tree.

Theorem 6.4 (Feasibility Tensor Network Satisfiability). Let (N , Λ) be a
feasibility tensor network, (T, ι) be a contraction tree for N of rank r and height
h, and ε be a real number with 0 < ε < 1.
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1. One can compute a number α such that |α−VAL(N , Λ)| ≤ ε · (3d2r)h in time
|N |O(1) · ε− exp(O(2r log d)).

2. One can compute in time |N |O(1) · ε− exp(O(2r log d)) an initialization λ : N →
2T(d) such that

|val(N , λ) − VAL(N , Λ)| ≤ ε · (3d2r)h.

Our main theorem (Theorem 1.1) is a special case of Corollary 6.5 below, by
recalling that for any quantum circuit C with uninitialized inputs, Pr cl(C) =
VAL(NC , ΛC) (see Definition 5.2).

Corollary 6.5. Let (N , Λ) be a feasibility tensor network such that the graph
G(N ) has treewidth t and maximum degree Δ. For each δ with 1/poly(n) < δ < 1
one can compute in time (|N |/δ)exp(O(t)) an initialization λ of (N , Λ) such that

|val(N , λ) − VAL(N , Λ)| ≤ δ.

Proof. By Theorem 3.3, one can construct a contraction tree for N of rank r =
O(Δ · t) and height h = O(Δ · t · log |N |). Since Δ is a constant, if we set ε =
δ/|N |O(1) in Theorem 6.4.2, we have that we can compute in time (|N |/δ)exp(O(t))

an initialization λ for (N , Λ) such that |val(N , λ) − VAL(N , Λ)| ≤ δ.

7 Conclusion and Open Problems

In this work we have introduced the notion of feasibility tensor network. We
have shown that the problem of computing a classical assignment y ∈ {0, 1}n

that maximizes the acceptance probability of a quantum circuit C with n unini-
tialized inputs and poly(n) gates can be reduced to the problem of finding an
initialization of maximum value for a feasibility tensor network. Using this reduc-
tion we have shown that if C has treewidth t then a δ-optimal assignment for C
can be found in time (n/δ)exp(O(t)). Therefore we have provided the first exam-
ple of quantum optimization problem that can be solved in polynomial time
on quantum circuits of constant treewidth. Additionally, we have provided new
characterizations of the complexity classes NP and QMA in terms of Merlin-
Arthur protocols in which the verifier is a circuit of logarithmic treewidth, by
showing that QCMA[tw, O(log n)] = NP and that QMA[tw, O(log n)] = QMA.
In other words, we have shown that quantum witnesses are inherently more
powerful than classical witnesses for Merlin-Arthur protocols with verifiers of
logarithmic treewidth, assuming QMA 
= NP. Our main theorem implies that
QCMA[tw, O(1)] ⊆ P . However we were not able to determine whether an ana-
log inclusion can be proved when the verifier has constant width and the witness
is allowed to be an arbitrary quantum state. More precisely, the following ques-
tion is left open: Is QMA[tw, O(1)] ⊆ P?

The NP-hardness of the problem of computing optimal classical assignments
for quantum circuits of logarithmic treewidth imposes some constraints on the
possibility of drastically improving the running time of our algorithm. However
we leave the following open question: Is the problem of computing δ-optimal clas-
sical assignments for quantum circuits in FPT with respect to treewidth? More
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precisely can this problem be solved in time f(t) · poly(n, δ)? We observe that
while in the case of classical circuits one can determine the existence of a satisfy-
ing assignment in time 2O(t)·nO(1) [3,4], the fact that QCMA[tw, O(log n)] = NP
implies that in the case of quantum circuits the function f(t) should be at least
double exponential in t, assuming the exponential time hypothesis (ETH).
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Abstract. We introduce the notion of idempotent variables for studying
equations in inverse monoids. It is proved that it is decidable in singly
exponential time (DEXPTIME) whether a system of equations in idem-
potent variables over a free inverse monoid has a solution. The result is
proved by a direct reduction to language equations with one-sided con-
catenation and a known complexity result by Baader and Narendran.
Decidability for systems of typed equations over a free inverse monoid
with one irreducible variable and at least one unbalanced equation is
proved with the same complexity. The results improve known complex-
ity bounds by Deis et al. Our results also apply to larger families of
equations where no decidability has been previously known. It is also
conjectured that DEXPTIME is optimal.

Keywords: Equation · Free inverse monoid · Idempotent variable ·
One-variable

Introduction

It is decidable whether equations over free monoids and free groups are solvable.
These classical results were proved by Makanin in his seminal papers [11,12].
A first estimation on the complexity of his algorithms was a tower of several
exponentials in the case of free monoids and not primitive recursive in the case
of free groups, see [6] for more details and references. Over the years the com-
plexity was lowered drastically. It went down to PSPACE by Plandowski [16] for
free monoids and by Gutiérrez for free groups [8]. The decision problem for solv-
ing equations in free monoids is called Wordequations; and Jeż achieved the
best known space complexity to date for that problem: NSPACE(n log n), [9].
Perhaps even more importantly, Jeż’s technique, known as “recompression” is
the simplest known method for deciding Wordequations. Recompression leads
also to an easy understandable algorithmic description for the set of all solutions
for equations over free monoids and free groups, see Diekert et al. [7]. Actually,
the result in [7] is more general and copes with free monoids with involution and
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 173–188, 2015.
DOI: 10.1007/978-3-319-20297-6 12
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rational constraints. Moreover, based on [7], Ciobanu et al. showed in [4] that
the existential theory of free groups is decidable in NSPACE(n log n), too.

In the present paper we study equations over inverse monoids. Inverse mo-
noids are monoids with involution and constitute the most natural intermediate
structure between monoids and groups. They are well-studied and pop-up in
various applications, for example when investigating systems which are simul-
taneously deterministic and codeterministic. Inverse monoids arise naturally
as monoids of injective transformations closed under inversion. Indeed, up to
isomorphism, these are all the inverse monoids, as stated in the classical Vagner-
Preston representation theorem. This makes inverse monoids ubiquitous in geom-
etry, topology and other fields.

The fifties of the last century boosted the systematic study of inverse mo-
noids. However, the word problem remained unsolved until the early seventies,
when Scheiblich [18] and Munn [13] independently provided solutions for free
inverse monoids. The next natural step is to consider solvability of equations.
However, Rozenblat’s paper [17] destroyed all hope for a general solution: solving
equations in free inverse monoids is undecidable. Thus, the best we can hope is
to prove decidability in special cases. For almost a decade, the reference paper
on this subject has been the paper of Deis, Meakin and Sénizergues [5]. The idea
is as follows. If, over a given set of generators A, an equation is solvable in a free
inverse monoid FIM(A) then it is necessarily solvable in the free group FG(A).
By Makanin, the latter property is decidable. Hence, [5] considered an equation
over FIM(A) together with a fixed solution over the free quotient group. Using
Rabin’s tree theorem it was shown that it is decidable whether the solution
over the group FG(A) can be lifted to a solution over the free inverse monoid.
However, this approach resulted in an algorithm which is super-exponential and
at least doubly exponential in their specific setting.

Results. In the present paper, we achieve various improvements w.r.t. [5]. Our
main result lowers the complexity to singly exponential time; and we conjec-
ture that this is optimal. Moreover, we study equations with idempotent vari-
ables instead of lifting properties which leads to a uniform approach. Actually,
this approach simplified the proof. It also enabled us to generalize some results
concerning one-variable equations to a broader setting, thereby leading to new
decidability results. More precisely, the progress here is as follows.1

– Theorem 8 shows that deciding solvability of systems of equations in idempo-
tent variables over FIM(A) is possible in DEXPTIME, while the complexity of
the algorithm in [5, Theorem 8] is much higher, since the algorithm involves
Rabin’s tree theorem.

– Theorem 16 yields again a much better complexity than [5, Thm.13], and
moreover, it corrects a minor mistake in the statement of [5, Thm.13].

– Theorem 8 generalizes our Theorem 16 since it admits the presence of arbi-
trarily many idempotent variables.

– Our proofs are rather short by a direct reduction to language equations. This
enables us to use the results of Baader and Narendran in [2].

1 A more detailed version of this conference paper is available as eprint
arXiv:1412.4737.
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Preliminaries

We say that a function f is singly exponential, if f(n) ≤ 2p(n) where p is a
polynomial. The complexity classes PSPACE resp. DEXPTIME refer to problems
which can be solved on deterministic Turing machines within a polynomial space
bound resp. singly exponential time bound. Our notation follows [14].

A (finite) set is called an alphabet and an element of an alphabet is called
a letter. The free monoid generated by an alphabet A is denoted by A∗. The
elements of A∗ are called words. The empty word is denoted by 1. The length of
a word u is denoted by |u|. We have |u| = n for u = a1 · · · an where ai ∈ A. The
empty word has length 0, and it is the only word with this property. A word u
is a factor of a word v if there exist p, q ∈ A∗ such that puq = v. A factor u is a
prefix of v if uq = v for some q ∈ A∗. We also write u ≤ v if u is a prefix of v and
we let Pref(v) = {u ∈ A∗ | u ≤ v}. Given a word w, we denote by last(w) the last
letter of w (if w �= ε) or the word ε (if w = ε). A language is a subset of A∗. The
notion of prefix extends to languages by Pref(L) = {u ∈ A∗ | ∃v ∈ L : u ≤ v}.

Throughout this paper, the alphabet A is endowed with an involution. An
involution is a mapping such that x = x for all elements. In particular, an
involution is a bijection. We use the following convention. There is a subset
A+ ⊆ A such that such that first, A = A+ ∪ {a | a ∈ A+} and second, A+ ∩
{a | a ∈ A+} = {a ∈ A | a = a}. Therefore, if the involution on A is without
fixed points then A = A+ ∪ {a | a ∈ A+} is a disjoint union. Thus, there are no
self-involuting letters, which is case of primary interest. If an involution is defined
for a monoid then we additionally require that xy = y x for all its elements x, y.
This applies in particular to a free monoid A∗ over a set with involution: for a
word w = a1 · · · am we thus have w = am · · · a1. If a = a for all a ∈ A then w
simply means the word obtained by reading w from right to left.

A morphism of sets with involution is a mapping respecting the involution.
Likewise, a morphism between monoids with involution is a monoid homomor-
phism respecting the involution. Consider a monoid M with involution and a
mapping φ : A → M respecting the involution. This is a morphism of sets with
involution and there is exactly one morphism Φ : A∗ → M of monoids with
involution such that Φ(a) = φ(a) for all a ∈ A. In this sense, A∗ is the free
monoid with involution on A (w.r.t. to the category of sets with involution2).

Every group is a monoid with involution by letting x = x−1; and a morphism
between groups is the same as a homomorphism between groups. The identity is
an involution on a monoid if and only if the monoid is commutative. In particular,
N is viewed as a monoid with involution and the length function A∗ → N, u 
→ |u|
is a morphism. However, if a group is commutative then, by default, we still let
x = x−1. This applies in particular to Z where n = −n.

A monoid M is said to be inverse if for every x ∈ M there exists exactly one
element x ∈ M satisfying xxx = x and xxx = x. Clearly, x = x by uniqueness

2 In our notation a homomorphism is a mapping which respects the algebraic structure
whereas a morphism respects the involution and, depending on the category, it also
has to respect the algebraic structure.
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of x and, hence, M is a set with involution. The mapping x 
→ x is also called
an inversion. Idempotents commute in inverse monoids (see e.g., [15]), hence the
subset E(M) =

{
e ∈ M

∣∣ e2 = e
}

is a subsemigroup. Since necessarily e = e for
e ∈ E(M) one easily deduces that xy = y x for all x, y ∈ M . As a consequence,
an inverse monoid is a monoid with involution. Frequently in the literature the
notation x = x−1 is also used for elements of inverse monoids, just as for groups
(which constitute a proper subclass of inverse monoids). Just as for groups, by
default, the involution on an inverse monoid is given by its inversion.

We proceed now to describe Scheiblich’s construction of free inverse monoids.
Let us recall some concepts and fix some notation for free groups. If the invo-
lution on A is without fixed points then the free group FG(A+) is as usual the
quotient monoid of A∗ defined by {aa = 1 | a ∈ A}. It satisfies the universal
property that every mapping of A+ to a group G uniquely extends to a homo-
morphism FG(A+) → G. But the same construction works if we allow fixed
points for the involution on A. We denote the quotient monoid of A∗ defined by
{aa = 1 | a ∈ A} by F (A). Thus, if the involution on A is without fixed points
then F (A) = FG(A+), otherwise F (A) is a free product of a free group by
cyclic groups of order 2. Now, every morphism of a set with involution A to a
group G extends uniquely to a homomorphism F (A) → G. This follows because
in a group G we have x = x−1 if and only if x2 = 1. As a set we can iden-
tify F (A) with the subset of reduced words in A∗. As usual, a word is called
reduced if it does not contain any factor aa where a ∈ A. Observe that this
embedding of F (A) into A∗ is compatible with the involution. In the following
we let π : A∗ → F (A) be the canonical morphism from A∗ onto F (A). It is
well-known that every word u ∈ A∗ can be transformed into a unique reduced
word û by successively erasing factors of the form aa where a ∈ A. This leads to
the equivalence ∀u, v ∈ A∗ : π(u) = π(v) ⇐⇒ û = v̂.

As we systematically identify the set F (A) with the subset Â∗ of A∗, concepts
such as length, factor, prefix, and prefix-closure are inherited from free monoids
to free groups via reduced words. For the same reason, it makes sense to write
û = π(u), for u ∈ A∗, because π(u) ∈ F (A) is identified with û ∈ A∗.

Following Scheiblich [18], we represent elements of FIM(A) as pairs (X, g)
where the second component is a group element g ∈ F (A) and the first compo-
nent is a finite prefix closed subset X of F (A) such that g ∈ X. In other terms,
this means that X is a finite connected subset of the Cayley graph of F (A)
(over A) such that 1, g ∈ X. Formally, we let

FIM(A) = {(X, g) | |X| < ∞ ∧ g ∈ X = Pref(X) ⊆ F (A)} .

The multiplication on FIM(A) is defined through (X, g)(Y, h) = (X ∪ gY, gh). It
is easy to see that FIM(A) is a monoid with identity ({1} , 1) and every (X, g)
has a unique inverse (g−1X, g−1), hence FIM(A) is an inverse monoid.

Let ψ : A∗ → FIM(A) be the homomorphism of monoids defined by ψ(a) =
({1, a}, a). Then we have ψ(a) = ({1, a} , a) = ({1, a}, a) and ψ is a morphism of
monoids with involution. We have again the universal property of being free with
respect to sets with involution. Let M be an inverse monoid and φ : A → M
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a morphism of sets with involution. Then there is exactly one morphism Φ :
FIM(A) → M of monoids with involution such that Φ(a) = φ(a) for all a ∈ A.
To make this precise, write ι = ψ|A. Given a mapping φ : A → M respecting
the involution where M is an inverse monoid, there exists a unique morphism
of inverse monoids η : FIM(A) → M such that φ = ηι. If the involution is
without fixed points then FIM(A) is the free inverse monoid over the set A+. In
particular, π : A∗ → F (A) factorizes through some morphism η. The following
diagram summarizes our notation.

Language Equations over Free Monoids

Henceforth A denotes an alphabet with involution of constants. We use a, b, c, . . .
to denote letters of A, whereas variables are denoted by capital letters X,Y,Z . . .
or by small letters x, y, z, . . . and small letters for variables refer to elements in
the group F (A). Our complexity results for solving certain equations over free
inverse monoids depend on a result of Baader and Narendran [2]. In this section
let M denote either the free monoid A∗ or the group F (A). In particular, we
have A ⊆ M and A generates M as a monoid. The set of subsets of M with
union as operation forms a commutative idempotent monoid denoted by 2M .
We therefore write L + K instead of L ∪ K. A language equation over M (with
one-sided concatenation) has the form LI +

∑
i∈I wiXi = LJ +

∑
j∈J wjXj . Here

I and J are finite disjoint index sets, LI , LJ are finite subsets of A∗, wk ∈ A∗

are words and Xk ∈ Ω for k ∈ I ∪ J , where Ω is a set of variables. The size of
an equation E is defined as ‖E‖ = |I ∪ J | +

∑
w∈LI∪LJ

|w| +
∑

k∈I∪J |wk| .
Example 1. Consider {aa} + aaX + bbY = {bb} + bbX + aaY. If we let L{1,2} =
{aa}, L{3,4} = {bb}, X1 = X3 = X, X2 = X4 = Y , w1 = w4 = aa, and
w2 = w3 = bb then the equation above has size 16 and is written in the syntactic
form as above:

L{1,2} + w1X1 + w2X2 = L{3,4} + w3X3 + w4X4.

A system of language equations over M is a finite set S of language equations.
A solution is a substitution of each X ∈ Ω by some finite subset σ(X) ⊆ M
(i.e., σ(X) is a finite language) such that

LI +
∑

i∈I

wiσ(Xi) = LJ +
∑

j∈J

wjσ(Xj)

becomes an identity in 2M for all equations of S. For example, σ(X1) = σ(X2) =
{1} solves the equation in Example 1. The size of a system S = {Es | s ∈ S} is
defined as ‖S‖ =

∑
s∈S ‖Es‖ . The following result is well-known.
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Theorem 2 ([2], Theorem 6.1). The following problem can be decided in
DEXPTIME.

Input: A system S of language equations over the free monoid A∗.
Question: Does S have a solution?

Remark 3. Theorem 7.6 of [2] shows that the problem above is DEXPTIME-hard
It is open whether the DEXPTIME-hardness transfers to our setting where the
coefficients in the language equations are prefix closed.

Typed Equations over Free Inverse Monoids

An equation over FIM(A) is a pair (U, V ) of words over A∪X , sometimes written
as U = V . Here A is an alphabet of constants and X is a set of variables.
Variables X ∈ X represent elements in FIM(A) and therefore X is an alphabet
with involution, too. In this section we allow self involuting letters in A, but
without restriction we assume X �= X for all X ∈ X . A solution σ of U = V is
a mapping σ : X → A∗ such that σ(X) = σ(X) for all X ∈ X and such that the
replacement of variables by the substituted words in U and in V give the same
element in FIM(A), i.e., ψ(σ(U)) = ψ(σ(V )) in FIM(A), where σ is extended
to a morphism σ : (A ∪ X )∗ → A∗ leaving the constants invariant. Clearly,
we may specify σ also by a mapping from X to FIM(A). For the following it
is convenient to have two more types of variables which are used to represent
specific elements in FIM(A). We let Ω be a set of idempotent variables and Γ
be a set of reduced variables. Both sets are endowed with an involution. We let
Z = Z for idempotent variables, x �= x for all reduced variables, and X �= X for
all variables from X . Thus, idempotent variables are the only variables which
are self-involuting. We also insist that A, X , Ω, and Γ are pairwise disjoint.
A typed equation over FIM(A) is now a pair (U, V ) of words over A ∪ Ω ∪ Γ .
A solution σ of U = V is given by a mapping respecting the involution from
Ω ∪ Γ to A∗ such that the following conditions hold.

– ψ(σ(Z)) is idempotent for all Z ∈ Ω.
– σ(x) is a reduced word for all x ∈ Γ .
– Extending the mapping σ (as usual) to a homomorphism σ : (A ∪ Ω ∪ Γ )∗ →

A∗ respecting the involution and letting the letters of A invariant we have
ψ(σ(U)) = ψ(σ(V )).

Remark 4. Let (U, V ) be an (untyped) equation over FIM(A). For each X,X ∈
X choose a fresh idempotent variable ZX ∈ Ω and fresh reduced variables
xX , xX ∈ Γ . Let τ be the word-substitution (i.e., the monoid homomorphism)
which replaces each X, X ∈ Ω by ZXxX and xXZX respectively. If σ is a solu-
tion of (U, V ) (with the interpretation σ(X) ∈ FIM(A)) then a solution σ′ for
(τ(U), τ(V )) can be defined as follows.

For σ(X) = (P, g), where g is represented by a reduced word, we let
σ′(ZX) = (P, 1) and σ′(xX) = (Pref(g), g). Conversely, if σ′ solves (τ(U), τ(V ))
with σ′(ZX) = (P, 1) and σ′(xX) = (Pref(g), g) then σ(X) = (P ∪ Pref(g), g)
defines a solution for (U, V ).
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Note that the word-substitution τ ′ which replaces each X,X ∈ Ω by xXZX and
ZXxX respectively, has similar properties.

By Remark 4 we can reduce the satisfiability of equations in FIM(A) to
typed equations. The framework of typed equations is more general; and it fits
better to our formalism. Let (U, V ) be a typed equation, by the underlying
group equation we mean the pair (π(U), π(V )) which is obtained by erasing all
idempotent variables. Clearly, if (U, V ) is satisfiable then (π(U), π(V )) must be
solvable in the free group F (A). This leads to the idea of lifting a solution of a
group equation to a solution of (U, V ) in FIM(A). The following result improves
the result in [5] by giving a deterministic exponential time bound.

Theorem 5. The following problem can be decided in DEXPTIME.
Input: A system S of equations over FIM(A) and a fixed solution σ′ : Γ →

F (A) of the system π(S) of underlying group equations.
Question: Does S have a solution σ : X → FIM(A) such that σ′ = η ◦ σ?

Proof. The proof follows from the more general statement in Theorem 8. Indeed,
due to Remark 4 we first transform the system into a new system with variables in
Ω∪Γ . Next we replace every reduced variable x ∈ Γ by (Pref(σ′(x)), σ′(x)). Since
the solution is part of the input this increases the size of S at most quadratic.
We obtain a system of equations in idempotent variables. Thus, we can use
Theorem 8. �

The next result combines Theorem 5 and a recent complexity result for systems
of equations over free groups [7]. This leads to the following new result:

Corollary 6. Let S be a system of equations over the free inverse monoid
FIM(A) and π(S) the system of underlying group equations.

1. On input S it can be decided in polynomial space whether the system π(S) of
group equations has at most finitely many solutions. If so, then every solution
has at most doubly exponential length.

2. On input S and the promise that π(S) has at most finitely many solutions
it can be decided in deterministic triple exponential time whether S has a
solution.

Proof. The statement 1 follows from [7]. In particular, the size of the set of all
solutions is at most triple exponential. Since the square of a triple exponential
function is triple exponential again, the statement 2 follows from Theorem 5. �

Solving Equations in Idempotent Variables

This section shows how to solve equations in idempotent variables. In particular,
we obtain the result used in the proof of Theorem 5. We make use of the following
easy observation.

Lemma 7. Let P ⊆ A∗ be prefix closed and P̂ = {p̂ | p ∈ P} the corresponding
set of reduced words. Then P̂ is prefix closed.
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Theorem 8. The following problem can be decided in DEXPTIME.
Input: A system S of equations in idempotent variables (i.e., without any

reduced variable).
Question: Does S have a solution in FIM(A)?

Proof. Every equation (U, V ) ∈ S can be written as

w0X1w1 · · · Xgwg = wg+1Xg+2wg+2 · · · Xdwd, (1)

where wi ∈ A∗ are words and Xi ∈ Ω are the idempotent variables. In linear time
we check that for all equations in (1) we have w0w1 · · · wg = wg+1wg+2 · · · wd in
the group F (A). If one of these equalities is violated then S is not solvable and
we can stop.

Thus, without restriction we have w0w1 · · · wg = wg+1wg+2 · · · wd ∈ F (A).
Now, it is enough to solve language equations over the group F (A): assume
that each Xi represents a finite prefix closed set in F (A). Let us show that
we can calculate in polynomial time a subset L +

∑
0≤i≤m uiXi ⊆ F (A) which

corresponds to an expression v0X1v1 · · · Xmvm. (Actually the time complexity
is quadratic, only.)

To see this, let v0X1v1 · · · Xmvm appear on the left or right of some equa-
tion in S. Let pi be the prefix of v0v1 · · · vm having length i. The set P =
{pi | 0 ≤ i ≤ |v0v1 · · · vm|} is prefix closed by definition. We replace each p ∈ P

by its reduced form p̂; and we obtain a prefix closed language L = P̂ of reduced
words by Lemma 7. Now let ui be the reduced form of v0 · · · vi for 0 ≤ i < m.
Then we have ui ∈ L for 0 ≤ i < m. Writing unions as sums we see that
v0X1v1 · · · Xmvm yields the desired form:

L +
∑

0≤i<m

uiXi.

Recall that in this expression L is represented as a prefix closed subset of
reduced words and each ui is a reduced word belonging to L. Doing this trans-
formation everywhere, we obtain a system of language equations over the free
group F (A). Instead of (1) every equation has now the form:

LI +
∑

i∈I

uiXi = LJ +
∑

j∈J

ujXj (2)

Here, I, J are finite disjoint sets of indices, each LK is given by a finite prefix
closed set of reduced words in A∗ and uk ∈ LK = Pref(LK) for k ∈ K ∈ {I, J}.
By abuse of language we call this system S again. A solution is now a mapping
σ from variables to subsets of A∗ such that σ(X) is a finite nonempty prefix
closed subset of A∗ and such that all equations hold as language equations over
F (A). We say that a solution σ is strong if σ(X) consists of reduced words, only.
Clearly, S has a solution if and only if it has a strong solution.

Next, we transform in deterministic polynomial time the system S into a
system S0 where the equations have a simple syntactic form. This reduction is
an intermediate step, only.
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We begin by introducing a fresh variable X0 and an equation X0 = 1. More-
over, we replace all other variables X by 1+X. This allows to drop the restriction
that σ(X) �= ∅. In a second phase, we replace each equation E of type

LI +
∑

i∈I

uiXi = LJ +
∑

j∈J

ujXj

by two equations using a fresh variable XE and, since each uk ∈ LK = Pref(LK)
as well as X0 = 1, we may define these equations as follows:

XE =
∑

u∈LI

(uX0 + Pref(u)) +
∑

i∈I

(uiXi + Pref(ui)),

XE =
∑

v∈LJ

(vX0 + Pref(v)) +
∑

j∈J

(ujXj + Pref(uj)).

Thus, there is an equation of the form X = 1 and a bunch of equations which
have the form

X =
∑

i∈I

(uiXi + Pref(ui)) with I �= ∅.

With the help of polynomially many additional fresh variables, it is now obvi-
ous that we can transform S (w.r.t. satisfiability) into an equivalent system S0

containing only three types of equations:

X = 1, (3)
X = Y + Z, (4)
X = uY + Pref(u), where u is a reduced word. (5)

Phrased differently, without restriction S is of the form S0 at the very beginning.
At this point we start a nondeterministic polynomial time reduction. This means,
if S has a solution then at least one outcome of the nondeterministic procedure
yields a solvable system S ′ of language equations. If none of the possible outcomes
is solvable then S is not solvable. During this procedure we are going to mark
some equations and this forces us to define the notion of solution for systems
with marked equations. A (strong) solution is defined as a mapping σ such that
each σ(X) is given by a prefix closed set of (reduced) words in A∗ such that all
equations hold as language equations over F (A), but all marked equations hold
as language equations over A∗ as well. (Thus, we have a stronger condition for
marked equations.) We can think of an “evolution” of language equations over
F (A) to language equations over the free monoid A∗, and in the middle during
the evolution we have a mixture of both interpretations.

Initially we mark all equations of type X = 1 or X = Y +Z. This is possible
because we may start with a strong solution if S is solvable.

Now we proceed in rounds until all equations are marked. We start a round,
if some of the equations X = uY + Pref(u) is not yet marked. If u = 1 is the
empty word we simply mark that equation, too. Hence we may assume u �= 1
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and we may write u = va with a ∈ A. Nondeterministically we guess whether
there exists a strong solution σ such that a ∈ σ(Y ).

If our guess is “a /∈ σ(Y )”, then we mark the equation X = vaY +Pref(va). If
the guess is true then marking is correct because then vaw is reduced for all w ∈
σ(Y ). Whether or not a /∈ σ(Y ) is true, marking an equation never introduces
new solutions. Thus, a wrong guess does not transform an unsatisfiable system
into a satisfiable one.

Hence, it is enough to consider the other case that the guess is “a ∈ σ(Y )”
for some strong solution σ. In this case we introduce two fresh variables Y ′, Y ′′

and a new marked equation

Y = Y ′ + aY ′′ + Pref(a).

If a ∈ σ(Y ) is correct then we can extend the strong solution so that a /∈ σ(Y ′).
If a ∈ σ(Y ) is false then, again, this step does not introduce any new solution.

Finally, we replace the equation X = vaY + Pref(va) by the following three
equations, the first two of them are marked and the variables X ′, X ′′ are fresh

X = X ′ + X ′′ (marked),
X ′ = vaY ′ + Pref(va) (marked),
X ′′ = vY ′′ + Pref(v).

If the guess “a ∈ σ(Y )” was correct, then the new system has a strong solution.
If the new system has any solution then the old system has a solution because
X ′′ = vY ′′ + Pref(v) is unmarked as long as v �= 1.

Overall, we have replaced one unmarked equation X = uY + Pref(u) by
several marked equations and additionally, in case u �= 1, by some new unmarked
equation X ′′ = vY ′′ + Pref(v), but where |v| < |u|. Hence, after polynomial
many rounds all equations are marked. This defines the new system S ′. If S ′ has
a solution σ′ then the restriction of σ′ to the original variables is also a solution
of the original system S. If all our guesses were correct with respect to a strong
solution σ of S then S ′ has a strong solution σ′ such that σ is the restriction
of σ′ to the original variables. Hence, S has a solution if and only if S ′ has a
solution.

It is therefore enough to consider the system S ′ of language equations over
A∗. All the equations are still of one of the three types (3), (4), (5) above. Let σ
be any mapping from variables in S ′ to finite languages of A∗, i.e., σ(X) ⊆ A∗

denotes an arbitrary finite language for all variables. Then we have the following
implications.

– σ(X) = 1 implies Pref(σ(X)) = 1,
– σ(X) = σ(Y ) + σ(Z) implies Pref(σ(X)) = Pref(σ(Y )) + Pref(σ(Z)),
– σ(X) = uσ(Y ) + Pref(u) implies Pref(σ(X)) = uPref(σ(Y )) + Pref(u).

Thus, the system S ′ of language equations over A∗ has a solution if and only
if S ′ has a language solution in finite and prefix closed sets. In order to finish
the proof, let us briefly repeat what we have done so far. The input has been a
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system S of equations over FIM(A) in idempotent variables. If S has a solution
then it has a strong solution and making all guesses correct we end up with a
system S ′ of language equations over A∗ which has a strong solution in finite
and prefix closed sets. Conversely, consider some system S ′ which is obtained
by the nondeterministic choices. (Note that the number of different systems S ′

is bounded by a singly exponential function and DEXPTIME is enough time to
calculate a list containing all S ′.) Assume that S ′ has a solution σ′ in finite
subsets of A∗.

We have already seen that, due to the syntactic structure of S ′, there is also a
solution σ in finite prefix closed subsets of A∗. Moreover, σ solves S as a system
of language equations over the group F (A). Using Lemma 7 we see that σ solves
the original system over the free inverse monoid FIM(A). Thus, since the square
of a singly exponential function is singly exponential, it is enough to apply the
result in [2], see Theorem 2 above. �

One-variable Equations

Throughout this section we assume that the involution on A is without fixed
points, i.e., F (A) is equal to the free group FG(A+) in the standard terminology.
It is open whether we can remove this restriction. The following notation is
defined for any alphabet Σ and any nonempty word p ∈ Σ+. For u ∈ Σ∗ we
let |u|p be the number of occurrences of p as a factor in u. Formally: |u|p =
|{u′ | u′p ≤ u}| . The following equation is trivial since p may occur across the
border between u and v at most |p| − 1 times.

0 ≤ |uv|p − |u|p − |v|p ≤ |p| − 1. (6)

Next, assuming that Σ is equipped with an involution, we define a “difference”
function δp : Σ∗ → Z by δp(u) = |u|p − |u|p. Since δp(u) = δp(u) we have
δp(u) = −δp(u), and the mapping δp respects the involution. By definition:

δp(uv) − δp(u) − δp(v) = (|uv|p − |u|p − |v|p) − (|uv|p − |u|p − |v|p).
Hence, we may use Eq. (6) to conclude:

|δp(uv) − δp(u) − δp(v)| ≤ |p| − 1. (7)

As we identify F (Σ) with the subset of reduced words in Σ∗, the mapping δp

is defined from F (Σ) to Z, too. The next lemma shows that its deviation from
being a homomorphism can be upper bounded. The next lemma will be applied
to a primitive word p, only. Let us remind that a word is called primitive if it
cannot be written in the form vi for some word v with i > 1. In particular, a
primitive word is not empty. Every nonempty word u has a primitive root: it is
the uniquely defined primitive word p such that u ∈ p+.

Lemma 9. Let u1, . . . , un, p be reduced words with p �= 1. Let w be the uniquely
defined reduced word such that w is equal to u1 · · · un in the group F (Σ). Then
we have

|δp(w) − δp(u1) − · · · − δp(un)| ≤ 3(|p| − 1)(n − 1). (8)
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Proof. Clearly, Eq. (8) holds for n = 1. Let n ≥ 2 and u be the
reduced word obtained by a reduction of the word u1 · · · un−1. By induction,
|δp(u) − δp(u1) − · · · − δp(un−1)| ≤ 3(|p| − 1)(n − 2). Let v = un. By triangle
inequality it is enough to show

|δp(w) − δp(u) − δp(v)| ≤ 3(|p| − 1). (9)

To see this write u = u′r and v = rv′ such that w = u′v′.

δp(w) − δp(u) − δp(v) = δp(w) − δp(u′) − δp(v′)
+ δp(u′) + δp(r) − δp(u)
+ δp(r) + δp(v′) − δp(v)

The desired Eq. (9) follows by Eq. (7) and the triangle inequality. �

Lemma 9 is used in the text in the following equivalent form.

δp(u1) + · · · + δp(un) − 3(|p| − 1)(n − 1)
≤ δp(w)
≤ δp(u1) + · · · + δp(un) + 3(|p| − 1)(n − 1).

The following lemma is easy to prove. It is however here where we use a �= a
for all a ∈ A. Let us recall that a word q is cyclically reduced if qq is reduced.

Lemma 10. Let n ∈ Z and q ∈ F (A) be a primitive and cyclically reduced word.
Then we have δq(qn) = n.

An (untyped) equation (U, V ) is called a one-variable equation, if we can write
UV ∈ (A∪{

X,X
}
)∗. More generally, we also consider systems of typed equations

with at most one reduced variable x (and x), i.e., every equation (U, V ) in the
system satisfies UV ∈ (A ∪ Ω ∪ {x, x})∗. Let us fix some more notation, we let
Σ = A ∪ Ω ∪ Γ with Γ = {x, x}. In particular, we have X = X for all X ∈ Ω
and α �= α for all α ∈ A ∪ Γ .

Defnition 11. Let u, v ∈ Γ ∗. We say that (u, v) is unbalanced if u �= v in the
free inverse monoid FIM(Γ ). Otherwise we say that (u, v) is balanced.

Remark 12. Using the well-known structure of FIM(Γ ), a pair (u, v) as in Def-
nition 11 is balanced if and only if the following three conditions are satisfied.

– δx(u) = δx(v).
– max{δx(u′) | u′ ≤ u} = max{δx(v′) | v′ ≤ v}.
– min{δx(u′) | u′ ≤ u} = min{δx(v′) | v′ ≤ v}.

In the following we let πA,Γ be the morphism from (A ∪ Ω ∪ Γ )∗ to F (A ∪ Γ )
which is induced by cancelling the symbols in Ω.

Defnition 13. Let (U, V ) be an untyped one-variable equation with X ={
X, X

}
. We say that (U, V ) is unbalanced if it fulfills both conditions:
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1. (u, v) is unbalanced as a word over Γ where u (resp. v) is obtained from U
(resp. V ) by replacing X by x (and X by x) and erasing all other symbols.

2. πA,Γ (U) �= πA,Γ (V ) in the free group F (A ∪ Γ ).

The following definition is a bit more technical, but it will lead to better results.

Defnition 14. Let U, V be words over A∪Ω∪Γ . We say that (U, V ) is strongly
unbalanced if πA,Γ (U) �= πA,Γ (V ) in the free group F (A ∪ Γ ) and at least one
of the following conditions is satisfied.

(i) δx(U) �= δx(V ).
(ii) For all z ∈ Ω ∪ {1} and all prefixes V ′z of V there exists some prefix U ′z

of U such that δx(U ′) > δx(V ′).
(iii) For all z ∈ Ω ∪ {1} and all prefixes V ′z of V there exists some prefix U ′z

of U such that δx(U ′) > δx(V ′).

The following result improves the complexity in the corresponding statement of
[5, Thm.13]. (Note that the condition πA,Γ (U) �= πA,Γ (V ) was missing in [5],
but the proof is not valid without this additional requirement.)

Theorem 15. The following problem can be decided in DEXPTIME.
Input: A system S of one-variable equations over X =

{
X,X

}
where at least

one equation (U, V ) is unbalanced according to Defnition 13.
Question: Does S have a solution in FIM(A)?

Proof. Suppose that (U, V ) is unbalanced. The pair (U, V ) must then contra-
dict one of the three conditions of Remark 12. Let us distinguish cases and, in
each case, reduce the given unbalanced equation into a strongly unbalanced typed
equation.
In all cases, we introduce a fresh idempotent variable Z, a fresh reduced
variable x, and use the word-substitutions τ ′ (or τ) defined in Remark 4:
τ ′(X) = xZ, τ ′(X) = Zx, τ(X) = Zx, τ(X) = xZ or the trivial substitution
θ(X) = x, θ(X) = x.

Case 1: δX(U) �= δX(V ).

In this case (θ(U), θ(V )) fulfills condition (i).

Case 2: max{δX(U ′) | U ′ ≤ U} > max{δX(V ′) | V ′ ≤ V }.

There is some prefix U ′ ≤ U such that for all prefixes V ′ ≤ V we have δX(U ′) >
δX(V ′) and, in particular, δX(U ′) > δX(1) = 0. We choose δX(U ′) to be maximal
and, since δX(U ′) is positive, we may choose U ′ such that X = last(U ′), so that
last(τ ′(U ′)) = Z. Now, for every z ∈ {Z, 1},

δx(τ
′(U ′)) = δX(U ′) > max

{
δX(V ′)

∣
∣ V ′ ≤ V

}
= max

{
δx(W )

∣
∣ W ≤ τ ′(V )

}

≥ max
{
δx(W

′z)
∣
∣ W ′z ≤ τ ′(V )

}
.

This prefix τ ′(U ′) shows that (τ ′(U), τ ′(V )) fulfills condition (ii) (this is actually
a stronger requirement than asked by Defnition 14, because this single prefix
τ ′(U ′) serves for all W ′z).
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Case 2’: max{δX(U ′) | U ′ ≤ U} < max{δX(V ′) | V ′ ≤ V }.

By Case 2 the typed equation (τ ′(V ), τ ′(U)) fulfills condition (ii).

Case 3: min{δX(U ′) | U ′ ≤ U} > min{δX(V ′) | V ′ ≤ V }. We may assume
that δX(U) = δX(V ) = k. If U = U ′U ′′ and V = V ′V ′′, we have δX(U ′′) =
δX(U ′′) = k − δX(U ′) and δX(V ′′) = δX(V ′′) = k − δX(V ′), thus (U, V ) fulfills
that max

{
δX(U ′)

∣∣ U ′ ≤ U
}

< max
{
δX(V ′)

∣∣ V ′ ≤ V
}
.

By a reasoning similar to that of Case 2, one can show that (τ(V ), τ(U)) fulfills
condition (iii).

Case 3’: min{δX(U ′) | U ′ ≤ U} < min{δX(V ′) | V ′ ≤ V }.

By Case 3 the typed equation (τ(U), τ(V )) fulfills condition (iii).
We have thus reduced Theorem 15 above to Theorem 16 below. �

Theorem 16. The following problem can be decided in DEXPTIME.
Input: A system S of typed equations with at most one reduced variable (i.e.,

Γ = {x, x}) where at least one equation (U, V ) ∈ S is strongly unbalanced.
Question: Does S have a solution in FIM(A)?

The proof of Theorem 16 relies on the following combinatorial observation.

Lemma 17. Let (U, V ) be a strongly unbalanced equation with U, V ∈ (A ∪ Ω ∪
{x, x})∗ and n = max {|U | , |V |}. Let k ∈ Z be an integer and σ be a solution
to (U, V ) such that σ(x) = (Pref(pk), pk) for some nonempty cyclically reduced
word p ∈ A∗. Then we have |k| ≤ 6n |p|.
Proof of Theorem 16. Let n be the size of the system S, it is defined as

‖S‖ =
∑

(U,V )∈S
|UV | .

Since πA,Γ (U) �= πA,Γ (V ) for at least one equation in the system, the set of
solutions for the underlying group equations is never equal to F (A). By [1,10],
the set of solutions of a one-variable free group equation is therefore a finite
union of sets of the form

{
rqks

∣∣ k ∈ Z
}

, (10)

where q is cyclically reduced and both products rqs and rqs are reduced. A
self-contained proof Eq. (10) has been given in [3]. In the description above
q = 1 is possible. Moreover, [3] shows |rqs| ∈ O(n). Hence, as we aim for
DEXPTIME there is time enough to consider all possible candidates for r and
s. This means we can fix r and s; and it is enough to consider a single set
S =

{
rqks

∣∣ k ∈ Z
}
, only. Next we replace in S all occurrences of x by rxs (and

x by s x r). This leads to a new system which we still denote by S and without
restriction we have S =

{
qk

∣∣ k ∈ Z
}
. The new size m of S is at most quadratic

in n.
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Now, we check if k = 0 leads to a solution of S. This means that we simply
cancel x and x everywhere. We obtain a system over idempotent variables; and
we can check satisfiability by Theorem 8. Note that this includes the case q = 1.
Thus, henceforth we may assume that q is a primitive cyclically reduced word.
By Lemma 17 we see that it is enough to replace S by S′ =

{
qk

∣∣ |k| ≤ 6m |q|}.
Since |q| ∈ O(m) we obtain a cubic bound for the maximal length of words
in S′, this means the length of each word in S′ is bounded by O(n6). This is
small enough to check satisfiability of the original system S in DEXPTIME by
Theorem 8. �

Conclusion and Directions for Future Research

The notion of “idempotent variable” unifies the approach the study of equa-
tions in free inverse monoids. As the general situation is undecidable, progress is
possible only by improving complexities in classes where decidability is known
and/or to enlarge the class of equations where decidability is possible. We have
achieved progress in both fields. This led us to the following conjecture.

Conjecture. The problem to decide whether an equation in FIM(
{
a, a, b, b

}
)

has a solution is DEXPTIME-complete, provided all variables are idempotent.
More concretely, let us resume some interesting and specific questions on

equations in free inverse monoids which are left open:

– Is the decision problem solved here DEXPTIME-hard? We conjecture: yes! (See
the conjecture above and Remark 3.)

– Is the (other) special kind of equations solved by [5, Thm. 23] also solvable in
DEXPTIME?

– Is it possible to remove Assumption 2 in the definition of an “unbalanced”
equation (it asserts that the image of the left-hand side and right hand side
are different in the free group), and still maintain decidability of the system
of equations?

– What happens if the underlying equation in the free group is a tautology in
the free group.

– What more general kinds of one-variable equations in the free inverse monoid
are algorithmically solvable (possibly all of them)?

– Does Jeż’s recompression technique apply to language equations? If yes, then
this would open a new approach to tackle equations over free inverse monoids.
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Abstract. Dense-timed pushdown automata with a timed stack were
introduced by Abdulla et al. in LICS 2012 to model the behavior of
real-time recursive systems. In this paper, we introduce a quantitative
logic on timed words which is expressively equivalent to timed pushdown
automata. This logic is an extension of Wilke’s relative distance logic by
quantitative matchings. To show the expressive equivalence result, we
prove a decomposition theorem which establishes a connection between
timed pushdown languages and visibly pushdown languages of Alur and
Mudhusudan; then we apply their result about the logical characteri-
zation of visibly pushdown languages. As a consequence, we obtain the
decidability of the satisfiability problem for our new logic.

Keywords: Timed pushdown automata · Visibly pushdown languages ·
Timed languages · Relative distance logic · Matchings

1 Introduction

Timed automata introduced by Alur and Dill [3] are a prominent model for
the specification and analysis of real-time systems. Timed pushdown automata
(TPDA) with a stack were studied in [6,8,12] in the context of the verification of
real-time recursive systems. Recently, Abdulla, Atig and Stenman [1] proposed
TPDA with a timed stack which keeps track of the age of its elements.

Since the seminal Büchi-Elgot theorem [7,11] establishing the expressive
equivalence of nondeterministic automata and monadic second-order logic, a
significant field of research investigates logical descriptions of language classes
appearing from practically relevant automata models. On the one hand, logic
provides an intuitive way to describe the properties of systems. On the other
hand, logical formulas can be translated into automata which may have inter-
esting algorithmic properties. Furthermore, logic provides good insights into the
understanding of the automata behaviors. The goal of this paper is to provide a
logical characterization for timed pushdown automata, i.e., to design a logic on
timed words which is expressively equivalent to TPDA.
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For our purpose, we introduce a timed matching logic. As in the logic of
Lautemann, Schwentick and Thérien [13], we handle the stack functionality by
means of a binary matching predicate. As in the logic of Wilke [18], we use
relative distance predicates to handle the functionality of clocks. Moreover, to
handle the ages of stack elements, we lift the binary matchings to the timed
setting, i.e., we can compare the time distance between matched positions with
a constant. The main result of this paper is the expressive equivalence of TPDA
and timed matching logic.

Here, we face the following difficulties in the proof of our main result. The
class of timed pushdown languages is most likely not closed under intersection
and complement (as the class of context-free languages). Moreover, we cannot
directly follow the approaches of [13] and [18], since the proof of [13] appeals to
the logical characterization result for trees [17] (but, there is no suitable logical
characterization for regular timed tree languages) and the proof of [18] appeals
to the classical Büchi-Elgot result [7,11] (and, this way does not permit to handle
matchings). We solve this problem by establishing a connection between TPDA
and visibly pushdown automata of Alur and Madhusudan [4].

We show our expressive equivalence result as follows.

– We prove a Nivat-like decomposition theorem for TPDA (cf. [5,15]) which
may be of independent interest; this theorem establishes a connection between
timed pushdown languages and untimed visibly pushdown languages of [4]
by means of operations like renamings and intersections with simple timed
pushdown languages. So we can separate the continuous timed part of the
model of TPDA from its discrete part. The main difficulty here is to encode
the infinite time domain, namely R≥0, as a finite alphabet. We will show
that it suffices to use several partitions of R≥0 into intervals to construct the
desired extended alphabet. On the one hand, we interpret these intervals as
components of the extended alphabet. On the other hand, we use them to
control the timed part of the model.

– In a similar way, we separate the quantitative timed part of timed matching
logic from the qualitative part described by MSO logic with matchings over a
visibly pushdown alphabet [4].

– Then we can deduce our result from the result of [4].

Since our proof is constructive and the reachability for TPDA is decidable [1],
we can also decide the satisfiability for our timed matching logic.

2 Timed Pushdown Automata

In this section, we consider timed pushdown automata which have been intro-
duced and investigated in [1]. These machines are nondeterministic automata
equipped with finitely many global clocks (like timed automata) and a stack
(like pushdown automata). In contrast to untimed pushdown automata, in the
model of TPDA we push together with a letter a local clock whose initial age
can be an arbitrary real number from some interval. Like in timed automata,
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the values of global clocks and the ages of local clocks grow in time. Then, we
can pop this letter only if its age belongs to a given interval. Note that, when
considering all possible runs of a TPDA, the number of used local clocks is in
general not bounded by any constant. We slightly extend the definition of TPDA
presented in [1] by allowing labels of edges. This, however, does not harm the
decidability of the reachability problem which was shown in [1]. Note that the
model of TPDA of [1] extends the model of timed automata with untimed stack
proposed in [6].

An alphabet is a non-empty finite set. Let Σ be a non-empty set (possibly
infinite). A finite word over Σ is a finite sequence a1...an where n ≥ 0 and
a1, ..., an ∈ Σ. If n = 0, then we say that w is empty and denote it by ε.
Otherwise, we call w non-empty. Let Σ∗ denote the set of all words over Σ
and Σ+ denote the set of all non-empty words over Σ. Let R≥0 denote the set
of all non-negative real numbers. A finite timed word over Σ is a finite word
over Σ × R≥0. Let TΣ∗ = (Σ × R≥0)∗, the set of all finite timed words over
Σ, and TΣ+ = (Σ × R≥0)+, the set of all non-empty finite timed words over
Σ. Any set L ⊆ TΣ+ of finite timed words is called a timed language. For
w = (a1, t1)...(an, tn) ∈ TΣ+, let |w| = n, the length of w and 〈w〉 = t1 + ...+ tn,
the time length of w. For 0 ≤ i < j ≤ n, let 〈w〉i,j = ti+1 + ... + tj .

Let I denote the class of all intervals of the form [a, b], (a, b], [a, b), (a, b),
[a,∞) or (a,∞) where a, b ∈ N. Let C be a finite set of clock variables ranging
over R≥0. A clock constraint over C is a mapping φ : C → I which assigns an
interval to each clock variable. Let IC be the set of all clock constraints over C.
A clock valuation over C is a mapping ν : C → R≥0 which assigns a value to
each clock variable. Let R

C
≥0 denote the set of all clock valuations over C. For

ν ∈ R
C
≥0 and φ ∈ IC , we write ν |= φ if ν(c) ∈ φ(c) for all c ∈ C.

For t ∈ R≥0, let ν + t : C → R≥0 be defined for all c ∈ C by
(ν + t)(c) = ν(c) + t. For Λ ⊆ C, let ν[Λ := 0] : C → R≥0 be defined by
ν[Λ := 0](c) = 0 for all c ∈ Λ and ν[Λ := 0](c) = ν(c) for all c ∈ C \ Λ. If
Γ is an alphabet, u = (g1, t1)...(gn, tn) ∈ TΓ ∗ and t ∈ R≥0, let u + t =
(g1, t1 + t)...(gn, tn + t) ∈ TΓ ∗.

We denote by S(Γ ) = ({↓} × Γ × I) ∪ {#} ∪ ({↑} × Γ × I) the set of stack
commands over Γ .

Definition 2.1. Let Σ be an alphabet. A timed pushdown automaton (TPDA)
over Σ is a tuple A = (L, Γ,C, L0, E, Lf ) where L is a finite set of locations,
Γ is a finite stack alphabet, C is a finite set of clocks, L0, Lf ⊆ L are sets of
initial resp. final locations, and E ⊆ L × Σ × S(Γ ) × IC × 2C × L is a finite set
of edges.

Let e = (�, a, s, φ, Λ, �′) ∈ E be an edge of A with �, �′ ∈ L, a ∈ Σ, s ∈ S(Γ ),

φ ∈ IC and Λ ⊆ C. We will denote e by �
a,φ,Λ−−−→

s
�′. We say that a is the label of

e and denote it by label(e). We also let stack(e) = s, the stack command of e.
Let E↓ ⊆ E denote the set of all push edges e with stack(e) = (↓, γ, I) for some
γ ∈ Γ and I ∈ I. Similarly, let E# = {e ∈ E | stack(e) = #} be the set of local
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edges and E↑ = {e ∈ E | stack(e) = (↑, γ, I) for some γ ∈ Γ and I ∈ I} the set
of pop edges. Then, we have E = E↓ ∪ E# ∪ E↑.

A configuration c of A is described by the present location, the values of the
clocks, and the stack, which is a timed word over Γ . That is, c is a triple 〈�, ν, u〉
where � ∈ L, ν ∈ R

C
≥0 and u ∈ TΓ ∗. We say that c is initial if � ∈ L0, ν(x) = 0

for all x ∈ C and u = ε. We say that c is final if � ∈ Lf and u = ε. Let CA
denote the set of all configurations of A, C0

A the set of all initial configurations
of A and Cf

A ⊆ CA the set of all final configurations.
Let c = 〈�, ν, u〉 and c′ = 〈�′, ν′, u′〉 be two configurations with

u = (γ1, t1)(γ2, t2)...(γk, tk) and let e = (q, a, s, φ, Λ, q′) ∈ E be an edge. We
say that c e c′ is a switch transition if � = q, �′ = q′, ν |= φ, ν′ = ν[Λ := 0],
and:

– if s = (↓, γ, I) for some γ ∈ Γ and I ∈ I, then u′ = (γ, τ)u for some τ ∈ I;
– if s = #, then u′ = u;
– if s = (↑, γ, I) with γ ∈ Γ and I ∈ I, then k ≥ 1, γ = γ1, t1 ∈ I and

u′ = (γ2, t2)...(γk, tk).

For t ∈ R≥0, we say that c t c′ is a delay transition if � = �′, ν′ = ν + t and
u′ = u + t. For t ∈ R≥0 and e ∈ E, we write c t,e c′ if there exists c′′ ∈ CA with
c t c′′ and c′′ e c′.

A run ρ of A is an alternating sequence of delay and switch transitions
which starts in an initial configuration and ends in a final configuration, for-
mally, ρ = c0 t1,e1 c1 t2,e2 ... tn,en

cn where n ≥ 1, c0 ∈ C0
A, c1, ..., cn−1 ∈

CA, cn ∈ Cf
A, t1, ..., tn ∈ R≥0 and e1, ..., en ∈ E. The label of ρ is the

timed word label(ρ) = (label(e1), t1)...(label(en), tn) ∈ TΣ+. Let L(A) = {w ∈
TΣ+ | there exists a runρ of A with label(ρ) = w}, the timed language recog-
nized by A. We say that a timed language L ⊆ TΣ+ is a timed pushdown
language if there exists a TPDA A over Σ such that L(A) = L.

Note that every timed automaton A = (L,C, I, E, F ) can be considered as a
TPDA A = (L, Γ,C, I, E, F ) where Γ is an arbitrary alphabet and E = E#.

Example 2.2. Here, we consider a timed extension of the well-known Dyck lan-
guages. Let Σ = {a1, ..., am} be a set of opening brackets and Σ = {a1, ..., am}
a set of corresponding closing brackets. Let Ia1 , ..., Iam

∈ I be intervals. We will
consider the timed Dyck language DΣ(Ia1 , ..., Iam

) ⊆ T(Σ ∪ Σ)+ of timed words
w = (a1, t1)...(an, tn) where a1...an is a sequence of correctly nested brackets and,
for every i ∈ {1, ...,m}, the time distance between any two matching brackets ai

and ai is in Iai
. It is not difficult to see that the timed language DΣ(Ia1 , ..., Iam

)
is a timed pushdown language. We illustrate this on the following example.
Let Σ = {a, b}, Σ = {a, b}, Ia = (0, 1) and Ib = [0, 2]. Consider the TPDA
A = (L, Γ, ∅, L0, E, Lf ) with L = L0 = Lf = {1}, Γ = {γa, γb}; E = {eα | α ∈
Σ ∪ Σ} such that, for α ∈ Σ, eα =

(
1

α,∅,∅−−−−−−−→
(↓,γα,[0,0])

1
)

and eα =
(
1

α,∅,∅−−−−−−→
(↑,γα,Iα)

1
)
.

Note that A does not contain any global clocks. Then, L(A) = DΣ(Ia, Ib).
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Consider, for instance, the timed word w = (b, 0)(a, 0.2)(a, 0.9)(b, 0.9) ∈ T(Σ ∪
Σ)+. Then,

〈1, ε〉 0 〈1, ε〉 eb
〈1, (γb, 0)〉 0.2 〈1, (γb, 0.2)〉 ea

〈1, (γa, 0)(γb, 0.2)〉
0.9 〈1, (γa, 0.9)(γb, 1.1)〉 ea 〈1, (γb, 1.1)〉 0.9 〈1, (γb, 2)〉 eb

〈1, ε〉

is an accepting run of A with the label w. Note that here we omit the empty
clock valuation of configurations.

3 Timed Matching Logic

The goal of this section is to develop a logical formalism which is expressively
equivalent to TPDA defined in Sect. 2. Our new logic will incorporate Wilke’s
relative distance logic [18] for timed automata as well as logic with matchings [13]
introduced by Lautemann, Schwentick and Thérien for context-free languages.
Moreover, we augment our logic with the possibility to measure the time distance
between matched positions.

Let V1, V2,D denote the countable and pairwise disjoint sets of first-order,
second-order and relative distance variables, respectively. We also fix a matching
variable μ /∈ V1 ∪ V2 ∪ D. Let U = V1 ∪ V2 ∪ D ∪ {μ}.

Let Σ be an alphabet. The set tMso(Σ) of timed matching MSO formulas
is defined by the grammar

ϕ : := Pa(x) | x ≤ y | X (x) | dI(D,x) | μI(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y ∈ V1, X ∈ V2, D ∈ D, X ∈ V2 ∪ D and I ∈ I. The formulas
of the form dI(D,x) are called relative distance predicates and the formulas of
the form μI(x, y) are called distance matchings. For μ[0,∞)(x, y), we will write
simply μ(x, y).

The tMso(Σ)-formulas are interpreted over timed words over Σ and
assignments of variables. Let w ∈ TΣ+ be a timed word. Recall that
dom(w) = {1, ..., |w|} is the domain of w. A (w,U)-assignment is a
mapping σ : U → dom(w) ∪ 2dom(w) ∪ 2(dom(w))2 such that σ(V1) ⊆ dom(w),
σ(V2 ∪ D) ⊆ 2dom(w) and σ(μ) ⊆ 2(dom(w))2 . Let σ be a (w,U)-assignment. For
x ∈ V1 and j ∈ dom(w), the update σ[x/j] is the (w,U)-assignment defined by
σ[x/j](x) = j and σ[x/j](y) = σ(y) for all y ∈ U \{x}. Similarly, for X ∈ V2 ∪D
and J ⊆ dom(w), we define the update σ[X/J ] and, for M ⊆ (dom(w))2, the
update σ[μ/M ].

Let w ∈ TΣ+ be a timed word and I ∈ I an interval. Recall that, for
j ∈ dom(w) and J ⊆ dom(w), we write (J, j) ∈ dI(w) if 〈w〉i,j ∈ I for the
greatest value i ∈ J ∪ {0} with i < j. For i, j ∈ dom(w), M ⊆ (dom(w))2 and
I ∈ I, we will write (i, j,M) ∈ μI(w) if i < j, (i, j) ∈ M and 〈w〉i,j ∈ I.
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Table 1. The semantics of tMso(Σ)-formulas

(w, σ) |= Pa(x) iff aσ(x) = a

(w, σ) |= x ≤ y iff σ(x) ≤ σ(y)

(w, σ) |= X (x) iff σ(x) ∈ σ(X )

(w, σ) |= dI(D, x) iff (σ(D), σ(x)) ∈ dI(w)

(w, σ) |= μI(x, y) iff (σ(x), σ(y), σ(μ)) ∈ μI(w)

(w, σ) |= ϕ1 ∨ ϕ2 iff (w, σ) |= ϕ1or(w, σ) |= ϕ2

(w, σ) |= ¬ϕ iff (w, σ) |= ϕdoes not hold

(w, σ) |= ∃x.ϕ iff ∃j ∈ dom(w) : (w, σ[x/j]) |= ϕ

(w, σ) |= ∃X.ϕ iff ∃J ⊆ dom(w) : (w, σ[X/J ]) |= ϕ

Given a formula ϕ ∈ tMso(Σ), a timed word w = (a1, t1)...(an, tn) ∈ TΣ+

and a (w,U)-assignment σ; the satisfaction relation (w, σ) |= ϕ is defined induc-
tively on the structure of ϕ as shown in Table 1. Here, a ∈ Σ, x, y ∈ V1, X ∈ V2,
D ∈ D, X ∈ V2 ∪ D and I ∈ I.

For ϕ ∈ tMso(Σ) and y ∈ V1, let ∃≤1y.ϕ denote the formula
¬∃y.ϕ ∨ ∃y.(ϕ ∧ ∀z.(z �= y → ¬ϕ[y/z])) where z ∈ V1 does not occur in
ϕ and ϕ[y/z] is the formula obtained from ϕ by replacing y by z. Let
Matching(μ) ∈ tMso(Σ) denote the formula

Matching(μ) =∀x.∀y.(μ(x, y) → x < y) ∧ ∀x.∃≤1y.(μ(x, y) ∨ μ(y, x)) ∧
∀x.∀y.∀u.∀v.((μ(x, y) ∧ μ(u, v) ∧ x < u < y) → x < v < y).

This formula demands that a binary relation μ on a timed word domain is a
matching (cf. [13]), i.e., it is compatible with <, each element of the domain
belongs to at most one pair in μ and μ is noncrossing.

The set Tml(Σ) of the formulas of timed matching logic over Σ is defined to
be the set of all formulas of the form

ψ = ∃μ.∃D1. ... ∃Dm.(ϕ ∧ Matching(μ))

where m ≥ 0, D1, ...,Dm ∈ D and ϕ ∈ tMso(Σ). Let w ∈ TΣ+ and σ be a
(w,U)-assignment. Then, (w, σ) |= ψ iff there exist J1, ..., Jm ⊆ dom(w) and a
matching M ⊆ (dom(w))2 such that (w, σ[D1/J1, ...,Dm/Jm, μ/M ]) |= ϕ. For
simplicity, we will denote ψ by ∃matchμ.∃D1. ... ∃Dm.ϕ.

For a formula ψ ∈ Tml(Σ), the set Free(ψ) ⊆ U of free variables of ψ
is defined as usual. We say that ψ ∈ Tml(Σ) is a sentence if Free(ψ) = ∅.
Note that, for a sentence ψ, the satisfaction relation (w, σ) |= ψ does not
depend on a (w,U)-assignment σ. Then, we will simply write w |= ψ. Let
L(ψ) = {w ∈ TΣ+ | w |= ψ}, the language defined by ψ. We say that a timed
language L ⊆ TΣ+ is Tml-definable if there exists a sentence ψ ∈ Tml(Σ) such
that L(ψ) = L.
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Example 3.1. Consider the timed Dyck language DΣ(Ia1 , ..., Iam
) ⊆ T(Σ ∪ Σ)+

of Example 2.2. The timed language DΣ(Ia1 , ..., Iam
) can be defined by the

Tml(Σ)-sentence

∃matchμ.

(
∀x.∃y.(μ(x, y) ∨ μ(y, x)) ∧

∀x.∀y.

(
μ(x, y) →

∨m

j=1
(Paj

(x) ∧ Paj
(y) ∧ μIaj (x, y))

))
.

Our main result is the following theorem.

Theorem 3.2. Let Σ be an alphabet and L ⊆ TΣ+ a timed language. Then L
is a timed pushdown language iff L is Tml-definable.

Note that Theorem 3.2 extends the result of [13] for context-free languages as
well as the result of [18] for regular timed languages. As already mentioned in the
introduction, we will use the logical characterization result for visibly pushdown
languages [4]. In Sect. 4, for the convenience of the reader, we recall this result.
In Sect. 5, we show a Nivat-like decomposition theorem for timed pushdown
languages. Finally, in Sect. 6, we give a proof of Theorem 3.2.

It was shown in [1] that the emptiness problem for TPDA is decidable. More-
over, as we will see later, our proof of Theorem3.2 is constructive. Then, we
obtain the decidability of the satisfiability problem for our timed matching logic.

Corollary 3.3. It is decidable, given an alphabet Σ and a sentence
ψ ∈ Tml(Σ), whether there exists a timed word w ∈ TΣ+ such that w |= ψ.

4 Visibly Pushdown Languages

For the rest of the paper, we fix a special stack symbol ⊥.
A pushdown alphabet is a triple Σ̃ = 〈Σ↓, Σ#, Σ↑〉 with pairwise disjoint sets

Σ↓, Σ# and Σ↑ of push, local and pop letters, respectively. Let Σ = Σ↓∪Σ#∪Σ↑.
A visibly pushdown automaton (VPA) over Σ̃ is a tuple A = (Q,Γ,Q0, T,Qf )
where Q is a finite set of states, Q0, Qf ⊆ Q are sets of initial resp. final states,
Γ is a stack alphabet with ⊥ /∈ Γ , and T = T ↓ ∪ T# ∪ T ↓ is a set of transitions
where T ↓ ⊆ Q × Σ↓ × Γ × Q is a set of push transitions, T# ⊆ Q × Σ# × Q
is a set of local transitions and T ↑ ⊆ Q × Σ↑ × (Γ ∪ {⊥}) × Q is a set of pop
transitions.

We define the label of a transition τ ∈ T depending on its sort as follows.
If τ = (p, c, γ, p′) ∈ T ↓ ∪ T ↑ or τ = (p, c, p′) ∈ T#, we let label(τ) = c, so c ∈
Σ↓ ∪ Σ↑ resp. c ∈ Σ#.

A configuration of A is a pair 〈q, u〉 where q ∈ Q and u ∈ Γ ∗. Let τ ∈ T be a
transition. Then, we define the transition relation τ on configurations of A as
follows. Let c = 〈q, u〉 and c′ = 〈q′, u′〉 be configurations of A.

– If τ = (p, a, γ, p′) ∈ T ↓, then we put c τ c′ iff p = q, p′ = q′ and u′ = γu.
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– If τ = (p, a, p′) ∈ T#, then we put c τ c′ iff p = q, p′ = q′ and u′ = u,
– If τ = (p, a, γ, p′) ∈ T ↑ with γ ∈ Γ ∪{⊥}, then we put c τ c′ iff p = q, p′ = q′

and either γ �= ⊥ and u = γu′, or γ = ⊥ and u′ = u = ε.

We say that c = 〈q, u〉 is an initial configuration if q ∈ Q0 and u = ε. We call c a
final configuration if q ∈ Qf . A run of A is a sequence ρ = c0 τ1 c1 τ2 ... τn

cn

where c0, c1, ..., cn are configurations of A such that c0 is initial, cn is final
and τ1, ..., τn ∈ T . Let label(ρ) = label(τ1)... label(τn) ∈ Σ+, the label of ρ. Let
L(A) = {w ∈ Σ+ | there exists a run ρ of A with label(ρ) = w}. We say that a
language L ⊆ Σ+ is a visibly pushdown language over Σ̃ if there exists a VPA
A over Σ with L(A) = L.

Remark 4.1. Note that we do not demand for final configurations that u = ε
and we can read a pop letter even if the stack is empty (using the special stack
symbol ⊥). This permits to consider the situations where some pop letters are
not balanced by push letters and vice versa.

We note that the visibly pushdown languages over Σ̃ form a proper subclass of
the context-free languages over Σ, cf. [4] for further properties.

For any word w = a1...an ∈ Σ+, let Mask(w) = b1...bn ∈ {−1, 0, 1}+ such
that, for all 1 ≤ i ≤ n, bi = 1 if ai ∈ Σ↓, bi = 0 if ai ∈ Σ#, and bi = −1
otherwise. Let L ⊆ {−1, 0, 1}∗ be the language which contains ε and all words
b1...bn ∈ {−1, 0, 1}+ such that

∑n
j=1 bj = 0 and

∑i
j=1 bj ≥ 0 for all i ∈ {1, ..., n}.

Here, we interpret 1 as the left parenthesis, −1 as the right parenthesis and 0 as
an irrelevant symbol. Then, L is the set of all sequences with correctly nested
parentheses.

Next, we turn to the logic MsoL(Σ̃) over the pushdown alphabet Σ̃ which
extends the classical MSO logic on finite words by the binary relation which
checks whether a push letter and a pop letter are matching. This logic was
shown in [4] to be expressively equivalent to visibly pushdown automata. The
logic MsoL(Σ̃) is defined by the grammar

ϕ : := Pa(x) | x ≤ y | X(x) | L(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y ∈ V1 and X ∈ V2. The formulas in MsoL(Σ̃)
are interpreted over a word w = a1...an ∈ Σ+ and a variable assignment
σ : V1 ∪ V2 → dom(w) ∪ 2dom(w). We will write (w, σ) |= L(x, y) iff σ(x) < σ(y),
aσ(x) ∈ Σ↓, aσ(y) ∈ Σ↑ and Mask(aσ(x)+1...aσ(y)−1) ∈ L. For other formulas,
the satisfaction relation is defined as usual. If ϕ is a sentence, then the satis-
faction relation does not depend on a variable assignment and we can simply
write w |= ϕ. For a sentence ϕ ∈ MsoL(Σ̃), let L(ϕ) = {w ∈ Σ+ | w |= ϕ}. We
say that a language L ⊆ Σ+ is MsoL(Σ̃) -definable if there exists a sentence
ϕ ∈ MsoL(Σ̃) such that L(ϕ) = L.

The following result states the expressive equivalence of visibly pushdown
automata and MsoL-logic.

Theorem 4.2. (Alur, Madhusudan [4]). Let Σ̃ = (Σ↓, Σ#, Σ↑) be a push-
down alphabet, Σ = Σ↓ ∪Σ#∪Σ↑, and L ⊆ Σ+ a language. Then, L is a visibly
pushdown language over Σ̃ iff L is MsoL(Σ̃)-definable.
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5 Decomposition of Timed Pushdown Automata

In this section we prove a Nivat-like (cf. [5,15]) decomposition theorem for timed
pushdown automata. This result establishes a connection between timed push-
down languages and visibly pushdown languages. We will use this theorem for
the proof of our Theorem3.2.

The key idea is to consider a timed pushdown language as a renaming of a
timed pushdown language over an extended alphabet which encodes the infor-
mation about clocks and stack; on the level of this extended alphabet we can
separate the setting of visibly pushdown languages from the timed setting. Our
separation technique appeals to the partitioning of R≥0 into finitely many inter-
vals; this finite partition will be used for the construction of the desired extended
alphabet.

We fix an alphabet Σ (which we will understand as the alphabet of
Theorem 3.2).

Consider a TPDA A = (L, Γ,C, L0, E, Lf ) over Σ. We may assume that
C = {1, ...,m}. Let X ⊆ N be the set of all natural numbers which are lower or
upper bounds of some interval I ∈ I appering in E (either in a clock constraint
or in a stack command). Clearly, X is a finite set. Let k = max(X) (if X = ∅,
then we let k = 0). Let P(k) = {[0, 0], (0, 1), [1, 1], (1, 2), ..., [k, k], (k,∞)} ⊆ 2I ,
the k-interval partition of R≥0. Note that P(k) is a finite non-empty set since
[0, 0] ∈ P(k) for any k ∈ N. The extended alphabet for such a TPDA A will
be a pushdown alphabet augmented with the following additional components
reflecting the performance of the clocks and the stack:

– the partition of the pushdown alphabet will be induced by the component
{↓,#, ↑};

– for every global clock c ∈ {1, ...,m}, we add two components:
• a component P(k) which indicates the interval containing a value of the

clock c before taking an edge of A;
• a component {0, 1} which indicates whether the clock c was reset after

taking an edge of A or not;
– to handle the local clocks of the stack, we add the component P(k) which

indicates:
• for all push letters (i.e. with the ↓-component) the interval containing an

initial value of the local clock which will be pushed into the stack;
• for all pop letters (i.e. with the ↑-component) the interval containing a value

of the clock on the top of the stack.
• for all letters with #, the stack is not touched and the P(k)-component

of this letter is useless. So in this case we can restrict ourselves to the
interval [0, 0].

Formally, we consider the pushdown alphabet R̃m,k = 〈R↓
m,k,R#

m,k,R↑
m,k〉

where, for δ ∈ {↓,#, ↑}: Rδ
m,k = Σ × (P(k))m × {0, 1}m × P(k) × {δ}. Let

Rm,k =
⋃

δ∈{↓,#,↑} Rδ
m,k.

Now consider a “simple” TPDA over Rm,k with a single state, a single stack
symbol and m clocks {1, ...,m}; for every letter in Rm,k, this TPDA processes
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the clocks and the stack according to the information encoded in the additional
components of Rm,k. Let Tm,k ⊆ T(Rm,k)+ denote the timed language accepted
by this TPDA.

For all I, I ′ ∈ I, let I −I ′ = {x−x′ | x ∈ I and x′ ∈ I ′}. The timed language
Tm,k can be described formally as follows. Let w = (b1, t1)...(bn, tn) ∈ T(Rm,k)+

where, for all i ∈ {1, ..., n}, bi = (ai, Gi, Ri, si, δi) with ai ∈ Σ, Gi =
(g1i , ..., gm

i ) ∈ (P(k))m (corresponds to the intervals for the global clocks),
Ri = (r1i , ..., rm

i ) ∈ {0, 1}m (corresponds to the resets of global clocks), si ∈ P(k)
(corresponds to the intervals for the local clocks in the stack), δi ∈ {↓,#, ↑} and
ti ∈ R≥0. Then, w ∈ Tm,k iff the following hold:

– Mask(b1...bn) ∈ L (with respect to the pushdown alphabet R̃m,k);
– for all i ∈ {1, ..., n} and j ∈ {1, ...,m}, letting rj

0 = 1, we have 〈w〉i′,i ∈ gj
i for

the greatest i′ ∈ {0, 1, ..., i − 1} with rj
i′ = 1;

– for all i, i′ ∈ {1, ..., n} with i < i′, δi = ↓, δi′ = ↑ and Mask(bi+1...bi′−1) ∈ L,
we have 〈w〉i,i′ ∈ si′ − si.

Clearly, the timed language Tm,k is a non-empty timed pushdown language.
Let Δ be an alphabet, L ⊆ Δ+ a language and L′ ⊆ TΔ+ a timed language.
Let (L ∩ L′) ⊆ TΔ+ be the “restriction” of L′ to L, i.e., the timed language
consisting of all timed words w = (b1, t1)...(bn, tn) ∈ L′ such that b1...bn ∈ L.
Let Δ,Δ′ be alphabets and h : Δ → Δ′ a renaming. For a timed word
w = (b1, t1)...(bn, tn) ∈ TΔ+, let h(w) = (h(b1), t1)...(h(bn), tn). Then, for a
timed language L ⊆ TΔ+, let h(L) = {h(w) | w ∈ L}, so h(L) ⊆ T(Δ′)+.

Now we formulate our decomposition theorem. This result permits to sepa-
rate the discrete part of TPDA from their timed part. We show that the discrete
part can be described by visibly pushdown languages whereas the timed part
can be described by means of timed languages Tm,k which have the following
interesting property. We can decide whether a timed word w belongs to Tm,k by
analyzing the components of w. In contrast, if we have a TPDA A and can use it
only as a “black box”, then we cannot say whether a timed word w is accepted
by this TPDA A without passing w through A.

Theorem 5.1. Let Σ be an alphabet and L ⊆ TΣ+ a timed language. Then the
following are equivalent.

(a) L is a timed pushdown language.
(b) There exist m, k ∈ N, a renaming h : Rm,k → Σ, and a visibly push-

down language L′ ⊆ (Rm,k)+ over the pushdown alphabet R̃m,k such that
L = h(L′ ∩ Tm,k).

The proof idea for the implication (b) ⇒ (a) is the following. Since we work
here with the extended alphabet Rm,k (which corresponds to m global clocks),
every letter of this alphabet contains the information about the guards and
resets of global clocks as well as performance of the timed stack. Then, we can
construct a TPDA for the intersection L′ ∩ Tm,k by rewriting the transitions of
a VPA for L′ (over the extended pushdown alphabet R̃m,k) as edges of a TPDA
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(over the extended alphabet Rm,k). After that, using the mapping h, we rename
the labels of edges of the constructed TPDA and obtain a TPDA for the desired
timed language h(L′ ∩ Tm,k).

The proof idea for the implication (a) ⇒ (b) is illustrated in the following
example.

Example 5.2. Consider the TPDA A = (L, Γ,C, L0, E, Lf ) over the alphabet
Σ = {a, b} depicted in Fig. 1. Formally, A is defined as follows:

– L = {1, 2}, L0 = {1}, Lf = {2}, Γ = {γ}, C = {x};

– E consists of the following edges: 1
a,True,∅−−−−−−→
(↓,γ,(0,1))

1, 1
b,True,{x}−−−−−−−→

#
1, 1

a,x≥1,∅−−−−−→
#

2,

2
a,True,∅−−−−−−→
(↑,γ,(0,1))

2.

The timed language L(A) can be decomposed in the following way. As already
mentioned before, m is the number of global clocks of A, i.e., m = 1 and k
is the maximal constant appearing in the intervals of A, i.e., k = 1. Then,
R1,1 = Σ × P(1) × {0, 1} × P(1) × {↓,#, ↑}. Then, L = h(L′ ∩ Tm,k) where:

– h : R1,1 → Σ is the projection to the first component;
– the language L′ ⊆ (R1,1)+ is recognized by the visibly pushdown automaton

AL′ = (L, Γ, L0, T
′, Lf ) over the pushdown alphabet R̃1,1 depicted in Fig. 1.

Here, the component ∗ in the transition labels means an arbitrary element of
P(1) and idle = [0, 0] denotes the idle stack interval for the letters with the
#-component. We also would like to point out that every edge of the TPDA A
is simulated by several transitions of the VPA AL′ . For instance, we simulate
the edge from the location 1 to the location 2 of the TPDA A by two edges,
since, for the condition x ≥ 1, we have in the partition P(1) two intervals
[1, 1], (1,∞) satisfying this condition.

– The timed language T1,1 ⊆ T(R1,1)+ (as defined before) can be recognized by
the TPDA AT1,1 = ({1}, {α}, C, {1}, E′, {1}) depicted in Fig. 1. Here, I, J are
arbitrary intervals in P(1). By using a new stack letter α, we want to point
out that the stack alphabet of the TPDAs for Tm,k is a singleton alphabet
and does not depend on Γ .

Remark 5.3. As it can be observed from the proof of Theorem5.1, instead of
the k-interval partition P(k), for every global clock or the timed stack, one
could take a partition induced by bounds of the intervals which correspond
to this clock or timed stack. For instance, if the intervals (0, 1) and (8, 15)
appear in the commands for the timed stack, then we could take the partition
{[0, 0], (0, 1), [1, 1], (1, 8), [8, 8], (8, 15), [15, 15], (15, ∞)}. However, for the simplic-
ity of our notations, we considered the same partition P(k) for all global clocks
and the timed stack.

As a corollary of Theorem 5.1 and its proof, we deduce a decomposition the-
orem for timed automata. These may be considered as TPDA whose sets of
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A 1 2

a, push(0,1)(γ)

b, x := 0

a, x ≥ 1

a, pop[1,1](γ)

AL′ 1 2

(a, ∗, 0, (0, 1), ↓), push(γ)

(b, ∗, 1, idle,#)

(a, (1, ∞), 0, idle,#)

(a, [1, 1], 0, idle,#)

(a, ∗, 0, [1, 1], ↑), pop(γ)

AT1,1 1

(a, I, 0, J, ↓), x ∈ I, pushJ (α)

(a, I, 1, J, ↓), x ∈ I, x := 0, pushJ (α)

(a, I, 0, J, ↑), x ∈ I, popJ (α)

(a, I, 1, J, ↑), x ∈ I, x := 0, popJ (α)

(a, I, 0, J,#), x ∈ I
(a, I, 1, J,#), x ∈ I, x := 0

Fig. 1. TPDA A, AL′ and AT1,1 of Example 5.2

push and pop edges are empty (and hence a stack alphabet is irrelevant for
their definition). We slightly modify the extended alphabet needed for the
decomposition by excluding the components relevant for the stack. Moreover,
instead of visibly pushdown languages we consider classical regular languages.
For m, k ∈ N, let R0

m,k = Σ × (P(k))m × {0, 1}m. We define the timed language
T 0

m,k ⊆ T(R0
m,k)+ as follows. Let w = (b1, t1)...(bn, tn) ∈ T(R0

m,k)+ where, for
all i ∈ {1, ..., n}, bi = (ai, (g1i , ..., gm

i ), (r1i , ..., rm
i )) with ai ∈ Σ, g1i , ..., gm

i ∈ P(k)
and r1i , ..., rm

i ∈ {0, 1}. Then, w ∈ T 0
m,k iff, for all i ∈ {1, ..., n} and j ∈ {1, ...,m},

letting rj
0 = 1, we have 〈w〉i′,i ∈ gj

i for the greatest i′ ∈ {0, 1, ..., i − 1} with
rj
i′ = 1.

Corollary 5.4. Let Σ be an alphabet and L ⊆ TΣ+ a timed language. Then the
following are equivalent.

(a) L is recognizable by a timed automaton.
(b) There exist m, k ∈ N, a renaming h : R0

m,k → Σ and a regular language
L′ ⊆ (R0

m,k)+ such that L = h(L′ ∩ T 0
m,k).

6 Definability Equals Recognizability

In this section, we prove Theorem 3.2.
First, we show that Tml-definable timed languages are pushdown recogniz-

able. Let ψ = ∃matchμ.∃D1. ... ∃Dm.ϕ ∈ Tml(Σ) with m ≥ 0. We may assume
that D1, ...,Dm ∈ D are pairwise distinct variables.

We wish to use Theorem 5.1. As preparation for this, we prove the following
technical lemma which provides a decomposition of a Tml-sentence. For the
definitions of Rm,k, R̃m,k and Tm,k we refer the reader to the previous section.



A Logical Characterization of Timed Pushdown Languages 201

To transform ψ into a TPDA, we apply Theorems 5.1 and 4.2 and the following
lemma which decomposes the Tml-sentence ψ.

Lemma 6.1. Let ψ ∈ Tml(Σ) be a sentence as defined above. Then, there exist
k ∈ N, a renaming h : Rm,k → Σ and a sentence ϕ∗ ∈ MsoL(R̃m,k) such that
L(ψ) = h(L(ϕ∗) ∩ Tm,k).

Proof (Sketch). For decomposition, we will consider the extended alphabet Rm,k

where m is the number of relative distance variables of ψ and k is the maximal
natural number which is a lower or upper bound of some interval appearing in ψ
(if ψ does not contain any intervals, then we let k = 0). So, our extended alpha-
bet is Σ × (P(k))m × {0, 1}m × P(k) × {↓,#, ↑}. The additional components will
have the following meaning.

– Using a vector (g1, ..., gm) ∈ (P(k))m, we will encode the intervals which
appear in the relative distance predicates of ψ. Here the component gi

(i ∈ {1, ...,m}) is responsible for the relative distance predicates with the vari-
able Di.

– Using a vector (r1, ..., rm) ∈ {0, 1}m, we will implement the standard Büchi-
encoding of the variables D1, ...,Dm.

– Using the component P(k) × {↓,#, ↑}, we will model quantitative matchings.
Here P(k) is responsible for the intervals of quantitative matchings. The com-
ponent {↓,#, ↑} will have the following task. If a position does not belong to
any pair in a matching relation, then it is marked by #. If a position is on
the left side in a matched pair, then it is marked by ↓. If a position is on the
right side in a matched pair, then it is marked by ↑.

Then, the properties described informally above can be expressed by means of
an MsoL(R̃m,k)-sentence ϕ∗. ��
The following example illustrates the proof of Lemma6.1.

Example 6.2. Let Σ = {a, b} and

ψ = ∃matchμ.∃D.∀x.(D(x) ∧ [(∃y.μ(1,∞)(x, y)) ∨ d(0,1](D,x) ∨ Pb(x)]).

In this example, we have m = 1 and k = 1, i.e. the extended alphabet is
R1,1 = Σ × P(k) × {0, 1} × P(k) × {↓,#, ↑}. As a renaming h : Rm,k → Σ, we
take the projection to the Σ-component. The sentence ϕ∗ ∈ MsoL(R̃1,1) is
defined as ∀x.(ϕ1 ∧ [(∃y.ϕ2)∨ϕ3 ∨ϕ4]) where ϕ1 = P(∗,∗,1,∗,∗)(x), ϕ2 = L(x, y)∧
P(∗,∗,∗,[0,0],↓)(y) ∧ P(∗,∗,∗,(1,∞),↑)(y), ϕ3 = P(∗,∗,(0,1),∗,∗)(x) ∨ P(∗,∗,[1,1],∗,∗)(x) and
ϕ4 = P(b,∗,∗,∗,∗)(x). Here, we denote by ∗ the components which can take arbi-
trary values from their domains. Then, L(ψ) = h(L(ϕ∗) ∩ Tm,k).

The part “recognizability implies definability” of Theorem3.2 follows from
Theorems 5.1 and 4.2 and the next lemma.

Lemma 6.3. Let Σ be an alphabet, m, k ∈ N, h : Rm,k → Σ a renaming, and
ϕ ∈ MsoL(R̃m,k) a sentence. Then, there exists a sentence ψ ∈ Tml(Σ) such
that L(ψ) = h(L(ϕ) ∩ Tm,k).
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Proof (Sketch). For the proof, we follow a similar approach as in the proof of
Theorem 6.6 of [10]. Let Γ = Rm,k. The desired sentence ψ is constructed as

ψ = ∃matchμ.∃D1. ... Dm.∃X1. ... ∃X|Γ |.(ϕ∗ ∧ Partition ∧ Renaming ∧ ξTm,k
)

where:

– D1, ...,Dm ∈ D are relative distance variable modeling the behavior of global
clocks in the timed language Tm,k;

– X1, ...,X|Γ | ∈ V2 are variables describing the renaming h (i.e., we store in these
second-order variables the positions of the letters of the extended alphabet Γ
before the renaming);

– ϕ∗ is obtained from ϕ by replacing L by μ, and all Pγ(x) by Ph(γ)(x)∧Xγ(x);
– the formula Partition demands that values of X1, ...,X|Γ | form a partition

of the domain;
– the formula Renaming correlates values of X1, ...,X|Γ | with the labels of an

input word;
– the formula ξTm,k

describes the properties of Tm,k (using relative distance
predicates and quantitative matchings). ��

Remark 6.4. Alternatively, the direction“recognizability implies definability” of
Theorem 3.2 can be proved by a direct translation of A into ψ. However, by
using Theorem 5.1, it suffices to describe a simpler timed language Tm,k and a
projection h to adopt the logical description of a visibly pushdown language of
[4]. In particular, here we do not have to describe some technical details like
initial, final states as well as concatenations of transitions.

7 Conclusion and Future Work

In this paper, we introduced a timed matching logic and showed that this
logic is equally expressive as timed pushdown automata (and hence the sat-
isfiability problem for our timed matching logic is decidable). When proving
our main result, we showed a Nivat-like decomposition theorem for timed push-
down automata. This theorem seems to be the first algebraic characterization
of timed pushdown languages and may be of independent interest, e.g., it could
be helpful to transfer further results from the discrete setting to the timed set-
ting. Based on the ideas presented in [9,10,14,16] and the ideas of this paper,
our ongoing research concerns a logical characterization for weighted timed push-
down automata [2]. It could be also interesting to investigate such an extension
of timed pushdown automata where each edge permits to push or pop several
stack elements.
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Abstract. An in-place priority queue is a data structure that is stored
in an array, uses constant extra space in addition to the array elements,
and supports the operations top (find-min), push (insert), and pop
(delete-min). In this paper we introduce an in-place priority queue, for
which top and push take O(1) worst-case time, and pop takes O(lg n)
worst-case time and involves at most lg n + O(1) element comparisons,
where n denotes the number of elements currently in the data structure.
The achieved bounds are optimal to within additive constant terms for
the number of element comparisons, hereby solving a long-standing open
problem. Compared to binary heaps, we surpass the comparison bound
for pop and the time bound for push. Our data structure is similar to a
binary heap with two crucial differences:
(1) To improve the comparison bound for pop, we reinforce a stronger

heap order at the bottom levels of the heap such that the element
at any right child is not smaller than that at its left sibling.

(2) To speed up push, we buffer insertions and allow O(lg2 n) nodes to
violate heap order in relation to their parents.

1 Introduction

A binary heap, invented by Williams [19], is an in-place data structure that

(1) implements a priority queue (i.e. supports the operations top, construct ,
push, and pop);

(2) requires O(1) words of extra space in addition to an array storing the ele-
ments; and

(3) is viewed as a nearly complete binary tree where, for every node other than
the root, the element at that node is not smaller than the element at its
parent (heap order).

Letting n denote the number of elements in the data structure, a binary heap
supports top in O(1) worst-case time, and push and pop in O(lg n) worst-case
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 204–218, 2015.
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Table 1. The worst-case performance of some priority queues. The amount of extra
space is measured in words and the complexity of operations in element comparisons.
Here n denotes the number of elements stored and w the size of machine words in
bits. For all these data structures, the worst-case running time of top is O(1), that of
construct is O(n), and the worst-case running time of push and pop is proportional to
the number of element comparisons (except for heaps on heaps, push‡ is logarithmic).

Data structure Extra space push pop

Binary heaps [19] O(1) lg n + O(1) 2 lgn+O(1)

Binomial queues [1,17] O(n) O(1) 2 lgn+O(1)

Heaps on heaps [13] O(1) lg lg n+O(1)‡ lg n+log∗ n+O(1)

Queues of pennants [5] O(1) O(1) 3 lgn+log∗ n+O(1)

Multipartite priority queues [10] O(n) O(1) lg n+O(1)

Engineered weak heaps [8] n/w+O(1) O(1) lg n+O(1)

Strengthened lazy heaps [this paper] O(1) O(1) lg n+O(1)

time. For Williams’ original proposal [19], the number of element comparisons
performed by push is at most lg n+O(1) and that by pop is at most 2 lg n+O(1).
Immediately after the appearance of Williams’ paper, Floyd showed [12] how to
support construct , which builds a heap for n elements, in O(n) worst-case time
with at most 2n element comparisons.

Since a binary heap does not support all the operations optimally, many
attempts have been made to develop priority queues supporting the same set
(or even a larger set) of operations that improve the worst-case running time
of the operations as well as the number of element comparisons performed by
them [1,3,5,6,8,10,13,17]. In Table 1 we summarize the fascinating history of
the problem, considering the space and comparison complexities.

Assume that, for a problem of size n, the bound achieved is A(n) and the best
possible bound is OPT(n). We distinguish three different concepts of optimality:

Asymptotic optimality: A(n) = O(OPT(n)).
Constant-factor optimality: A(n) = OPT(n) + o(OPT(n)).
Up-to-additive-constant optimality: A(n) = OPT(n) + O(1).

As to the amount of space used and the number of element comparisons per-
formed, we aim at up-to-additive-constant optimality. From the information-
theoretic lower bound for sorting [15, Sect. 5.3.1], it follows that, in the worst
case, either push or pop must perform at least lg n − O(1) element comparisons.
As to the running times, we aim at asymptotic optimality. Our last natural
goal is to support push in O(1) worst-case time, because then construct can be
trivially realized in linear time by repeated insertions.

The binomial queue [17] was the first priority queue supporting push in O(1)
worst-case time. (This was mentioned as a short note at the end of Brown’s paper
[1].) However, the binomial queue is a pointer-based data structure requiring
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O(n) pointers in addition to the elements. For binary heaps, Gonnet and Munro
showed [13] how to perform push using at most lg lg n+O(1) element comparisons
and pop using at most lg n + log∗ n + O(1) element comparisons. Carlsson et al.
showed [5] how to achieve O(1) worst-case time per push by an in-place data
structure that utilizes a queue of pennants. (A pennant is a binary heap with
an extra root that has one child.) For this data structure, the number of ele-
ment comparisons performed per pop is bounded by 3 lg n + log∗ n + O(1). The
multipartite priority queue [10] was the first priority queue achieving the asymp-
totically optimal time and up-to-additive-constant optimal comparison bounds.
Unfortunately, the structure is involved and its representation requires O(n)
pointers. Another solution [8] is based on weak heaps [7]: To implement push in
O(1) worst-case time, a bulk-insertion strategy is used—employing two buffers
and incrementally merging one with the weak heap before the other is full. The
weak heap also achieves the desired worst-case time and comparison bounds, but
it uses n additional bits.

Ever since the work of Williams [19], it was open whether there exists an
in-place data structure that can match the information-theoretic lower bounds
on the number of element comparisons for all the operations. In view of the lower
bounds proved in [13], it was not entirely clear if such a structure exists. In this
paper we answer the question affirmatively by introducing the strengthened lazy
heap that operates in-place, supports top and push in O(1) worst-case time, and
pop in O(lg n) worst-case time involving at most lg n+O(1) element comparisons.

When a strengthened lazy heap is used in heapsort, the resulting algo-
rithm sorts n elements in-place in O(n lg n) worst-case time performing at most
n lg n + O(n) element comparisons. The number of element comparisons per-
formed matches the information-theoretic lower bound for sorting up to the
additive linear term. Ultimate heapsort [14] is known to have the same complex-
ity bounds, but in both solutions the constant factor of the additive linear term
is high.

In a binary heap the number of element moves performed by pop is at most
lg n + O(1). We have to avow that, in our data structure, pop may require more
element moves. On the positive side, we can adjust the number of element moves
to be at most (1+ ε) lg n, for any fixed constant ε > 0 and large enough n, while
still achieving the desired bounds for the other operations.

Our work shows the limitation of the lower bounds proved by Gonnet and
Munro [13] (see also [3]) in their prominent paper on binary heaps. They showed
that �lg lg(n + 2)� − 2 element comparisons are necessary to insert an element
into a binary heap. In addition, slightly correcting [13], Carlsson [3] showed that
�lg n� + δ(n) element comparisons are necessary and sufficient to remove the
minimum from a binary heap that has n > 2hδ(n)+2 elements, where h1 = 1
and hi = hi−1 + 2hi−1+ i−1. One should notice that these lower bounds are valid
under the following assumptions:

(1) All the elements are stored in one nearly complete binary tree.
(2) Every node obeys the heap order before and after each operation.
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Fig. 1. A strong heap in an array a[0 : 14] = [1, 3, 8, 4, 5, 9, 13, 6, 15, 7, 11, 10, 12, 14, 17]
viewed as a directed acyclic graph (left) and a stretched tree (right)

(3) No order relation among the elements of the same level can be deduced from
the element comparisons performed by previous operations.

We prove that the number of element comparisons performed by pop can be
lowered to at most lg n + O(1) if we overrule the third assumption by imposing
an additional requirement that the element at any right child is not smaller than
that at the left sibling (Sect. 2). We also prove that push can be performed in
O(1) worst-case time if we overrule the second assumption by allowing O(lg2 n)
nodes to violate heap order (Sect. 3). Lastly, we combine the two ideas and use
them together in our final data structure (Sect. 4).

2 Strong Heaps: Adding More Order

A strong heap is a binary heap with one additional invariant: The element at
any right child is not smaller than that at the left sibling. This left-dominance
property is fulfilled for every right child in a fine heap [4] (or its alternatives
[16,18]), which uses one extra bit per node to maintain the property. Like a
binary heap, a strong heap is viewed as a nearly complete binary tree where the
lowest level may be missing some nodes at the rightmost (last) positions. Also,
this tree is embedded in an array in the same way. If the array indexing starts
at 0, the parent of a node at index i (i �= 0) is at index �(i − 1)/2�, the left child
(if any) at index 2i + 1, and the right child (if any) at index 2i + 2.

Two views of a strong heap are exemplified in Fig. 1. On the left, the directed
acyclic graph has a nearly complete binary tree as its skeleton: There are arcs
from every parent to its children and additional arcs from every left child to its
sibling indicating the dominance relations. On the right, in the stretched tree, the
arcs from each parent to its right child are removed as these dominance relations
can be induced. In the stretched tree a node can have 0, 1, or 2 children. A node
has one child if in the skeleton it is a right child that is not a leaf or a leaf that
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method left-child(i)
return 2i + 1

method sibling(i)
if i = 0

return 0
return i + odd(i) − even(i)

method is-leaf (i, n)
if odd(i)

return sibling(i) ≥ n
return left-child(i) ≥ n

method strengthening-sift-down(i, n)
x ← a[i]
while not is-leaf (i, n)

j ← sibling(i)
if even(i)

j ← left-child(i)
else if j < n and left-child(i) < n and

a[left-child(i)] ≤ a[j]
j ← left-child(i)

if x ≤ a[j]
break

a[i] ← a[j]
i ← j

a[i] ← x

Fig. 2. Implementation of strengthening−sift−down; a right child is not accessed
directly

has a right sibling. A node has two children if in the skeleton it is a left child
that is not a leaf. If the skeleton has height h (height of a single node being 1),
the height of the stretched tree is at most 2h − 1, and on any root-to-leaf path
in the stretched tree the number of nodes with two children is at most h − 2.

The basic primitive used in the manipulation of binary heaps is the sift−down
procedure [12,19] (see Fig. 4). This operation starts at a node that possibly
breaks heap order, traverses down the heap by following the path of children
containing the smaller of the elements at any two siblings, and moves the encoun-
tered elements one level up until the correct place of the element we started with
is found. For strong heaps the strengthening−sift−down procedure has the same
purpose, and our implementation (see Fig. 2) is similar, with one crucial excep-
tion that we operate with the stretched tree instead of the nearly complete tree.
Now pop can be implemented by replacing the element at the root with the
element at the last position of the array (if there is any) and then invoking
strengthening−sift−down for the root.

Example 1. Consider the strong heap in Fig. 1. If its minimum was replaced
with the element 17 taken from the end of the array, the path to be followed by

strengthening−sift−down would include the nodes 〈 3 , 4 , 5 , 7 , 11 〉.

Let n denote the size of the strong heap and h the height of the underlying
tree skeleton. When going down the stretched tree, we perform at most h − 2
element comparisons due to branching at binary nodes and at most 2h − 1
element comparisons due to checking whether to stop or not. Hence, the number
of element comparisons performed by pop is bounded by 3h−3, which is at most
3 lg n as h = �lg n� + 1.
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To build a strong heap, we mimic Floyd’s heap-construction algorithm [12];
that is, we invoke strengthening−sift−down for all nodes, one by one, processing
them in reverse order of their array positions. One element comparison is needed
for every met left child in order to compare the element at its right sibling with
that at its left child, making a total of at most n/2 element comparisons. The
number of other element comparisons is bounded by the sum

∑�lgn�+1
i=1 3 · i ·

�n/2i+1�, which is at most 3n+o(n). Thus, construct requires at most 3.5n+o(n)
element comparisons.

For both pop and construct , the amount of work done is proportional to the
number of element comparisons performed, i.e. the worst-case running time of
pop is O(lg n) and that of construct is O(n).

Lemma 1. A strong heap of size n can be built in O(n) worst-case time
by repeatedly calling strengthening−sift−down. Each strengthening−sift−down
operation uses O(lg n) worst-case time and performs at most 3 lg n element com-
parisons.

Next we show how to perform a sift−down operation on a strong heap of size n
with at most lg n+O(1) element comparisons. At this stage we allow the amount
of work to be higher, namely O(n). To achieve the better comparison bound, we
have to assume that the heap is complete, i.e. that all leaves have the same depth.
Consider the case where the element at the root of a strong heap is replaced by a
new element. In order to reestablish strong heap order, the swapping−sift−down
procedure (Fig. 3) traverses the left spine of the skeleton bottom up starting from
the leftmost leaf, and determines the correct place of the new element, using one
element comparison at each node visited. Thereafter, it moves all the elements
above this position on the left spine one level up, and inserts the new element into
this place. If this place is at level g, we have performed g element comparisons. Up
along the left spine there are lg n − g + O(1) remaining levels to which we have
moved other elements. While this results in a heap, we still have to reinforce the
left-dominance property at these upper levels. In accordance, we compare each
element that has moved up with the element at the right sibling. If the element
at index j is larger than the element at index j + 1, we interchange the subtrees
Tj and Tj+1 rooted at positions j and j + 1 by swapping all their elements. The
procedure continues this way until the root is reached.

Example 2. Consider the strong heap in Fig. 1. If the element at the root was
replaced with the element 16, the left spine to be followed by swapping−sift−down

would include the nodes 〈 3 , 4 , 6 〉, the new element would be placed at

the last leaf we ended up with, the elements on the left spine would be lifted
up one level, and an interchange would be necessary for the subtrees rooted at
node 6 and its new sibling 5 .

Given two complete subtrees of height h, the number of element moves needed
to interchange the subtrees is O(2h). As

∑�lgn�
h=1 O(2h) is O(n), the total work

done in the subtree interchanges is O(n). Thus, swapping−sift−down requires
at most lg n + O(1) element comparisons and O(n) work.
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method parent(i)
if i = 0

return 0
return �(i − 1)/2�
method bottom-up-search(i, j)
while j > i and a[j] ≥ a[i]

j ← parent(j)
return j

method swap-subtrees(u, v, n)
j ← 1
while v < n

for i ← 0, 1, . . . , j − 1
swap(a[u + i],a[v + i])

u ← left-child(u)
v ← left-child(v)
j ← 2 ∗ j

method leftmost-leaf (i, n)
while left-child(i) < n

i ← left-child(i)
return i

method lift-up(i, j, n)
x ← a[j]
a[j] ← a[i]
while j > i

swap(a[parent(j)], x)
if a[sibling(j)] < a[j]

swap-subtrees(j, sibling(j), n)
j ← parent(j)

method swapping-sift-down(i, n)
k ← leftmost-leaf (i, n)
k ← bottom-up-search(i, k)
lift-up(i, k, n)

Fig. 3. Implementation of swapping−sift−down

Lemma 2. In a complete strong heap of size n, swapping−sift−down runs in-
place and uses at most lg n+O(1) element comparisons and O(n) element moves.

3 Lazy Heaps: Buffering Insertions

In the variant of a binary heap that we describe in this section some nodes
may violate heap order because insertions are buffered and unordered bulks are
incrementally melded into the heap. The main difference between the present
construction and the construction in [8] is that, for a heap of size n, here we
allow O(lg2 n) heap-order violations instead of O(lg n), but we still use O(1)
extra space to track where the potential violations are. Using strengthening−
sift−down instead of sift−down, the construction will also work for strong heaps.

A lazy heap is composed of three parts: main heap, submersion area, and
insertion buffer. The main heap together with the submersion area are laid out
in the array as a binary heap, and the insertion buffer occupies the last array
locations. The following rules are imposed:

(1) New insertions are appended to the insertion buffer at the end of the array.
(2) If the size of the main heap is n′, the size of the insertion buffer is O(lg2 n′).
(3) When the insertion buffer becomes full, a proportion of its elements are

treated as an embryo for a new submersion area.
(4) The submersion area is incrementally melded into the main heap by perform-

ing a constant amount of work in connection with every modifying operation
(push/pop).

(5) When the insertion buffer is full again, the incremental submersion must
have been completed.
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(6) When the insertion buffer is empty, the incremental submersion must have
been completed. When a pop is performed, a replacement element is taken
from either the insertion buffer or the main heap (if the former is empty).

The insertion buffer should support insertions in O(1) time, and minimum
extractions in O(lg n) time using at most lg n + O(1) element comparisons. Let
t = �lg(1+lg(1+n′))�. We treat the insertion buffer as a sequence of chunks, each
of size k = 2t/4, and limit the number of chunks to at most k. All the chunks,
except possibly the last, will contain exactly k elements. The minimum of each
chunk is kept at the first location of the chunk, and the index of the minimum of
the buffer is maintained. When this minimum of the buffer is removed, the last
element is moved into its place, the new minimum of that chunk is found in O(k)
time using k − 1 element comparisons (by scanning the elements of the chunk),
and then the new overall minimum of the buffer is found in O(k) time using
k − 1 element comparisons (by scanning the minima of the chunks). When pop
needs a replacement for the old minimum, we have to consider the case where
the last element is the minimum of the insertion buffer. In such a case, to avoid
losing track of this minimum, before any processing, we swap it with the first
element of the buffer. In push, a new element is appended to the insertion buffer.
Subsequently, the minimum of the last chunk and the minimum of the buffer are
adjusted if necessary; this requires at most two element comparisons. Once there
are k full chunks, the first half of them are used to form a new submersion area
and the elements therein are incrementally melded into the main heap.

The submersion area is treated as part of the main heap even though some
of its nodes may not obey heap order. To reestablish heap order, the submersion
operation (Fig. 4) will traverse the heap bottom up level by level as in Floyd’s
heap-construction algorithm [12]. Starting with the parents of the nodes con-
taining the initial embryo of the submersion process, for each node we call the
sift−down procedure. We then consider the parents of these nodes at the next
upper level, restoring heap order up to this level. This process is repeated all the
way up to the root. As long as there are more than two nodes that are considered
at a level, the number of such nodes almost halves at the next level.

In the following analysis we separately consider two phases of the submersion
procedure. The first phase comprises the sift−down calls for the nodes at the levels
with more than two involved nodes. Let b denote the size of the initial bulk. The
number of the nodes visited at the jth last level is at most �(b− 2)/2j−1�+2. For
a node at the jth last level, a call to the sift−down subroutine requires O(j) work.
In the first phase, the amount of work involved is O(

∑�lgn′�
j=2 j/2j−1 · b) = O(b).

The second phase comprises at most 2�lg n′� calls to the sift−down subroutine;
this accounts for a total of O(lg2 n′) work. Since b = Θ(lg2 n′), the overall work
done is O(lg2 n′), i.e. amortized constant per push.

Instead of doing a submersion in one shot, we distribute the work by per-
forming O(1) work in connection with every modifying operation. Obviously,
such a submersion should be done fast enough to complete before the insertion
buffer becomes either full or empty.
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method sift-down(i, n)
x ← a[i]
while left-child(i) < n

j ← left-child(i)
if sibling(j) < n and a[sibling(j)] < a[j]

j ← sibling(j)
if x ≤ a[j]

break
a[i] ← a[j]
i ← j

a[i] ← x

method submersion(n′, n)
r ← n − 1
� ← max{n′, parent(r) + 1}
while r �= 0

� ← parent(�)
r ← parent(r)
for i ← r, r − 1, . . . , �

sift-down(i, n)

Fig. 4. Implementation of submersion; n′ is the size of the main heap and n the size
of the main heap plus the submersion area; sift−down is from [12]

To track the progress of the submersion process, we maintain two intervals
that represent the nodes up to which the sift−down subroutine has been called.
Each such interval is represented by two indices indicating its left and right end-
points, call them (�1, r1) and (�2, r2). These two intervals are at two consecutive
levels, and the parent of the right endpoint of the first interval has an index that
is one less than the left endpoint of the second interval, i.e. �2−1 = �(r1 −1)/2�.
We say that these two intervals form the frontier. While the process advances,
the frontier moves upwards and shrinks until it has one or two nodes. The fron-
tier imparts that a sift−down is being performed starting from the node whose
index is �2. In addition to the frontier, we also maintain the index of the node
that the sift−down in progress is currently processing. In connection with every
modifying operation, the current sift−down progresses a constant number of
levels downwards and this index is updated. Once sift−down returns, the fron-
tier is updated. When the frontier passes the root, incremental submersion is
complete. To summarize, the information maintained to record the state of the
submersion process is two intervals of indices to represent the frontier plus the
node which is under consideration by the current sift−down.

As for the insertion buffer, we maintain the index of the minimum on the
frontier. We treat each of the two intervals of the frontier as a set of consecutive
chunks. Except for the first or last chunk on each interval that may have less
nodes, every other chunk has k nodes. In addition, we maintain the invariant
that the minimum within every chunk on the frontier is kept at the entry storing
the first node among the nodes of the chunk. An exception is the first and last
chunks, where we maintain the index for the minimum on each.

To remove the minimum of the submersion area, we know that it must be on
the frontier and we readily have its index. This minimum is swapped with the last
element of the array and a sift−down is performed to remedy the order between
the replacement element and the elements in its descendants. We distinguish
between two cases:
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(1) There are at most two nodes on the frontier.
(2) There are more than two nodes on the frontier.

In the first case, we make the minimum index of the frontier point to the smaller.
In the second case, the height of the nodes on the frontier is at most 2 lg lg n +
O(1) so we can afford to do the following. The chunk that contained the removed
minimum is scanned to find its new minimum. If this chunk is neither the first
nor the last of the frontier, the found minimum is swapped with the element
at its first position, followed by a sift−down performed on the latter element.
The overall minimum of the frontier is then localized by scanning the minima
of all the chunks. Extracting the minimum of the submersion area thus requires
O(lg n) time and uses at most 1/2 · lg n + O(lg lg n) element comparisons.

In the main heap the top and pop operations are performed as in a binary
heap with the same cost limitations. An exception is that, if pop meets the
frontier of the submersion area, we stop the execution before crossing it.

To summarize, in a lazy heap, top reports the minimum of the three com-
ponents, push is delegated to the insertion buffer, and pop is delegated to the
component where the overall minimum resides.

Lemma 3. In a lazy heap of size n, top and push require O(1) worst-case time
and pop requires O(lg n) worst-case time.

4 Strengthened Lazy Heaps: Putting Things Together

Our final construction is similar to the one of the previous section in that there
are three components: main heap, submersion area, and insertion buffer. Here
the main heap has two layers: a top heap that is a binary heap, and each leaf of
the top heap roots a bottom heap that is a complete strong heap. The main heap
is laid out in the array as a binary heap, and in accordance every bottom heap
is scattered throughout the array. As before, the submersion area is contained
within the main heap, leading to a possible disobedience of heap order at its
frontier. Because the main heap is only partially strong, we call the resulting
data structure a strengthened lazy heap. Let n′ be the size of the main heap, and
let t = �lg(1 + lg(1 + n′))�. The height of the bottom heaps is either t − 3 and
t − 2, or t − 2 and t − 1. In the insertion buffer, the size of a chuck is k = 2t/4
and the size of the buffer is bounded by k2. To help the reader get a complete
picture of the data structure, we visualize it in Fig. 5.

We use a new procedure, that we call combined−sift−down (Fig. 6), instead
of sift−down. Assume we have to replace the minimum of the top heap with
another element. To reestablish heap order, we follow the proposal of Carls-
son [2]: We traverse down along the path of nodes containing the smaller of the
elements at any two siblings until we reach a root of a bottom heap. By com-
paring the replacement element with the element at that root, we check whether
the replacement element should land in the top heap or in the bottom heap. In
the first case, in binary−search−sift−up we find the position of the replacement
element using binary search on the traversed path and thereafter do the required
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top heap

border

bottom heaps

submersion area

insertion buffer

Fig. 5. Schematic view of a strengthened lazy heap

method ancestor(i, d)

return �(i + 1)/2d� − 1

method rotate(i, k, h)
x ← a[i]
for d ← h − 1, h − 2, . . . , 0

a[ancestor(k, d + 1)] ← a[ancestor(k, d)]
a[k] ← x

method correct-place(i, k, h)
d ← h
while i �= k

h′ ← �(h + 1)/2�
j ← ancestor(k, h′)
h ← h − h′

if a[i] ≤ a[j]
k ← j
d ← d − h′

else
i ← ancestor(k, h)

return (i, d)

method binary-search-sift-up(i, k, h)
(j, d) ← correct-place(i, k, h)
rotate(i, j, d)

method combined-sift-down(i, n, h)
j ← i
repeat h times

k ← left-child(j)
if a[sibling(k)] < a[k]

k ← sibling(k)
j ← k

if a[i] ≤ a[j]
binary-search-sift-up(i, parent(j), h − 1)

else
rotate(i, j, h)
swapping-sift-down(j, n)

Fig. 6. Implementation of combined−sift−down

element moves. In the second case, we apply swapping−sift−down on the root
of the bottom heap.

Let us now recap how the operations are executed and analyse their perfor-
mance. Here we ignore the extra work done due to the incremental processes.
Clearly, top can be carried out in O(1) worst-case time by reporting the minimum
of three elements:
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(1) the element at the root of the top heap,
(2) the minimum of the insertion buffer, and
(3) the minimum of the submersion area.

As before, push appends the given element to the insertion buffer and updates
the minimum of the buffer if necessary. To perform pop, we need to consider the
different minima and remove the smallest among them.

Case 1. If the minimum is at the root of the top heap, we find a replacement
for the old minimum and apply combined−sift−down for the root by making
sure that we do not cross the frontier. Let n denote the total number of elements.
The top heap is of size O(n/ lg n) and the bottom heaps are of size O(lg n). To
reach the root of a bottom heap, we perform lg n − lg lg n + O(1) element com-
parisons. If we have to go upwards, we perform lg lg n+O(1) additional element
comparisons in the binary search while applying the binary−search−sift−up
operation. On the other hand, if we have to go downwards, swapping−sift−down
needs to perform at most lg lg n + O(1) element comparisons. In both cases, the
number of element comparisons performed is at most lg n + O(1) and the work
done is O(lg n).

Case 2. If the overall minimum is in the insertion buffer, it is removed as
explained in the previous section. This removal involves 2k +O(1) element com-
parisons and the amount of work done is proportional to that number. Since
we have set k = 2t/4 = 1/4 · lg n + O(1), this operation requires at most
1/2 · lg n + O(1) element comparisons and O(lg n) work.

Case 3. If the frontier contains the overall minimum, we apply a similar
treatment to that explained in the previous section with a basic exception. If
there are more than two nodes on the frontier, the height of the nodes on the
frontier is at most 2 lg lg n + O(1). In this case, we use the strengthening−sift−
down procedure in place of the sift−down procedure. This requires at most
1/2 · lg n + O(lg lg n) element comparisons and O(lg n) work. If there are at
most two nodes on the frontier, the frontier lies in the top heap. In this case,
we apply the combined−sift−down procedure instead. This requires at most
lg n + O(1) element comparisons and O(lg n) work. Either way, for large enough
n, the minimum extraction here requires at most lg n+O(1) element comparisons.

Because of the subtree interchanges made in swapping−sift−down, the
number of element moves performed by pop—even though asymptotically
logarithmic—would be larger than the number of element comparisons. Assume
that the number of these moves is bounded by c lg n for some constant c. We
can control the number of element moves by adjusting the heights of the bottom
heaps. If the maximum height of a bottom heap is set to t − lg(c/ε) for some
small constant ε, 0 < ε ≤ c, the number of element moves performed therein
will be bounded by ε lg n + O(1), while the bounds for the other operations
still hold.

Due to the two-layer structure, the incremental remedy processes are more
complicated for a strengthened lazy heap than for a lazy heap. Let us consider
the introduced complications one at a time and sketch how we handle them.

Complication 1. As the size of the heap changes due to insertions and dele-
tions, we have to move the border between the two layers dynamically. To make
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the bottom heaps one level shallower, we just adjust t and ignore the left-
domination property for the nodes on the previous border. To make the bottom
heaps one level higher, we need a new incremental remedy process that scans
the nodes on the old border and applies strengthening−sift−down on each left
child. Again, we only need a constant amount of space to record the state of this
process. The total work done in the border lifting is linear so, after the process
is initiated, every forthcoming modifying operation has to take a constant share
of the work.

There are several special cases to consider.

(1) If pop meets the node processed by border-lifting strengthening−sift−down,
we stop the execution of pop and let the incremental process reestablish
strong heap order below that node.

(2) If the node where border-lifting strengthening−sift−down is to be applied is
inside the submersion area, we stop this corrective action and jump to the
next since the submersion process has already establish strong heap order
below that node.

(3) If the node processed by submersion strengthening−sift−down and that
by border-lifting strengthening−sift−down meet, we stop the border-lifting
process and jump to the next since the submersion process will reestablish
strong heap order below that node.

(4) If the border-lifting strengthening−sift−down meets the frontier, we stop
this corrective action before crossing it and jump to the next.

(5) Also, when the node recorded by border-lifting strengthening−sift−down is
moved by a swapping−sift−down, the index to this node is to be updated
accordingly.

Complication 2. When extracting the minimum, we use the last element of
the insertion buffer as a replacement. However, if the insertion buffer is empty,
meaning that the submersion process must have been completed, we need to use
an element from the main heap instead. To keep the bottom heaps complete,
we move all the elements at the lowest level of the bottom heap that occupies
the rear of the array back to the empty insertion buffer. After such a move, the
minimum of this piece is not known. Fortunately, we do not need this minimum
within the next k pop operations, as there are at least a logarithmic number of
elements in the main heap that are smaller. Hence, the minimum of the involved
chunks can be found incrementally within the upcoming k modifying operations.

Complication 3. If we swapped two subtrees in the bottom heap where the
frontier consists of two intervals, there is a risk that we mess up the frontier.
Hence, we schedule the submersion process differently: We process the bottom
heaps one by one, and lock the bottom heap under consideration to skip subtree
interchanges initiated by pop in the main heap. Therefore, when the frontier
overlaps the bottom heaps, it is cut into several pieces:

(1) the interval corresponding to the unprocessed leaves of the initial bulk,
(2) the two intervals (�1, r1) and (�2, r2) in the bottom heap under consideration,

and



An In-Place Priority Queue with O(1) Time for Push and lg n + O(1) 217

(3) the interval of the roots of the bottom heaps that have been handled by the
submersion process.

Locking resolves the potential conflict with pop. However, in the currently
processed bottom heap there are some nodes between the root and the fron-
tier that are not yet included in the submersion process and are not in order
with the elements above or below. This is not a problem, as none of these ele-
ments can be the minimum of the heap except after a logarithmic number of
modifying operations. Within such time, these nodes have already been handled
by the submersion process.

5 Conclusions

We described a priority queue that

(1) operates in-place,
(2) supports top and push in O(1) worst-case time, and
(3) supports pop in O(lg n) worst-case time involving at most lg n+O(1) element

comparisons.

The data structure is asymptotically optimal with respect to time, and optimal
up to additive constant terms with respect to space and element comparisons.

The related contributions prior to this work can be summarized as follows:

(1) break the 2 lg n + O(1) barrier for the number of element comparisons per-
formed per pop when push takes O(1) worst-case time [9],

(2) achieve the aforementioned desired bounds using O(n) words of extra space
[10],

(3) achieve the desired bounds using O(n) bits of extra space [8],
(4) achieve the desired bounds in-place in the amortized sense [11].

It is remarkable that we could surpass the two lower bounds known for binary
heaps [13] by slightly loosening the assumptions that are intrinsic to these lower
bounds. To achieve our goals, we simultaneously imposed more order on some
nodes, by forbidding some elements at left children to be larger than those at
their right siblings, and less order on others, by allowing some elements to pos-
sibly be smaller than those at the parents.

In retrospect, we admit that, while binary heaps [19] are practically efficient,
our data structure is somewhat impracticable. A solution [11] that achieves the
same bounds in the amortized sense is simpler, but our reference implementation
is still not competitive with binary heaps. The main questions left open are

(1) whether the number of element moves performed by pop can be reduced to
lg n + O(1),

(2) whether our constructions could be simplified, and
(3) whether there are components that are useful in practice.
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Abstract. The resolution complexity of the perfect matching principle
was studied by Razborov [Raz04], who developed a technique for prov-
ing its lower bounds for dense graphs. We construct a constant degree
bipartite graph Gn such that the resolution complexity of the perfect
matching principle for Gn is 2Ω(n), where n is the number of vertices in
Gn. This lower bound is tight up to some polynomial. Our result implies
the 2Ω(n) lower bounds for the complete graph K2n+1 and the complete
bipartite graph Kn,O(n) that improves the lower bounds following from
[Raz04]. Our results also imply the well-known exponential lower bounds
on the resolution complexity of the pigeonhole principle, the functional
pigeonhole principle and the pigeonhole principle over a graph.

We also prove the following corollary. For every natural number d, for
every n large enough, for every function h : {1, 2, . . . , n} → {1, 2, . . . , d},
we construct a graph with n vertices that has the following properties.
There exists a constant D such that the degree of the i-th vertex is at
least h(i) and at most D, and it is impossible to make all degrees equal
to h(i) by removing the graph’s edges. Moreover, any proof of this state-
ment in the resolution proof system has size 2Ω(n). This result implies
well-known exponential lower bounds on the Tseitin formulas as well as
new results: for example, the same property of a complete graph.

1 Introduction

Sometimes it is possible to represent combinatorial statements as unsatisfiable
CNF formulas. For example, CNF formulas PHPm

n encode the pigeonhole prin-
ciple; PHPm

n states that it is possible to put m pigeons into n holes such that
every pigeon is contained in at least one hole and every hole contains at most
one pigeon. PHPm

n depends on variables pi,j for i ∈ [m] and j ∈ [n] and pi,j = 1
iff the i-th pigeon is in the j-th hole. For every i ∈ [m], PHPm

n contains a clause
(pi,1 ∨ pi,1 ∨ · · · ∨ pi,n). And for every j ∈ [n] and every k �= l ∈ [n], PHPm

n

contains a clause (¬pk,j ∨ ¬pl,j). PHPm
n is unsatisfiable iff m > n.
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For an undirected graph G(V,E) we define a CNF formula PMPG that
encodes the fact that G has a perfect matching. We assign a binary variable
xe for all e ∈ E. PMPG is the conjunction of the following conditions: for all
v ∈ V , exactly one edge that is incident to v has value 1. Such conditions can be
written as the conjunction of the statement that at least one edge takes value 1:∨

(v,u)∈E x(v,u) and the statement that for any pair of edges e1, e2 incident to v,
at most one of them takes value 1: ¬xe1 ∨ ¬xe2 . If G has no perfect matchings,
then PMPG is an unsatisfiable formula.

For an unsatisfiable CNF formula ϕ, a proof of its unsatisfiability in the
resolution proof system is a sequence of clauses with the following properties:
the last clause is an empty clause (we denote it by �); any other clause is either
a clause of the initial formula ϕ, or can be obtained from previous ones by the
resolution rule. The resolution rule admits to infer a clause (B ∨C) from clauses
(x ∨ B) and (¬x ∨ C). The size of a resolution proof is the number of clauses
in it. It is well known that the resolution proof system is sound and complete.
Soundness means that if a formula has a resolution proof, then it is unsatisfiable.
Completeness mean that every unsatisfiable CNF formula has a resolution proof.

Let Km,n denote the complete bipartite graph with m and n vertices in its
parts. Note that the formulas PMPKm,n

are easier to refute in the resolution
proof system then PHPm

n , since PMPKm,n
contain more clauses. Therefore any

lower bound on the size of a resolution proof of PMPKm,n
implies the same lower

bound on the size of a resolution proof of PHPm
n and, conversely, every upper

bound on the resolution proof of PHPm
n implies the same upper bound on the

size of resolution proof of PMPKm,n
.

We say that a family of unsatisfiable CNF formulas Fn is weaker than a
family of unsatisfiable formulas Hn if every clause of Hn is an implication of
a clause of Fn. In this terms PMPKm,n

is weaker than PHPm
n . The size of any

resolution proof of Hn is at least the size of the minimal resolution proof of Fn.
Thus it is interesting to prove lower bounds for formulas as weak as possible.

1.1 Known Results

Haken [Hak85] proved the lower bound 2Ω(n) on the resolution complexity of
PHPn+1

n . Raz [Raz01a] proved the lower bound 2nε

on the resolution complexity
of PHPm

n for some positive constant ε and an arbitrary m > n. This lower bound
was simplified and improved to 2Ω(n1/3) by Razborov [Raz01b].

Urquhart [Urq03] and Ben-Sasson, and Wigderson [BSW01] consider for-
mulas G−PHPn

m that are defined by a bipartite graph G; the first part of G
corresponds to pigeons and consists of m vertices, and the second part corre-
sponds to holes and consists of n vertices. Every pigeon must be contained in one
of the adjacent holes. Formulas G−PHPm

n can be obtained from PHPm
n by sub-

stituting variables which do not have corresponding edges in G with zeroes. The
paper [BSW01] presents the lower bound 2Ω(n) for formulas G−PHPm

n where
m = O(n) and G is a bipartite constant degree expander.

Razborov [Raz03] considers a functional pigeonhole principle FPHPm
n that

is a weakening of PHPm
n ; the formula FPHPm

n is the conjunction of PHPm
n and
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additional conditions stating that every pigeon is contained in at most one hole.

Razborov proved a lower bound 2Ω
(

n
(log m)2

)
for FPHPm

n which implies a lower
bound 2Ω(n1/3) depending only on n.

Razborov [Raz04] proved that if G has no perfect matchings then the reso-

lution complexity of PMPG is at least 2
δ(G)
log2 n , where δ(G) is the minimal degree

of the graph and n is the number of vertices.
Alekhnovich [Ale04] and Dantchev, and Riis [DR01] consider the graphs of

the chessboard 2n × 2n without two opposite corners. The perfect matching
principle for such graphs is equivalent to the possibility to tile such chessboards
with domino. The strongest lower bound 2Ω(n) was proved in [DR01] and this
lower bound is polynomially connected with the upper bound 2O(n). We note
that the number of variables in such formulas is Θ(n2).

1.2 Our Results

For all n and all m ∈ [n + 1, O(n)] we give an example of a bipartite graph
Gm,n with m and n vertices in its parts such that all degrees are bounded by
a constant and the resolution complexity of PMPGm,n

is 2Ω(n). The number of
variables in such formulas is O(n), therefore the lower bound matches (up to
an application of a polynomial) the trivial upper bound 2O(n) that holds for
every formula with O(n) variables. This is the first lower bound for the perfect
matching principle, that is exponential in the number of variables. In particular,
our results imply that the resolution complexity of PMPKm,n

is 2Ω(n). And this
lower bound improves the lower bound 2Ω(n/ log2 n) that follows from [Raz04].
Due to the upper bound n2n that follows from the upper bound for PHPn+1

n

[SB97], this result is tight up to an application of a polynomial. Our result
implies the lower bound 2Ω(n) on the resolution complexity of PMPK2n+1 , where
K2n+1 is a complete graph on n vertices, and it is also better than the lower
bound 2Ω(n/ log2 n) following from [Raz04]. We note that PMPGm,n

is weaker
than Gm,n−PHPm

n , PHPm
n and FPHPm

n , therefore our lower bound implies the
same lower bound for Gm,n−PHPm

n , PHPm
n and FPHPm

n .
Our proof can be divided into two parts. Firstly, we prove lower bound on

the resolution width for perfect matching principles based on bipartite graphs
with certain expansion properties. To do this we modify the method introduced
by Ben-Sasson and Wigderson, namely, we define a nonstandard measure on the
clauses of a resolution proof. Secondly, we give a construction of constant degree
bipartite graphs that have an appropriate expansion property. We use lossless
expanders and similarly to [IS11] we remove vertices with high degrees from
them. For example, we can use the explicit construction of lossless expanders
from [MCW02] or the randomized construction from [HLW06]. Finally, we apply
the theorem of Ben-Sasson and Wigderson stating that if a formula φ in O(1)-
CNF has the resolution width at least w, then any resolution proof of φ has the
size at least 2Ω(w2/n), where n is the number of variables in φ.

We also prove a more general result. For a graph G(V,E) and a function
h : V → {1, 2, . . . , d} we define a formula Ψ

(h)
G encoding that G(V,E) has a
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subgraph H(V,E′) such that for all v in H the degree of v equals h(v). Note
that if h ≡ 1 then Ψ

(h)
G is precisely PMPG. For any d ∈ N, we show that there

exists D ∈ N that for all n large enough and every function h : V → {1, 2, . . . , d},
where |V | = n, it is possible to construct a graph G(V,E) in polynomial time
with degrees of vertices at most D, such that the formula Ψ

(h)
G is unsatisfiable,

and the size of any resolution proof of Ψ
(h)
G is at least 2Ω(n).

If h maps V to {1, 2}, then Ψ
(h)
G is weaker than Tseitin formulas based on

the graph G. Thus our result implies the lower bound 2Ω(n) on the resolution
complexity of Tseitin formulas that was proved in [Urq87].

2 Preliminaries

We consider simple graphs without loops and multiple edges. The graph G is
called bipartite if its vertices can be divided into two disjoint parts X and Y in
such a way that any edge is incident to one vertex from X and one vertex from
Y . By G(X,Y,E) we denote a bipartite graph with parts X and Y and set of
edges E. A matching in a graph G(V,E) is a set of edges E′ ⊆ E such that any
vertex v ∈ V has at most one incident edge from E′. A matching E′ covers a
vertex v if there exists e ∈ E′ incident to v. A perfect matching is a matching
that covers all vertices of G. For a bipartite graph G(X,Y,E) and a set A ⊆ X
by Γ (A) we denote a set of all neighbors of vertices from A.

Theorem 1 (Hall). Consider such a bipartite graph G(X,Y,E) that for some
A ⊆ X, for all B ⊆ A, the following inequality holds: |Γ (B)| ≥ |B|. Then there
exists a matching that covers all vertices from A.

In [BSW01] E. Ben-Sasson and A. Wigderson introduced a notion of a formula
width. A width of a clause is a number of literals contained it. For a k-CNF
formula ϕ, a width of ϕ is a maximum width of its clauses. A width of a resolution
proof is a width of the largest used clause.

Theorem 2 ([BSW01]). For any k-CNF unsatisfiable formula ϕ, the size of a

resolution proof is at least 2
Ω

(
(w−k)2

n

)

, where w is a minimal width of a resolution
proof of ϕ and n is a number of variables used in ϕ.

Lemma 1. Let φ be a formula that is obtained from an unsatisfiable formula ψ
by a substitution of several variables. Then φ is unsatisfiable and the size of the
minimal resolution proof of ψ is at least the size of the minimal resolution proof
of φ.

3 Perfect Matching Principle

Our goal is to prove the following theorem:
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Theorem 3. There exists a constant D such that for all C > 1 there exists
a > 0 such that for all n large enough and for all m ∈ [n+1, Cn] it is possible to
construct in polynomial in n time a bipartite graph G(V,E) with m and n vertices
in parts such that all degrees are at most D, the formula PMPG is unsatisfiable,
and the size of any resolution proof of PMPG is at least 2an.

We note that the lower bound from Theorem3 is tight up to an application of
a polynomial since these formulas contain O(n) variables and thus there is a
trivial upper bound 2O(n).

Corollary 1. For every C > 1, there exists a > 0 such that for every n and
m ∈ [n + 1, Cn] the resolution complexity of PMPKm,n

is at least 2an, where
Km,n is the complete bipartite graph with m and n vertices in parts.

Proof. By Theorem 3 there exists a bipartite graph G with n and m vertices in
parts such that the resolution complexity of PMPG is at least 2an. The formula
PMPG may be obtained from PMPKm,n

by substituting zeros for the edges
that do not belong to G. Therefore by Lemma 1, the resolution complexity of
PMPKm,n

is at least the resolution complexity of PMPG.

The lower bound from Corollary 1 improves a lower bound 2n/ log2 n that follows
from [Raz04]. Note that this lower bound is tight up to an application of a
polynomial. The resolution complexity of PMPKm,n

is 2O(n) since PMPKm,n
is

weaker than PHPm
n , and the resolution complexity of PHPm

n is n2n [SB97].

Corollary 2. The resolution complexity of PHPK2n+1 is 2Ω(n), where K2n+1 is
the complete graph on 2n + 1 vertices.

Proof. By Theorem 3 there exists a bipartite graph G with n and n + 1 vertices
in parts such that the resolution complexity of PMPG is at least 2an. Formula
PMPG may be obtained from PMPK2n+1 by substituting zeros for edges that do
not belong to G. Therefore by Lemma 1 the resolution complexity of PMPK2n+1

is at least the resolution complexity of PMPG.

The lower bound from Corollary 2 improves a lower bound 2n/ log2 n for the res-
olution complexity of PMPK2n+1 that follows from [Raz04]. It is an interesting
open question whether this lower bound is tight.

The plan of the proof of the Theorem3 is the following. In Sect. 3.1 we prove
the lower bound on the resolution width of PMPG if G is a bipartite graph which
has some expansion property. In Sect. 3.2 we show how to construct a constant
degree bipartite graphs with the appropriate expansion property. Note that if
degrees of all vertices of G are at most D, then PMPG is D-CNF formula. And
finally, in Sect. 3.3 we conclude the proof by using Theorem 2.

3.1 Perfect Matching Principle for Expanders

Definition 1. A bipartite graph G(X,Y,E) is (r, c)-boundary expander if for
any set A ⊆ X such that |A| ≤ r the following inequality holds: |δ(A)| ≥ c|A|,
where δ(A) denotes the set of vertices in Y connected with the set A by exactly
one edge.
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Theorem 4. Let G(X,Y,E) be a bipartite (r, c)-boundary expander with c ≥ 1
and |X| > |Y |. Let G have a matching that covers all vertices from the part Y .
Then the formula PMPG is unsatisfiable and the width of its resolution refutation
is at least cr/2.

Proof. Parts X and Y have different number of vertices, hence there are no
perfect matchings in G, and PMPG is unsatisfiable.

We call an assignment to variables of PMPG proper if for every vertex v ∈ X
at most one edge incident to v has value 1 and for every u ∈ Y exactly one
edge incident to u has value 1. In other words, proper assignments correspond
to matchings that cover all vertices from Y . For some subset S ⊆ X and for a
clause C we say that S properly implies C if any proper assignment that satisfies
all constraints in vertices from S, also satisfies C. We denote this as S 
 C.

Now we define a measure on clauses from a resolution refutation of PMPG:
μ(C) = min{|S| | S ⊆ X,S 
 C}.

The measure μ is very similar to the measure from [BSW01], where the
measure of a clause is number of local conditions that imply the clause. We
consider the implication only on the set of matchings that cover all vertices from
Y (proper assignment). In our case conditions in vertices from Y are satisfied
by every proper assignment, therefore we consider only conditions in vertices
from X.

The measure μ has the following properties:

(1) The measure of any clause from PMPG equals 0 or 1.
(2) Semiadditivity: μ(C) ≤ μ(C1) + μ(C2), if C is obtained by applying the

resolution rule to C1 and C2.
Let S1 
 C1, |S1| = μ(C1) and S2 
 C2 , |S2| = μ(C2). Hence S1 ∪ S2 
 C1

and S1∪S2 
 C2, so S1∪S2 
 C, therefore μ(C) ≤ |S1|+|S2| = μ(C1)+μ(C2).
(3) The measure of the empty clause � is greater than r. To prove this property

we need the following lemma:

Lemma 2. Let a bipartite graph G(X,Y,E) have two matchings, the first one
covers all vertices from Y , and the second covers all vertices from A ⊆ X. Then
there exists a matching in G that covers A and Y simultaneously.

Proof. Let L denote the matching that covers all vertices from the set A and
let F be a matching that covers all vertices from Y . We prove that if F does
not cover all vertices from A, then one may construct a matching F ′ that covers
more vertices of A than F , and also covers all vertices from Y . Therefore, there
is a matching that covers A and Y .

Consider some vertex v1 ∈ A that is not covered by F and a path
v1, u1, v2, u2, . . . , uk−1, vk that (vi, ui) ∈ L, (ui, vi+1) ∈ F , v1, v2, . . . , vk−1 ∈ A
and vk /∈ A.

Such a path can be constructed deterministically: starting at vertex v1, the
edges of the path belong to alternating matchings L and F . For every vertex from
X at most one of outgoing edges belongs to L. For every vertex from Y exactly
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one of outgoing edges belongs to F . The path can’t become a cycle because v1
has no incident edges from F , therefore the constructed path will lead to some
vertex vk /∈ A. Hence it is possible to construct F ′ from F by by removing all
edges (ui, vi+1) and adding edges (ui, vi) for 1 ≤ i < k. Now F ′ covers Y and
covers one additional vertex of A in comparison with F . �
Let μ(�) ≤ r, then there is S ⊆ X such that S 
 � and |S| ≤ r. For all A ⊆ S
the following holds: |Γ (A)| ≥ |δ(A)| ≥ c|A| ≥ |A|, and the Hall’s Theorem
(Theorem 1) implies that there is a matching in G that covers S. G also has a
matching covering all vertices of Y , therefore Lemma 2 implies that there exists
a matching that covers S and Y , hence it corresponds to a proper assignment
that satisfies all constraints for vertices from S, but it is impossible to satisfy
the empty clause, and we get a contradiction with the fact that μ(�) ≤ r.

The semiadditivity of the measure implies that any resolution proof of the for-
mula PMPG contains a clause C with the measure in the interval r

2 ≤ μ(C) ≤ r.
We claim that the width of C is at least rc/2.

Let S 
 C and |S| = μ(C). Since G is a (r, c)-boundary expander, δ(S) ≥ c|S|.
Let F denote the set of edges between S and δ(S). Every vertex from δ(S) has
exactly one incident edge leading to S, therefore |F | = |δ(S)|. Consider one par-
ticular edge f ∈ F , let f = (u, v), where u ∈ S, v ∈ Y . Since |S \ {u}| < |S|,
clause C is not properly implied from the set S \ {u}, i. e., there exists a proper
assignment σ that satisfies all restrictions in the vertices S \ {u}, but refutes the
clause C. Such assignment σ can not satisfy the constraint in the vertex u, since
otherwise σ would satisfy S and therefore satisfy C. Since σ is a proper assignment,
σ assigns value 0 to all edges that are incident with u, and σ satisfies v. There is
an edge e incident to v such that σ(e) = 1. The vertex v is a boundary vertex for
S, therefore the other endpoint of e does not belong to S. Consider an assignment
σ′′ that is obtained from σ by changing the values of f and e, σ′′ is proper and it
satisfies all constraints from S, and hence it satisfies C. Thus C contains either
e or f . Thus for all v ∈ δ(S) at least one of the edges incident to v occurs in C.
Therefore the size of the clause C is at least |δ(S)| ≥ c|S| ≥ cr/2. �
Remark 1. The condition in Theorem4 that G has a matching covering all ver-
tices from Y cannot be removed for free since for every (r, c)-boundary expander
it is possible to add one vertex to X and �c� vertices to Y such that the new ver-
tex in X is connected with all new vertices in Y . The resulting graph is also an
(r, c)-boundary expander, but the resulting formula will contain an unsatisfiable
subformula that depends on �c�+1 variables, hence it can be refuted with width
�c� + 1. We do not know whether it is possible to replace the second condition
in the theorem by a weaker condition.

3.2 Expanders

In this section we show how to construct a constant degree graph that satisfies
the conditions of Theorem 4.
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Definition 2. The bipartite graph G with parts X and Y is an (r, d, c)-expander,
if degrees of all vertices from X do not exceed d, and for every set I ⊆ X, |I| ≤ r
the inequality |Γ (I)| ≥ c|I| holds. Here Γ (I) denotes the set of all vertices that
are adjacent with at least one vertex from I.

Lemma 3 ([AHI05]). Every (r, d, c)-expander is a (r, 2c − d)-boundary
expander.

We say that a family of graphs Gn is explicit if it is possible to construct Gn in
polynomial in n time.

Theorem 5 ([MCW02]). For every ε > 0 and every time-constructible func-
tion m(n) there exists k ≥ 1 and there exists an explicit construction of a fam-
ily of d-regular ( n

kd , d, (1 − ε)d)-expanders with sizes of parts |X| = m(n) and
|Y | = n, where d = polylog(m

n ).

The existence of expanders from Theorem 5 can also be proved by the proba-
bilistic method. But Theorem 5 gives an explicit construction of such graphs.

Note that we can not use expanders from Theorem 5 directly since the vertices
in Y may have unbounded degrees. Similarly to [IS11] we delete vertices with
high degrees and some other vertices in such a way that the resulting graph
would be a good enough expander.

Theorem 6. For every C ≥ 1 and every ε > 0, there exists k ≥ 1, integer
d ≥ 3, and a family of ( n

kd , d, (1 − ε)d)-expanders with |X| = Cn, |Y | = n and
degrees of all vertices from Y do not exceed 5Cd2k 1

ε .

Proof. Let us fix C ≥ 1 and ε > 0, we consider d ≥ 3 and k such that by
Theorem 5 there exists a family of ( n

kd , d, (1 − ε
4 )d)-expanders G(X,Y,E) with

|X| = 2Cn, |Y | = n. Let us denote K = 5Cd2k 1
ε ; we modify this graph in such

a way that a resulting graph would be an expander with degrees at most K.
We denote Y ′ = {v ∈ Y | deg(v) ≥ K} and X ′ = {v ∈ X | |Γ (v)∩Y ′| ≥ ε

2d}.
We will prove that the induced subgraph G′(X\X ′, Y \Y ′, E′) is ( n

kd , d, (1−ε)d)-
expander. Let ΓH(Z) denote the set of neighbours of the set of vertices Z in graph
H. Consider some set Z ⊆ X\X ′ such that |Z| ≤ n

kd . We know that (1− ε
4 )d|Z| ≤

|ΓG(Z)| and also |ΓG(Z)| = |ΓG′(Z)| + |ΓG(Z) ∩ Y ′|. By the definition of X ′ we
get that |ΓG(Z) ∩ Y ′| < ε

2d|Z|. Therefore (1 − ε
4 )d|Z| ≤ |ΓG′(Z)| + ε

2d|Z|, and
we get |ΓG′(Z)| ≥ (1 − 3

4ε)d|Z| > (1 − ε)d|Z|.
Let us estimate the sizes of X ′ and Y ′. Since G is bipartite,

∑
v∈X

deg(v) =
∑

v∈Y

deg(v) ≤ Cnd, hence |Y ′| ≤ Cnd
K = εn

5kd .

Assume that |X ′| > n
kd and consider some subset X0 ⊆ X ′ such that |X0| =

� n
kd�. |ΓG(X0)| ≤ |ΓG(X0) \ Y ′| + |Y ′| ≤ (1 − ε

2 )d|X0| + |Y ′|. By the property of
G we know that |ΓG(X0)| ≥ (1− ε

4 )d|X0|, hence ε
4 |X0| ≤ |Y ′| and |Y ′| ≥ ε� n

4kd�;
the latter contradicts our bound on Y ′ for n large enough.

Finally, we add to G′ several vertices without edges to part Y \ Y ′ in order
to make its size precisely n, and delete several vertices from part X \X ′ to make
its size Cn. Note that this operation does not affect the expander property of
the graph. �
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3.3 Proof of Theorem 3

Proof (Proof of Theorem 3). We consider ε = 1
10 and constants k and d ≥ 3

that exist by Theorem 6 for given C and ε = 1
10 . By Theorem 6 it is possible

to construct in polynomial in n time a bipartite graph H1 such that H1 is an
( n

kd , d, 9
10d)-expander with |X| = Cn, |Y | = n, and degrees of all vertices from Y

do not exceed D = 50Cd2k. We delete from the part X arbitrary Cn−m vertices
and denote the resulting graph by H2. We add at most one edge to every vertex
in the part Y of the graph H2 in such a way that the resulting graph G will
have a matching that covers Y . By Lemma 3, graph H2 is an ( n

kd , 8
10d)-boundary

expander, and hence G is an ( n
kd , 8

10d − 1)-boundary expander with degrees at
most D + 1. The formula PMPG is unsatisfiable since m > n. By Theorem 4 the
width of any resolution proof of PMPG is at least 2n

5k . By Theorem 2 the size of

any resolution proof of PMPG is at least 2Ω(((8d/10−1)n/2kd−D−1)2/n). �

4 Existence of Subgraphs with a Given Degree Sequence

Let G(V,E) be an undirected graph and h be a function V → N such that for
every vertex v ∈ V , h(v) is at most the degree of v. We consider a formula
Ψ

(h)
G constructed as follows: its variables correspond to edges of G. Ψ

(h)
G is a

conjunction of the following statements: for every v ∈ V , exactly h(v) edges that
are incident to v have value 1. The formula PMPG is a particular case of Ψ

(h)
G

for h ≡ 1.

Theorem 7. For all d ∈ N there exists such D ∈ N that for all n large enough
and for any function h : V → {1, 2, . . . , d}, where V is a set of cardinality n,
there exists such an explicit graph G(V,E) with maximum degree at most D,
that formula Ψ

(h)
G is unsatisfiable, and the size of any resolution proof for Ψ

(h)
G

is 2Ω(n).

To prove the Theorem 7 we need the following Lemma:

Lemma 4. For all d ∈ N, for all n large enough, for any set V of cardinality n
and for any function h : V → {1, 2, . . . , d} there exists an explicit construction of
a graph G(V,E) with the following properties: (1) V consists of two disjoint sets
U and T such that there are no edges between vertices from U ; (2) The degree of
every vertex u ∈ U equals h(u) − 1 and the degree of every vertex v ∈ T equals
h(v); (3) |U | ≥ n

2 − 2d2.

Proof. Let n ≥ 4d2 and let the vertices v1, v2, . . . , vn be arranged in a non-
decreasing order of h(vi). Let k be the largest number that satisfies the inequality∑k

i=1(h(vi) − 1) <
∑n

i=k+1 h(vi) − d(d − 1). We denote U = {v1, v2, . . . , vk} and
T = V \ U . Obviously, |U | = k ≥ n/2 − d(d − 1). Now we construct a graph
G based on the set of vertices V . We start with an empty graph and add edges
one by one. For every vertex v ∈ T by the co-degree of v we call the difference
between h(v) and the current degree of v. From every u ∈ U we add h(u)−1 edges
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to G that lead to distinct vertices of V \ U . Doing so, we maintain degrees of all
v ∈ T below the value of h(v). This always can be done since by the construction
of U the total co-degree of all vertices from T is greater than d(d − 1), hence for
all big enough n there exists at least d vertices with co-degrees at least 1.

While the number of vertices in T with positive co-degrees is greater than
d, we will choose one of those vertices w ∈ T and add to the graph exactly
co-degree of w edges that connect w with other vertices from T . Finally, we
will have that T contains at most d vertices with co-degrees at most d. Now we
connect them with distinct vertices from the set U , remove that vertices from
U , and add them to T . It is possible that in the last step some vertex v ∈ T is
already connected with several vertices from U , in that case we should connect
v with new vertices. By this operation we deleted at most d2 vertices from U ,
and therefore |U | ≥ n/2 − 2d2. �
Proof (Proof of Theorem 7). By Lemma 4 we construct a graph G1(V,E1) and
a set U ⊆ V of size at least n

2 − 2d2 such that for all v ∈ U , the degree of v is
equal to h(v) − 1 and for all v ∈ V \ U the degree of v is equal to h(v). Consider
graph G(U,E2) from Theorem 3 with U as the set of its vertices. Define a new
graph G(V,E), where the set of edges E equals E1 ∪ E2. Recall that edges from
the set E2 connect vertices of the set U and edges from E1 do not connect pairs
of vertices from U (that follows from the construction of the graph in Lemma4).

For every vertex v ∈ V \ U its degree equals h(v). Therefore, if Ψ
(h)
G is

satisfiable, then in any satisfying assignment of Ψ
(h)
G all edges that are incident

to vertices V \ U must have the value 1. After substituting the value 1 for all
these variables, Ψ

(h)
G becomes equal to the formula PMPG2 that is unsatisfiable

because of Theorem 3.
Formula PMPG2 is obtained from Ψ

(h)
G by a substitution of several variables,

thus Lemma 1 implies that the size of any resolution proof of Ψ
(h)
G is at least the

size of the minimal proof for PMPG, that is at least 2Ω(n) by Theorem 3. �

4.1 Corollaries

Tseitin Formulas. A Tseitin formula T
(f)
G can be constructed from an arbitrary

graph G(V,E) and a function f : V → {0, 1}; variables of T
(f)
G correspond to

edges of G. The formula T
(f)
G is a conjunction of the following conditions: for

every vertex v we write down a CNF condition that encodes that the parity of
the number of edges incident to v that have value 1 is the same as the parity of
f(v).

Based on the function f : V → {0, 1} we define a function h : V → {1, 2} in
the following way: h(v) = 2 − f(v). In other words, if f(v) = 1, then h(v) = 1,
and if f(v) = 0, then h(v) = 2. By Theorem 7 there exists such a number D,
that for all n large enough it is possible to construct a graph G with n vertices
of degree at most D such that the size of any resolution proof of the formula Ψh

G

is at least 2Ω(n).
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Note that every condition corresponding to a vertex of the formula T
(h)
G is

implied from the condition corresponding to the formula Ψh
G. Since the resolution

proof system is implication complete, every condition of T
(h)
G may be derived

from a condition of Ψh
G by derivation of size at most 2D. Hence all clauses of the

Tseitin formula may be obtained from clauses of formula Ψh
G by the derivation

of size O(n). Thus the size of any resolution proof of T
(f)
G is at least 2Ω(n). This

lower bound was proved in the paper [Urq87].

Complete Graph. Let Kn be a complete graph with n vertices and h : V →
{0, 1, . . . , d}, where d is some constant. Let formula Ψ

(h)
Kn

be unsatisfiable.
By Theorem 7 there exists D such that for all n large enough there exists an
explicit graph G with n vertices of degree at most D that the size of any reso-
lution proof of Ψh

G is at least 2Ω(n). The graph G can be obtained from Kn by
removing several edges, hence the formula Ψ

(h)
G can be obtained from Ψ

(h)
Kn

by
substituting zeroes for edges that do not present in G. Therefore, by Lemma 1
the size of the resolution proof of Ψ

(h)
Kn

is at least 2Ω(n).
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Abstract. We investigate the complexity of regular operations on lan-
guages represented by self-verifying automata. We get the tight bounds
for complement, intersection, union, difference, symmetric difference,
reversal, star, left and right quotients, and asymptotically tight bound for
concatenation. To prove tightness, we use a binary alphabet in the case
of boolean operations and reversal, and an alphabet that grows exponen-
tially for the remaining operations. However, we also provide exponential
lower bounds for these operations using a fixed alphabet.

1 Introduction

A self-verifying finite automaton is a nondeterministic automaton whose state
set consists of three disjoint groups of states: accepting states, rejecting states,
and neutral states. On every input string, at least one computation must end
in either an accepting or in a rejecting state. Moreover, there is no input string
with both accepting and rejecting computations.

The existence of an accepting computation on an input string proves the
membership of the string to the language. This is the same as in a nondeter-
ministic finite automaton. However, in the case of self-verifying finite automata,
the existence of a rejecting computation definitely proves that the input is not
in the language. This is in contrast with nondeterministic automata, where the
existence of a non-final computation leaves open the possibility that the input
may be accepted by a different computation. Thus, even if the transitions are
nondeterministic, when a computation of a self-verifying automaton ends in an
accepting or in a rejecting state, the automaton “can trust” the outcome of that
computation, and accept or reject the input. The name “self-verifying” comes
from this property. Self-verifying automata were introduced in [4]. They were
considered mainly in connection with probabilistic Las Vegas computations, but
as pointed in [7], they are also interesting per se.

Every self-verifying automaton can be converted to an equivalent determin-
istic finite automaton by the standard subset construction [15]. On the other
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hand, every complete deterministic finite automaton may be viewed as a self-
verifying finite automaton with all the final states being accepting, and all the
non-final states being rejecting. Hence self-verifying automata recognize exactly
the class of regular languages.

From the descriptional point of view, every n-state nondeterministic automa-
ton can be simulated by a deterministic automaton of at most 2n states [15].
This bound is known to be tight in the binary case [11,14]. However, Assent and
Seibert in [1] proved that in the deterministic automaton obtained by applying
the subset construction to a self-verifying automaton some states must be equiv-
alent. As a consequence, they were able to show that an upper bound for the
conversion of self-verifying automata to deterministic automata is O(2n/

√
n).

Later this result has been strengthened in [9], where the tight bound for such
a conversion is given by a function g(n) which grows like 3n/3. The witness
languages meeting the bound g(n) are defined over a binary alphabet.

In this paper we further deepen the investigation of self-verifying automata.
We define the self-verifying state complexity of a regular language as the smallest
number of states of any self-verifying automaton recognizing this language. Then
we introduce an sv-fooling set lower bound technique for the number of states
in self-verifying automata. Using the tight bound g(n) from [9], we show that a
minimal self-verifying automaton for a regular language may not be unique.

Next we study the self-verifying state complexity of regular operations on
languages represented by self-verifying automata. Here, the self-verifying com-
plexity of an operation is defined as the number of states that is sufficient and
necessary in the worst case for a self-verifying automaton to accept the lan-
guage resulting from the operation, considered as a function of self-verifying
state complexities of arguments. Using the sv-fooling set lower bound method,
we get the tight bounds for complement (n), intersection (mn), union (mn),
difference (mn), symmetric difference (mn), reversal (2n+1), star (3/4 ·2n), left
quotient (2n−1), and right quotient (g(n)). For concatenation, we get an asymp-
totically tight bound Θ(3m/3 · 2n). To prove tightness, we use a binary alphabet
in the case of boolean operations and reversal, and an alphabet that grows expo-
nentially with n, or with m and n. However, we are still able to get exponential
lower bounds using a fixed four-letter alphabet for star and quotients, and an
eight-letter alphabet for concatenation.

2 Preliminaries

In this section we give some basic definitions and preliminary results. For details
and all unexplained notions, the reader may refer to [17].

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of strings over
the alphabet Σ including the empty string ε. The length of a string w is denoted
by |w|, and the number of occurrences of a symbol a in a string w is denoted by
#a(w). A language is any subset of Σ∗. For a language L, the complement of
L is the language Lc = Σ∗ \ L. The concatenation of languages K and L is the
language KL = {uv | u ∈ K and v ∈ L}.
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A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, s, F );
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the
transition function which is extended to the domain 2Q ×Σ∗ in the natural way,
s ∈ Q is the initial state, and F ⊆ Q is the set of final states. The language
accepted by the NFA A is the set L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.

A nondeterministic finite automaton with a nondeterministic choice of the
initial state (NNFA) is a quintuple A = (Q,Σ, δ, I, F ), where Q,Σ, δ, and F
are the same as in an NFA, and I ⊆ Q is the set of initial states. The language
accepted by the NNFA A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. Every
NFA is also an NNFA.

An NFA A is deterministic (and complete) if |δ(q, a)| = 1 for each q in Q
and each a in Σ. In such a case, we write q · a = q′ instead of δ(q, a) = {q′}.

A self-verifying finite automaton (SVFA) is a tuple A = (Q,Σ, δ, s, F a, F r),
where Q,Σ, δ, and s are the same as in an NFA, F a ⊆ Q is the set of accepting
states, F r ⊆ Q is the set of rejecting states, and F a∩F r = ∅. The states in F a∪F r

are called final, and the remaining states in Q are called neutral. It is required that
for each input string w in Σ∗, there exists at least one computation ending in an
accepting or in a rejecting state, that is, δ(s, w)∩ (F a ∪F r) �= ∅, and there are no
strings w such that both δ(s, w) ∩ F a and δ(s, w) ∩ F r are nonempty.

The language accepted by the SVFA A, denoted as La(A), is the set of
all input strings having a computation ending in an accepting state, while the
language rejected by A, denoted as Lr(A), is the set of all input strings having
a computation ending in a rejecting state. It follows directly from the definition
that La(A) = (Lr(A))c for each SVFA A. Hence, when we say that an SVFA A
accepts a language L, we mean that L = La(A) and Lc = Lr(A).

Two automata are equivalent if they accept the same language. A DFA (an
NFA, an SVFA) A is minimal if every equivalent DFA (NFA, SVFA, respectively)
has at least as many states as A.

The state complexity of a regular language L, sc(L), is defined as the number
of states in the minimal DFA for L. Similarly we define the nondeterministic state
complexity and self-verifying state complexity of a regular language L, denoted
by nsc(L) and svsc(L), as the number of states in the minimal NFA (with a
unique initial state) and SVFA, respectively, accepting the language L.

It is well-known that a DFA is minimal if all its states are reachable from its
initial state, and no two of its states are equivalent. A minimal DFA is unique,
up to isomorphism. However, this is not true for NFAs, and, as we will show
later, a minimal SVFA is not unique as well.

Every NNFA A = (Q,Σ, δ, I, F ) can be converted to an equivalent DFA
A′ = (2Q, Σ, ·, I, F ′), where R · a = δ(R, a) for each R in 2Q and each a in Σ,
and F ′ = {R ∈ 2Q | R∩F �= ∅} [15]. The DFA A′ is called the subset automaton
of the NFA A. The subset automaton may not be minimal since some of its states
may be unreachable or equivalent. Let us recall two observations from [7,9].

Proposition 1 [7,9]. Let a language L be accepted by an n-state SVFA. Then
the languages L and Lc are accepted by n-state NFAs. 
�
Proposition 2 [7,9]. Let languages L and Lc be accepted by an m-state and
n-state NNFAs, respectively. Then svsc(L) ≤ m + n + 1. 
�



234 J.Š. Jirásek et al.

3 SVFA-to-DFA Conversion and Minimal SVFAs

The SVFA-to-DFA conversion has been studied in [9], and the following tight
bound has been obtained.

Theorem 3 ([9], Theorem 9). Every n-state SVFA can be converted to an
equivalent DFA of at most g(n) states, where

g(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + 3(n−1)/3, if n mod 3 = 1 and n � 4,

1 + 4 · 3(n−5)/3, if n mod 3 = 2 and n � 5,

1 + 2 · 3(n−3)/3, if n mod 3 = 0 and n � 3,

n, if n � 2.

(1)

Moreover, the bound g(n) is tight, and can be met by a binary n-state SVFA. 
�
Thus if we know that the minimal DFA for a language L has more then g(n)
states, then, by Theorem 3, every SVFA for L must have at least n + 1 states.
We use this result to show that minimal SVFAs may not be isomorphic.

Example 4. Consider the two 7-state non-isomorphic SVFAs shown in Fig. 1 (left
and middle). Apply the subset construction to both of them. In both cases, the
reachable states of the corresponding subset automata are the same, and they
are shown in Fig. 1 (right); notice that the two bbb states are equivalent. All
the three automata accept the language (a + b)∗a(a + b)2, the minimal DFA for
which has 8 states. Since we have g(6) = 7, every SVFA for this language has at
least 7 states. Hence both SVFAs in Fig. 1 are minimal. 
�

4 Lower Bound Methods for SVFAs

To prove that a DFA is minimal, we only need to show that all its states are
reachable from the initial state, and that no two distinct states are equivalent. To
prove minimality of NFAs, a fooling set lower bound method may be used [2,5].

Fig. 1. Two non-isomorphic minimal SVFAs (left and middle), and the reachable states
of their subset automata (right). All of them accept the language (a + b)∗a(a + b)2.
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A fooling set for a language L is a set of pairs of strings {(u1, v1), . . . , (un, vn)}
satisfying two conditions: (i) for each i, uivi ∈ L, and (ii) if i �= j, then uivj /∈ L
or ujvi /∈ L. In the case of SVFAs, we can simply omit the first condition since
we have either an accepting or rejecting computation on every input string.
However, we have to change the second condition.

Definition 5. A set of pairs of strings F = {(u1, v1), (u2, v2), . . . , (un, vn)}
is called an sv-fooling set for a language L if for all i, j with i �= j at least
one of the following two conditions holds:

(i) exactly one of the strings uivj and ujvj is in L, or
(ii) exactly one of the strings ujvi and uivi is in L.

Lemma 6 (Lower Bound Method for SVFAs). Let F be an sv-fooling set
for a language L. Then every SVFA for the language L has at least |F| states.
Proof. Let A be an SVFA for the language L with the initial state s. Then for
each uivi, there is an accepting or a rejecting computation of SVFA A on uivi.
Fix such a computation for each uivi. Let pi be the state in this computation that
is reached after reading ui, and let fi be the final state reached after reading vi.
Let us show that the states p1, p2, . . . , pn must be pairwise distinct.

Assume for contradiction that there are i and j with i �= j such that pi = pj .
Then we have

s
ui−→ pi = pj

vj−→ fj and s
uj−→ pj

vj−→ fj ; and
s

uj−→ pj = pi
vi−→ fi and s

ui−→ pi
vi−→ fi.

It follows that there are computations on uivj and on ujvj that end in state fj .
Thus either both this strings are in L, or both of them are in Lc. Moreover, there
are computations on ujvi and uivi that end in state fi, so either both these
strings are in L, or both of them are in Lc. Hence neither (i) nor (ii) in the
definition of an sv-fooling set holds, which is a contradiction. 
�
Notice that the lemma above may be applied also to a model of SVFAs with
multiple initial states [9]. Hence if a language L is accepted by an n-state SVFA
with multiple initial states, we cannot have an sv-fooling set of size more than n.
In such a case, we can use the following observation to prove that an SVFA with
a unique initial state needs one more state.

Lemma 7. Let F = A1 ∪ A2 ∪ · · · ∪ A� be an sv-fooling set for a language L.
For each i, let there exist a pair of strings (ε, wi) such that Ai ∪ {(ε, wi)} is an
sv-fooling set for L. Then every SVFA for L has at least |F| + 1 states.

Proof. For each i, and each pair in Ai, fix an accepting or a rejecting computation
as in Lemma 6. Then the unique initial state, reached after reading ε, must be
different from all the states reached after reading the left part of any pair in Ai.
It follows that the SVFA has at least |F| + 1 pairwise distinct states. 
�
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5 Boolean Operations

Let us start with the complementation operation. If L is a language over an
alphabet Σ, then the complement of L is the language Lc = Σ∗ \ L.

To get a DFA for the complement of a given regular language, we only need
to interchange the final and non-final states in a DFA for the given language.
Formally, if a regular language L is accepted by a DFA A = (Q,Σ, δ, s, F ), then
the language Lc is accepted by the DFA A′ = (Q,Σ, δ, s,Q \ F ). Moreover, if A
is minimal, then A′ is minimal as well. It follows that the state complexity of a
regular language and its complement is the same.

On the other hand, if a language is represented be an NFA, we first apply the
subset construction to this NFA, and only after that we can interchange the final
and non-final states. This gives an upper bound 2n on the nondeterministic state
complexity of the complementation operation. This upper bound is known to be
tight [2,16], and witness languages can be defined over a binary alphabet [8].

Our first observation shows that the self-verifying complexity of a language
and its complement are the same.

Lemma 8. Let L be a regular language. Then svsc(L) = svsc(Lc). 
�
Now we consider the following four Boolean operations: intersection, union, dif-
ference, and symmetric difference. In the general case of all regular languages,
the state complexity of all four operations is given by the function mn, and the
worst-case examples are defined over a binary alphabet [3,12,15,18].

The nondeterministic state complexity of intersection and union is mn and
m+n+1, respectively, with witness languages defined over a binary alphabet [6].
The difference and symmetric difference on languages represented by NFAs have
not been studied yet. Since both these operations require complementation, the
nondeterministic state complexities m · 2n and m · 2n + n · 2m of difference and
symmetric difference, respectively, could be expected.

In the case of self-verifying state complexity, we obtain a tight bound mn
for all four operations, with worst-case examples defined over a binary alphabet.
Let us start with intersection.

Lemma 9. Let K and L be languages over an alphabet Σ with svsc(K) = m
and svsc(L) = n. Then svsc(K ∩ L) ≤ mn, and the bound is tight if |Σ| ≥ 2.

Proof. Let the regular languages K and L be accepted by SVFAs A =
(QA, Σ, δA, sA, F a

A, F r
A) and B = (QB , Σ, δB , sB , F a

B , F r
B) of m and n states.

Construct the product automaton A × B = (Q,Σ, δ, s, F a, F r), where
Q = QA × QB ;
δ((p, q), a) = δA(p, a) × δB(q, a) for each (p, q) in Q and each a in Σ;
s = (sA, sB);
F a = {(p, q) | p ∈ F a

A and q ∈ F a
B};

F r = {(p, q) | p ∈ F r
A or q ∈ F r

B}.
The product automaton A×B accepts the intersection of the languages K and L,
and it is a self-verifying automaton.
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To prove tightness, let K = {w ∈ {a, b}∗ | #a(w) ≡ 0 mod m} and L =
{w ∈ {a, b}∗ | #b(w) ≡ 0 mod n} be languages accepted by an m-state and
n-state DFAs, so also SVFAs, respectively. Let us show that the set of pairs
F = {(aibj , am−ibn−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1} is an sv-fooling set
for K ∩ L. To this aim, let (i, j) �= (k, �). Then we have aibjam−ibn−j ∈ K ∩ L
and akb�am−ibn−j /∈ K ∩ L. Thus F is a sv-fooling set for K ∩ L of size mn.
This proves the lower bound. 
�
Since K ∪ L = (Kc ∩ Lc)c, and self-verifying state complexity of a language and
its complement are the same, we can get an SVFA for the union of K and L as
follows. We first construct SVFAs for Kc and Lc. Then we construct an SVFA
for Kc ∩ Lc. Finally, we take an SVFA for the complement of the resulting
language. As witness languages, we can take the complements of the witnesses
for intersection described in the proof of Lemma 9. Similar considerations can
be done also for difference since K \ L = K ∩ Lc. Hence we get the tight bound
mn for both union and difference. Now let us consider symmetric difference.

Lemma 10. Let K and L be languages over an alphabet Σ with svsc(K) = m
and svsc(L) = n. Then svsc(K ⊕ L) ≤ mn, and the bound is tight if |Σ| ≥ 2.

Proof. To get the upper bound, we construct a product automaton for symmetric
difference in a similar way as in the proof of Lemma 9. However, now the sets of
accepting and rejecting states will be

F a = {(p, q) | p ∈ F a
A and q ∈ F r

B} ∪ {(p, q) | p ∈ F r
A and q ∈ F a

B};
F r = {(p, q) | p ∈ F a

A and q ∈ F a
B} ∪ {(p, q) | p ∈ F r

A and q ∈ F r
B}.

In a similar way as in the proof of Lemma 9, we can prove that the product
automaton is an SVFA for the symmetric difference of given languages.

Fig. 2. The binary witnesses for symmetric difference meeting the bound mn.

For tightness, let K and L be languages accepted by DFAs A and B shown in
Fig. 2. Construct a product automaton for K ⊕ L as described above. Consider
the set F = {(aibj , am−1−ibn−1−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1}, and
prove that it is an sv-fooling set for the language K ⊕ L. 
�
The following theorem summarizes the results on Boolean operations.

Theorem 11 (Boolean Operations). Let K and L be languages over an
alphabet Σ with svsc(K) = m and svsc(L) = n. Then
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(i) svsc(Lc) = n,
(ii) svsc(K ∩ L), svsc(K ∪ L), svsc(K \ L), svsc(K ⊕ L) ≤ mn,

and all the bounds are tight if |Σ| ≥ 2. 
�

6 Reversal

The reverse wR of a string w over an alphabet Σ is defined by εR = ε and
(wa)R = awR for a string w and a symbol a in Σ. The reverse of a language L
is the language LR = {wR | w ∈ L}.

If a language L is accepted by an n-state DFA A, then the language LR is
accepted by an n-state NNFA AR obtained from A by swapping the role of the
initial and final states of A, and by reversing all the transitions. By applying the
subset construction to NNFA AR, we get a DFA for LR of at most 2n states.
The bound 2n is known to be tight [11,13], and the witness languages can be
defined over a binary alphabet [10].

If a language L is represented by an n-state NFA A, then we can construct an
NNFA AR for LR in the same way as for DFAs. An equivalent NFA may require
one more state. The upper bound n + 1 is known to be tight, with worst-case
examples defined over a binary alphabet [6,8].

The aim of this section is to show that the self-verifying state complexity of
the reversal operation is given by the function 2n + 1.

Lemma 12. Let n ≥ 3. Let L be a regular language over an alphabet Σ with
svsc(L) = n. Then svsc(LR) ≤ 2n + 1, and the bound is tight if |Σ| ≥ 2.

Proof. Let L be accepted by an n-state SVFA A = (Q,Σ, δ, s, F a, F r). Then L
is accepted by the n-state NFA N = (Q,Σ, δ, s, F a), and Lc is accepted by the
n-state NFA N ′ = (Q,Σ, δ, s, F r) by Proposition 1. By swapping the role of the
initial and final states in NFAs N and N ′, and by reversing all the transitions,
we get n-state NNFAs for languages LR and (Lc)R = (LR)c. By Proposition 2,
we have svsc(LR) ≤ 2n + 1. This proves the upper bound.

For tightness, let L be the language accepted by the DFA A shown in Fig. 3.
Construct an NFA AR for the language LR from the DFA A by swapping the role
of initial and final states, and by reversing all the transitions. First, we describe
an sv-fooling set of size 2n for LR. Then, we will use Lemma 7 to show that
every SVFA for LR has at least 2n + 1 states. 
�
Taking into account that the reversal of every unary language is the same lan-
guage, we get the following theorem.

Fig. 3. The binary witness for reversal meeting the bound 2n + 1.
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Theorem 13 (Reversal). Let n ≥ 3. Let fk(n) be the self-verifying state com-
plexity of the reversal operation on regular languages over a k-letter alphabet
defined as fk(n) = max{svsc(LR) | L ⊆ Σ, |Σ| = k, and svsc(L) = n}. Then

(i) if k ≥ 2, then fk(n) = 2n + 1;
(ii) f1(n) = n. 
�

7 Star

For a language L, the star of L is the language L∗ =
⋃

i≥0 Li, where L0 = {ε}
and Li+1 = Li · L.

The state complexity of the star operation is 3/4 · 2n with binary witness
languages [8,12,18]. In the unary case, the tight bound on the state complexity
of star is (n − 1)2 + 1 [18,19]. The nondeterministic state complexity of star is
n + 1, with witnesses defined over a unary alphabet [6].

In this section we show that the self-verifying state complexity of star is
3/4 · 2n. Our worst-case examples will be defined over an alphabet which grows
exponentially with n. However, for a four-letter alphabet, we will still get an
exponential lower bound 2n−1 − 1.

Lemma 14. Let L be a language with svsc(L) = n. Then svsc(L∗) ≤ 3/4 · 2n.

Lemma 15. Let n ≥ 3. There exists a language L defined over an alphabet of
size 3/4 · 2n + 1 such that svsc(L) = n and svsc(L∗) = 3/4 · 2n.

Proof. Consider the following family of 3/4 · 2n − 1 subsets:
R =

{
S | S ⊆ {0, 1, . . . , n − 1} and 0 ∈ S

} ∪ {
S | ∅ �= S ⊆ {1, 2, . . . , n − 2}}

,
that is, the family R consists of all the subsets of {0, 1, . . . , n − 1} containing
state 0, and of all the non-empty subsets that contain neither 0 nor n − 1. Let
Σ = {a, b} ∪ {cS | S ∈ R} be an alphabet consisting of 3/4 · 2n + 1 symbols.

Let L be accepted by an n-state DFA A = ({0, 1, . . . , n−1}, Σ, δ, 0, {n−1}),
where the transitions are defined as follows:

δ(i, a) = (i + 1) mod n;
δ(0, b) = 0, δ(i, b) = i + 1 if 1 ≤ i ≤ n − 2, and δ(n − 1, b) = n − 1;

and for each set S in R, we have

δ(i, cS) =

{
0, if i ∈ S,

n − 1, if i /∈ S.

The transitions on a and b in the DFA A are shown in Fig. 4 (left), and the
transitions on the symbol c{1,3} in the case of n = 5 are shown in Fig. 4 (right).

Fig. 4. The witness for star; symbols a a b (left) and symbol c{1,3} in the case of n = 5.
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Construct an NFA A∗ for the language L∗ from the DFA A as follows: First,
add a new initial and final state q0 going to state 0 on b and to state 1 on a.
Next, add the transitions on a and on b from state n − 2 to state 0. Finally, for
each S and each state i outside of S, add the transition from i to 0 on cS .

First, we show that each subset S in R is reachable in the subset automaton
of the NFA A∗. For each subset S in R, let uS be a string, by which the initial
subset {q0} goes to the subset S. Then the set of pairs of 3/4 · 2n − 1 strings
F = {(uS , cS) | S ∈ R}, is an sv-fooling set for the language L∗. Finally, we
use Lemma 7 to show that one more state is necessary in every SVFA for the
language L∗. 
�
Lemma 16. Let n ≥ 3. There exists a regular language L defined over a four-
letter alphabet such that svsc(L) = n and svsc(L∗) ≥ 2n−1 − 1. 
�
The following theorem summarizes our results on star.

Theorem 17 (Star). Let n ≥ 3. Let fk(n) be the self-verifying state complexity
of the star operation on regular languages over a k-letter alphabet defined as
fk(n) = max{svsc(L∗) | L ⊆ Σ, |Σ| = k, and svsc(L) = n}. Then

(i) fk(n) ≤ 3/4 · 2n;
(ii) if k ≥ 3/4 · 2n + 1, then fk(n) = 3/4 · 2n;
(iii) if k ≥ 4, then fk(n) ≥ 2n−1 − 1. 
�

8 Left Quotient

The left quotient of a language L by a string w is w\L = {x | w x ∈ L}, and the
left quotient of a language L by a language K is the language K\L =

⋃
w∈K w\L.

The state complexity of the left quotient operation is 2n − 1 [18], and its
nondeterministic state complexity is n + 1 [8]. In both cases, the worst-case
examples are defined over a binary alphabet.

In this section, we show that the self-verifying complexity of the left quotient
operation is 2n −1. However, to prove tightness, we use an exponential alphabet.
Then, using a four letter alphabet, we get a lower bound 2n−1 − 1.

Lemma 18. Let K and L be languages with svsc(K) = m and svsc(L) = n.
Then svsc(K\L) ≤ 2n − 1. 
�
Lemma 19. Let m,n ≥ 3. There exist languages K and L over an alphabet of
size 2n + 1 such that svsc(K) = m, svsc(L) = n, and svsc(K\L) = 2n − 1. 
�

Lemma 20. Let m,n ≥ 3. There exist quaternary regular languages K and L
with svsc(K) = m and svsc(L) = n such that svsc(K\L) ≥ 2n−1 − 1. 
�
We summarize the results on left quotient in the following theorem.
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Theorem 21 (Left Quotient). Let m,n ≥ 3. Let fk(m,n) be the self-verifying
state complexity of left quotient on languages over a k-letter alphabet defined as
fk(m,n) = max{svsc(K\L) | K,L ⊆ Σ, |Σ| = k, svsc(K) = m, svsc(L) = n}.
Then

(i) fk(m,n) ≤ 2n − 1;
(ii) if k ≥ 2n + 1, then fk(m,n) = 2n − 1;
(iii) if k ≥ 4, then fk(n) ≥ 2n−1 − 1. 
�

9 Right Quotient

The right quotient of a language L by a string w is L/w = {x | x w ∈ L}, and
the right quotient of a language L by a language K is L/K =

⋃
w∈K L/w.

If a language L is accepted by an n-state DFA A = (Q,Σ, ·, s, F ), then the
language L/K is accepted by a DFA that is exactly the same as the DFA A,
except for the set of final states that consists of all the states q of A, such that
there exists a string w in K with q ·w ∈ F [18]. Thus sc(L/K) ≤ n. The tightness
of this upper bound has been shown using binary languages in [18].

Our aim is to show that the tight bound on self-verifying state complexity
is given by the function g(n), where g(n) is the tight bound for SVFA-to-DFA
conversion given in Eq. (1) on p. 234.

Lemma 22. Let K and L be languages with svsc(K) = m and svsc(L) = n.
Then svsc(L/K) ≤ g(n). 
�
Lemma 23. Let n ≥ 6. There exist languages K and L over an alphabet of size
g(n) + 2 such that svsc(K) = m, svsc(L) = n and svsc(L/K) = g(n).

Proof. For the sake of simplicity, we start with the case of n = 1+3k and k � 2.
Then, we will extend our arguments to the other values of n.

Consider the grid Q = {(i, j) | 0 ≤ i ≤ 2 and 1 ≤ j ≤ k} of 3k nodes. Let R
be the following family of 3k subsets of Q

R =
{{(i1, 1), (i2, 2), . . . , (ik, k)} | i1, i2, . . . , ik ∈ {0, 1, 2}}

,

that is, each subset in R corresponds to a choice of one element in each column
of the grid Q. Let Σ = {a, b, c} ∪ {dS | S ∈ R} be an alphabet consisting of
3 + 3k symbols. We are going to describe languages K and L over Σ.

Let K = {c� | � ≥ m−2} be the language over Σ that contains all the strings
in c∗ of length at least m − 2. We have svsc(K) = m.

Let L be accepted by a (3k + 1)-state SVFA B = (Q ∪ {q0}, Σ, δ, q0, F
a, F r),

where F a = {q0, (0, k)}, F r = {(1, k), (2, k)}, and the transitions are as follows:
for all i, j with 0 � i � 2 and 1 � j � k, and each S in R, we have

δ(q0, a) = δ(q0, b) = δ(q0, c) = δ(q0, dS) = {(0, 1), (0, 2), . . . , (0, k)};

δ((i, j), a) =

{
{(i, j + 1)}, if j ≤ k − 1,

{(0, 1)}, if j = k;
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δ((i, j), b) = {((i + 1) mod 3, j)};

δ((i, j), c) =

{
{(i, j + 1)}, if j ≤ k − 1,

{(i, 1)}, if j = k;

δ((i, j), dS) =

{
{(1, j)}, if (i, j) ∈ S,

{(0, j)}, if (i, j) /∈ S;
the transitions on a, b, c in automaton B in the case of k = 4 are shown in
Fig. 5. Notice that the transitions on a, b are the same as in the binary witness
for SVFA-to-DFA conversion in [9] shown in Fig. 6 (top). Next, the symbol c
performs the cyclic permutation on each row of the grid Q. Finally, for each set
S in R, the symbol dS maps every state (i, j) of S to the state (1, j), and it
maps every state (i, j) outside the set S to (0, j). We have svsc(L/K) = g(n). 
�

Fig. 5. The transitions on a, b, c in the SVFA B; m = 3 · 4 + 1

Now we consider a fixed alphabet.

Lemma 24. Let m,n ≥ 6. There exist languages K and L over a four-letter
alphabet such that svsc(K) = m, svsc(L) = n, and svsc(L/K) ∈ Ω(2n/3). 
�
We summarize our results on right quotient in the following theorem; recall that
g(n) is the tight bound for SVFA-to-DFA conversion given in Eq. (1) on p. 234.

Theorem 25 (Right Quotient). Let fk(m,n) be the self-verifying state com-
plexity of right quotient on regular languages over a k-letter alphabet defined as
fk(m,n) = max{svsc(L/K) | K,L ⊆ Σ∗, |Σ| = k, svsc(K) = m, svsc(L) = n}.
Then

(i) fk(m,n) ≤ g(n);
(ii) if k ≥ g(n) + 2, then fk(m,n) = g(n);
(iii) if k ≥ 4, then fk(m,n) ∈ Ω(2n/3). 
�
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10 Concatenation

The concatenation of languages K and L is KL = {uv | u ∈ K and v ∈ L}. The
state complexity of concatenation is m2n − 2n−1, and its nondeterministic state
complexity is m + n. In both cases, the worst-case examples can be defined over
a binary alphabet [6,8,12,18].

The aim of this section is to get asymptotically tight bound Θ(3m/3 · 2n) on
the self-verifying state complexity of the concatenation operation. Recall that
g(n) is the tight bound for SVFA-to-DFA conversion given in Eq. (1) on p. 234.

Lemma 26. Let K and L be languages with svsc(K) = m and svsc(L) = n.
Then svsc(KL) ≤ g(m) · 2n. 
�
Lemma 27. Let m ≥ 6 and n ≥ 3. There exist regular languages K and L over
an alphabet of size g(m) + 2n + 4 such that svsc(K) = m, svsc(L) = n, and
svsc(KL) ≥ 1/2 · g(m) · 2n. 
�
Lemma 28. Let m,n ≥ 6. There exist languages K and L over an eight-letter
alphabet such that svsc(K) = m, svsc(L) = n, and svsc(KL) ∈ Ω(2m/3 · 2n). 
�
We summarize our results on concatenation in the following theorem; recall that
g(n) is the tight bound for SVFA-to-DFA conversion given in Eq. (1) on p. 234.

Theorem 29 (Concatenation). Let fk(m,n) be the self-verifying state com-
plexity of concatenation on regular languages over a k-letter alphabet defined as
fk(m,n) = max{svsc(KL) | K,L ⊆ Σ∗, |Σ| = k, svsc(K) = m, svsc(L) = n}.
Then

(i) fk(m,n) ≤ g(m) · 2n;
(ii) if k ≥ g(m) + 2n + 4, then fk(m,n) ≥ 1/2 · g(m) · 2n;
(iii) if k ≥ 8, then fk(m,n) ∈ Ω(2m/3 · 2n). 
�
Table 1. The state complexity, nondeterministic, and self-verifying state complexity
of basic regular operations.

DFAs NFAs SVFAs |Σ|
complement n 2n n 1

intersection mn mn mn 2

union mn m + n + 1 mn 2

difference mn ? mn 2

symmetric difference mn ? mn 2

reversal 2n n + 1 2n + 1 2

star 3/4 · 2n n + 1 3/4 · 2n 3/4 · 2n + 1

left quotient 2n − 1 n + 1 2n − 1 2n + 1

right quotient n n g(n) g(n) + 2

concatenation (m − 1/2) · 2n m + n Θ(3m/3 · 2n) g(m) + 2n + 4
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11 Conclusions

We investigated the self-verifying state complexity of basic regular operations.
Our results are summarized in Table 1. In this table, we also compare our results
to the known results on state complexity and nondeterministic state complexity
of regular operations. The last column of the table displays the size of an alphabet
which we used to define witness languages. For star and quotients, we were able
to get an exponential lower bound by using a four-letter alphabet. In the case of
concatenation, we get a lower bound in Ω(2m/3 ·2n) for an eight-letter alphabet.
The tight bound for the concatenation operation remains open even in the case
of a growing alphabet.

Acknowledgments. We would like to thank Peter Eliáš for his help with the reversal
operation. We are also very grateful to an anonymous referee of CSR for careful reading
of the paper and for pointing out an error in a previous draft of Fig. 1.

Appendix

Proposition 1 [7,9]. Let a language L be accepted by an n-state SVFA. Then
the languages L and Lc are accepted by n-state NFAs.

Proof. Let L be accepted by an SVFA A = (Q,Σ, δ, s, F a, F r). Then L is
accepted by NFA (Q,Σ, δ, s, F a), while Lc is accepted by NFA (Q,Σ, δ, s, F r).


�
Proposition 2 [7,9]. Let languages L and Lc be accepted by an m-state and
n-state NNFAs, respectively. Then svsc(L) ≤ m + n + 1.

Proof. Let L be accepted by an m-state NNFA N = (Q,Σ, δ, I, F ) and Lc

be accepted by an n-state NNFA N ′ = (Q′, Σ, δ′, I ′, F ′). Then we can get
an SVFA A for L with m + n + 1 states from NFAs N and N ′ as follows.
We add a new initial state s going to δ(I, a)∪ δ′(I ′, a) on each a in Σ. The state
s is accepting if ε ∈ L, and it is rejecting otherwise. All the states in F are
accepting in SVFA A, and all the states in F ′ are rejecting in A. 
�

Lemma 8. Let L be a regular language. Then svsc(L) = svsc(Lc).

Proof. Let L be accepted by an SVFA A. To get an SVFA A′ for the language Lc,
we only need to interchange the accepting and rejecting states in the SVFA A.
Moreover, if A is minimal, then A′ is minimal: If Lc would be accepted by a
smaller SVFA B, then L would also be accepted by a smaller SVFA B′ obtained
from B by interchanging the accepting and rejecting states. 
�
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Fig. 6. The binary witnesses for SVFA-to-DFA conversion meeting the bound g(n);
n = 3k + 1 (top), n = 3k + 2 (bottom-left), and n = 3k (bottom-right).

Lemma 9, Proof Details:

Let us show that A × B is a self-verifying automaton.
If w ∈ K ∩ L, then there is an accepting computation on w in both SVFAs

A and B. It follows that there is an accepting computation on w also in the
product automaton A × B. If w /∈ K ∩ L, then at least one of SVFAs A and B
rejects w, while the second one accepts or rejects w. This means that the product
automaton A × B rejects w. It follows that on each string w, there is either an
accepting or rejection computation in the product automaton.

Now assume for contradiction that there is a string w with both accepting and
rejecting computations of A × B on w. This means that there is a computation
ending in a state in F a, as well as a computation ending in a state in F r.
However, it follows that in at least one of SVFAs A and B, we must have both
accepting and rejecting computation on w, which is a contradiction.

Hence A × B is an SVFA for K ∩ L, and the upper bound mn follows. 
�
Lemma 10, Proof Details:

Construct a product automaton for K ⊕ L as described above. The product
automaton in the case of m = 3 and n = 4 is shown in Fig. 7. Consider the
following set of mn pairs of strings:

F = {(aibj , am−1−ibn−1−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1}.
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Let us show that the set of pairs F is an sv-fooling set for the language K ⊕ L.

Fig. 7. The product automaton for K ⊕L; m = 3 and n = 4. The double circled states
are accepting, the others are rejecting.

For each pair in F , we have (0, 0) aibj

−−−→ (i, j) am−1−ibn−1−j

−−−−−−−−−−→ (m − 1, n − 1).
Thus the product automaton for K ⊕ L rejects the string aibjam−1−ibn−1−j .
It follows that for each pair in F , the concatenation of its components is not in
K ⊕ L.

Now let (i, j) �= (k, �). First, let i = k. Then, without loss of generality, we
may assume that j < �. Consider the string aibjam−1−kbn−1−�. In the product
automaton, we have the following accepting computation on this string

(0, 0) aibj

−−−→ (i, j) am−1−k

−−−−−→ (m − 1, j) bn−1−�

−−−−→ (m − 1, n − 1 − (� − j)).

It follows that the string aibjam−1−kbn−1−� is in K ⊕ L. Thus, exactly one of
the strings aibjam−1−kbn−1−� and akb�am−1−kbn−1−� is in K ⊕ L.

Next, without loss of generality, we may assume that i < k. In a similar way
as above, we can prove that

(a) if j ≥ �, then the string aibjam−1−kbn−1−� is in K ⊕ L;
(b) if j < �, then the string akb�am−1−ibn−1−j is in K ⊕ L.

It follows that the set F is an sv-fooling set for the language K⊕L. By Lemma 6,
every SVFA for K ⊕ L has at least mn states. This completes our proof. 
�
Lemma 12, Proof Details:

For tightness, let L be the language accepted by the DFA A shown in Fig. 8.
Construct an NFA AR for the language LR from the DFA A by swapping the
role of initial and final states, and by reversing all the transitions. The NFA AR

is shown in Fig. 9.
Our first aim is to describe an sv-fooling set of size 2n for LR. Then, we will

use Lemma 7 to show that every SVFA for LR has at least 2n + 1 states.
To this aim, denote by [i, j] the set of integers {k | i ≤ k ≤ j}; notice that

[i, j] = ∅ if i > j. Consider the following family of 2n subsets

R =
{
[1, i] | 1 ≤ i ≤ n

} ∪ {
[i + 1, n] | 1 ≤ i ≤ n

}
.
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Fig. 8. The binary witness for reversal meeting the bound 2n + 1.

The following transitions show that each set in R is reachable in the subset
automaton of the NFA AR from the initial subset {n − 1}:

{n − 1} aa−→ {1} bi−1

−−−→ {1, 2, . . . , i} = [1, i] (1 ≤ i ≤ n),

{1, 2, . . . , n − i} ai

−→ {i + 1, i + 2, . . . , n} = [i + 1, n] (1 ≤ i ≤ n − 1),

{n − 1} a−→ {n} b−→ ∅ = [i + 1, n] (i = n).

It follows that for each subset S in R, there is a string uS by which the initial
state {n − 1} of the subset automaton of AR goes to the subset S.

Consider the following set of 2n pair of strings

F = {(u[1,i], a
n−i) | 1 ≤ i ≤ n} ∪ {(u[i+1,n], a

n−i) | 1 ≤ i ≤ n}.

Let us show that the set F is an sv-fooling set for the language LR.
First, notice that the string an−i is accepted by the NFA AR from a subset

S of [1, n] if and only if the state i is in the subset S. To show that F is an
sv-fooling set for L, we have three cases to consider:

(1) Consider two pairs (u[1,i], a
n−i) and (u[1,j], a

n−j) with 1 ≤ i < j ≤ n.
Then

u[1,i] · an−j /∈ LR and u[1,j] · an−j ∈ LR

since state j is not in [1, i], and therefore the NFA AR rejects an−j from [1, i],
however, state j is in [1, j], and therefore the NFA AR accepts an−j from [1, j].
Thus exactly one of the strings u[1,i] · an−j and u[1,j] · an−j is in LR.

(2) Consider pairs (u[i+1,n], a
n−i) and (u[j+1,n], a

n−j) with 1 ≤ i < j ≤ n.
Then

u[i+1,n] · an−j ∈ LR and u[j+1,n] · an−j /∈ LR

since j ∈ [i + 1, n] and j /∈ [j + 1, n].

(3) Consider a pair (u[1,i], a
n−i) with 1 ≤ i ≤ n and a pair (u[j+1,n], a

n−j)
with 1 ≤ j ≤ n. Here we have two subcases:

Fig. 9. The reverse of the DFA from Fig. 3.
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(3a) If i ≤ j, then u[j+1,n] · an−i /∈ LR and u[1,i] · an−i ∈ LR.
(3b) If i > j, then u[1,i] · an−j ∈ LR and u[j+1,n] · an−j /∈ LR.

Hence we have shown that F is an sv-fooling set for the language LR.
Now, we will use Lemma 7 to show that one more state is necessary for an

SVFA to accept LR. We will prove that the set F can be divided into three
disjoint subsets in such a way that we are able to add a pair with the left
component ε to each of these subsets, so that the resulting sets are still sv-
fooling sets for LR.

To this aim, consider the following subsets of F :

A = {(u[1,i], a
n−i) | 1 ≤ i ≤ n},

B = {(u[j+1,n], a
n−j) | 1 ≤ j ≤ n − 1},

C = {(u∅, ε)}.

Then A ∪ B ∪ C = F , so A ∪ B ∪ C is an sv-fooling set for LR.
Next, the set A ∪ {(ε, an−1)} is an sv-fooling set for LR since

ε · an−1 /∈ LR while u[1,i] · an−1 ∈ LR if 1 ≤ i ≤ n and n ≥ 3.

The set B ∪ {(ε, a)} is an sv-fooling set for LR since

ε · ε /∈ LR while u[j+1,n] · ε ∈ LR if 1 ≤ j ≤ n − 1.

Finally, the set C ∪ {(ε, a)} is an sv-fooling set for LR since

ε · a ∈ LR while u∅ · a /∈ LR.

By Lemma 7, every SVFA for the language LR has at least 2n + 1 states.
Our proof is complete. 
�
Lemma 14. Let L be a language with svsc(L) = n. Then svsc(L∗) ≤ 3/4 · 2n.

Proof. To get the upper bound, let A = (Q,Σ, δ, s, F a, F r) be an SVFA for a
language L. If only the initial state s is accepting, then L∗ = L. Assume that A
has k accepting states that are different from s.

Construct an NFA A∗ for the language L∗ from A as follows. First, add a new
initial and final state q0 and for each symbol a in Σ, add a transition from q0 to
δ(s, a) if δ(s, a)∩F a = ∅, and to {s}∪ δ(s, a) otherwise. Next, for each state q in
Q and each symbol a, add a transition from q to s on a whenever δ(q, a)∩F a �= ∅.
The initial state of A∗ is q0, and the set of final states is {q0} ∪ F a.

Now consider the subset automaton of the NFA A∗. Notice that no set con-
taining a state in F a and not containing the state s can be reachable in the subset
automaton. Moreover, let us show that the empty set is unreachable. Assume for
a contradiction, that the empty set is reachable from {q0} by a string w. Then
w can be partitioned as w = uv so that in the NFA A∗, we have a computation
q0

u−→ s
v−→ ∅, and moreover, the computation on v does not use any transition
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that has been added to the SVFA A. It follows that in the SVFA A, we do not
have any computation on the string v, which is a contradiction.

Hence the subset automaton has at most 2n−1 + 2n−1−k reachable subsets:
the initial subset {q0}, all the subsets containing the state s, and all the non-
empty subsets not containing s and not containing any accepting state of A. The
maximum is attained if k = 1, and it is equal to 3/4 · 2n. 
�
Lemma 15, Proof Details:

Construct an NFA A∗ for the language L∗ from the DFA A as follows: First,
add a new initial and final state q0 going to state 0 on b and to state 1 on a.
Next, add the transitions on a and on b from state n − 2 to state 0. Finally, for
each S and each state i outside of S, add the transition from i to 0 on cS .

The transitions on symbols a and b in the NFA A∗ are shown in the figure
above. Our first aim is to describe an sv-fooling set of size 3/4 · 2n − 1 for L∗.
Then, by using Lemma 7, we show that every SVFA for L∗ requires at least
3/4 · 2n states.

First, let us show that each subset S in R is reachable in the subset automaton
of the NFA A∗. The proof is by induction on the size of subsets.

The basis, |S| = 1, holds since the initial subset {q0} goes to {0} by b, and
then to {i} by ai if 1 ≤ i ≤ n − 2.

Let 2 ≤ k ≤ n−1, and assume that each subset in R of size k−1 is reachable.
Let S = {i1, i2, . . . , ik} be a set in R of size k, where 0 ≤ i1 < i2 < · · · < ik ≤
n − 1. Consider four cases:

(i) i1 = 0 and ik = n − 1. Then S is reached from {i2 − 1, i3 − 1, . . . , ik − 1}
by a, and the latter set is reachable by the induction hypothesis since it is
of size k − 1, and it does not contain the state n − 1.

(ii) i1 = 0 and i2 = 1. Then S is reached from {0, i3 − 1, . . . , ik − 1, n − 1} by
a, and the latter set is reachable as shown in case (i).

(iii) i1 = 0 and i2 ≥ 2. Then S is reached from {0, 1, i3 − i2 + 1, . . . , ik − i2 + 1}
by bi2−1, and the latter set is reachable as shown in cases (i) and (ii).

(iv) i1 ≥ 1.Then 0 /∈ S and, since S ∈ R, we have n − 1 /∈ S. Thus ik ≤ n − 2.
Then S is reached from {0, i2 − i1, i3 − i1, . . . , ik − i1} by ai1 , and the latter
set is reachable as shown in cases (i)–(iii).

Hence we have shown that each set in R is reachable in the subset automaton
of the NFA A∗. For each subset S in R, let uS be a string, by which the initial
subset {q0} goes to the subset S. Consider the set of pairs of 3/4 · 2n − 1 strings

F = {(uS , cS) | S ∈ R}.
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Let us show that the set F is an sv-fooling set for the language L∗.
To this aim, let S and T be subsets in R with S �= T . Then, without loss of

generality, there is a state i such that i ∈ S and i /∈ T . Let us show that exactly
one of the strings uScT and uT cT is in the language L∗.

Since i ∈ S and uS is a string, by which the initial subset {q0} goes to S in the
subset automaton of A∗, the state i is reached from q0 by the string uS in the NFA
A∗. Since i /∈ T , the state i goes to state n − 1 by cT in the NFA A∗. It follows
that NFA A∗ accepts uScT . Thus the string uScT is in the language L∗. On the
other hand, each state in T goes only to state 0 by cT in the NFA A∗. It follows
that A∗ rejects uT cT . Therefore the string uT cT is not in L∗.

Hence we have shown that the set F is an sv-fooling set for the language L∗. By
Lemma 6, every SVFA for the language L∗ needs at least 3/4 · 2n − 1 states. Our
next aim is to show that one more state is necessary in every SVFA for L∗.
To this aim let

A = {(uS , cS) | S ∈ R and n − 1 /∈ S},
B = {(uS , cS) | S ∈ R and n − 1 ∈ S}.

We have A ∪ B = F . Let us show that the sets A ∪ {(ε, ε)}, and B ∪ {(ε, b)} are
sv-fooling sets for the language L∗.

If n−1 /∈ S, then uS ·ε is rejected by A∗, while ε ·ε is accepted. Hence exactly
one of uS · ε and ε · ε is in L∗. Therefore A ∪ {(ε, ε)} is an sv-fooling set for L∗.

If n − 1 ∈ S, then the string uS · b is accepted by A∗, while ε · b is rejected.
Thus also B ∪ {(ε, b)} is an sv-fooling set for L∗. By Lemma 7, every SVFA for
the language L∗ requires at least 3/4 · 2n states. Our proof is complete. 
�

Lemma 16. Let n ≥ 3. There exists a regular language L defined over a four-
letter alphabet such that svsc(L) = n and svsc(L∗) ≥ 2n−1 − 1.

Fig. 10. The quaternary DFA of a language L with svsc(L∗) ≥ 2n−1 − 1.

Proof. Consider the language L accepted by the quaternary DFA B shown in
Fig. 10. Notice that the transitions on symbols a and b are the same as in the
DFA A described in the proof of Lemma 15.

It follows that all the subsets of {0, 1, . . . , n − 1}, that have been shown to
be reachable in the subset automaton of the NFA A∗, will be reachable in the
subset automaton of the NFA B∗ as well; here, the NFA B∗ is an NFA for the
language L∗ obtained from the DFA B as described in the previous proof.

In particular, all the non-empty subsets of {0, 1, . . . , n − 2} are reachable in
the subset automaton of the NFA B∗. Similarly as in the previous proof, let uS
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be a string over {a, b} by which the initial subset {q0} goes to S in the subset
automaton. Our aim is to describe an sv-fooling set for L∗ of size 2n−1 − 1.

To this aim, for every non-empty subset S of {0, 1, . . . , n − 2}, define the
string vS = v0v1 · · · vn−2 of length n − 1 over {c, d} as follows:

vn−2−i =

{
c, if i ∈ S,

d, if i /∈ S,

that is, the string vS somehow describes the set S, however, in a reversed order:
we can assign the symbol σ(i) = c to each state i in S and the symbol σ(i) = d to
each state i outside the set S, and then we have vS = σ(n−2)σ(n−3) · · · σ(1)σ(0).

We are going to show that the set {(uS , vS) | ∅ �= S ⊆ {0, 1, . . . , n− 2}} is an
sv-fooling set for L∗.

First, we prove that for every set S, the string vS is accepted by B∗ from
every state outside the set S, while vS is rejected by B∗ from every state in S.
To this aim, let i /∈ S. Then, in the position n − 2 − i of the string vS , we have
the symbol d. Thus vS = xd y, where |x| = n − 2 − i and |y| = i. The NFA B∗

accepts the string vS from the state i through the following computation

i
x−→ n − 2 d−→ n − 1

y−→ n − 1.

Next, let i ∈ S. Then, in position n−2−i of the string vS , we have the symbol c.
Thus vS = x c y, where |x| = n − 2 − i and |y| = i. Since we have

{i} x−→ {n − 2} c−→ {0} y−→ {i},

the NFA B∗ rejects the string vS from the state i.
Now, we are able to prove that {(uS , vS) | ∅ �= S ⊆ {0, 1, . . . , n − 2}} is an

sv-fooling set for L∗. To this aim let S �= T . Without loss of generality, there is a
state i with i ∈ S and i /∈ T . Since the initial state q0 goes to i by uS , and vT is
accepted by B∗ from i, the string uSvT is accepted by B∗, so it is in L∗. On the other
hand, the string vT is rejected by NFA B∗ from every state in T . It follows that
the string uT vT is rejected by B∗, so it is not in the language L∗. Thus the set
{(uS , vS) | ∅ �= S ⊆ {0, 1, . . . , n − 2}} is an sv-fooling set for L∗. By Lemma 6,
every SVFA for the language L∗ has at least 2n−1 − 1 states. 
�

Lemma 18. Let K and L be languages with svsc(K) = m and svsc(L) = n.
Then svsc(K\L) ≤ 2n − 1.

Proof. Let L be accepted by an SVFA A = (Q,Σ, δ, s, F a, F b). Then the lan-
guage K\L is accepted by an NNFA N = (Q,Σ, δ, I, F a), where a state q is in
I if it can be reached from the initial state of A by a string in K, that is, if
q ∈ δ(s, w) for a string w in K. After applying the subset construction to the
NNFA N , we get a DFA for K\L of at most 2n states.

Let us show that the empty set is not reachable in the subset automaton
of N . Assume for a contradiction that the empty set is reachable from I by a
string u. Let q ∈ I. Then q is reached from the initial state s of the SVFA A by
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a string w in K. However, then δ(s, w) ⊆ I. It follows that δ(s, wu) = ∅, so in
the SVFA A, there is no computation on the string wu. This is a contradiction
since SVFA A must accept or reject wu. Thus svsc(K\L) ≤ 2n − 1. 
�
Lemma 19. Let m,n ≥ 3. There exist languages K and L over an alphabet of
size 2n + 1 such that svsc(K) = m, svsc(L) = n, and svsc(K\L) = 2n − 1.

Proof. Consider the family R of all the non-empty subsets of {0, 1, . . . , n − 1},
that is,

R =
{
S | ∅ �= S ⊆ {0, 1, . . . , n − 1}}

.

Let Σ = {a, b} ∪ {cS | S ∈ R} be an alphabet consisting of 2n + 1 symbols.
Let K = a∗ ∪ a∗bm−2 be a language over Σ. Then K is accepted by an

m-state DFA A shown in Fig. 11 (top), where all the transitions on symbols cS

going to the dead state m − 1 are omitted. The reader can verify that the set of
pairs of strings {(bi, bm−2−i) | 0 ≤ i ≤ m − 2} ∪ {(bm−1a, ε)} is an sv-fooling set
of size m for the language K. Hence svsc(K) = m.

Let L be accepted by an n-state DFA B = ({0, 1, . . . , n−1}, Σ, δ, 0, {n−1}),
where the transitions are defined as follows:

δ(i, a) = (i + 1) mod n;
δ(0, b) = δ(1, b) = 0, and δ(i, b) = i if 2 ≤ i ≤ n − 1;
and for each subset S of {0, 1, . . . , n − 1}, we have

δ(i, cS) =

{
0, if i ∈ S,

n − 1, if i /∈ S;

hence, the symbol a performs the cycle (0, 1, . . . , n − 1), and the symbol b
maps each state i to itself, except for the state 1 that is mapped to the state 0.
For each subset S, the symbol cS maps each state in S to the non-final state 0,
and it maps each state outside of S to the final state n − 1. The transitions on
a and b in the DFA B are shown in Fig. 11 (bottom).

Fig. 11. The transitions on a and b in the DFAs A and B for languages K and L,
respectively, with svsc(K\L) ≥ 2n − 1.
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Construct an NNFA N for the language K\L from the DFA B by making all
the states of B initial; notice that every state i of B is reached from the initial
state of B by the string ai which is in K.

Let us show that all the subsets in the family R are reachable in the subset
automaton of the NNFA N . The proof is by induction on the size of subsets.

The basis, |S| = n, holds since {0, 1, . . . , n − 1} is the initial subset. Let
1 ≤ k ≤ n − 1, and assume that every set in R of size k + 1 is reachable. Let
S = {i1, i2, . . . , ik} be a set in R of size k, where 0 ≤ i1 < i2 < · · · < ik ≤ n − 1.
Consider three cases:

(i) i1 = 0 and i2 ≥ 2. Then S is reached from {0, 1, i2, i3, . . . , ik} by b, and the
latter set of size k + 1 is reachable by the induction hypothesis.

(ii) i1 = 0 and i2 = 1. Let � be a minimal state such that � ∈ S and � + 1 /∈ S;
such a state must exist since we have |S| ≤ n−1. Let S′ = {(s− �) mod n |
s ∈ S}. Then 0 ∈ S′ and 1 /∈ S′. Therefore the subset S′ is reachable as
shown in case (i). Since S′ goes to S by a�, the set S is reachable as well.

(iii) i1 ≥ 1. Then the set S is reached from {0, i2 − i1, . . . , ik − i1} by ai1 , and
the latter set, containing state 0, is reachable as shown in cases (i) and (ii).

Hence each subset S in R is reachable in the subset automaton of NNFA N .
Let uS be a string, by which the initial subset {0, 1, . . . , n − 1} goes to the
set S. Now, in the same way as in the proof of Lemma 15, we can prove that the set
of pairs {(uS , cS) | S ∈ R} is an sv-fooling set of size 2n − 1 for the language K\L.
By Lemma 6, every SVFA for K\L requires at least 2n − 1 states. 
�

Lemma 20. Let m,n ≥ 3. There exist quaternary regular languages K and L
with svsc(K) = m and svsc(L) = n such that svsc(K\L) ≥ 2n−1 − 1.

Proof. The language K is the same as in the proof of Lemma 19. The lan-
guage L is accepted by the DFA B′, in which the transitions on a and b
are the same as in the DFA B in the proof of Lemma 19, and the transitions on
c and d are the same as in Fig. 10. In a similar way as in the proof of Lemma 16,
we can describe an sv-fooling set

{
(uS , vS) | ∅ �= S ⊆ {0, 1, . . . , n − 2}}

of size
2n−1 − 1 for K\L. Hence we still get an exponential lower bound. 
�

Lemma 22. Let K and L be languages with svsc(K) = m and svsc(L) = n.
Then svsc(L/K) ≤ g(n).

Proof. Let a language L be accepted by an n-state SVFA. First, convert this
SVFA to an equivalent minimal DFA. By Theorem 3, this DFA has at most g(n)
states. By making certain states final based on the language K, we get a DFA
for L/K of at most g(n) states. Hence svsc(L/K) ≤ g(n). 
�

Lemma 23, Proof Details:

Let us show that automaton B is an SVFA. Notice that the initial state is
mapped to the first row of the grid Q by each input symbol. Next, each set in R
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is mapped to a set in R by each input symbol. Therefore, every reachable set in
the subset automaton of B has exactly one state in the last column of the grid,
so it has exactly one accepting or exactly one rejecting state of B, while all its
remaining states are neutral. Thus B is an SVFA.

First, construct an NNFA N for L/K from the SVFA B by making state q0
and all the states (0, j) in the first row of the grid Q final; notice that all these
states can reach the accepting state (0, k) of B by a string consisting of m−2 or
more c’s, which is in K. Moreover, no other state of B can reach an accepting
state of B by any string in c∗.

Since the transitions on a and b in the SVFA B are the same as in the binary
witness for SVFA-to-DFA conversion in [9] shown in Fig. 6(top), for each S in R,
there exists a string uS over {a, b} such that δ(q0, uS) = S [9, Lemma 6].

Now consider the following set F of 3k + 1 pairs of strings

F = {(uS , dS) | S ∈ R} ∪ {(ε, ε)}.

Let us show that F is an sv-fooling set for L/K.
To this aim, let S and T be two distinct sets in R. Then, without loss of

generality, there is a row j and a state (i, j) in Q such that (i, j) ∈ S and
(i, j) /∈ T . Since (i, j) ∈ S, and we have δ(q0, uS) = S, the state (i, j) is reached
from q0 by uS . Since (i, j) /∈ T , symbol dT maps state (i, j) to state (0, j), which
is final in the NNFA N . Hence, the string uSdT is accepted by the NNFA N
through the following accepting computation:

q0
uS−−→ (i, j) dT−−→ (0, j).

On the other hand, we have δ(q0, uT dT ) = δ(T, dT ) = {(1, 1), (1, 2), . . . , (1, k)}.
Since all the states in the resulting set are non-final in N , the string uT vT is
rejected by N . Thus exactly one of the strings uSdT and uT dT is in L/K.

Next, if S ∈ R, then, as we have just shown, the string uSdS is rejected
by N . On the other hand, the string ε · dS is accepted by the NNFA N since
δ(q0, dS) = {(0, 1), (0, 2), . . . , (0, k)}, and each state in this set is final in N . Thus
exactly one of the strings uSdS and ε · dS is in L/K.

We have shown that the set of pairs F is an sv-fooling set for the language
L/K. By Lemma 6, every SVFA for the language L/K has at least 3k +1 states.
Since g(n) = g(3k + 1) = 1 + 3k, the lemma is proved if n mod 3 = 1.

If n mod 3 = 2, then in the first column we have four states as shown in
Fig. 6 (bottom-left). By c, we map the state (3, 1) to the state (2, 2). The rest of
the proof is the same as above.

If n mod 3 = 0, then in the first column we have two states as shown in Fig. 6
(bottom-right). In this case, the symbol c maps the state (2, k) to the state (1, 1).
Since we use symbol c only for making states in the first row of the grid final in
N , the rest of the proof works in this case as well.

Thus in all three cases, we are able to describe an sv-fooling set of size g(n)
for the language L/K, and the theorem follows. 
�
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Lemma 24. Let m,n ≥ 6. There exist languages K and L over a four-letter
alphabet such that svsc(K) = m, svsc(L) = n, and svsc(L/K) ∈ Ω(2n/3).

Proof. (Proof Idea). Let n = 3k + 1 with k ≥ 2. Let Σ = {a, b, c, d}. We are
going to define languages K and L over Σ.

Let K = {c� | � ≥ m − 2} be a language over Σ with svsc(K) = m.
Let L be accepted by an n-state SVFA B′ = {Q ∪ {q0}, Σ, δ′, q0, F a, F r);

where Q is the grid as in Lemma 23, F a = {q0, (0, k), (1, k)}, F r = {(2, k)}, and
the transitions on a, b are the same as in the SVFA B in Lemma 23. By c and d,
the state q0 goes to {(0, 1), . . . , (0, k)}, and each state (i, j) with j ≤ k − 1 goes
to {(i, j +1)}. The state (0, k) goes to {(1, 1)} on both c, d. The state (1, k) goes
to {(0, 1)} on c, and it goes to {(2, 1)} on d. The state (2, k) goes to {(2, 1)} on
both c, d. The transition on c, d in the SVFA B′ in the case of k = 4 are shown
in Fig. 12.

Fig. 12. The transitions on c, d in the SVFA B′; n = 3 · 4 + 1.

Now in an NNFA N for L/K the state q0, and all the states (0, j) and (1, j)
in the first and second row of the grid Q will be final: All of them accept a long
enough string in c∗ which is in K. All the remaining states are non-final in the
NNFA N . Let R be the same as in the proof of Lemma 23.

The idea is to define strings vS for some sets S in R, namely, for those S
that consist only of the states in the first and second row of the grid Q.

To define the string vS of length 2k, let σ(i, j) = d if (i, j) ∈ S, and let
σ(i, j) = c if (i, j) /∈ S. Now let

uS = (σ(0, 1)σ(0, 2) · · · σ(0, k)σ(1, 1)σ(1, 2) · · · σ(1, k))R.

Then we can prove that the string vS is rejected by the NNFA N from each state
in S, and it is accepted from each state in the first or second row of the grid Q
which is not in S. The proof is similar as in Lemma 16.

As a result, we will be able to describe an sv-fooling set {(uS , vS) | S ∈ R′},
where R′ contains all the sets in R which only have states in the first or second
row of the grid Q. This will give a lower bound Ω(2n/3). 
�
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Lemma 26. Let K and L be languages with svsc(K) = m and svsc(L) = n.
Then svsc(KL) ≤ g(m) · 2n.

Proof. Let K and L be accepted by SVFAs A = (QA, Σ, δA, sA, F a
A, F r

A) and
B = (QB , Σ, δB , sB , F a

B , F r
B), respectively.

First, convert the SVFA A to a minimal DFA A′ = (Q′, Σ, δ′, s′, F ′). Then,
construct an NNFA N for the language KL from automata A′ and B as follows.
For each state q of A′ and each symbol a, add a transition from q to sB on
a whenever δ′(q, a) ∈ F ′, that is, whenever q goes to a final state of A′ on a.
The set of initial states of NNFA N is {s′} if s′ /∈ F ′, and it is {s′, sB} if s′ ∈ F ′.
The set of final states of N is F a

B.
Next, apply the subset construction to N . In the subset automaton of N ,

every reachable subset can be expressed as {q} ∪ T , where q is a state of the
DFA A′ and T is a subset of QB . Since A is an SVFA, the DFA A′ has at most
g(m) states by Theorem 3. It follows that the subset automaton of N has at
most g(m) · 2n reachable states. Hence svsc(KL) ≤ g(m) · 2n. 
�

To get a lower bound, we will again use the binary witness from [9], meeting the
upper bound g(n) for SVFA-to-DFA conversion. We add the transitions on a new
symbol c in the same way as for right quotient. Next, we add two new symbols d
and e which will be ignored by a SVFA A for K. On the other hand, the symbols
a, b, c will be ignored by a DFA B for L, while the symbols e, d will be used to
prove the reachability of some specific subsets in the subset automaton for KL.
Finally, we will use new symbols fS and gT to describe a fooling set.

Lemma 27. Let m ≥ 6 and n ≥ 3. There exist regular languages K and L,
defined over an alphabet that grows exponentially with m and n, and such that
svsc(K) = m, svsc(L) = n, and svsc(KL) ≥ 1/2 · g(m) · 2n.

Proof. For the sake of simplicity, let us start with the case of m = 1+3k a k ≥ 2.
Consider the grid Q = {(i, j) | 0 ≤ i ≤ 2 and 1 ≤ j ≤ k} of 3k nodes. Let R

be the following family of 3k subsets of Q

R =
{{(i1, 1), (i2, 2), . . . , (ik, k)} | i1, i2, . . . , ik ∈ {0, 1, 2}}

,

that is, each subset in R corresponds to a choice of one element in each column
of the grid Q. Let

Σ = {a, b, c, d, e} ∪ {fS | S ∈ R} ∪ {gT | T ⊆ {0, 1, . . . , n − 1}}

be an alphabet consisting of 5 + 3
m−1

3 + 2n symbols.
Let K be the regular language over the alphabet Σ accepted by m-state SVFA

A = (Q ∪ {q0}, Σ, δ, q0, F
a, F r), where F a = {q0, (0, k)}, F r = {(1, k), (2, k)},

and the transitions are as follows: for all i, j with 0 � i � 2 and 1 � j � k, each
S in R, and each subset T of {0, 1, . . . , n − 1}, we have

δ(q0, a) = δ(q0, b) = δ(q0, c) = δ(q0, fS) = {(0, 1), (0, 2), . . . , (0, k)};
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δ(q0, d) = δ(q0, e) = δ(q0, gT ) = {q0};

δ((i, j), a) =

{
{(i, j + 1)}, if j ≤ k − 1,

{(0, 1)}, if j = k;

δ((i, j), b) = {((i + 1) mod 3, j)};

δ((i, j), c) =

{
{(i, j + 1)}, if j ≤ k − 1,

{(i, 1)}, if j = k;

δ((i, j), fS) =

{
{(1, j)}, if (i, j) ∈ S,

{(0, j)}, if (i, j) /∈ S;

δ((i, j), d) = δ((i, j), e) = δ((i, j), gT ) = {(i, j)};
that is, transitions on a, b, c are the same as in the witness automaton for the
second language in the case of the right quotient operation, while symbols fS

are the same as dS in the case of right quotient. Moreover, the SVFA A ignores
symbols d and e, as well as each symbol gT . The transitions on a, b, c in automa-
ton A in the case of k = 4 are shown in Fig. 13. Notice that we have a loop
on d, e in state q0. To keep the figure transparent, we omitted all the remaining
transitions.

Let L be the language accepted by DFA B = ({0, 1, . . . , n − 1}, Σ, ·, 0, {0}),
in which the transitions on a, b, c, d, e are defined as shown in Fig. 14. For each
subset T of {0, 1, . . . , n− 1}, by symbol gT , each state in T goes to the non-final
state n − 1, while each state outside of T goes to the final state 0. Finally, each
symbol fS is ignored by B. Hence, for each i in {0, 1, . . . , n − 1}, each S in R,
and each subset T of {0, 1, . . . , n − 1}, we have

i · a = i · b = i · c = i · fS = i;
i · d = (i + 1) mod n;
0 · e = 0, i · b = i + 1 if 1 ≤ i ≤ n − 2, and (n − 1) · b = 1;

i · gT =

{
n − 1, if i ∈ T,

0, if i /∈ T.

Construct an NNFA N for the language KL from automata A and B by
adding the transition from a state q of A to the state 0 on input symbol σ
whenever the state q goes to an accepting state on σ in A, that is, whenever
δ(q, σ) ∩ F a �= ∅. Notice that we have the transitions on d and e from q0 to 0
in N . The set of initial states of N is {q0, 0}, and the set of final states is {0}.
Consider the following family of subsets of the state set of N :

RN =
{
S ∪ T | S ∈ R with (0, k) /∈ S, and T ⊆ {0, 1, . . . , n − 1}}

.

Let us show that each subset in RN is reachable in the subset automaton of N .
First, let us show that for each subset T of {0, 1, . . . , n − 1} with 0 ∈ T ,

the subset {q0} ∪ T is reachable. The proof is by induction on the size of T .
The basis, |T | = 1, holds since {q0, 0} is the initial state of the subset automaton.

Let 1 ≤ � ≤ n − 1, and assume that for each subset T of size �, the set
{q0} ∪ T is reachable. Let T = {0, i1, i2, . . . , i�} be a subset of size � + 1, where
1 ≤ i1 < i2 < · · · < i� ≤ n − 1. Then {q0} ∪ T is reached from the subset
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Fig. 13. Transitions on a, b, c in the SVFA A; m = 13 (self-loops on d, e are omitted).

Fig. 14. The transitions on a, b, c, d, e in the DFA B.

{q0}∪{0, i2 − i1, i3 − i1, . . . , i� − i1} by dei1−1, and the latter subset is reachable
by the induction hypothesis.

Next we show that each S ∪ T in RN is reachable. Since A restricted to the
alphabet {a, b} is the witness automaton for SVFA-to-DFA conversion from [9],
for each subset S in R, there is a string uS in {a, b}∗ such that δ(q0, uS) = S [9,
Lemma 6]. It follows that in the subset automaton of N , each subset S ∪T with
0 ∈ T is reached from the set {q0}∪T by uS since B ignores symbols a, b. Next,
if T = {i1, i2, . . . , i�}, where 1 ≤ i1 < i2 < · · · < i� ≤ n − 1, that is, if the subset
T does not contain state 0, and if (0, k) /∈ S, then the subset S ∪ T is reached
from the subset S∪{0, i2−i1, i3−i1, . . . , i� −i1} by the string di1 since A ignores
d and S does not contain any accepting state of A.

Thus we have shown that each subset in RN is reachable in the subset
automaton of the NNFA N . For each subset S ∪ T in RN , let uS∪T by a string
by which the initial subset {q0, 0} goes to the subset S ∪ T in N . Next, let
vS∪T = gT · fS · ck; recall that m = 3k + 1. Let us show that the set of pairs

F = {(uS∪T , vS∪T ) | S ∪ T ∈ RN}

is an sv-fooling set for the language KL.
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First, we show that for each S ∪T in RN , the string uS∪T vS∪T is not in KL.
In the subset automaton of N , we have the following computation:

{q0, 0} uS∪T−−−→ S ∪ T
gT−−→ S ∪ {n − 1} fS−→ {(1, 1), (1, 2), . . . , (1, k)} ∪ {n − 1}

ck

−→ {(1, 1), (1, 2), . . . , (1, k)} ∪ {n − 1}
because S does not contain any accepting state of A, each state in T is mapped
to n − 1 by gT , each state (i, j) in S is mapped to (1, j) by fS , and, finally,
the resulting non-final subset is mapped to itself by ck. It follows that the subset
automaton rejects the string uS∪T vS∪T , so this string is not in KL.

Now, let S ∪ T and S′ ∪ T ′ be two distinct sets in RN . Then S �= S′ or
T �= T ′. First, let S �= S′. Without loss of generality, there is a column j and
a state (i, j) of the grid Q such that (i, j) ∈ S and (i, j) /∈ S′. Then the string
uS∪T vS′∪T ′ is accepted by the NNFA N through the following computation

{q0, 0} uS∪T−−−→ (i, j)
gT ′−−→ (i, j)

fS′−−→ (0, j) ck

−→ 0

because {q0, 0} goes to S ∪ T by uS∪T and (i, j) ∈ S ∪ T , there is a loop on gT ′

in state (i, j), symbol fS′ maps (i, j) to (0, j) since (i, j) /∈ S′, and (0, j) goes to
the final state 0 by ck since there is a transition on c from (0, k − 1) to 0 in N .
Thus uS∪T vS′∪T ′ is in KL.

Now, let T �= T ′. Without loss of generality, there is a state t such that t ∈ T
and t /∈ T ′. Then the string uS∪T vS′∪T ′ is accepted by the NNFA N through
the following computation

{q0, 0} uS∪T−−−→ t
gT ′−−→ 0

fS′−−→ 0 ck

−→ 0

because {q0, 0} goes to S ∪ T by uS∪T and t ∈ S ∪ T , symbol gT ′ maps t to 0
since t /∈ T ′, and there are loops on fS′ and c in the final state 0. Thus also in
this case, the string uS∪T vS′∪T ′ is in KL.

Hence exactly one of the strings uS∪T vS′∪T ′ and uS′∪T ′ vS′∪T ′ is in KL.
It follows that the set F is an sv-fooling set for KL. Similarly as for right
quotient, we can extend our arguments to the cases of n = 3k + 2 and n = 3k.
Next, we have

|F| = 2/3 · (g(m) − 1) · 2n ≥ 2/3 · (g(m) − g(m)/4) · 2n = 1/2 · g(m) · 2n.

By Lemma 6, every SVFA for KL has at least 1/2 · g(m) · 2n states. 
�

Lemma 28. Let m,n ≥ 6. There exist languages K and L over an eight-letter
alphabet such that svsc(K) = m, svsc(L) = n, and svsc(KL) ∈ Ω(2m/3 · 2n).

Proof. (Proof Idea). Let Σ = {a, b, c, d, e, f, g, h}. We are going to describe lan-
guages K and L over Σ.

Let K be accepted by an m-state SVFA A′ in which the transitions on a, b, d, e
are the same as in the SVFA A in the proof of Lemma 27. The SVFA A′ ignores
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Fig. 15. The transitions on c, f in the SVFA A′; m = 13 (self-loops on d, e are omitted).

Fig. 16. The DFA B′.

the symbols g and h. By c and f , the state q0 goes to {(0, 1), . . . , (0, k)}, and
each state (i, j) with j ≤ k − 1 goes to {(i, j + 1)}. The state (0, k) goes to
{(1, 1)} on both c, f . The state (1, k) goes to {(0, 1)} on c, and it goes to {(2, 1)}
on f . The state (2, k) goes to {(2, 1)} on both c, f . The transition on c, f in the
SVFA A′ in the case of k = 4 are shown in Fig. 15.

Let L be accepted by the DFA B′ shown in Fig. 16. Notice that the transitions
on a, b, c, d, e are the same as in the DFA B in the proof of Lemma 27. The DFA
B′ ignores the symbol f . The symbols g, h correspond to the symbols c, d in the
proof of Lemma 16.

The idea of the proof is to define strings vS and vT for some sets S in R,
namely, for those that consist only of the states in the first and second row of
the grid Q, and for each subset T of {1, 2, . . . , n− 2}. The strings vT are defined
exactly in the same way as in Lemma 16.

To define the string vS of length 2k, let σ(i, j) = f if (i, j) ∈ S, and let
σ(i, j) = c if (i, j) /∈ S. Now let

uS = (σ(0, 1)σ(0, 2) · · · σ(0, k)σ(1, 1)σ(1, 2) · · · σ(1, k))R.

Then we can prove that the string vS is rejected from each state in S, and it is
accepted from each state in the first or second row which is not in S.
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As a result, we will be able to describe an sv-fooling set

{(uS∪T , vT · vS · c2k) | S ∈ R′, T ⊆ {1, 2, . . . , n − 2}},

where R′ contains all the sets in R which only have states in the first or second
row of the grid Q. This will give a lower bound Ω(2m/3 · 2n). 
�
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Abstract. The introduction of a general definition of function was key
to Frege’s formalisation of logic. Self-application of functions was at the
heart of Russell’s paradox. Russell introduced type theory to control
the application of functions and avoid the paradox. Since, different type
systems have been introduced, each allowing different functional power.
Most of these systems use the two binders λ and Π to distinguish between
functions and types, and allow β-reduction but not Π-reduction. That
is, (πx:A.B)C → B[x := C] is only allowed when π is λ but not when
it is Π. Since Π-reduction is not allowed, these systems cannot allow
unreduced typing. Hence types do not have the same instantiation right
as functions. In particular, when b has type B, the type of (λx:A.b)C is
immediately given as B[x := C] instead of keeping it as (Πx:A.B)C to be
Π-reduced to B[x := C] later. Extensions of modern type systems with
both β- and Π-reduction and unreduced typing have appeared in [11,12]
and lead naturally to unifying the λ and Π abstractions [9,10]. The
Automath system combined the unification of binders λ and Π with
β- and Π-reduction together with a type inclusion rule that allows the
different expressions that define the same term to share the same type.
In this paper we extend the cube of 8 influential type systems [3] with
the Automath notion of type inclusion [5] and study its properties.

Keywords: Type inclusion · Automath · Unicity of types

1 Introduction

Different type systems exist, each allowing different functional power. The λ-
calculus is a higher-order rewriting system which allows the elegant incorporation
of functions and types, explains the notion of computability and is at the heart of
programming languages (e.g., Haskell and ML) and formalisations of mathemat-
ics (e.g., Automath and Coq). Typed versions of the λ-calculus provide a vehicle
where logics, types and rewriting converge.Heyting [7],Kolmogorov [13] andCurry
and Feys [6] (improved by Howard [8]) observed the “propositions as types” or
“proofs as terms” (PAT) correspondence. In PAT, logical operators are embed-
ded in the types of λ-terms rather than in the propositions and λ-terms are viewed
as proofs of the propositions represented by their types. Advantages of PAT include
the ability tomanipulate proofs, easier support for independent proof checking, the
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 262–282, 2015.
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possibility of the extraction of computer programs from proofs, and the ability to
prove properties of the logic via the termination of the rewriting system. And so,
typed λ-calculi have been the subject of extensive studies in the second half of the
20th century. For example:

– Both mathematics and programming languages make heavy use of the so-
called let expressions/abbreviations where a large expression is given a name
which can be replaced by the whole expression (we say in this case that the
definition/abbreviation is unfolded) when the need to do so arises.

– Some type systems (e.g., Automath and the system of [12]) have Π-reduction
(Πx:A.B)N →Π B[x:=N ] and unreduced typing:

Γ � M : Πx:A.B Γ � N : A

Γ � MN : (Πx:A.B)N

Reference [12] showed that Π-reduction and unreduced typing lead to the loss
of Subject Reduction (SR) which can be restored by adding abbreviations
(cf. [11]). Note that the abbreviation/definition system of Automath itself
is not “smart enough” for restoring SR: take the same counterexample as in [12].

– Some versions of the λ-calculus (e.g., in Automath and in the Barendregt cube
with unified binders [10]) used the same binder for both λ and Π abstraction.
In particular, Automath used [x : A]B for both λx : A.B and Πx : A.B.
Consequences of unifying λ and Π are:
• A term can have many distinct types [10]. E.g., in λP of [3], we have:

α : ∗ �β (λx:α.α) : (Πx:α.∗) and α : ∗ �β (Πx:α.α) : ∗
which, when we give up the difference between λ and Π, result in:

(I) α : ∗ �β [x:α]α : [x:α] ∗ and (II) α : ∗ �β [x:α]α : ∗
Indeed, both equations (I) and (II) hold in AUT-QE.

• More generally, in AUT-QE we have the dervived rule:

Γ �β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xn:An]∗
Γ �β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xm:Am]∗ 0 ≤ m ≤ n. (1)

This derived rule (1) has the following equivalent derived rule in λP (and
hence in the higher systems like λPω):

Γ �β λx1:A1. · · · λxn:An.B : Πx1:A1. · · · Πxn:An. ∗ 0 ≤ m ≤ n

Γ �β λx1:A1. · · · λxm:Am.Πxm+1:Am+1. · · · Πxn:An.B : Πx1:A1. · · · Πxm:Am.∗

However, Aut-QE goes further and generalises (1) to a rule of type inclusion:

Γ �β M : [x1:A1] · · · [xn:An]∗
Γ �β M : [x1:A1] · · · [xm:Am]∗ 0 ≤ m ≤ n. (Q)

Such type inclusion guarantees that two equal definitions will share (at least)
one type and appears in higher order Automath systems like Aut-QE.
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Remark 1. Rule (Q) may be motivated by looking at the definition system of
Automath where (I) allows us to introduce a definition ζ(α) := [x:α]α : [x:α]∗
and (II) enables us to define ξ(α) := [x:α]α : ∗. Now ζ(α) and ξ(α) are defin-
ing exactly the same term (and are therefore called “definitionally equal”), but
without Rule (Q) they wouldn’t share the same type (whilst [x:α]α has both the
type of ζ(α) and the type of ξ(α)). By generalizing (1) to (Q) we get that ζ(α)
also has type ∗, so ζ(α) and ξ(α) share (at least one) type.

The behaviour of (variants of) Rule (Q) has never been studied in modern type
systems. This paper fills these gaps and gives the first extensive account of
modern type systems with/without Π-reduction, unreduced typing and type
inclusion. We chose to use as basis for these extensions, a flexible and general
framework: Barendregt’s β-cube. In the β-cube of [3], eight well-known type
systems are given in a uniform way. The weakest system is Church’s simply
typed λ-calculus λ→, and the strongest system is the Calculus of Constructions
λPω. The second order λ-calculus figures on the β-cube between λ→ and λPω.
The paper is divided as follows:

– Section 2 introduces a number of cubes, establishes necessary properties, and
shows that in the cube with type inclusion, 4 systems get merged into two
due to type inclusion.

– Section 3 establishes the generation lemma that is crucial for type checking in
all the cubes. Then, correctness of types and subject reduction (safety) as well
as preservation of types under reduction are studied for all the cubes. Strong
normalisation, typability of subterms and unicity of types are laid out to be
studied for each cube separately in the later sections.

– In Sect. 4 we relate the various cubes showing exactly which includes which
and whether these inclusions are strict. We then study strong normalisation,
typability of subterms and unicity of types in these cubes.

– We conclude in Sect. 5 and add an appendix containing missing proofs.

2 Notions of Reduction and Typing

We define the set of terms T by: T ::= ∗|� |V |πV:T .T |T T where π ∈ {λ,Π}. We
let s, s′, s1, etc. range over the sorts {∗,�}. We assume that {∗,�} ∩ V = ∅. We
take V to be a set of variables over which, x, y, z, x1, etc. range. We let A, B, M ,
N , a, b, etc. sometimes also indexed by Arabic numerals such as A1, A2 range over
terms. We use fv(A) to denote the free variables of A, and A[x := B] to denote the
substitution of all the free occurrences of x in A by B. We assume familiarity with
the notion of compatibility. As usual, we take terms to be equivalent up to variable
renaming and let ≡ denote syntactic equality. We also assume the Barendregt con-
vention (BC) where names of bound variables are always chosen so that they differ
from free ones in a term and where different abstraction operators bind different
variables. For example, we write (πy:A.y)x instead of (πx:A.x)x and πx:A.πy:B.C
instead of πx:A.πx:B .C. (BC) will also be assumed for contexts and typings (for
each of the calculi presented) so that for example, if Γ � πx:A.B : C then x will
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not occur in Γ . We define subterms in the usual way. For Λ ∈ {λ,Π}, we write
Λxm:Am

. . . Λxn:An
.A as Λi:m..n

xi:Ai
.A.

Definition 2 (Reductions).

– Let β-reduction →β be the compatible closure of (λx:A.B)C →β B[x := C].
– Let Π-reduction →Π be the compatible closure of (Πx:A.B)C →Π B[x := C].
– We define the union of reduction relations as usual. E.g., →βΠ = →β ∪ →Π .
– Let r ∈ {β,Π, βΠ}. We define r-redexes in the usual way. Moreover:

• →→r is the reflexive transitive closure of →r and =r is the equivalence closure
of →r. We write +→→r to denote one or more steps of r-reduction.

• If A →r B (resp. A →→r B), we also write B r← A (resp. B r←← A).
• We say that A is strongly normalising with respect to →r (we use the nota-

tion SN→r
(A)) if there are no infinite →r-reductions starting at A.

• We say that A is in r-normal form if there is no B such that A →r B.
• We use nfr(A) to refer to the r-normal form of A if it exists.

In order to investigate the connection between the various type systems, it is
useful to change Π-redexes into λ-redexes and to contract Π-redexes:

Definition 3 (Changing Π-redexes, ≤, ≤r).

– For A ∈ T , we define [A]Π ∈ T and Ã ∈ T as follows:
• [A]Π is A where all Π-redexes are contracted.
• Ã is A where every Π-redex (Πx:−.−) is changed into a λ-redex (λx:−.−).
• Let ≤ be the smallest reflexive and transitive relation on terms such that

Λi:1..n
xi:Ai

.∗ ≤ Λi:1..m
xi:Ai

.∗ for all m ≤ n.
• Let r ∈ {β, βΠ}. For terms A, B we define A ≤r B by: There are terms

A′ =r A and B′ =r B such that A′ ≤ B′.

Theorem 4 (Church-Rosser for →r where r ∈ {β, βΠ}). Let r ∈ {β, βΠ}.
If B1 r←← A →→r B2 then there is a C such that B1 →→r C r←← B2.

Proof. For the β-case see [3]. For the βΠ-case see [12]. �
Corollary 5.

1. If A ≤r B and B ≤r C then A ≤r C.
2. If Πx:A.B1 ≤r Πx:A.B2 then B1 ≤r B2.

Proof. 1. Determine A′ =r A and B′ =r B such that A′ ≤ B′, and determine
C ′ =r C and B′′ =r B such that B′′ ≤ C ′. Note that we can write: A′ ≡ Λi:1..n

xi:Ai
.∗;

B′ ≡ Λi:1..m
xi:Ai

.∗; B′′ ≡ Λi:1..p
xi:Bi

.∗ and C ′ ≡ Λi:1..q
xi:Bi

.∗ for some m ≤ n, q ≤ p. As
B′ =r B′′, they have a common r-reduct by the Church Rosser Theorem 4. Note
that this reduct must be of the form Λi:1..m

xi:Ci
.∗ for some Ci =r Ai =r Bi, and

that m = p. Define A′′ ≡ Λi:1..m
xi:Ci

.Λj:m+1..n
xj :Aj

∗ and C ′′ ≡ Λi:1..q
xi:Ci

.∗. Since A′′ ≤ C ′′

(as q ≤ p = m ≤ n), A′′ =r A′ =r A and C ′′ =r C ′ =r C, so we have A ≤r C.
2. Determine P =r Πx:A.B1 and Q =r Πx:A.B2 where P ≤ Q. For some m ≤ n,
P ≡ Λi:1..n

xi:Ai
.∗ and Q ≡ Λi:1..m

xi:Ai
.∗. Since B1 =r Λi:2..n

xi:Ai
.∗ ≤ Λi:2..m

xi:Ai
.∗ =r B2 we get

B1 ≤r B2. �
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Definition 6 (⊥, Declarations, Contexts, ⊆, ⊆′).

1. There are two forms of declarations over which d, d′, d1, . . . range.
2. A variable declaration (v-dec) d is of the form x : A. We define var(d) = x,

type(d) = A and fv(d) = fv(A).
3. An abbreviation declaration (a-dec) d is of the form x = B : A and abbre-

viates B of type A to be x. We define var(d) = x, type(d) = A, ab(d) = B
and fv(d) = fv(A) ∪ fv(M).

4. A context Γ is a (possibly empty) concatenation of declarations d1, d2, · · · , dn

such that if i �= j, then var(di) �≡ var(dj). Let dom (Γ ) = {var(d) | d ∈ Γ},
Γ -decl = {d ∈ Γ | d is a v-dec} and Γ -abb = {d ∈ Γ | d is an a-dec }. Let
Γ,Δ, Γ ′, Γ1, Γ2, . . . range over contexts and denote the empty context by 〈〉.

5. We define substitutions on contexts by: 〈〉[x := A] ≡ 〈〉,
(Γ, y : B)[x := A] ≡ Γ [x := A], y : B[x := A],
(Γ, y = B : C)[x := A] ≡ Γ [x := A], y = B[x := A] : C[x := A].

6. If d is the a-dec x = E : F , we write Γd for Γ [x := E] and Ad for A[x := E].
7. We define ⊆ (resp. ⊆′) between contexts as the least reflexive transitive rela-

tion satisfying Γ,Δ ⊆ Γ, d,Δ (resp. Γ,Δ ⊆′ Γ, d,Δ and Γ, x : A,Δ ⊆′ Γ, x =
B : A,Δ).

8. We extend Definition 3 to contexts as follows:

[〈〉]Π ≡ 〈〉 [Γ, x : A]Π ≡ [Γ ]Π , x : [A]Π
[Γ, x = B : A]Π ≡ [Γ ]Π , x = [B]Π : [A]Π

〈̃〉 ≡ 〈〉 Γ̃, x : A ≡ Γ̃ , x : Ã ˜Γ, x = B : A ≡ Γ̃ , x = B̃ : Ã.

All systems of the β-cube have the same typing rules but are distinguished from
one another by the set R of pairs of sorts (s1, s2) allowed in the type-formation or
Π-formation rule, (Π) given in BT (λ,Π) of Fig. 4. Each system of the β-cube
has its set R such that (∗, ∗) ∈ R ⊆ {(∗, ∗), (∗,�), (�, ∗), (�,�)} and hence
there are only eight possible different systems of the β-cube (see Fig. 2). The
dependencies between these systems is depicted in Fig. 1. A Π-type can only
be formed in a specific system of the β-cube if rule (Π) of Fig. 4 is satisfied for
some (s1, s2) in the set R of that system. The type system λR describes how
judgements Γ �R A : B (or Γ � A : B, if it is clear which R is used) can
be derived. Rule (Π) provides a factorisation of the expressive power into three
features: polymorphism, type constructors, and dependent types:

– (∗, ∗) is the basic rule that forms types. All the β-cube systems have this rule.
– (�, ∗) takes care of polymorphism. λ2 is the weakest system with (�, ∗).
– (�,�) takes care of type constructors. λω is the weakest system with (�,�).
– (∗,�) takes care of term dependent types. λP is the weakest system with (∗,�).

The next definition sets out the basic notions needed for our type systems.
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Fig. 1. Barendregt’s β-cube

Cubes Rules References

β, →β BT(λ, Π) + convβ + appΠ [3]
πi, →βΠ BT(λ, Π) + convβΠ + i-appΠ [12]
βa, →β BT(λ, Π) + convβ + appΠ + BA + letλ [11]
πai, →βΠ BT(λ, Π) + convβΠ + i-appΠ + BA + letλ + letΠ [11]
π, →βΠ BT(λ, Π) + convβΠ + appΠ This paper
πa, →βΠ BT(λ, Π) + convβΠ + appΠ + BA + letλ + letΠ This paper
βQ, →β BT(λ, Π) + convβ + appΠ + Qβ This paper

�π= �β⊂�r⊂�πai= �πa for r ∈ {βa, πi} (Lemma 16)
�βa and �πi are unrelated (Lemma 16)
�βQω= �βQω (Lemma 14)

�βQPω
= �βQP ω (Lemma 14)

Fig. 2. Systems studied in this paper

Cubes lemmas hold lemmas restricted

β 15..21
πi 15 and 19 16→23, 17→23+25, 18→23+25, 20→26, 21→23
βa 15..19 and 21 20→27
πai 15..19 and 21 20→27
π 15..21
πa 15..19 20→27
βQ 15..16

Fig. 3. Properties of various cubes

Definition 7 (Statements, Judgements). Let Γ be a context, A,B,C be
terms. Let � be one of the typing relations of this paper.

1. A : B is called a statement. A and B are its subject and predicate respectively.
2. Γ � A : B is a judgement which states that A has type B in context Γ .

Γ � A : B : C denotes Γ � A : B ∧ Γ � B : C.
3. Γ is �-legal (or simply legal) if ∃A1, B1 terms such that Γ � A1 : B1.
4. A is a Γ�-term (or simply Γ -term) if ∃B1 such that [Γ � A : B1∨Γ � B1 : A].
5. A is �-legal (or simply legal) if ∃Γ1[A is a Γ�

1 -term].
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6. Let r be a reduction relation. We define Γ � B =r B′ as the smallest equiva-
lence relation closed under A and B where:
A. If B =r B′ then Γ � B =r B′.
B. If x = D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ � B =r B′.
Note that if Γ does not have a-decs, then Γ � B =r B′ becomes B =r B′.

7. We define Γ � d by: •Γ � var(d) : type(d).
• And, if d is a-dec then Γ � ab(d) : type(d) and Γ � var(d) =r ab(d).

8. We define Γ � Δ by: Γ � d for every d ∈ Δ.

In this paper we study extended versions of the β-cube. The extensions con-
sidered are summarized in Fig. 2 which shows for each cube, its reduction relation
and its typing rules. For example, the β-cube uses β-reduction and the BT(λ,Π)
rules of Fig. 4 with convβ of Fig. 7 and appΠ of Fig. 8.

(axiom) 〈〉 � ∗ : �

(start)
Γ � A : s

Γ, x:A � x : A
x 
∈ dom (Γ )

(weak)
Γ � A : B Γ � C : s

Γ, x:C � A : B
x 
∈ dom (Γ )

(Π)
Γ � A : s1 Γ, x:A � B : s2

Γ � Πx:A.B : s2
(s1, s2) ∈ R

(λ)
Γ, x:A � b : B Γ � Πx:A.B : s

Γ � λx:A.b : Πx:A.B

Fig. 4. Basic typing BT (λ, Π)

Definition 8. We define a number of cubes, all of which have T as the set of
terms, contexts as in Definition 6.4 and use the BT(λ,Π) rules of Fig. 4. For
each c-cube we define, we write �c to denote type derivation in the c-cube.

– The β- and βQ-cubes have contexts that are free of a-decs, use β-reduction
→β, and the rules convβ of Fig. 7 and appΠ of Fig. 8. In addition, the βQ-cube
uses the Qβ rule of Fig. 10.

– The πi-cube has contexts that are free of a-decs, uses βΠ-reduction →βΠ ,
and the rules convβΠ of Fig. 7 and i-appΠ of Fig. 9.

– The βa-cube uses β-reduction →β, and the BA rules of Fig. 5, convβ of Fig. 7,
appΠ of Fig. 8 and letλ of Fig. 6.

– The πai-cube uses βΠ-reduction →βΠ , and the BT(λ,Π) rules of Fig. 4 with
the BA rules of Fig. 5, convβΠ of Fig. 7, i-appΠ of Fig. 9 and letλ and letΠ of
Fig. 6.

– The π-cube has contexts that are free of a-decs, uses βΠ-reduction →βΠ ,
and the rules convβΠ of Fig. 7 and appΠ of Fig. 8. In addition, the πQ-cube
uses the Qβ rule of Fig. 10.

– The πa-cube uses βΠ-reduction →βΠ , and the BA rules of Fig. 5, convβΠ

of Fig. 7, appΠ of Fig. 8 and letλ and letΠ of Fig. 6.
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(start-a)
Γ � A : s Γ � B : A

Γ, x = B:A � x : A
x 
∈ dom (Γ )

(weak-a)
Γ � A : B Γ � C : s Γ � D : C

Γ, x = D:C � A : B
x 
∈ dom (Γ )

Fig. 5. Basic abbreviation rules BA

(let\)
Γ, x = B:A � C : D

Γ � (\x:A.C)B : D[x := B]

Fig. 6. (let\) where \ = λ or \ = Π

(convr)
Γ � A : B Γ � B′ : s Γ � B =r B′

Γ � A : B′

Fig. 7. (convr) where r = β or r = βΠ

(app\)
Γ � F : Πx:A.B Γ � a : A

Γ � Fa : B[x:=a]

Fig. 8. (appΠ)

(i-appΠ)
Γ � F : Πx:A.B Γ � a : A

Γ � Fa : (Πx:A.B)a

Fig. 9. (i-appΠ)

(Qβ)
Γ � λi:1..k

xi:Ai
.A : Πi:1..n

xi:Ai
.∗

Γ � λi:1..m
xi:Ai

.Πi:m+1..k
xi:Ai

A : Πi:1..m
xi:Ai

.∗ 0 ≤ m ≤ n, A 
≡ λx:B .C

Fig. 10. (Qβ)

In what follows we establish basic properties for the cubes listed above. Unless
spcifically mentioned, these properties hold for all the cubes.



270 F. Kamareddine et al.

Lemma 9 (Free Variable Lemma for � and →r). Let Γ be �-legal.

1. If d and d′ are different elements in Γ , then var(d) �≡ var(d′).
2. If Γ � B : C then fv(B), fv(C) ⊆ dom (Γ ).
3. If Γ = Γ1, d, Γ2 then fv(d) ⊆ dom (Γ1).

Proof. We prove 1, 2 and 3 by induction on the derivation of Γ �c B : C. �
Lemma 10 (Start/Context Lemma for � and →r).

1. If Γ is �-legal then Γ � ∗ : � and for all d ∈ Γ , Γ � d.
2. On the derivation tree to Γ1, d, Γ2 � A : B we have

– Γ1 � type(d) : s for some sort s and Γ1, d � var(d) : type(d).
– If d is a-dec then Γ1 � ab(d) : type(d) and Γ1, d � var(d) =r ab(d).

Proof. 1. Show by induction on Γ �c B : C that if Γ = 〈〉 then Γ � ∗ : � and if
Γ = Γ ′, d then both Γ ′ � ∗ : � and Γ � ∗ : �. 2. By induction on Γ �c B : C. �
Lemma 11 (Transitivity Lemma for � and →r). Let Γ,Δ be �-legal con-
texts such that Γ � Δ. The following hold:

1. If Δ � A =r B then Γ � A =r B.
2. If Δ � A : B then Γ � A : B.

Proof. By induction on the derivation Δ � A : B. We do the let case. Assume
Δ � (\x:A.C)B : D[x := B] comes from Δ,x = B:A � C : D where x �∈ dom (Δ)
(else rename x). By start lemma on the derivation tree to Δ,x = B:A � C : D
we have Δ � B : A and Δ � A : s. Hence by IH, Γ � B : A and Γ � A : s.
Hence, by (start-a), Γ, x = B:A � x : A and Γ, x = B:A is legal. Furthermore,
by start lemma, Γ, x = B:A � x =r B. Hence, Γ, x = B:A � Δ,x = B:A. By
IH, Γ, x = B:A � C : D and by let\,Γ � (\x:A.C)B : D[x := B]. �
Lemma 12 (Thinning Lemma for � and →r).

1. If Γ and Δ are �-legal, Γ ⊆′ Δ, and Γ � A =r B then Δ � A =r B.
2. If Γ and Δ are �-legal, Γ ⊆′ Δ, and Γ � A : B then Δ � A : B.

Lemma 13 (Substitution Lemma for � and →r).

1. If Γ, d,Δ � B =r C, d is a-dec, and B,C are Γ, d,Δ�-legal then Γ,Δd �
Bd =r Cd.

2. If B is Γ, d-legal and d is a-dec then Γ, d � B =r Bd.
3. If Γ, d,Δ � B : C and d is a-dec then Γ,Δd � Bd : Cd.
4. If Γ, d,Δ � B : C and Γ � A : type(d) then

Γ,Δ[var(d) := A] � B[var(d) := A] : C[var(d) := A].

Proof.

1. By induction on the derivation Γ, d,Δ � B =r C.
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2. By induction on the derivation Γ, d,Δ � A : B we show that Γ, d,Δ �
A =r Ad and Γ, d,Δ � B =r Bd.

3.,4. By induction on the derivation Γ, d,Δ � B : C. �
Lemma 14.

1. If Γ � A : B then � does not occur in A,Γ , and if � occurs in B then
B ≡ �.

2. If Γ � A : B then A �=r � and if B =r � then B ≡ �.
3. In all cubes that don’t use let\, Γ �� AB : �.
4. If let\ is permissible then we can have Γ � AB : �.
5. Let (Λ, r) ∈ {(Π,β), (Π,βΠ)}.

If Γ � A : � then A =r Λi:1..l
xi:Ai

.∗ where l ≥ 0 and Γ � Λi:1..l
xi:Ai

.∗ : �.
6. If Γ � π1

x1:A1
π2

x2:A2
. . . πl

xl:Al
.∗ : A where π ∈ {λ,Π} and l ≥ 0 then πi = Π

for all 1 ≤ i ≤ l and A =β � (hence A ≡ �).
7. If Γ � Πi:1..l

xi:Ai
.∗ : � then Γ � Πi:1..p

xi:Ai
.∗ : �, Γ, x1 : A1, x2 : A2, . . . , xp : Ap �

Πi:p+1..l
xi:Ai

.∗ : � and Γ, x1 : A1, x2 : A2, . . . , xp−1 : Ap−1 � Ap : sp for some
sort sp where (sp,�) ∈ R and 1 ≤ p ≤ l.

8. If Γ � λx:A.B : C then C �=r s.
9. If Γ � A : � then for A1, A2, . . . Al where l ≥ 0, Γ � Πi:1..l

xi:Ai
.∗ : � and

– If let\ is not permissible, then A ≡ Πi:1..l
xi:Ai

.∗.
– If letΠ is not permissible, then A =β Πi:1..l

xi:Ai
.∗.

– If letΠ is permissible, then A =βΠ Πi:1..l
xi:Ai

.∗.
10. Rule Qβ and rule (s,�) for s ∈ {∗,�} imply rule (s, ∗).

This means that the type systems λQω and λQω are equal, and that λQPω

and λQPω are equal as well.

3 Desirable Properties

In this section we study the desirable properties of our cubes. Note that these
are generalised versions of those of the standard β-cube because they type more
terms. Unless otherwise stated, � ranges over �c for any of c ∈ {πi, βa, π, πa, βQ}.

Lemma 15 (Generation Lemma for � and →r).

1. If Γ � s : C then s ≡ ∗ and C ≡ �.
2. If Γ � x : C then for some d in Γ , x ≡ var(d), Γ � C : s and Γ � type(d) : s

for some sort s. For all systems that exclude rule (Q), Γ � type(d) =r C.
In βQ, type(d) ≤β C.

3. If Γ � Πx:A.B : C then there is (s1, s2) ∈ R such that Γ � A : s1, Γ, x:A �
B : s2, and if C �≡ s2 then Γ � C : s for some sort s. For all systems that
exclude rule (Q), Γ � C =r s2. In βQ, C =β s2.

4. If Γ � λx:A.b : C then there are s and B where Γ � Πx:A.B : s, Γ, x:A � b :
B, and if C �≡ Πx:A.B then Γ � C : s′ for some sort s′. For all systems that
exclude rule (Q), Γ � Πx:A.B =r C. In βQ, Πx:A.B ≤β C.
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5. (a) If abbreviations are not included then: If Γ � Fa : C then ∃A,B with
Γ � F : Πx:A.B, Γ � a : A and if C �≡ T then Γ � C : s for some s,
where:
– T ≡ B[x:=a] if unreduced typing i-app is not used;
– T ≡ (Πx:A.B)a otherwise.
For all systems that exclude rule (Q), Γ � T =r C. In βQ, T ≤β C.

(b) If abbreviations are included then for all systems that exclude rule (Q):
i. If Γ � Fa : C and F �≡ πy:D.E then there are A,B such that Γ � F :

Πx:A.B, Γ � a : A and Γ � C =r T and if C �≡ T then Γ � C : s
for some s, where T ≡ B[x:=a] if unreduced typing is not used, and
T ≡ (Πx:A.B)a otherwise.

ii. If Γ � (πy:D.E)a : C then Γ, y = a : D � E : C.

Lemma 16 (Correctness of types for � and →r). In all systems except �πi
:

If Γ � A : B then (B ≡ � or Γ � B : s for some sort s).

Proof. By induction on the derivation Γ � A : B using the substitution lemma.
We only do the Qβ rule. If Γ � λi:1..m

xi:Ai
.Πi:m+1..k

xi:Ai
A : Πi:1..m

xi:Ai
.∗ comes from Γ �

λi:1..k
xi:Ai

.A : Πi:1..n
xi:Ai

.∗ then since Πi:1..n
xi:Ai

.∗ �≡ �, by IH, Γ � Πi:1..n
xi:Ai

.∗ : s for some sort
s. By Lemma 14.6 and 14.7, we have Γ � Πi:1..n

xi:Ai
.∗ : �. For a counterexample

and a weaker form of this lemma for �πi
, see Sect. 4.1. �

Lemma 17 (Subject Reduction for � and →r). Let r ∈ {β, βΠ}. In all
systems except �πi

: If Γ � A : B and A →→r A′ then Γ ′ � A : B.

Proof. First, we prove by simultaneous induction the following:

1. If Γ � A : B and A →r A′ then Γ � A′ : B.
2. If Γ � A : B and Γ →r Γ ′ then Γ � A′ : B.

Then, we prove the lemma by induction on the derivation A →→r A′. For a
counterexample and a weaker form of this lemma for �πi

, see Sect. 4.1. �
Lemma 18 (Reduction Preserves Types for � and →r). Let r ∈ {β, βΠ}.
In all systems except �πi

: If Γ � A : B and B →→r B′ then Γ � A : B′.

Proof. Standard using subject reduction and corrrectness of types. First, note
that B =r B′. By correctness of types, either B ≡ � (hence B′ ≡ � and we are
done) or Γ � B : s for some sort s in which case Γ � B′ : s by subject reduction
and hence by convr, Γ � A : B′. Again, for �πi

, see Sect. 4.1. �
The next 3 lemmas will be studied for each cube in the relevant sections.

Lemma 19 (Strong Normalisation for � and →r). If A is �-legal then
SN→r

(A).

Lemma 20 (Typability of Subterms for � and →r). If A is �-legal and B
is a subterm of A, then B is �-legal.

Lemma 21 (Unicity of Types for � and →r).

1. If Γ � A : B1 and Γ � A : B2, then Γ � B1 =r B2.
2. If Γ � A1 : B1 and Γ � A2 : B2 and Γ � A1 =r A2, then Γ � B1 =r B2.
3. If Γ � B1 : s, Γ � B1 =r B2 and Γ � A : B2 then Γ � B2 : s.
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4 Connecting the Various Extensions of the Cube

In this section we will connect the various extensions of the cube and we will
complete the properties of �c where c ∈ {πi, βa, πai, π, πa, Qβ}.

Lemma 22.

1. Let c ∈ {β, πi, βa, π}. Then: Γ ��c (Πx:A.B)a : C and if Γ �β A : B then Γ ,
A and B are all free of Π-redexes.

2. Terms of the form (Πx:A.B)a can be �πi
-legal, but, Γ ��πi

(Πx:A.B)a : C.
3. If Γ �πi

A : B then Γ and A are free of Π-redexes and B is the only possible
Π-redex in B.

4. Let c ∈ {πai, πa}. (Πx:A.B)a can be �c-typable and we can have Γ �c AB : �.
5. We can have Γ �βa

(λx:A.B)a : �.
6. Let c ∈ {πai, πa}. If Γ � A =β B then Γ � A =βΠ B.

Moreover, If Γ �c A : B then any of Γ , A and B may contain Π-redexes.
7. Let c ∈ {β, πi, βa, βai}. If Πx:A.B is �c-legal then Γ �c Πx:A.B : s.
8. (a) If Γ �β A : B then Γ �πi

A : B. (b) If Γ �πi
A : B then Γ �β A : [B]Π .

(c) If Γ �πi
A : B and B is free of Π-redexes then Γ �β A : B.

(d) �β ⊂ �πi

9. (a) If Γ �β A : B then Γ �βa
A : B.

(b) If Γ �βa
A : B then Γ �πai

A : B.
(c) If Γ �πi

A : B then Γ �πai
A : B but the opposite does not hold.

(d) If Γ �πai
A : B then Γ̃ �βa

Ã : B̃.
10. It does not hold that Γ �βa

A : B for Γ free of a-decs implies Γ �β A : B.
11. �β⊂�βa

⊂�πai
.

12. (a) If Γ �βa
A : B then Γ �πa

A : B.
(b) If Γ �πa

A : B then Γ �πai
A : B.

(c) It is possible that Γ �πa
A : B but Γ ��βa

A : B. Hence �βa
⊂�πa

.
13. Let Γ �π A : B and R ∈ {→,→→}. If ARβΠA′ then ARβA′.
14. Γ �β A : B if and only if Γ �π A : B.
15. Assume var(d) �∈ fv(A) ∪ fv(B) ∪ fv(Δ). Then:

• If Γ, d,Δ �πa
A : B then Γ,Δ �πa

A : B.
• If Γ, d,Δ � A =βΠ B then Γ,Δ � A =βΠ B.

16. a. Γ �πa
A : B if and only if Γ �πai

A : B.
b. �π = �β ⊂ �r ⊂ �πai

= �πa
for r ∈ {βa, πi}.

c. �βa
and �πi

are unrelated.

4.1 The πi-Cube: Π-Reduction and Unreduced Typing

Reference [12] provided the πi-cube which extends the β-cube with both Π-
reduction and unreduced typing. In addition to the success of Automath in
using these notions, there are many arguments as to why such notions are useful;
the reader is refered to [11,12]. Here, we complete the results for the πi-cube.
Reference [12] showed that Lemmas 15 and 19 as well as the following hold for
the πi-cube:
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Lemma 23 (See [12]).

1. A restricted correctness of types Lemma 16: If Γ �πi
A : B and B is not a

Π-redex then (B ≡ � or Γ �πi
B : s for some sort s).

2. A weak subject reduction Lemma 17: If Γ �πi
A : B and A →→βΠ A′ then

Γ �πi
A′ : [B]Π .

3. A weak reduction preserves types Lemma 18: If Γ �πi
A : B and B →→βΠ B′

then Γ �πi
A : [B′]Π .

4. An almost unicity of Types Lemma 21 where clause 3 is restricted to β: If
Γ �πi

B1 : s, B1 =β B2 and Γ �πi
A : B2 then Γ �πi

B2 : s.

Items 1, 3 and 8 of Lemma 22 can be understood to imply that the πi-cube is
an almost trivial extension of the β-cube. If Γ �πi

A : B then Γ �β A : [B]Π but
whereas B can be a Π-redex, [B]Π cannot. Since by item 2 of Lemma 22, Γ ��πi

(Πx:A.B)a : C, the new legal terms (Πx:A.B)a cannot have type s. Hence, since
also (Πx:A.B)a �≡ �, we lose correctness of types and hence subject reduction:

Example 24. Let Γ = z : ∗, x : z, A ≡ (λy:z.y)x and B ≡ (Πy:z.z)x. We have
Γ �πi

A : B, B �≡ � and by Lemma 22, Γ ��πi
B : s. Hence we lose correctness

of types. Also, A →βΠ x but Γ ��πi
x : B and we lose subject reduction.

In addition to weak correctness of types/subject reduction (cf. Lemma 23):

Lemma 25 (Restricted Subject Reduction/Reduction Preserves
Types).

1. If Γ �πi
A : B, B is not a Π-redex and A →→βΠ A′ then Γ �πi

A′ : B.
2. If Γ �πi

A : B, B is not a Π-redex and B →→βΠ B′ then Γ �πi
A : B′.

Proof. 1. By Lemma 22.8 (c), since B is not a Π-redex, Γ �β A : B. Hence
by subject reduction for the cube, Γ �β A′ : B. Hence, by Lemma 22.8 (a),
Γ �πi

A′ : B. For 2., use Lemma 22.8. �
Finally, we complete the results of [12] by addressing Lemma 20.

Lemma 26 (Restricted Typability of Subterms for �πi
and →βΠ). If

Γ �πi
A : B then every subterm of A and every proper subterm of B is �πi

-legal.

Proof. By induction on the derivation Γ �πi
A : B using Lemma 22.7. �

4.2 Completing the βa- and πai-Cubes: Abbreviations without/with
Π-Reduction and Unreduced Typing

In order to obtain full (rather than weak) correctness of types and subject reduc-
tion, [11] proposed the πai-cube which has in addition to Π-reduction and unre-
duced typing, the so-called definitions or abbreviations. If k occurs in a text f
(such a text can be a single expression or a list of expressions, e.g. a book), it is
sometimes practical to introduce an abbreviation for k, for several reasons.

Of course, for c ∈ {βa, πai}, the c-cube is a non trivial extension of the β-
cube. [11] showed that Lemma 19 holds for the βa- and πai-cubes. Here we study
typability of subterms Lemma 20, and unicity of types Lemma 21. Before doing
so, let us see explain how the problem of Example 24 disappears in the πai-cube:
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– First, the example is no longer a counterexample for correctness of types:
By (weak-a) z : ∗, x : z, y = x : z �πai

z : ∗.
Hence by (letΠ) z : ∗, x : z �πai

(Πy:z.z)x : ∗[y := x] ≡ ∗.
– Second, the example is no longer a counterexample for subject reduction:

Since z : ∗, x : z �πai
x : z, and z : ∗, x : z �πai

(Πy:z.z)x : ∗ and
z : ∗, x : z � z =βΠ (Πy:z.z)x, we use (convβΠ) to get:
z : ∗, x : z �πai

x : (Πy:z.z)x.

As for typability of subterms Lemma 20, it only holds in a restricted form in
all the cubes that have abbreviations. For this we need the bachelor notion: Let
\ ∈ {λ,Π}; we say that \x:D is bachelor in B if there are no E, F such that
(\x:D.E)F is a subterm of B.

Lemma 27 (Restricted typability of subterms for � and →r). If A is �-
legal and B is a subterm of A such that every bachelor λx:D in B is also bachelor
in A, then B is �-legal.

The next example (adapted from [4]), shows why typability of subterms fails in
the βa- and πai-cubes when the bachelor condition is dropped.

Example 28. Let c ∈ {βa, πai} and let βa = β and πai = βΠ. We have the
following derivation (we miss out obvious steps):

1. α : ∗, β = α : ∗, y : β �c y : β
2. α : ∗, β = α : ∗, y : β �c y : α by 1, convc

3. α : ∗, β = α : ∗, y : β, z = y : α �c z : α by 2, start-a
4. α : ∗, β = α : ∗, y : β �c (λz:α.z)y : α by 3, letλ

5. α : ∗, β = α : ∗, y : β �c (λz:α.z)y : β by 4, convc

6. α : ∗, β = α : ∗ �c λy:β .(λz:α.z)y : Πy:β .β by 5, λ
7. α : ∗ �c (λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α by 6, letλ

However, λβ:∗.λy:β .(λz:α.z)y is not �c-legal. To show this, assume, it is �c-legal.
Hence, by correctness of types and Lemma 22, there is Γ,A such that Γ �c

λβ:∗.λy:β .(λz:α.z)y : A. Then, by four applications of the generation lemma, there
is α′, s such that Γ ′ � α =c α′ and Γ ′ � α′ : s where Γ ′ = β : ∗, y : β, z = y : α.
Now it is easy to show that Γ ′ � α =c β and Γ ′ �� α =c β, contradiction.

The appendix shows the unicity of types Lemma 21 for the βa- and πai-cubes.

4.3 The π-Cube

Lemmas 15, 16 and 20 hold for the π-cube and have the same proofs as the β-
cube. As for subject reduction Lemma 17 and strong normalisation Lemma 19:

Proof (Subject Reduction for �π and →βΠ). Similar to the β-cube as by
Lemma 22, in the (app) case, it is not possible that F be of the form Πy:C .D
in Γ �π Fa : B[x := a]. Or, use the isomorphism with the β-cube given in
Lemma 22. �
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Proof (Strong Normalisation for �π and →βΠ). By correctness of types, we only
need to show that if Γ �π A : B then SN→βΠ

(A). By Lemma 22, Γ �β A : B
and by Lemma 19 SN→β

(A). If there is an infinite path A →βΠ A1 →βΠ A2 . . .
then by Lemma 22, there is an infinite path A →β A1 →β A2 . . . . Absurd. �
Finally, Unicity of types Lemma 21 holds for the π-cube and can be easily
established using the isomorphism with the β-cube given in Lemma 22.

4.4 The πa-Cube: Allowing Π-Reduction and Abbreviations

Since �πa
and �πai

are the same relation and the πa- and πai-cubes have the
same terms, contexts and reduction relation, we have that in the πa-cube the
remaining subject reduction, reduction preserves types, strong normalisation and
typability of subterms have the same status as in the πai-cube. They all hold
except for typability of subterms which is restricted as in Lemma 27.

4.5 The Q-Cube

De Bruijn’s system Aut-QE had the rule
Γ � A : Πi:1..n

xi:Ai
.∗

Γ � A : Πi:1..m
xi:Ai

.∗0 ≤ m ≤ n. However,

in Aut-QE, Π and λ are identified. This is not the case in the β-Cube which
motivated us to formulate the rule as in Qβ . We will call the type systems that
result from adding Qβ to λ →, λ2, λP, etc.: λQ→, λQ2, λQP, etc.

One might worry that by this rule we can show unexpected things. E.g., if
m = n = 0 and k = 1 we may think that we could show Γ � λx1:A1 .A : ∗ and
Γ � Πx1:A1 .A : ∗. This is not the case because by Lemma 22, Γ �� λx:A.B : s.

Unicity of types Lemma 21 fails for the βQ-cube. Take: A : ∗, x : Πy:A.∗ � x :
Πy:A.∗ and hence by Qβ , A : ∗, x : Πy:A.∗ � x : ∗. We have shown that Unicity
of Types is not provable in any system with the strength of at least λQP .

5 Conclusion

De Bruijn introduced the type inclusion rule to allow the well typed behaviour of
definitions. Since Automath, numerous systems have studied notions of subtyp-
ing (e.g., [1,9,14]). However, there is still no study of modern type systems with
de Bruijn’s type inclusion. This paper bridges the gap and studies the systems
of the Barendregt cube with type inclusions showing that 4 systems turn into
two systems and that unicity of types fails.

A Proofs

This appendix gives the proofs for Lemmas 12, 14, 15, 22, 27, as well as the
unicity of types Lemma 21 for the βa- and πai-cubes.

Proof (Thinning Lemma 12).
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1. First show by induction on Γ � A =r B that if Γ and Δ are �-legal then:
– If Γ ≡ Γ1, Γ2 ⊆′ Γ1, d, Γ2 ≡ Δ and Γ � A =r B then Δ � A =r B.
– If Γ ≡ Γ1, x : A,Γ2 ⊆′ Γ1, x = B : A,Γ2 ≡ Δ and Γ � A =r B then

Δ � A =r B.
Then, show the statement by induction on Γ ⊆′ Δ.

2. First show by induction on Γ � A : B that if Γ and Δ are �-legal then:
– If Γ ≡ Γ1, Γ2 ⊆′ Γ1, d, Γ2 ≡ Δ and Γ � A : B then Δ � A : B.
– If Γ ≡ Γ1, x : A,Γ2 ⊆′ Γ1, x = B : A,Γ2 ≡ Δ and Γ � A : B then

Δ � A : B.
Then, show the statement by induction on Γ ⊆′ Δ.

�
Proof (Lemma 14).

1. By induction on the derivation Γ � A : B.
2. This is a corollary of 1. above.
3. By induction on the derivation Γ � AB : �.
4. Since y : ∗, x = y : ∗ � ∗ : �, then y : ∗ � (λx:∗.∗)y : y.
5. By induction on the derivation Γ � A : � using Start/Context Lemma 10

to show that the start and start-a rules do not apply, 1. above to show that
convr and app\ do not apply, and Substitution Lemma 13.

6. By induction on the derivation Γ � π1
x1:A1

π2
x2:A2

. . . πl
xl:Al

.∗ : A using 1.
above. Then, use 2. to deduce A ≡ �.

7. By induction on the derivation Γ � Πi:1..l
xi:Ai

.∗ : �. Convr and Qβ don’t apply.
8. By induction on the derivation Γ � λx:A.B : C.
9. By induction on the derivation Γ � A : �.

10. Assume Γ � A : s and Γ, x:A � B : ∗. Then:

(1) Γ, x:A � ∗:� (by the Start Lemma)
(2) Γ � (Πx:A.∗) : � ((s,�) on (1))
(3) Γ � (λx:A.B) : (Πx:A.∗) ((λ) on (2))
(4) Γ � (Πx:A.B) : ∗ (Rule (Q) on (3))

�
Proof (Generation Lemma 15).

1. By induction on the derivation Γ � s : C. The Q-rule does not apply.
2. By induction on the derivation Γ � x : C. We only do the Q-rule.

Assume Γ � x : ∗ comes from Γ � x : Πi:1..n
xi:Ai

.∗. By IH, there is d in
Γ such that x ≡ var(d), Γ � Πi:1..n

xi:Ai
.∗ : s, Γ � type(d) : s for some

sort s and type(d) ≤β Πi:1..n
xi:Ai

.∗. Since Πi:1..n
xi:Ai

.∗ ≤β ∗, by Corollary 5.1,
type(d) ≤β ∗. By Lemma 14, s ≡ � and Γ � ∗ : �.

3.,4.,5. By induction on the generation Γ � M : C. We only do the new cases:
the Q-rule and the difficult case of �πa

. First the Q-rule in �βQ
.

Assume M ≡ λi:1..m
xi:Ai

.Πi:m+1..k
xi:Ai

.M ′, M ′ is not of the form λx:N1 .N2, C ≡
Πi:1..m

xi:Ai
.∗, m ≤ n and Γ � M : C because Γ � λi:1..k

xi:Ai
.M ′ : Πi:1..n

xi:Ai
.∗.

Write U ≡ λi:1..k
xi:Ai

.M ′ and W ≡ Πi:1..n
xi:Ai

.∗.
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i. M ≡ Πx1:A1 .B. Then m = 0, k > 0, and we used Rule (Q) to derive:

Γ � λi:1..k
xi:Ai

.M ′ : Πi:1..n
xi:Ai

.∗
Γ � Πi:1..k

xi:Ai
.M ′ : ∗

By IH, there are s, B such that Γ, x1:A1 � λi:2..k
xi:Ai

.M ′ : B, Γ � Πx1:A1 .B :
s, and Πx1:A1 .B ≤β Πi:1..n

xi:Ai
.∗ and if Πx1:A1 .B �≡ Πi:1..n

xi:Ai
.∗ then Γ �

Πi:1..n
xi:Ai

.∗ : � (note Lemma 14). By Lemma 14, Γ, x1 : A1 � Πi:2..n
xi:Ai

.∗ : �

and there is s1 such that Γ � A1 : s1 and (s1,�) ∈ R, hence also,
(s1, ∗) ∈ R. By Corollary 5.2, B ≤β Πi:2..n

xi:Ai
.∗. Determine B′ =β B where

B′ ≤ Πi:2..n
xi:Ai

.∗, say B′ ≡ Πi:2..�
xi:Ai

.∗ where l ≥ n and Γ, x1 : A1 � Πi:2..�
xi:Ai

.∗ :
�. By conversion, Γ, x1:A1 � λi:2..k

xi:Ai
.M ′ : Πi:2..�

xi:Ai
.∗, and as M ′ is not of

the form λx:N1 .N2, we can use (Q) and obtain Γ, x1:A1 � Πi:2..k
xi:Ai

.M ′ : ∗.
Since Γ � A1 : s1 and (s1, ∗) ∈ R we are done.

ii. M ≡ λx1:A1 .b. Then k > 0 and b ≡ λi:2..m
xi:Ai

.Πi:m+1..k
xi:Ai

.M ′. By the induc-
tion hypothesis there are s,B such that Γ � Πx1:A1 .B : s, Γ, x1:A1 �
λi:2..k

xi:Ai
.M ′ : B and Πx1:A1 .B ≤β Πi:1..n

xi:Ai
.∗ and if Πi:1..n

xi:Ai
.∗ �≡ Πx1:A1 .B

then Γ � Πi:1..n
xi:Ai

.∗ : � (note Lemma 14). Note that Πx1:A1 .B ≤β

Πi:1..n
xi:Ai

.∗ ≤β Πi:1..m
xi:Ai

.∗, so by Corollary 5.1, Πx1:A1 .B ≤β Πi:1..m
xi:Ai

.∗. Deter-
mine B′ =β Πx1:A1 .B such that B′ ≤ Πi:1..n

xi:Ai
.∗ and Γ � B′ : �. We can

write B′ ≡ Πi:1..�
xi:Ai

.∗ for an  such that m ≤ n ≤ . Distinguish two cases:
* k ≤ m. Then M ≡ λi:1..k

xi:Ai
.M ′, b ≡ λi:2..k

xi:Ai
.M ′ and hence Γ, x1:A1 � b :

B.
* k > m. Then M ≡ λi:1..m

xi:Ai
.Πi:m+1..k

xi:Ai
.M ′. By conversion, Γ, x1:A1 �

λi:2..k
xi:Ai

.M ′ : B′, and as M ′ is not of the form λx:N1 .N2, and m ≤ n ≤ ,
we get by (Q) that Γ, x1:A1 � λi:2..m

xi:Ai
.Πi:m+1..k

xi:Ai
.M ′ : Πi:2..m

xi:Ai
.∗.

iii. M ≡ AB. Then k = m = 0, so U ≡ AB. By induction there are x, P,Q
such that Γ � A : Πx:P .Q, Γ � B : P and Q[x:=B] ≤β W . Notice that
W ≤β C ≡ ∗, so by Corollary 5.1, B ≤β C.
Next we do the case 5(b)ii. of �πa

. By induction on the derivation rules
we first prove that if Γ � (πy:D.E)a : C then one of the following holds:
• Γ, y = a : D � E : H and Γ � H[y := a] =βΠ C and if H[y := a] �≡ C

then Γ � C : s for some s.
• Γ � a : F , Γ � λy:D.E : Πz:F .G, Γ � C =βΠ G[z := a] and if

G[z := a] �≡ C then Γ � C : s for some s.
If the first case holds, then by substitution and thinning, Γ, y = a :
D � H[y := a] =βΠ H and Γ, y = a : D � H[y := a] =βΠ C. Hence,
Γ, y = a : D � H =βΠ C and we use convβΠ to get Γ, y = a : D � E : C.

In the second case, by generation case 3. on Γ � λy:D.E : Πz:F .G we
get Γ, y : D � E : L, Γ � Πy:D.L =βΠ Πz:F .G and if Πy:D.L �≡ Πz:F .G
then Γ � Πz:F .G : s′ for some s′. Hence y = z and Γ � D =βΠ F
and Γ � L =βΠ G. Now, using generation case 4. we prove that Γ, y =
a : D � E : L. Since Γ � C =βΠ G[y := a] we get Γ, y = a : D �
C =βΠ G. Since Γ � L =βΠ G we get Γ, y = a : D � L =βΠ G. Hence,
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Γ, y = a : D � L =βΠ C. We show that Γ, y = a : D � C : s′′ for
some sort s′′. Hence using Γ, y = a : D � E : L and convβΠ , we get
Γ, y = a : D � E : C. �

Proof (Connecting cubes Lemma 22).

1. If Γ �c (Πx:A.B)a : C, then by Lemma 15, ∃A′, B′ such that Γ �c Πx:A.B :
Πy:A′ .B′. Again by Lemma 15, Γ � Πy:A′ .B′ =r s2 for sort s2, contradicting
Church Rosser.
As for the second statement, first show by induction on the derivation Γ, x :
C,Δ �c A : B that if both A and a are free of Π-redexes, Γ, x : C,Δ �c A : B
and Γ �c a : C, then A[x := a] is free of Π-redexes. Then show the statement
by induction on Γ �c A : B.

2. Take for example z : ∗, x : z �πi
(λy:z.y)x : (Πy:z.z)x and hence terms of

the form (Πx:A.B)a can be �πi
-legal. It is the new legal terms that led to

the loss of correctness of types of the πi-cube and hence of subject reduction
because they can not be typable.

3. By induction on Γ �πi
A : B.

4. z : ∗, x : z �c (Πy:z.z)x : ∗ and z : ∗ �c (λy:∗.∗)z : � provide examples.
5. y : ∗ �βa

(λx:∗.∗)y : �.
6. Note that =β⊆=βΠ .

Also, note that z : ∗, x : z �c (Πy:z.z)x : ∗ and z : ∗, x : z �c x : (Πy:z.z)x.
Note also that z : ∗, x : z, y = (Πy:z.z)x : ∗ �c y : ∗.

7. By correctness (resp. restricted correctness) of types, it is enough to show
that if Γ �c Πx:A.B : C then Γ �c Πx:A.B : s. We do this by induction on
the derivation Γ �c Πx:A.B : C.

8. (a) By induction on the derivation Γ �β A : B using the substitution lemma
for the πi-cube and 7 above. (b) By induction on the derivation Γ �πi

A : B.
(c) By (b) Γ �β A : [B]Π . Since B is free of Π-redexes, B = [B]Π and
Γ �β A : B.
(d) Using (a), it is enough to find Γ,A,B such that Γ �πi A : B but Γ ��β

A : B. We know that z : ∗, x : z �πi
(λy:z.y)x : (Πy:z.z)x but by 3 above,

z : ∗, x : z ��β (λy:z.y)x : (Πy:z.z)x.
9. (a) holds since the rules of �β are a subset of the rules of �βa

.
(b) is by induction on Γ �βa

A : B.
(c) holds because the rules of �πi

are a subset of the rules of �πai
. As for

strict inclusion, note that α : ∗ �πai
(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α but

α : ∗ ��πi
(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α since we don’t have y : α.

(d) by induction on Γ �πai
A : B. We only do the i-app rule. Let Γ �πai

Fa : (Πx:A.B)a come from Γ �πai
F : Πx:A.B and Γ �πai

a : A. By IH,
Γ̃ �βa

F̃ : Π̃x:A.B ≡ Πx:Ã.B̃ and Γ̃ �βa
ã : Ã. Hence by app, Γ̃ �βa

F̃ ã :
B̃[x := Ã]. Since Πx:Ã.B̃ is Γ̃�βa -term, by correctness of types, ∃s such
that Γ̃ �βa

Πx:Ã.B̃ : s. Hence by generation, Γ̃ , x : Ã �βa
B̃ : s. Hence

by thinning, Γ̃ , x = ã : Ã �βa
B̃ : s. By letλ, Γ̃ �βa

(λx:Ã.B̃)ã : s. By
convβΠ , Γ̃ �βa

F̃ ã : (λx:Ã.B̃)ã. If F̃ was a Π-term, then by generation,
Γ̃ � Πx:Ã.B̃ =β s2 for some s2 absurd. Hence, F̃ ã ≡ F̃ a.
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10. α : ∗ �βa
(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α (see Example 28). However,

α : ∗ ��β (λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α since we don’t have y : α.
Another way to prove this is to assume α : ∗ �β (λβ:∗.λy:β .(λz:α.z)y)α :
Πy:α.α. Hence, by correctness of types, λβ:∗.λy:β .(λz:α.z)y is (α : ∗)�β -term
and by 9 (a) above it is (α : ∗)�βa -legal, contradicting Example 28.

11. For �β ⊂ �βa
, use 9.(a) and 10. above. For �βa

⊂ �πai
, use 9.(b) above

and this example: z : ∗, x : z �πai
(λy:z.y)x : (Πy:z.z)x but by 1 above,

z : ∗, x : z ��βa
(λy:z.y)x : (Πy:z.z)x.

12. (a) By induction on the derivation Γ �βa
A : B using 6 above.

(b) By induction on the derivation Γ �πa
A : B. we only do the (app)

case. Assume Γ �πa
Fa : B[x := a] comes from Γ �πa

F : Πx:A.B and
Γ �πa

a : A. By IH, Γ �πai
F : Πx:A.B and Γ �πai

a : A and hence
Γ �πai

Fa : (Πx:A.B)a by (i-app). By correctness of types, Γ �πai
Πx:A.B : s

for some s and hence by generation, Γ, x : A �πai
B : s′. Since Γ �πai

a : A
then by substitution lemma, Γ �πai

B[x := a] : s′. Now, since Γ � B[x :=
a] =βΠ (Πx:A.B)a we use (convβΠ) to get Γ �πa

Fa : B[x := a].
(c) Note that z : ∗, x : z �πa

(Πy:z.z)x : ∗ but by 4 above, if Γ �βa
A : B

then all of Γ,A and B are free of Π-redexes.
13. (a) By 1 above, A is free of Π-redexes.

(b) By induction on A →→βΠ A′. Assume A →→n
βΠ A′′ →βΠ A′. By subject

reduction, Γ �π A′′ : B and hence by IH, A →→n
β A′′ and A′′ →β A′. Hence,

A →→β A′.
14. One direction is trivial because every �β-rule is also a �π-rule (for (convr),

note that =β⊆=βΠ). For the other direction, use induction on Γ �π A : B.
We only show the (convr) case. Let Γ �π A : B come from Γ �π A : B′,
Γ �π B′ : s and B =βΠ B′. By Church-Rosser, ∃B′′ such that B′ →→n

βΠ

B′′ ←←βΠ B. By Correctness of types, B ≡ � or ∃s′ such that Γ �π B : s′.
If B ≡ � then B′′ ≡ � and B′ →→n

βΠ �, hence by subject reduction and
Γ �π B′ : s we get Γ �π � : s contradicting 1 above. Hence Γ �π B : s′ and
by 13 above, B →→β B′′. Also, by 13, B′ →→β B′′. Hence, B =β B′. Hence,
by IH and (convr), Γ �β A : B.

15. This is a corollary of item 12 above.
16. a. One direction holds by 12 above. The other direction is by induction on

Γ �πai
A : B. Since every �πai

-rule (except the (i-app) rule) is also a rule
of �πa

, we only deal with the (i-app) case. Assume Γ �πai
Fa : (Πx:A.B)a

comes from Γ �πai
F : Πx:A.B and Γ �πai

a : A. By IH, Γ �πa
F : Πx:A.B

and Γ �πa
a : A and hence by (app), Γ �πa

Fa : B[x := a]. Since Γ �
(Πx:A.B)a =βΠ B[x := a], to derive Γ �πa

Fa : (Πx:A.B)a, it is enough
to show that Γ �πa

(Πx:A.B)a : s for some s. Since Γ �πa
F : Πx:A.B, by

correctness of types, Γ �πa
Πx:A.B : s and by generation, Γ, x : A �πa

B : s′

and Γ �πa
A : s′′. It is easy to show that Γ, x = a : A is legal. Hence, since

Γ, x : A ⊆′ Γ, x = a : A, we can use thinning to get Γ, x = a : A �πa
B : s′.

And so, by (let), Γ �πa
(Πx:A.B)a : s′.

b. �π = �β by 14 above. �β ⊂ �βa
⊂ �πai

by 9 above. �πai
= �πa

by a.
above. �β ⊂ �πi

by 8 above. �πi
⊂ �πai

by 9 above.
c. z : ∗, x : z �πi

(λy:z.y)x : (Πy:z.z)x but z : ∗, x : z ��βa
(λy:z.y)x : (Πy:z.z)x
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by 1 above.
Also, α : ∗ �βa

(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α but
α : ∗ ��πi

(λβ:∗.λy:β .(λz:α.z)y)α : Πy:α.α since we don’t have y : α. �
Proof (Restricted typability of subterms Lemma 27 for �βa

+ →be and �πai
+

→βΠ). We will prove that:

1. If A is �-legal and B is a subterm of A such that every bachelor λx:D in B
is also bachelor in A, then B is �-legal.

2. If A is �πai
-legal and B is a subterm of A such that every bachelor πx:D in

B is also bachelor in A, then B is �πai
-legal.

Let c ∈ {βa, πai}. If Γ �c C : A, then by correctness of types, A ≡ � (and
there is nothing to prove) or Γ �c A : s. Hence, it is enough to prove the lemma
for Γ �c A : C. For 1, we prove this by induction on the derivation that if
Γ �βa

A : C and B is a subterm of A resp. Γ such that every bachelor λx:D

in B is also bachelor in A resp. Γ , then B is �βa
-legal. For 2, we prove this by

induction on the derivation that if Γ �πai
A : C and B is a subterm of A resp.

Γ such that every bachelor πx:D in B is also bachelor in A resp. Γ , then B is
�πai

-legal. �
Proof (Unicity of Types for �βa

+ →β and for �πai
+ →βΠ).

1. By induction on the structure of A using the generation lemma.
2. First, show by Church-Rosser and subject reduction using 1 that:

If Γ �c A1 : B1 and Γ �c A2 : B2 and A1 =c A2, then Γ � B1 =c B2. (*)

Then, define
– [A]〈〉 ≡ A, [A]Γ,x:C ≡ [A]Γ and [A]Γ,x=B:C ≡ [A[x := B]]Γ .
– [x : A]Γ as x : [A]Γ and [x = B : A]Γ as x = [B]Γ : [A]Γ .
– Γ 0 as Γ and Γn as Γ where n elements d1, . . . , dn of Γ have been replaced

by [d1]Γ , . . . , [dn]Γ .
Note that [A]Γ,Γ ′ ≡ [[A]Γ ′ ]Γ , Γ � A =c [A]Γ , and if Γ � A1 =c A2 then
[A1]Γ =c [A2]Γ .
Now prove by induction on Γ �c A : B that:

If Γ �c A : B then Γn �c [A]Γ : [B]Γ and Γn �c A : B

for n ≤ the number of elements in Γ.

Finally, assume Γ �c A1 : B1 and Γ �c A2 : B2 and Γ � A1 =c A2. Then,
Γ �c [A1]Γ : [B1]Γ , Γ �c [A2]Γ : [B2]Γ and [A1]Γ =c [A2]Γ . Hence, by (*),
Γ � [B1]Γ =c [B2]Γ . But, Γ � B1 =c [B1]Γ and Γ � B2 =c [B2]Γ . Hence,
Γ �c B1 =c B2.

3. As Γ �c A : B2, by correctness of types B2 ≡ � or Γ �c B2 : s′ for some s′.
– If Γ �c B2 : s′ then by 2 above, Γ � s =c s′. By the proof of 2 above,

s ≡ [s]Γ =c [s′]Γ ≡ s′. Hence, s ≡ s′ and so, Γ �c B2 : s.
– If B2 ≡ �, we prove that if Γ � A =c � then Γ ��c A : B. If Γ � A =c �

and Γ �c A : B then by the proof of 2 above, [A]Γ =c [�]Γ and Γn �c

[A]Γ : [B]Γ for n ≤ the number of elements in Γ . Hence [A]Γ →→c � and
by SR, Γn �c � : [B]Γ contradicting Lemma 22. �
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Abstract. Santhanam (2007) proved that MA/1 does not have circuits
of size nk. We translate his result to the average-case setting by proving
that there is a constant a such that for any k, there is a language in
AvgMA that cannot be solved by circuits of size nk on more than the
1 − 1

na fraction of inputs.
In order to get rid of the non-uniform advice, we supply the inputs

with the probability threshold that we use to determine the acceptance.
This technique was used by Pervyshev (2007) for proving a time hierarchy
for heuristic computations.

1 Introduction

A widely known counting argument shows that there are Boolean functions that
have no polynomial-size circuits. However, all attempts to prove a superpoly-
nomial lower bound for an explicit function (that is, function in NP) failed so
far.

This challenging problem was attacked in three directions. The most obvious
direction to prove weak lower bounds for specific functions did not yield anything
better than the bound 3n − o(n) [Blu83] (the bound was improved to 5n − o(n)
for circuits in de Morgan basis [ILMR02]). Another direction, to prove strong
lower bounds for restricted classes of circuits yielded exponential bounds for
monotone [Raz85] and bounded-depth circuits [Ajt83,H̊as86], but did not attain
superpolynomial bounds for circuits without such restrictions, and even for de
Morgan formulas (of unrestricted depth).

Yet another way is to prove lower bounds for smaller and smaller complexity
classes (aiming at NP). The exponential lower bound obtained by counting
needs doubly exponential time. Buhrman et al. [BFT98] showed that it can be
also done in MAEXP. A less ambitious goal is to prove lower bounds of the
form nk (for each k), called fixed-polynomial lower bounds. This line of research
was started by Kannan [Kan82] who showed that for each k there is a language
in Σ2P ∩ Π2P that has no circuits of size nk. This was pushed down to S2P
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[Cai01]. However, attempts to push it down further to MA ended up in lower
bounds for the classes PromiseMA and MA/1 [San07] (this results was proven
by techniques previously introduced in works of Barak, Fortnow and Santhanam
[Bar02,FS04]), which are not “normal” classes in the sense that PromiseMA is
a class of promise problems (and not a class of languages), and MA/1 is not a
uniform class.

The obstacle that prevents proving the result for MA is typical for proving
structural results (hierarchy theorems, the existence of complete problems) for
semantic classes: Santhanam’s construction does not always satisfy the bounded-
error condition (the promise) of MA. A similar obstacle was overcome by Per-
vyshev [Per07] for a hierarchy theorem for heuristic bounded-error randomized
computations and many other heuristic classes and by Itsykson [Its09] for the
existence of a AvgBPP-complete problem (though the existence of AvgMA-
complete problems remained open).

In this paper we translate Santhanam’s result to the average-case setting.
Namely, we prove fixed-polynomial circuit lower bounds for AvgMA: there is a
number a > 0 such that for every k, there exists a language L such that

(1) there is a Merlin-Arthur protocol for solving L that is polynomial-time on the
average under the uniform distribution on the inputs, i.e., a Merlin-Arthur
protocol that gets a confidence parameter δ, runs in time polynomial in δ−1

and the size of the input, and correctly (with bounded probability of error)
accepts or rejects a fraction 1 − δ of the inputs and with high probability
returns failure on all other inputs;

(2) no nk-size circuit can solve L on more than a fraction 1 − 1
na of the inputs.

Similarly to Santhanam’s proof, our proof consists of two parts. The easier part is
conditioned on PSPACE ⊆ P/poly, and it follows from the resulting collapses.
The main part is the construction of a hard language based on the assumption
PSPACE �⊆ P/poly. In order to get rid of the non-uniform advice, we supply
the inputs with the probability threshold that we use to determine the accep-
tance. (This technique was used by Pervyshev [Per07] for proving a time hier-
archy for heuristic computations.) It follows that the fraction of the resulting
inputs that have a “bad” threshold is small.

Organization of the paper. In Sect. 2 we give the definitions and recall the
necessary background results. In Sect. 3 we prove the main result and show
possible way to improve this result. Also we highlight some problems that occur
on this way.

2 Definitions

We first introduce some notation.

For two sets S1, S2 ⊆ {0, 1}n denote Δ(S1, S2) = |(S1∪S2)\(S1∩S2)|
2n .

For language L ⊆ {0, 1}∗, denote L=n = L ∩ {0, 1}n.
The characteristic function of L is denoted by L(x).
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The main idea of the proof of our result is to take a hard language that is
self-correctable and instance-checkable, and turn it into a language that has
an AvgMA protocol while remaining sufficiently complex on the average. The
self-correctness property is needed to convert a worst-case hard function into
a function that is hard on the average. The instance checkability is needed to
design a Merlin-Arthur protocol (where Arthur simulates the instance checker
and Merlin sends a circuit family computing the oracle). We now formally define
these two properties.

Definition 1 [TV02]. Let b ∈ Q+. A language L is b-self-correctable if there is
a probabilistic polynomial-time oracle algorithm A (self-corrector for L) such that
for all languages L′ if Δ(L=n, L′=n) < 1

nb , then ∀x ∈ {0, 1}n, Pr[AL′=n

(x) =
L(x)] > 3

4 . We call a language self-correctable if it is b-self-correctable for some
constant b.

This definition informally means that if we have oracle access to a language that
is close enough to L then we can probabilistically decide L in polynomial time.

Definition 2 [TV02]. A language L is f-instance-checkable if there is a prob-
abilistic polynomial-time oracle algorithm M (instance checker for L) such that
for all x ∈ {0, 1}n:

– if x ∈ L then Pr[ML=f(n)
(x) = 1] = 1 (perfect completeness);

– if x �∈ L then for every L′ it holds that Pr[ML′=f(n)
(x) = 1] < 1

2n (correctness).

Definition 3. Denote by U the ensemble of uniform distributions on {0, 1}n (if
|x| = n then Un(x) = 1

2n ).

Also we need to define of classes of languages with restrictions on their circuit
complexity.

Definition 4. 1. Language L is in Size[f(n)] iff there is family of circuits Cn

such that |Cn| < f(n) and for all x ∈ {0, 1}∗ we have C|x|(x) = L(x).
2. Language L is in BPSize[f(n)] iff there is family of randomized circuits Cn

such that |Cn| < f(n) and for all x ∈ {0, 1}∗ we have Pr[C|x|(x) = L(x)] > 3
4

(the probability is taken over the randomness of Cn).
3. Language L is in Heurδ(n)Size[f(n)] iff there is family of circuits Cn such

that |Cn| < f(n) and Pr
x←Un

[C|x|(x) = L(x)] ≥ 1 − δ(n).

4. Language L is in Heurδ(n)BPSize[f(n)] iff there is family of randomized
circuits Cn such that |Cn| < f(n) and Prx←Un

[Pr[C|x|(x) = L(x)] > 3
4 ] ≥

1 − δ(n) (the inner probability is taken over the randomness of Cn).

Lemma 1. For all functions δ : N → [0; 1] and t : N → N,

Heurδ(n)BPSize[t(n)] ⊆ Heurδ(n)Size[poly(n)t(n)].

Proof. A trivial extension of Adleman’s theorem (BPP ⊆ P/poly) yields the
result. 	
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Lemma 2. If language L is a-self-correctable and L ∈ Heur1− 1
na

Size[f(n)],
then L ∈ Size[f(n)poly(n)].

Proof. We transform (in standard way) a Turing machine that computes the
self-corrector of L to a randomized circuit B. We assume that, instead of
making oracle requests, B uses a circuit that heuristically computes L. Hence
L ∈ BPSize[f(n)poly(n)] and L ∈ Size[f(n)poly(n)] by Lemma 1. 	

Classes AvgC make an errorless and “uniform” version of classes Heurδ(n)C:
namely, the “confidence” parameter δ(n) is given to the decision algorithm as
part of the input, and the algorithm is required to work in polynomial time both
in the input size and δ(n)−1. For clarity, we give the definition for the specific
case of Merlin-Arthur protocols.

Definition 5. A language L has a heuristic Merlin-Arthur protocol (in short
L ∈ HeurMA) iff there is a probabilistic algorithm A(x, y, δ) (here x is the
input, y is Merlin’s proof, and δ is the confidence parameter) and a family of
sets {Sn,δ ⊆ {0, 1}n}δ∈Q+,n∈N (large sets of inputs where the protocol behaves
correctly) such that for all n and δ,

– Un(Sn,δ) ≥ 1 − δ,
– A(x, y, δ) runs in time poly(n

δ ), and
– for every x in Sn,δ:

x ∈ L ⇒ ∃y Pr[A(x, y, δ) = 1] >
2
3
,

x �∈ L ⇒ ∀y Pr[A(x, y, δ) = 0] >
2
3
.

A language L has an average-case Merlin-Arthur protocol (in short L ∈
AvgMA) if in addition the following holds: for all x not in Sn,δ, our protocol
either returns “failure” with substantial probability or gives a correct answer:

x ∈ L ⇒ ∃y Pr[A(x, y, δ) = 1] >
2
3

∨ Pr[A(x, y, δ) =⊥] >
1
6
,

x �∈ L ⇒ ∀y Pr[A(x, y, δ) = 0] >
2
3

∨ Pr[A(x, y, δ) =⊥] >
1
6
.

For the first case of our proof we need a PSPACE language with high
heuristic circuit complexity (a collapse will put it into MA).

Lemma 3 [San07]. There is a constant a such that for all k,

PSPACE �⊆ Heur1− 1
na

Size[nk]

For the second case we need a PSPACE-complete language with good proper-
ties.

Lemma 4 [San07]. There exists a PSPACE-complete language that is self-
correctable and n-instance-checkable.
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We need reductions somewhat similar yet different from randomized heuristic
search reductions [BT06]: we do not need polynomial-time computability of the
reduction (we will formulate a specific complexity requirement when needed),
the disjointness of its images for different random strings and the uniformness
of the distribution for each input.

Definition 6. Let L and L′ be two languages, and c : N → R be a function. A
collection of functions fn : {0, 1}n × {0, 1}yn → {0, 1}mn where mn ≥ n is called
a c(n)-heuristic reduction of L to L′ if for all x (|x| = n),

∀x ∈ {0, 1}n∀r ∈ {0, 1}yn L′(fn(x, r)) = L(x), (correctness)

and

∀n ∀S ⊆ {0, 1}n × {0, 1}yn
|fn(S)|
2mn

> c(n)
|S|

2n+yn
(domination)

Lemma 5. For every a > 0 if L′ ∈ Heur1− 1
na+l+1

Size[p(n)] and there is a
d
nl -heuristic reduction of L to L′ computable by circuits of size q(n), then L ∈
Heur1− 1

na
Size[(p(mn) + q(n))poly(n)] (where mn is as in Definition 6 and d is

a constant).

Proof. Let Dn be a q(n)-size circuit that computes the reduction fn, and let Cn

be a circuit that decides L′=n with error 1
na+l+1 . By Lemma 1 it suffices to prove

that for sufficiently large n, Prx[Prr[C(D(x, r)) �= L(x)] ≥ 1
4 ] < 1

na (here and
in what follows C and D stands for Cn and Dn for appropriate n). Assume the
contrary. Then

|{(x, r)|C(D(x, r)) �= L(x)}|
2n+yn

≥ 1
4na

.

However, using the correctness and the domination conditions we get

|{y|C(y) �= L′(y)}|
2mn

≥ |{D(x, r)|C(D(x, r)) �= L′(D(x, r))}|
2mn

= (by correctness)

|{D(x, r)|C(D(x, r)) �= L(x))}|
2mn

≥ (by domination)

d

nl

|{(x, r)|C(D(x, r)) �= L(x)}|
2n+yn

≥
d

4na+l
≥ 1

na+l+1
≥ 1

ma+l+1
n

,

which contradicts the assumption on C. 	


3 Lower Bounds for AvgMA

In order to work in the average-case setting, we need to pay the attention to
the probabilities of the inputs. Because of that, we need a function that encodes
triples without increasing the length too much.
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Definition 7. Denote by 〈·, ·, ·〉 the function from {0, 1}n ×{0, 1}g(n) ×{0, 1}yn

to {0, 1}2 log(n)+n+g(n)+yn+2 defined by 〈x, p, z〉 = n̂11xpz, where ̂x1x2 . . . =
x10x20 . . . and g is a polynomial.

In the following lemma we construct an AvgMA language out of any (pos-
sibly exponential-time) Merlin-Arthur protocol with the intention to decrease
the complexity of the original language. Since padding may bring the result-
ing language out of (Avg)MA, we also supply the input strings with a success
probability threshold p in order to deal with this issue. Later, we will apply this
construction to a PSPACE-hard language.

Lemma 6. For all polynomials g, f , integer k and randomized polynomial-time
algorithm A that receives parameters x, C, z and uses g(|x|) random bits, the
following language

L = {〈x, p, z〉| |p| = g(|x|),∃C Pr[A(x,C, z) = 1] ≥ 0.p ∧ |C| < f(|x|, |z|)}

belongs to AvgMA (hence L ∈ HeurMA).

Proof. Consider the following protocol showing that L ∈ AvgMA.

1. Receive C from Merlin.
If |z| > f(|x|, |z|) return 0.

2. If δ > 1
2g(|x|) then

(a) Run 16
δ2 times A(x,C, z), calculate the fraction q̄ of accepts.

(b) If q̄ ≥ 0.p + δ
4 then return 1;

(c) if q̄ ≤ 0.p − δ
4 then return 0;

(d) else return ⊥.
3. If δ ≤ 1

2g(|x|) then
(a) Evaluate q = Pr[A(x,C, z) = 1] by running A(x,C, z) on all possible

random bits.
(b) If q ≥ 0.p then return 1 else return 0.

Let us show that the size of the set Sn,δ where the protocol succeeds is large
enough. If δ ≤ 1

2g(|x|) , the protocol always works correctly. Otherwise put Sn,δ =
{〈x, p, z〉 ∈ {0, 1}n| |q(x, z) − 0.p| > δ

2} (note that Sn,δ ≥ 1 − δ), where q(x, z) =
maxz Pr[A(x,C, z) = 1]. Let q(x,C, z) = Pr[A(x,C, z) = 1]. If x ∈ Sn,δ then
consider the two possible cases:

1. 〈x, p, z〉 ∈ L : if Merlin sends C such that Pr[A(x,C, z) = 1] > 0.p + δ
2 ,

then by Chernoff bound Arthur rejects with probability Pr[q̄ < 0.p − δ
4 ] <

2e−2 δ2
4

16
δ2 = 2e−8 < 1

3 ;

2. 〈x, p, z〉 �∈ L : for all C we have that Pr[A(x,C,Z)] < 0.p − δ
2 , hence by

Chernoff bound Arthur accepts with probability Pr[q̄ > 0.p+ δ
4 ] < 2e−2 δ2

4
16
δ2 =

2e−8 < 1
3 .
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Otherwise, if x �∈ Sn,δ, then again consider the two possible cases:

1. 〈x, p, z〉 ∈ L : if Merlin sends C such that Pr[A(x,C, z) = 1] > 0.p, then by

Chernoff bound Arthur rejects with probability Pr[q̄ ≤ 0.p − δ
4 ] < 2e−8 < 1

6 ,
hence if Arthur accepts with probability Pr[q̄ ≥ 0.p + δ

4 ] ≤ 2
3 , then Arthur

returns ⊥ with probability Pr[|q̄ − 0.p| < δ
4 ] > 1

6 ;
2. 〈x, p, z〉 �∈ L : for all C we have that Pr[A(x,C, z) = 1] ≤ 0.p. Then by

Chernoff bound Arthur accepts with probability Pr[q̄ ≥ 0.p + δ
4 ] < 2e−8 < 1

6 ,
hence if Arthur rejects with probability Pr[q̄ ≥ 0.p − δ

4 ] ≤ 2
3 , then Arthur

returns ⊥ with probability Pr[|q̄ − 0.p| < δ
4 ] > 1

6 . 	

Lemma 7. If PSPACE ⊆ P/poly then there is constant a > 0 such that for
all k we have that MA �⊆ Heur1− 1

na
Size[nk].

Proof. It is well-known that PSPACE ⊆ P/poly implies MA = PSPACE
(because the prover in the interactive protocol for QBF [Sha90] can be replaced
by a family of circuits provided by Merlin). Then Lemma3 gives a language in
MA that has a high heuristic complexity w.r.t. the uniform distribution. 	

Theorem 1. There is a constant a > 0 such that for all k ∈ Q+,

AvgMA �⊆ Heur1− 1
na

Size[nk].

Proof. Let L be as in Lemma 4 and M be its instance checker (Definition 2).
Fix any k ∈ Q+. Assume that M uses g(n) random bits for n-bit inputs. If
L ∈ P/poly then PSPACE ⊆ P/poly, and Lemma 6 implies the theorem
claim.

Assume now that L �∈ P/poly. We will pad it to bring the language from
PSPACE down to polynomial complexity while keeping it above the complexity
nk. We will also supply the inputs with the number that we will use as the
acceptance threshold for the instance checker. Namely, consider the language

L′ = {〈x, p, z〉| |p| = g(|x|),
∃ circuit C Pr[MC(x) = 1] ≥ 0.p ∧ |C| < (|z| + 1)k+1}.

Remark: Note that if we drop the requirement on the size of C, put p = 2g(|x|)

and let C be the circuit for L, then we will obtain a padded version of L (by
perfect completeness of instance-checker).

It is easy to see that by Lemma 6 L′ ∈ AvgMA.
We now turn to proving that L′ �∈ Heur1− 1

na
Size[nk].

Let b be such a constant that L is b-self-correctable. Let a = b + 3. Assume,
for the sake of contradiction, that L′ ∈ Heur1− 1

na
Size[nk]. Let s(n) be the worst-

case circuit complexity of L and let yn be such that yk+1
n ≤ s(n) < (yn + 1)k+1.

Consider fn : {0, 1}n × {0, 1}g(n)+yn−1 → {0, 1}2 log(n)+2+n+g(n)+yn such that
fn(x, r1r2) = 〈x, 1r1, r2〉, where |r1| = g(|x|)−1 and |r2| = yn. Let us prove that
fn is a 1

8n2 -heuristic reduction from L to L′.
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– The domination condition holds because the encodings of triplets form a 1
4n2

fraction of the set of all strings and because we fix only the first bit in the
second part of the triplet.

– The correctness condition is satisfied for x ∈ L since there is a circuit for L
with size between yk+1

n and (yn + 1)k+1, hence by perfect completeness of
instance checker for all r1, 〈x, 1r1, r2〉 ∈ L′.
For x �∈ L, there are no circuits that force the instance checker to accept
x with probability more than 1

2n (note that by fixing the first bit of the
second part of the triplet to 1 we require the probability more than 1

2 ).
Hence 〈x, 1r1, r2〉 �∈ L′

So Lemma 5 for l = 2 and d = 1
8 implies L ∈ Heur1− 1

nb
Size[((yn + g(n) +

2 log(n) + n + 2)k + (n + g(n) + yn + 2 log(n) + 2))poly(n)]. Since L is b-
self-correctable, by Lemma 2 we have L ∈ Size[(n + yn + g(n) + 2 log(n) +
2)kpoly(n)] ⊆ Size[yk

npoly(n)]. Hence yk+1
n < s(n) < yk

npoly(n) and hence yn

is bounded by a polynomial. Therefore L ∈ P/poly; contradiction with our
assumption. 	


4 HeurAM, HeurNP, and Obstacles

Itsykson and Sokolov [IS14] show that AM languages can be derandomized by
adding a padding and switching to the heuristic setting. Let q be a polyno-
mial, for every language L denote by padq(L) the language {(x, r)|x ∈ L, r ∈
{0, 1}∗, |r| ≥ q(|x|)}.

Definition 8. – A language L is in HeurNP iff there is an algorithm
A(x, y, δ) (here x is the input, y is a witness, and δ is the confidence para-
meter) and a family of sets {Sn,δ ⊆ {0, 1}n}δ∈Q+,n∈N (large sets of inputs
where the algorithm behaves correctly) such that for all n and δ,
• Un(Sn,δ) ≥ 1 − δ,
• A(x, y, δ) runs in time poly(n

δ ), and
• for every x in Sn,δ:

x ∈ L ⇒ ∃y A(x, y, δ) = 1,

x �∈ L ⇒ ∀y A(x, y, δ) = 0.

– A language L is in Heurδ(n)NP iff there is an algorithm A(x, y) (here x is
the input and y is a witness) and a family of sets {Sn ⊆ {0, 1}n}n∈N (large
sets of inputs where the algorithm behaves correctly) such that for all n,
• Un(Sn) ≥ 1 − δ(n),
• A(x, y) runs in time poly(n), and
• for every x in Sn:

x ∈ L ⇒ ∃y A(x, y) = 1,

x �∈ L ⇒ ∀y A(x, y) = 0.



Circuit Lower Bounds for Average-Case MA 291

Theorem 2 [IS14]. For every language L ∈ AM there is a polynomial g such
that padg(L) ∈ HeurNP.

One can easily see that the proof of this theorem goes without changes for
L ∈ HeurAM yielding the following result.

Theorem 3. Consider L ∈ HeurAM. Then for every a there is a polynomial
g such that padg(L) ∈ Heur 1

na
NP. Furthermore if heuristic Arthur-Merlin pro-

tocol for L uses t(n) random bits (for the confidence parameter δ = 1
na ), then

g(n) ≤ poly(t(n)).

We have changed HeurNP to Heur 1
na

NP since the number of random bits used
by protocol depends on the confidence.

Our lower bounds for HeurMA imply lower bounds for HeurAM since
HeurMA ⊆ HeurAM, that suggests Theorem 3 as a possible line of attack
on HeurNP lower bounds, which would have far-fetched consequences.

Conjecture 1. There is a polynomial p such that if there is a heuristic Merlin-
Arthur protocol for L that on inputs of length n and confidence δ uses q(n, δ)
random bits (q is polynomial) then there is heuristic Arthur-Merlin protocol
using p(q(n, δ), n, δ) random bits.

Note that the polynomial p in this conjecture does not depend on the protocol
while in the standard proof of the inclusion of MA to AM this polynomial
depends on the length of Merlin’s proof.

Theorem 4. If Conjecture 1 is true, then there is a > 0 such that for all k ∈ Q+,

HeurNP �⊆ Heur 1
na

Size[nk].

However, the following simple observation is easy to see:

Theorem 5. If for any a > 0 and k ∈ Q+ we have that HeurNP �⊆
Heur 1

na
Size[nk], then NP �⊆ Size[nk].

Proof. Consider a language L such that L �∈ Heur1− 1
na

Size[nk] and L ∈
HeurNP. Let M be a nondeterministic machine that decides L in HeurNP.
Define L′ = {x ∈ {0, 1}∗|∃y ∈ {0, 1}∗ M(x, y, 1

na ) = 1}.
Note that Δ(L,L′) ≤ 1

na , L �∈ Heur 1
na

Size[nk] and L ∈ NP. Hence L′ �∈
Size[nk] but L′ ∈ NP. 	

Hence the following Corollary holds.

Corollary 1. If Conjecture 1 is true then we have that NP �⊆ Size[nk] for all
k ∈ Q+.

It is known from work of [AW09] that PromiseMA �⊆ Size[nk] is algebriz-
ing and NP �⊆ Size[nk] is not. However, it is not known that HeurMA �⊆
Heur 1

na
Size[nk] is algebrizing or not. Hence it is interesting to find an obstacles

in this way and in the rest of this paper we try to prove that a Conjecture 1
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is non-relativizable. All known proofs of MA ⊆ AM use amplification (that is
repetition of the protocol) of the probability of success, resulting protocols use
the number of random bits proportional to the length of Merlin’s proof. Hence
in the rest of the proof we argue that repetition is necessary for the simulation
of MA protocols by AM protocols

Definition 9. Let f : {0, 1}∗ → {0, 1}, k ∈ N. We say that L ∈ AMf [k] if and
only if there is an oracle probabilistic algorithm A•(x, y, r) (Arthur) such that

– for every x, C and r, Arthur makes at most k queries to the oracle,
– for all x ∈ {0, 1}n

x ∈ L ⇒ Pr
r

[∃C Af (x,C, r) = 1] = 1

x �∈ L ⇒ Pr
r

[∃C Af (x,C, r) = 1] ≤ 1
2
,

– for every x, C and r, Arthur makes at most k queries to the oracle,
– A(x,C, r) runs in time poly(|x|).

Definition 10. Let f : {0, 1}∗ → {0, 1}, k ∈ N. We say that L ∈ MAf [k] if and
only if there is an oracle probabilistic algorithm A•(x, y, r) (Arthur) such that

– for every x, C and r, Arthur makes at most k queries to the oracle,
– for all x ∈ {0, 1}n

x ∈ L ⇒ ∃C Pr
r

[Af (x,C, r) = 1] = 1

x �∈ L ⇒ ∀C Pr
r

[Af (x,C, r) = 1] ≤ 1
2

– A(x,C, r) runs in time poly(|x|).

Theorem 6. There is f such that MAf [1] �⊆ AMf [1].

Since we cannot iterate AMf [1] protocol this Theorem indirectly explain why
repetitions is necessary.

Let f : N × {0, 1} × {0, 1} → {0, 1}. Denote by Lf the language {0n|∃y ∈
{0, 1} f(n, y, 0) = f(n, y, 1)}.

Lemma 8. For any f , language Lf ∈ MAf [1].

Proof. Consider the following algorithm for Arthur: Arthur receives y and z
from Merlin. Take random r ∈ {0, 1} and check that z = f(0n, y, r). Obviously if
0n ∈ Lf , then the error probability is 0 and if 0n �∈ Lf , then the error probability
is at most 1

2 . 	
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Lemma 9. There is f such that Lf �∈ AMf [1].

Proof. We enumerate all polynomial-time oracle machines A•
i that can be used

as Arthur. We assume that A•
i has a polynomial-time alarm clock pi. Let n1 = 1

and ni+1 = pi(ni) + 1. Note that A•
i on inputs of length ni makes oracle queries

to inputs with length less than ni+1. We say that A•
i has no false negatives

on f if
0ni ∈ Lf ⇒ ∃C Pr

r
[Af

i (0ni , C, r) = 1] = 1

and has no false positives on f if

0ni �∈ Lf ⇒ ∀C Pr
r

[Af
i (0ni , C, r) = 1] ≤ 1

2
.

For every n �= ni, every y and b, we define f(n, y, b) = b (i.e. Lf ⊆ {0ni |i ∈ N}).
We show that there exists f such that for all n it holds that A•

n works incorrectly
on f (does not satisfy the promise or gives an incorrect answer). We construct
f consequently for each length. More precisely, we construct the sequence of
functions fi : N × {0, 1} × {0, 1} → {0, 1} such that f−1(n, y, b) = b, for every
i ≥ 0 and n < ni we have that fi(n, y, b) = fi−1(n, y, b) and A•

i has false negatives
or positives on fi. For any i ≥ 0 and n < ni we define f(n, y, b) = fi(n, y, b).

We prove the existence of fi. Assume to the contrary that for every h : N ×
{0, 1} × {0, 1} → {0, 1} such that for every i ≥ 0, n < ni, y ∈ {0, 1}, and
b ∈ {0, 1} we have that h(n, y, b) = fi−1(n, y, b) A•

i has no false negatives or
positives on h. For every y ∈ {0, 1} consider gy such that for every z it holds
that gy(ni, y, z) = 0, for all z ∈ {0, 1} we have that gy(ni, 1 − y, z) = z, and
gy(n, y, b) = fi−1(n, y, b) when n �= ni for all b ∈ {0, 1}. Since A•

i has no false
negative on gy, for every r, y and i, there is Cr

y such that A
gy

i (0ni , Cr
y , r) = 1.

Note that for every j and y, A•
i (0

ni , Cr
y , r) queries the oracle at (0n, y, j) with

probability at least 1
2 . Indeed, otherwise Arthur has a false positive (with the

certificate Cr
y) on the function g (almost equal to gy except the point (ni, y, j))

such that

g(ni, t, z) = z for t �= y,

g(ni, y, j) = 1,

g(ni, y, 1 − j) = 0

since Pr[Ag
i (0

ni , Cr
y , r) = 1] ≥ Pr[Af

i does not query (0ni , y, j)] > 1
2 , which con-

tradicts 0ni �∈ Lg.
Let Ry,j = {r | A•

i (0
ni , Cr

y , r) queries value at (0ni , y, j)}. The argument
above shows that for any y and j, Pr[Ry,j ] = 1

2 . We now show that R0,j0 = R1,j1

for all j0, j1 ∈ {0, 1}.
Assume, for the sake of contradiction, that this is not the case. Consider g

such that it is something in between g0 and g1:

g(ni, 0, j0) = 0,

g(ni, 0, 1 − j0) = 1,

g(ni, 1, j1) = 0,

g(ni, 1, 1 − j1) = 1.
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On this function Arthur has false positives: Merlin can send Cr
y when r ∈

Ry,jy
, and thus

Pr[∃C Ag(0ni , C, r) = 1] ≥ Pr
r

[∃y Ag(0ni , Cr
y , r) = 1] ≥ Pr[R0,j0 ∪ R1,j1 ] >

1
2
.

Contradiction.
Hence R0,0 = R1,0 = R0,1, but it is impossible, since for every y, Ry,0 ∩

Ry,1 = ∅.
Therefore, there exists fi such that Afi

i works incorrectly on length ni. 	

Remark 1. Note that the result of Theorem 6 holds even if we do not restrict
AM to polynomial time.

Further Directions

All previous results in the same direction are closed under complement (for
example, Santhanam’s lower bound [San07] for MA/1 is actually a lower bound
for (MA∩co − MA)/1). It would be interesting to strengthen the result of this
paper to a lower bound for AvgMA ∩ Avg co − MA.

Another open question is to replace in Theorem 1 the confidence parameter
1 − 1

na by 1
2 + 1

na (possibly for every a > 0).
Switching to AM(= BP · NP) and decreasing the number of random bits

in the protocol would derandomize Theorem1 down to heuristic NP and lead
consequently to the lower bound NP �⊆ Size[nk] for classical computations.
However, as shown in Sect. 3, this needs non-relativizable techniques.

Acknowledgments. The author is grateful to Edward A. Hirsch for bringing the
problem to his attention, to Dmitry Itsykson and anonymous referees for their com-
ments that significantly improved the (initially unreadable) presentation.
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Abstract. We prove a version of a “Reverse Newman Theorem” in
information complexity: every private-coin communication protocol with
information complexity I and communication complexity C can be con-
verted into a public-coin protocol with the same behavior so that it’s

information complexity does not exceed O
(√

IC
)
. “Same behavior”

means that the transcripts of these two protocols are identically dis-
tributed on each pair of inputs. Such a conversion was previously known
only for one-way protocols. Our result provides a new proof for the best-
known compression theorem in Information Complexity.

1 Introduction

Information complexity of a communication protocol π, denoted by ICμ(π), is
the amount of information Alice and Bob reveal to each other about their inputs
while running π under the assumption that their input pairs are distributed
according μ. Information complexity is used foremost in studying the Direct-
Sum problem. Let us start with appropriate definitions.

Fix a small constant ε. Suppose that we are given a function f : X × Y →
{0, 1} and probability distribution μ on the set X × Y, where X is the set of
Alice’s inputs and Y is the set of Bob’s inputs. The deterministic distributional
complexity Dμ

ε (f) is defined as

Dμ
ε (f) = min

π
CC(π),

where CC(π) stands for the worst case communication complexity (i.e. the
height) of π and minimum is taken over all deterministic communication proto-
cols π which compute f(x, y) on a random input pair, distribute according to
μ, with error probability at most ε. Now imagine, that Alice and Bob have to
compute n copies of f in parallel: Alice receives n input x’s, x1, . . . , xn and Bob
n input y’s, y1, . . . , yn, where the pairs (xi, yi) are independent on each other and
distributed according to μ. In other words, they have to compute the function
fn : (X × Y)n → {0, 1}n with input pairs distributed according to probability
distribution μn on the set (X × Y)n, which are defined as follows:

fn ((x1, y1), . . . , (xn, yn)) = (f(x1, y1), . . . , f(xn, yn)) ,

μn ((x1, y1), . . . , (xn, yn)) = μ(x1, y1) × . . . × μ(xn, yn).
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 296–309, 2015.
DOI: 10.1007/978-3-319-20297-6 19
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This function has also its distributional communication complexity. However
we are interested not in protocols computing fn with error probability at most ε
with respect to μn, but rather in protocols that compute each coordinate of fn

with error probability at most ε. That is, we consider deterministic communi-
cation protocols π which output n bits π1(x, y), . . . , πn(x, y) such that for every
i the following holds: μn{(x, y) |πi(x, y) �= f(xi, yi)} ≤ ε. Then we consider the
value

Dn,μn

ε (fn) = min
π

CC(π),

where minimum ranges over all such protocols.
The definitions imply that Dn,μn

ε (fn) ≤ nDμ
ε (f) (apply the protocol witness-

ing Dμ
ε (f) to compute each coordinate of fn). The Direct-Sum question asks how

close are Dn,μn

ε (fn) and nDμ
ε (f).

In an attempt to prove the opposite inequality Dn,μn

ε (fn) ≥ nDμ
ε (f) we can

start with converting the protocol π witnessing Dn,μn

ε (fn) into a randomized pro-
tocol τ using the technique described in [2]. The converted protocol τ computes
f with error probability at most ε (probability is taken with respect to the
product distribution of μ and the distribution over the inner randomness of the
protocol). Also τ satisfies the inequality ICμ(τ) ≤ CC(π)/n, CC(τ) ≤ CC(π).
Assume now that any randomized protocol with communication complexity C,
information complexity I and error probability ε can be converted into a random-
ized protocol with communication complexity φ(I, C, ε, δ) computing the same
function with error probability δ. Here φ(I, C, ε, δ) is a certain function. Apply-
ing this conversion to the protocol τ we would obtain a randomized protocol
with communication complexity

φ

(
Dn,μn

ε (fn)
n

,Dn,μn

ε (fn), ε, δ
)

computing f with error probability δ. Using Yao’s principle we then can convert
that randomized protocol to a deterministic one with the same communication
complexity and error probability (Fig. 1).

Thus we are interested in “compression theorems” of the following form

Fig. 1. Compression statement for φ

There are several compression theorems. The first one was proved in [1]:

Theorem 1. Compression statement holds for φ(I, C, ε, δ) = O
(√

IC log(C/ρ)
ρ

)
,

where ρ = δ − ε.
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This compression theorem implies that

Dμ
ε+ρ(f) = O

(
Dn,μn

ε (fn) log(Dn,μn

ε (fn)/ρ)
ρ
√

n

)
.

In the above discussion we assumed that randomized protocols are allowed
to use both private and public randomness. For protocols that use only public
randomness there is a better compression theorem

Theorem 2 [4,7]. Compression statement holds for public-coin protocols with
φ(I, C, ε, δ) = O(I log(C/ρ)

ρ ), where ρ = δ − ε.

Unfortunately the randomized protocol τ mentioned above uses both public
and private coins. Thus to benefit this theorem we have to convert the protocol
τ into a protocol that uses public randomness only. It should be noted here that
for Information Complexity private coins are more powerful than public coins.
In contrast, for Communication Complexity the situation is the opposite: public
coins are more powerful than private coins, but not very much: by Newman’s
theorem [6] every public coin randomized protocol can be converted to a private
coin protocol at the expense of increasing the error probability by δ and com-
munication complexity by O(log(n/δ)) (for any δ and for inputs of length n).
We need a “reverse Newman theorem” for Information complexity, that is, a
theorem stating that every private-coin protocol τ can be converted to a public-
coin protocol τ ′ at the expense of increasing slightly the error probability and
information complexity. Notice that we cannot covert τ to τ ′ just making private
randomness publicly known. For example, assume that according to τ Alice sends
to Bob the bit-wise XOR of her input x and privately chosen random string r.
Bob obtains no information about Alice’s input from that message. However if r
is chosen publicly then Bob gets to know Alice’s input.

We say that two protocols are distributional-equivalent if they are defined
on the same input space X × Y and for every (x, y) ∈ X × Y their transcripts,
conditioned on (x, y), have the same probability distribution. Our contribution
is the following:

Theorem 3. For every private-coin protocol π there exists a public-coin protocol
τ which is distributional-equivalent to π (in particular, CC(τ) = CC(π)) such
that for every distribution μ the following holds:

ICμ(τ) = O

(√
ICμ(π)CC(π)

)
.

The constant hidden in O-notation is an absolute constant.

Previously better conversions were known but only for bounded-round pro-
tocols. Namely, [4] establishes the conversion ICμ(τ) = ICμ(π) + O(log(nl)) for
protocols running in constant number of rounds. Here n is the length of input
and l is the length of randomness. And [3] proves a tight upper bound for one-
way protocols: ICμ(τ) ≤ ICμ(π) + log ICμ(π) + O(1). In both results μ denotes
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arbitrary probability distribution, π denotes the given private-coin communica-
tion protocol π and τ the constructed public-coin communication protocol τ ,
which is distributional-equivalent to π and does not depend on μ.

Our result provides a new proof of Theorem1: given a protocol α with com-
munication complexity C and information complexity I we first convert it into
a public-coin protocol with information complexity O(

√
IC). The communica-

tion complexity does not change, as the new protocol has the same distribution
over transcripts than the original one. Then we apply Theorem2 to the resulting
public-coin protocol.

Notice that Theorem 1 (as well as any other compression theorem) implies a
“reverse Newman theorem”: every private-coin protocol τ with information com-
plexity I, communication complexity C and error probability ε can be converted
to a public-coin protocol τ ′ with information complexity O(

√
IC log C) and error

probability, for example, 2ε. Indeed, information complexity of any public-coin
protocol does not exceed its communication complexity and we can consider the
protocol existing by Theorem 1 as public-coin protocol (recall that for communi-
cation complexity public coins are at least as powerful as private coins). However
the bound O(

√
IC log C) obtained in this way is log C larger than our bound.

Besides the resulting public-coin protocol is not distributional-equivalent to the
original one.

Our technique is not novice. The key fact is the relation between the sta-
tistical distance between Alice’s and Bob’s distributions of each bit sent in the
protocol and the information revealed by sending that bit. This relation is estab-
lished using Pinsker’s inequality. It is worth to note that in the original proof
of Theorem 1 the same idea is used to estimate the error probability of the con-
verted protocol.

2 Preliminaries

Base 2 logarithms are denoted by log and natural logarithms by ln.

2.1 Information Theory

We use the standard notion of Shannon entropy; if X is a random variable taking
values in the set X , then:

H(X) =
∑

x∈X
Pr[X = x] log

(
1

Pr[X = x]

)
.

By definition 0 log 0 = 0.
Assume that X,Y are jointly distributed random variables. Then the condi-

tional Shannon entropy H(X|Y ) is defined as H(X|Y ) = Ey←Y H(X|Y = y).
Here X|Y = y denotes the random variable whose distribution is equal to the
distribution of X conditioned on the event Y = y and Ey←Y stands for the
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expectation over y with respect to the marginal distribution of Y . It is easy to
show that

H(X|Y ) = H(X,Y ) − H(Y ).

Mutual information between jointly distributed random variables is defined
as follows:

I(X : Y ) = H(X) − H(X|Y ).

Mutual information is symmetric: I(X : Y ) = I(Y : X); this follows from the
above equality H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).

For a triple X,Y,Z of jointly distributed random variables we can consider
conditional mutual information defined in a similar way:

I(X : Y |Z) = H(X|Z) − H(X|Y,Z).

Here H(X|Y,Z) is an abbreviation for H(X|(Y,Z)). Entropy and the mutual
information satisfy the chain rule:

Proposition 1 (Chain Rule).

H(X1, . . . , Xn) = H(X1) +
n∑

i=2

H(Xi|X1, . . . , Xi−1),

I(X1, . . . , Xn : Y ) = I(X1 : Y ) +
n∑

i=2

I(Xi : Y |X1, . . . , Xi−1).

Chain rule holds also for conditional entropy and conditional mutual information.
Let P , Q denote probability distributions on a finite set W . We consider

two quantities that measure dissimilarity between P and Q: total variation, or
statistical difference:

δ(P,Q) = sup
A⊂W

|P{A} − Q{A}|,

and the information divergence, or Kullback-Leibler divergence:

DKL(P ||Q) =
∑

w∈W

P (w) log
(

P (w)
Q(w)

)
.

We will use the following well-known inequality:

Proposition 2 (Pinsker’s Inequality).

δ(P,Q) ≤
√

DKL(P ||Q)
2

.

Mutual information between two joint distributed random variables can be
expressed in terms of Kullback-Leibler divergence.
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Proposition 3. If Q is the distribution of Y and Px is the distribution of Y
conditioned on the event X = x, then

I(X : Y ) = Ex←XDKL(Px||Q).

When α is a real number between 0 and 1 we use denote by H(α) the entropy of
a random variable ξ with two possible values {w1, w2} such that Pr[ξ = w1] = α:

H(α) = α log
(

1
α

)
+ (1 − α) log

(
1

1 − α

)
.

We will use the following fact:

Fact 1. If α ≤ 1
2 , then H(α) ≤ 2α log

(
1
α

)
.

Proof. It is sufficient to show that (1 − α) log
(

1
1−α

)
≤ α log

(
1
α

)
for all α ≤ 1

2 .

To this end consider the function f(α) = α log
(
1
α

) − (1 − α) log
(

1
1−α

)
. The

derivative of this function equals

f ′(α) =
1

ln(2)

(
ln

(
1

α(1 − α)

)
− 2

)
.

The equation α(1−α) = 1/e2 has two different roots α0 < α1 and the derivative
is negative for all α between the roots and positive outside. For α = 1/2 the
derivative is negative thus the function f increases on [0, α0], and decreases on
[α0,

1
2 ]. Since f(0) = f( 12 ) = 0 this implies that f(α) ≥ 0 for all α ∈ [0, 1

2 ]. �	

2.2 Communication Protocols

The definition of a deterministic communication protocol. A deterministic pro-
tocol to compute a function f : X × Y → Z is specified by a functions
δ : {0, 1}∗ → {A,B} ∪ Z, indicating the turn to communicate and the out-
put when communication is over and functions p : X × δ−1({A}) → {0, 1},
q : Y × δ−1({B}) → {0, 1}, which instruct Alice and Bob how to communicate.

Figure 2 shows how the protocol specified by δ, p, q is performed.

Fig. 2. Running a deterministic communication protocol.

The length of the transcript at the end of the protocol is called the communi-
cation length of the protocol for that pair. The maximal communication length



302 A. Kozachinskiy

(over all input pairs) is called the communication complexity of the protocol π,
denoted by CC(π).

We say that a deterministic protocol computes the function f if for all input
pairs x, y the protocol outputs f(x, y).

The definition of a randomized communication protocol. A randomized pro-
tocol is defined similarly to deterministic protocols. However this time functions
p and q are “random functions”. That is, Alice has a random variable RA and
Bob has a random variable RB taking values in some sets U, V ; the function
p maps X × {0, 1}∗ × U to {0, 1} and the function q maps Y × {0, 1}∗ × V to
{0, 1}. At the start protocol Alice and Bob sample RA and RB and then both
act deterministically, using the functions p(·, ·, RA) and q(·, ·, RB), respectively.

The transcript occurred in a randomized protocol depends not only on the
inputs of Alice and Bob but also on their randomness: for each input pair x, y the
transcript is a random variable. The maximum length of the transcript that can
occur with positive probability for a specific input pair is called communication
length of the protocol for that pair (it may be infinite). The maximal commu-
nication length (over all input pairs) is called the communication complexity of
the protocol π, denoted by CC(π).

We say that a randomized protocol π computes the function f with error
probability ε if for all input pairs x, y with probability at least 1 − ε it happens
that π outputs f(x, y) on input pair (x, y).

Whether a randomized protocol is private-coin or public coin depends on the
joint probability distribution of the random variables RA, RB . If the random
variables RA and RB are independent then the protocol is called private-coin.
In a private-coin protocol each party gets know the bits sent by the other party
but does not know the randomness that has caused sending those bits.

If RA = RB, that is, Alice and Bob use the same randomness, then the
protocol is called public-coin. The common value of RA and RB is denoted by R
and is called shared or public randomness. One can consider also an intermediate
case: RA and RB are dependent but do not coincide. We will not need such
protocols in this paper.

Every private-coin protocol π with randomness RA, RB can be converted into
a public-coin protocol with shared randomness equal to the pair (RA, RB). The
communication complexity and error probability of this public-coin protocol are
the same as those of the original private-coin protocol. Moreover, the resulting
protocol is distributionally equivalent to the original one. A similar conversion in
the other direction is impossible. This means that with respect to communication
complexity public coins are more powerful than private coins.

2.3 Information Complexity

The information complexity of a randomized protocol π with respect to a prob-
ability distribution μ over input pairs is defined by the formula

ICμ(π) = I(X : Π,RB | Y ) + I(Y : Π,RA | X)

= I(X : Π | RB, Y ) + I(Y : Π | RA,X).
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Here X,Y,Π,RA, RB denote jointly distributed random variables, where RA, RB

are Alice’s and Bob’s randomness, (X,Y ) is a random pair of inputs drawn
according to μ and Π is the transcript of the protocol for those X,Y,RA, RB.
So Π is a deterministic function of the other variables. The pair of variables
(RA, RB) is independent from the pair (X,Y ).

In this formula, I(X : Π,RB | Y ) accounts of the information about Alice’s
input revealed to Bob by running the protocol and I(Y : Π,RA | X) accounts
of the information about Bob’s input revealed to Alice by running the protocol
The two expressions for information complexity are the same, and moreover,

I(X : Π,RB | Y ) = I(X : Π | Y,RB), I(Y : Π,RA | X) = I(Y : Π | X,RA).

Indeed, X and RB are independent conditional to Y and Y and RA are inde-
pendent conditional to X.

Lemma 1. For private-coin protocols, we have I(X : Π|RB, Y ) = I(X : Π|Y )
and I(Y : Π|RA,X) = I(Y : Π|X).

Proof. Indeed, the difference between the former two quantities can be written as

I(X : Π|RB , Y ) − I(X : Π|Y ) = I(X : RB|Π,Y ) − I(X : RB|Y ). (1)

This equality can be verified by expressing all its terms through unconditional
entropy. Both terms in the right hand side of (1) are zeros. Indeed, by definition
X and RB are independent conditional to Y .

Also X and RB are independent conditional to Y,Π. This is not obvious and
follows from the rectangle property of deterministic protocols: for each s ∈ O
the set of all pairs of inputs that produce the transcript s is a combinatorial
rectangle, that is, a Cartesian product of some sets (see [5]). This implies that
for any randomized protocol the set of all pairs 〈(x, rA), (y, rB)〉 that produce a
certain transcript s is a combinatorial rectangle, too.

Fix s and y. By definition, the random variables (X,RA) and (Y,RB) are
independent conditional to the event Y = y. The condition “X,RA, Y,RB pro-
duce s” means that 〈(X,RA), (Y,RB)〉 belongs to some rectangle P ×Q. Adding
such a condition to the condition Y = y does not make (X,RA) and (Y,RB)
dependent. Therefore, (X,RA) and (Y,RB) and hence X and RB are indepen-
dent conditional to (Π,Y ). �	
For public-coin protocols the formula of informational complexity becomes

ICμ(π) = I(X : Π,R|Y ) + I(Y : Π,R|X),

where R stands for the shared randomness.

Lemma 2. For public-coin protocols,

ICμ(π) = H(Π|R, Y ) + H(Π|R,X).
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Proof. Indeed, we have

I(X : Π,R|Y ) = H(Π,R|Y ) − H(Π,R|X,Y )
= H(Π|R, Y ) + H(R|Y ) − H(Π|R,X, Y ) − H(R|X,Y ).

We have H(Π|R,X, Y ) = 0, since Π is determined by R,X, Y . Furthermore,
H(R|Y ) = H(R|X,Y ) = H(R) since R is independent from the pair (X,Y ).
Hence I(X : Π,R|Y ) = H(Π|R, Y ). In a similar way we can prove that I(Y :
Π,R|X) = H(Π|R,X). �	
If we apply the conversion from private-coin to public-coin protocols described
in the end of the previous section, the resulting protocol may have much larger
information complexity then the original protocol. For example, it happens for
the protocol where Alice sends to Bob the bit-wise XOR of her input and
her private random string. The purpose of the present paper is to construct
a more smart conversion, such that the resulting public-coin protocol has the
least known information complexity (for many-round protocols).

3 Simulation of One-Bit Protocols

Let us start with proving Theorem 3 for one-way protocols of depth 1. That is,
for protocols with only one bit sent, say by Alice.

We are given a private-coin protocol π, where a single bit is sent and it is
sent by Alice. Such protocol is specified by a function p : X × U → {0, 1}, a
random variable RA with values in U and a function δ : {0, 1} → Z. For input
x and private randomness r ∈ U Alice sends the bit p(x, r). Let Px denote the
distribution of the random variable p(x, ·) that is Px(i) = Pr[p(x,RA) = i] for
i = 0, 1.

We define public-coin protocol τ as follows:

1. Alice receives x ∈ X ;
2. Alice and Bob publicly sample R uniformly in [0, 1];
3. Alice sends B(x,R), where B(x,R) = 0 if R < Px(0) and B(x,R) = 1

otherwise.

It is clear that for every x Alice’s message B is distributed according to Px.
Hence τ is distributional-equivalent to π.

Assume now that we are given a probability distribution μ on the set X × Y
which defines random variable (X,Y ). We have to show that for some constant
D it holds

ICμ(τ) ≤ D
√

ICμ(π) (2)

Notice that in both protocols π, τ no information about Bob’s input is
revealed to Alice. By Lemmas 1 and 2 we have ICμ(π) = I(X : B|Y ) and
ICμ(τ) = H(B|R, Y ). Assume first that Bob’s input is fixed. That is, there
is a y0 with such that Y = y0 with probability 1. Then in the formulas for
information complexity we can drop the condition Y .
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We have to relate Information Complexity of τ to that of π. The former
equals

ICμ(τ) = H(B|R) =

1∫

0

H(B|R = t)dt,

where the random variable B denotes the bit sent by Alice, i.e., B = B(X,R),
and B|R = t denotes the distribution of B(X, t). The latter equals ICμ(π) =
I(X : B) = Ex←μDKL(Px||Q), where Q denotes the distribution of B (see
Proposition 3).

Thus we have to show that

1∫

0

H(B|R = t)dt = O(
√

Ex←μDKL(Px||Q)).

By Pinsker’s inequality (Proposition 2) we have: (δ(Px, Q))2 ≤ DKL(Px||Q)/2
and hence it suffices to prove that

1∫

0

H(B|R = t)dt = O(
√

V ), (3)

where
V = Ex←μδ2(Px, Q).

Consider the set
Ω =

{
t ∈ [0, 1] | |t − Q(0)| >

√
2V

}
.

It is clear that Pr[R /∈ Ω] ≤ 2
√

2V hence
∫

[0,1]\Ω

H(B|R = t)dt ≤ 2
√

2V . (4)

Fix t ∈ Ω. We claim that either μ{x | B(x, t) = 0} or μ{x | B(x, t) = 1}
is at most V/(t − Q(0))2. Assume first that t < Q(0) − √

2V . Then B(x, t) = 1
implies Px(0) ≤ t, hence

δ(Px, Q) = |Px(0) − Q(0)| ≥ |t − Q(0)|.

By Markov’s inequality

μ{x |B(x, t) = 1} ≤ V

(t − Q(0))2
.
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The case t > Q(0) +
√

2V is entirely similar, in this case μ{x |B(x, t) = 0} ≤
V/(t − Q(0))2. By Fact 1, and because V/(t − Q(0))2 ≤ 1/2, we get:

∫

Ω

H(B|R = t)dt ≤
∫

Ω

H

(
V

(t − Q(0))2

)
dt

≤ 2
∫

Ω

V

(t − Q(0))2
log

(
(t − Q(0))2

V

)
dt

≤ 2
√

V

∫

Ω

V

(t − Q(0))2
log

(
(t − Q(0))2

V

)
d
(t − Q(0))√

V

≤ 2
√

V

∫

|y|>√
2

log y2

y2
dy = O(

√
V ).

The last equality holds, as the integral
∫

|y|>√
2

log y2

y2 dy converges. Thus we have

proved (3) and (2).
It remains to prove the inequality (2) in the general case (when Bob’s input

is not fixed). In this case we may observe that both left hand side and right hand
side of (2) are linear combinations of conditional entropies with Y in condition. If
we fix any y ∈ Y and replace Y in the condition by Y = y, then the inequality (2)
becomes valid, as we just have proved. Averaging over y proves (2) as it is.

We conclude this section by presenting a randomized protocol from [3] show-
ing that our bound for one-bit protocols is tight. Assume that Alice receives 0 or
1 with equal probabilities and then sends one bit to Bob, which is equal to her
input bit with probability 1

2 +ε and differs from it with probability 1
2 −ε. One can

show that for every public-coin implementation of this protocol, with probability
2ε Bob learns Alice’s input hence the information complexity of the protocol is
at least 2ε. At the same time a simple calculation shows that if random bits are
private, then information complexity drops to Θ(ε2).

4 The Generalization to All Protocols

In this section we extend the result of the previous section to all protocols.

Proof of Theorem 3. Assume that π is an arbitrary private-coin communication
protocol, defined by the functions δ, p, q and random variables RA, RB . First we
convert π to another private-coin protocol π′ in which each bit is sent using a
fresh randomness (independent on randomness used to send previous bits). The
protocol π′ will be distributional-equivalent to π and hence will have the same
information complexity.
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The private-coin protocol π′ works as follows:

1. Alice receives x ∈ X , Bob receives y ∈ Y; they let s = λ. Until s ∈ O they
perform the following items 2 and 3.

2. If s ∈ A, |s| = k, then Alice reads a real rk ∈ [0, 1] from the its private
random source and sends p′(x, s, rk) which equals 0 if

rk < Pr[p(x, s,RA) = 0 | Es]

and 1 otherwise. Here Es denotes the intersection over i ≤ |s| with s1...i−1 ∈
A of the events

p(x, s1...i−1, R
A) = si.

The set Es depends only on s and x, thus Alice is able to find Pr[p(x, s,RA) =
0 | Es]. The sent bit is then appended to s.

3. If s ∈ B, Bob acts in a similar way;
4. If s ∈ O, Alice and Bob output δ(s) and terminate.

By construction π′ is distributional-equivalent to π. Assume that we are given
a probability distribution μ on X × Y which defines random variables X,Y . By
Lemma 1, for private-coin protocols the information complexity depends only on
the distribution of the triple X,Y,Π, the information complexities of π and π′

coincide.
The public-coin protocol τ is obtained from π′ be just assuming that all

the strings rk are read from the shared random source. Notice that τ does not
depend on μ. By construction τ is distributional-equivalent to π.

We have to relate information complexity of the private-coin protocol π′ to
that of the constructed public-coin protocol τ .

Set N = CC(π) and let Π = Π1 . . . ΠN denote the transcript of π′.
W.l.o.g. we may assume that for all inputs and all randomness the number
of sent bits equals N (Alice can send fixed bits when output is decided). Set
Π<k = Π1 . . . Πk−1.

By chain rule (Proposition 1), applied to protocol π′ we have:

ICμ(π′) = I(X : Π|Y ) + I(Y : Π|X)

=
N∑

k=1

I(X : Πk|Y,Π<k) + I(Y : Πk|X,Π<k)

=
N∑

k=1

Ik,

where Ik = I(X : Πk|Y,Π<k) + I(Y : Πk|X,Π<k).
We claim that

ICμ(τ) ≤ D
√

I1 + · · · + D
√

IN .
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To prove the claim note that by Lemma 2 we have ICμ(τ) = H(Π|R, Y ) +
H(Π|R,X) where R = (r0, . . . , rN−1). By chain rule we get:

ICμ(τ) = H(Π|R, Y ) + H(Π|R,X)

=
N∑

k=1

H(Πk|R, Y,Π<k) + H(Πk|R,X,Π<k)

=
N∑

k=1

I ′
k,

where
I ′
k = H(Πk|R, Y,Π<k) + H(Πk|R,X,Π<k).

Thus to prove the claim it suffices to show that I ′
k ≤ D

√
Ik.

Indeed, Ik is the average over all s ∈ {0, 1}k−1 of I(X : Πk|Y,Π<k =
s) + I(Y : Πk|X,Π<k = s). For every fixed s consider the one-round private-
coin protocol π′

s, in which Alice (if s ∈ A, with obvious changes when s ∈ B)
samples a real rk−1 ∈ [0, 1] and sends p′(x, s, rk−1) to Bob. The quantity
I(X : Πk|Y,Π<k = s) + I(Y : Πk|X,Π<k = s) is then the information complex-
ity of π′

s with respect to the distribution X,Y |Π<k = s.
The conversion of the previous section applied to the protocol π′

s yields the
public-coin protocol that is the same as π′

s except that now rk−1 is read from
the random source. From the previous section it follows that

H(Πk|rk, Y,Π<k = s) + H(Πk|rk,X,Π<k = s)

≤ D
√

I(X : Πk|Y,Π<k = s) + I(Y : Πk|X,Π<k = s),

and hence

H(Πk|R, Y,Π<k = s) + H(Πk|R,X,Π<k = s)

≤ D
√

I(X : Πk|Y,Π<k = s) + I(Y : Πk|X,Π<k = s).

The value I ′
k is the expectation over s of the left hand side of the last inequality.

Similarly the value Ik is the expectation of the expression under the radical in
the right hand side. As the square root function is concave this implies

I ′
k ≤ D

√
Ik

Using Cauchy–Schwarz inequality we conclude

ICμ(τ) = I ′
1 + . . . + I ′

N

≤ D
(√

I1 + . . . +
√

IN

)

≤ D
√

(I1 + . . . + IN )N = D
√

ICμ(π)CC(π).

�	
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Abstract. Operator Precedence Grammars (OPGs) define a determin-
istic class of context-free languages, which extend input-driven languages
and still enjoy many properties: they are closed w.r.t. Boolean operations,
concatenation and Kleene star; the emptiness problem is decidable; they
are recognized by a suitable model of pushdown automaton; they can be
characterized in terms of a monadic second-order logic. Also, they admit
efficient parallel parsing.

In this paper we introduce a subclass of OPGs, namely Free Gram-
mars (FrGs); we prove some of its basic properties, and that, for each
such grammar G, a first-order logic formula ψ can effectively be built so
that L(G) is the set of all and only strings satisfying ψ.

FrGs were originally introduced for grammatical inference of program-
ming languages. Our result can naturally boost their applicability; to this
end, a tool is made freely available for the semiautomatic construction
of FrGs.

1 Introduction

Operator Precedence Grammars (OPGs) and their generated languages, Opera-
tor Precedence Languages (OPLs), have been invented by R. Floyd half a century
ago with the purpose of building efficient deterministic parsers. Although they
are still in use in this peculiar application field, thanks to their simplicity and
the efficiency of their parsers [13], their theoretical investigation has been inter-
rupted for a long time and only recently we resumed it in a long term research
plan [8]. This led to discover many important properties of this class of languages
which can be exploited in different modern applications. In fact, OPLs enable
efficient parallel parsing algorithms [4] and are the largest family known to us
that is closed under all fundamental operations and is characterized in terms
of a monadic second order (MSO) logic, besides of course enjoying decidability
of the emptiness problem; in particular, it strictly includes the classes of reg-
ular languages, input-driven, alias Visibly Pushdown Languages [3], and other
parenthesis-like languages [19]. These properties entitle them to support verifi-
cation algorithms for many systems modeled either through OPGs or through
their corresponding automata, Operator Precedence Automata (OPAs) [17].
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Application of MSO logic, however, is in general considered of intractable com-
plexity; thus, the literature exhibits a fairly wide variety of language subclasses
that are characterized in terms of simpler logics such as fragments of first-order
logics or temporal ones. For instance the equivalence between star-free regular
languages and Linear Temporal Logic (LTL) is proved in [15]; [2] characterizes
classes of VPLs by means of various first-order and temporal logics. [16], instead,
presents a logical characterization of the class of context-free languages by means
of a first-order logic, although extended with a quantification over matchings.

In this paper we move a first step towards accomplishing a similar job with
OPLs. We consider free grammars (FrGs) and languages (FrLs), which have
been introduced with the main propose of supporting grammar inference [9,10]
for programming languages. Grammatical inference (or induction) is an active
and rich field of research, were various kinds of machine learning techniques
are employed to infer a formal grammar or a variant of finite state machine
from a set of observations, thus constructing a model which accounts for the
characteristics of the observed objects. We refer the interested reader to the
recent comprehensive works [11,14].

FrGs suffer from large size since their nonterminal alphabet is based on the
power set of their terminal one; however they can be easily inferred on the
basis of positive samples only, and can be minimized (by losing the property of
being free) by applying classical algorithms [5,19]. In this paper we show that
they are well suited to describe various language types, not only in the realm
of programming languages. Furthermore, they can be used to define a sort of
“superlanguage”, possibly inferred in the limit from a set of strings of the user’s
desired language, and that can be further refined by imposing a few restricting
properties in terms of first-order formulae.

The main result of this paper is that FrL strings satisfy formulae written
in a first-order logic that restricts the MSO one defined for general OPLs; the
structure over which such formulae are interpreted is the same as the one defined
for general OPLs which required considerable generalization w.r.t. other previous
results referring to simpler languages such as regular or input-driven ones [18].

In Sect. 2 we resume the basic definitions of OPGs and FrGs and languages
and prove their basic properties. In Sect. 3 we provide a few simple examples of
FrLs with the purpose of showing their usefulness in describing several types of lan-
guages, and we state some of their properties. In Sect. 4 we focus on their logic char-
acterization. Finally, in Sect. 5 we envisage further steps in this ongoing research.

2 Preliminaries

A context-free (CF) grammar is a 4-tuple G = (N,Σ,P, S), where N is the
nonterminal alphabet, Σ is the terminal one, P the rule (or production) set, and
S ⊆ N the set of axioms1. The empty string is denoted ε.
1 This less usual but equivalent definition of axioms as a set has been adopted for

parenthesis languages [19] and other input-driven languages; we chose it for this
paper to simplify some notations and constructions.



312 V. Lonati et al.

The following naming convention will be adopted, unless otherwise speci-
fied: lowercase Latin letters a, b, . . . denote terminal characters; uppercase Latin
letters A,B, . . . denote nonterminal characters; letters u, v, . . . denote terminal
strings; and Greek letters α, β, . . . denote strings over Σ ∪ N . The strings may
be empty, unless stated otherwise.

An empty rule has ε as the right hand side (r.h.s.). A renaming rule has
one nonterminal as r.h.s. A grammar is reduced if every rule can be used to
generate some string in Σ∗. It is invertible if no two rules have identical r.h.s.
The direct derivation relation is denoted by ⇒ and its reflexive transitive closure,
the derivation relation, is denoted by ∗⇒. If α

∗⇒ β in h steps, we write α
h⇒ β.

A rule is in operator form if its r.h.s. has no adjacent nonterminals; an opera-
tor grammar (OG) contains just such rules. Any CF grammar admits an equiv-
alent OG.

Let G be an OG and α be a string over (N ∪ Σ)∗: its left and right terminal
sets are

L(α) =

{
{a ∈ Σ | A

∗⇒ Baα} if α = A
{a} if α = aβ
L(A) ∪ {a} if α = Aaβ

R(α) =

{
{a ∈ Σ | A

∗⇒ αaB} if α = A
{a} if α = βa
R(A) ∪ {a} if α = βaA

where A ∈ N , B ∈ N ∪ {ε}, a ∈ Σ, β ∈ (N ∪ Σ)∗. For an OG G, let α, β range
over (N ∪ Σ)∗ and a, b ∈ Σ. Three binary operator precedence (OP) relations
are defined:

equal in precedence: a
.= b ⇐⇒ ∃ A → αaBbβ,B ∈ N ∪ {ε}

takes precedence: a � b ⇐⇒ ∃ A → αDbβ,D ∈ N and a ∈ R(D)
yields precedence: a � b ⇐⇒ ∃ A → αaDβ,D ∈ N and b ∈ L(D)

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a
|Σ|×|Σ| array that, for each ordered pair (a, b), stores the set Mab of OP relations
holding between a and b. If Mab = {◦}, with ◦ ∈ {�,

.=, �}, we write a ◦ b.

Definition 1 (Operator Precedence Grammar and Language). An OG
G is an operator precedence (OPG) or Floyd grammar if, and only if, M =
OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1. An operator precedence
language (OPL) is a language generated by an OPG.

Definition 2 (Fischer Normal Form [12]). An OPG is in Fischer normal
form (FNF) iff it is invertible, has no empty rule except possibly A → ε, where
A is an axiom not used elsewhere, and no renaming rules.

Previous literature [8,17] assumed that all precedence matrices of OPLs are .=-
cycle free, i.e., they do not contain sequences of relations a1=̇a2=̇ . . . =̇a1. In the
case of OPGs this prevents the risk of r.h.s. of unbounded length [9], but could
be replaced by the weaker restriction of production’s r.h.s. of bounded length,
or could be removed at all by allowing such unbounded forms of grammars –e.g.
with regular expressions as r.h.s. In our experience, such assumption helps to
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simplify notations and some technicalities of proofs; moreover we found that its
impact in practical examples is minimal.2 In this paper we accept a minimal loss
of generation power and assume the simplifying assumption of .=-acyclicity.

Definition 3 (Free Grammar and Language). Let G be an OPG with no
renaming rules and no empty rule except possibly C → ε, where C is an axiom
not used elsewhere; G is a free grammar (FrG) iff the two following condi-
tions hold

– for every production A → α, with α �= ε, L(A) = L(α) and R(A) = R(α);
– for every nonterminals A, B, L(A) = L(B) and R(A) = R(B) implies A = B.

A language generated by a FrG is a free language (FrL).

Notice that, by definition, a FrG is in FNF . Also, each nonterminal A is uniquely
identified by the pair of sets L(A),R(A); thus N is isomorphic to ℘(Σ) × ℘(Σ).
Indeed, it is customary to use ℘(Σ) × ℘(Σ) as the nonterminal alphabet of a
free grammar.

FrLs can also be defined in terms of a suitable automata family and extended
to ω-languages in a similar way as it has been done for general OPLs [17,21].

Given an OPM M , the maxgrammar associated with M is the FrG that
contains the productions that induce all and only the relations in M .

Notice that the maxgrammar associated with a complete OPM (i.e., an OPM
with no empty case) generates the language Σ∗. The maxgrammar associated
with an OPM is unique thanks to the hypothesis of .=-acyclicity or, in general, if
we require that the length of the r.h.s. of the rules is a priori bounded. Also, the
set of FrGs with a given OPM is a lattice whose top element is the maxgrammar
associated with the matrix [9].

3 Examples and First Properties of Free Languages

In this section we investigate the generative power of free grammars: the fol-
lowing examples, among others not reported here for brevity, show that they
are well suited to formalize some typical programming language features and
various types of system behavior; we will also show that the class of FrLs is not
comparable with other subclasses of OPLs such as, e.g., VPLs.

Furthermore, the examples below show that FrGs are not intended to be
built by hand; being driven by the powerset of Σ, both N and P may suffer
from combinatorial explosion. However, according to their original motivation
to support grammar inference, they are well suited to be easily built by some
automatic device: in fact the grammars of the following examples have been
automatically generated.3

2 An example language that cannot be generated with an
.
=-acyclic OPM is the fol-

lowing: L = {an(bc)n | n ≥ 0} ∪ {bn(ca)n | n ≥ 0} ∪ {cn(ab)n | n ≥ 0}.
3 The grammars presented here have been produced by the Flup tool (the whole

package, which includes various utilities for the general class of OPLs, is available
at [1]). In the future we plan to couple Flup with an additional tool that minimizes
the original grammar by applying the classical procedure introduced in [19].
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Example 1. The FrG G depicted in Fig. 1 with its OPM generates unparenthe-
sized arithmetic expressions with the usual precedences of × w.r.t. +, which
instead cannot be expressed as a VPL [8]. This grammar is obtained from the
maxgrammar associated with the OPM by taking only those nonterminals that
have letter n in both left and right sets. By this way we guarantee that all strings
generated by the grammar begin and end with an n, and are thus well formed.
All nonterminals of the grammar are axioms too.

Extending the above grammar to generate also parenthesized arithmetic
expressions is a conceptually easy exercise since we only need new nontermi-
nals, and corresponding rules, including � and � in their left and right terminal
sets, respectively. The corresponding FrG has 22 nonterminals and 168 rules,
and it can be found among the examples available in the Flup package [1].

Fig. 1. A FrG for unparenthesized arithmetic expressions and its OPM

Example 2. Consider a simplified version of software system that serves requests
of operations issued by various users but subject to possible asynchronous inter-
rupts.

We model the behavior of the system by introducing an alphabet with a pair
of symbols call, ret, to describe the request and completion of a user’s operation,
and symbol int, denoting the occurrence of the interrupt. Under normal behavior
calls and rets must be matched according to the normal LIFO policy; however,
if an interrupt occurs when some calls are pending, they are reset without waiting
for the corresponding rets; possible subsequent rets remain therefore unmatched.
Unmatched returns can occur only if previously some interrupt flushed away all
unmatched calls.

A FrG that generates sequences of operations and occurrences of interrupts
consistent with the above informal description has the OPM displayed in Fig. 2
and counts 21 nonterminals and 174 rules. It has been built starting from the
maxgrammar associated with the OPM by taking as nonterminals only 〈{ret},
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{ret}〉 and those that do not contain ret in their left set. The axioms are all
nonterminals A ∈ (℘(Σ) × ℘(Σ)) \ {〈{ret}, {ret}〉}. Nonterminal 〈{ret}, {ret}〉
is necessary to generate sequences of unmatched returns; the constraint on the
other nonterminals guarantees that a sequence of rets is either matched by cor-
responding previous calls or is unmatched but preceded by an interrupt. This
FrG too can be found in the examples in the Flup package.

The resulting grammar can be easily modified to deal with more complex
policies, e.g., different levels of interrupt, but with a possible consequent size
increase.

Fig. 2. The OPM of Example 2

All the FrGs in the above examples have been built by applying a top-down app-
roach, starting from the maxgrammar associated with the OPM and “pruning”
nonterminals and productions that would generate undesired strings. This app-
roach complements the bottom up technique of traditional grammar inference,
which builds a FrG generating a desired language by abstracting away from a
given sample of language strings (it exploits the distinguishing property of FrGs
that they can be inferred in the limit on the basis of a positive sample only [10]).

The typical canonical form of FrGs makes also easy the application of the
classical minimization procedure that extends to structure grammars the mini-
mization of finite state machines [5,19].

The above examples also help comparing the generative power of FrLs with
other subclasses of OPLs.

Proposition 1. The class of FrLs is incomparable with the classes of regular
languages and VPLs.

Proof. The language described in Example 2 is a FrL but is not regular, due
to the necessity to match corresponding call and ret symbols, nor a VPL:
although, in fact, it retains the rationale of VPLs in that it allows for unmatched
“parenthesis-like” symbols (calls and returns in this case), it generalizes this
VPLs feature in that such unmatched symbols can occur even inside a matching
pair, which is impossible in VPLs. On the other hand, it is known that FrGs
generate only non-counting languages [7], whereas regular languages and VPLs,
which strictly contain regular ones, can be counting [20]. ��
Proposition 2. FrLs (with a fixed OPM) are closed w.r.t. intersection but not
w.r.t. concatenation, complement, union and Kleene *.
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Proof. Closure under intersection, already stated in [7], follows from the fact
that, given an OPM, the parsing of any string w is the same for any FrG (all FrG’s
nonterminal alphabets are pairs of subsets of Σ); it follows that L(G1)∩L(G2) =
L(G1 ∩ G2) where G1 ∩ G2 denotes the grammar whose production set is the
intersection of the production sets of G1 and G2 (possibly “cleaned up” of the
useless productions) and is a FrG.

To prove that FrLs are not closed w.r.t. concatenation, consider language
L = {a} with a � a. L is a FrL but L · L is not: to generate # � a � a � # a
FrG needs the productions 〈{a}, {a}〉 → a and 〈{a}, {a}〉 → a〈{a}, {a}〉 which
generate a+. For the same reason ¬L = {an | n > 1 ∨ n = 0} is not a FrL; thus
FrLs are not closed w.r.t. complement.

Consider the FrGs G1 and G2 below (both grammars have axiom 〈{a, b},
{b}〉):

G1 :
〈{a, b}, {b}〉 → 〈{a, b}, {b}〉 b | 〈{a}, {a}〉 b
〈{a}, {a}〉 → a

G2 :
〈{a, b}, {b}〉 → 〈{a}, {a}〉 b
〈{a}, {a}〉 → a | 〈{a}, {a}〉a

which generate, respectively, L1 = ab+ and L2 = a+b: all productions of G1 and
G2 are necessary to generate all strings of L1 ∪L2 but the union of (productions
of) G1 and G2 generates strings a+b+, which do not belong to L1 ∪ L2.

Finally, consider the FrG G:

〈{a, b}, {b}〉 → 〈{a, b}, {a}〉 b

〈{a, b}, {a}〉 → 〈{a, b}, {b}〉 a | 〈{b}, {b}〉 a

〈{b}, {b}〉 → b

with axiom 〈{a, b}, {b}〉, which generates L = (ba)+b (with a�b, b�b and b�a).
To generate a string in L∗ we need to generate two consecutive bs, corresponding
respectively to the last and the first character of two consecutive words of L; this
can be obtained only by means of a new rule for a nonterminal with right terminal
set {b}, such as 〈{a, b}, {b}〉 → 〈{a, b}, {b}〉b or the rule 〈{b}, {b}〉 → 〈{b}, {b}〉b,
which however imply the generation also of strings containing any number of
consecutive b, which do not belong to L∗. ��
Ultimately, the above examples show that on the one hand FrGs can model the
essential features of various systems but, on the other hand, they exhibit some
unexpected limits in generative power which are not suffered even by regular
languages. These limits must be ascribed to their distinguishing property of being
inferrable in the limit by using only a set of positive strings (in fact the class of
FrLs is not closed under complement). Thus they are better suited to define a
sort of “skeleton language” to be refined by superimposing further constraints
specified by means of some complementary formalism. A natural way to pursue
such an approach is, e.g., to “intersect” them with some finite state machine.
In this paper, instead, we will exploit the fact that FrLs can be defined in terms of
first-order logic sentences, but first-order logic can also be used to define further,
even more sophisticated, constraints on these languages.
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4 First-Order Logic Definability of Free Languages

The traditional MSO logic characterization of regular languages has been
recently extended to larger classes such as VPLs [3] and OPLs [18]. In case
of VPLs the syntax of MSO logic has been extended with a new binary predi-
cate �, which is interpreted as a relation between positions of characters in the
strings, such that x � y when at positions x and y two matching parentheses
occur (with a minor exception for unmatched open or closed parentheses for
which, by convention, if they occur at position x , then x � ∞ or ∞ � x ).
In case of OPLs a more sophisticated relation has been necessary due to the
fact that, as we will see, there is no one-to-one correspondence between open
and closed parentheses (calls and returns in VPLs terminology). Then, due to
the high complexity of MSO logic, various special cases of language families
have been considered with the goal of characterizing them by means of simpler
logics [2].

In this section we show that FrLs can be defined in terms of a FO logic rather
than a MSO one. The converse property however does not hold: by Proposition 2,
in fact, the class of FrLs is not closed under complement; hence, there are languages
that can be defined in terms of FO logic but are not FrLs. On the other hand FO
formulae can be used to refine FrLs by superimposing further properties.

The key difference between the traditional MSO language formulation and
the new FO one is that in the MSO formulation each position in the string (over
which the MSO logic formula is interpreted) may be associated with several
states of an automaton recognizing the language defined by the MSO formula,
i.e., to several second-order variables denoting subsets of positions according to
Büchi’s approach; in our FO formulation instead, we associate positions with the
left and right terminal sets of the nonterminal of a FrG that is the root of the
subtree whose leftmost and rightmost leaves are in the given positions. Thanks
to the fact that in FrGs the number of possible nonterminals is a priori bounded
and they are univocally identified by their left and right terminal sets, we can
express such association by means of first-order formulae, without the need to
resort to second-order variables denoting sets of positions.

We first introduce some preliminary notation necessary to define the struc-
ture over which FO formulae are interpreted; then, we define the syntax of our
FO logic and show how its formulae are interpreted; finally we prove that, for
every FrG, a FO sentence can be automatically built that is satisfied by all and
only the strings generated by the grammar.

Preliminarily, we introduce a special symbol # not in Σ to mark the begin-
ning and the end of any string. The precedence relations in the OPM are implic-
itly extended to include #: the initial # can only yield precedence, and other
symbols can only take precedence over the ending #.

Definition 4 (Operator Precedence Alphabet [17]). An operator prece-
dence (OP) alphabet is a pair (Σ,M) where Σ is an alphabet and M is a conflict-
free operator precedence matrix, i.e. a |Σ ∪ {#}|2 array that associates at most
one of the operator precedence relations: .=, � or � with each ordered pair (a, b).
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The operator precedence alphabet determines the “structure” of a string, as
formalized by the following notion of chains.

Definition 5 (Chains [17]). Let (Σ,M) be an operator precedence alphabet.

– A simple chain is a word a0a1a2 . . . anan+1, written as a0 [a1a2 . . . an]an+1 ,
such that: a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1 �= ∅,
and a0 � a1

.= a2
.= . . .

.= an−1
.= an � an+1.

– A composed chain is a word a0x0a1x1a2 . . . anxnan+1, written as
a0 [x0a1x1a2 . . . anxn]an+1 , with xi ∈ Σ∗, and where a0 [a1a2 . . . an]an+1 is a
simple chain, and either xi = ε or ai [xi]ai+1 is a chain (simple or composed),
for every i : 0 ≤ i ≤ n.

– The body of a chain a[x]b, simple or composed, is the word x. The depth d(x)
of the body x is defined recursively: d(x) = 1 if the chain is simple, whereas
d(x0a1x1 . . . anxn) = 1 + maxi d(xi). The depth of a chain is the depth of its
body.

– A word w ∈ Σ∗ is compatible with M iff the two following conditions hold:
• for each pair of letters c, d, consecutive in w, Mcd �= ∅
• for each factor (substring) x of #w# such that x = a0x0a1x1a2 . . .

anxnan+1 and a0 [x0a1x1a2 . . . anxn]an+1 is a chain (simple or composed),
then Ma0an+1 �= ∅.

If an OPG contains the rule A → a1a2 . . . an and for some a0, an+1, a0 � a1,
an � an+1, then a0 [a1a2 . . . an]an+1 is a simple chain. Similarly, if there is a rule
A → B0a1B1a2 . . . anBn and Bi

∗⇒ xi for every i, a0�a1, an �an+1 and a0 [x0]a1 ,
an [xn]an+1 are chains, then a0 [x0a1x1a2 . . . anxn]an+1 is a composed chain.

Next, we introduce the syntax of our FO logic.

Definition 6 (First-Order Logic Over (Σ,M)). Let (Σ,M) be an OP alpha-
bet, and let V be a countable infinite set of first-order variables (denoted by
x,y, . . . ). The FOΣ,M (first-order logic over (Σ,M)) is defined by the following
syntax:

ϕ := c(x) | x ≤ y | x � y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where c ∈ Σ ∪ {#}, x,y ∈ V.

A FOΣ,M formula is interpreted over a string w ∈ Σ∗ compatible with M , with
respect to assignments ν : V → {0, 1, . . . , |w| + 1} in the following way.

– w |= c(x ) iff #w# = w1cw2 and |w1| = ν(x ).
– w |= x ≤ y iff ν(x ) ≤ ν(y).
– w |= x � y iff #w# = w1aw2bw3, |w1| = ν(x ), |w1aw2| = ν(y), and aw2b is

a chain a[w2]b.
– w |= ¬ϕ iff w �|= ϕ.
– w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2.
– w |= ∃x .ϕ iff w′ |= ϕ, for some ν′ with ν′(y) = ν(y) for all y ∈ V \ {x}.
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To improve readability, we use some standard abbreviations in formulae, such
as x + 1, x − 1, x = y , x �= y , x < y .

A sentence is a formula without free variables. The language of all strings
w ∈ Σ∗ such that w |= ϕ is denoted by L(ϕ):

L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

The distinguishing feature of FOΣ,M w.r.t. the traditional FO logic is given by
the introduction of predicate �: for each pair of positions x and y in a string,
x � y is used to denote that positions x and y “embrace” a chain. The relation
formalized by this predicate resembles the � defined for VPLs but exhibits two
significant differences:

– it is not one-to-one, since a position x can be in relation x � y with more
than one y and vice versa;

– is not defined on the positions where the leftmost and rightmost leaves of
a subtree of the syntactic tree of the string occur (which are the positions
of calls and returns in VPL terminology) but on the positions of the context of
any subtree, i.e. of a chain.

Example 3. Consider the OP alphabet given in Fig. 3. In all strings compatible
with M , such that #[w]# is a chain, all parentheses are well-matched.

The sentence in the same figure restricts the set of strings compatible with
the OPM to the language where parentheses are used only when they are needed
(i.e., to invert the natural precedence between × and +).

Fig. 3. An OP alphabet (Σ, M) for arithmetic expressions (left), and a FOΣ,M sentence
(right)

We now state our main result.

Theorem 1. Let G = 〈N,Σ,P, S〉 be a FrG: then a FOΣ,M formula ψ can be
effectively built such that w ∈ L(G) iff w |= ψ.

Proof. We first introduce some shortcut notation to make formulae more com-
pact and understandable.

When considering a chain a[w]b we assume w = w0a1w1 . . . a�w�, with
a[a1a2 . . . a�]b being a simple chain (any wi may be empty). We denote by si
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the position of symbol ai, for i = 1, 2, . . . , � and set a0 = a, s0 = 0, a�+1 = b,
and s�+1 = |w| + 1.

Notation TreeC is defined as follows (n > 1):

TreeC(x0, x1, . . . , xn, xn+1) := x0 � xn+1∧
∧

0≤i≤n

⎛

⎝xi + 1 = xi+1
∨

xi � xi+1

∧
∧

i+1<j≤n

¬(xi � xj)

⎞

⎠

If x 0 � xn+1, then there exist (unique) x 0,x 1, . . . ,xn,xn+1 such that
TreeC(x 0,x 1, . . . ,xn,xn+1) holds: in particular, x 0 � x 1, x i

.= x i+1 for 1 ≤
i ≤ n − 1, and xn � xn+1.

Let w be a chain body w = w0a1w1a2 . . . a�w�: if every wi is empty (the chain
is simple), then 0 � � + 1 and TreeC(0, 1, 2, . . . , �, � + 1) holds; if w is the body
of a composed chain, then 0 � |w| + 1 and TreeC(s0, s1, s2, . . . , s�, s�+1) holds
(see Fig. 4).

Fig. 4. Chain a0 [w0a1w1a2. . .a�w�]a�+1,
for which TreeC(s0, s1, s2, . . . , s�, s�+1)
holds

Fig. 5. Pair of positions x , y for
which L{d,e}(x , y) holds

The similar notation Tree is instead defined as follows.

Tree(x ,u , v ,y) :=x �y∧
⎛

⎝
(x+1=u ∨ x � u) ∧ ¬∃t(u < t < y ∧ x � t)

∧
(v+1= y ∨ v � y) ∧ ¬∃t(x < t < v ∧ t � y)

⎞

⎠

This notation represents a “projection” of TreeC over positions x 0, x 1, xn and
xn+1 (here corresponding to x ,u , v ,y), and is used when we do not need to
refer to positions x 2, . . . ,xn−1 within a chain.
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Also, for every A ⊆ Σ, we define notations:

LA(x ,y) :=

⎛

⎜⎜⎜⎜⎜⎝

∀u , v , z

(
u ≤ v < z ≤ y ∧ Tree(x ,u , v , z ) ⇒

∨

a∈A

a(u)

)

∧∧

a∈A

∃ u , v , z (u ≤ v < z ≤ y ∧ Tree(x ,u , v , z ) ∧ a(u))

⎞

⎟⎟⎟⎟⎟⎠

RA(x ,y) :=

⎛

⎜⎜⎜⎜⎜⎝

∀u , v , z

(
x ≤ u < v ≤ z ∧ Tree(u , v , z ,y) ⇒

∨

a∈A

a(z )

)

∧∧

a∈A

∃ u , v , z (x ≤ u < v ≤ z ∧ Tree(u , v , z ,y) ∧ a(z ))

⎞

⎟⎟⎟⎟⎟⎠

For instance, with reference to Fig. 5, for positions x ,y , L{d,e}(x ,y) holds.
Notice that for each pair of positions x ,y there exists a unique pair of sets
A,B such that LA(x ,y) and RB(x ,y) hold.

Furthermore, for every 〈L,R〉 ∈ Γ , we add notation P〈L,R〉(x ,y), which
represents the terminal profile of the chain, if any, between positions x and y :

P〈L,R〉(x ,y) := x � y ∧ LL(x ,y) ∧ RR(x ,y)

Intuitively, P〈L,R〉(x ,y) holds iff, in the syntax tree, the chain between positions
x and y is the frontier of a subtree that has as root nonterminal 〈L,R〉.

Finally, for every 〈L,R〉 ∈ Γ , set

ψ〈L,R〉 :=∀x,y

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

P〈L,R〉(x, y)
⇒

∨

〈L,R〉→〈L0,R0〉c1〈L1,R1〉c2...ck〈Lk,Rk〉
∃x1 . . . xk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TreeC(x, x1, . . ., xk, y) ∧∧

1≤i≤k

ci(xi) ∧
∧

1≤i≤k−1:
〈Li,Ri〉�=ε

P〈Li,Ri〉(xi, xi+1) ∧

x + 1 �= x1 ⇒ P〈L0,R0〉(x , x1)∧
xk + 1 �= y ⇒ P〈Lk,Rk〉(xk, y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

where the disjunction is considered over the rules of G:

ρ = 〈L,R〉 → 〈L0, R0〉c1〈L1, R1〉c2 . . . ck〈Lk, Rk〉,
with 〈Li, Ri〉 ∈ N ∪ {ε}, 0 ≤ i ≤ k, and L = L0 ∪ {c1}, R = Rk ∪ {ck}.

To complete the construction and the proof of Theorem 1 we define:

ψ :=
∧

〈A,B〉
ψ〈A,B〉 ∧ ∃e

⎛

⎝#(e + 1) ∧ ¬∃y(e + 1 < y)∧
∨

〈L,R〉∈S

P〈L,R〉(0, e+1)

⎞

⎠

The proof of the theorem is a direct consequence of the following Lemma 1 when
〈L,R〉 is an axiom of G. ��
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Lemma 1. For every 〈L,R〉 ∈ N and for every body w of a chain, we have
〈L,R〉 ∗⇒ w iff w |= P〈L,R〉(0, |w| + 1) ∧

∧

〈A,B〉
ψ〈A,B〉.

Proof. Consider first the direction from left to right of the lemma. The proof is
by induction on the length h of a derivation.

If h = 1, then 〈L,R〉 ∗⇒ w implies that ρ = 〈L,R〉 → a1a2 . . . al is a produc-
tion of G, and w = a1a2 . . . al is the body of a simple chain. G being a FrG, it is
L = {a1} and R = {al}. Since 0 � l+1 and w |= L{a1}(0, l+1)∧R{al}(0, l+1),
then w |= P〈L,R〉(0, l + 1).

For every 〈A,B〉 ∈ Γ and positions x ,y , w |= P〈A,B〉(x ,y) holds true only
if 〈A,B〉 = 〈L,R〉 and x = 0, y = l + 1. Furthermore, there exist (unique)
x 1 = 1,x 2 = 2, . . . ,x l = l such that TreeC(0, 1, . . . , l, l + 1) holds, and for every
j = 1, . . . , l, aj(x j) holds true. Thus, w |= ψ〈A,B〉 for every 〈A,B〉 ∈ Γ , and
w |= P〈L,R〉(0, |w| + 1) ∧ ∧

〈A,B〉 ψ〈A,B〉.
Assume that this direction of the lemma holds for every derivation of length

≤ h. Let 〈L,R〉 h+1⇒ w, with 〈L,R〉 ⇒ 〈L0, R0〉a1〈L1, R1〉a2 . . . al〈Ll, Rl〉 and,
for each i = 0, 1, . . . , l, 〈Li, Ri〉 hi⇒ wi such that hi ≤ h and w = w0a1w1 . . . alwl

is the body of a composed chain (wi = ε if 〈Li, Ri〉 = ε).
By the inductive hypothesis, for every i = 0, 1 . . . , l such that wi �= ε,

we have wi |= P〈Li,Ri〉(0, |wi| + 1) ∧ ∧
〈A,B〉 ψ〈A,B〉. Let ρ = 〈L,R〉 →

〈L0, R0〉a1〈L1, R1〉a2 . . . al〈Ll, Rl〉: G being a FrG, we have L = L0 ∪ {a1} and
R = Rk∪{al}; thus w |= LL(0, |w|+1)∧RR(0, |w|+1), and w |= P〈L,R〉(0, |w|+1).
Furthermore, let x ,y be positions such that w |= P〈A,B〉(x ,y) for some
〈A,B〉 ∈ Γ and x ,y are not both inside the same wi, and they are not si

and si+1; then necessarily x = 0,y = |w| + 1, and w |= P〈A,B〉(0, |w| + 1) only if
〈A,B〉 = 〈L,R〉. Also, there exist x 0 = 0, x 1 = s1, . . . ,x l = sl, x l+1 = |w| + 1
such that TreeC(x 0,x 1, . . . ,x l, x l+1) holds, and for every j = 1, . . . , l, aj(x j)
holds true. Hence, w |= ∧

〈A,B〉 ψ〈A,B〉.
Consider then the direction from right to left of the lemma. The proof is by

induction on the depth d of the chain.
If d = 1, then w = a1a2 . . . al is the body of a simple chain. Since w |=

P〈L,R〉(0, |w| + 1), then there exist ρ = 〈L,R〉 → 〈L0, R0〉c1〈L1, R1〉c2 . . .
ck〈Lk, Rk〉 and x 1, . . . ,xk such that TreeC(0,x 1, . . . ,xk, |w| + 1) and cj(x j)
for every j = 1, . . . , k hold. By definition of TreeC, we have x j = j for every
j = 1, . . . , k and k = l, and aj = cj for every j. There is, thus, a production of
G: ρ = 〈L,R〉 → a1a2 . . . al, and 〈L,R〉 ∗⇒ w holds.

Let now d > 1, then w = w0a1w1 . . . alwl is the body of a composed chain
and sj (1 ≤ j ≤ l) are the unique positions such that TreeC(0, s1, . . . , sl, |w|+1)
holds true. Since w |= P〈L,R〉(0, |w| + 1) ∧ ∧

〈A,B〉 ψ〈A,B〉, then there exists a
production ρ of G such that ρ = 〈L,R〉 → 〈L0, R0〉c1〈L1, R1〉c2 . . . ck〈Lk, Rk〉
and there exist x j (1 ≤ j ≤ k) with TreeC(0,x 1, . . . ,x l, |w| + 1) and cj(x j);
thus we have k = l and cj = aj for each j. Furthermore, let x 0 = 0, x l+1 =
|w| + 1: for every i = 0, 1 . . . , k such that 〈Li, Ri〉 �= ε, w |= P〈Li,Ri〉(x i,x i+1)
holds true, and we have wi |= P〈Li,Ri〉(0, |wi| + 1) ∧ ∧

〈A,B〉 ψ〈A,B〉. By inductive
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hypothesis, thus there exists in G a derivation 〈Li, Ri〉 ∗⇒ wi. Hence, 〈L,R〉 ⇒
〈L0, R0〉a1〈L1, R1〉a2 . . . 〈Lk−1, Rk−1〉ak〈Lk, Rk〉 ∗⇒ w. ��

5 Conclusions

After having developed a fairly complete theory of the old OPLs, which now
includes automata and MSO logic characterization, closure and decidability
properties, extensions to the case of ω-languages, with this paper we initiated
a new research path aimed at finding suitable subfamilies of OPLs and simpler
logics that could enable applications more practical than those based on MSO
logic.

In this first step we showed that from any FrG a first-order formula can be
automatically derived so that the words generated by the grammars are exactly
those that satisfy the formula. FrLs suffer from some generative power limits due
to the simplicity of their grammars; however, the same logic that characterizes
them can also be applied to refine them by stating additional desired properties.

Several further steps are scheduled for this research within the general theme
of finding formalisms that are general enough to define rather sophisticated lan-
guages but also allow for relatively “efficient” algorithms for applications. We
also plan to further investigate (variants of) our logic; interestingly enough FrLs
are non-counting (context-free) languages [6] and previous literature devoted
considerable attention to algebraically and logically characterize non-counting
or star-free regular languages [20].
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Abstract. We follow language theoretic approach to synchronizing
automata and Černý’s conjecture initiated in a series of recent papers.
We find a precise lower bound for the reset complexity of a principal ideal
language. Also we show a strict connection between principal left ideals
and synchronizing automata. Actually, it is proved that all strongly con-
nected synchronizing automata are homomorphic images of automata
recognizing languages which are left quotients of principal left ideal lan-
guages. This result gives a restatement of Černý’s conjecture in terms of
length of the shortest reset words of special quotients of automata in this
class. Also in the present paper we characterize regular languages whose
minimal deterministic finite automaton is synchronizing and possesses a
reset word belonging to the recognized language. This characterization
shows a connection with the notion of constant of a language introduced
by Schützenberger.

Keywords: Ideal language · Synchronizing automaton · Reset word ·
Reset complexity · Reset left regular decomposition · Strongly connected
automaton

Introduction

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q is the
state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is the totally
defined transition function defining the action of the letters in Σ on Q. The
function δ is extended uniquely to a function Q × Σ∗ → Q, where Σ∗ stands for
the free monoid over Σ. The latter function is still denoted by δ. In the theory of
formal languages the definition of a DFA usually includes the initial state q0 ∈ Q
and the set F ⊆ Q of terminal states. In this case a DFA is defined as a quintuple
A = 〈Q,Σ, δ, q0, F 〉. We will use this definition when dealing with automata as
devices for recognizing languages. A language L ⊆ Σ∗ is said to be recognized (or
accepted) by an automaton A = 〈Q,Σ, δ, q0, F 〉 if L = {w ∈ Σ∗ | δ(q0, w) ∈ F},
in this case we put L = L[A ]. We also use standard concepts of the theory of
formal languages such as regular language, minimal automaton etc. [11]
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A language I ⊆ Σ∗ is called a two-sided ideal (or simply an ideal) if I is non-
empty and Σ∗IΣ∗ ⊆ I. A language I ⊆ Σ∗ is called a left (respectively, right)
ideal if I is non-empty and Σ∗I ⊆ I (respectively, IΣ∗ ⊆ I). In what follows
we will consider only languages which are regular, thus we will drop the term
“regular” and henceforth a given language will be implicitly a regular language.
If it is said “ideal language” or simply “ideal”, it means that exactly a two-sided
ideal language is considered, otherwise it will be explicitly mentioned which class
of languages we are focusing on.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗

whose action leaves the automaton in one particular state no matter at which
state in Q it is applied, i.e. δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word with this
property is said to be reset for the DFA A . For the last 50 years synchronizing
automata received a great deal of attention. For a brief introduction to the theory
of synchronizing automata we refer the reader to the survey [17].

Recently in a series of papers [5,8,9,15] a language theoretic (and descrip-
tional complexity) approach to the study of synchronizing automata has been
developed. In the present paper we continue to study synchronizing automata
from a language theoretic point of view and find a new approach to the Černý
conjecture in this way. We denote by Syn(A ) the language of reset words for
a given synchronizing automaton A . It is well known that Syn(A ) is a regular
language [17]. Furthermore, it is an ideal in Σ∗, i.e. Syn(A ) = Σ∗Syn(A )Σ∗.
On the other hand, every ideal language I serves as the language of reset words
for some automaton. For instance, the minimal automaton recognizing I is syn-
chronized by I [9]. Thus synchronizing automata can be considered as a special
representation of ideal languages. The complexity of such a representation is
measured by the reset complexity rc(I) which is the minimal possible number
of states in a synchronizing automaton A such that Syn(A ) = I. Every such
automaton A is called minimal synchronizing automaton (for brevity, MSA).
Let sc(I) be the state complexity of I, i.e. the number of states in the minimal
automaton recognizing I. Since the minimal automaton recognizing I has I as
the language of reset words, we clearly have rc(I) ≤ sc(I). Moreover, there are
ideals In for every n ≥ 3 such that rc(In) = n and sc(In) = 2n − n, see [9].
So representation of an ideal language by means of one of its MSAs can be
exponentially more succinct than its “traditional” representation via minimal
automaton. However, no reasonable algorithm is known for computing an MSA
for a given language. One of the obstacles is that MSA is not uniquely defined.
Furthermore, the problem of checking, whether a given synchronizing automaton
with at least five letters is an MSA for a given ideal language, has recently been
shown to be PSPACE-complete [8].

Another source of motivation for studying representations of ideal languages
by means of synchronizing automata comes from the famous Černý’s conjec-
ture [3]. In 1964 Černý constructed for each n > 1 a synchronizing n-state
automaton Cn whose shortest reset word has length (n − 1)2. Later Černý con-
jectured that those automata represent the worst possible case, that is, every
synchronizing automaton with n states possesses a reset word of length at most
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(n − 1)2. Despite intensive efforts of researchers, this conjecture still remains
open. One can restate easily the Černý conjecture in terms of reset complexity.
Let ||I|| be the minimal length of words in an ideal language I. The Černý con-
jecture holds true if and only if rc(I) ≥ √||I|| + 1 for every ideal I. The latter
inequality would provide the desired quadratic upper bound on the length of the
shortest reset word of a synchronizing automaton.

Thus, a deeper study of reset complexity may help to shed light on this long-
standing conjecture. In this language theoretic approach to the Černý conjecture,
strongly connected synchronizing automata play an important role. Recall that
a DFA is called strongly connected if for each pair of different states (p, q) there
exists a word mapping p to q. It is well known that the Černý conjecture holds
true whenever it holds true for strongly connected automata [18]. In this regard,
an interesting question was posed in [5]. The question concerns the problem of
finding a strongly connected synchronizing automaton whose set of reset words
is equal to a given ideal language. Indeed, while the minimal automaton recog-
nizing an ideal language I is always a synchronizing automaton with a unique
sink state (i.e. a state fixed by all letters), finding examples of strongly connected
synchronizing automata A with Syn(A ) = I is a non-trivial task. In [15] it is
proved that such strongly connected automaton always exists for an ideal over
alphabet of size at least two. The construction itself is non-trivial and rather
technical. Furthermore, the upper bound on the number of states of the associ-
ated strongly connected automaton is a double exponential. The approach of [15]
has the extra advantage of detaching the Černý conjecture from the automata
point of view. This is achieved by introducing a purely language theoretic notion
of reset left regular decomposition of an ideal. Precise definition of such decom-
position can be found in [15]. Here we just focus on the connection between these
decompositions and the Černý conjecture. Given an ideal I, the size of the small-
est reset left regular decomposition of I is denoted by rdc(I). This value can be
viewed as the number of states of the smallest strongly connected synchronizing
automaton A with Syn(A ) = I. It is clear that rc(I) ≤ rdc(I) and we have

Theorem 1 ([14], Theorem 6). Černý’s conjecture holds if and only if for
any ideal I we have rdc(I) ≥ √||I|| + 1.

Therefore, the importance of the studies of issues like finding more effective con-
structions of reset left regular decompositions (or equivalently their associated
automata) is evident. We begin to approach this issue by considering the partial
case of finitely generated ideal languages. Recall that an ideal I is called finitely
generated if I = Σ∗UΣ∗ for some finite set U ⊆ Σ∗. Such languages have been
viewed as languages of reset words of synchronizing automata in [4,12,13]. In [5]
it is considered the partial case of principal ideal languages, i.e. languages of
the form Σ∗wΣ∗, for some w ∈ Σ∗. If |w| denotes the length of w ∈ Σ∗, then
we have

Theorem 2 ([5]). For the language Σ∗wΣ∗, there is a strongly connected
automaton B with |w|+1 states, such that Syn(B) = Σ∗wΣ∗. Such an automa-
ton can be constructed in O(|w|2) time.
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In the present paper we enforce the previous result by showing that the automa-
ton B from Theorem 2 is actually an MSA for a given language. More precisely,
we prove that rdc(I) = rc(I) = ‖I‖ + 1, for every principal ideal language I.
In particular, this result solves an open question posed in [5] regarding the size
of the minimal strongly connected synchronizing automaton for which a given
principal ideal language serves as the language of reset words. We show that
principal left ideals, i.e. languages of the form Σ∗w for some word w, play also
a fundamental role in Černý’s conjecture. Indeed, we characterize strongly con-
nected synchronizing automata via homomorphic images of automata belonging
to a particular class L(Σ). The class L(Σ) is formed by all the trim automata
A = 〈Q,Σ, δ, q0, {q0}〉 such that L[A ] = w−1Σ∗w for some word w ∈ Σ∗.
In Sect. 2 we reduce Černý’s conjecture to the same conjecture for the quo-
tients of automata from the class L(Σ). In view of this connection we study
automata recognizing languages of the form w−1Σ∗w for some w ∈ Σ∗. We
provide a compact formula to calculate the syntactic complexity of a language
Lw = w−1Σ∗w. This value is defined just by the length of w and by the quantity
of distinct prefixes, suffixes and factors in w. Another interesting feature of such
languages concerns the construction of the minimal automaton Aw recognizing
the language w−1Σ∗w. It turns out that w ∈ Syn(Aw). Thus, in this context,
we have that a word of the language recognized by the automaton is also a
reset word for this automaton. Hence it is quite natural to ask in which cases
the minimal automaton recognizing a given regular language L is synchronized
by some word from L. Here we answer this question by proving a criterion for
the minimal automaton recognizing L to be synchronized by some word from
L. We state this criterion in terms of the notion of a constant of L introduced
by Schützenberger [16]. The notion of a constant is widely studied and finds
applications in bioinformatics and coding theory [2,7].

1 Preliminaries

Let A = 〈Q,Σ, δ, q0, F 〉 be a deterministic finite automaton. The corresponding
triple 〈Q,Σ, δ〉, where the initial state and the set of final states are deliberately
omitted, is called the underlying semiautomaton of A . We say that a DFA A =
〈Q,Σ, δ, q0, F 〉 is synchronizing if its underlying semiatomaton is synchronizing.
If the transition function δ is clear from the context, we will write q.w instead
of δ(q, w) for q ∈ Q and w ∈ Σ∗. This notation extends naturally to any subset
H ⊆ Q by putting H.w = {δ(q, w) | q ∈ H}. A DFA A = 〈Q,Σ, δ, q0, F 〉 is
called trim whenever each state q ∈ Q is reachable from q0 and each state t ∈ F
is reachable from some state q ∈ Q.

In our context a (automaton) homomorphism ϕ : A → B between the
DFAs A = 〈Q,Σ, δ〉 and B = 〈T,Σ, ξ〉 is a map ϕ : Q → T preserving the
action of letters, i.e. ϕ(δ(q, a)) = ξ(ϕ(q), a) for all a ∈ Σ. Note that ϕ(Q)
identifies a sub-automaton of B denoted by ϕ(A ), and we say that ϕ(A ) is a
homomorphic image of A . A binary relation ρ ⊆ Q × Q is a congruence for the
automaton A = 〈Q,Σ, δ, q0, F 〉 if (q1, q2) ∈ ρ implies (δ(q1, u), δ(q2, u)) ∈ ρ for
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all u ∈ Σ∗, q1, q2 ∈ Q. The quotient automaton of a DFA A with respect to
a congruence ρ is denoted by A /ρ = 〈Q/ρ,Σ, δ′, [q0], F/ρ〉, where [q] denotes
the ρ-class containing q, and the transition function δ′ : Q/ρ × Σ → Q/ρ is
defined be the rule δ′([q], u) = [δ(q, u)], for all u ∈ Σ∗, q ∈ Q. We denote by
Cong(A ) the set of all the congruences of the DFA A , the index of a congruence
ρ ∈ Cong(A ) is the cardinality of the state set of A /ρ. For any integer k, we
use the symbol Congk(A ) to denote the (possibly empty) set of congruences on
A of index k.

Denote the i-th letter of a word w ∈ Σ+ by w[i] and the prefix w[1]w[2] . . . w[i]
by w[1..i]. For indices 1 ≤ i < j ≤ |w| we use the notation w[i..j] to indicate the
factor w[i]w[i+1] . . . w[j]. If 1 ≤ i < j then we put w[j..i] = ε. For u,w ∈ Σ∗ we
say that u is a prefix, (suffix or factor, respectively) of w if w = uu2 (w = u1u or
w = u1uu2, respectively) for some u1, u2 ∈ Σ∗. We also write u ≤p w (u ≤s w
or u ≤f w, respectively) if u is a prefix (suffix or a factor of w, respectively).
We write u <p w (u <s w or u <f w) if u is a proper prefix (suffix or factor,
respectively) of w. For a given language L ⊆ Σ∗ and w ∈ Σ∗ we put Lw = {xw |
x ∈ L}, wL = {wx | x ∈ L}. The left (right) quotient of L by a word w is the
set w−1L = {v ∈ Σ∗ : wv ∈ L} (Lw−1 = {v ∈ Σ∗ : vw ∈ L}).

2 Lower Bounds for the Reset Complexity of Principal
Ideal Languages

In this section we prove that rdc(I) = rc(I) ≥ n+1 for a principal ideal language
I = Σ∗wΣ∗ with |w| = n. First we recall some auxiliary facts and definitions
from [12]. Let us consider an automaton A = 〈Q,Σ, δ〉. For a word u ∈ Σ∗, the
maximal fixed set m(u) is the largest subset of Q fixed by u, i.e. m(u).u = m(u).
Note that m(u) = Q.uk(u) for some minimal integer k(u) and it is not difficult
to see that k(u) ≤ |Q| − |m(u)| (see [12, Lemma 2]). A synchronizing DFA
A = 〈Q,Σ, δ〉 is called finitely generated if the language Syn(A ) is a finitely
generated ideal. The following theorem is proved using the technique of [12,
Theorem 4].

Theorem 3. Let A = 〈Q,Σ, δ〉 be a finitely generated synchronizing automaton
with |Q| = n. Then for any word v ∈ Σ+ we have that either vk(v) ∈ Syn(A ),
or there is a word τ with |τ | ≤ n − 1, such that vk(v)τvk(v) ∈ Syn(A ).

First we consider one particular example of a principal ideal language and prove

Lemma 1. Let I = Σ∗abn−1Σ∗, where Σ = {a, b}. Then rc(I) = n + 1 for
each n ∈ N.

Proof. Let A = 〈Q,Σ, δ〉 be a synchronizing DFA with Syn(A ) = I. We prove
that |Q| ≥ n + 1. Take v = b, we obtain that |Q| ≥ k(b) + |m(b)|. Since b� 
∈ I
for any 	 ∈ N, we have |m(b)| = |Q.bk(b)| ≥ 2. Now we show that k(b) = n − 1.
By the definition of k(b), we obtain

Q � Q.b � . . . � Q.bk(b), Q.bk(b) = Q.bk(b)+1.
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Let us conjecture that k(b) < n− 1. The word abn−1 is a reset word for A , thus
ab� 
∈ Syn(A ) for all 0 ≤ 	 < n − 1. Therefore,

Q � Q.a,Q.b � Q.ab,Q.b2 � Q.ab2 . . . Q.bk(b)
� Q.abk(b), |Q.abk(b)| > 1.

But in this case we have | (Q.abk(b)
)
.bn−1−k(b)| = |Q.abn−1| = 1, hence the word

bn−1−k(b) maps m(b) = Q.bk(b) to a subset of smaller cardinality, which is a
contradiction with the equality Q.bk(b) = Q.bk(b)+1. So we have k(b) = n − 1.
Thus |Q| ≥ k(b) + |m(b)| ≥ n − 1 + 2 = n + 1. Therefore, rc(I) ≥ n + 1. On
the other hand, the minimal DFA AI recognizing I has exactly n + 1 states and
Syn(AI) = I, so rc(I) = n + 1. ��
We are now in position to prove the main theorem of this section.

Theorem 4. Let I = Σ∗wΣ∗ be a principal ideal language, then rc(I) = |w|+1.

Proof. Since in [9, Lemma 1] it has been shown that rc(I) = |w|+1 for w = an,
we may assume |Σ| > 1. By Theorem 2 we have rc(I) ≤ |w| + 1. Suppose,
contrary to our claim, that there is a synchronizing automaton A = 〈Q,Σ, δ〉
with |Q| = n ≤ |w| for which I serves as the language of reset words. The equality
|w| = 1 implies that rc(I) = 2, so in what follows we assume that |w| > 1. Let a
and b be the initial and final letter of w respectively. Denote by ar the maximal
prefix of w of the form al, l ∈ N, and by bh the maximal suffix of w of the form
bl, l ∈ N. We consider the following cases.

Case 1. Assume a 
= b. Thus w can be factorized as w = arubh for some
u ∈ Σ∗. Suppose first that u ∈ Σ+. Let us take v = a|w|b|w|. By Theorem 3
we have two cases: either vk(v) ∈ Syn(A ) = I, or there is a word τ with |τ | ≤
n − 1 ≤ |w| − 1 such that vk(v)τvk(v) ∈ I.

Suppose that vk(v) ∈ I. Thus w ≤f vk(v), and since w can not be a factor of
either a|w| or b|w|, it must be a factor of v. Since u 
= ε we have that u[1] 
= a and
u[|u|] 
= b by the definition of ar, bh. Thus w is not a factor of v, a contradiction.
Therefore, we can assume that vk(v)τvk(v) ∈ I, and so w ≤f vk(v)τvk(v). From
the arguments above we have that w can not be a factor of v or vk(v), so we
have w ≤f vτv. Since w is not a factor of v, w[1] = a 
= b, w[|w|] = b 
= a, we
obtain w ≤f τ . Hence |w| ≤ |τ | ≤ |w| − 1, which is a contradiction.

Hence we may consider u = ε, and so w = arbh. In [9, Lemma 1] it was
shown that rc(I) = |w| + 1 for w ∈ {an, bn}. In the same paper it was obtained
that rc(I) = |w| + 1 for w = an−1b. By Lemma 1 we also get rc(I) = |w| + 1 for
w = abn−1, thus we can assume that r ≥ 2 and h ≥ 2. We take v = ar−1bh−1. By
Theorem 3 we have that either vk(v) ∈ I, or vk(v)τvk(v) ∈ I for some word τ with
|τ | ≤ n−1 ≤ |w|−1. Obviously, w = arbh can not be a factor of vk(v). Therefore,
w is a factor of vτv. Again using simple technique from combinatorics on words
it is easy to see that w must be a factor of τ . Hence we get |w| ≤ |τ | ≤ |w| − 1,
a contradiction.

Case 2. Assume a = b. If w ∈ {an, bn} then rc(I) = |w| + 1 [9, Lemma
1]. Therefore, we can assume that w = aruah for some u ∈ Σ+ with u[1] 
= a,
u[|u|] 
= a. In this case we apply Theorem 3 with v = b for some b ∈ Σ \ {a}.
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Providing the same arguments as above, it is easy to prove that w has to be
a factor of a word τ with |τ | ≤ |w| − 1, which again leads to the contradiction
|w| ≤ |τ | ≤ |w| − 1. ��
Note that by Theorem 2 we have the equality rc(I) = rdc(I) = |w| + 1.

3 A Lifting Property for Strongly Connected
Synchronizing Automata

The aim of this section is to prove that strongly connected synchronizing
automata are all and only all the homomorphic images of automata from some
particular class. In what follows we will assume that the input alphabet Σ con-
tains at least two letters.

Definition 1. The considered class L(Σ) is formed by all the trim automata
A = 〈Q,Σ, δ, q0, {q0}〉 such that L[A ] = w−1Σ∗w for some word w ∈ Σ∗.

Here we reduce Černý’s conjecture to the same conjecture for the quotients of
automata from the class L(Σ). We have the following proposition.

Proposition 1. Let A ∈ L(Σ) with L[A ] = w−1Σ∗w. Then A is a strongly
connected synchronizing automaton and w is a reset word for A .

Proof. Since A = 〈Q,Σ, δ, q0, {q0}〉 is a trim DFA, for each q ∈ Q there is a
word u ∈ Σ∗ such that q0.u = q. On the other hand, uw ∈ w−1Σ∗w = L[A ],
thus we have q0 = q0.uw = q.w. In this way, we obtain that q.w = q0 for each
q ∈ Q, i.e. w ∈ Syn(A ).

Now we prove that A is a strongly connected DFA. Take two arbitrary states
q1, q2 ∈ Q. Since A is a trim DFA there is a word u such that q0.u = q2. Thus,
since q1.w = q0, we have q1.(wu) = q0.u = q2. ��
Let w, u ∈ Σ∗, we denote by u∧sw the maximal suffix of the word u that appears
in w as a prefix. Using simple technique from combinatorics on words it is not
hard to prove the following lemma.

Lemma 2. For any u, v, w ∈ Σ∗, (uv) ∧s w = ((u ∧s w)v) ∧s w. Furthermore,
for any v with |v| ≥ w, (uv) ∧s w = v ∧s w.

Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA. For a state q ∈ Q we define the right language
of q by the equality Lq[A ] = {u ∈ Σ∗ | q.u ∈ F}. For p, q ∈ Q we say that p and
q are equivalent if Lq[A ] = Lp[A ]. A DFA with a distinguished initial state and
distinguished set of final states is minimal if it contains no (different) equivalent
states and all states are reachable from the initial state. The automata from
L(Σ) recognize languages which are left quotients of the form w−1Σ∗w. In fact
these languages are recognized by automata with exactly |w| + 1 states as it is
shown in the following proposition.
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Proposition 2. Consider the automaton Aw = 〈P (w), Σ, ξ, qn, {qn}〉 where
P (w) = {q0, . . . , qn} is the set of prefixes of the word w of length 0 ≤ i ≤ |w| = n,
and the transition function is defined by the rule ξ(qi, a) = (qia) ∧s w for all
a ∈ Σ, qi ∈ P (w). The DFA Aw is the minimal automaton recognizing the
language

L[Aw] = w−1Σ∗w (1)

Proof. By Lemma 2 it is straightforward to see that ξ(qi, u) = (qiu) ∧s w for all
u ∈ Σ∗, q ∈ Q. First we prove the equality (1). Let u ∈ Σ∗ and ξ(qn, u) = qn.
Hence w = qn = (wu) ∧s w, i.e. wu ∈ Σ∗w. Conversely, if u ∈ w−1Σ∗w, that
is wu ∈ Σ∗w, then (wu) ∧s w = w = qn. This implies that ξ(qn, u) = qn, i.e.
u ∈ L[Aw].

We now consider the minimality issue. We verify that each state qi ∈ P (w)
is reachable from the initial state qn. Indeed, let a be any letter from Σ different
from w[1]. We have the equality ξ(qn, an) = q0. The word w[1..i] maps q0 to qi, so
we have ξ(qn, anw[1..i]) = qi. Now we take any qi, qj ∈ P (w) with i 
= j. Without
loss of generality we can assume i < j. Consider the word u = w[j + 1, n]. We
have ξ(qj , u) = qn while ξ(qi, u) 
= qn since |qiu| < |w|. Hence qi, qj are not
equivalent. So the DFA Aw is minimal. ��
Example 1. Take w = aba, Σ = {a, b}. The minimal automaton Aw recognizing
the language L = w−1Σ∗w is shown in Fig. 1.

ε a ab aba
a b a

b

a

b

b a

Fig. 1. Automaton Aw for w = aba

Note that Aw ∈ L(Σ). Now we are in position to state the main result of
this section.

Theorem 5. Let A = 〈Q,Σ, δ〉 be a strongly connected synchronizing automa-
ton. For any reset word w of minimum length, there is a DFA B ∈ L(Σ) with
L[B] = w−1Σ∗w and

Σ∗wΣ∗ ⊆ Syn(B) ⊆ Syn(A )

such that A is a homomorphic image of B.

We omit the proof of Theorem 5 because of space constraints. Here we just notice
that the proof is constructive and provides an algorithm to compute the lifted
automaton B of the statement. We have the following corollary.
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Corollary 1. The class of strongly connected synchronizing automata contains
all and only all the homomorphic images of automata from the class L(Σ) formed
by the trim automata A = 〈Q,Σ, δ, q0, {q0}〉 such that L[A ] = w−1Σ∗w for
some word w ∈ Σ∗.

Proof. By Proposition 1 we have that any A ∈ L(Σ) is a strongly connected
synchronizing automata, hence any homomorphic image ϕ(A ) is also a strongly
connected synchronizing automaton. On the other hand, by Theorem 5 any
strongly connected synchronizing automaton is a homomorphic image of a DFA
from L(Σ). ��
Using Theorem 5 we can give another reformulation of Cerny’s conjecture using
the automata from L(Σ).

Theorem 6. Cerny’s conjecture holds if and only if for any B ∈ L(Σ) and
ρ ∈ Congk(B) for all k <

√‖Syn(B)‖ + 1 we have

‖Syn(B/ρ)‖ < ‖Syn(B)‖

4 Some Properties of the Automaton Aw

In view of the results of the previous section, left quotients of principal left
ideals seem to play a fundamental role in the Černý conjecture. In this regard
we initiate a study of automata recognizing languages of the form w−1Σ∗w. In
this section we provide a compact formula to calculate the size of the syntactic
semigroup of a language I = w−1Σ∗w, w ∈ Σ∗.

For a regular language L ⊆ Σ∗ the Myhill congruence [10] ≈L of L is defined
as follows:

u ≈L v if and only if xuy ∈ L ⇔ xvy ∈ L for all x, y ∈ Σ∗.

This congruence is also known as the syntactic congruence of L. The quotient
semigroup Σ+/ ≈L of the relation ≈L is called the syntactic semigroup of L. The
syntactic semigroup of L is known to be isomorphic to the transition semigroup
of the minimal DFA recognizing L. The syntactic complexity σ(L) of a regular
language L is the cardinality of its syntactic semigroup. The notion of syntac-
tic complexity is studied quite extensively: for a survey of this topic we refer
the reader to [6]. Also the notion of the syntactic semigroup finds interesting
application in the theory of synchronizing automata. Indeed, let I be an ideal
language, S the syntactic semigroup of I and S(B) the transition semigroup of
a synchronizing DFA B for which I = Syn(B). In [5] it has been shown that S
is a homomorphic image of S(B). It means that if the transition semigroup of
any DFA B such that Syn(B) = I possesses some algebraic property which is
preserved under homomorphisms, then also the syntactic semigroup of I must
possess this property.

Recall that u ∈ Σ+ is an inner, or proper, factor of w if there exist words
x, y ∈ Σ+ such that w = xuy. Denote by Fact(w) the set of different inner
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factors of w, by Suff(w) the set of proper non-empty suffixes of w which do not
appear in w as inner factors, by Pref(w) the set of proper non-empty prefixes of
w which do not appear in w as suffixes or inner factors, by Prefsyn(w) the set
of prefixes of w synchronizing Aw. We have the following

Proposition 3. Let I = w−1Σ∗w for some w ∈ Σ∗. The syntactic complexity
of I is equal to

σ(I) = |w| + 1 + |Pref(w)| + |Fact(w)| + |Suff(w)| − |Prefsyn(w)|.
Note that by Proposition 3 we get an effective algorithm to calculate the

syntactic complexity of the left quotient w−1I by w of a principal left ideal
I = Σ∗w in O(|w|2) time.

By Proposition 1 the minimal automaton Aw recognizing Lw = w−1Σ∗w
is strongly connected and w ∈ Syn(Aw). Recall that a reset word v for a given
synchronizing DFA A is called minimal if none of its proper prefixes nor suffixes
belong to Syn(A ). Denote by Synmin(Aw) the set of all minimal reset words
for a given synchronizing DFA Aw. It is not hard to prove that the language
Synmin(Aw) is finite, thus we have the following

Proposition 4. For each w ∈ Σ∗, Aw is a finitely generated synchronizing
automaton.

5 Representation of Regular Languages by Synchronizing
Automata

In this section AL stands for the minimal DFA recognizing a regular language
L. In some cases AL may have a unique non-accepting sink state s, i.e. s 
∈
F . It may turn out that AL is synchronizing and, therefore, each reset word
brings the whole automaton to s. If this is not the case one may consider partial
synchronization in the following sense. A DFA A = 〈Q,Σ, δ, q0, F 〉 with a non-
accepting sink state s is called partially synchronizing if there exists a word
w ∈ Σ∗ such that Q.w = {s, q} for some state q ∈ Q. Any word with this
property is said to be partial reset word for the DFA A . The set of all partial
reset words for A is denoted by Synpar(A ).

Let L be a regular language. If L is an ideal language then AL is synchronizing
and Syn(AL) = L. In Sect. 3 it has been shown that the minimal automaton
recognizing the language w−1Σ∗w is synchronizing and w is a reset word for
this automaton. On the other hand, w ∈ w−1Σ∗w. So in this case we have that
the minimal automaton recognizing a given language L is synchronizing and
some word from L is also a reset word for the automaton. In this regard the
following interesting question arises. How to describe all regular languages L for
which AL is synchronizing and L ∩ Syn(AL) 
= ∅? In this section we answer this
question.

Let L ⊆ Σ∗ be a regular language. A word w ∈ Σ∗ is a constant for L if the
implication

u1wu2 ∈ L, u3wu4 ∈ L ⇒ u1wu4 ∈ L
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holds for all u1, u2, u3, u4 ∈ Σ∗. We denote the set of all constants of L by
C(L). Note that the set C(L) contains the ideal Z(L) = {w | Σ∗wΣ∗ ∩ L = ∅}.
Constant words of a regular language L satisfy the following property, also stated
in [16].

Lemma 3. Let L ⊆ Σ∗ be a regular language and let AL be the minimal automa-
ton recognizing L with set of states Q. If AL has a non-accepting sink state s
then a word w ∈ Σ∗ is a constant for L if and only if |Q.w| ≤ 2. If AL does not
have a non-accepting sink state s then a word w ∈ Σ∗ is a constant for L if and
only if |Q.w| = 1.

By this lemma it follows that constants of a regular language L are described
precisely via reset and partial reset words of the minimal automaton recogniz-
ing L. Let L ⊆ Σ∗, denote by L the complement to L, that is L = Σ∗ \ L.

Proposition 5. The automaton AL is synchronizing and L ∩ Syn(AL) 
= ∅ if
and only if the following properties hold:

(i) C(L) 
= ∅
(ii) L does not contain right ideals.

Proof. Consider the DFA AL = 〈Q,Σ, δ, q0, F 〉. Assume that AL is synchroniz-
ing and the condition L∩Syn(AL) 
= ∅ holds. We take any w ∈ L∩Syn(AL). By
Lemma 3 we have w ∈ C(L). Arguing by contradiction assume that L contains a
right ideal. This means that there is a strongly connected component H ⊆ Q\F
without outgoing transitions leading to F . Thus, for all w ∈ Syn(AL), we have
H.w ∩ F = ∅, hence L ∩ Syn(AL) = ∅, which is a contradiction.

Assume that properties (i) and (ii) hold. By property (ii) AL does not have
a non-accepting sink state. Thus, by Lemma 3 each constant of L is a reset
word for AL, and since C(L) is not empty, AL is synchronizing. Arguing by
contradiction, assume that L ∩ Syn(AL) = ∅, hence Syn(AL) ⊆ L. However, the
language Syn(AL) is a right ideal, a contradiction. ��
The following proposition deals with the complementary case.

Proposition 6. The automaton AL is synchronizing and L ∩ Syn(AL) = ∅ if
and only if the following properties hold:

(i) Z(L) 
= ∅
(ii) L contains a right ideal.

Proof. Consider the DFA AL = 〈Q,Σ, δ, q0, F 〉. Assume that AL is synchro-
nizing and the condition L ∩ Syn(AL) = ∅ holds. Arguing by contradiction
assume that L does not contain a right ideal. By Proposition 5 we get that
L∩Syn(AL) 
= ∅, which is a contradiction. So property (ii) holds. This property
is equivalent to the existence of a strongly connected component H ⊆ Q \ F
without outgoing transitions leading to F . By the minimality of AL we obtain
|H| = 1, thus H contains just a non-accepting sink state s. Since AL is synchro-
nizing, each w ∈ Syn(AL) brings the whole DFA AL to s, hence Z(L) 
= ∅.
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Conversely, assume that properties (i) and (ii) hold. Again, by property (ii)
there is a non-accepting sink state in AL. Thus each w from Z(L) is a reset
word for AL. Arguing by contradiction, assume that L ∩ Syn(AL) 
= ∅. Thus by
Proposition 5 L does not contain right ideals. Contradiction. ��
Note that in order to check whether property (ii) in both of the previous propo-
sitions is satisfied, it is enough to check whether there is a strongly connected
component in Q\F without outgoing transitions leading to F . The latter check-
ing can be implemented in polynomial of the size of AL time. Note that some
problems related two constants of languages are considered in [1]. In particular,
the problem of deciding whether a given partial 2-letter automaton is partially
synchronizing is shown to be NP -complete (the action of the transition function
on some states of a given automaton may be undefined). The notion of a partial
synchronizing word from [1] is defined analogously to the notion of partial reset
word here. Now we formally state the following CONSTANT problem:

• Input: a regular language L over Σ, presented via its minimal recognizing
DFA AL.

• Question: is it true that C(L) 
= ∅?

We can suppose that AL has a non-accepting sink state s, since otherwise the
problem is equivalent to testing AL for synchronization in usual sense. First we
prove the following

Lemma 4. Let AL = 〈Q,Σ, δ, q0, F 〉 have a non-accepting sink state s. The set
C(L) is not empty if and only if for each pair {p, q} of different states p, q ∈ Q
there is a word u such that {p, q}.u ⊆ {s, r} for some r ∈ Q.

Proof. Clearly, if C(L) 
= ∅ the desired property holds by Lemma 3. Conversely,
take any pair {p, q} of different states, then there is a word w1 ∈ Σ∗ such that
{p, q}.w1 ⊆ {s, r} for some r ∈ Q. We clearly have |Q.w1| < |Q|. Consider
now the set Q.w1. If |Q.w1| ≤ 2 then w1 ∈ C(L), so we are done. Otherwise,
if |Q.w1| > 2 then take again any two different states p′, q′ ∈ Q.w1 such that
p′, q′ 
= s. Hence there is a word w2 ∈ Σ∗ such that {p′, q′}.w2 ⊆ {s, r′} for
some r′ ∈ Q. We have the inequality |Q.w1w2| < |Q.w1| < |Q|. Consider now
the set Q.w1w2. If |Q.w1w2| ≤ 2 then w1w2 ∈ C(L), so we are done. Arguing by
induction we get, through a finite number of steps as described above, a word w
such that |Q.w| ≤ 2. That is w ∈ C(L). ��
Recall that for a given DFA A = 〈Q,Σ, δ, q0, F 〉 the power automaton P(A ) is
constructed as follows. Its state set Q includes all non-empty subsets of Q and
the transition function is a natural extension of δ on the set Q × Σ. The latter
function is still denoted by δ. Denote by P [2](A ) the subautomaton of the power
automaton P(A ) consisting only of 2-element and 1-element subsets of Q.

Proposition 7. CONSTANT can be solved in time O(n5 · |Σ|), where n = |Q|.
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Proof. We use Lemma 4 to establish nonemptiness of the set C(L). First we build
the corresponding automaton P [2](A ) that can be done in time O(n2 · |Σ|). This
automaton has n(n+1)

2 states. Take any pair {p, q} of different states p, q ∈ Q,
p, q 
= s. Take any pair {r, s}, r 
= s. We put Lp,q,r,s = {w | {p, q}.w = {r, s}},
Lp,q,r = {w | {p, q}.w = {r}}, Lp,q,s = {w | {p, q}.w = {s}}. Nonemptiness
of any of these three sets can be checked in time O(n2 · |Σ|) by a breadth first
search in P [2](A ). The latter may be done for all possible pairs {p, q} and {r, s}
(in the worst case). Since there are n(n−1)2

2 possible choices for the pairs {p, q}
and {r, s}, we get a cost of O(n5 · |Σ|). Finally, we obtain that it takes O(n5 · |Σ|)
time to solve CONSTANT.
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SOFSEM 2012, Proceedings of the Institute of Computer Science Academy of
Sciences of the Czech Republic, vol. II, pp. 33–44 (2012)

10. Myhill, J.: Finite automata and representation of events. Wright Air Development
Center Technical report, 57624 (1957)



338 M. Maslennikova and E. Rodaro

11. Perrin, D.: Finite automata. In: van Leewen, J. (ed.) Handbook of Theoretical
Computer Science, pp. 1–57. Elsevier, Amsterdam (1990)

12. Pribavkina, E., Rodaro, E.: Synchronizing automata with finitely many minimal
synchronizing words. Inf. Comput. 209(3), 568–579 (2011)

13. Pribavkina, E.V., Rodaro, E.: Recognizing synchronizing automata with finitely
many minimal synchronizing words is PSPACE-complete. In: Löwe, B., Normann,
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Abstract. Antistochastic strings are those strings that do not have any
reasonable statistical explanation. We establish the follow property of
such strings: every antistochastic string x is “holographic” in the sense
that it can be restored by a short program from any of its part whose
length equals the Kolmogorov complexity of x. Further we will show how
it can be used for list decoding from erasing and prove that Symmetry
of Information fails for total conditional complexity.

Keywords: Kolmogorov complexity · Algorithmic statistics · Stochas-
tic strings · Total conditional complexity · Symmetry of Information

1 Introduction

Algorithmic statistics studies explanations of observed data that are good in the
algorithmic sense: an explanation should capture all the algorithmically discov-
erable regularities in the data. The data is encoded, say, by a string x over a
binary alphabet {0, 1}. In this paper we consider explanations that are statistical
hypotheses of the form “x was drawn at random from a finite set A with uni-
form distribution”. (As argued in [7] the class of general probability distributions
reduces to the class of uniform distributions over finite sets.)

As an option, Kolmogorov suggested in 1974 [2] to measure the quality
of an explanation A � x by two parameters, Kolmogorov complexity C(A)
of A (the explanation should be simple) and the cardinality |A| of A (the
smaller |A| is the more “exact” explanation is). Both parameters cannot be
very small simultaneously unless the string x has very small Kolmogorov com-
plexity. Indeed, C(A) + log2 |A| � C(x) (up to O(log(l(x)))), since x can be
specified by A and its index in A. Kolmogorov called an explanation A � x good
if C(A) ≈ 0 and log2 |A| ≈ C(x), that is, log2 |A| is as small as the inequal-
ity C(A) + log2 |A| � C(x) permits given that C(A) ≈ 0. He called a string
stochastic if it has such an explanation.

Every string x of length n has two trivial explanations: A1 = {x} and A2 =
{0, 1}n. The first explanation is good when the complexity of x is small. The
second one is good when the string x is random, that is, its complexity C(x) is
close to n. Otherwise, when C(x) is far from both 0 and n, both explanations
are bad.

c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 339–349, 2015.
DOI: 10.1007/978-3-319-20297-6 22
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Informally, non-stochastic strings are those having no good explanation and
antistochastic strings are extreme case of non-stochastic strings (a strict defin-
ition will be done in the third section). They were studied in [1,6,7]. To define
non-stochasticity rigorously we have to introduce the notion of the profile of x,
which represents the parameters of possible explanations for x.

Definition 1. The profile of a string x is the set Px consisting of all pairs
(m, l) of natural numbers such that there is a finite set A � x with C(A) � m
and log2 |A| � l.

On the Fig. 1, it is shown how the profile of a string x of length n and complexity
k may look like.

Fig. 1. The profile Px of a string x of length n and complexity k

The profile of every string x of length n and complexity k has the following
three properties. First, Px is upward closed: if Px has a pair (m, l) then Px

contains all the pairs (m′, l′) with m′ � m and l′ � l. Second, Px contains
the set

Pmin = {(m, l) | m + l � n or m � k} (1)

(the set consisting of all pairs above and to the right of the dashed line on Fig. 1)
and is included into the set

Pmax = {(m, l) | m + l � k} (2)

(the set consisting of all pairs above and to the right of the dotted line on Fig. 1).
In other words, the border line of Px, called by Kolmogorov the structure function
of x, lies between the dotted line and the dashed line.

This was a rough formulation of the second property. The accurate statement
is the following. For some function ε = O(log n) the set Pmin is included in the
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ε-neighborhood of the set Px, which is included in the ε-neighborhood of the set
Pmax. Speaking about neighborhoods we refer to l1-metrics on the plane.

And finally, Px has the following property:

if a pair (m, l) is in Px then for all i � l

the pair (m + i + O(log l(x)), l − i) is in Px.
(3)

The notion of the profile was introduced by Kolmogorov in [2] and he estab-
lished these properties.

If for some strings x and y Px ⊂ Py then y is more stochastic then x. The
largest possible profile is close to the set Pmax. Such a profile is possessed, for
instance, by a random string of length k appended by n − k zeros. The smaller
the set Px is, the more non-stochastic the sting x is.

The paper [7] shows that every profile that has the above three properties
is realizable by a string of length n and complexity k + O(log n), with certain
accuracy:

Theorem 1 [7]. Assume that we are given an upward closed set P of pairs
of natural numbers which includes Pmin and is included into Pmax and for all
(m, l) ∈ P and all i � l we have (m + i, l − i) ∈ P . Then there is a string x of
length n and complexity k + O(log n) whose profile is at most C(P ) + O(log n)-
close to P .

In this theorem, we call subsets of N
2 ε-close if each of them is in the

ε-neighborhood of the other.
Kolmogorov complexity C(P ) of the set P is defined as follows. Any set P

of pairs of naturals as in Theorem1 is completely determined by the function
h(l) = min{m | (m, l) ∈ P}. This function has only finitely many non-zero
values, as h(k) = h(k + 1) = · · · = 0. Hence h is a finite object and we let C(P )
be equal to the Kolmogorov complexity of h.

For the set Pmin the function h satisfies h(m) = n − m for m < k and
h(k) = h(k + 1) = · · · = 0. Thus the Kolmogorov complexity of this set is
O(log n). Hence there is a string x of length about n and complexity about k
whose profile Px is close to the set Pmin. We call such strings antistochastic.

In this paper we show that antistochastic strings have the following property:
Assume that we replace in an antistochastic string of length n and complexity

k an arbitrary set of n − k bits by the “blank” symbol. Then the original string
can be restored from the resulting string by a short program (Theorem3). We
call this property the “holographic property” of antistochastic strings.

We will use this property to prove the following propositions:

– There are about 2k “holographic” strings of length n and complexity k and
thus they form a binary code of dimension k which is list decodable from n−k
erasures with a list of size poly(n) (Theorem 4).

– If y is an antistochastic string of length 2k and complexity k and x is its
first half, then the total complexity of y conditional to x is about k while the
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plain complexity of y conditional to x is negligible (Theorem 6). Thus non-
stochastic strings provide a new natural example of a pair of strings when
total conditional complexity is much less than plain conditional complexity.
As the total and plain complexities of x conditional to y coincide (both are
negligible), we get a new natural example of asymmetry of information for
total conditional complexity.

2 Preliminaries

We consider strings over the binary alphabet {0, 1}. The set of all strings is
denoted by {0, 1}∗ and the length of a string x by l(x). The empty string is
denoted by Λ.

Let D be a partial computable function mapping pairs of strings to strings.
Conditional Kolmogorov complexity with respect to D is defined as

CD(x|y) = min{l(p) | D(p, y) = x}.

In this context the function D is called a description mode or a decompressor.
If D(p, y) = x then p is called a description of x conditional to y or a program
mapping y to x.

A decompressor D is called universal if for any other decompressor D′ there is
a string c such that D′(cp, y) = D(p, y) for all p, y. By Solomonoff—Kolmogorov
theorem universal decompressors exist. We pick any universal decompressor D
and call CD(x|y) the Kolmogorov complexity of x conditional to y and denote it
by C(x|y). Then we define the plain Kolmogorov complexity C(x) of x as C(x|Λ)

Total conditional complexity is defined as the shortest length of a total pro-
gram p mapping b to a: CT (a|b) = min{l(p) | D(p, b) = a and D(p, y) is defined
for all y}. Obviously CT (a|Λ) = C(a) + O(1) while in general CT (a|b) may be
much greater than C(a|b) (such examples are presented below).

Kolmogorov complexity of other finite objects is defined using a computable
1-1 correspondence between those objects and strings. For instance, fix any com-
putable 1-1 correspondence between {0, 1}∗ and the family of finite subsets of
{0, 1}∗. The string that corresponds to a finite A ⊂ {0, 1}∗ is denoted by [A]
and is called the code of A. Its complexity C([A]) is abbreviated to C(A). In the
same way we understand the notations C(x|A) and C(A|x).

For properties of Kolmogorov complexity we refer to textbooks [3] or [4].
Here we present only one property established by Kolmogorov and Levin:

Theorem 2 (Symmetry of Information). For all strings x, y of complexity
at most k it holds C(x) − C(x|y) = C(y) − C(y|x) + O(log k).

3 Antistochastic Strings and Their Properties

Definition 2. A string x of length n and complexity k is called ε-antistochastic
if for all (m, l) ∈ Px either m > k − ε, or m + l > n − ε.
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Notice that ε-antistochasticity implies that Px is in an ε-neighborhood of the set
Pmin from Eq. (1) and the latter implies that x is 2ε-antistochastic.

By Theorem 1 there are ε-antistochastic strings of each length n and com-
plexity k � n where ε = O(log n). More specifically, Theorem 1 has the following
consequence.

Corollary 1. For all n and all k � n there is an O(log n)-antistochastic string
x of length n and complexity k + O(log n).

This corollary can be proved more easily than the more general Theorem 1. For
the sake of completeness we present the proof.

Proof. We first formulate a sufficient condition for antistochasticity.

Lemma 1. If the profile of a string x of length n and complexity k does not
contain the pair (k − ε, n − k) then x is ε + O(log n)-antistochastic.

Notice that the condition of this lemma is implied by the definition of
ε-antistochasticity. So, basically Lemma 1 provides a re-formulation of ε-anti-
stochasticity.

Proof. Assume that a pair (m, l) is in the profile of x. We will show that either
m > k − ε or m + l > n − ε − O(log n). Assume that m � k − ε and hence
l > n − k. By the third property of profiles we see that the pair

(m + (l − (n − k)) + O(log n), n − k)

is in its profile as well. Hence we have

m + l − (n − k) + O(log n) > k − ε

and

m + l > n − ε − O(log n). ��
Consider the family A consisting of all finite sets A of complexity less than k
and log-cardinality at most n − k. The number of such sets is less than 2k and
thus the total number of strings in all such sets is less than 2k2n−k = 2n. Hence
there is a string of length n that does not belong to any of those sets. Let x be
the lexicographically least such string.

Let us show that the complexity of x is k + O(log n). It is at least k − O(1),
as by construction the singleton {x} has complexity at least k. On the other
hand, the complexity of x is at most log |A| + O(log n) � k + O(log n). Indeed,
the list of A can be found from k, n and |A|, as we can enumerate A until we
get |A| sets.

By construction x satisfies the condition of the Lemma 1 with ε = O(log n).
Hence x is O(log n)-antistochastic.

For any integer i let Ωi denote the number of strings of complexity at most i.
As we can compute from Ωk and k a string of Kolmogorov complexity more than
k, we have C(Ωk) = k + O(log k). If l � m then the leading l bits of Ωm contain
the same information as Ωl [7, Theorem VIII.2] and [4, Problem 367]:
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Lemma 2. Assume that l � m and let (Ωm)1:l denote the leading l bits of Ωm.
Then both C((Ωm)1:l|Ωl) and C(Ωl|(Ωm)1:l) are of order O(log m).

Every antistochastic string of x complexity k < l(x) − O(log l(x)) contains the
same information as Ωk:

Lemma 3. There exists a function f(n) = O(log n) such that the following
holds. Let x be an ε-antistochastic string of length n and complexity k < n− ε−
f(n). Then both C(Ωk|x) and C(x|Ωk) are less than ε + f(n).

Actually this lemma is true for all strings whose profile Px does not contain the
pair (k − ε + O(log k), ε), in which form it was essentially proved in [1]. The
lemma goes back to L. Levin (personal communication, see [7] for details).

Proof. Fix an algorithm that given any k enumerates all strings of complex-
ity at most k. Let N denote the number of strings that appear after x in the
enumeration of all strings of complexity at most k (N can be equal 0).

Given x, k and N we can find Ωk just by waiting until N strings have been
enumerated after x. Let l = �log N	. We claim that l � ε+O(log n). Indeed, chop
the set of all strings enumerated into portions of size 2l. The last portion might
be incomplete, however x does not fall in that portion. Every complete portion
can be described by its number and k. The total number of complete portions
is less than 2k/2l. Thus the profile Px contains the pair (k − l + O(log k), l). By
antistochasticity of x, we have k−l+O(log k) � k−ε or k−l+O(log k)+l � n−ε.
The former inequality implies that l � ε+O(log k). The latter inequality cannot
happen provided the function f(n) in the condition of the theorem is large
enough.

We have shown that C(Ωk|x) < ε + O(log k). By Symmetry of Information
this implies that C(x|Ωk) < ε + O(log n) as well. Indeed,

C(x) + C(Ωk|x) = C(x|Ωk) + C(Ωk) + O(log k).

The strings x and Ωk have the same complexity with logarithmic accuracy hence
C(Ωk|x) = C(x|Ωk), also with logarithmic accuracy.

3.1 A “Holographic” Property of Antistochastic Strings

Every antistochastic string x of length n and complexity k can be restored from
its first k bits using an auxiliary logarithmic amount of information. Indeed, let A
consist of all strings of the same length as x and having the same k first bits as x.
The complexity of A is at most k + O(log n). On the other hand, its complexity
is at least k − O(log n) as the profile of x contains the pair (C(A), n − k). Since
C(A|x) = O(log n), by Symmetry of Information we have C(x|A) = O(log n)
as well.

The same arguments work for every simple k-element subset of indices: if I
be a k-element subset of {1, . . . , n} and C(I) = O(log n) then x can be restored
from xI and some auxiliary logarithmic amount of information. Here xI denotes
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the string obtained from x by replacing all the symbols with indices outside I by
the blank symbol (a fixed symbol, different from 0,1). Surprisingly, this is true
for every k-element subset of indices, even if that subset be complex: C(x|xI) =
O(log n). The following theorem provides an even more general formulation of
this property.

Theorem 3. Let x be an ε-antistochastic string of length n and complexity k.
Assume that x ∈ A and |A| � 2n−k. Then C(x|A) � 2ε + O(log C(A) + log n).

For instance, let I is a k-element set of indexes and A be the set of all strings
of length n that coincide with x on I. Then A can be described in 2n bits and
hence C(x|A) � 2ε + O(log n).

Proof. W.l.o.g. we may assume that k < n − ε − f(n) where f(n) = O(log n) is
the function from Lemma3. Indeed, otherwise A is so small that x can be just
identified by its index in A in ε + f(n) bits. Thus by Lemma 3 both C(Ωk|x)
and C(Ωk|x) are less than ε + O(log n).

In all the inequalities below we will ignore additive terms of order
O(log C(A) + log n). However, we will not ignore additive terms ε. We hope
that the exact meaning of the inequalities be clear.

Run the algorithm that enumerates all finite sets of complexity at most C(A).
Let N denote the index of the code of A in that enumeration. Let m denote the
number of common leading bits of the binary notations of N and ΩC(A) and l

the number of remaining bits. That is, N = a2l +b and ΩC(A) = a2l +c for some
integer a < 2m and b, c < 2l. Thus l + m is equal to the length of the binary
notation of ΩC(A), which is C(A) + O(1). Let us distinguish two cases.

Case 1: m � k. In this case we will use the inequality C(x|Ωk) � ε. The
number Ωk can be retrieved from Ωm and the latter can be found from m
leading bits of ΩC(A). Finally m leading bits of ΩC(A) can be found from A as
m leading bits of the index N of the code of A in the enumeration of all strings
of complexity at most C(A).

Case 2: m < k. This case is more elaborated and we need an additional
construction.

Lemma 4. The pair (m, l + n − k − C(A|x) − ε) belongs to Px.

Proof. We have to construct a set B � x of complexity m and log-size l + n −
k − C(A|x) − ε. It is constructed in two steps.

First step. On this step we construct a family A of sets such that A ∈ A and
C(A) � m, C(A|x) � ε and |A| � 2l. To this end chop all strings of complexity
at most C(A) in chunks of size 2l in the order they were enumerated. The last
chunk may be incomplete, however the code of A does not fall into the last
chunk: it belongs to the last complete chunk.

Let A stand for the family of those finite sets whose code belongs the chunk
containing the code of A and log-cardinality at most n − k. By construction
|A| � 2l. Since A can be found from a as the ath chunk, we have C(A) � m. To
prove that C(A|x) � ε it suffices to show that C(a|x) � ε. We have C(Ωk|x) � ε
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and from Ωk we can find Ωm and hence the number a as the m leading bits of
ΩC(A) (Lemma 2).

Second step. We claim that x appears in at least 2C(A|x) sets from A. Indeed,
assume that x falls in K of them. Given x, we can describe A by its index
in A and about ε bits of additional information to describe A. This implies
C(A|x) � log K + ε.

Let B be the set of x′ that appear in at least 2C(A|x)−ε of sets from A. As
shown, x belongs to B. As B can be found from A we have C(B) � m. It remains
to estimate the cardinality of B. The total number of strings in all sets from A
is at most 2l+n−k, counting multiplicities. Thus B has at most 2l+n−k−C(A|x)+ε

strings.
By the lemma either m � k − ε, or m + l + n − k − C(A|x) + ε � n − ε. In

the case m � k − ε we can just repeat the arguments from Case 1 and show that
C(x|A) � 2ε.

In the case m+ l+n−k−C(A|x)+ε � n−ε we recall that m+ l = C(A) and
by Symmetry of Information C(A) − C(A|x) = C(x) − C(x|A) = k − C(x|A).
Thus we have

n − C(x|A) + ε � n − ε. ��
Remark 1. Notice that every string with property of Theorem3 is antistochastic.
Indeed, if x is not ε-antistochastic for a large ε, then it belongs to a set A that
has 2n−k elements and whose complexity is less than k−ε+O(log n) (Lemma 1).
Then C(x|A) is large, since

k = C(x) � C(x|A) + C(A) + O(log n) � C(x|A) + k − ε + O(log n)

and hence C(x|A) � ε − O(log k).

3.2 Antistochastic Strings and List Decoding from Erasures

Definition 3. A string x of length n is called ε, k-holographic if for all k-element
set of indexes I ⊂ {1, . . . , n} we have C(x|xI) < ε.

Theorem 4. For all n and all k � n there are at least 2k−O(log n) O(log n),
k-holographic strings of length n.

Proof. By Corollary 1 and Theorem 3 for all n and k � n there is a ε, k-holographic
string x of length n and complexity k + O(log n), where ε denotes a function of n
of order O(log n). This implies that there are many of them. Indeed, the set of all
ε, k-holographic strings of length n can be identified by n and k. More specifically,
given n and k we can enumerate all ε, k-holographic strings and hence x can be
identified by k, n and its ordinal number in that enumeration. As the complexity
of x is at least k − O(log n), we can conclude the logarithm of that number is at
least k − O(log n).



Some Properties of Antistochastic Strings 347

Theorem 5. For every m,n with n � m and for every string x of length m
there is a string y of length n such that C(x|yI) = O(log n) for every m-element
sets of indexes I.

Proof. Set k = m + O(log n) and ε = O(log n) so that the number of ε,
k-holographic strings of length n be 2m or more. Then start an enumeration
of ε, k-holographic strings of length n and number them by strings of length m
until we enumerate 2m holographic strings. Let yx stand for the ε, k-holographic
strings corresponding to the string x of length m. Then C(x|y) = O(log n) and
hence C(x|yJ ) = O(log n) for any k-element set of indexes J . It remains to
notice that every m-element set of index I can be enlarged in a standard way
to a k-element set of indexes J so that C(yJ |yI) = O(log n). Hence C(x|yI) �
C(x|yJ ) + C(yJ |yI) + O(log n) = O(log n).

Theorem 5 provides a way to define codes that are list decodable from erasures.
Indeed, consider the string y existing by Theorem 5 as a n-bit code for the string
x. In this way we obtain a binary code with dimension k and code-length n. This
code is list decodable from at most n−k erasures with list size 2O(log n) = poly(n).
Indeed, if an adversary erases at most n − k bits of a code-word y then x can be
reconstructed from the resulting strings ỹ (containing zeros, ones and blanks) by
a program of length O(log n). Applying all programs of that size to ỹ, we obtain
a list of size poly(n) which contains x.

Although the existence of list decodable codes with such parameters can be
established by the probabilistic method [5, Theorem 10.9 on p.258], we find it
interesting that a seemingly unrelated notion of antistochasticity provides such
codes.

3.3 Antistochastic Strings and Total Conditional Complexity

Total conditional complexity is defined as the shortest length of a total program
p mapping b to a: CT (a|b) = min{l(p) | D(p, b) = a and D(p, y) is defined for
all y}.

The existence of strings where total conditional complexity differs, is attri-
buted in [10] to other places.

The paper [12] shows that there is a string x and its shortest program x∗ such
that CT (x|x∗) is large (linear in the length of x) while CT (x∗|x) is negligible
(of order O(log C(x)). Notice that both plain conditional complexities C(x|x∗)
and C(x∗|x) are negligible as well.

Here we show that absolutely antistochastic string provide another example
of strings x and y such that all CT (x|y), C(x|y) and C(y|x) are negligible while
CT (y|x) is large.

Theorem 6. For all k there is a string x of length k and a string y of length
2k with C(x) = C(y) + O(log k) = k + O(log k), CT (x|y) = O(1) (and hence
C(x|y) = O(1)), C(y|x) = O(log k) while CT (y|x) = k + O(log k).
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Proof. Let y be an O(log k)-antistochastic string for length 2k and complexity
k + O(log k) existing by Lemma 3. Let x consist of the first k bits of y. Then
C(x) = k + O(log k) and CT (x|y) = O(1).

It suffices to show that CT (y|x) � k−O(log k). Let p witness CT (y|x). Consider
the set A = {D(p, b) | b ∈ {0, 1}k}. This set witnesses that the profile of y
contains the pair (l(p) + O(log k), k). Therefore either l(p) + O(log k) � k −
O(log k) or l(p) + O(log k) + k � 2k − O(log k). In both cases we are done.

Remark 2. This example, as well as the example from [12], shows that for total
conditional complexity the Symmetry of Information (Theorem2) does not hold.
Indeed, let CT (a) = CT (a|Λ) = C(a)+O(1). Then CT (x)−CT (x|y) > CT (y)−
CT (y|x) + k − O(log k) for strings x, y from Theorem 6.

A big question in time-bounded Kolmogorov complexity is whether the Sym-
metry of information (Theorem 2) holds for time-bounded Kolmogorov complex-
ity. Partial answers to this question were obtained in [8,9,11].

Total conditional complexity CT (b|a) is defined as the shortest length of a
total program p mapping b to a. Being total that program halts on all inputs
in time bounded by a total computable function fp of its input. Thus total
conditional complexity may be viewed as a variant of time bounded conditional
complexity. Let us stress that the upper bound fp for time may depend (and does
depend) on p in a non-computable way. Thus CT (b|a) is a rather far approxi-
mation to time bounded Kolmogorov complexity.
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Abstract. Given an edge weighted undirected graph G = (V, E) with
|V | = n, and a function f : V → N, we consider the problem of finding
a connected f -factor in G. In particular, for each constant c ≥ 2, we
consider the case when f(v) ≥ n

c
, for all v in V . We characterize the set

of graphs that have a connected f -factor for f(v) ≥ n
3
, for every v in V ,

and this gives polynomial time algorithm for the decision version of the
problem. Extending the techniques we solve the minimization version.
On the class of instances where the edge weights in G form a metric
and f(v) ≥ n

c
, c is a fixed value greater than 3, we give a PTAS. For

each c ≥ 3 and ε > 0, our algorithm takes as input a metric weighted
undirected graph G and a function f : V → N such that f(v) ≥ n

c
, for

every v in V , and computes a (1 + ε)-approximation to the minimum
weighted connected f -factor in polynomial time.

1 Introduction

Consider a simple undirected graph G = (V,E) with n vertices and a func-
tion f : V → N. An f -factor [19] of G is a spanning subgraph H such that
dH(v) = f(v), for all v in V . The problem of deciding whether a given graph
G has an f -factor is a well studied problem over many years [1,4,9,12,13,15].
It is shown to be polynomial time solvable by Tutte [16]. A simple modification
to Tutte’s reduction can be used to compute the minimum weighted f -factor.
We consider the problem of finding an f -factor which is a connected graph,
and we refer to this as the connected f -factor. For the case when f(v) = 2 for
all v in V , a connected f -factor is the Hamiltonian cycle [19] which is hard to
compute. In fact, Cheah and Corneil [2] have considered the connected f -factor
problem where f(v) = d for all v in V , for any constant d. They have shown
that the problem is NP-Complete. For f(v) ≥ �n

2 �, the solution is straightfor-
ward. As a natural extension, consider the minimization version of the connected
f -factor problem in a given metric on a finite set of points. Under this constraint,
the Hamiltonian cycle decision problem gets naturally mapped to the famous
Min-TSP problem for which the best known approximation algorithm is due to
Christofides [20, Sect. 2.4], which gives a 1.5-approximation. In addition, we know
that the problem is APX-hard. Further, there exists a 2-approximation algo-
rithm [3] which is based on the double-tree heuristic for Min-TSP [20, Sect. 2.4],
and interestingly this weaker result is more useful to us than Christofides’s better
approximation algorithm.
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 350–363, 2015.
DOI: 10.1007/978-3-319-20297-6 23
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Past Work on Connected Factors. There has been an extensive study of
connected [a, b]-factors in the literature over the past twenty years. An [a, b]-
factor is a subgraph H of a graph G such a ≤ dH(v) ≤ b, for every v in V .
There are many results on sufficient conditions for a graph to have a connected
[a, b]-factor. For example, when δ(G) ≥ n

2 the Graph is Hamiltonian, due to
Ore [11] and Dirac [6]. Also, if the sum of degrees of every pair of non-adjacent
vertices is at least n − 1, then the graph has a Hamilton path, and this is a con-
nected [1, 2]-factor. Similarly, by relating the size of the maximum independent
set and the vertex connectivity of a graph, there are sufficient conditions for the
existence of connected [a, b]-factors. Many more results, and more general state-
ments than the ones made here, can be found in the survey article by Kouider
and Vestergaard [18]. The work by Plummer [12] also is a concise survey of the
state of the art work on graph factors and factorizations with references to many
open problems and sufficient conditions for different kinds of factorizations.

Our Work. To the best of our knowledge, our study is the first of the kind
in the area of connected factors. We do not know of sufficient conditions on
the existence of connected f -factors, and note here that the degree condition is
strict, as opposed to the case of connected [a, b]-factors where the degree can be
in the interval [a, b]. We are motivated in this line of study with an aim to classify
the f for which the connected f -factor problem is easy and those for which the
problem is hard. We are interested in the dichotomy based on f for both the
decision version of the connected f -factor problem and the approximability of
metric version of the same. In this paper, our results are as follows:

1. We characterize the graphs on n ≥ 16 vertices which have a connected
f -factor when f(v) ≥ n

3 , for every v in V .
2. We show that this characterization can be used on graphs with n ≥ 16 vertices

to solve the decision version of the connected f -factor problem in polynomial
time if for all v in V , f(v) ≥ n

3 . We also show that a minimum weight
connected f -factor can be found in polynomial time in this case. When n ≤ 15,
the problem can be solved by exhaustive enumeration, though we would like
to see a clean characterization and algorithm that works for all n.

3. Further for each c ≥ 2, we consider the case where for every v in V, f(v) ≥ n
c

and the edge weights form a metric. We present a polynomial time approxi-
mation scheme [20, Definition3.4] for the metric version of the problem which
works for a fixed constant c. Here again, our results work for the number of
vertices n ≥ c×max{c, 16 · �1/ε�}. As in the previous case, when n is smaller
than the bound given, we can solve the problem by exhaustive enumeration.

Unlike the hardness of Hamiltonian cycle problem, we now believe that it is
very unlikely for the connected f -factor problem f(v) ≥ n/c, for all v in V , to
be NP-hard. For c = 3, our algorithm computes a connected f -factor from an
arbitrary f -factor, and we believe that the techniques can be extended to larger
values of c.

In the case when the edge weights form a metric, we show that the minimum
weight connected f -factor, for f(v) ≥ n

c , for all v in V , can be solved up to
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arbitrary accuracy in polynomial time for each c ≥ 1, though are unable to
output the optimum in polynomial time. Our results can also be viewed as an
interplay between f -factors, alternating circuits (used to connect components in
an f -factor), and the edge connectivity of each component in an f -factor. We
believe that this interplay is fundamental to the understanding of the dichotomy
of connected f -factor based on the nature of f . Finally, to us it is an interesting
open question to relate the parameters that we use in our results, namely edge
connectivity and alternating circuits, to those parameters that play an important
role in the sufficient conditions for the existence of connected [a, b]-factors. In
particular, we do not know whether toughness, size of a maximum independent
set, and connectivity have any bearing on connected f -factors for f(v) ≥ n

c , for
every v in V .

Preliminaries and Notations. We use standard definitions and notation from
West [19]. Unless otherwise mentioned, G represents the input graph on n ver-
tices. V and E denote the vertex set and edge set of G, respectively. In particular,
dG(v) denotes the degree of a vertex v in a graph G, δ(G) stands for the min-
imum vertex degree in G, N(v) denotes the open neighborhood of a vertex v.
We use w(e) to represent weight of an edge e in a weighted graph and w(G)
to denote the sum of weights of edges in G. Further, the concepts of bridge or
cut-edge, the edge-cut [X,V \ X] created by a vertex partitioning {X,V \ X},
trail, circuit, decomposition of a graph G, the subgraph of G induced by S ⊆ V
denoted by G[S] are standard. For a set S ⊆ V , N(S) is the open neighborhood
of the set S which is ∪v∈SN(v)\S. A k-edge-connected component Qi of a graph
G is an induced subgraph G[Qi] such that for every pair of vertices u, v in Qi,
there are k edge disjoint paths between u and v in G[Qi]. The following lemma
is folklore and we state it here for the sake of completeness.

Lemma 1. If G is an undirected graph such that the minimum degree δ(G) ≥ n
2 ,

then the diameter of G is at most 2.

Given a partition P = {P1, P2, . . . , Pr} of the vertex set of G, a graph G/P is
constructed as follows: The vertex set of G/P is P . Corresponding to each edge
(u, v) in G where u in Pi, v in Pj , i 	= j, there exists an edge (Pi, Pj) in G/P .
Thus, G/P can be a multigraph, but without loops. Let P = {P1, P2, . . . , Pr}
be a set of pairwise disjoint subsets of V . Let G′ be a subgraph of G on ∪r

i=1Pi,
and E′ be the edge set of G′. We say E′ connects P if G′/P is connected. Thus,
if E′ connects P then E′ is of size at least |P | − 1.

Colored Graphs and Alternating Circuits. A colored graph G is one in
which each edge is assigned a color from the set {red, blue}. In a colored graph
G, we use R and B to denote subgraphs of G whose edges are the set of red edges
(E(R)) and blue edges (E(B)) of G, respectively, and V (R) = V (B) = V (G).
A subgraph T of a colored graph G is an alternating circuit if T is a circuit, and
there exists an Eulerian tour of T in which every pair of consecutive edges are
of different colors. Clearly, an alternating circuit has an even number of edges
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and is connected. Further, dR(v) = dB(v) for all v ∈ T . We define an alternating
circuit T to be minimal if for each v in T , dR(v) = dB(v) ≤ 2. Let H be a
subgraph of G. A subgraph T of G is said to be a switch on H if there exists an
edge coloring of T such that each component in T is an alternating circuit, for all
e in E(T )∩E(H), color(e) = red, and for all e in E(T ) \E(H), color(e) = blue.
For a T which is a switch on H, the result of the operation Switching(H,T ) is
defined as follows: it is a subgraph G′ of G obtained by removing all edges of
red color in T from H and adding all the edges of blue color in T to H. It is
easy to note that dH(v) = dG′(v), for every v in V . Further, observe that any
alternating circuit which is a subgraph of T is also a valid switch on H. Finally,
the weight of an alternating circuit T , denoted by W (T ), is either w(R) − w(B)
or w(B)−w(R). This will be used along with switching and the value depends on
the color of edges which are removed and the color of edges which are added, and
the value to use will be clear from the context. If G′ = Switching(H,T ), then it
implies that w(G′) = w(H)+W (T ). In our arguments we reason with an f -factor
obtained by switching a sequence of alternating circuits, and for this we introduce
the following notation. Let T be a set of edge disjoint alternating circuits with
respect to H. Let T ′ = ∪t∈TE(t). Then the operation Switching(H,T) is a the
f -factor that results from Switching(H,T ′).

Throughout this paper, f is a function f : V → N such that f(v) ≥ �n/c�,
for every v in V where n = |V | and c is a constant. We assume that n is at
least c2. A consequent fact is that, if H is an f -factor of G, then the number of
components in H is at most c−1. We use two crucial subroutines from the liter-
ature: Tutte’s-Reduction(G,f) is a subroutine which outputs an f -factor of G
(if one exists) using the reduction in [19, Example 3.3.12]; Modified-Tutte’s-
Reduction(G,f) is an extension of Tutte’s-Reduction(G,f), which computes a
minimum weighted f -factor of the input weighted graph G by reducing it to the
problem of finding minimum weighted perfect matching [7,8]. Both the above
subroutines returns empty graphs if they fail to compute f -factors.

2 Structural Properties Related to Connected f-Factors

In this Section, our results are primarily Graph Theoretic in flavor, and all the
results are used in our algorithms for finding connected f -factors. A reader may
find it useful to read the algorithms in Sects. 3 and 4 first to appreciate the
algorithmic importance of the structural results in this section.

2.1 Properties of Alternating Circuits and f-Factors

To start with, we present properties of alternating circuits which are used exten-
sively in our algorithms and characterizations.

Lemma 2. Let T be a graph in which each edge is assigned a color from the
set {red, blue}. Each component in T is an alternating circuit if and only if
dR(v) = dB(v) for all v in T .
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Proof. In the forward direction, consider a component C in T . Since there is an
Eulerian tour in C in which consecutive edges are of different colors, it follows
that dR(v) = dB(v) for all v in T . In the reverse direction, let dR(v) = dB(v) for
all v in T . To complete the proof, we point to an exercise in [19, Exercise 1.2.35]
which considers the formulation of Tucker’s algorithm for computing an Eulerian
circuit in [14]. First, at each vertex v in a component C in T , we pair each red
edge incident on v to a distinct blue edge incident on v. Since dR(v) = dB(v),
such a pairing is guaranteed to exist. Secondly, using this pairing, the required
alternating circuit is the Eulerian circuit constructed by Tucker’s algorithm.
Hence the lemma.

Lemma 3. Let H and H ′ be two f-factors of G. If T = H � H ′ (symmetric
difference of the edge sets) then T is a switch on both H and H ′.

Lemma 4. Let H be a subgraph of G and let T be a switch on H. Assign color
red to edges in T ∩ H and blue to those in T \ H. If T is a minimal alternating
circuit and G′ = Switching(H,T ), then |NH(v) ∩ NG′(v)| ≥ d(v) − 2, for every
v in V .

Proof. Since T is minimal, by definition, we know that dR(v) = dB(v) for each v
in V . Consequently, not more than 2 edges incident on a vertex will be removed
from H as a result of applying Switching(H,T ). Therefore, the number of com-
mon edges incident on v in both G′ and H is at least d(v) − 2.

Lemma 5. Let S ⊆ E(G), an f-factor H containing all the edges in S can be
computed in polynomial time, if one exists.

Proof. Observe that removing the set of edges S from an f -factor H containing
S, reduces the degree of each vertex v in H by |{(v, u) ∈ S}|. This is exactly an
f ′-factor of G(V,E \ S) where f ′(v) = f(v) − |{(v, u) ∈ S}|, for every v in V .
Computing f ′ and then computing an f ′-factor H ′ of G(V,E \S) is easy. Recall
that in polynomial time we can compute an f ′-factor, if one exists, see West [19].
Further adding the edges in S to H ′ gives an f -factor H of G containing S.

Minimal Alternating Circuits. Next we present an algorithm that takes an
alternating circuit T and a set of edges S ⊂ T as input and outputs a set T of
edge disjoint minimal alternating circuits. The set T is such that S ⊂ ∪t∈TE(t),
E(t) ⊆ E(T ) for every t in T and each t in T contains at least one edge in S.

Min-AC-Set(T,S):

1. T = φ.
2. Repeat the following until T is empty:

(a) t = Find-Min-AC(T ). /* Find-Min-AC() returns a minimal alter-
nating circuit t in T and is detailed below */

(b) E(T ) = E(T ) \ t.
(c) If S ∩ E(t) 	= φ, then T = T ∪ {t}.
(d) S = S \ E(t).

3. Return T.
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Find-Min-AC(U):

1. If(dR(u) = dB(u) ≤ 2 for every u in U) then exit and return U . /* U is a
minimal alternating circuit */

2. For each u in U , pair each blue edge incident on u to a distinct red edge
incident on u.

3. Run Tucker’s algorithm [19, Exercise 1.2.35] on U using the pairing defined
in the previous step to get an Euler tour T in which consecutive edges are of
different colors.

4. Let v be a vertex with dR(v) > 2 in U . /* Such a v exists in U */
5. Start the tour T from v and let e1 be the edge through which T leaves v for

the first time and let e2 be the edge through which T makes the first return
to v. Let e3 be the edge through which T continues the tour and let e4 be
the edge through which T makes the next return to v.

6. If (color(e2) 	= color(e1)) then U ′ = v, e1, . . . , e2, v.
7. ElseIf (color(e4) 	= color(e3)) then U ′ = v, e3, . . . , e4, v.
8. Else U ′ = v, e1, . . . , e4, v. /* color(e1) 	= color(e4) */
9. Return Find-Min-AC(U ′).

Lemma 6. Algorithm Min-AC-Set(T,S) outputs a set T of edge disjoint mini-
mal alternating circuits each of which has at least one edge from S.

We now present a structural result on minimal alternating circuits where the
edges have weights. This result is used in the algorithm for finding a minimum
weighted connected f -factor.

Theorem 1. Let H be a minimum weighted f-factor of G and let S ⊆ E(G) \
E(H). Let H ′ be a minimum weighted f-factor containing S. Let T = E(H) �
E(H ′) and let the edges of T ∩ H be colored red and the edges of T ∩ H ′ be
colored blue. Let T be a partition of E(T ) into minimal alternating circuits. The
following are true:

1. For each t in T, if W (t) > 0 then t ∩ S 	= φ.
2. For any T

′ ⊆ T satisfying S ⊆ ∪t∈T′E(t), Switching(H,T′) is an f-factor of
weight exactly equal to w(H ′).

Proof. For any minimal alternating circuit t which is a switch on H, recall that
W (t), the weight of t, is w(Switching(H, t)) − w(H). Since H is optimum, for
each t in T, W (t) = w(Switching(H, t)) − w(H) ≥ 0. Suppose there exists a
minimal alternating circuit t in T such that W (t) > 0, and t does not contain
any of the edges in S. Let us consider T ′ = T \ t, that is T ′ is an alternating
circuit obtained by removing the edges of t from T , then W (T ′) = W (T )−W (t).
Then Switching(H,T ′) is an f -factor containing S, and w(Switching(H,T ′)) =
w(H) + W (T ′) = w(H) + W (T ) − W (t) = w(H ′) − W (t) < w(H ′). This con-
tradicts the optimality of H ′. Therefore, t ∩ S 	= φ. This implies for any subset
T

′ ⊆ T such that S ⊆
⋃

t∈T′
E(t), w(Switching(H,T′)) = w(H ′).
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2.2 On the Edge-Connectivity of Undirected Graphs

In this Section we present some results on the edge connectivity of undirected
graphs which are used in obtaining a PTAS for connected f -factor in the case
when the edge weights are metrics.

Lemma 7. Let c > 1 be a constant, G be a graph with at least c2 vertices, such
that δ(G) ≥ n/c. The number of non-bridge edges incident on any vertex in G
is at least the number of components in G.

Proof. We obtain a contradiction to the hypothesis that n ≥ c2 starting with
the assumption that the number of non-bridge edges incident on some vertex
in G is smaller than the number of components. Let u be such a vertex in a
component C, and let r be the number of components in G and let δ(G) = d.
The number of vertices in V \C is at least (d+1)(r−1). Assume that the number
of non-bridge edges incident on u is less than r. Then there are at least d− r +1
bridge edges incident on u. In a component obtained after removing one such
bridge edge, there are at least d + 1 vertices. The reason is that the component
has at least one vertex other than the end of the bridge edge, since δ(G) ≥ 2-
otherwise the end of the bridge edge would have degree 1, contradicting the
premise that δ(G) ≥ 2. Therefore, n, the number of vertices in G, is at least
(d − r + 1)(d + 1) + (r − 1)(d + 1) = d(d + 1) ≥ n

c (nc + 1). This contradicts the
premise that n ≥ c2. Therefore, the number of non-bridge edges incident on each
vertex must be at least the number of components. Hence the lemma.

Lemma 8. Let G be an undirected graph with δ(G) at least 4. Let X be a non-
empty proper subset of V . If |X| ≤ δ(G), then the number of edges in [X,V \X]G
is at least δ(G).

Proof. We split the proof into two cases, |X| ≤ δ(G)/2 and not. When |X| ≤
δ(G)/2, we prove by induction on the size of X. When |X| = 1, the claim is
trivially true. By induction hypothesis, we assume this to be true for a subset
of size 1 < r < δ(G)/2. Consider X ⊂ V of size r + 1. Let v be a vertex in this
subset. It can have at most r of its incident edges in G[X]. This implies at least
δ(G)− r edges incident on v are in [X,V \X]G. Thus, the total number of edges
in [X,V \ X]G is at least 2 · (δ(G) − r), which is at least δ(G). In the case when
|X| > δ(G)/2, each vertex in X has at least δ(G) − |X| + 1 of its incident edges
in [X,V \ X]G. Thus if |X| < δ(G), we are done. Otherwise, each vertex in X
X and hence the claim.

Finding a Set of Maximal k -Edge Connected Components. To compute
a set of maximal k-edge connected components in a graph, a basic approach is
to apply the min-cut algorithm to the connected components of the input graph
recursively until each component has min-cut of size at least k. Note that each
call to the algorithm either computes a min-cut of size at least k, or returns a
partitioning of the input vertex set V to {X,V \X} such that |[X,V \X]| < k. We
use the notation Find-Edge-Comp-Set(G, k) to represent a recursive subroutine
call to this algorithm. Further two recursive calls Find-Edge-Comp-Set(X, k) and
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Find-Edge-Comp-Set(V \ X, k) being made. Let Q = {Q1, Q2, . . . , Qm} be the
leaves from the recursion tree associated with Find-Edge-Comp-Set(G,k). For
each graph G and k the set Q = {Q1, Q2, . . . , Qm} is a set of maximal k-edge
connected components. The proof of this claim is from the edge-connectivity
version of Menger’s Theorem [5, Theorem 3.3.5].

Lemma 9. Let G be a graph and let Q = {Q1, Q2, . . . , Qm} be a partitioning of
the vertex set computed by Find-Edge-Comp-Set(G,k). The number of edges in
G whose end vertices belong to distinct parts of Q is at most (m − 1)(k − 1).

Proof. If m = 1, the claim is obvious. Suppose m > 1. Recall that the elements
of Q are leaves in the recursion tree associated with Find-Edge-Comp-Set(G,k).
Observe that each internal node in the recursion tree corresponds to a subset Y
of V and a min-cut of size less than k in G[Y ]. Further each edge, whose end
vertices belong to distinct parts Qi and Qj , is in the min-cut associated with
the least common ancestor of Qi and Qj in the recursion tree. Thus, summing
up the cut edges associated with the internal nodes in the recursion tree upper
bounds the number of edges which are across distinct parts in Q. The number of
internal nodes in the recursion tree is m−1. Thus we have at most (m−1)(k−1)
edges whose end vertices belong to distinct parts in Q.

Lemma 10. Let G be an undirected graph and let δ(G) ≥ n/c for a constant c.
Let Q = {Q1, Q2, . . . , Qm} be k-edge connected components in G output by Find-
Edge-Comp-Set(G, k). If n ≥ 2 · (1+1/γ) · c(k −1) for some constant 0 < γ ≤ 1,
then the number m of maximal k-edge connected components is at most (1+γ)·c.
Proof. The proof is by contradiction on the value of m. Assume m > (1 + γ) · c.
Clearly, the number of components of size at least δ(G)+1 is less than c. Then the
number of components of size at most δ(G) is more than m− c. From Lemma 8,
each such component should have at least δ(G) edges with exactly one end vertex
outside the component. Consider the graph G/Q. From Lemma 9, G/Q contains
at most (m − 1)(k − 1) edges. The degree of at least (m − c + 1) vertices in G/Q
is at least n/c. From the Handshaking Lemma we have,

2(m − 1)(k − 1) ≥ (m − c + 1) · n/c

2 · (k − 1) > (1 − c/m) · n/c

2 · (1 + 1/γ) · c(k − 1) > n

This conclusion contradicts our hypothesis that n ≥ 2 · (1+1/γ) ·c(k−1). Hence
our assumption is wrong, and therefore the Lemma is proved.

Lemma 11. Let M be a complete graph with metric edge weights. Let G be a
4k-edge connected weighted subgraph of M . Given a nonempty set S ⊆ V (G),
there exists a cycle induced by the vertices in S of weight at most 1/k · w(G).

Proof. Let T be a minimum spanning tree on V (G) in the metric M . Let C be
the Hamiltonian cycle obtained on V (G) by using the double-tree heuristic for
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Min-TSP [20, Sect. 2.4]. It is also known from the analysis of the heuristic that
w(C) ≤ 2 · w(T ). Now, we show that w(C) ≤ 1/k · w(G). For this we use the
fact that G is a 4k-edge connected undirected weighted graph. From Tutte [17]
and Nash-Williams [10] Theorem, G contains 2k edge disjoint spanning trees
{T1, . . . , T2k} [5, Corollary 3.5.2]. Let T1 be the spanning tree of the least weight

in this set of 2k edge disjoint spanning trees. We know that
2k∑

i=1

w(Ti) ≤ w(G).

Therefore, w(T1) ≤ 1
2k · w(G). Since T is the minimum spanning tree in M over

the vertex set V (G), it follows that w(T ) ≤ w(T1). Therefore, it follows that
w(C) ≤ 2 · w(T ) ≤ 2 · w(T1) ≤ 1

k · w(G). Further consider the cycle CS in
M , induced by the vertices in S, in the cyclic order as they occur in C. Since
M is complete, CS exists for any cyclic ordering and from the metric property
w(CS) ≤ w(C).

3 Deciding Connected f-Factors When f(v) ≥ n/3

In this section we start by proving our characterization of graphs which have a
connected f -factor when f(v) ≥ n

3 , for all v in V . Following this, we present out
algorithms for testing if a graph has a connected f -factor, and for the minimiza-
tion version of the problem.

Theorem 2. Let H be an f-factor of G with two components X and V \ X.
Let T ′ be a minimal alternating circuit such that it is a switch on H and [X,V \
X]T ′ 	= φ. Then Switching(H,T ′) results in a connected f-factor.

Proof. Let G′ be the f -factor obtained by Switching(H,T ′). Since for each v in
V , f(v) ≥ n

3 , X contains at least n
3 + 1 vertices and at most 2n

3 − 1 vertices.
The same is true for V \ X. We now consider two cases based on the size of the
smallest component X in H.

Case when |X| is at most n
3 + 3. Let us assume that G′ is disconnected and

that it has two components. Consider an edge (u1, u2) in [X,V \ X]T ′ where
u1 in X and u2 in V \ X. Let the component in G′ containing (u1, u2) be X ′.
Since T ′ is minimal, it follows from Lemma 4 that |NG′(u1) ∩ X| ≥ n

3 − 2 and
|NG′(u2) ∩ V \ X| ≥ n

3 − 2. This implies |X ′ ∩ X| ≥ n
3 − 1, |X ′ ∩ V \ X| ≥ n

3 − 1,
and therefore the size of X ′ is at least 2n

3 − 2. From the upper bound on the size
of V \ X, at most n

3 vertices in V \ X ′ are from V \ X. Thus, at least one vertex
in V \ X ′ is from X. Consider a vertex u in X ∩ V \ X ′. For n ≥ 16 (this is
the reason why our approaches work for sufficiently large n), |NH(u)| > 5. From
the minimality of T and Lemma 4, |NG′(u) ∩ X| > 3. This implies X ∩ V \ X ′

contains more than 4 elements, since there are no edges in G′ that have one
vertex in V \ X ′ and another in X ′. Therefore, we conclude that |X| > n

3 + 3.
This is a contradiction to the premise in this case that |X| ≤ n

3 + 3. Therefore,
our assumption that G′ is disconnected is wrong.

Case when |X| is more than n
3 + 3. Recall that X is the smallest of the

two components in H. This implies that both X and V \ X contains at most
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2n
3 −4 vertices. From Lemma 4 the degree of each vertex in G′[X] and in G′[V \X]

is at least n
3 − 2 which is at least 1

2 ( 2n3 − 4). Consequently, from Lemma 1, both
G′[X] and G′[V \ X] are connected. This implies that G′ is connected. Hence
the theorem.

Theorem 3. Let G be an undirected graph and f be a function where f(v) ≥ n/3
for every v in V . Given n is sufficiently large, G has a connected f-factor if and
only if for each pair u, v in V , there exists an f-factor H of G such that u and
v belong to the same component in H.

Proof. The forward direction of the Theorem is trivial. For the reverse direction
we set up the conditions for the application of Theorem 2. We first compute an
f -factor H, and if it is connected we are done and the proof of Theorem 3 is
complete. If H has two components X and V \ X, then let {u, v} in V be such
that u in X and v in V \ X. By the premise, let H ′ be an f -factor in which
u and v are in the same connected component. Since u and v are in the same
connected component in H ′ and were in different connected components in H,
it follows that there is a u′ in X and v′ in V \ X such that (u′, v′) in E(H ′).
Let T = E(H) � E(H ′). From Lemma 6, there exists a minimal alternating
circuit T ′ ⊆ T such that T ′ contains the set S = {(u′, v′)}. Now, by applying
Theorem 2 using T ′ and H, it follows that Switching(H,T ′) is a connected
f -factor. Consequently, the characterization is proved.

We now present out algorithms for the decision version and the minimization
version of the connected factor problem.

Algorithm 1.
Input: G(V,E), f
Output: G′, a connected f -factor of G if one exists

1. H = Tutte’s-Reduction(G, f).
2. If (H = empty), then declare “G does not have a connected f -factor” and

exit.
3. If H is connected, Output H and exit.
4. Partition V (G) in to {X,V \ X} where X is one of the components in H.
5. For each edge e = (u, v) in [X,V \ X]G,

begin Loop 1:
(a) f(u) = f(u) − 1, f(v) = f(v) − 1.
(b) E(G) = E(G) \ {(u, v)}.
(c) Compute an f -factor H ′ of G.
(d) If (H ′ 	= empty) then,

begin 2:
i. E(H ′) = E(H ′) ∪ {(u, v)}.
ii. Break from Loop 1.
end 2:

(e) E(G) = E(G) ∪ {(u, v)}.
(f) f(u) = f(u) + 1, f(v) = f(v) + 1.
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end Loop 1:
6. If (H ′ = empty), then exit reporting failure.
7. ∀e in E(H), color(e) = red.
8. ∀e in E(H ′), color(e) = blue.
9. T = E(H ′) � E(H).

10. C = Component in T containing (u, v).
11. T ′ = Min-AC-Set(C, {(u, v)}).
12. G′ = Switching(H,T ′).
13. Output G′.

Theorem 4. Algorithm 1 outputs a connected f-factor of G in polynomial time,
if one exists.

Proof. We show that if it outputs an f -factor then it is indeed connected. Let
H computed in Line 1 have components {X,V \ X}. Every connected f -factor
of G has an edge (u, v) in [X,V \ X]. By Lemma 5, loop 1 computes an f -factor
H ′ of G containing an edge (u, v) in [X,V \ X]. Further from Lemma 6, step
11 computes a minimal alternating circuit containing (u, v) which is a switch on
H. From Theorem 2, G′ is connected. Further, if G does not have a connected
f -factor, it will report failure.

3.1 Finding the Minimum Weighted Connected f-Factor

We present an extension of Algorithm 1 for finding the minimum weighted con-
nected f -factor of G when f(v) ≥ n/3, for all v in V . The steps are as follows.

1. Compute H = Modified-Tutte’s-Reduction(G, f). If H = empty exit report-
ing failure. If H is connected, then output H and exit. Otherwise H has
components {X,V \ X}.

2. For each edge (u, v) in [X,V \ X], compute a minimum weighted f -factor H ′

containing (u, v).
3. Select the H ′ of least weight computed in previous step and the associated

(u, v).
4. Color edges in H with color red and those in H ′ with color blue.
5. T = E(H) � E(H ′).
6. C = Component in T containing (u, v).
7. T ′ = Min-AC-Set(T, {(u, v)}). /* (u, v) in [X,V \ X] */
8. G′ = Switching(H,T ′).
9. Output G′.

Theorem 5. Let G be an undirected weighted graph and let f(v) ≥ n/3, for all v
in V . A minimum weighted connected f-factor of G can be computed polynomial
time, if one exists.

Proof. Let OPT be a connected f -factor of G of minimum weight. From The-
orem 2, the above procedure computes a connected f -factor of G. The mini-
mum weighted H ′ can be computed by iterating loop 1 in Algorithm 1 over all
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possible (u, v) in [X,V \ X] and selecting the one of minimum weight, using
Modified-Tutte’s-Reduction to find a minimum weight factor containing the
edge (u, v). Since OPT has at least one edge in [X,V \ X], it follows that
w(H ′) ≤ w(OPT ). We now consider the alternating circuit T = E(H)�E(H ′),
and obtain a minimal alternating circuit T ′ containing (u, v). From Theorem 1,
G′ = Switching(H,T ′) is a connected f -factor of weight at most w(H ′), which
is at most w(OPT ). Hence the theorem.

4 The Case of Metric Weights and f(v) ≥ n
c

In this Section we present an algorithm, parameterized by c ≥ 2, 0 < ε < 1,
which takes an undirected weighted graph G with metric weights along with a
function f : V → N as input. f satisfies the property that for every v in V ,
f(v) ≥ n/c. For a fixed c ≥ 2, 0 < ε < 1, the algorithm outputs a connected
f -factor G′ of G(if exists) of weight at most (1+ε) times the weight of minimum
weight connected f -factor of G on graphs of size at least c × max{c, 16 · �1/ε�}.
The algorithm uses a subroutine Double-Tree-Algorithm(G) which is the heuris-
tic in [20, Sect. 2.4], which computes a Hamiltonian cycle of weight at most twice
that of the minimum spanning tree of the input G to the subroutine. Algorithm 2,
which works only for sufficiently large graphs, is detailed next.

Algorithm 2.
Input: G(V,E), f
Output: G′, a (1+ε)-approximation to the minimum weighted connected f -factor
of G, if one exists.

1. H = Modified-Tutte’s-Reduction(G, f).
2. If (H = empty) then exit reporting failure.
3. If H is connected, output H and exit.
4. Q = Find-Edge-Comp-Set(H, 4 · �1/ε�).

/* Q is a set of maximal components of connectivity 4 · �1/ε� */
5. Opt = +∞, G′ = empty, Smin = empty.
6. For each set S ⊂ E(G) of |Q|-1 edges that connects Q (recall definition),

begin 1:
(a) E(G) = E(G) \ S.
(b) for every v in V , f(v) = f(v) − dS(v).

/* Residual degree requirement */
(c) H ′ = Modified-Tutte’s-Reduction(G, f).
(d) If (H ′ 	= empty) then,

begin 2:
i. E(H ′) = E(H ′) ∪ S.
ii. If w(H ′) < Opt, then Opt = w(H ′), Smin = S, G′ = H ′.
end 2:

(e) E(G) = E(G) ∪ S.
(f) for every v in V , f(v) = f(v) + dS(v). /* Resetting the degree for

next S */
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end 1:
7. If loop 1 fails to compute a nonempty G′, then exit reporting failure.
8. If G′ is connected, Output G′ and exit.
9. For each Qi in Q, such that Qi induces more than one component in G′ do

the following.
begin Loop 3:
(a) TSPi = Double-Tree-Algorithm(H[Qi]).
(b) Let Si be the maximal subset of Qi with exactly one vertex from each

component in G′.
(c) Compute cyclic ordering {u1, u2, . . . , ur} of the vertices in Si induced by

TSPi.
(d) For each 1 ≤ j ≤ r, select a non-bridge edge (uj , vj) in G′ incident on

each vertex uj in Si and remove (uj , vj) from G′.
/* The existence of sufficient number of nonbridge edges is
from Lemma 7 */

(e) Add edge (vj , uj+1) for j = 1, 2, . . . , r to G′. The index arithmetic is
modulo r.

end Loop 3:
10. Output G′.

Theorem 6. For each constant 0 < ε < 1, Algorithm 2 outputs a (1 + ε)-
approximation to a minimum weighted connected f-factor of G in polyno-
mial time.

Proof. Unless the degree sequence induced by f(v) is not realizable, Algorithm 2
always outputs an f -factor. The weight of H computed in step 1 is at most the
weight of the optimum solution. Step 4 computes a maximal set Q of 4 · �1/ε�-
edge connected components in H. In Lemma 10, fixing γ = 1, the number
of such components is at most 2c. If G has a minimum weighted connected
f -factor OPT , then there is an iteration of loop 6 in which S contains a subset of
E(OPT ) and is of size at most 2c−1. By Lemma 5, loop 1 computes a minimum
weighted f -factor for each such S. Clearly, the weight of minimum weighted G′

computed by the end of loop 1 is at most w(OPT ). Thus, by the end of loop 1,
w(G′) ≤ w(OPT ). From Lemma 11, the weight of the Hamiltonian cycle TSPi

on H[Qi] computed in step 9(a) is at most ε · w(H[Qi]). In each iteration of
loop 3, |Si| is at most the number of components in G′. The existence of non-
bridge edges is from Lemma 7. The removal of non-bridge edges does not change
connectedness, but the edges added in step 9(e) cause a decrease of at least one
in the number of components. The Si computed in the last iteration of loop 3 is
such that there exists a bijection from Si to the set of connected components in
G′. At the end of loop 1, G′/Q is connected and by the end of loop 3, each Qi

belongs to some connected component in G′. From the triangle inequality and
from the fact that H[Qi]s are vertex disjoint, by the end of step 9, weight of G′

additively increases by at most ε ·w(H). Therefore, w(G′) ≤ (1+ε)w(OPT ), and
this completes the proof of the approximation. To analyze the running time, we
observe that in Loop 1 we try all possible sets S of size at most 2c−1. Thus, loop
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1 may iterate at most O(n2(2c−1)) times. The number of iterations of loop 3 is
also upper bounded by c − 1 as the number of connected components in G′ is at
most c − 1. Overall, the running time is O(n2(2c−1)). Hence the theorem.

Acknowledgements. We are indebted to Dr. Sebastian Ordyniak for pointing out
Lemma 9. The authors acknowledge the support of the Indo-German Max Planck
Center for Computer Science grant for the year 2013–2014 in the area of Algorithms
and Complexity.
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Abstract. Higher-order pushdown systems and ground tree rewriting
systems can be seen as extensions of suffix word rewriting systems.
Both classes generate infinite graphs with interesting logical proper-
ties. Indeed, the model-checking problem for monadic second order logic
(respectively first order logic with a reachability predicate) is decidable
on such graphs. We unify both models by introducing the notion of
stack trees, trees whose nodes are labelled by higher-order stacks, and
define the corresponding class of higher-order ground tree rewriting sys-
tems. We show that these graphs retain the decidability properties of
ground tree rewriting graphs while generalising the pushdown hierarchy
of graphs.

1 Introduction

Since Rabin’s proof of the decidability of monadic second order logic (MSO)
over the full infinite binary tree Δ2 [14], there has been an effort to characterise
increasingly general classes of structures with decidable MSO theories. This can
be achieved for instance using families of graph transformations which preserve
the decidability of MSO - such as the unfolding or the MSO-interpretation and
applying them to graphs of known decidable MSO theories, such as finite graphs
or the graph Δ2.

This approach was followed in [8], where it is shown that the prefix (or
suffix) rewriting graphs of recognisable word rewriting systems, which coincide
(up to graph isomorphism) with the transition graphs of pushdown automata
(contracting ε-transitions), can be obtained from Δ2 using inverse regular substi-
tutions, a simple class of MSO-compatible transformations. They also coincide
with those obtained by applying MSO interpretations to Δ2 [1]. Alternately
unfolding and applying inverse regular mappings to these graphs yields a strict
hierarchy of classes of trees and graphs with a decidable MSO theory [7,9] coin-
ciding with the transition graphs of higher-order pushdown automata and captur-
ing the solutions of safe higher-order program schemes1, whose MSO decidability
had already been established in [12]. We will henceforth call this the pushdown
hierarchy and the graphs at its n-th level n-pushdown graphs for simplicity.

This work was partially supported by the French National Research Agency (ANR),
through excellence program Bézout (ANR-10-LABX-58).

1 This hierarchy was extended to encompass unsafe schemes and collapsible automata,
which are out of the scope of this paper. See [3,4,6] for recent results on the topic.
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L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 364–397, 2015.
DOI: 10.1007/978-3-319-20297-6 24
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Also well-known are the automatic and tree-automatic structures (see for
instance [2]), whose vertices are represented by words or trees and whose edges
are characterised using finite automata running over tuples of vertices. The decid-
ability of first-order logic (FO) over these graphs stems from the well-known
closure properties of regular word and tree languages, but it can also be related
to Rabin’s result since tree-automatic graphs are precisely the class of graphs
obtained from Δ2 using finite-set interpretations [10], a generalisation of WMSO
interpretations mapping structures with a decidable MSO theory to structures
with a decidable FO theory. Applying finite-set interpretations to the whole
pushdown hierarchy therefore yields an infinite hierarchy of graphs of decidable
FO theory, which is proven in [10] to be strict.

Since prefix-recognisable graphs can be seen as word rewriting graphs,
another variation is to consider similar rewriting systems over trees. This yields
the class of ground tree rewriting graphs, which strictly contains that of real-time
order 1 pushdown graphs. This class is orthogonal to the whole pushdown hierar-
chy since it contains at least one graph of undecidable MSO theory, for instance
the infinite 2-dimensional grid. The transitive closures of ground tree rewriting
systems can be represented using ground tree transducers, whose graphs were
shown in [11] to have decidable FO[ ∗−→] theories by establishing their closure
under iteration and then showing that any such graph is tree-automatic.

The purpose of this work is to propose a common extension to both higher-
order stack operations and ground tree rewriting. We introduce a model of
higher-order ground tree rewriting over trees labelled by higher-order stacks
(henceforth called stack trees), which coincides, at order 1, with ordinary ground
tree rewriting and, over unary trees, with the dynamics of higher-order pushdown
automata. Following ideas from the works cited above, as well as the notion of
recognisable sets and relations over higher-order stacks defined in [5], we intro-
duce the class of ground (order n) stack tree rewriting systems, whose derivation
relations are captured by ground stack tree transducers. Establishing that this
class of relations is closed under iteration and can be finite-set interpreted in
n-pushdown graphs yields the decidability of their FO[ ∗−→] theories.

The remainder of this paper is organised as follows. Section 2 recalls some
of the concepts used in the paper. Section 3 defines stack trees and stack tree
rewriting systems. Section 4 explores a notion of recognisability for binary rela-
tions over stack trees. Section 5 proves the decidability of FO[ ∗−→] model checking
over ground stack tree rewriting graphs. Finally, Sect. 6 presents some further
perspectives.

2 Definitions and Notations

Trees. Given an arbitrary set Σ, an ordered Σ-labelled tree t of arity at most
d ∈ N is a partial function from {1, . . . , d}∗ to Σ such that the domain of t,
dom(t) is prefix-closed (if u is in dom(t), then every prefix of u is also in dom(t))
and left-closed (for all u ∈ {1, . . . , d}∗ and 2 ≤ j ≤ d, t(uj) is defined only if t(ui)
is for every i < j). Node uj is called the j-th child of its parent node u. Addi-
tionally, the nodes of t are totally ordered by the natural length-lexicographic



366 V. Penelle

ordering ≤llex over {1, . . . , d}∗. By abuse of notation, given a symbol a ∈ Σ,
we simply denote by a the tree {ε �→ a} reduced to a unique a-labelled node.
The frontier of t is the set fr(t) = {u ∈ dom(t) | u1 �∈ dom(t)}. Trees will always
be drawn in such a way that the left-to-right placement of leaves respects ≤lex.
The set of finite trees labelled by Σ is denoted by T (Σ). In this paper we only
consider finite trees, i.e. trees with finite domains.

Given nodes u and v, we write u � v if u is a prefix of v, i.e. if there exists
w ∈ {1, · · · , d}∗, v = uw. We will say that u is an ancestor of v or is above v,
and symmetrically that v is below u or is its descendant. We call v≤i the prefix
of v of length i. For any u ∈ dom(t), t(u) is called the label of node u in t
and tu = {v �→ t(uv) | uv ∈ dom(t)} is the sub-tree of t rooted at u. For any
u ∈ dom(t), we call #t(u) the arity of u, i.e. its number of children. When
t is understood, we simply write #(u). Given trees t, s1, . . . , sk and a k-tuple
of positions u = (u1, . . . , uk) ∈ dom(t)k, we denote by t[s1, . . . sk]u the tree
obtained by replacing the sub-tree at each position ui in t by si, i.e. the tree
in which any node v not below any ui is labelled t(v), and any node ui.v with
v ∈ dom(si) is labelled si(v). In the special case where t is a k-context, i.e.
contains leaves u1, . . . , uk labelled by special symbol �, we omit u and simply
write t[s1, . . . , sk] = t[s1, . . . , sk]u.

Directed Graphs. A directed graph G with edge labels in Γ is a pair (VG, EG)
where VG is a set of vertices and EG ⊆ (VG × Γ × VG) is a set of edges. Given
two vertices x and y, we write x

γ−→G y if (x, γ, y) ∈ EG, x −→G y if there exists

γ ∈ Γ such that x
γ−→G y, and x

Γ ′
−→G y if there exists γ ∈ Γ ′ such that x

γ−→G y.
There is a directed path in G from x to y labelled by w = w1 . . . wk ∈ Γ ∗, written
x

w−→G y, if there are vertices x0, . . . , xk such that x = x0, xk = y and for all
1 ≤ i ≤ k, xi−1

wi−→G xi. We additionally write x
∗−→G y if there exists w such

that x
w−→G y, and x

+−→G y if there is such a path with |w| ≥ 1. A directed graph
G is connected if there exists an undirected path between any two vertices x and
y, meaning that (x, y) ∈ (−→G ∪ −→−1

G )∗. We omit G from all these notations
when it is clear from the context. A directed graph D is acyclic, or is a DAG,
if there is no x such that x

+−→ x. The empty DAG consisting of a single vertex
(and no edge, hence its name) is denoted by �. Given a DAG D, we denote by
ID its set of vertices of in-degree 0, called input vertices, and by OD its set of
vertices of out-degree 0, called output vertices. The DAG is said to be of in-degree
|ID| and of out-degree |OD|. We henceforth only consider finite DAGs.

Rewriting Systems. Let Σ and Γ be finite alphabets. A Γ -labelled ground tree
rewriting system (GTRS) is a finite set R of triples (�, a, r) called rewrite rules,
with � and r finite Σ-labelled trees and a ∈ Γ a label. The rewriting graph of
R is GR = (V,E), where V = T (Σ) and E = {(c[�], a, c[r]) | (�, a, r) ∈ R}.
The rewriting relation associated to R is −→R = −→GR

, its derivation relation
is ∗−→R = ∗−→GR

. When restricted to words (or equivalently unary trees), such
systems are usually called suffix (or prefix ) word rewriting systems.
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Fig. 1. A 3-stack tree.

3 Higher-Order Stack Trees

3.1 Higher-Order Stacks

We briefly recall the notion of higher-order stacks (for details, see for instance
[5]). In order to obtain a more straightforward extension from stacks to stack
trees, we use a slightly tuned yet equivalent definition, whereby the hierarchy
starts at level 0 and uses a different set of basic operations.

In the remainder, Σ will denote a fixed finite alphabet and n a positive
integer. We first define stacks of order n (or n-stacks). Let Stacks0(Σ) = Σ
denote the set of 0-stacks. For n > 0, the set of n-stacks is Stacksn(Σ) =
(Stacksn−1(Σ))+, the set of non-empty sequences of (n − 1)-stacks. When Σ is
understood, we simply write Stacksn. For s ∈ Stacksn, we write s = [s1, · · · , sk]n,
with k > 0 and n > 0, for an n-stack of size |s| = k whose topmost (n − 1)-
stack is sk. For example, [[[aba]1]2[[aba]1[b]1[aa]1]2]3 is a 3-stack of size 2, whose
topmost 2-stack [[aba]1[b]1[aa]1]2 contains three 1-stacks, etc.

Basic Stack Operations. Given two letters a, b ∈ Σ, we define the partial func-
tion rewa,b : Stacks0 → Stacks0 such that rewa,b(c) = b, if c = a and is
not defined otherwise. We also consider the identity function id : Stacks0 →
Stacks0. For n ≥ 1, the function copyn : Stacksn → Stacksn is defined by
copyn(s) = [s1, · · · , sk, sk]n, for every s = [s1, · · · , sk]n ∈ Stacksn. As it is injec-
tive, we denote by copyn its inverse (which is a partial function).

Each level � operation θ is extended to any level n > � stack s = [s1, · · · , sk]n
by letting θ(s) = [s1, · · · , sk−1, θ(sk)]n. The set Opsn of basic operations of level
n is defined as: Ops0 = {rewa,b | a, b ∈ Σ} ∪ {id}, and for n ≥ 1, Opsn =
Opsn−1 ∪ {copyn, copyn}.

3.2 Stack Trees

We introduce the set STn(Σ) = T (Stacksn−1(Σ)) (or simply STn when Σ is
understood) of n-stack trees. Observe that an n-stack tree of degree 1 is isomor-
phic to an n-stack, and that ST1 = T (Σ). Figure 1 shows an example of a 3-stack
tree. The notion of stack trees therefore subsumes both higher-order stacks and
ordinary trees.

Basic Stack Tree Operations. We now extend n-stack operations to stack trees.
There are in general several positions where one may perform a given operation
on a tree. We thus first define the localised application of an operation to a
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specific position in the tree (given by the index of a leaf in the lexicographic
ordering of leaves), and then derive a definition of stack tree operations as
binary relations, or equivalently as partial functions from stack trees to sets
of stack trees.

Any operation of Opsn−1 is extended to STn as follows: given θ ∈ Opsn−1,
and an integer i ≤ |fr(t)|, θ(i)(t) = t[θ(s)]ui

with s = t(ui), where ui is the ith

leaf of the tree, with respect to the lexicographic order. If θ is not applicable
to s, θi(t) is not defined. We define θ(t) = {θ(i)(t) | i ≤ |fr(t)|}, i.e. the set of
stack trees obtained by applying θ to a leaf of t.

The k-fold duplication of a stack tree leaf and its label is denoted by copyk
n :

STn → 2STn . Its application to the ith leaf of a tree t is: copyk
n(i)(t) = t∪{uij �→

t(ui) | j ≤ k}, with i ≤ |fr(t)|. Let copyk
n(t) = {copyk

n(i)(t) | i ≤ |fr(t)|} be the
set of stack trees obtained by applying copyk

n to a leaf of t. The inverse operation,
written copyk

n, is such that t′ = copyk
n(i)(t) if t = copyk

n(i)(t
′). We also define

copyk
n(t) = {copyk

n(i)(t) | i ≤ |fr(t)|}. Notice that t′ ∈ copyk
n(t) if t ∈ copyk

n(t′).
For simplicity, we will henceforth only consider the case where stack trees

have arity at most 2 and k ≤ 2, but all results go through in the general case.
We denote by TOpsn = Opsn−1 ∪ {copyk

n, copyk
n | k ≤ 2} the set of basic

operations over STn.

3.3 Stack Tree Rewriting

As already mentioned, ST1 is the set of trees labelled by Σ. In contrast with
basic stack tree operations, a tree rewrite rule (�, a, r) expresses the replacement
of an arbitrarily large ground subtree � of some tree s = c[�] into r, yielding
the tree c[r]. Contrarily to the case of order 1 stacks (which are simply words),
composing basic stack tree operations does not allow us to directly express such
an operation, because there is no guarantee that two successive operations will
be applied to the same part of a tree. We thus need to find a way to consider
compositions of basic operations acting on a single sub-tree. In our notations, the
effect of a ground tree rewrite rule could thus be seen as the localised application
of a sequence of rew and copy2

1 operations followed by a sequence of rew and
copy2

1 operations. The relative positions where these operations must be applied
could be represented as a pair of trees with edge labels in Ops0.

From level 2 on, this is no longer possible. Indeed a localised sequence of oper-
ations may be used to perform introspection on the stack labelling a node with-
out destroying it, by first performing a copy2 operation followed by a sequence
of level 1 operations and a copy2 operation. It is thus impossible to directly
represent such a transformation using pairs of trees labelled by stack tree oper-
ations. We therefore adopt a presentation of compound operations as DAGs,
which allows us to specify the relative application positions of successive basic
operations. However, not every DAG represents a valid compound operation, so
we first need to define a suitable subclass of DAGs and associated concatenation
operation. An example of the model we aim to define can be found in Fig. 2.
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Fig. 2. The application of an operation D to a stack tree t.

Fig. 3. DAGs of the basic n-stack tree operations (here θ ranges over Opsn−1).

Concatenation of DAGs. Given two DAGs D and D′ with OD = {b1, . . . , b�}
and ID′ = {a′

1, . . . , a
′
k′} and two indices i and j with 1 ≤ i ≤ � and 1 ≤ j ≤ k′,

we denote by D ·i,j D′ the unique DAG D′′ obtained by merging the (i + m)-th
output vertex of D with the (j + m)-th input vertex of D′ for all m ≥ 0 such
that both bi+m and a′

j+m exist. Formally, letting d = min(�− i, k′ −j)+1 denote
the number of merged vertices, we have D′′ = mergef (D�D′) where mergef (D)
is the DAG whose set of vertices is f(VD) and set of edges is {(f(x), γ, f(x′)) |
(x, γ, x′) ∈ ED}, and f(x) = bi+m if x = a′

j+m for some 0 ≤ m < d, and
f(x) = x otherwise. We call D′′ the (i, j)-concatenation of D and D′. Note that
the (i, j)-concatenation of two connected DAGs remains connected.

Compound Operations. We represent compound operations as DAGs. We will
refer in particular to the set of DAGs Dn = {Dθ | θ ∈ TOpsn} associated
with basic operations, which are depicted in Fig. 3. Compound operations are
inductively defined below, as depicted in Fig. 4.

Definition 1. A DAG D is a compound operation (or simply an operation) if
one of the following holds:

1. D = �;
2. D = (D1 ·1,1 Dθ) ·1,1 D2, with |OD1 | = |ID2 | = 1 and θ ∈ Opsn−1 ∪

{copy1
n, copy1

n};
3. D = ((D1 ·1,1 Dcopy2

n
) ·2,1 D3) ·1,1 D2, with |OD1 | = |ID2 | = |ID3 | = 1;

4. D = (D1 ·1,1 (D2 ·1,2 Dcopy2
n
)) ·1,1 D3 with |OD1 | = |OD2 | = |ID3 | = 1;

5. D = ((((D1 ·1,1Dcopy2
n
)·2,1D3)·1,1D2)·1,1Dcopy2

n
)·1,1D4, with |OD1 | = |ID2 | =

|OD2 | = |ID3 | = |OD3 | = |ID4 | = 1 ;

where D1,D2,D3 and D4 are compound operations.
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Fig. 4. Possible decompositions of a compound operation, numbered according to the
items in Definition 1.

Additionally, the vertices of D are ordered inductively in such a way that every
vertex of Di in the above definition is smaller than the vertices of Di+1, the
order over � being the empty one. This induces in particular an order over the
input vertices of D, and one over its output vertices.

Definition 2. Given a compound operation D, we define D(i)(t), its localised
application starting at the i-th leaf of a stack tree t, as follows:

1. If D = �, then D(i)(t) = t.
2. If D = (D1 ·1,1 Dθ) ·1,1 D2 with θ ∈ Opsn−1 ∪ {copy1

n, copy1
n},

then D(i)(t) = D2(i)(θ(i)(D1(i)(t))).
3. If D = ((D1 ·1,1 Dcopy2

n
) ·2,1 D3) ·1,1 D2,

then D(i)(t) = D2(i)(D3(i+1)(copy2
n(i)(D1(i)(t)))).

4. If D = ((D1 ·1,1 (D2 ·2,1 Dcopy2
n
)) ·1,1 D3,

then D(i)(t) = D3(i)(copy2
n(i)( D2(i+1)(D1(i)(t)))).

5. If D = ((((D1 ·1,1 Dcopy2
n
) ·2,1 D3) ·1,1 D2) ·1,1 Dcopy2

n
) ·1,1 D4,

then D(i)(t) = D4(i)(copy2
n(i)(D3(i+1)(D2(i)(copy2

n(i)(D1(i)(t)))))).

Remark 1. An operation may admit several different decompositions with
respect to Definition 1. However, its application is well-defined, as one can show
that this process is locally confluent.

Given two stack trees t, t′ and an operation D, we say that t′ ∈ D(t) if there
is a position i such that t′ = D(i)(t). Figure 2 shows an example. We define
RD the relation induced by D as follows: for any stack trees t, t′, RD(t, t′) if
and only if t′ ∈ D(t). Finally, given a k-tuple of operations D̄ = (D1, . . . , Dk)
of respective in-degrees d1, . . . , dk and a k-tuple of indices i = (i1, . . . , ik) with
ij+1 ≥ ij + dj for all 1 ≤ j < k, we denote by D̄(i)(t) the parallel application
D1(i1)(. . . Dk(ik)(t) . . .) of D1, . . . , Dk to t, D̄(t) the set of all such applications
and RD̄ the induced relation.

Since the (i, j)-concatenation of two operations as defined above is not nec-
essarily a licit operation, we need to restrict ourselves to results which are
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well-formed according to Definition 1. Given D and D′, we let D ·D′ = {D ·i,j D′ |
D ·i,j D′ is an operation}. Given n > 1, we define2 Dn =

⋃
i<n Di ·Dn−i, and let

D∗ =
⋃

n≥0 Dn denote the set of iterations of D. These notations are naturally
extended to sets of operations.

Proposition 1. D∗
n is precisely the set of all well-formed compound operations.

Proof. Recall that Dn denotes the set of DAGs associated with basic operations.
By definition of iteration, any DAG in D∗

n is an operation. Conversely, by Defi-
nition 1, any operation can be decomposed into a concatenation of DAGs of Dn.
�
Ground Stack Tree Rewriting Systems. By analogy with order 1 trees, given some
finite alphabet of labels Γ , we call any finite subset of labelled operations in D∗

n×
Γ a labelled ground stack tree rewriting system (GSTRS). We straightforwardly
extend the notions of rewriting graph and derivation relation to these systems.
Note that for n = 1, this class coincides with ordinary ground tree rewriting
systems. Moreover, one can easily show that the rewriting graphs of ground
stack tree rewriting systems over unary n-stack trees (trees containing only unary
operations, i.e. no edge labelled by 2 or 2̄) are isomorphic to the configuration
graphs of order n pushdown automata performing a finite sequence of operations
at each transition.

4 Operation Automata

In this section, in order to provide finite descriptions of possibly infinite sets
of operations, in particular the derivation relations of GSTRS, we extend the
notion of ground tree transducers (or GTT) of [11] to ground stack tree rewriting
systems.

A GTT T is given by a tuple
(
(Ai, Bi)

)
1≤i≤k

of pairs of finite tree automata.
A pair of trees (s, t) is accepted by T if s = c[s1, . . . sm] and t = c[t1, . . . , tm] for
some m-context c, where for all 1 ≤ j ≤ m, sj ∈ L(Ai) and tj ∈ L(Bi) for some
1 ≤ i ≤ k. It is also shown that, given a relation R recognised by a GTT, there
exists another GTT recognising its reflexive and transitive closure R∗.

Directly extending this idea to ground stack tree rewriting systems is not
straightforward: contrarily to the case of trees, a given compound operation
may be applicable to many different subtrees. Indeed, the only subtree to which
a ground tree rewriting rule (s, t) can be applied is the tree s. On stack trees, this
is no longer true, as depicted in Fig. 2: an operation does not entirely describe the
labels of nodes of subtrees it can be applied to (as in the case of trees), and can
therefore be applied to infinitely many different subtrees. Moreover, the resulting
tree depends of the source tree. We will thus express relations by describing
sets of compound operations over stack trees. Following [5], where recognisable
sets of higher-order stacks are defined, we introduce operation automata and
recognisable sets of operations.
2 This unusual definition is necessary because · is not associative. For example,

(Dcopy2
n

·2,1 Dcopy2
n
) ·1,1 Dcopy2

n
is in (Dcopy2

n
)2 ·Dcopy2

n
but not in Dcopy2

n
· (Dcopy2

n
)2.
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Definition 3. An automaton over D∗
n is a tuple A = (Q,Σ, I, F,Δ), where

– Q is a finite set of states,
– Σ is a finite stack alphabet,
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– Δ ⊆ (

Q × (Opsn−1 ∪ {copy1
n, copy1

n}) × Q
)

∪ ((Q × Q) × Q) ∪ (Q × (Q × Q)) is a set of transitions.

An operation D is accepted by A if there is a labelling of its vertices by states
of Q such that all input vertices are labelled by initial states, all output vertices
by final states, and this labelling is consistent with Δ, in the sense that for all
x, y and z respectively labelled by states p, q and r, and for all θ ∈ Opsn−1 ∪
{copy1

n, copy1
n},

x
θ−→ y =⇒ (p, θ, q) ∈ Δ,

x
1−→ y ∧ x

2−→ z =⇒ (p, (q, r)) ∈ Δ,

x
1̄−→ z ∧ y

2̄−→ z =⇒ ((p, q), r) ∈ Δ.

We denote by Op(A) the set of operations recognised by A. Rec denotes the
class of sets of operations recognised by operation automata. A pair of stack
trees (t, t′) is in the relation R(A) defined by A if for some k ≥ 1 there is a
k-tuple of operations D̄ = (D1, · · · ,Dk) in Op(A)k such that t′ ∈ D̄(t). At order
1, we have already seen that stack trees are simply trees, and that ground stack
tree rewriting systems coincide with ground tree rewriting systems. Similarly,
we also have the following:

Proposition 2. The classes of relations recognised by order 1 operation
automata and by ground tree transducers coincide.

At higher orders, the class Rec and the corresponding binary relations retains
several of the good closure properties of ground tree transductions.

Proposition 3. Rec is closed under union, intersection and iterated concate-
nation. The class of relations defined by operation automata is closed under
composition and iterated composition.

The construction of automata recognising the union and intersection of two
recognisable sets, the iterated concatenation of a recognisable set, or the compo-
sition of two automata-definable relations, can be found in the appendix. Given
automaton A, the relation defined by the automaton accepting Op(A)∗ is R(A)∗.

Normalised automata. Operations may perform “unnecessary” actions on a given
stack tree, for instance duplicating a leaf with a copy2

n operation and later
destroying both copies with copy2

n. Such operations which leave the input tree
unchanged are referred to as loops. There are thus in general infinitely many oper-
ations representing the same relation over stack trees. It is therefore desirable to
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look for a canonical representative (a canonical operation) for each considered
relation. The intuitive idea is to simplify operations by removing occurrences of
successive mutually inverse basic operations. This process is a very classical tool
in the literature of pushdown automata and related models, and was applied to
higher-order stacks in [5]. Our notion of reduced operations is an adaptation of
this work.

There are two main hurdles to overcome. First, as already mentioned, a
compound operation D can perform introspection on the label of a leaf without
destroying it. If D can be applied to a given stack tree t, such a sequence of
operations does not change the resulting stack tree s. It does however forbid
the application of D to other stack trees by inspecting their node labels, hence
removing this part of the computation would lead to an operation with a possibly
strictly larger domain. To adress this problem, and following [5], we use test
operations ranging over regular sets of (n − 1)-stacks, which will allow us to
handle non-destructive node-label introspection.

A second difficulty appears when an operation destroys a subtree and then
reconstructs it identically, for instance a copy2

n operation followed by copy2
n.

Trying to remove such a pattern would lead to a disconnected DAG, which
does not describe a compound operation in our sense. We thus need to leave
such occurrences intact. We can nevertheless bound the number of times a given
position of the input stack tree is affected by the application of an operation by
considering two phases: a destructive phase during which only copyi

n and order
n−1 basic operations (possibly including tests) are performed on the input stack
tree, and a constructive phase only consisting of copyi

n and order n − 1 basic
operations. Similarly to the way ground tree rewriting is performed at order 1.

Formally, a test TL over Stacksn is the restriction of the identity operation to
L ∈ Rec(Stacksn)3. In other words, given s ∈ Stacksn, TL(s) = s if s ∈ L, oth-
erwise, it is undefined. We denote by Tn the set of test operations over Stacksn.
We enrich our basic operations over STn with Tn−1. We also extend compound
operations with edges labelled by tests. We denote by DT

n the set of basic opera-
tions with tests. We can now define the notion of reduced operation analogously
to that of reduced instructions with tests in [5]. However, as in this work, there
is not a unique reduced operation representing a given relation, due to the pres-
ence of tests, but it limits the number of times a same stack tree can be obtained
during its application to a stack tree, which is exactly what we need in the proof
of the formula of the next section.

Definition 4. For i ∈ {0, · · · , n}, we define the set of words Redi over Opsn ∪
Tn ∪ {1, 2, 1̄, 2̄} as:

– Red0 = {T, rewa,b, rewa,b · T, T · rewa,b, rewa,c · T · rewc,b

| a, b, c ∈ Σ, a �= b, T ∈ Tn},
– For 0 < i < n, Redi = (Redi−1 · copyi)∗ · Redi−1\Tn · (copyi · Redi−1)∗ ∪ Tn,
– Redn = (Redn−1 · {1̄, 2̄})∗ · Redn−1 · ({1, 2} · Redn−1)∗.

3 Regular sets of n-stacks are obtained by considering regular sets of sequences of
operations of Opsn applied to a given stack s0. More details can be found in [5].
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Definition 5. An operation with tests D is reduced if for every x, y ∈ VD, if
x

w−→ y, then w ∈ Redn.

Observe that, in the decomposition of a reduced operation D, case 5 of the
inductive definition of compound operations (Definition 1) should never occur, as
otherwise, there would be a path on which 1 appears before 1̄, which contradicts
the definition of reduced operation.

An automaton A is said to be normalised if it only accepts reduced oper-
ations, and distinguished if there is no transition ending in an initial state or
starting in a final state. The following proposition shows that any operation
automaton can be normalised and distinguished.

Proposition 4. For every automaton A, there exists a distinguished normalised
automaton with tests Ar such that R(A) = R(Ar).

The idea of the construction is to transform A in several steps, each modify-
ing the set of accepted operations but not the recognised relation. The proof
relies on the closure properties of regular sets of (n − 1)-stacks and an analysis
of the structure of A. We show in particular, using a saturation technique, that
the set of states of A can be partitioned into destructive states (which label
the destructive phase of the operation, which does not contain the copyi

n opera-
tion) and the constructive states (which label the constructive phase, where no
copyi

n occurs). These sets are further divided into test states, which are reached
after a test has been performed (and only then) and which are the source of no
test-labelled transition, and the others. This transformation can be performed
without altering the accepted relation over stack trees.

5 Rewriting Graphs of Stack Trees

In this section, we study the properties of ground stack tree rewriting graphs. Our
goal is to show that the graph of any Γ -labelled GSTRS has a decidable FO[ ∗−→]
theory. We first state that there exists a distinguished and reduced automaton
A recognising the derivation relation ∗−→R of R, and then show, following [10],
that there exists a finite-set interpretation of ∗−→R and every a−→R for (D, a) ∈ R
from a graph with decidable WMSO-theory.

Theorem 1. Given a Γ -labelled GSTRS R, GR has a decidable FO[ ∗−→] theory.

To prove this theorem, we show that the graph HR = (V,E) with V = STn

and E = ( ∗−→R) ∪ ⋃
a∈Γ ( a−→R) obtained by adding the relation ∗−→R to GR has a

decidable FO theory. To do so, we show that HR is finite-set interpretable inside
a structure with a decidable WMSO-theory, and conclude using Corollary 2.5 of
[10]. Thus from Sect. 5.2 of the same article, it follows that the rewriting graphs
of GSTRS (and also the HR) are in the tree-automatic hierarchy.

Given a Γ -labelled GSTRS R over STn, we choose to interpret HR inside
the order n Treegraph Δn over alphabet Σ ∪ {1, 2}. Each vertex of this graph
is an n-stack, and there is an edge s

θ−→ s′ if and only if s′ = θ(s) with θ ∈
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Opsn ∪ Tn. This graph belongs to the n-th level of the pushdown hierarchy and
has a decidable WMSO theory4.

Given a stack tree t and a position u ∈ dom(t), we denote by Code(t, u) the
n-stack [pushw0

(t(ε)),pushw1
(t(u≤1)), · · · ,pushw|u|−1

(t(u≤|u|−1)), t(u)]n, where
pushw(s) is obtained by adding the word w at the top of the top-most 1-stack
in s, and wi = #(u≤i)ui+1. This stack Code(t, u) is the encoding of the node at
position u in t. Informally, it is obtained by storing in an n-stack the sequence
of (n − 1)-stacks labelling nodes from the root of t to position u, and adding
at the top of each (n − 1)-stack the number of children of the corresponding
node of t and the next direction taken to reach node u. Any stack tree t is then
encoded by the finite set of n-stacks Xt = {Code(t, u) | u ∈ fr(t)}, i.e. the set
of encodings of its leaves. Observe that this coding is injective.

Example 1. The coding of the stack tree t depicted in Fig. 1 is:

Xt = { [[[aa]1[bab21]1]2[[aa]1[aaa11]1]2[[ab]1]2]3,
[[[aa]1[bab22]1]2[[aa]1[a]1[b21]1]2[[ba]1[ba]1[b]1]2]3,
[[[aa]1[bab22]1]2[[aa]1[a]1[b22]1]2[[abb]1[ab]1]2]3}.

We now represent any relation S between two stack trees as a WMSO-formula
with two free second-order variables, which holds in Δn over sets Xs and Xt if
and only if (s, t) ∈ S.

Proposition 5. Given a Γ -labelled GSTRS R, there exist WMSO-formulæ δ, Ψa

and φ such that:

– Δn
Σ∪{1,2} |= δ(X) if and only if ∃t ∈ STn,X = Xt,

– Δn
Σ∪{1,2} |= Ψa(Xs,Xt) if and only if t ∈ D(s) for some (D, a) ∈ R,

– Δn
Σ∪{1,2} |= φ(Xs,Xt) if and only if s

∗−→R t.

First note that the intuitive idea behind this interpretation is to only work
on those vertices of Δn which are the encoding of some node in a stack tree.
Formula δ will distinguish, amongst all possible finite sets of vertices, those which
correspond to the set of encodings of all leaves of a stack tree. Formulæ Ψa and
φ then respectively check the relationship through a−→R (resp. ∗−→R) of a pair of
stack trees. We give here a quick sketch of the formulæ and a glimpse of their
proof of correctness. More details can be found in AppendixC.

Let us first detail formula δ, which is of the form

δ(X) = OnlyLeaves(X) ∧ TreeDom(X) ∧ UniqueLabel(X).

OnlyLeaves(X) holds if every element of X codes for a leaf. TreeDom(X) holds
if the induced domain is the domain of a tree and the arity of each node is
consistent with the elements of X. UniqueLabel(X) holds if for every position u
in the induced domain, all elements which include u agree on its label.
4 It is in fact a generator of this class of graphs via WMSO-interpretations (see [7] for

additional details).
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From here on, variables X and Y will respectively stand for the encoding of
some input stack tree s and output stack tree t. For each a ∈ Γ , Ψa(X,Y ) is
the disjunction of a family of formulæ ΨD(X,Y ) for each (D, a) ∈ R. Each ΨD

is defined by induction over D, simulating each basic operations in D, ensuring
that they are applied according to their respective positions, and to a single
closed subtree of s (which simply corresponds to a subset of X), yielding t.

Let us now turn to formula φ. Since the set of DAGs in R is finite, it is
recognisable by an operation automaton. Since Rec is closed under iteration
(Cf. Sect. 4), one may build a distinguished normalised automaton accepting
∗−→R. What we thus really show is that given such an automaton A, there exists
a formula φ such that φ(X,Y ) holds if and only if t ∈ D̄(s) for some vector
D̄ = D1, . . . Dk of DAGs accepted by A. Formula φ is of the form

φ(X,Y ) = ∃Z, Init(X,Y,Z) ∧ Diff(Z) ∧ Trans(Z).

Following a common pattern in automata theory, this formula expresses the
existence of an accepting run of A over some tuple of reduced DAGs D̄, and
states that the operation corresponding to D̄, when applied to s, yields t. Here,
Z = Zq1 , · · · , Zq|QA| defines a labelling of a subset of Δn

Σ∪{1,2} with the states
of the automaton, each element Zq of Z representing the set of nodes labelled
by a given control state q. Sub-formula Init checks that only the elements of X
(representing the leaves of s) are labelled by initial states, and only those in Y
(leaves of t) are labelled by final states, and that the non-labelled leaves of X are
the non-labelled leaves of Y . Trans ensures that the whole labelling respects the
transition rules of A. For each component D of D̄, and since every basic operation
constituting D is applied locally and has an effect on a subtree of height and
width at most 2, this amounts to a local consistency check between at most three
vertices, encoding two nodes of a stack tree and their parent node. The relative
positions where basic operations are applied is checked using the sets in Z, which
represent the flow of control states at each step of the transformation of s into t.
Finally, Diff ensures that no stack is labelled by two states belonging to the same
part (destructive, constructive, testing or non-testing) of the automaton, thus
making sure we simulate a unique run of A. This is necessary to ensure that no
spurious run is generated, and is only possible because A is normalised.

6 Perspectives

There are several open questions arising from this work. The first one is the
strictness of the hierarchy, and the question of finding simple examples of graphs
separating each of its levels with the corresponding levels of the pushdown and
tree-automatic hierarchies. A second interesting question concerns the trace lan-
guages of stack tree rewriting graphs. It is known that the trace languages of
higher-order pushdown automata are the indexed languages [8], that the class
of languages recognised by automatic structures are the context-sensitive lan-
guages [15] and that those recognised by tree-automatic structures form the class
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Etime [13]. However there is to our knowledge no characterisation of the lan-
guages recognised by ground tree rewriting systems. It is not hard to define a
2-stack tree rewriting graph whose path language between two specific vertices
is {u

∃

u | u ∈ Σ∗}, which we believe cannot be recognised using tree rewriting
systems or higher-order pushdown automata5. Finally, the model of stack trees
can be readily extended to trees labelled by trees. Future work will include the
question of extending our notion of rewriting and Theorem1 to this model.

A Properties of Operation Automata

In this section, we show that Rec is closed under union, intersection, iteration
and contains the finite sets of operations.

Proposition 6. Given two automata A1 and A2, there exists an automaton A
such that Op(A) = Op(A1) ∩ Op(A2).

Proof. We will construct an automaton which witness Proposition 6. First, we
ensure that the two automata are complete by adding a sink state if some tran-
sitions do not exist. We construct then the automaton A which is the product
automaton of A1 and A2:

Q = QA1 × QA2

I = IA1 × IA2

F = FA1 × FA2

Δ = {((q1, q2), θ, (q′
1, q

′
2)) | (q1, θ, q′

1) ∈ ΔA1 ∧ (q2, θ, q′
2) ∈ ΔA2}

∪ {(((q1, q2), (q′
1, q

′
2)), (q

′′
1 , q′′

2 )) |((q1, q′
1), q

′′
1 ) ∈ ΔA1 ∧ ((q2, q′

2), q
′′
2 )∈ΔA2}

∪ {((q1, q2), ((q′
1, q

′
2), (q

′′
1 , q′′

2 ))) |(q1, (q′
1, q

′′
1 ))∈ΔA1 ∧ (q2, (q′

2, q
′′
2 ))∈ΔA2}

If an operation admits a valid labelling in A1 and in A2, then the labelling which
labels each states by the two states it has in its labelling in A1 and A2 is valid.
If an operation admits a valid labelling in A, then, restricting it to the states of
A1 (resp A2), we have a valid labelling in A1 (resp A2). �
Proposition 7. Given two automata A1 and A2, there exists an automaton A
such that Op(A) = Op(A1) ∪ Op(A2).

Proof. We take the disjoint union of A1 and A2:

Q = QA1 � QA2

I = IA1 � IA2

F = FA1 � FA2

Δ = ΔA1 � ΔA2

If an operation admits a valid labelling in A1 (resp A2), it is also a valid labelling
in A. If an operation admits a valid labelling in A, as A is a disjoint union of
A1 and A2, it can only be labelled by states of A1 or of A2 (by definition, there
is no transition between states of A1 and states of A2) and then the labelling is
valid in A1 or in A2. �
5 ∃

denotes the shuffle product. For every u, v ∈ Σ∗ and a, b ∈ Σ, u

∃

ε = ε

∃

u =
u, au

∃

bv = a(u

∃

bv) ∪ b(au

∃

v).
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Proposition 8. Given an automaton A, there exists A′ which recognises
Op(A)∗.

Proof. We construct A′.

Q = QA � {q}
I = IA ∪ {q}
F = FA ∪ {q}

The set of transition Δ contains the transitions of A together with multiple
copies of each transition ending with a state in FA, modified to end in a state
belonging to IA

Δ = ΔA

∪ {(q1, θ, qi) | qi ∈ IA,∃qf ∈ FA, (q1, θ, qf ) ∈ ΔA}
∪ {((q1, q2), qi) | qi ∈ IA,∃qf ∈ FA, ((q1, q2), qf ) ∈ ΔA}
∪ {(q1, (q2, qi)) | qi ∈ IA,∃qf ∈ FA, (q1, (q2, qf )) ∈ ΔA}
∪ {(q1, (qi, q2)) | qi ∈ IA,∃qf ∈ FA, (q1, (qf , q2)) ∈ ΔA}
∪ {(q1, (qi, q

′
i)) | qi, q

′
i ∈ IA,∃qf , q′

f ∈ FA, (q1, (qf , q′
f )) ∈ ΔA}

For every k ∈ N, if D ∈ (Op(A)k), it has a valid labelling in A′: The operation �
has a valid labelling because q is initial and final. So it is true for (Op(A)0) If it
is true for (Op(A)k), we take an operation G in (Op(A)k+1) and decompose it in
D of Op(A) and F of Op(A)k (or symmetrically, D ∈ Op(A)k and F ∈ Op(A)k),
such that G ∈ D ·F . The labelling which is the union of some valid labellings for
D and F and labels the identified nodes with the labelling of F (initial states)
is valid in A.

If an operation admits a valid labelling in A′, we can separate several parts
of the operation, separating on the added transitions, and we obtain a collection
of operations of Op(A). Then we have a graph in Op(A)k for a given k. Then
Op(A′) =

⋃
k≥0 Op(A)k, then A′ recognises Op(A)∗. �

Proposition 9. Given an operation D, there exists an automaton A such that
Op(A) = {D}.
Proof. If D = (V,E), we take:

Q = V
I is the set of incoming vertices
F is the set of output vertices
Δ = {(q, θ, q′) | (q, θ, q′) ∈ E}

∪ {(q, (q′, q′′)) | (q, 1, q′) ∈ E ∧ (q, 2, q′′) ∈ E}
∪ {((q, q′), q′′) | (q, 1, q′′) ∈ E ∧ (q′, 2, q′′) ∈ E}

The recognised connected part is D by construction. �

B Normalised Automata

Definition 6. An automaton is normalised if all its recognised operations are
reduced.
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Theorem 2. Given an operation automaton with tests, there exists a distin-
guished normalised operation automaton with tests which accepts the same
language.

Proof. The first thing to remark is that if we don’t have any tree transitions, we
have a higher-order stack automaton as in [5] and that the notions of normalised
automaton coincide. The idea is thus to separate the automaton in two parts,
one containing only tree transitions and the other stack transitions, to normalise
each part separately and then to remove the useless transitions used to separate
the automaton.

Step 1: In this transformation, we will use a new special basic operation: id
such that its associated operation Did is the following DAG: VDid = {x, y} and
EDid = {(x, id, y)}. For every stack tree t and any integer i ≤ |fr(t)|, id(i)(t) = t.
We will use this operation to separate our DAGs in several parts linked with id
operations, and will remove them at the end of the transformation. We suppose
that we start with an automaton without such id transitions.

We begin by splitting the set of control states of the automaton into three
parts. We create three copies of Q:

– Qs which are the sources and targets of all the stack transitions, target of id
transitions from Qt1 and source of id-transitions to Qt2 .

– Qt1 which are the targets of all the tree transitions and the sources of id-
transitions to Qs.

– Qt2 which are the sources of all the tree transitions and the targets of id-
transitions from Qs.

The idea of what we want to obtain is depicted in Fig. 5.
Formally, we replace the automaton A = (Q, I, F,Δ) by A1 = (Q′, I ′, F ′,Δ′)

with:

Q′ = {qt1 , qt2 , qs | q ∈ Q}
I ′ = {qs | q ∈ I}
F ′ = {qs | q ∈ F}
Δ = {(qs, θ, q

′
s) | (q, θ, q′) ∈ Δ}

∪ {(qt2 , (q
′
t1 , q

′′
t1)) | (q, (q′, q′′)) ∈ Δ}

∪ {((qt2 , q
′
t2), q

′′
t1) | ((q, q′), q′′) ∈ Δ}

∪ {(qt2 , copy1
n, q′

t1) | (q, copy1
n, q′) ∈ Δ}

∪ {(qt2 , copy1
n, q′

t1) | (q, copy1
n, q′) ∈ Δ}

∪ {(qt1 , id, qs), (qs, id, qt2) | q ∈ Q}

where for every q ∈ Q, qt1 , qt2 , qs

are fresh states.

Lemma 1. A and A1 recognise the same relation.

Proof. To prove this lemma, we prove that for every operation D recognised by
A, there is an operation D′ recognised by A1 such that RD = RD′ , and vice
versa.
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Fig. 5. Step 1: The splitting of a state q

Let us take D recognised by A. We prove, by induction on the structure of
D that we can construct D′ such that RD = RD′ and for every labelling ρD of
D consistent with Δ, with ID labelled by q and OD by q′, there exists ρ′

D a
labelling of D′ consistent with Δ′ such that ID′ is labelled by qs and OD′ by q′

s.
If D = �, we take D′ = �. We have RD = RD′ . For every labelling ρD which

labels the unique node of D by q, we take ρD′ which labels the unique node of
D′ by qs. These labellings are consistent by Δ and Δ′, by vacuity.

Suppose now that we have F and F ′ such that for every labelling ρF we
can define a labelling ρF ′ satisfying the previous condition. Let us consider the
following cases:

– D = (F ·1,1 Dθ) ·1,1 G, for θ ∈ {copy1
n, copy1

n}. We call x the output node of
F and y the input node of G. We have VD = VF ∪ VG and ED = EF ∪ EG ∪
{x

θ−→ y}.
By induction hypothesis, we consider F ′ and G′, and construct D′ =

(((F ′ ·1,1 Did) ·1,1 Dθ) ·1,1 Did) ·1,1 G′, with VD′ = VF ′ ∪ VG′ ∪ {x′
1, x

′
2} and

ED′ = EF ′ ∪EG′ ∪{x′ id−→ x′
1, x

′
1

θ−→ x′
2, x

′
2

id−→ y′}, where x′ is the output node
of F ′ and y′ the input node of G′.

We take ρD a labelling of D and ρF (resp. ρG) its restriction to F (resp.
G). We have ρD(x) = q and ρD(y) = q′. By induction hypothesis, we consider
ρF ′ (resp. ρG′) the corresponding labelling of F ′ (resp. G′), with ρF ′(x′) = qs

(resp. ρG′(y′) = q′
s). Then, we construct ρD′ = ρF ′ ∪ρG′ ∪{x′

1 → qt2 , x
′
2 → q′

t1}.
As ρD is consistent with Δ, (q, θ, q′) is in Δ, then by construction (qt2 , θ, q

′
t1)

is in Δ′. We have also (qs, id, qt2) and (q′
t1 , id, q′

s) are in Δ′. Then, ρ′
D is

consistent with Δ′.
To prove that RD = RD′ , we just have to remark that, from the definition

of application of operation, we have for every stack tree t and integer i, we
have D′

(i)(t) = G′
(i)(id(i)(θ(i)(id(i)(F ′

(i)(t))))) = G(i)(θ(i)(F(i)(t))) = D(i)(t).

The other cases being similar, we just give D′ and ρD′ and leave the details
to the reader.

– D = (F ·1,1 Dθ) ·1,1 G, for θ ∈ Opsn−1 ∪ Tn−1. We call x the output node of
F and y the input node of G. We have VD = VF ∪ VG and ED = EF ∪ EG ∪
{x

θ−→ y}.
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By induction hypothesis, we consider F ′ and G′, and construct D′ = (F ′ ·1,1

θ) ·1,1 G′, with VD′ = VF ′ ∪ VG′ and ED′ = EF ′ ∪ EG′ ∪ {x′ θ−→ y′}, where x′

is the output node of F ′ and y′ the input node of G′.
We take ρD a labelling of D and ρF (resp. ρG) its restriction to F (resp.

G). We have ρD(x) = q and ρD(y) = q′. By induction hypothesis, we consider
ρF ′ (resp. ρG′) the corresponding labelling of F ′ (resp. G′), with ρF ′(x′) = qs

(resp. ρG′(y′) = q′
s). Then, we construct ρD′ = ρF ′ ∪ ρG′ .

– D = ((F ·1,1 Dcopy2
n
) ·2,1 H) ·1,1 G. We call x the output node of F , y the

input node of G and z the input node of H. We have VD = VF ∪VG ∪VH and
ED = EF ∪ EG ∪ EH ∪ {x

1−→ y, x
2−→ z}.

By induction hypothesis, we consider F ′, G′ and H ′, and construct D′ =
(((((F ·1,1 Did)Dcopy2

n
) ·2,1 Did) ·2,1 H) ·1,1 Did) ·1,1 G, with VD′ = VF ′ ∪ VG′ ∪

VH′ ∪ {x′
1, x

′
2, x

′
3} and ED′ = EF ′ ∪ EG′ ∪ EH′{x′ id−→ x′

1, x
′
1

1−→ x′
2, x

′
1

2−→
x′
3, x

′
2

id−→ y′, x′
3

id−→ z′}, where x′ is the output node of F ′, y′ the input node
of G′ and z′ the input node of H ′.

We take ρD a labelling of D and ρF (resp. ρG, ρH) its restriction to F
(resp. G, H). We have ρD(x) = q, ρD(y) = q′ and ρD(z) = q′′. By induction
hypothesis, we consider ρF ′ (resp. ρG′ ,ρH′) the corresponding labelling of F ′

(resp. G′, H ′), with ρF ′(x′) = qs (resp. ρG′(y′) = q′
s, ρH′(z′) = q′′

s ). Then, we
construct ρD′ = ρF ′ ∪ ρG′ ∪ ρH′ ∪ {x′

1 → qt2 , x
′
2 → q′

t1 , x
′
3 → q′′

t1}.
– D = (F ·1,1 (G ·1,2 Dcopy2

n
)) ·1,1 H. We call x the output node of F , y the

output node of G and z the input node of H. We have VD = VF ∪ VG ∪ VH

and ED = EF ∪ EG ∪ EH ∪ {x
1̄−→ z, y

2̄−→ z}.
By induction hypothesis, we consider F ′, G′ and H ′, and construct D′ =

(((F ·1,1 Did) ·1,1 ((G ·1,1 Did) ·1,2 Dcopy2
n
)) ·1,1 Did) ·1,1 H, with VD′ = VF ′ ∪

VG′ ∪VH′ ∪{x′
1, x

′
2, x

′
3} and ED′ = EF ′ ∪EG′ ∪EH′{x′ id−→ x′

1, y
′ id−→ x′

2, x
′
1

1̄−→
x′
3, x

′
2

2̄−→ x′
3, x

′
3

id−→ z′}, where x′ is the output node of F ′, y′ the input node
of G′ and z′ the input node of H ′.

We take ρD a labelling of D and ρF (resp. ρG, ρH) its restriction to F
(resp. G, H). We have ρD(x) = q, ρD(y) = q′ and ρD(z) = q′′. By induction
hypothesis, we consider ρF ′ (resp. ρG′ , ρH′) the corresponding labelling of F ′

(resp. G′, H ′), with ρF ′(x′) = qs (resp. ρG′(y′) = q′
s, ρH′(z′) = q′′

s ). Then, we
construct ρD′ = ρF ′ ∪ ρG′ ∪ ρH′ ∪ {x′

1 → qt2 , x
′
2 → q′

t2 , x
′
3 → q′′

t1}.
– D = (((((F ·1,1 Dcopy2

n
) ·2,1 H) ·1,1 G) ·1,1 Dcopy2

n
) ·1,1 K. We call x the output

node of F , y1 the input node of G and y2 its output node, z1 the input
node of H and z2 its output node and w the input node of K. We have
VD = VF ∪ VG ∪ VH ∪ VK and ED = EF ∪ EG ∪ EH ∪ EK ∪ {x

1−→ y1, x
2−→

z1, y2
1̄−→ t, z2

2̄−→ t}.
By induction hypothesis, we consider F ′, G′, H ′ and K ′, and construct

D′ = ((((((F ′ ·1,1Did)·1,1Dcopy2
n
)·2,1(Did ·1,1H

′))·1,1(Did ·1,1G
′))·1,1Dcopy2

n
)·1,1

Did) ·1,1 K ′, with VD′ = VF ′ ∪ VG′ ∪ VH′ ∪ VK′ ∪ {x′
1, x

′
2, x

′
3, x

′
4, x

′
5, x

′
6} and

ED′ = EF ′ ∪ EG′ ∪ EH′ ∪ EK′{x′ id−→ x′
1, x

′
1

1−→ x′
2, x

′
1

2−→ x′
3, x

′
2

id−→ y′
1, x

′
3

id−→
z′
1, y

′
2

id−→ x′
4, z

′
2

id−→ x′
5, x

′
4

1̄−→ x′
6, x

′
5

2̄−→ x′
6, x

′
6

id−→ t′}, where x′ is the output
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node of F ′, y′
1 the input node of G′, y′

2 its output node, z′
1 the input node of

H ′, z′
2 its output node and t′ the input node of K ′.

We take ρD a labelling of DD and ρF (resp. ρG, ρH , ρK) its restriction to F
(resp. G, H, K). We have ρD(x) = q, ρD(y1) = q′, ρD(z1) = q′′, ρD(y2) = r′,
ρD(z2) = r′′ and ρD(t) = r′′. By induction hypothesis, we consider ρF ′ (resp.
ρG′ , ρH′ , ρK′) the corresponding labelling of F ′ (resp. G′, H ′, K ′), with
ρF ′(x′) = qs (resp. ρG′(y′

1) = q′
s, ρH′(z′

1) = q′′
s , ρG′(y′

2) = r′
s, ρH′(z′

2) = r′′
s ,

ρK′(t′) = r′′
s ). Then, we construct ρD′ = ρF ′ ∪ ρG′ ∪ ρH′ ∪ {x′

1 → qt2 , x
′
2 →

q′
t1 , x

′
3 → q′′

t1 , x
′
4 → rt2 , x

′
5 → r′

t2 , x
′
6 → r′′

t1}.

To do the other direction, we take D′ recognised by A1 and show that we can
construct D recognised by A with RD = RD′ by an induction on the structure
of D′ similar to the previous one (for each id transition, we do not modify the
constructed DAG and for all other transition, we add them to the DAG). All
the arguments are similar to the previous proof, so we let the reader detail it. �
We start by normalising the tree part of the automaton. To do so, we just have
to prevent the automaton to recognise DAGs which contain ((Dcopy2

n
·1,1 F1) ·2,1

F2) ·1,1 Dcopy2
n
, or (Dcopy1

n
·1,1 F ) ·1,1 Dcopy1

n
as a subDAG. Such a subDAG will

be called a bubble. However, we do not want to modify the recognised relation.
We will do it in two steps: first we allow the automaton to replace the bubbles
with equivalent tests (after remarking that a bubble can only be a test) in any
recognised DAG (step 2), and then by ensuring that there won’t be any copyi

n

transition below the first copyj
n transition (step 3).

Step 2: Let A1 = (Q, I, F,Δ) be the automaton obtained after step 1. Given
two states q1, q2, we denote by LAq1,q2

the set {s ∈ Stacksn−1 | ∃D ∈
D(A1),D(1)(s) = s} where Aq1,q2 is a copy of A1 in which we take q1 as the
unique initial state and q2 as the unique final state. In other words, LAq1,q2

is the set of (n − 1)-stacks such that the trees with one node labelled by
this stack remains unchanged by an operation recognised by Aq1,q2 . We define
A2 = (Q, I, F,Δ′) with

Δ′ = Δ
∪ {(qs, TLA

rs,r′
s

∩LA
ss,s′

s

, q′
s) | (qt2 , (rt1 , st1)), ((r

′
t2 , s

′
t2), q

′
t1) ∈ Δ}

∪ {(qs, TLrs,s′
s
, q′

s | (qt2 , copy1
n, rt1), (r

′
t2 , copy1

n, q′
t1) ∈ Δ}

The idea of the construction is depicted in Fig. 6.
We give the following lemma for the binary bubble. The case of the unary

bubble is very similar and thus if left to the reader.

Lemma 2. Let C1=(QC1 , {iC1}, {fC1},ΔC1) and C2=(QC2 , {iC2}, {fC2},ΔC2)
be two automata recognising DAGs without tree operations. The two automata
B1 = (Q1, I, F,Δ1) and B2 = (Q2, I, F,Δ2), with I ={q1}, F ={q2}, Q1={q1, q2},
Δ1 = {(q1, TLC1∩LC2

, q2)}, Q2 = {q1, q2}∪QC1 ∪QC2 and Δ2 = {(q1, (iC1 , iC2)),
((fC1 , fC2), q2)} ∪ ΔC1 ∪ ΔC2 recognise the same relation.
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Proof. An operation D recognised by B2 is of the form D = Dcopy2
n

·1,1 (F1 ·1,1

(F2 ·2,2 Dcopy2
n
)), where F1 is recognised by C1 and F2 by C2. We have:

D(i)(t) = copy2
n(i)(F1(i)(F2(i+1)(copy2

n(i)(t))))

= copy2
n(i)(F1(i)(F2(i+1)(t ∪ {ui1 �→ t(ui), ui2 �→ t(ui)})))

= copy2
n(i)(t ∪ {ui1 �→ F1(t(ui)), ui2 �→ F2(t(ui))}).

So this operation is defined if and only if F1(t(ui)) = F2(t(ui)) = t(ui). In this
case, Di(t) = t. Thus, B2 accepts only operations which are tests, and these
tests are the intersection of the tests recognised by C1 and C2. So the relation
recognised by B2 is exactly the relation recognised by TLC1∩ LC2

, which is the
only operation recognised by B1. �
We have the following corollary as a direct consequence of this lemma.

Corollary 1. A1 and A2 recognises the same relation.

Indeed, all the new operations recognised do not modify the relation recognised
by the automaton as each test was already present in the DAGs containing a
bubble.

Step 3: Suppose that A2 = (Q, I, F,Δ) is the automaton obtained after step 2.
We now want to really forbid these bubbles. To do so, we split the control states
automaton in two parts: We create 2 copies of Q:

– Qd which are target of no copyd
n transition,

– Qc which are source of no copyd
n transition.

Fig. 6. Step 2: The added test transition to shortcut the bubble is depicted with a
dotted line
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We construct A3 = (Q′, I ′, F ′,Δ′) with:

Q′ = {qd, qc | q ∈ Q}
I ′ = {qd, qc | q ∈ I}
F ′ = {qd, qc | q ∈ F}
Δ′ = {(qd, θ, q

′
d), (qc, θ, q

′
c) | (q, θ, q′) ∈ Δ, θ ∈ Opsn−1 ∪ Tn−1 ∪ {id}}

∪ {((qd, q
′
d), q

′′
d ) | ((q, q′), q′′) ∈ Δ}

∪ {(qd, copy1
n, q′

d) | (q, copy1
n, q′) ∈ Δ}

∪ {(qc, (q′
c, q

′′
c )), (qd, (q′

c, q
′′
c )) | (q, (q′, q′′)) ∈ Δ}

∪ {(qc, copy1
n, q′

c), (qd, copy1
n, q′

c) | (q, copy1
n, q′) ∈ Δ}

Lemma 3. A2 and A3 recognise the same relation.

Proof. A3 recognises the operations recognised by A2 which contain no bubble.
Indeed, every labelling of such an operation in A2 can be modified to be a
labelling in A3 (left to the reader). Conversely, each operation recognised by A3

is recognised by A2.
Let us take D recognised by A2 which contains at least one bubble. Suppose

that D contains a bubble F and that D = D[F ]x where D is a DAG with one
bubble less and we obtain D by replacing the node x by F in D. From step 2,
there exist four states of A2, rs, r

′
s, ss, s

′
s such that G = D[TLA

rs,r′
s

∩LA
ss,s′

s

]x is
recognised by A2. Then RD ⊆ RG, and G has one less bubble than D.

Iterating this process, we obtain an operation D′ without any bubble such
that RD ⊆ RD′ and D′ is recognised by A2. As it contains no bubble, it is also
recognised by A3.

Then every relation recognised by an operation with bubbles is already
included in the relation recognised by an operation without bubbles. Then A2

and A3 recognise the same relation. �
We call the destructive part the restriction A3,d of A3 to Qd and the constructive
part its restriction A3,c to Qc.

Step 4: We consider an automaton A3 obtained after the previous step. Observe
that in the two previous steps, we did not modify the separation between Qt1 ,
Qt2 and Qs. We call A3,s the restriction of A3 to Qs.

We now want to normalise A3,s. As this part of the automaton only contains
transitions labelled by operations of Opsn−1 ∪ Tn−1, we can consider it as an
automaton over higher-order stack operations. So we will use the process of
normalisation over higher-order stack operations defined in [5]. For each pair
(qs, q

′
s) of states in Qs, we construct the normalised automaton Aqs,q′

s
of A′

where A′ is a copy of A3,s where IA′ = {qs} and FA′ = {q′
s}. We suppose

that these automata are distinguished, i.e. that states of IAqs,q′
s

are target of
no transitions and states of FAqs,q′

s
are source of no transitions. We moreover

suppose that it is not possible to do two test transitions in a row (this is not a
strong supposition because such a sequence would not be normalised, but it is
worth noticing it).

We replace A3,s with the union of all the Aqs,q′
s
(Fig. 7): we define A4 =

(Q′, I ′, F ′,Δ′):
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Q′ = Qt1 ∪ Qt2 ∪ ⋃
qs,q′

s
QAqs,q′

s

I ′ =
⋃

qs∈I,q′
s∈Qs

IAqs,q′
s

F ′ =
⋃

qs∈Qs,q′
s∈F FAqs,q′

s

Δ′ = {K ∈ Δ | K = (q, (q′, q′′)) ∨ K = ((q, q′), q′′) ∨ K = (q, copy1
n, q′)

∨K = (q, copy1
n, q′)}

∪ ⋃
qs,q′

s∈Qs
ΔAqs,q′

s∪ {(qt1 , id, i) | (qt1 , id, q′
s) ∈ Δ, i ∈ ⋃

q′′
s ∈Q IAq′

s,q′′
s
}

∪ {(f, id, qt2) | (q′
s, id, qt2) ∈ Δ, f ∈ ⋃

q′′
s ∈Q FAq′′

s ,q′
s
}

∪ {(qt1 , id, f) | (qt1 , id, q′
s) ∈ Δ, f ∈ ⋃

q′′
s ∈Q FAq′′

s ,q′
s
}

∪ {(i, id, qt2) | (q′
s, id, qt2) ∈ Δ, i ∈ ⋃

q′′
s ∈Q IAq′

s,q′′
s
}

Lemma 4. A3 and A4 recognise the same relation.

Proof. For every operation D recognised by A3, we can construct D′ by replacing
each sequence of Opsn−1 ∪ Tn−1 operations by their reduced sequence, which is
recognised by A4 and define the same relation. The details are left to the reader.

Conversely, for every D′ recognised by A4, we can construct D recognised
by A3 which define the same relation, by replacing every reduced sequence of
Opsn−1 ∪ Tn−1 operations by a sequence of Opsn−1 ∪ Tn−1 operations defining
the same relation such that D is recognised by A3. We leave the details to the
reader. �

Step 5: We now have a normalised automaton, except that we have id transitions.
We remove them by a classical saturation mechanism. Observe that in all the
previous steps, we never modified the separation between Qt1 , Qs and Qt2 , so
that all id transitions are from Qt1 to Qs and from Qs to Qt2 . We take A4 =
(Q, I, F,Δ) obtained after the previous step. We construct A5 = (Q′, I ′, F ′,Δ′)
with Q′ = Qs, I ′ = I, F ′ = F and

Δ′ = Δ \ {(q, id, q′) ∈ Δ}
∪ {(qs, copy1

n, q′
s) | ∃q′′

t2 , q
′′′
t1 , (q

′′
t2 , copy1

n, q′′′
t1 ), (q

′′′
t1 , id, q′

s), (qs, id, q′′
t2) ∈ Δ}

∪ {(qs, copy1
n, q′

s) | ∃q′′
t2 , q

′′′
t1 , (q

′′
t2 , copy1

n, q′′′
t1 ), (q

′′′
t1 , id, q′

s), (qs, id, q′′
t2) ∈ Δ}

∪ {(qs, (q′
s, q

′′
s )) |∃q1, q2, q3, (q1, (q2, q3)), (qs, id, q1), (q2, id, q′

s), (q3, id, q′′
s )∈Δ}

∪ {((qs, q
′
s), q

′′
s ) |∃q1, q2, q3, ((q1, q2), q3), (qs, id, q1), (q′

s, id, q2), (q3, id, q′′
s )∈Δ}

Lemma 5. A4 and A5 recognise the same relation.

Proof. We prove it by an induction on the structure of relations similar to the
one of step 1, so we leave it to the reader. �

Step 6: We now split the control states set into two parts:

– QT , the states which are target of all and only test transitions and source of
no test transition,

– QC , the states which are source of all test transitions and target of no test
transition.
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Fig. 7. Step 4: The splitting of the stack part of the automaton

Given automaton A5 = (Q, I, F,Δ) obtained from the previous step, we define
A6 = (Q′, I ′, F ′,Δ′) with

Q′ = {qT , qC | q ∈ Q},

I ′ = {qC | q ∈ I},

F ′ = {qT , qC | q ∈ F},

Δ′ = {(qC , θ, q′
C), (qT , θ, q′

C) | (q, θ, q′) ∈ Δ, θ ∈ Opsn−1 ∪ Tn−1{copy1
n, copy1

n}}
∪ {((qC , q′

C), q′′
C), ((qC , q′

T ), q′′
C), ((qT , q′

C), q′′
C), ((qT , q′

T ), q′′
C) |((q, q′), q′′)∈Δ}

∪ {(qC , (q′
C , q′′

C)), (qT , (q′
C , q′′

C)) | (q, (q′, q′′)) ∈ Δ}
∪ {(qC , TL, q′

T ) | (q, TL, q′) ∈ Δ}.

Lemma 6. A5 and A6 recognise the same relation.

Proof. As, from step 4 it is not possible to have two successive test transitions,
the set of recognised operations is the same in both automata, only the labelling
is modified. The details are left to the reader. �
Finally, we suppose that an automaton obtained by these steps is distinguished,
i.e. initial states are target of no transition and final states are source of no
transition. If not, we can distinguish it by a classical transformation (as in the
case of word automata). We now have a normalised automaton with tests A6

obtained after the application of the six steps which recognises the same relation
as the initial automaton A. In subsequent constructions, we will be considering
the subsets of states QT , QC , Qd, Qc as defined in steps 6 and 3, and Qu,d =
Qu ∩ Qd with u ∈ {T,C} and d ∈ {d, c}. �

C Finite Set Interpretation

In this section, we formally define a finite set interpretation IR from Δn
Σ∪{1,2}

to the rewriting graph of a GSTRS R. In the whole section, we consider a
distinguished normalised automaton with tests A = (Q, I, F,Δ) recognising R∗,
constructed according to the process of the previous section.



Rewriting Higher-Order Stack Trees 387

Let us first formally define a possible presentation of the graph Δn
Σ∪{1,2}.

Vertices of this graph are n-stacks over alphabet Σ ∪{1, 2}, and there is an edge
(x, θ, y) in Δn

Σ∪{1,2} if θ ∈ Opsn(Σ ∪ {1, 2}) ∪ Tn and y = θ(x).
Since we are building an unlabelled graph, our interpretation consists of these

formulæ:

– δ(X) which describes which subsets of Stacksn(Σ ∪ {1, 2}) are in the graph,
– ΨD(Xs,Xt) which is true if RD(s, t), for D ∈ R,
– φ(Xs,Xt) which is true if R(A)(s, t).

C.1 Notations and Technical Formulæ

We will use the pushd and popd operations to simplify the notations. They have
the usual definition (as can be encountered in [5]), but notice that we can define
them easily with our operations: pushd(x) = y if there exists z ∈ V, a ∈ Σ∪{1, 2}
such that x

copy1−−−→ z
rewa,d−−−−→ y, and popd(x) = y if x = pushd(y). Observe that

pushd(x) and popd(x) are well defined as there can only be one a such that the
definition holds: the a which is the topmost letter of x. We extend this notations
to push and pop words to simplify notations.

We first define some formulæ over Δn
Σ∪{1,2} which will be used to construct

the set of stacks used to represent stack trees over Δn
Σ∪{1,2}.

Given θ ∈ Opsn−1(Σ) ∪ Tn−1, we define ψθ such that, given two n-stacks
x, y, ψθ(x, y) = x

θ−→ y. ψcopyi
n,d(x, y) = ∃a ∈ Σ, z1, z2, z3, z4, z5, z6, z7, z8 ∈

V, x
copy1−−−→ z1

rewa,i−−−−→ z2
copy1−−−→ z3

rewi,d−−−−→ z4
copyn−−−−→ z5

rewd,i−−−−→ z6
copy1−−−→ z7

rewi,a−−−−→
z8

copy1−−−→ y.
ψθ(x, y) is true if y is obtained by applying θ to x. ψcopyi

n,d(x, y) is true if y is
obtained by adding i and d to the topmost 1-stack of x, duplicating its topmost
(n − 1)-stack and then removing d and i from its topmost 1-stack.

We now give a technical formula which ensures that a given stack y is obtained
from a stack x using only the previous formulæ: Reach(x, y)

Reach(x, y) = ∀X, ((x ∈ X ∧ ∀z, z′, (z ∈ X ∧ (
∨

θ∈Opsn−1∪Tn−1

ψθ(z, z′)

∨
∨

i∈{1,2}

∨

d≤i

ψcopyi
n,d(z, z′))) ⇒ z′ ∈ X) ⇒ y ∈ X)

This formula is true if for every set of n-stacks X, if x is in X and X is closed
by the relations defined ψθ and ψcopyi

n,d, then y is in X.

Lemma 7. For all n-stacks x = [x1, · · · , xm]n and y = [y1, · · · , ym′ ]n,
Reach(x, y) holds if and only if y = [x1, · · · , xm−1,pushimdm

(ym),pushim+1dm+1

(ym+1), · · · ,pushim′−1dm′−1
(ym′−1), ym′ ]n where for all m ≤ j < m′, ij ∈ {1, 2},

dj ≤ ij and for all m ≤ j ≤ m′, there exists a sequence of operations
ρj ∈ (Opsn−1(Σ) ∪ Tn−1)∗ such that ρj(xm, yj).



388 V. Penelle

Corollary 2. For every n-stack x and a ∈ Σ, Reach([a]n, x) holds if and only
if there exist a stack tree t and a node u such that x = Code(t, u).

Proof. Suppose that there exist a stack tree t and a node u such that
x = Code(t, u). Then x = [push#(ε)u1

(t(ε)),push#(u≤1)u2
(t(u≤1)), · · · ,

push#(u≤|u|−1)u|u| (t(u≤|u|−1)), t(u)]n. As for every i, t(u≤i) is in Stacksn−1(Σ),
there exists a ρi in (Opsn−1(Σ) ∪ Tn−1)∗ such that ρi([a]n, t(u≤i)). Then by the
previous lemma, Reach([a]n, x) is true.

Conversely, suppose that Reach([a]n, x) is true. By Lemma 7, we therefore
have x = [pushi0d0

(x0),pushi1d1
(x1), · · · ,pushim−1dm−1

(xm−1), xm]n, where for
every j there exists a ρj ∈ (Opsn−1(Σ) ∪ Tn−1)∗ such that xj = ρj([a]n). Then,
for every j, xj ∈ Stacksn−1(Σ).

We take a tree domain U such that d0 · · · dm−1 ∈ U . We define a tree t
of domain U such that for every j, t(d0 · · · dj) = xj+1, t(ε) = x0, every node
d0 · · · dj has ij+1 sons, the node ε has i0 sons, and for every u ∈ U which is not
a d0 · · · dj , t(u) = [a]n. Then we have x = Code(t, d0 · · · dm−1). �

C.2 The Formula δ

We now define δ(X) = OnlyLeaves(X)) ∧ TreeDom(X) ∧ UniqueLabel(X) with

OnlyLeaves(X) = ∀x, x ∈ X ⇒ Reach([a]n, x)
TreeDom(X) = ∀x, y, z((x ∈ X ∧ ψcopy2

n,2(y, z) ∧ Reach(z, x)) ⇒
∃r, z′(r ∈ X ∧ ψcopy2

n,1(y, z′) ∧ Reach(z′, r)))∧
((x ∈ X ∧ ψcopy2

n,1(y, z) ∧ Reach(z, x)) ⇒
∃r, z′(r ∈ X ∧ ψcopy2

n,2(y, z′) ∧ Reach(z′, r)))

UniqueLabel(X) = ∀x, y, (x �= y ∧ x ∈ X ∧ y ∈ X) ⇒
(∃z, z′, z′′, ψcopy2

n,1(z, z′) ∧ ψcopy2
n,2(z, z′′)∧

((Reach(z′, x) ∧ Reach(z′′, y)) ∨ (Reach(z′′, x)∧
Reach(z′, y))))

where a is a fixed letter of Σ.
Formula OnlyLeaves ensures that an element x in X encodes a node in some

stack tree. TreeDom ensures that the prefix closure of the set of words d0 · · · dm−1

such that

[pushi0d0
(x0)),pushi1d1

(x1), · · · ,pushim−1dm−1
(xm−1), xm]n ∈ X

is a valid domain of a tree, and that the set of words i0 · · · im−1 is included in
this set (in other words, that the arity announced by the ij is respected). An
Finally UniqueLabel ensures that for any two elements

x = [pushi0d0
(x0)),pushi1d1

(x1), · · · ,pushim−1dm−1
(xm−1), xm]n

and y = [pushi′
0d′

0
(y0)),pushi′

1d′
1
(y1), · · · ,pushi′

m−1d′
m′−1

(ym′−1), ym′ ]n
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of X, there exists an index 1 ≤ j ≤ min(m,m′) such that for every k < j,
xk = yk, ik = i′k and dk = d′

k, xj = yj , ij = i′j and dj �= d′
j , i.e. for any two

elements, the (n − 1)-stacks labelling common ancestors are equal, and x and
y cannot encode the same leaf (as d0 · · · dm−1 �= d′

0 · · · d′
m′−1). Moreover, it also

prevents x to code a node on the path from the root to the node coded by y.

Lemma 8. ∀X ⊆ Stacksn(Σ ∪ {1, 2}), δ(X) ⇐⇒ ∃t ∈ STn,X = Xt where X
ranges only over finite sets of Stacksn(Σ ∪ {1, 2}).

Proof. We first show that for every n-stack tree t, δ(Xt) holds over Δn
Σ∪{1,2}. By

definition, for every x ∈ Xt, ∃u ∈ fr(t), x = Code(t, u), and then Reach([a]n, x)
holds (by Corollary 2). Thus OnlyLeaves holds.

Let us take x ∈ Xt such that x = Code(t, u) with u = u0 · · · ui2ui+2 · · · u|u|.
As t is a tree, u0 · · · ui2 ∈ dom(t) and so is u0 · · · ui1. Then, there exists v ∈ fr(t)
such that ∀j ≤ i, vj = uj , vi+1 = 1, and Code(t, v) ∈ Xt. Let us now take x ∈ Xt

such that x = Code(t, u) with u = u0 · · · ui1ui+2 · · · u|u| and #(u0 · · · ui1) = 2,
then u0 · · · ui2 is in dom(t) and there exists v ∈ fr(t) such that ∀j ≤ i, vj = uj ,
vi+1 = 2 and Code(t, v) ∈ Xt. Thus TreeDom holds.

Let x and y in Xt such that x �= y, x = Code(t, u) and y = Code(t, v), and
let i be the smallest index such that ui �= vi. Suppose that ui = 1 and vi = 2
(the other case is symmetric). We call z = Code(t, u0 · · · ui−1), and take z′ and
z′′ such that ψcopy2

n,1(z, z′) and ψcopy2
n,2(z, z′′). We have then Reach(z′, x) and

Reach(z′′, y). And thus UniqueLabel holds. Therefore, for every stack tree t,
δ(Xt) holds.

Let us now show that for every X ⊆ Stacksn(Σ ∪ {1, 2}) such that δ(X)
holds, there exists t ∈ STn, such that X = Xt. As OnlyLeaves holds, for every
x ∈ X,

x = [pushi0u0
(x0),pushi1u1

(x1), · · · ,pushik−1uk−1
(xk−1), xk]n−1

with, for all j, xj ∈ Stacksn−1, ij ∈ {1, 2} and uj ≤ ij . In the following, we denote
by ux the word u0 · · · uk−1 for a given x, and by U = {u | ∃x ∈ X,u � ux}. U is
closed under prefixes. As TreeDom holds, for all u, if u2 is in U , then u1 is in U
as well. Therefore U is the domain of a tree. Moreover, if there is a x such that
u1 � ux and i|u| = 2, then TreeDom ensures that there is y such that u2 � uy

and thus u2 ∈ U . As UniqueLabel holds, for every x and y two distinct elements
of X, there exists j such that for all k < j we have ux

k = uy
k, and ux

j �= uy
j . Then,

for all k ≤ j, we have xk = yk and ik = i′k. Thus, for every u ∈ U , we can define
σu such that for every x such that u � ux, x|u| = σu, and the number of sons of
each node is consistent with the coding.

Consider the tree t of domain U such that for all u ∈ U , t(u) = σu. We have
X = Xt, which concludes the proof. �

C.3 The Formula ΨD Associated with an Operation

We now take an operation D which we suppose to be reduced, for the sake of
simplicity (but we could do so for a non reduced operation, and for any operation,
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there exists a reduced operation with tests defining the same relation, from the
two previous appendices). We define inductively ψD as follow:

– Ψ�(X,Y ) = (X = Y )
– Ψ(F ·1,1Dθ)·1,1G(X,Y ) = ∃, z, z′, Z,X ′, Y ′, z ∈ Z ∧ X\X ′ = Y \Y ′ = Z\{z} ∧

ψθ(z, z′) ∧ ΨF (X,Z) ∧ ΨG(Z ∪ {z′}\{z}, Y ), for θ ∈ Opsn−1 ∪ Tn

– Ψ(F ·1,1Dcopy1n
)·1,1G(X,Y ) = ∃z, z′, Z,X ′, Y ′, z ∈ Z ∧ X\X ′ = Y \Y ′ = Z\{z} ∧

ψcopy1
n,1(z, z′) ∧ ΨF (X,Z) ∧ ΨG(Z ∪ {z′}\{z}, Y )

– Ψ(F ·1,1Dcopy1n
)·1,1G(X,Y ) = ∃z, z′, Z,X ′, Y ′, z ∈ Z ∧ X\X ′ = Y \Y ′ = Z\{z} ∧

ψcopy1
n,1(z′, z) ∧ ΨF (X,Z) ∧ ΨG(Z ∪ {z′}\{z}, Y )

– Ψ((F ·1,1Dcopy2n
)·1,2H)·1,1G(X,Y ) = ∃z, z′, z′′, Z, Z ′,X ′, Y ′, z ∈ Z ∧ X\X ′ =

Y \Y ′ = Z\{z}∧ψcopy1
n,2(z, z′)∧ψcopy2

n,2(z, z′′)∧ΨF (X,Z)∧ΨG(Z ∪{z′, z′′}\
{z}, Z ′) ∧ z′′ ∈ Z ′ ∧ z′ /∈ Z ′ ∧ ΨH(Z ′, Y )

– Ψ(F ·1,1(G·1,2Dcopy1n
))·1,1H(X,Y ) = ∃z, z′, z′′, Z, Z ′,X ′, Y ′, z ∈ Z ∧ z′ ∈ Z ∧ z ∈

Z ′ ∧ z′ /∈ Z ′ ∧ X\X ′ = Y \Y ′ = Z\{z, z′} ∧ ψcopy2
n,1(z′′, z) ∧ ψcopy2

n,2(z′′, z′) ∧
ΨF (X,Z ′) ∧ ΨG(Z ′, Z) ∧ ΨG(Z ∪ {z′′}\{z, z′}, Y ).

As D is a finite DAG, every ψD is a finite formula, and is thus a monadic formula.
This formula is true if its two arguments are related by RD.

Proposition 10. Given two stack trees s, t and an operation D, t ∈ D(t) if and
only if ΨD(Xs,Xt) is true.

Proof. We show it by induction on the structure of D:

– If D = �, ΨD(Xs,Xt) if and only if Xs = Xt, which is true if and only if
s = t.

– D = (F ·1,1 Dθ) ·1,1 G, with θ ∈ Opsn−1 ∪ Tn. Suppose t ∈ D(s), there
exists i such that t = D(i)(t). By definition, t = G(i)(θ(i)(F(i)(s))). We
call r = F(i)(s). By induction hypothesis, we have ΨF (Xs,Xr). By defini-
tion, we have, for all j < i, Code(s, uj) = Code(r, uj), and for all j > i,
Code(s, uj+|IF |−1) = Code(r, uj), thus Xs\{Code(s, uj) | i ≤ j ≤ |IF | − 1} =
Xr\{Code(r, ui)}. We call r′ = θ(i)(r). We have Xr′ = Xr\{Code(r, ui)} ∪
{θ(Code(r, ui))}. And by definition, we have ψθ(Code(r, ui), θ(Code(r, ui))).
We have t = G(i)(r′), thus, by induction hypothesis, ΨG(Xr′ ,Xt) is true.
Moreover, by definition, Xt\{Code(t, uj) | i ≤ j ≤ |OG| − 1} = Xr′\
{Code(r′, ui)} = Xr\{Code(r, ui)}. Thus, ΨD(Xs,Xt) is true, with Z = Xr,
z = Code(r, ui), z′ = Code(r′, ui), X ′ = {Code(s, uj) | i ≤ j ≤ |ID| − 1} and
Y ′ = {Code(t, uj) | i ≤ j ≤ |OD| − 1}.

Suppose that ΨD(Xs,Xt) is true. We call r the tree such that Xr = Z. By
induction hypothesis, we have r ∈ F (s). Moreover, we have z = Code(r, ui)
such that Xr\{z} = Xs\X ′. Thus, by definition, r = F(i)(s), and X ′ =
{Code(s, uj) | i ≤ |IF | − 1}. We have z′ = θ(z), as ψθ(z, z′) is true. We call
r′ = θ(i)(r), and we have Xr′ = Xr\{z} ∪ {z′}. As we have ΨG(Xr′ , Y ), by
induction, we have t ∈ G(r′). As we moreover have Y \Y ′ = Z\{z}, we thus
have t = G(i)(r′). Thus, we have t = G(i)(θ(i)(F(i)(s))) = D(i)(s).

The other cases are similar and left to the reader.
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C.4 The Formula φ Associated with An Automaton

Let us now explain φ(X,Y ), which can be written as ∃Zq1 , · · · , Zq|Q| , φ
′(X,Y,Z)

with φ′(X,Y,Z) = Init(X,Y,Z)∧Diff(Z)∧Trans(Z). We detail each of the three
subformulas Init, Diff and Trans below:

Init(X,Y,Z) = (
⋃

qi∈I

Zqi
) ⊆ X ∧ (

⋃

qi∈F

Zqi
) ⊆ Y ∧ X \ (

⋃

qi∈I

Zqi
) = Y \ (

⋃

qi∈F

Zqi
)

This formula is here to ensure that only leaves of X are labelled by initial states,
only leaves of Y are labelled by final states and outside of their labelled leaves,
X and Y are equal (i.e. not modified).

Diff(Z) =
( ∧

q,q′∈QT,c

Zq ∩ Zq′ = ∅) ∧ ( ∧

q,q′∈QC,c

Zq ∩ Zq′ = ∅)

∧ ( ∧

q,q′∈QT,d

Zq ∩ Zq′ = ∅) ∧ ( ∧

q,q′∈QC,d

Zq ∩ Zq′ = ∅)

This formula is here to ensure that a given stack (and thus a given leaf
in a tree of the run) is labelled by at most a state of each subpart of Q:
QT,d, QC,d, QT,c, QC,c. So if we have a non deterministic choice to do we will
only choose one possibility.

Trans(Z) = ∀s,
∧

q∈Q

((s ∈ Zq) ⇒ (
∨

K∈Δ

TransK(s,Z) ∨ ρq))

where ρq is true if and only if q is a final state, and

Trans(q,copy1
n,q′)(s,Z) = ∃t, ψcopy1

n,1(s, t) ∧ t ∈ Zq′ ,

Trans(q,copy1
n,q′)(s,Z) = ∃t, ψcopy1

n,1(t, s) ∧ t ∈ Zq′ ,

Trans(q,θ,q′)(s,Z) = ∃t, ψθ(s, t) ∧ t ∈ Zq′ , for θ ∈ Opsn−1 ∪ Tn−1,

Trans(q,(q′,q′′))(s,Z) = ∃t, t′, ψcopy2
n,1(s, t) ∧ ψcopy2

n,2(s, t′) ∧ t ∈ Zq′ ∧ t′ ∈ Zq′′,

Trans((q,q′),q′′)(s,Z) = ∃t, t′, ψcopy2
n,1(t′, s) ∧ ψcopy2

n,2(t′, t) ∧ t ∈ Zq′ ∧ t′ ∈ Zq′′,

Trans((q′,q),q′′)(s,Z) = ∃t, t′, ψcopy2
n,1(t′, t) ∧ ψcopy2

n,2(t′, s) ∧ t ∈ Zq′ ∧ t′ ∈ Zq′′.

This formula ensures that the labelling respects the rules of the automaton, and
that for every stack labelled by q, if there is a rule starting by q, there is at least
a stack which is the result of the stack by one of those rules. And also that it is
possible for a final state to have no successor.

Proposition 11. Given s, t two stack trees, φ(s, t) if and only if there are
some operations D1, · · · ,Dk recognised by A such that t is obtained by apply-
ing D1, · · · ,Dk at disjoint positions of s.

Proof. First suppose there exist such D1, · · · ,Dk. We construct a labelling of
Stacksn(Σ ∪ {1, 2}) which satisfies φ(Xs,Xt).
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We take a labelling of the Di by A. We will label the Stacksn according to
this labelling. If we obtain a tree t′ at any step in the run of the application of
Di to s, we label Code(t′, u) by the labelling of the node of Di appended to the
leaf at position u of t′. Notice that this does not depend on the order we apply
the Di to s nor the order of the leaves we choose to apply the operations first.

We suppose that t = Dkik
(· · · D1i1(s) · · · ). Given a node x of an Di, we call

l(x) its labelling.
Formally, we define the labelling inductively: the (D1, i1, s1), · · · , (Dk, ik, sk)

labelling of Stacksn(Σ ∪ {1, 2}) is the following.

– The ∅ labelling is the empty labelling.
– The (D1, i1, s1), · · · , (Dk, ik, sk) labelling is the union of the (D1, i1, s1)

labelling and the (D2, i2, s2), · · · , (Dk, ik, sk) labelling.
– The (�, i, s) labelling is {Code(s, ui) → l(x)}, where ui is the ith leaf of s and

x is the unique node of �.
– The (F1 ·1,1 Dθ) ·1,1 F2, i, s) labelling is the (F1, i, s), (F2, i, θ(i)(F1(i)(s)))

labelling.
– The ((((F1 ·1,1 Dcopy2

n
) ·2,1 F3) ·1,1 F2), i, s) labelling is the (F1, i, s),

(F2, i, copy2
n(i)( F1(i)(s))) , (F3, i + 1, copy2

n(i)(F1(i)(s))) labelling.
– The ((F1 ·1,1(F2 ·2,1copy2

n))·1,1F3, i, s) labelling is the (F1, i, s), (F2, i+|IF1 |, s),
(F3, i, copy2

n(i)(F2(i+1)(F1(i)(s)))) labelling.

Observe that this process terminates, as the sum of the edges and the nodes of
all the DAGs strictly diminishes at every step.

We take Z the (D1, i1, s), · · · , (Dk, ik, s) labelling of Stacksn(Σ ∪ {1, 2}).

Lemma 9. The labelling previously defined Z satisfies φ′(Xs,Xt,Z).

Proof. Let us first cite a technical lemma which comes directly from the defini-
tion of the labelling:

Lemma 10. Given a reduced operation D, a labelling of D, ρD, a stack tree t,
a i ∈ N and a j ≤ |ID|, the label of Code(t, ui+j−1) (where ui is the ith leaf of t)
in the (D, i, t) labelling is ρD(xj) (where xj is the jth input node of D).

For the sake of simplicity, let us consider for this proof that D is a reduced
operation (if it is a set of reduced operations, the proof is the same for every
operations).

First, let us prove that Init is satisfied. From the previous lemma, all nodes
of Xs are labelled with the labels of input nodes of D (or not labelled), thus
they are labelled by initial states (as we considered an accepting labelling of D).
Furthermore, as the automaton is distinguished, only these one can be labelled
by initial states. Similarly, the nodes of Xt, and only them are labelled by final
states (or not labelled).

We now show that Trans is satisfied. Let us suppose that a Code(t′, ui) is
labelled by a q. By construction of the labelling, it has been obtained by a
(�, i, t′) labelling. If q is final, then we have nothing to verify, as ρq is true.



Rewriting Higher-Order Stack Trees 393

If not, the node x labelled by q which is the unique node of the � which labelled
Code(t′, ui) by q has at least one son in D. Suppose, for instance that D =
(F1 ·1,1 Dθ) ·1,1 F2 such that x is the output node of F1. We call y the input
node of F2. As D is recognised by A, it is labelled by a q′ such that (q, θ, q′) ∈
ΔA. By construction, we take the (F1, i, s), (F2, i, θ(i)(t′)) labelling, with t′ =
F2(i)(s). Thus we have Code(θ(i)(t′), ui) labelled by q′ (from Lemma 10), and thus
Trans(q,θ,q′)(Code(t′, ui),Z) is true, as ψθ(Code(t′, ui),Code(θ(i)(t′), ui) is true.

The other possible cases for decomposing D (D = (((F1 ·1,1Dcopy1
n
)·2,1F3)·1,1

F2 or D = ((F1 ·1,1 (F2 ·2,1 copy2
n)) ·1,1F3) are very similar and are thus left to the

reader. Observe that D may not be decomposable at the node x, in which case
we decompose D and consider the part containing x until we can decompose the
DAG at x, where the argument is the same.

Let us now prove that the labelling satisfies Diff. Given q, q′ ∈ QC,d, suppose
that there is a Code(t′, ui) which is labelled by q and q′. By construction, this
labelling is obtained by a (F1, i, t

′
1), (F2, i, t

′
2) labelling, where F1 and F2 are both

�, and t′1(ui) = t′1(ui). We call x (resp. y) the unique node of F1 (resp. F2). x is
labelled by q and y by q′.

Suppose that D can be decomposed as (G ·1,1 Dθ) ·1,1 H (or ((G ·1,1

Dcopy2
n
)·2,1 K)·1,1H, or ((G·1,1(H·1,2Dcopy2

n
)·1,1K) such that y is the output node

of G (if not, decompose D until you can obtain such a decomposition). Then, sup-
pose you can decompose G = G1 ·1,1Dθ ·1,1G2 (or ((G1 ·1,1 (G3 ·1,2Dcopy2

n
) ·1,1G2.

As we are considering states of QC,d, there is no other possible case) such that
x is the input node of G2. Thus, we have by construction G2(Code(t′, ui)) =
Code(t′, ui). So G2 defines a relation contained in the identity. As it is a part of
D and thus labelled by states of A, with q and q′ in QC,d, there is no copyj

n nor
copyj

n transitions in G2. Moreover, as q and q′ are in QC,d, G2 is not a single
test transition. Then it is a sequence of elements of Opsn−1 ∪ Tn−1 defining a
relation included into the identity. As A is normalised, this is impossible, and
then Code(t′, ui) cannot be labelled by both q and q′.

Taking two states in the other subsets of Q yields the same contradiction
with few modifications and are thus left to the reader.

Then, as all its sub-formulæ are true, φ′(Xs,Xt,Z) is true with the described
labelling Z. And then φ(Xs,Xt) is true. �

Suppose now that φ(Xs,Xt) is satisfied. We take a minimal labelling Z that
satisfies the formula φ′(Xs,Xt,Z). We construct the following graph D:

VD = {(x, q) | x ∈ Stacksn(Σ ∪ {1, 2}) ∧ x ∈ Zq}
ED = {((x, q), θ, (y, q′)) | (∃θ, (q, θ, q′) ∈ Δ ∧ ψθ(x, y))}

∪ {((x, q), 1, (y, q′)), ((x, q), 2, (z, q′′)) | (q, (q′, q′′)) ∈ Δ
∧ψcopy2

n,1(x, y) ∧ ψcopy2
n,2(x, z)}

∪ {((x, q), 1̄, (z, q′′)), ((y, q′), 2̄, (z, q′′)) | ((q, q′), q′′) ∈ Δ
∧ψcopy2

n,1(z, x) ∧ ψcopy2
n,2(z, y)}

∪ {((x, q), 1, (y, q′)) | (q, copy1
n, q′) ∈ Δ ∧ ψcopy1

n,1(x, y)}
∪ {((x, q), 1̄, (y, q′)) | (q, copy1

n, q′) ∈ Δ ∧ ψcopy1
n,1(y, x)}
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Lemma 11. D is a disjoint union of operations D1, · · · ,Dk.

Proof. Suppose that D is not a DAG, then there exists (x, q) ∈ V such that
(x, q) +−→ (x, q), then there exists a sequence of operations in Ad (for Ac it is
symmetric, and there is no transition from Ac to Ad, thus a cycle cannot have
states of the both parts) which is the identity (and thus it is an sequence of
operations of Opsn−1 ∪ Tn−1). As Ad is normalised, it is not possible to have
such a sequence. Then, there is no cycle in D which is therefore a DAG.

By definition of ED, it is labelled by Opsn−1 ∪ Tn−1 ∪ {1, 1̄, 2, 2̄}.
We choose an Di. Suppose that it is not an operation. Thus, there exists

a node (x, q) of Di such that Di cannot be decomposed at this node (i.e., in
the inducted decomposition, there will be no case which can be applied to cut
either Di or one of its subDAG to obtain (x, q) as the output node of a sub-
DAG obtained (or the input node). Let us consider the following cases for the
neighbourhood of (x, q):

– (x, q) has a unique son (y, q′), which has no other father such that (x, q) 2−→
(y, q′). By definition of Trans, we have that ψcopy2

n,2(x, y), and thus we have
a (q, (q′′, q′)) ∈ Δ and a z such that ψcopy2

n,1(x, z) which is in Zq′′ . This

contradicts that (x, q) has a unique son in Di. If (x, q) 2̄−→ (y, q′), the case is
similar. For every other θ ∈ Opsn−1 ∪ Tn−1 ∪ {1, 1̄}, we can decompose the
subDAG {(x, q) θ−→ (y, q′)} as (� ·1,1 Dθ) ·1,1 �.

– Suppose that (x, q) has at least three sons (y1, q1), (y2, q2), (y3, q3). There is no
subformula of Trans which impose to label three nodes which can be obtained
from x, so this contradicts the minimality of the labelling.

For a similar reason, (x, q) has at most two fathers.
– Suppose that (x, q) has two sons (y1, q1) and (y2, q2). By definition of

Trans and by minimality, we have that ψcopy2
n,1(x, y1), ψcopy2

n,2(x, y2), and
(q, (q1, q2)) ∈ Δ (otherwise, the labelling would not be minimal, as it is
the only subformula imposing to label two sons of a node). Thus we have
(x, q) 1−→ (y1, q1) and (x, q) 2−→ (y2, q2). By minimality again, (y1, q1) and
(y2, q2) have no other father than (x, q). In this case, the subDAG {(x, q) 1−→
(y1, q1), (x, q) 2−→ (y2, q2)} can be decomposed as ((� ·1,1 Dcopy2

n
) ·2,1 �) ·1,1 �.

– Suppose that (x, q) has a unique son (y1, q1) which has an other father (y2, q2).
By definition of Trans and by minimality of the labelling, we have that
ψcopy2

n,1(y1, x), ψcopy2
n,2(y1, y2), and ((q, q2), q1) ∈ Δ. Thus we have (x, q) 1̄−→

(y1, q1) and (y2, q2)
2̄−→ (y1, q1). By minimality again, (y2, q2) has no other son

than (y1, q1). In this case, the subDAG {(x, q) 1̄−→ (y1, q1), (y2, q2)
2̄−→ (y1, q1)}

can be decomposed as (� ·1,1 (� ·1,2 Dcopy2
n
)) ·1,1 �.

In all the cases we considered, or the case is impossible, or the DAG is decom-
posable at the node (x, q). Thus, the DAG Di is always decomposable and is
thus an operation. �
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Lemma 12. Each Di is recognised by A.

Proof. By construction, for every node (x, q), if x ∈ Xs, q is an initial state
(because init is satisfied), and (x, q) is then an input node, as A is distinguished.
And as init is satisfied, only these nodes are labelled by initial states.

Also, for every node (x, q), if x ∈ Xt, q is a final state (because init is satisfied)
and (x, q) is then an output node, as A is distinguished. And as init in satisfied,
only these nodes are labelled by final states.

By construction, the edges are always transitions present in Δ, and then we
label each node (x, q) by q.

As the formula Trans is satisfied, we have that given any node (x, q), either
q is final (and then (x, q) is an output node), or there exists one of the following:

– a node (y, q′) and θ such that ψθ(x, y) and (q, θ, q′) ∈ Δ
– two nodes (y, q′) and (z, q′′) such that ψcopy2

n,1(x, y), ψcopy2
n,2(x, z) and (q, (q′,

q′′)) ∈ Δ
– two nodes (y, q′) and (z, q′′) such that ψcopy2

n,1(z, x), ψcopy2
n,2(z, y) and ((q, q′),

q′′) ∈ Δ.

Then, only nodes (x, q) with q final are childless and are those labelled with final
states. As well, only (x, q) with q initial are fatherless.

Then each Di is recognised by A with this labelling. �
Lemma 13. t is obtained by applying the Di to disjoint positions of s.

Proof. We show by induction that t′ = D(j)(s) if and only if Xt′ = Xs ∪ {x |
(x, q) ∈ OD}\{x | (x, q) ∈ ID}:

– If D = �, it is true, as Xt′ = Xs and t′ = s.
– If D = (F ·1,1 Dθ) ·1,1 G, by induction hypothesis, we consider r such that

r = F(j)(s), we then have Xr = Xs ∪{y}\{x | (x, q) ∈ IF }, where (y, q′) is the
only output node of F . By construction, the input node of G, (z, q′′) is such
that ψθ(y, z), and thus we have r′ = θ(j)(r) such that Xr′ = Xr\{y} ∪ {z}.
By induction hypothesis, we have Xt′ = Xr′ ∪ {x | (x, q) ∈ OG}\{z}, as
t′ = G(j)(θ(j)(F(j)(s))) = G(j)(r′). Thus, Xt′ = Xs ∪ {x | (x, q) ∈ OG}\{x |
(x, q) ∈ IF } = Xs ∪ {x | (x, q) ∈ OD}\{x | (x, q) ∈ ID}.

The other cases are similar and are thus left to the reader. It then suffices to
construct this way successively t1 = D1(i1)(s), t2 = D2(i2)(t1), etc., to obtain t
and prove the lemma. �
We have proved both directions: for every n-stack trees s and t, there exists a
set of operations Di recognised by A such that t is obtained by applying the Di

to disjoint positions of s if and only if φ(Xs,Xt). �

We then have a monadic interpretation with finite sets (all sets are finite), and
then, the graph has a decidable FO theory, which concludes the proof.
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D Example of a Language

We can see a rewriting graph as a language acceptor in a classical way by defining
some initial and final states and labelling the edges. We present here an example
of a language recognised by a stack tree rewriting system. The recognised lan-
guage is {u

∃

u | u ∈ Σ}. Fix an alphabet Σ and two special symbols ↑ and ↓.
We consider ST2(Σ ∪ {↑, ↓}). We now define a rewriting system R, whose rules
are given in Fig. 8.

Fig. 8. The rules of the rewriting system

To recognise a language with this system, we have to fix an initial set of
stack trees and a final set of stack trees. We will have a unique initial tree and
a recognisable set of final trees. They are depicted on Fig. 9.

Fig. 9. The initial and final trees.

A word w ∈ R∗ is accepted by this rewriting system if there is a path from
the initial tree to a final tree labelled by w. The trace language recognised is

{Pa1 · · · Pan
· Dupl · ((Dan

· · · Da1)

∃ (Dan
· · · Da1)) | a1, · · · , an ∈ Σ}.

Let us informally explain why. We start on the initial tree, which has only a leaf
labelled by a stack whose topmost symbol is ↓. So we cannot apply a Da to it.
If we apply a Pa to it, we remain in the same situation, but we added an a to
the stack labelling the unique node. So we can read a sequence Pa1 · · · Pan

. From
this situation, we can also apply a Dupl , which yields a tree with three nodes
whose two leaves are labelled by [a1 · · · an ↑]1, if we first read Pa1 · · · Pan

. From
this new situation, we can only apply Da rules. If the two leaves are labelled by
[b1 · · · bm ↑]1 and [c1 · · · c� ↑]1, we can apply Dbm

or Dc�
, yielding the same tree

in which we removed bm or c� from the adequate leaf. We can do this until a final



Rewriting Higher-Order Stack Trees 397

tree remains. So, on each leaf, we will read Dan
· · · Da1 in this order, but we have

no constraint on the order we will read these two sequences. So we effectively
can read any word in (Dan

· · · Da1)

∃ (Dan
· · · Da1). And this is the only way to

reach a final tree.
To obtain the language we announced at the start, we just have to define

a labelling λ of each operation of R as follows: λ(Dupl) = ε, for every a ∈ Σ,
λ(Pa) = ε and λ(Da) = a, and remark that if w is of the previous form, then
λ(w) = (a1 · · · an) ∃ (a1 · · · an), and we indeed recognise {u

∃

u | u ∈ Σ}.
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Abstract. This paper describes an embedding of higher-order modal
logics in the Coq proof assistant. Coq’s capabilities are used to implement
modal logics in a minimalistic manner, which is nevertheless sufficient
for the formalization of significant, non-trivial modal logic proofs. The
elegance, flexibility and convenience of this approach, from a user per-
spective, are illustrated here with the successful formalization of Gödel’s
ontological argument.

1 Introduction

Modal logics [8] extend usual formal logic languages by adding modal operators
(� and ♦) and are characterized by the necessitation rule, according to which
�A is a theorem if A is a theorem, even though A → �A is not necessarily a
theorem. Various notions, such as necessity and possibility, obligation and per-
mission, knowledge and belief, and temporal globality and eventuality, which are
ubiquitous in various application domains, have been formalized with the help
of modal operators.

Nevertheless, general automated reasoning support for modal logics is still
not as well-developed as for classical logics. Deduction tools for modal logics
are often limited to propositional, quantifier-free, fragments or tailored to par-
ticular modal logics and their applications [20]; first-order automated deduction
techniques based on tableaux, sequent calculi and connection calculi have only
recently been generalized and implemented in a few new provers able to directly
cope with modalities [7].

Another recently explored possibility is the embedding of first-order and even
higher-order modal logics into classical higher-order logics [3,4], for which existing
higher-order automated theorem provers [5,9] can be used. The embedding app-
roach is flexible, because various modal logics (even with multiple modalities or
varying/cumulative domain quantifiers) can be easily supported by stating their
characteristic axioms. Moreover, the approach is relatively simple to implement,
because it does not require any modification in the source code of the higher-order
prover. The prover can be used as is, and only the input files provided to the prover
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must be specially encoded (using lifted versions of connectives and logical con-
stants instead of the usual ones). Furthermore, the efficacy and efficiency of the
embedding approach has been confirmed in benchmarks stemming from philoso-
phy [17]. These qualities make embedding a convenient approach for fully auto-
mated reasoning.

However, one may wonder whether the embedding approach is adequate also
for interactive reasoning, when the user proves theorems by interacting with a
proof assistant such as Coq1. The main goal and novelty of this paper is to study
this question. Our answer is positive.

One major initial concern was whether the embedding could be a distur-
bance to the user. Fortunately, by using Coq’s Ltac tactic language, we were
able to define intuitive new tactics that hide the technical details of the embed-
ding from the user. The resulting infra-structure for modal reasoning within Coq
(as described in Sects. 2 and 3) provides a user experience where modalities can
be handled transparently and straightforwardly. Therefore, a user with basic
knowledge of modal logics and Coq’s tactics should be able to use (and extend)
our implementation with no excessive overhead.

In order to illustrate the use of the implemented embedding, we show here the
formalization of Scott’s version [21] of Gödel’s ontological argument for God’s
existence (in Sect. 6). This proof was chosen mainly for two reasons. Firstly,
it requires not only modal operators, but also higher-order quantification. There-
fore, it is beyond the reach of specialized propositional and first-order (modal)
theorem provers. Secondly, this argument addresses an ancient problem in Phi-
losophy and Metaphysics, which has nevertheless received a lot of attention in
the last 15 years, because of the discovery of the modal collapse [23,24]. This
proof lies in the center of a vast and largely unexplored application domain for
automated and interactive theorem provers.

The ontological argument of Anselm has been automatically verified with PVS
by Rushby [19] and with first-order theorem provers by Oppenheimer and Zalta
[16]. In comparison, our contribution stands out with its surprising technical
simplicity and elegance, despite the greater complexity of Gödel’s argument.

Gödel’s argument was automatically verified in our previous work on fully
automated modal theorem proving based on embedding [1,2]. This paper
presents the first fully interactive and detailed formalization of this proof in a
proof assistant. The proof structure, which has been hidden in our other papers
on the subject due to the use of automated theorem provers, is revealed here on
a cognitively adequate level of detail.

In addition to philosophy, propositional and quantified modal logics have
(potential) applications in various other fields, including, for instance, verifica-
tion, artificial intelligence agent technologies, law and linguistics (cf. [8] and the
references therein). Therefore, the main contribution described in this paper –
convenient techniques for leveraging a powerful proof assistant such as Coq for

1 The Coq proof assistant was chosen because of the authors’ greater familiarity with
the tactic language of this system. Nevertheless, the techniques presented here are
likely to be useful for other proof assistants (e.g. Isabelle [15], HOL-Light [14]).



400 C. Benzmüller and B. Woltzenlogel Paleo

interactive reasoning for modal logics – may serve as a starting point for many
interesting projects.

2 The Embedding of Modal Logics in Coq

A crucial aspect of modal logics [8] is that the so-called necessitation rule allows
�A to be derived if A is a theorem, but A → �A is not necessarily a theorem.
Naive attempts to define the modal operators � and ♦ may easily be unsound
in this respect. To avoid this issue, the possible world semantics of modal logics
can be explicitly embedded into higher-order logics [3,4].

The embedding technique described in this section is related to labeling tech-
niques [12]. However, the expressiveness of higher-order logic can be exploited in
order to encode the labels within the logical language itself. To this aim, a type
for worlds must be declared and modal propositions should be not of type Prop
but of a lifted type o that depends on possible worlds:

Parameter i: Type. (* Type for worlds *)

Parameter u: Type. (* Type for individuals *)

Definition o := i -> Prop. (* Type of modal propositions *)

Possible worlds are connected by an accessibility relation, which can be repre-
sented in Coq by a parameter r, as follows:

Parameter r: i -> i -> Prop. (* Accessibility relation for worlds *)

All modal connectives are simply lifted versions of the usual logical connectives.
Notations are used to allow the modal connectives to be used as similarly as
possible to the usual connectives. The prefix “m” is used to distinguish the modal
connectives: if � is a connective on type Prop, m� is a connective on the lifted
type o of modal propositions.

Definition mnot (p: o)(w: i) := ~ (p w).

Notation"m~ p":= (mnot p) (at level 74, right associativity).

Definition mand (p q:o)(w: i) := (p w) /\ (q w).

Notation"p m/\ q":= (mand p q) (at level 79, right associativity).

Definition mor (p q:o)(w: i) := (p w) \/ (q w).

Notation"p m\/ q":= (mor p q) (at level 79, right associativity).

Definition mimplies (p q:o)(w:i) := (p w) -> (q w).

Notation"p m-> q":= (mimplies p q) (at level 99, right associativity).

Definition mequiv (p q:o)(w:i) := (p w) <-> (q w).

Notation"p m<-> q":= (mequiv p q) (at level 99, right associativity).

Definition mequal (x y: u)(w: i) := x = y.

Notation"x m= y":= (mequal x y) (at level 99, right associativity).
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Likewise, modal quantifiers are lifted versions of the usual quantifiers. Coq’s type
system with dependent types is particularly helpful here. The modal quantifiers
A and E are defined as depending on a type t. Therefore, they can quantify over
variables of any type. Moreover, the curly brackets indicate that t is an implicit
argument that can be inferred by Coq’s type inference mechanism. This allows
notations2 (i.e. mforall and mexists) that mimic the notations for Coq’s usual
quantifiers (i.e. forall and exists).

Definition A {t: Type}(p: t -> o)(w: i) := forall x, p x w.

Notation"’mforall’ x , p":= (A (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Notation"’mforall’ x : t , p":= (A (fun x:t => p))

(at level 200, x ident, right associativity,

format"’[’ ’mforall’ ’/ ’ x : t , ’/ ’ p ’]’")

: type_scope.

Definition E {t: Type}(p: t -> o)(w: i) := exists x, p x w.

Notation"’mexists’ x , p":= (E (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Notation"’mexists’ x : t , p":= (E (fun x:t => p))

(at level 200, x ident, right associativity,

format"’[’ ’mexists’ ’/ ’ x : t , ’/ ’ p ’]’")

: type_scope.

The modal operators ♦ (possibly) and � (necessarily) are defined accordingly
to their meanings in the possible world semantics. �p holds at a world w iff p
holds in every world w1 reachable from w. ♦p holds at world w iff p holds in
some world w1 reachable from w.

Definition box (p: o) := fun w => forall w1, (r w w1) -> (p w1).

Definition dia (p: o) := fun w => exists w1, (r w w1) /\ (p w1).

A modal proposition is valid iff it holds in every possible world. This notion of
modal validity is encoded by the following defined predicate:

Definition V (p: o) := forall w, p w.

To prove a modal proposition p (of type o) within Coq, the proposition (V p)
(of type Prop) should be proved instead. To increase the transparency of the
embedding to the user, the following notation is provided, allowing [ p ] to be
written instead of (V p).

Notation "[ p ]":= (V p).

3 Tactics for Modalities

Interactive theorem proving in Coq is usually done with tactics, imperative com-
mands that reduce the theorem to be proven (i.e. the goal) to simpler subgoals,
2 The keyword fun indicates a lambda abstraction: fun x => p (or fun x:t => p)

denotes the function λx : t.p, which takes an argument x (of type t) and returns p.
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in a bottom-up manner. The simplest tactics can be regarded as rules of a nat-
ural deduction (ND) calculus3 (e.g. as those shown in Fig. 1). For example: the
intro tactic can be used to apply the introduction rules for implication and for
the universal quantifier; the apply tactic corresponds to the elimination rules for
implication and for the universal quantifier; split performs conjunction intro-
duction; exists can be used for existential quantifier introduction and destruct
for its elimination.

To maximally preserve user intuition in interactive modal logic theorem prov-
ing, the embedding via the possible world semantics should be as transparent
as possible to the user. Fortunately, the basic Coq tactics described above auto-
matically unfold the shallowest modal definition in the goal. Therefore, they can
be used with modal connectives and quantifiers just as they are used with the
usual connectives and quantifiers. The situation for the new modal operators,
on the other hand, is not as simple, unfortunately.

Since the modal operators are, in our embedding, essentially just abbre-
viations for quantifiers guarded by reachability conditions, the typical tactics
for quantifiers can be used, in principle. However, this exposes the user to the
technicalities of the embedding, requiring him to deal with possible worlds and
their reachability explicitly. In order to obtain transparency also for the modal
operators, we have implemented specialized tactics using Coq’s Ltac language.
These tactics are among our main contributions and they are described in the
remainder of this section.

When applied to a goal of the form ((box p) w0), the tactic box i will
introduce a fresh new world w and then introduce the assumption that w is
reachable from w0. The new goal will be (p w).

Ltac box_i := let w := fresh "w" in let R := fresh "R"

in (intro w at top; intro R at top).

If the hypothesis H is of the form ((box p) w0) and the goal is of the form
(q w), the tactic box e H H1 creates a new hypothesis H1: (p w). The tactic
box elim H w1 H1 is an auxiliary tactic for box e. It creates a new hypothesis
H1: (p w1), for any given world w1, not necessarily the goal’s world w. It is also
responsible for automatically trying (by assumption) to solve the reachability
guard conditions, releasing the user from this burden.

Ltac box_elim H w1 H1 := match type of H with

((box ?p) ?w) => cut (p w1);

[intros H1 | (apply (H w1); try assumption)] end.

Ltac box_e H H1:= match goal with | [ |- (_ ?w) ] => box_elim H w H1 end.

3 The underlying proof system of Coq (the Calculus of Inductive Constructions (CIC)
[18]) is actually more sophisticated and minimalistic than the calculus shown in
Fig. 1. But the calculus shown here suffices for the purposes of this paper. This
calculus is classical, because of the double negation elimination rule. Although CIC
is intuitionistic, it can be made classical by importing Coq’s classical library, which
adds the axiom of the excluded middle and the double negation elimination lemma.
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α must respect the usual eigen-variable conditions.

¬A is an abbreviation for A → ⊥.

Rules for αβη-equality and axioms (or rules) for extensionality are omitted
here since they are not important for the rest of the paper. For a full, sound
and Henkin-complete, classical higher-order ND calculus, see [6].

Fig. 1. Rules of a (classical) ND calculus

If the hypothesis H is of the form ((dia p) w0), the tactic dia e H generates a
new hypothesis H: (p w) for a fresh new world w reachable from w0.

Ltac dia_e H := let w := fresh "w" in let R := fresh "R" in

(destruct H as [w [R H]]; move w at top; move R at top).

The tactic dia i w transforms a goal of the form ((dia p) w0) into the simpler
goal (p w) and automatically tries to solve the guard condition that w must be
reachable from w0.

Ltac dia_i w := (exists w; split; [assumption | idtac]).

If the new modal tactics above are regarded from a natural deduction point of
view, they correspond to the inference rules shown in Fig. 2. Because of this
correspondence and the Henkin-completeness of the modal natural deduction
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calculus4, the tactics allow the user to prove any valid modal formula without
having to unfold the definitions of the modal operators.

The labels that name boxes in the inference rules of Fig. 2 are precisely the
worlds that annotate goals and hypotheses in Coq with the modal embedding.
A hypothesis of the form (p w), where p is a modal proposition of type o and w
is a world of type i indicates that p is an assumption created inside a box with
name w.

ω :

....
A

�A
�I

�A

w :

A....

�E
♦A

ω :

A....

♦E

w :

....
A

♦A
♦I

eigen-box condition:
�I and ♦E are strong modal rules:

ω must be a fresh name for the box they access
(in analogy to the eigen-variable condition for strong quantifier rules).
Every box must be accessed by exactly one strong modal inference.

boxed assumption condition:
assumptions should be discharged within the box where they are created.

Fig. 2. Rules for Modal Operators

Finally, our implementation also provides the tactic mv, standing for modal valid-
ity, which replaces a goal of the form [ p ] (or equivalently (V p)) by a goal of
the form (p w) for a fresh arbitrary world w.

Ltac mv := match goal with [|- (V _)] => intro end.

4 Two Simple Modal Lemmas

In order to illustrate the tactics described above, we show Coq proofs for two
simple but useful modal lemmas. The first lemma resembles modus ponens, but
with formulas under the scope of modal operators.

Lemma mp_dia:

[mforall p, mforall q, (dia p) m-> (box (p m-> q)) m-> (dia q)].

Proof. mv.

intros p q H1 H2. dia_e H1. dia_i w0. box_e H2 H3. apply H3. exact H1.

Qed.

4 The ND calculus with the rules from Figs. 1 and 2 is sound and complete relatively to
the calculus of Fig. 1 extended with a necessitation rule and the modal axiom K [22].
Starting from a sound and Henkin-complete ND calculus for classical higher-order
logic (cf. Fig. 1), the additional modal rules in Fig. 2 make it sound and Henkin-
complete for the rigid higher-order modal logic K.
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The proof of this lemma is displayed as a ND proof in Fig. 3. As expected, Coq’s
basic tactics (e.g. intros and apply) work without modification. The intros
p q H1 H2 tactic application corresponds to the universal quantifier and impli-
cation introduction inferences in the bottom of the proof. The apply H3 tactic
application corresponds to the implication elimination inference. The ♦E , ♦I and
�E inferences correspond, respectively, to the dia e H1, dia i w0 and box e
H2 H3 tactic applications. The internal box named w0 is accessed by exactly one
strong modal inference, namely ♦E .

Fig. 3. ND proof of mp dia

The same lemma could be proved without the new modal tactics, as shown below.
But this is clearly disadvantageous, for several reasons: the proof script becomes
longer; the definitions of modal operators must be unfolded, either explicitly (as
done below) or implicitly in the user’s mind; tactic applications dealing with
modal operators cannot be easily distinguished from tactic applications dealing
with quantifiers; and hypotheses about the reachability of worlds (e.g. R1 below)
must be handled explicitly. In summary, without the modal tactics, a convenient
and intuitive correspondence between proof scripts and modal ND proofs would
be missing.

Lemma mp_dia_alternative:

[mforall p, mforall q, (dia p) m-> (box (p m-> q)) m-> (dia q)].

Proof. mv.

intros p q H1 H2. unfold dia. unfold dia in H1. unfold box in H2.

destruct H1 as [w0 [R1 H1]]. exists w0. split.

exact R1.

apply H2.

exact R1.

exact H1.

Qed.

The second useful lemma allows negations to be pushed inside modalities, and
again the modal tactics allow this to be proved conveniently and elegantly.

Lemma not_dia_box_not: [mforall p, (m~ (dia p)) m-> (box (m~ p))].

Proof. mv.

intro p. intro H. box_i. intro H2. apply H. dia_i w0. exact H2.

Qed.
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5 Modal Logics Beyond K

The embedding described in Sect. 2 and the new tactics described in Sect. 3 allow
convenient interactive reasoning for modal logic K within Coq. The axiom K is
easily derivable:

Theorem K:

[ mforall p, mforall q, (box (p m-> q)) m-> (box p) m-> (box q) ].

Proof. mv.

intros p q H1 H2. box_i. box_e H1 H3. apply H3. box_e H2 H4. exact H4.

Qed.

For other modal logics beyond K, their frame conditions, which constrain the
reachability relation, must be stated as Coq axioms.

Axiom reflexivity: forall w, r w w.

Axiom transitivity: forall w1 w2 w3, (r w1 w2) -> (r w2 w3) -> (r w1 w3).

Axiom symmetry: forall w1 w2, (r w1 w2) -> (r w2 w1).

Hilbert-style modal logic axioms, such as for example T, can be easily derived
from their corresponding frame conditions:

Theorem T: [ mforall p, (box p) m-> p ].

Proof. mv.

intro p. intro H. box_e H H1. exact H1. apply reflexivity.

Qed.

In a strong modal logic such as S5 (which requires all three frame conditions
specified above), sequences of modal operators can be collapsed to a single modal
operator. One such collapsing principle is specified and proven below. By apply-
ing it iteratively, any sequence ♦ . . .♦�p could be collapsed to �p.

Theorem dia_box_to_box: [ mforall p, (dia (box p)) m-> (box p) ].

Proof. mv.

intros p H1. dia_e H1. box_i. box_e H1 H2. exact H2. eapply transitivity.

apply symmetry. exact R.

exact R0.

Qed.

6 Gödel’s Ontological Argument for God’s Existence

In order to demonstrate the efficacy and convenience of the modal embedding
approach not only for proving simple lemmas and theorems, but also for larger
developments, we include here a full and detailed formalization of Gödel’s onto-
logical argument. which has been verified in Coq 8.4pl5.

Attempts to prove the existence (or non-existence) of God by means of
abstract ontological arguments are an old tradition in philosophy and theology.
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Gödel’s proof [13] is a modern culmination of this tradition, following particu-
larly the footsteps of Leibniz. Various slightly different versions of axioms and
definitions have been considered by Gödel and by several philosophers who com-
mented on his proof (cf. [10,11,24]). The formalization shown in this section aims
at being as similar as possible to Dana Scott’s version of the proof [21]. The for-
mulation and numbering of axioms, definitions and theorems is the same as in
Scott’s notes. Even the Coq proof scripts follow precisely all the steps in Scott’s
notes. Scott’s assertions are emphasized below with comments. In contrast to the
formalization in Isabelle [2], where automation via Metis and Sledgehammer
using tools such LEO-II [5] and Satallax [9] has been successfully employed, the
formalization in Coq used no automation. This was a deliberate choice, mainly
because it allowed a qualitative evaluation of the convenience of the embedding
approach for interactive theorem proving. Moreover, in order to formalize exactly
Scott’s version and not some arbitrary version found automatically5, automation
would have to be heavily limited anyway. Furthermore, the deliberate preference
for simple tactics (mostly intro, apply and the modal tactics described in Sect. 3)
results in proof scripts that closely correspond to common ND proofs. This hope-
fully makes the formalization more accessible to those who are not experts in
Coq’s tactics but are nevertheless interested in Gödel’s proof.

Gödel’s proof requires Coq’s classical logic libraries as well as the Modal
library developed by us and described in Sects. 2 and 3.

Require Import Coq.Logic.Classical Coq.Logic.Classical_Pred_Type Modal.

In Scott’s notes, classicality occurs in uses of the principle of proof by contra-
diction. In order to clearly indicate where classical logic is needed in the proof
scripts, a simple tactic that simulates proof by contradiction was created:

Ltac proof_by_contradiction H := apply NNPP; intro H.

Gödel’s theory has a single higher-order constant, Positive, which ought to
hold for properties considered positive in a moral sense.

(* Constant predicate that distinguishes positive properties *)

Parameter Positive: (u -> o) -> o.

God is defined as a being possessing all positive properties, and five axioms
are stated to characterize positivity. The first part of the proof culminates in
corollary1 and establishes that God’s existence is possible.

(* Axiom A1 (divided into two directions):

either a property or its negation is positive, but not both *)

Axiom axiom1a :

[ mforall p, (Positive (fun x: u => m~(p x))) m-> (m~ (Positive p)) ].

5 The proofs found automatically by the above provers indeed differ from the one
presented here: e.g., the strong S5 principle used below (and by Scott) is not needed;
the ATP proofs only rely on axiom B.
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Axiom axiom1b :

[ mforall p, (m~ (Positive p)) m-> (Positive (fun x: u => m~ (p x))) ].

(* Axiom A2:

a property necessarily implied by a positive property is positive *)

Axiom axiom2: [ mforall p, mforall q,

Positive p m/\ (box (mforall x, (p x) m-> (q x) )) m-> Positive q ].

(* Theorem T1: positive properties are possibly exemplified *)

Theorem theorem1: [ mforall p, (Positive p) m-> dia (mexists x, p x) ].

Proof. mv.

intro p. intro H1. proof_by_contradiction H2. apply not_dia_box_not in H2.

assert (H3: ((box (mforall x, m~ (p x))) w)). (* Scott *)

box_i. intro x. assert (H4: ((m~ (mexists x : u, p x)) w0)).

box_e H2 G2. exact G2.

clear H2 R H1 w. intro H5. apply H4. exists x. exact H5.

assert (H6: ((box (mforall x, (p x) m-> m~ (x m= x))) w)). (* Scott *)

box_i. intro x. intros H7 H8. box_elim H3 w0 G3. eapply G3. exact H7.

assert (H9: ((Positive (fun x => m~ (x m= x))) w)). (* Scott *)

apply (axiom2 w p (fun x => m~ (x m= x))). split.

exact H1.

exact H6.

assert (H10: ((box (mforall x, (p x) m-> (x m= x))) w)). (* Scott *)

box_i. intros x H11. reflexivity.

assert (H11 : ((Positive (fun x => (x m= x))) w)). (* Scott *)

apply (axiom2 w p (fun x => x m= x )). split.

exact H1.

exact H10.

apply axiom1a in H9. contradiction.

Qed.

(* Definition D1:

God: a God-like being possesses all positive properties *)

Definition G(x: u) := mforall p, (Positive p) m-> (p x).

(* Axiom A3: the property of being God-like is positive *)

Axiom axiom3: [ Positive G ].

(* Corollary C1: possibly, God exists *)

Theorem corollary1: [ dia (mexists x, G x) ].

Proof. mv. apply theorem1. apply axiom3. Qed.

The second part of the proof consists in showing that if God’s existence is
possible then it must be necessary (lemma2). The controversial S5 principle
dia box to box is used.

(* Axiom A4: positive properties are necessarily positive *)

Axiom axiom4: [ mforall p, (Positive p) m-> box (Positive p) ].
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(* Definition D2:

essence: an essence of an individual is a property possessed by it

and necessarily implying any of its properties *)

Definition Essence(p: u -> o)(x: u) :=

(p x) m/\ mforall q, ((q x) m-> box (mforall y, (p y) m-> (q y))).

Notation "p’ess’ x" := (Essence p x) (at level 69).

(* Theorem T2: being God-like is an essence of any God-like being *)

Theorem theorem2: [ mforall x, (G x) m-> (G ess x) ].

Proof. mv. intro g. intro H1. unfold Essence. split.

exact H1.

intro q. intro H2. assert (H3: ((Positive q) w)).

proof_by_contradiction H4. unfold G in H1. apply axiom1b in H4.

apply H1 in H4. contradiction.

cut (box (Positive q) w). (* Scott *)

apply K. box_i. intro H5. intro y. intro H6.

unfold G in H6. apply (H6 q). exact H5.

apply axiom4. exact H3.

Qed.

(* Definition D3:

necessary existence: necessary existence of an individual

is the necessary exemplification of all its essences *)

Definition NE(x: u) := mforall p, (p ess x) m-> box (mexists y, (p y)).

(* Axiom A5: necessary existence is a positive property *)

Axiom axiom5: [ Positive NE ].

Lemma lemma1: [ (mexists z, (G z)) m-> box (mexists x, (G x)) ].

Proof. mv.

intro H1. destruct H1 as [g H2]. cut ((G ess g) w). (* Scott *)

assert (H3: (NE g w)). (* Scott *)

unfold G in H2. apply (H2 NE). apply axiom5.

unfold NE in H3. apply H3.

apply theorem2. exact H2.

Qed.

Lemma lemma2: [ dia (mexists z, (G z)) m-> box (mexists x, (G x)) ].

Proof. mv.

intro H. cut (dia (box (mexists x, G x)) w). (* Scott *)

apply dia_box_to_box.

apply (mp_dia w (mexists z, G z)).

exact H.

box_i. apply lemma1.

Qed.

(* Theorem T3: necessarily, a God exists *)

Theorem theorem3: [ box (mexists x, (G x)) ].
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Proof. mv. apply lemma2. apply corollary1. Qed.

(* Corollary C2: There exists a god *)

Theorem corollary2: [ mexists x, (G x) ].

Proof. mv. apply T. apply theorem3. Qed.

7 Conclusions

The successful formalization of Scott’s version of Gödel’s ontological argument
indicates that the embedding of higher-order modal logics into higher-order logics
via the possible world semantics is a viable approach for fully interactive theorem
proving within modal logics. Our lightweight implementation of the embedding
(available in [17] and described in Sects. 2 and 3) takes special care to hide the
underlying possible world machinery from the user. An inspection of the proof
scripts in Sect. 6 shows that this goal has been achieved. The user does not have
to explicitly bother about worlds and their mutual reachability; the provided
tactics for modalities do the job for him/her. Moreover, for subgoals that do
not involve modalities, the user has all the usual interactive tactics at his/her
disposal.

Although fully automated (as opposed to interactive) theorem proving is
beyond the scope of this paper, it is worth mentioning that all lemmas and
theorems in Sects. 2, 4 and 5 (but not 6) could have been proven automatically
using Coq’s firstorder tactic. The implementation of hints to allow Coq’s auto-
matic tactics to take full advantage of the embedding and the modal axioms still
remains for future work.

The infrastructure that we have implemented for interactive and automated
reasoning in higher-order modal logics is clearly useful also outside philosophy;
the range of potential applications is very wide.

Acknowledgements. We thank Cedric Auger and Laurent Théry, for their answers
to our questions about Ltac in the Coq-Club mailing-list.
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Abstract. Delay games are two-player games of infinite duration in
which one player may delay her moves to obtain a lookahead on her
opponent’s moves. We consider delay games with winning conditions
expressed in weak monadic second order logic with the unbounding quan-
tifier, which is able to express (un)boundedness properties.

We show that it is decidable whether the delaying player has a win-
ning strategy using bounded lookahead and give a doubly-exponential
upper bound on the necessary lookahead.

1 Introduction

Many of today’s problems in computer science are no longer concerned with
programs that transform data and then terminate, but with non-terminating
reactive systems which have to interact with a possibly antagonistic environment
for an unbounded amount of time. The framework of infinite two-player games is
a powerful and flexible tool to verify and synthesize such systems. The seminal
theorem of Büchi and Landweber [7] states that the winner of an infinite game
on a finite arena with an ω-regular winning condition can be determined and a
corresponding finite-state winning strategy can be constructed effectively.

Ever since, this result was extended along different dimensions, e.g., the num-
ber of players, the type of arena, the type of winning condition, the type of
interaction between the players (alternation or concurrency), zero-sum or non-
zero-sum, and complete or incomplete information. In this work, we consider
two of these dimensions, namely more expressive winning conditions and the
possibility for one player to delay her moves.

Delay Games. In a delay game, one of the players can postpone her moves for
some time, thereby obtaining a lookahead on her opponent’s moves. This allows
her to win some games which she loses without lookahead, e.g., if her first move
depends on the third move of her opponent. Nevertheless, there are winning
conditions that cannot be won with any finite lookahead, e.g., if her first move
depends on every move of her opponent. Delay arises naturally when transmis-
sion of data in networks or components equipped with buffers are modeled.

From a more theoretical point of view, uniformization of relations by con-
tinuous functions [24–26] can be expressed and analyzed using delay games.
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We consider games in which two players pick letters from alphabets ΣI and ΣO,
respectively, thereby producing two infinite sequences α ∈ Σω

I and β ∈ Σω
O.

Thus, a strategy for the second player induces a mapping τ : Σω
I → Σω

O. It
is winning for the second player if (α, τ(α)) is contained in the winning condi-
tion L ⊆ Σω

I ×Σω
O for every α. If {(α, τ(α)) | α ∈ Σω

I } ⊆ L, then τ uniformizes L.
In the classical setting of infinite games, in which the players pick letters in

alternation, the n-th letter of τ(α) depends only on the first n letters of α, i.e., τ
satisfies a very strong notion of continuity. A strategy with bounded lookahead,
i.e., only finitely many moves are postponed, induces a Lipschitz-continuous func-
tion τ (in the Cantor topology on Σω) and a strategy with arbitrary lookahead
induces a continuous function (or equivalently, a uniformly continuous function,
as Σω is compact).

Hosch and Landweber proved that it is decidable whether a game with ω-
regular winning condition can be won with bounded lookahead [18]. This result
was improved by Holtmann, Kaiser, and Thomas who showed that if a player
wins a game with arbitrary lookahead, then she wins already with doubly-
exponential bounded lookahead, and gave a streamlined decidability proof yield-
ing an algorithm with doubly-exponential running time [17]. Again, these results
were improved by giving an exponential upper bound on the necessary looka-
head and showing Exptime-completeness of the solution problem [19]. Going
beyond ω-regular winning conditions by considering context-free conditions leads
to undecidability and non-elementary lower bounds on the necessary lookahead,
even for very weak fragments [14].

Thus, stated in terms of uniformization, Hosch and Landweber proved
decidability of the uniformization problem for ω-regular relations by Lipschitz-
continuous functions and Holtmann et al. proved the equivalence of the existence
of a continuous uniformization function and the existence of a Lipschitz-
continuous uniformization function for ω-regular relations. Furthermore,
uniformization of context-free relations is undecidable, even with respect to Lip-
schitz-continuous functions.

In another line of work, Carayol and Löding considered the case of finite
words [9], and Löding and Winter [21] considered the case of finite trees, which
are both decidable. However, the nonexistence of MSO-definable choice functions
on the infinite binary tree [8,16] implies that uniformization fails for such trees.

WMSO+U. In this work, we consider another class of conditions that go beyond
the ω-regular ones. Recall that the ω-regular languages are exactly those that
are definable in monadic second order logic (MSO) [6]. Recently, Bojańczyk
has started a program investigating the logic MSO+U, MSO extended with the
unbounding quantifier U. A formula UXϕ(X) is satisfied, if there are arbitrarily
large finite sets X such that ϕ(X) holds. MSO+U is able to express all ω-regular
languages as well as non-regular languages like

L = {an0ban1ban2b · · · | lim supi ni = ∞}.

Decidability of MSO+U turns out to be a delicate issue: there is no algorithm
that decides MSO+U on infinite trees and has a correctness proof using the
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axioms of ZFC [3]. At the time of writing, an unconditional undecidability result
for MSO+U on infinite words is presented [4].

Even before these undecidability results were shown, much attention was
being paid to fragments of the logic obtained by restricting the power of
the second-order quantifiers. In particular, considering weak1 MSO with the
unbounding quantifier (denoted by prepending a W) turned out to be promis-
ing: WMSO+U on infinite words [1] and on infinite trees [5] and WMSO+U with
the path quantifier (WMSO+UP) on infinite trees [2] have equivalent automata
models with decidable emptiness. Hence, these logics are decidable.

For WMSO+U on infinite words, these automata are called max-automata,
deterministic automata with counters whose acceptance conditions are a boolean
combination of conditions “counter c is bounded during the run”. While process-
ing the input, a counter may be incremented, reset to zero, or the maximum of
two counters may be assigned to it (hence the name max-automata). In this work,
we investigate delay games with winning conditions given by max-automata, so-
called max-regular conditions.

Our Contribution. We prove the analogue of the Hosch-Landweber Theorem for
max-regular winning conditions: it is decidable whether the delaying player has
a winning strategy with bounded lookahead. Furthermore, we obtain a doubly-
exponential upper bound on the necessary lookahead, if this is the case. Finally,
in the full version of this paper [28], we present a max-regular delay game such
that the delaying player wins the game, but only with unbounded lookahead.
Thus, unlike for ω-regular conditions, bounded lookahead is not sufficient for
max-regular conditions. These are, to the best of our knowledge, the first results
on delay games with quantitative winning conditions.

WMSO+U is able to express many quantitative winning conditions studied
in the literature, e.g., parameterized temporal logics like Prompt-LTL [20], Para-
metric LTL [27], or Parametric LDL [12], finitary parity and Streett games [10],
and parity and Streett games with costs [13]. Thus, for all these conditions it is
decidable whether the delaying player is able to win with bounded lookahead.

Our proof consists of a reduction to a delay-free game with a max-regular
winning condition. Such games can be solved by expressing them as a satisfi-
ability problem for WMSO+UP on infinite trees: the strategy of one player is
an additional labeling of the tree and a path quantifier is able to range over
all strategies of the opponent2. The reduction itself is an extension of the one
used in the Exptime-algorithm for delay games with ω-regular winning condi-
tions [19] and is based on an equivalence relation that captures the behavior of
the automaton recognizing the winning condition. However, unlike the relation
used for ω-regular conditions, ours is only correct if applied to words of bounded
lengths. Thus, we can deal with bounded lookahead, but not with arbitrary
lookahead.

1 Here, the second-order quantifiers are restricted to finite sets.
2 See Example 1 in [2] for more details.
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2 Definitions

The set of non-negative integers is denoted by N. An alphabet Σ is a non-empty
finite set of letters, and Σ∗ (Σn, Σω) denotes the set of finite words (words of
length n, infinite words) over Σ. The empty word is denoted by ε, the length of
a finite word w by |w|. For w ∈ Σ∗ ∪ Σω we write w(n) for the n-th letter of w.

Automata. Given a finite set C of counters storing non-negative integers,

Ops(C) = {c := c + 1, c := 0, c := max(c0, c1) | c, c0, c1 ∈ C}

is the set of counter operations over C. A counter valuation over C is a map-
ping ν : C → N. By νπ we denote the counter valuation that is obtained by
applying a finite sequence π ∈ Ops(C)∗ of counter operations to ν, which is
defined as implied by the operations’ names.

A max-automaton A = (Q,C,Σ, qI , δ, �, ϕ) consists of a finite set Q of states,
a finite set C of counters, an input alphabet Σ, an initial state qI , a (deterministic
and complete) transition function δ : Q × Σ → Q, a transition labeling3 � : δ →
Ops(C)∗ which labels each transition by a (possibly empty) sequence of counter
operations, and an acceptance condition ϕ, which is a boolean formula over C.

A run of A on α ∈ Σω is an infinite sequence

ρ = (q0, α(0), q1) (q1, α(1), q2) (q2, α(2), q3) · · · ∈ δω (1)

with q0 = qI . Partial (finite) runs on finite words are defined analogously, i.e.,
(q0, α(0), q1) · · · (qn−1, α(n − 1), qn) is the run of A on α(0) · · · α(n − 1) starting
in q0. We say that this run ends in qn. As δ is deterministic, A has a unique run
on every finite or infinite word.

Let ρ be as in (1) and define πn = �(qn, α(n), qn+1), i.e., πn is the label of the
n-th transition of ρ. Given an initial counter valuation ν and a counter c ∈ C,
we define the sequence

ρc = ν(c) , νπ0(c) , νπ0π1(c) , νπ0π1π2(c) , . . .

of counter values of c reached on the run after applying all operations of a tran-
sition label. The run ρ of A on α is accepting, if the acceptance condition ϕ
is satisfied by the variable valuation that maps a counter c to true if and only
if lim sup ρc is finite. Thus, ϕ can intuitively be understood as a boolean com-
bination of conditions “lim sup ρc < ∞”. Note that the limit superior of ρc is
independent of the initial valuation used to define ρc, which is the reason it is
not part of the description of A. We denote the language accepted by A by L(A)
and say that it is max-regular.

A parity condition (say min-parity) can be expressed in this framework using
a counter for each color that is incremented every time this color is visited
and employing the acceptance condition to check that the smallest color whose

3 Here, and later whenever convenient, we treat δ as relation δ ⊆ Q × Σ × Q.
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associated counter is unbounded, is even. Hence, the class of ω-regular languages
is contained in the class of max-regular languages.

Given an automaton A over ΣI × ΣO, we denote by π1(A) the automaton
obtained by projecting each letter to its first component, which recognizes the
projection of L(A) to ΣI .

Games with Delay. A delay function is a mapping f : N → N \ {0}, which is
said to be constant, if f(i) = 1 for every i > 0. Given a delay function f and an
ω-language L ⊆ (ΣI × ΣO)ω, the game Γf (L) is played by two players (Player I
and Player O) in rounds i = 0, 1, 2, . . . as follows: in round i, Player I picks a
word ui ∈ Σ

f(i)
I , then Player O picks one letter vi ∈ ΣO. We refer to the sequence

(u0, v0), (u1, v1), (u2, v2), . . . as a play of Γf (L), which yields two infinite words
α = u0u1u2 · · · and β = v0v1v2 · · · . Player O wins the play if and only if the
outcome

(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

) · · · is in L, otherwise Player I wins.
Given a delay function f , a strategy for Player I is a mapping τI : Σ∗

O → Σ∗
I

such that |τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗
I →

ΣO. Consider a play (u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is con-
sistent with τI , if ui = τI(v0 · · · vi−1) for every i; it is consistent with τO, if
vi = τO(u0 · · · ui) for every i. A strategy τ for Player p is winning for her, if
every play that is consistent with τ is won by Player p: we say Player p wins
Γf (L). A delay game is determined, if one of the players has a winning strategy.

Delay games can be modeled as a parity games4 with finitely many colors in
a countable arena. As such games are determined [11,23], so are delay games.

Theorem 1. Delay games with max-regular winning conditions are determined.

In current research, we work on a general determinacy theorem for delay games
with Borel winning conditions.

3 An Equivalence Relation for Max-Automata

Fix A = (Q,C,Σ, qI , δ, �, ϕ). We use notions introduced in [1] to define equiva-
lence relations over sequences of counter operations and over words over Σ that
capture the behavior of A.

First, we define inductively what it means for a sequence π ∈ Ops(C)∗ to
transfer a counter c to a counter d. The empty sequence and the operation c :=
c+1 transfer every counter to itself. The operation c := 0 transfers every counter
but c to itself and the operation c := max(c0, c1) transfers every counter but c
to itself and transfers c0 and c1 to c. Furthermore, if π0 transfers c to e and π1

transfers e to d, then π0π1 transfers c to d. If π transfers c to d, then we have
νπ(d) ≥ ν(c) for every counter valuation ν, i.e., the value of d after executing
π is larger or equal to the value of c before executing π, independently of the
initial counter values.

4 See, e.g., [15] for a detailed definition of parity games.
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Furthermore, a sequence of counter operations π transfers c to d with an
increment, if there is a counter e and a decomposition π0 (e := e + 1)π1 of π
such that π0 transfers c to e and π1 transfers e to d. If π transfers c to d with
an increment, then we have νπ(d) ≥ ν(c) + 1 for every counter valuation ν.

Finally, we say that π is a c-trace of length m, if there is a decomposition π =
π0 · · · πm−1 and a sequence of counters c0, c1, . . . , cm with cm = c such that each
πi transfers ci to ci+1 with an increment. If π is a c-trace of length m, then we
have νπ(c) ≥ m for every counter valuation ν.

Let ρ be a run and let πi be the label of the i-th transition of ρ. We say that
a c-trace π is contained in ρ, if there is an i such that π is a suffix of π0 · · · πi.

Lemma 1 ([1]). Let ρ be a run of A and c a counter. Then, lim sup ρc = ∞ if
and only if ρ contains arbitrarily long c-traces.

We use the notions of transfer (with an increment) to define the equivalence
relations that capture A’s behavior. We say that two finite sequences of counter
operations π and π′ are equivalent, if for all counters c and d, π transfers c to
d if and only if π′ transfers c to d and π transfers c to d with an increment if
and only if π′ transfers c to d with an increment. We denote this equivalence
relation over Ops(C)∗ by ≡ops. Using this, we define two words x, x′ ∈ Σ∗ to be
equivalent, if for all states q ∈ Q, the run of A on x starting in q and the run
of A on x′ starting in q end in the same state and their sequences of counter
operations are ≡ops-equivalent. We denote this equivalence over Σ∗ by ≡A.

Remark 1. Let A be a max-automaton with n states and k counters.

1. The index of ≡ops is at most 23k2
.

2. The index of ≡A is at most 2n(log n+3k2).

We can decompose an infinite word α into x0x1x2 · · · and replace each xi by
an ≡A-equivalent x′

i without changing membership in L(A), provided the lengths
of the xi and the lengths of the x′

i are bounded.

Lemma 2. Let (xi)i∈N and (x′
i)i∈N be two sequences of words over Σ∗ with

supi |xi| < ∞, supi |x′
i| < ∞, and xi ≡A x′

i for all i. Then, x = x0x1x2 · · · ∈
L(A) if and only if x′ = x′

0x
′
1x

′
2 · · · ∈ L(A).

Proof. Let ρ and ρ′ be the run of A on x and x′, respectively. We show that
ρ contains arbitrarily long c-traces if and only if ρ′ contains arbitrarily long c-
traces. Due to Lemma 1, this suffices to show that the run of A on x is accepting
if and only if the run of A on x′ is accepting. Furthermore, due to symmetry,
it suffices to show one direction of the equivalence. Thus, assume ρ contains
arbitrarily long c-traces and pick m′ ∈ N arbitrarily. We show the existence of a
c-trace of length m′ contained in ρ′. To this end, we take a c-trace in ρ of length
m > m′ for some sufficiently large m and show that the ≡ops-equivalent part of
ρ′ contains a c-trace of length m′.

By definition of ≡A, processing x0 · · · xi−1 and processing x′
0 · · · x′

i−1 brings
A to the same state, call it qi. Furthermore, let πi be the sequence of counter



418 M. Zimmermann

operations labeling the run of A on xi starting in qi, which ends in qi+1. The
sequences π′

i labeling the runs on the x′
i are defined analogously. By xi ≡A x′

i

we conclude that πi and π′
i are ≡ops-equivalent as well. Furthermore, define

b = supi |xi|, which is well-defined due to our assumption, and define m =
(m′ +1) ·o · b, where o is the maximal length of a sequence of operations labeling
a transition, i.e., o = max(q,a,q′)∈δ |�(q, a, q′)|. Each πi can contribute at most
|πi| increments to a c-trace that subsumes πi, which is bounded by |πi| ≤ o · b.

Now, we pick i such that π0 · · · πi has a suffix that is a c-trace of length m,
say the suffix starts in πs. Hence, there are counters cs, cs+1, . . . , ci such that
πj+1 transfers cj to cj+1 for every j in the range s ≤ j < i. Furthermore, by the
choice of m we know that at least m′ of these transfers are actually transfers
with increments, as every transfer contains at most b · o increments.

Thus, the equivalence of πj and π′
j implies that π′

j realizes the same transfers
(with increments) as πj . Hence, there is a suffix of π′

0 · · · π′
i that is a c-trace of

length m′, i.e., ρ′ contains a c-trace of length m′. 
�
Note that the lemma does not hold if we drop the boundedness requirements on
the lengths of the xi and the x′

i.
To conclude, we show that the equivalence classes of ≡A are regular and can

be tracked on-the-fly by a finite automaton T in the following sense.

Lemma 3. There is a deterministic finite automaton T with set of states Σ/≡A
such that the run of T on w ∈ Σ∗ ends in [w]≡A .

Proof. Define T = (Σ/≡A, Σ, [ε]≡A , δT , ∅) where δT ([x]≡A , a) = [xa]≡A , which
is independent of the representative x and based on the fact that ≡ops (and thus
also ≡A) is a congruence, i.e., π0 ≡ops π1 implies π0π ≡ops π1π for every π.
A straightforward induction over |w| shows that T has the desired properties. 
�
Corollary 1. Every ≡A-equivalence class is regular.

4 Reducing Delay Games to Delay-Free Games

In this section, we prove our main theorem.

Theorem 2. The following problem is decidable: given a max-automaton A,
does Player O win Γf (L(A)) for some constant delay function f?

To prove this result, we construct a delay-free game in a finite arena with a
max-regular winning condition that is won by Player O if and only if she wins
Γf (L(A)) for some constant delay function f . The winner of such a game can
be determined effectively.

Let A = (Q,C,ΣI × ΣO, qI , δ, �, ϕ) and let T = ((ΣI × ΣO)/ ≡A, ΣI ×
ΣO, [ε]≡A , δT , ∅) be defined as in Lemma 3. For the sake of readability, we denote
the ≡A-equivalence class of w by [w] without a subscript. Furthermore, we denote
equivalence classes using the letter S. We define the product P = (QP , C,ΣI ×
ΣO, qP

I , δP , �P , ϕ) of A and T , which is a max-automaton, where
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– QP = Q × ((ΣI × ΣO)/≡A),
– qP

I = (qI , [ε]≡A),
– δP((q, S), a) = (δ(q, a), δT (S, a)) for a states q ∈ Q, an equivalence class S ∈

(ΣI × ΣO)/≡A, and a letter a ∈ ΣI × ΣO, and
– �P((q, S), a, (q′, S′)) = �(q, a, q′).

Let n = |QP |. We have L(P) = L(A), since acceptance only depends on the
component A of P. However, we are interested in partial runs of P, as the
component T keeps track of the equivalence class of the input processed by P.

Remark 2. Let w ∈ (ΣI × ΣO)∗ and let (q0, S0)(q1, S1) · · · (q|w|, S|w|) be the run
of P on w from some state (q0, S0) with S0 = [ε]. Then, q0q1 · · · q|w| is the run
of A on w starting in q0 and S|w| = [w].

In the following, we will work with partial functions r from QP to 2QP , where we
denote the domain of r by dom(r). Intuitively, we use such a function to capture
the information encoded in the lookahead provided by Player I. Assume Player I
has picked α(0) · · · α(j) and Player O has picked β(0) · · · β(i) for some i < j,
i.e., the lookahead is α(i + 1) · · · α(j). Then, we can determine the state q that
P reaches when processing

(
α(0)
β(0)

) · · · (α(i)
β(i)

)
, but the automaton cannot process

α(i+1) · · · α(j), since Player O has not yet provided her moves β(i+1) · · · β(j).
However, we can determine which states Player O can enforce by picking an
appropriate completion. These will be contained in r(q).

To formalize this, we use the function δpow : 2QP × ΣI → 2QP defined
via δpow(P, a) =

⋃
q∈P

⋃
b∈ΣO

δP
(
q,

(
a
b

))
, i.e., δpow is the transition function

of the powerset automaton of the projection automaton π1(P). As usual, we
extend δpow to δ∗

pow : 2QP × Σ∗
I → 2QP via δ∗

pow(P, ε) = P and δ∗
pow(P,wa) =

δpow(δ∗
pow(P,w), a).

Let D ⊆ QP be non-empty and let w ∈ Σ∗
I . We define the function rD

w with
domain D as follows: for every (q, S) ∈ D, we have

rD
w (q, S) = δ∗

pow({(q, [ε])}, w),

i.e., we collect all states (q′, S′) reachable from (q, [ε]) (note that the second
component is the equivalence class of the empty word, not the class S from the
argument) via a run of π1(P) on w. Thus, if (q′, S′) ∈ rD

w (q, S), then there is a
word w′ whose projection is w and with [w′] = S′ such that the run of A on w′

leads from q to q′. Thus, if Player I has picked the lookahead w, then Player O
could pick an answer such that the combined word leads A from q to q′ and such
that it is a representative of S′.

We call w a witness for a partial function r : QP → 2QP , if we have
r = r

dom(r)
w . Thus, we obtain a language Wr ⊆ Σ∗

I of witnesses for each such
function r. Now, we define R = {r | dom(r) = ∅ and Wr is infinite}.

Lemma 4. Let R be defined as above.

1. Let r ∈ R. Then, r(q) = ∅ for every q ∈ dom(r).
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2. Let r be a partial function from QP to 2QP . Then, Wr is recognized by a
deterministic finite automaton with 2n2

states.
3. Let r ∈ R. Then, Wr contains a word w with k ≤ |w| ≤ k + 2n2

for every k.
4. Let r = r′ ∈ R such that dom(r) = dom(r′). Then, Wr ∩ Wr′ = ∅.
5. Let D ⊆ QP be non-empty and let w be such that |w| ≥ 2n2

. Then, there
exists some r ∈ R with dom(r) = D and w ∈ Wr.

Due to items (4.) and (5.), we can define for every non-empty D ⊆ QP a function
rD that maps words w ∈ Σ∗

I with |w| ≥ 2n2
to the unique function r with

dom(r) = D and w ∈ Wr. This will be used later in the proof.
Now, we define an abstract game G(A) between Player I and Player O that is

played in rounds i = 0, 1, 2, . . .: in each round, Player I picks a function from R
and then Player O picks a state q of P. In round 0, Player I has to pick r0 subject
to constraint (C1): dom(r0) = {qP

I }. Then, Player O has to pick a state q0 ∈
dom(r0) (which implies q0 = qP

I ). Now, consider round i > 0: Player I has
picked functions r0, r1, . . . , ri−1 and Player O has picked states q0, q1, . . . , qi−1.
Now, Player I has to pick a function ri subject to constraint (C2): dom(ri) =
ri−1(qi−1). Then, Player O has to pick a state qi ∈ dom(ri). Both players can
always move: Player I can, as ri−1(qi−1) is always non-empty (Lemma 4.1) and
thus the domain of some r ∈ R (Lemma 4.5) and Player O can, as the domain
of every r ∈ R is non-empty by construction.

The resulting play is the sequence r0q0r1q1r2q2 · · · . Let qi = (q′
i, Si) for every

i, i.e., Si is an ≡A-equivalence class. Let xi ∈ Si for every i such that supi |xi| <
∞. Such a sequence can always be found as ≡A has finite index. Player O wins
the play if the word x0x1x2 · · · is accepted by A. Due to Lemma 2, this definition
is independent of the choice of the representatives xi.

A strategy for Player I is a function τ ′
I mapping the empty play prefix to

a function r0 subject to constraint (C1) and mapping a non-empty play pre-
fix r0q0 · · · ri−1qi−1 ending in a state to a function ri subject to constraint (C2).
On the other hand, a strategy for Player O maps a play prefix r0q0 · · · ri ending
in a function to a state qi ∈ dom(ri). A play r0q0r1q1r2q2 · · · is consistent with
τ ′
I , if ri = τ ′

I(r0q0 · · · ri−1qi−1) for every i ≥ 0. Dually, the play is consistent with
τ ′
O, if qi = τ ′

O(r0q0 · · · ri) for every i ≥ 0. A strategy is winning for Player p, if
every play that is consistent with this strategy is winning for her. As usual, we
say that Player p wins G(A), if she has a winning strategy.

Lemma 5. Player O wins Γf (L(A)) for some constant delay function f if and
only if Player O wins G(A).

Proof. For the sake of readability, we denote Γf (L(A)) by Γ and G(A) by G.
First, assume Player O has a winning strategy τO for Γ for some constant

delay function f . We construct a winning strategy τ ′
O for Player O in G via

simulating a play of G by a play of Γ .
Let r0 be the first move of Player I in G, which has to be responded to by

Player O by picking qP
I = τ ′

O(r0), and let r1 be Player I’s response to that move.
Let w0 ∈ Wr0 and w1 ∈ Wr1 be witnesses for the functions picked by Player I.
Due to Lemma 4.3, we can choose w0 and |w1| with f(0) ≤ |w0|, |w1| ≤ f(0)+2n2

.
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We simulate the play prefix r0q0r1 in Γ , where q0 = qP
I : Player I picks

w0w1 = α(0) · · · α(�1 − 1) in his first moves and let β(0) · · · β(�1 − f(0)) be the
response of Player O according to τO. We obtain |β(0) · · · β(�1 − f(0))| ≥ |w0|,
as |w1| ≥ f(0).

Thus, we are in the following situation for i = 1: in G, we have constructed
a play prefix r0q0 · · · ri−1qi−1ri and in Γ , Player I has picked w0w1 · · · wi =
α(0) · · · α(�i − 1) and Player O has picked β(0) · · · β(�i − f(0)) according to τO,
where |β(0) · · · β(�i − f(0))| ≥ |w0 · · · wi−1|. Furthermore, wj is a witness for rj

for every j ≤ i.
In this situation, let qi be the state of P that is reached when processing

wi−1 and the corresponding moves of Player O, i.e.,
(

α(|w0 · · · wi−2|)
β(|w0 · · · wi−2|)

)
· · ·

(
α(|w0 · · · wi−1| − 1)
β(|w0 · · · wi−1| − 1)

)
,

starting in state (q′
i−1, [ε]), where qi−1 = (q′

i−1, Si−1).
By definition of ri−1, we have qi ∈ ri−1(qi−1), i.e., qi is a legal move for

Player O in G to extend the play prefix r0q0 · · · ri−1qi−1ri. Thus, we define
τ ′
O(r0q0 · · · ri−1qi−1ri) = qi. Now, let ri+1 be the next move of Player I in G

and let wi+1 ∈ Wri+1 be a witness with f(0) ≤ |wi+1| ≤ f(0) + 2n2
. Going

back to Γ , let Player I pick wi+1 = α(�i) · · · α(�i+1 − 1) as his next moves and
let β(�i − f(0) + 1) · · · β(�i+1 − f(0)) be the response of Player O according to
τO. Then, we are in the situation as described in the previous paragraph, which
concludes the definition of τ ′

O.
It remains to show that τ ′

O is a winning strategy for Player O in G. Consider a
play r0q0r1q1r2q2 · · · that is consistent with τ ′

O and let w =
(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

) · · ·
be the corresponding outcome constructed as in the simulation described above.
Let qi = (q′

i, Si), i.e., q′
i is a state of our original automaton A. A straightforward

inductive application of Remark 2 shows that q′
i is the state that A reaches after

processing wi and the corresponding moves of Player O, i.e.,

xi =
(

α(|w0 · · · wi−1|)
β(|w0 · · · wi−1|)

)
· · ·

(
α(|w0 · · · wi| − 1)
β(|w0 · · · wi| − 1)

)
,

starting in q′
i−1, and that Si = [xi]. Note that the length of the xi is bounded,

i.e., we have supi |xi| ≤ f(0) + 2n2
.

As w is consistent with a winning strategy for Player O, the run of A on
w = x0x1x2 · · · is accepting. Thus, we conclude that the play r0q0r1q1r2q2 · · ·
is winning for Player O, as the xi are a bounded sequence of representatives.
Hence, τ ′

O is indeed a winning strategy for Player O in G.
Now, we consider the other implication: assume Player O has a winning

strategy τ ′
O for G and fix d = 2n2

. We construct a winning strategy τO for her
in Γ for the constant delay function f with f(0) = 2d. In the following, both
players pick their moves in blocks of length d. We denote Player I’s blocks by
ai and Player O’s blocks by bi, i.e., in the following, every ai is in Σd

I and every
bi is in Σd

O. This time, we simulate a play of Γ by a play in G.
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Let a0a1 be the first move of Player I in Γ , let q0 = qP
I , and define the

functions r0 = r{q0}(a0) and r1 = rr0(q0)(a1). Then, r0q0r1 is a legal play prefix
of G that is consistent with the winning strategy τ ′

O for Player O.
Thus, we are in the following situation for i = 1: in G, we have constructed

a play prefix r0q0 · · · ri−1qi−1ri that is consistent with τ ′
O; in Γ , Player I has

picked a0 · · · ai such that aj is a witness for rj for every j in the range 0 ≤ j ≤ i.
Player O has picked b0 · · · bi−2, which is the empty word for i = 1.

In this situation, let qi = τ ′
O(r0q0 · · · ri−1qi−1ri). By definition, we have

qi ∈ dom(ri) = ri−1(qi−1). Furthermore, as ai−1 is a witness for ri−1, there
exists bi−1 such that P reaches the state qi when processing

(
ai−1
bi−1

)
starting in

state (q′
i−1, [ε]), where qi−1 = (q′

i−1, Si−1).
Player O’s strategy for Γ is to play bi−1 in the next d rounds, which is

answered by Player I by picking some ai+1 during these rounds. This induces
the function ri+1 = rri(qi)(ai+1). Now, we are in the same situation as described
in the previous paragraph. This finishes the description of the strategy τO for
Player O in Γ .

It remains to show that τO is winning for Player O. Let w =
(
a0
b0

)(
a1
b1

)(
a2
b2

) · · ·
be the outcome of a play in Γ that is consistent with τO. Furthermore, let
r0q0r1q1r2q2 · · · be the corresponding play in G constructed in the simulation
as described above, which is consistent with τ ′

O. Let qi = (q′
i, Si). A straightfor-

ward inductive application of Remark 2 shows that q′
i is the state reached by A

after processing xi =
(
ai

bi

)
starting in q′

i−1 and Si = [xi]. Furthermore, we have
supi |xi| = d.

As r0q0r1q1r2q2 · · · is consistent with a winning strategy for Player O and
therefore winning for Player O, we conclude that x0x1x2 · · · is accepted by A.
Hence, A accepts the outcome w, which is equal to x0x1x2 · · · , i.e., the play in
Γ is winning for Player O. Thus, τO is a winning strategy for Player O in Γ . 
�
Now, we can prove our main theorem of this section, Theorem 2.

Proof. Due to Lemma 5, we just have to show that we can construct and solve
an explicit version of G(A). First, we show how to determine R: for every par-
tial function r from QP to 2QP one constructs the automaton of Lemma 4.2
recognizing Wr and tests it for recognizing an infinite language.

Now, we encode G(A) as a graph-based game with arena (V, VI , VO, E) where

– the set of vertices is V = VI ∪ VO with
– the vertices VI = {vI}∪R×QP of Player I, where vI is a fresh initial vertex,
– the vertices VO = R of Player O, and
– E is the union of the following sets of edges:

• {(vI , r) | dom(r) = {qP
I }}: the initial moves of Player I.

• {((r, q), r′) | dom(r′) = r(q)}: (regular) moves of Player I.
• {(r, (r, q)) | q ∈ dom(r)}: moves of Player O.

A play is an infinite path starting in vI . To determine the winner of a play,
we fix an arbitrary function rep: (ΣI × ΣO)∗/ ≡A → (ΣI × ΣO)∗ that maps
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each equivalence class to some representative, i.e., rep(S) ∈ S for every S ∈
(ΣI × ΣO)∗/≡A. Consider an infinite play

vI , r0, (r0, q0), r1, (r1, q1), r2, (r2, q2), . . . ,

with qi = (q′
i, Si) for every i. This play is winning for Player O, if the infi-

nite word rep(S0)rep(S1)rep(S2) · · · is accepted by A (note that supi |rep(Si)| is
bounded, as there are only finitely many equivalence classes). The set Win ⊆ V ω

of winning plays for Player O is a max-regular language5, as it can be recognized
by an automaton that simulates the run of A on rep(S) when processing a vertex
of the form (r, (q, S)) and ignores all other vertices. Games in finite arenas with
max-regular winning condition are decidable via an encoding as a satisfiability
problem for WMSO+UP [2].

Player O wins G(A) (and thus Γf (L(A)) for some constant f) if and only
if she has a winning strategy from vI in the game ((V, VI , VO, E),Win), which
concludes the proof. 
�
We obtain a doubly-exponential upper bound on the constant delay necessary for
Player O to win a delay game with a max-regular winning condition by applying
both directions of the equivalence between Γf (A) and G(A).

Corollary 2. Let A be a max-automaton with n states and k counters. The
following are equivalent:

1. Player O wins Γf (L(A)) for some constant delay function f .
2. Player O wins Γf (L(A)) for some constant delay function f with

f(0) ≤ 22
2n(log n+3k2)+1.

In the full version of this paper, we also show that constant lookahead is not
always sufficient to win delay games with max-regular winning conditions.

Theorem 3. ([28]). There is a max-regular language L such that Player O wins
Γf (L) for some f , but not for any constant f .

5 Conclusion

We considered delay games with max-regular winning conditions. Our main
result is an algorithm that determines whether Player O has a winning strat-
egy for some constant delay function, which consists of reducing the original
problem to a delay-free game with max-regular winning condition. Such a game
can be solved by encoding it as an emptiness problem for a certain class of tree
automata (so-called WMSO+UP automata) that capture WMSO+UP on infi-
nite trees. Our reduction also yields a doubly-exponential upper bound on the
necessary constant delay to win such a game, provided Player O does win for
some constant delay function.

5 This implies that G(A) is determined, as max-regular conditions are Borel [1,22].
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It is open whether the doubly-exponential upper bound is tight. The best
lower bounds are exponential and hold already for deterministic reachability
and safety automata [19], which can easily be transformed into max-automata.

We deliberately skipped the complexity analysis of our algorithm, since the
reduction of the delay-free game to an emptiness problem for WMSO+UP
automata does most likely not yield tight upper bounds on the complexity.
Instead, we propose to investigate (delay-free) games with max-regular winning
conditions, a problem that is worthwhile studying on its own, and to find a direct
solution algorithm. Currently, the best lower bound on the computational com-
plexity of determining whether Player O wins a delay game with max-regular
winning condition for some constant delay function is the Exptime-hardness
result for games with safety conditions [19].

In the full version of this paper [28], we show that constant delay is not
sufficient for max-regular conditions by giving a condition L such that Player O
wins Γf (L) for some f , but not for any constant delay function f . Indeed, it
turns out that the function f with f(i) = 2 is sufficient, i.e., the lookahead
grows linearly. Currently, we investigate whether such linear delay functions are
sufficient for every delay game with max-regular winning condition that is won
by Player O.

Both the lower bound on the necessary lookahead and the one on the com-
putational complexity for safety conditions mentioned above are complemented
by matching upper bounds for games with parity conditions [19], i.e., having a
parity condition instead of a safety condition has no discernible influence. Stated
differently, the complexity of the problems manifests itself in the transition struc-
ture of the automaton. Our example requiring growing lookahead shows that this
is no longer true for max-regular conditions.
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Abstract. The size-change abstraction (SCA) is a popular program
abstraction for termination analysis, and has been successfully imple-
mented for imperative, functional and logic programs. Recently, it has
been shown that SCA is also an attractive domain for the automatic
analysis of the computational complexity of programs. In this paper,
we provide asymptotically precise ranking functions for the special case
of deterministic size-change systems. As a consequence we also obtain
the result that the asymptotic complexity of deterministic size-change
systems is exactly polynomial and that the exact integer exponent can
be computed in PSPACE.

1 Introduction

The size-change abstraction (SCA) is a popular program abstraction for the
automated termination analysis of functional [8,9], logical [10] and imperative [1]
programs as well as term rewriting systems [5]; SCA is implemented in the
industrial-strength systems ACL2 [9] and Isabelle [7]. Recently SCA has also
been used for computing resource bounds of imperative programs [11]. SCA is
a predicate abstract domain that consists of Boolean combinations of inequality
constraints of shape x ≥ y′ or x > y′ in disjunctive normal form. SCA vari-
ables take values in the natural numbers and should be considered as norms on
the program state. The main reason, that makes SCA an attractive domain for
practical termination analysis is that size-change predicates such as x ≥ y′ can
be extracted locally from the program and that termination for abstracted pro-
grams can be decided in PSPACE [8]. However, the termination proofs obtained
by SCA through the decision procedures in [8] do not immediately allow to under-
stand why the program makes progress and eventually terminates. In contrast,
the traditional method of proving termination by a ranking function provides
such an understanding. A ranking function maps the program states to a well-
founded domain (W,>) such that every program step decreases the value of the
current program state. A ranking function provides a global argument for termi-
nation and makes the program progress apparent. Ranking functions also allow
to obtain a bound on the runtime of a program. If a ranking function maps to a
well-founded domain (W,>), the height |W | of the well-founded domain provides
a bound on the number of program steps. We say a ranking function is precise,
if the transition relation of the program also has height |W |.
c© Springer International Publishing Switzerland 2015
L.D. Beklemishev and D.V. Musatov (Eds.): CSR 2015, LNCS 9139, pp. 426–442, 2015.
DOI: 10.1007/978-3-319-20297-6 27
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Important predecessor work has studied the construction of ranking func-
tions for the abstract programs obtained by SCA [2–4]. Unfortunately, the cited
constructions do not discuss the precision of the obtained ranking function and
it is not clear how to modify these constructions to be precise. In this paper, we
provide asymptotically precise ranking functions for the special case of deter-
ministic size-change systems (which have been called fan-out free size-change
systems in previous work [4]). As a consequence we obtain the additional result
that the asymptotic complexity of deterministic size-change systems is exactly
polynomial and that the exact integer exponent can be computed in PSPACE.
We give a precise statement of our contributions at the end of Sect. 2.

1.1 Related Work

Our iterated power-set construction for lexicographic ranking functions bears
strong similarities with [4], which also studies the special case of deterministic
size-change systems. In contrast to our approach, the ranking function in [4] is
obtained via a single monolithic construction. This makes it very hard to analyze
the precision of the obtained ranking function.

The size of a set of local ranking functions vs the size of a single global ranking
function is studied in [2]. Interestingly this study includes the sum of variables as
local ranking function, which is a crucial building block in our construction for
obtaining asymptotically precise ranking functions. However, [2] restricts itself
to the special case of strict inequalities x > y′ and does not use the sum operator
in the construction of the global ranking function.

In [3] variables are allowed to take values over the integers and general-
izes size-change predicates to monotonicity constraints which can express any
inequality between two variables in a transition. The ranking function construc-
tion in [3] is elegant, but it is unclear how to obtain precise ranking functions
from this construction.

A complete characterization of the asymptotic complexity bounds arising
from SCA is given in [6] and a method for determining the exact asymptotic
bound of a given abstract program is provided. For general SCA these bounds
are polynomials with rational exponents. Reference [6] does not consider the
special case of deterministic size-change systems whose bounds are shown to be
polynomial with integral exponents in this paper. Moreover, the construction
in [6] does not allow to extract ranking functions. Further, [6] does not include
a complexity result.

2 Size-Change Systems (SCSs)

We fix some finite set of size-change variables Var . We denote by Var ′ the
set of primed versions of the variables in Var . A size-change predicate (SCP)
is a formula x � y′ with x, y ∈ Var , where � is either > or ≥. A size-change
transition (SCT) T is a set of SCPs. An SCT T is deterministic, if for every
variable x ∈ Var there is at most one variable y, such that x � y′ ∈ T , where
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� is either > or ≥. A size-change system (SCS) A = (Locs(A),Edges(A)) is a
directed labeled graph with a finite set of locations Locs(A) and a finite set of
labeled edges Edges(A), where every edge is labeled by an SCT. We denote an
edge of an SCS by �

T−→ �′. An SCS A is deterministic, if T is deterministic for
every edge �

T−→ �′. In the rest of the paper, we will always assume SCSs to be
deterministic. We will mention determinism, when we use it. A path of an SCS
A is a sequence �1

T1−→ �2
T2−→ · · · with �i

Ti−→ �i+1 for all i. An SCS A is strongly
connected, if for all locations �, �′ ∈ Locs(A) there is a path from � to �′.

We define the semantics of size-change systems by valuations σ : Var →
[0, N ] of the size-change variables to natural numbers in the interval [0, N ],
where N is a (symbolic) natural number. We also say σ is a valuation over
[0, N ]. We denote the set of valuations by ValN . We write σ, τ ′ |= x � y′ for
two valuations σ, τ , if σ(x) � τ(y) holds over the natural numbers. We write
σ, τ ′ |= T , if σ, τ ′ |= x � y′ holds for all x � y′ ∈ T . A trace of an SCS A is
a sequence (�1, σ1)

T1−→ (�2, σ2)
T2−→ · · · such that �1

T1−→ �2
T2−→ · · · is a path

of A and σi, σ
′
i+1 |= Ti for all i. The length of a trace is the number of edges

that the trace uses, counting multiply occurring edges multiple times. An SCS
A terminates, if A does not have a trace of infinite length for any N .

Definition 1. Let A be an SCS and let (W,>) be a well-founded domain. We
call a function rank : Locs(A) × ValN → WN a ranking function for A, if for
every trace (�1, σ1)

T−→ (�2, σ2) of A we have rank(�1, σ1) > rank(�2, σ2). We call
the ranking function rank asymptotically precise, if the length of the longest trace
of A is of order Ω(|WN |).

Contributions: In this paper we develop an algorithm, which either returns that
a given SCS A does not terminate or computes a function rank and an integer
k ∈ [0, |Var |] such that rank : Locs(A) × ValN → WN is a ranking function
for A with |WN | = O(Nk) and there is a sequence of paths Loop1, . . . ,Loopk in
A such that the path ((· · · (Loopk)N · · ·Loop2)NLoop1)N can be completed to a
trace of length Ω(Nk). The upper and lower complexity bounds show that our
ranking function construction is asymptotically precise. As a corollary we get
that deterministic SCSs exactly have asymptotic complexity Θ(Nk) for some
k ∈ [0, |Var |]. Additionally, we show that the witness Loop1, . . . ,Loopk for the
lower complexity bound can be guessed in PSPACE giving rise to a PSPACE
algorithm for deciding the asymptotic complexity of deterministic SCSs.

Example 1. We consider the SCS A1 with a single location � and edges �
T1−→

�, �
T2−→ � with T1 = {x1 ≥ x′

2, x2 > x′
2, x3 ≥ x′

3, x4 ≥ x′
3} and T2 = {x1 ≥

x′
1, x2 > x′

1, x3 ≥ x′
4, x4 > x′

4}. Our algorithm computes the ranking function
rank1 = min{〈x2 + x3, 1〉, 〈x1 + x4, 2〉} (slightly simplified) for A1, where 〈a, b〉
denotes tuples ordered lexicographically. We point out that the image of rank1

has height O(N); thus rank1 proves that A1 has linear complexity.
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Example 2. We consider the SCS A2 with a single location � and edges �
T1−→

�, �
T2−→ �, �

T3−→ � with T1 = {x1 > x′
1, x2 > x′

1, x3 ≥ x′
3}, T2 = {x1 ≥ x′

1, x2 >
x′
2, x3 ≥ x′

2} and T3 = {x1 > x′
3, x2 ≥ x′

2, x3 > x′
3}. Our algorithm computes the

ranking function rank2 = min{〈x1, x2〉, 〈x2, x3〉, 〈x3, x1〉} (slightly simplified) for
A2. We point out that the image of rank2 has height O(N2); thus rank2 proves
that A2 has quadratic complexity.

Extension to arbitrary well-founded orders: The results in this paper can eas-
ily be extended to valuations over ordinal numbers. It would only be necessary
to introduce suitable machinery for dealing with arithmetic over ordinal num-
bers; the construction of the ranking function and the witness for the lower
bound would essentially remain the same. We refrain in this paper from this
extension because we want to keep the development elementary. For comparison
with earlier work on SCA, where variables can take values over arbitrary well-
founded orders, we sketch these extended results below: We consider valuations
σ : Var → α that map the size-change variables to ordinal numbers below α.
We denote the set of valuations by Valα. We will assume α ≥ ω in the following
(the case α < ω corresponds to the results discussed in the previous paragraph).
Let A be some SCS. We define the transition relation of A by

RA = {((�1,σ1), (�2, σ2)) ∈ (Locs(A) × Valα)2 |
there is an SCT T with �1

T−→ �2 ∈ Edges(A) and σ1, σ
′
2 |= T}.

Let α be some ordinal. Let βα be the maximal ordinal such that ωβα ≤ α.
We set ᾱ = ωβα . We note that we always have ᾱ ≤ α ≤ ᾱc for some natural
number c. The algorithm in this paper can be adapted such that it either returns
that a given SCS A does not terminate or computes a function rank and an
integer k ∈ [0, |Var |] such that rank : Locs(A) × Valα → Wα is a ranking
function for A with |Wα| ≤ αkd for some natural number d and there is a
sequence of paths Loop1, . . . ,Loopk in A such that every path in P (i1, . . . , ik)
can be completed to a trace, where (i1, . . . , ik) ∈ ᾱk, P (i1, . . . , ik) = {Loopjπ |
π ∈ P (i′1, . . . , i

′
k) and i1 = i′1, . . . , ij−1 = i′j−1, ij > i′j} and P (0, . . . , 0) = {ε},

with ε being the empty path. This establishes ᾱk ≤ |RA| ≤ αkd and thus
our construction characterizes the height or the transition relation of A up to
a constant factor d < ω. Additionally, the witness Loop1, . . . ,Loopk for the
lower bound can be guessed in PSPACE giving rise to a PSPACE algorithm for
deciding the height of the transition relation of a given SCS up to a constant
factor d < ω.

Structure of the paper: In Sect. 3 we develop our main technical tool, an iter-
ated application of the well-known powerset construction from automata theory.
In Sect. 4 we define for-loops, which will be employed for establishing the lower
complexity bounds. In Sect. 5 we develop several technical devices for the con-
struction of ranking functions. In Sect. 6 we state our construction of ranking
functions for SCSs; we apply our algorithm to Examples 1 and 2. We refer the
reader to these examples for an illustration of the concepts in this paper.
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3 Adding Contexts to SCSs

In the following we define a construction for adding context to SCSs. This con-
struction mimics the powerset construction in automata theory.

Let T be an SCT. We define sucT : 2Var → 2Var by sucT (V ) = {y ∈ Var |
exists x ∈ Var with x � y′ ∈ T}. Let A be an SCS and let π = �1

T1−→ �2
T2−→ · · ·

be a finite path of A. We define sucπ : 2Var → 2Var by sucπ = · · ·◦sucT2 ◦sucT1 .
We have the following property from the powerset-like construction of suc:

Proposition 1 (Monotonicity). Let V1 ⊆ V2 ⊆ Var. We have sucT (V1) ⊆
sucT (V2) for every SCT T and sucπ(V1) ⊆ sucπ(V2) for every path π.

For deterministic SCTs and SCSs we have the following property:

Proposition 2 (Decrease of Cardinality). Let V ∈ 2Var . We have |V | ≥
|sucT (V )| for every deterministic SCT T . We have |V | ≥ |sucπ(V )| for every
path π of an deterministic A.

Definition 2 (Context). A context of length k ∈ [0, |Var |] is a sequence
〈C1, . . . , Ck〉 ∈ (2Var )k with Ci ⊆ Cj for all 1 ≤ i < j ≤ k. We denote the con-
text of length k = 0 by ε. Let C = 〈C1, . . . , Ck〉 be a context of length k. We call C
proper, if Ci � Cj for all 0 ≤ i < j ≤ k, setting C0 = ∅. We define the operation
of retrieving the last component of C by last(C) = Ck for k ≥ 1 and last(C) = ∅
for k = 0. Given C ∈ 2Var , we define the operation C :: C = 〈C1, . . . , Ck, C〉 of
extending C by C to a context of length k+1. For k ≥ 1, we define the operation
of removing the last component tail(C) = 〈C1, . . . , Ck−1〉 from C. For k ≥ 1, we
define the current variables of C by curr(C) = Ck \ Ck−1, setting C0 = ∅.
We fix a finite set of locations locs. In the following we define SCSs with contexts
over this set of locations locs. In the rest of the paper SCSs with contexts will
always refer to this set of locations locs.

Definition 3 (SCSs with Contexts). An SCS A has contexts of length k, if
Locs(A) ⊆ locs × (2Var )k, if C is a context for every (�, C) ∈ Locs(A), and
if for every edge (�, 〈C1, . . . , Ck〉) T−→ (�′, 〈C ′

1, . . . , C
′
k〉) ∈ Edges(A) we have

sucT (Ci) = C ′
i for all 1 ≤ i ≤ k.

Lemma 1. Let A be an SCS with contexts of length k. Let (�, 〈C1, . . . , Ck〉) and
(�′, 〈C ′

1, . . . , C
′
k〉) be two locations of Locs(A) that belong to the same SCC of A.

We have |Ci| = |C ′
i| for all 1 ≤ i ≤ k.

Proof. Because (�, 〈C1, . . . , Ck〉) and (�′, 〈C ′
1, . . . , C

′
k〉) are in the same SCC of A,

there is a path π from (�, 〈C1, . . . , Ck〉) to (�′, 〈C ′
1, . . . , C

′
k〉) with sucπ(Ci) = C ′

i

for all 1 ≤ i ≤ k. By Proposition 2 we have |Ci| ≥ |C ′
i| for all 1 ≤ i ≤ k. By a

symmetrical argument we also get |C ′
i| ≥ |Ci| for all 1 ≤ i ≤ k.

Definition 4. (Adding Contexts to SCSs). Let A be an SCS with contexts
of length k. We define A′ = History(A) to be the SCS with contexts of length k+1
whose set of locations Locs(A′) and edges Edges(A′) is the least set such that
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– (�, C :: Var) ∈ Locs(A′) for every (�, C) ∈ Locs(A), and
– if (�, C :: C) ∈ Locs(A′) and (�, C) T−→ (�′, C′) ∈ Edges(A) then (�, C :: C) T−→

(�′, C′ :: sucT (C)) ∈ Edges(A′) and (�′, C′ :: sucT (C)) ∈ Locs(A′).

Lemma 2. Let A be a strongly connected SCS with proper contexts of length k.
Then History(A) has at most 2|locs||Var |! locations.

Proof. Let (�, 〈C1, . . . , Ck〉) ∈ Locs(A) be some location of A. We set t = |Ck|.
By Lemma 1 we have for all locations (�′, 〈C ′

1, . . . , C
′
k〉) ∈ Locs(A) that |Ci| =

|C ′
i| for all 1 ≤ i ≤ k. It is easy to see that there are at most |Var |

(|Var |−t)!

proper contexts 〈C ′
1, . . . , C

′
k〉 with |Ci| = |C ′

i| for all 1 ≤ i ≤ k. We get
|Locs(History(A))| ≤ |locs| |Var |!

(|Var |−t)!2
|Var |−t ≤ 2|locs||Var |!, because there are

at most 2|Var |−t possibilities for the last component of a context in History(A).

Lemma 3. If A is strongly connected, History(A) has a unique sink SCC.

Proof. Let A′ = History(A). We show that A′ has a unique sink SCC by the
following argument: Let (�1, C1 :: C1), (�2, C2 :: C2) ∈ Locs(A′) be arbitrary
locations in sink SCCs of A′. Then (�2, C2 :: C2) is reachable from (�1, C1 :: C1).

By Definition 4 there is a location (�, C) ∈ Locs(A) and a path π in A from
(�, C) to (�2, C2) with sucπ(Var) = C2. Because A is strongly connected, there
is a path π′ from (�1, C1) to (�, C). Let π1,2 be the concatenation of π′ and π,
which is a path from (�1, C1) to (�2, C2). By definition, History(A) has a path
from (�1, C1 :: C1) to (�2, C2 :: sucπ1,2(C1)). We show that sucπ1,2(C1) = C2.

By definition of π1,2 and by Proposition 1 we have

sucπ1,2(C1) = sucπ(sucπ′(C1)) ⊆ sucπ(Var) = C2. (∗)

Because (�2, C2 :: sucπ1,2(C1)) is reachable from (�1, C1 :: C1) and because
(�1, C1 :: C1) belongs to a sink SCC, (�2, C2 :: sucπ1,2(C1)) must belong to the
same SCC as (�1, C1 :: C1). By Lemma 1 we have |C1| = |sucπ1,2(C1)|. With
(*) we get |C1| ≤ |C2|. By a symmetrical argument we get |C2| ≤ |C1|. From
|C1| = |C2| and (*) we finally get sucπ1,2(C1) = C2.

Lemma 3 allows us to make the following definition:

Definition 5. Let A be a strongly connected SCS. We denote by Context(A)
the unique sink SCC of History(A).

Definition 6 (Loop). Let A be an SCS with contexts. We call a cyclic path
π of A a loop for a location (�, C) ∈ Locs(A), if (1) π starts and ends in � and
(2) sucπ(Var) = last(C).

We obtain from Lemma 3 that all locations of Context(A) have loops:
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Lemma 4. Let A be a strongly connected SCS. Every location (�, C) ∈
Locs(Context(A)) has a loop.

Proof. Because (�, C) belongs to the unique sink SCC of History(A) by Lemma 3
there is a path π from (�, tail(C)) to (�, tail(C)) in A such that sucπ(Var) =
last(C). From Proposition 1 and last(C) ⊆ Var we get

sucπ(last(C)) ⊆ last(C). (∗)

By definition, History(A) has a path from (�, C) = (�, tail(C) :: last(C)) to
(�, tail(C) :: sucπ(last(C))). Because (�, C) belongs to the unique sink SCC,
also (�, tail(C) :: sucπ(last(C))) belongs to this SCC and we get |last(C)| =
|sucπ(last(C))| from Lemma 1. With (*) we get last(C) = sucπ(last(C)).

4 For-Loops

Let π = �1
T1−→ �2

T2−→ · · · �l be a path. We write x � y ∈ π, if there is a chain of
inequalities x = x1 �1 x2 �2 · · · xl = y with xi �i xi+1 ∈ Ti for all i; we note that
in a deterministic SCS there is at most one chain of such inequalities. Moreover,
we set � = >, if there is at least one i with �i = >, and � = ≥, otherwise.

Definition 7 (For-loop). Let A be an SCS. We call a location � ∈ Locs(A), a
proper context 〈C1, . . . , Ck〉 and a sequence of cyclic paths Loop1, . . . ,Loopk that
starts and ends in � a for-loop of A with size k, if (1) sucLoopi

(Cj) = Cj for all
1 ≤ j ≤ i ≤ k, (2) x�y ∈ Loopj and x, y ∈ Ci imply � = ≥ for all 1 ≤ j < i ≤ k
and x, y ∈ Var, and (3) sucLoopi

(Var) = Ci for all 1 ≤ i ≤ k.

Intuitively, for-loops give rise to a trace for the path

((· · · (Loopk)N · · ·Loop2)
NLoop1)

N

for valuations over [0, N ] and thus provide a lower complexity bound. The proof
of the following lemma is given in the appendix.

Lemma 5. Let A be an SCS. Let �, 〈C1, . . . , Ck〉 and Loop1, . . . ,Loopk be a
for-loop of A with size k. Then A has a trace of length Ω(Nk).

5 Ranking Functions for SCSs

Lemma 6. Let A be a strongly connected SCS with contexts and let A′ =
Context(A). For a given location (�, C) ∈ Locs(A) we denote by ext(�, C) =
{(�, C′) ∈ Locs(A′) | tail(C′) = C} the set of all locations of A′ that extend the
context C by an additional component. Let rank : Locs(A′) × ValN → W be a
ranking function for A′. Let fold(rank) : Locs(A) × ValN → W be the function
fold(rank)(�, σ) = min�′∈ext(�) rank(�′, σ). Then fold(rank) is a ranking function
for A.

Proof. Let (�1, σ1)
T−→ (�2, σ2) be a trace of A. Let �′

1 ∈ Locs(A′) be chosen
such that �′

1 achieves the minimum in min�′∈ext(�1) rank(�′, σ1). By construc-

tion of Context(A) there is a path �′
1

T−→ �′
2 of A′ such that �′

2 = (�, C) and
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�2 = (�, tail(C)) for some context C. Because rank is a ranking function for
Context(A), we have rank(�′

1, σ1) > rank(�′
2, σ2). Thus,

fold(rank)(�1, σ1) = min
�′∈ext(�1)

rank(�′, σ1) = rank(�′
1, σ1) > rank(�′

2, σ2) ≥

min
�′∈ext(�2)

rank(�′, σ2) = fold(rank)(�2, σ2).

Definition 8 (Descending Edge, Stable SCS). Let A be an SCS with
contexts. We call an edge (�, C) T−→ (�′, C′) ∈ Edges(A) descending, if there
are variables x, y ∈ Var with x ∈ curr(C), y ∈ curr(C′) and x > y′ ∈ T .
We denote by B = DeleteDescending(A) the SCS with Locs(B) = Locs(A) and
Edges(B) = {�1

T−→ �2 ∈ Edges(A) | �1
T−→ �2 is not descending}. We call A

unstable, if there is an edge (�, C) T−→ (�′, C′) ∈ Edges(A) and variables x, y ∈ Var
with x ∈ last(C), y ∈ last(C′) and x > y′ ∈ T ; otherwise, we call A stable.

We note that a stable SCS A does not have descending edges.

Definition 9 (Quasi-ranking Function). We call a function

rank : Locs(A) × ValN → W

a quasi-ranking function for A, if for every trace (�1, σ1)
T−→ (�2, σ2) of A we

have rank(�1, σ1) ≥ rank(�2, σ2).

Lemma 7. Let A be an SCS with contexts. Let sum(A) : Locs(A) × ValN → N

be the function sum(A)((�, C), σ) =
∑

x∈curr(C) σ(x). Then, sum(A) is a quasi-
ranking function for A. Further, the value of sum(A) is decreasing for descending
edges of A.

Proof. Let ((�1, C1), σ1)
T−→ ((�2, C2), σ2) be a trace of A. By definition of SCSs

with contexts, we have that for every y ∈ curr(C2) there is a x ∈ curr(C1) such
that x � y′ ∈ T . Moreover, we have |curr(C1)| ≥ |curr(C2)| by Proposition 2.

Then,

sum(A)(�1, σ1) =
∑

x∈curr(C1)

σ1(x) ≥
∑

x∈curr(C2)

σ2(x) = sum(A)(�2, σ2).

If �1
T−→ �2 is descending, we have

sum(A)(�1, σ1) =
∑

x∈curr(C1)

σ1(x) >
∑

x∈curr(C2)

σ2(x) = sum(A)(�2, σ2).

Definition 10. Let A be an SCS. A function rto : Locs(A) → [1, |Locs(A)|] is
a reverse topological ordering for A, if for every edge �

T−→ �′ ∈ A we have either
rto(�) > rto(�′) or rto(�) = rto(�′) and � and �′ belong to the same SCC of A.
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We will use reverse topological orderings as quasi-ranking functions. It is well-
known that reverse topological orderings can be computed in linear time.

Definition 11. We denote by N
∗ the set of finite sequences over N, where N

∗

includes the empty sequence ε. Given two sequences 〈x1, . . . , xk〉, 〈y1, . . . , yl〉 ∈
N

∗, we denote their concatenation by 〈x1, . . . , xk〉 ⊕ 〈y1, . . . , yl〉 = 〈x1, . . . ,
xk, y1, . . . , yl〉. Given two functions f, g : A → N

∗, we denote their concate-
nation by f ⊕ g : A → N

∗, where (f ⊕ g)(a) = f(a) ⊕ g(a). We denote by N
≤k

the sequences with length at most k. We say a function f : A → N
∗ has rank k,

if f(A) ⊆ N
≤k.

We denote by (N∗, >) the lexicographic order, where 〈x1, . . . , xk〉 >
〈y1, . . . , yl〉 iff there is an index 1 ≤ i ≤ min{k, l} such that xi > yi and xj = yj

for all 1 ≤ j < i. We remark that (N∗, >) is not well-founded, but that every
restriction (N≤k, >) to sequences with length at most k is well-founded.

Let A be an SCS. We call a ranking function rank : Locs(A) × ValN → W
for A a lexicographic ranking function, if W = N

≤k for some k.

Lemma 8. Let A be an SCS. Let rto be a reverse topological ordering for A.
Let rankS : Locs(S ) → N

∗ be a lexicographic ranking function with rank k for
every non-trivial SCC S of A. Let union(rto, (rankS )SCC S ) : Locs(A) → N

∗ be
the function union(rto, (rankS )SCC S )(�, σ) = rto(�) ⊕ rankS (�, σ), if � belongs
to some non-trivial S , and union(rto, (rankS )SCC S )(�, σ) = rto(�), otherwise.
Then, union(rto, (rankS )SCC S ) is a lexicographic ranking function for A with
rank k + 1.

Proof. Let (�1, σ1)
T−→ (�2, σ2) be a trace of A. Assume there is no SCC S

such that �1, �2 ∈ S . By Definition 10 we have rto(�1) > rto(�2). Otherwise
�1, �2 ∈ S and �1

T−→ �2 ∈ Edges(S ) for some SCC S . By Definition 10 we have
rto(�1) = rto(�2). Moreover, rankS (�1, σ1) > rankS (�2, σ2) because rankS is a
ranking function for S . In both cases we get union(rto, (rankS )SCC S )(�1, σ1) >
union(rto, (rankS )SCC S )(�2, σ2). Clearly, the function union(rto, (rankS )SCC S )
has rank k + 1.

Lemma 9. Let A be an SCS with contexts and let B = DeleteDescending(A).
Let rank be a lexicographic ranking function for B with rank k. Then sum(A) ⊕
rank is a lexicographic ranking function for A with rank k + 1.

Proof. Let (�1, σ1)
T−→ (�2, σ2) be a trace of A. Assume �1

T−→ �2 is descending.
Then we have sum(A)(�1, σ1) > sum(A)(�2, σ2) by Lemma 7. Assume �1

T−→ �2
is not descending. Then we have sum(A)(�1, σ1) ≥ sum(A)(�2, σ2) by Lemma 7.
Moreover �1

T−→ �2 is a transition of B. Thus rank(�1, σ1) > rank(�2, σ2).
In both cases we get (sum(A)⊕rank)(�1, σ1) > (sum(A)⊕rank)(�2, σ2). Clearly
sum(A) ⊕ rank has rank k + 1.

6 Main Algorithm

In the following we describe our construction of ranking functions and for-loops
for SCSs. Algorithm 1 states the main algorithm main(A, i), which expects a



Asymptotically Precise Ranking Functions for Deterministic SCSs 435

stable SCS A with contexts of length i as input. Algorithm 2 states the helper
algorithm mainSCC (A, i), which expects a strongly connected stable SCS A
with contexts of length i as input. main and mainSCC are mutually recursive.
Algorithm 3 states the wrapper algorithm ranking(A), which expects an SCS
A with Locs(A) = locs and simply adds contexts of length zero to all location
before calling main. All three algorithms return a tuple (rank ,witness, C, k) for
a given SCS A. In Theorem 1 below we state that rank is a ranking function
for A with rank 2k +1, which proves the upper complexity bound O(Nk) for A.
In Theorem 2 below we state that there is a sequence of paths Loop1, . . . ,Loopk

in A such that witness, C and Loop1, . . . ,Loopk is a for-loop for A with size k,
which proves the lower complexity bound Ω(Nk) for A.

Example 3. We consider the SCS A1 from Example 1. We will identify A1 with
the SCS obtained from A1 by adding contexts of zero length. Consider the call
main(A1, 0). A1 has a single SCC, namely A1. We consider the recursive call
mainSCC (A1, 0). Let A′

1 := Context(A1). Locs(A′
1) has two locations, namely

�1 = (�, {x2, x3}) and �2 = (�, {x1, x4}). Edges(A′
1) has four edges, namely

�1
T1−→ �1, �1

T2−→ �2, �2
T2−→ �2 and �2

T1−→ �1. Let B1 := DeleteDescending(A′
1).

Edges(B1) has the single remaining edge �2
T1−→ �1. Thus, B1 does not have a

non-trivial SCC and main(B1, 1) returns the reverse topological ordering rtoB1 =
{�1 → 1, �2 → 2}. Then, rankA′

1
= sum(B1) ⊕ rtoB1 = {(�1, σ) → 〈σ(x2) +

σ(x3), 1〉, (�2, σ) → 〈σ(x1) + σ(x4), 2〉} is a ranking function for A′
1. Finally,

rankA1 = fold(rankA′
1
) = (�, σ) → min{〈σ(x2) + σ(x3), 1〉, 〈σ(x1) + σ(x4), 2〉} is

a ranking function for A1.

Example 4. We consider the SCS A2 from Example 2. We will identify A2

with the SCS obtained from A2 by adding contexts of zero length. A2 has a
single SCC, namely A2. We consider the recursive call mainSCC (A2, 0). Let
A′

2 := Context(A2). Locs(A′
2) has three locations, namely �1 = (�, {x1}) and

�2 = (�, {x2}) and �1 = (�, {x3}). Edges(A′
2) has nine edges, namely �1

T1−→ �1,
�1

T2−→ �1, �1
T3−→ �3, �2

T1−→ �1, �2
T2−→ �2, �2

T3−→ �2, �3
T1−→ �3, �3

T2−→ �2, and
�3

T3−→ �3. Let B2 := DeleteDescending(A′
2). Edges(B2) has the three remaining

edges �1
T2−→ �1, �2

T3−→ �2 and �3
T1−→ �3. Thus, B2 has three non-trivial SCCs

consisting of a single location each. main(B2, 1) returns the ranking function
rankB2 = (union(rtoB2 , (rankS )SCC S of B2) = {(�1, σ) → 〈1, σ(x2), 1〉, (�2, σ) →
〈1, σ(x3), 1〉, (�3, σ) → 〈1, σ(x1), 1〉}. Then,

rankA′
2

= sum(B2) ⊕ rankB2 =

{(�1, σ) → 〈σ(x1), 1, σ(x2), 1〉,
(�2, σ) → 〈σ(x2), 1, σ(x3), 1〉, (�3, σ) → 〈σ(x3), 1, σ(x1), 1〉}

is a ranking function for A′
2. Finally,
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rankA2 = fold(rankA′
2
) =

(�, σ) → min{〈σ(x1), 1, σ(x2), 1〉, 〈σ(x2), 1, σ(x3), 1〉, 〈σ(x3), 1, σ(x1), 1〉}
is a ranking function for A2.

Procedure: main(A, i)
Input: a stable SCS A with contexts of length i
if there is a loop in A then

raise an exception for non-termination;

foreach non-trivial SCC S do
(rankS ,witnessS , CS , kS ) := mainSCC (S , i);

if A has a non-trivial SCC then
let k := 1 + max{kS | non-trivial SCC S of A};
let witness := witnessS and C := CS for some S that achieves the maximum;

else
let k := 0;
choose an arbitrary location witness ∈ Locs(A) and let C := ε;

compute a reverse topological ordering rto for A;
return (union(rto, (rankS )SCC S ),witness, C, k);

Algorithm 1. the main algorithm main(A, i)

Procedure: mainSCC (A, i)
Input: a strongly connected stable SCS A with contexts of length i
let B := DeleteDescending(Context(A));
let (rankB,witnessB, CB, kB) := main(B, i + 1);
let (�, C) := witnessB and 〈C1, . . . , CkB〉 := CB;
return (fold(sum(B) ⊕ rankB), (�, tail(C)), 〈last(C), C1, . . . , CkB〉, kB);

Algorithm 2. the helper algorithm mainSCC (A, i)

Lemma 10. Let A be a stable SCS with proper contexts of length i. Algorithm
main(A, i) terminates.

Proof. Let n = |Var |. We proceed by induction on n−i. Base case: i = n. Assume
A has a non-trivial SCC S . We choose some location (�, C) ∈ Locs(S ). Let π be
some cyclic path for (�, C) in S . By definition of an SCS with contexts, we have
sucπ(last(C)) = last(C). Because C is proper and i = n, we have last(C) = Var .
Thus π is a loop for (�, C) and main terminates with an exception. Otherwise A
does not have a non-trivial SCC S . Then main terminates because there is no
recursive call.

Induction step: i < n. If A has a loop, main terminates with an exception.
Otherwise A does not have a loop. If there is no non-trivial SCC S , main ter-
minates because there is no recursive call. Assume there is a non-trivial SCC S .
By definition B := DeleteDescending(Context(A)) has contexts of length i + 1.
Moreover, B has proper contexts, because A does not have a loop. Thus, we
can infer from the induction assumption that the recursive call main(B, i + 1)
terminates.
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Procedure: ranking(A)
Input: an SCS A with Locs(A) = locs
let B be the SCS obtained from A by setting Locs(B) := {(�, ε) | � ∈ Locs(A)}
and Edges(B) = {(�1, ε)

T−→ (�2, ε) | �1
T−→ �2 ∈ Edges(A)};

return main(B, 0);

Algorithm 3. the wrapper algorithm ranking(A)

The proof of the following lemma is given in the appendix.

Lemma 11. If ranking(A) terminates with an exception, then A does not
terminate.

Let n = |Var | and let m = |locs|. We say a lexicographic ranking function
rank is N,n,m-bounded, if for every 〈x1, . . . , xl〉 in the image of rank we have
xi ∈ [0, nN ] for every odd index i and xi ∈ [1, 2mn!] for every even index i.

Theorem 1. Assume (rank , , , k) := main(A, ). Then rank is a N,n,m-
bounded ranking function for A with rank 2k + 1.

Proof. We note for later use that by Lemma 2 we have

|Locs(A)| ≤ 2mn! . (∗)

The proof proceeds by induction on k. Base case k = 0: Then A does
not have non-trivial SCCs, otherwise we would have k ≥ 1. Thus rank =
union(rto, (rankS )SCC S ) = rto. By Lemma 8 rank is a ranking function for
A with rank 1. By (*) we have that the image of rto is contained in the interval
[1, 2mn!]. Thus rank is N,n,m-bounded.

Induction case k ≥ 1: A has non-trivial SCCs, otherwise we would have
k = 0. Let k := max{kS | non-trivial SCC S of A} (*). Let S be a non-trivial
SCC of A. We consider the recursive call (rankS , , , kS ) := mainSCC (S , ). Let
A′ := Context(S ) and B := DeleteDescending(A′). We consider the recursive
call (rankB, , , kB) := main(B, ) in mainSCC . By (*) we have kB = kS < k.
Thus we can apply the induction assumption: we obtain that rankB is a N,n,m-
bounded ranking function for B with rank 2kB + 1. Let rankA′ = sum(B) ⊕
rankB. We note that the image of sum(S ) is contained in the interval [0, nN ]
for valuations σ over [0, N ]. By Lemma 9 rankA′ is a ranking function for A′

with rank 2kB + 2. Let rankS = fold(rankA′). By Lemma 6 rankS is ranking
function for S with rank 2kB + 2 ≤ 2k. Because this holds for every non-trivial
SCC S of A, we infer by Lemma 8 that rank = union(rto, (rankS )SCC S is a
ranking function for A with rank 2k + 1. By (*) we have that the image of rto
is contained in the interval [1, 2mn!]. Thus rank is N,n,m-bounded.
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Corollary 1. Let A be a stable SCS with (rank , , , k) := ranking(A). Then A
has complexity O(Nk).

Proof. By Theorem 1 rank is a N,n,m-bounded ranking function for A with
rank 2k + 1. Thus the image of rank is of cardinality O(Nk). Because the value
of rank needs to decrease along every edge in a trace, the length of the longest
trace of A is of asymptotic order O(Nk).

Theorem 2. Let A be a strongly connected stable SCS. Assume ( ,witness, C,
k) := main(A, ). Then there is a sequence of cyclic paths Loop1, . . . ,Loopk in
A such that witness, C and Loop1, . . . ,Loopk is a for-loop for A with size k.

Proof. We proceed by induction on k. Base case k = 0: A does not have non-
trivial SCCs, otherwise we would have k ≥ 1. Let witness ∈ Locs(A) be the
location chosen by main. Clearly witness and C := ε is a for-loop with size 0.

Induction case k ≥ 1: A has non-trivial SCCs, otherwise we would
have k = 1. For each non-trivial SCC S we define ( ,witnessS , CS , kS ) :=
mainSCC (S , i). We consider the non-trivial SCC S that is selected by
main for the maximum in k := 1 + max{kS | non-trivial SCC S of A}.
Let B := DeleteDescending(Context(S )). We consider the recursive call
( ,witnessB, CB, kB) := main(B, ) in mainSCC (S , ). Because of kB = kS = k−1
we obtain from the induction assumption that there is a sequence of paths
Loop1, . . . ,LoopkB in B such that witnessB, CB and Loop1, . . . ,LoopkB is a for-
loop for B with size kB. Let (�, C) := witnessB and let 〈C1, . . . , CkB〉 := CB.
We set C = last(C). By Lemma 4 there is a cyclic path Loop for (�, C) in
Context(S ) with sucLoop(Var) = C (1). Because every Loopi is a cyclic path
in B = DeleteDescending(Context(S )) we have sucLoopi

(C) = C (2) and
x � y ∈ Loopi and x, y ∈ C implies � = ≥ for all x, y ∈ Var (3). We have
Ci � Cj for all 0 ≤ i < j ≤ kB, setting C0 = ∅, because CB is a proper context.
Moreover, sucLoopi

(Var) = Ci for all i ∈ [1, kB]. From sucLoopi
(C) = C and

Proposition 1 we get C = sucLoopi
(C) ⊆ sucLoopi

(Var) = Ci. No cyclic path
Loopi is a loop in B, otherwise main(B, ) would have terminated with an excep-
tion. Thus, C �= Ci and 〈C,C1, . . . , CkB〉 is a proper context (4). From (1) - (4)
we get that (�, C), 〈C,C1, . . . , CkB〉 and Loop,Loop1, . . . ,LoopkB is a for-loop for
Context(S ) with size k = kB + 1.

Finally, we obtain the cyclic paths Loop′,Loop′
1, . . . ,Loop′

kB for (�, tail(C))
in A from the cyclic paths Loop,Loop1, . . . ,LoopkB for (�, C) in Context(S )
by removing the last component from the context for every location. Then
(�, tail(C)), 〈C,C1, . . . , CkB〉 and Loop′,Loop′

1, . . . ,Loop′
kB is a for-loop for A

with size k = kB + 1.

From Theorem 2 and Lemma 5 we obtain the following corollary:

Corollary 2. Let A be an SCS with ( ,witness, C, k) := ranking(A). Then A
has complexity Ω(Nk).

Let A be an SCS. In the following we describe a PSPACE algorithm that either
returns that A does not terminate or that computes a number k ∈ [1, n] such
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that A has complexity Θ(Nk). We first describe a nondeterministic PSPACE
algorithm P that decides whether A has a for-loop for some given size k.
P nondeterministically guesses a location � and a context 〈C1, . . . , Ck〉. P further
guesses k cyclic paths Loop1, . . . ,Loopk for location � and then checks that (1)
sucLoopi

(Cj) = Cj for all 1 ≤ j ≤ i ≤ k, (2) x � y ∈ Loopj and x, y ∈ Ci implies
� = ≥ for all 1 ≤ j < i ≤ k and all x, y ∈ Var , and (3) sucLoopi

(Var) = Ci for
all 1 ≤ i ≤ k. If all checks hold, P returns true, otherwise P returns false. � and
〈C1, . . . , Ck〉 are of linear size. Loop1, . . . ,Loopk are of exponential size in the
worst case. However, Loop1, . . . ,Loopk do not have to be constructed explicitly.
Rather, the cyclic paths Loop1, . . . ,Loopk can be guessed on the fly during the
checks (1), (2) and (3). For illustration, we consider the construction of Loopi

and the check (1): P maintains a location �′ and a set Sj for each 1 ≤ j ≤ i.
P initializes these variables by �′ := � and Sj := Cj for each 1 ≤ j ≤ i. P

repeats the following operation: P guesses some edge �′ T−→ �′′ of A, computes
Sj := sucT (Sj) for each 1 ≤ j ≤ i and sets �′ := �′′. P stops this iteration,
if �′ = � and Sj = Cj for each 1 ≤ j ≤ i. Clearly, P can be implemented in
polynomial space. The checks (2) and (3) can be implemented in a similar way
and need to be performed simultaneously with check (1) in order to make sure
the same cyclic paths Loopi satisfy all three conditions. By Savitch’s Theorem P
can be turned into a deterministic PSPACE algorithm, which we will also denote
by P for convenience. Similarly, we also construct a PSPACE algorithm Q that
decides termination by searching for a loop that witnesses non-termination of A.
The overall PSPACE algorithm R first calls Q on A and checks whether A ter-
minates. If A terminates, R iteratively calls P with increasing values for k on A.
R returns the value k such that P returns true for k and false for k + 1. In the
following we state the correctness of algorithm R:

Theorem 3. Let A be an SCS. It is decidable in PSPACE, whether A does not
terminate or has complexity Θ(Nk).

Proof. If ranking(A) returns with an exception, then there is a loop that
witnesses non-termination. Thus, algorithm Q can find a loop that wit-
nesses non-termination. Assume ranking(A) terminates normally and returns
(rank ,witness, C, k). By Theorem 2 there is a sequence of paths Loop1, . . . ,Loopk

in A such that witness, C and Loop1, . . . ,Loopk is a for-loop with size k. By
Lemma 5 A has complexity Ω(Nk). By Corollary 1 A has complexity O(Nk).
Then, A cannot have a for-loop with size k + 1 because such a for-loop would
imply a trace of length Ω(Nk+1) by Lemma 5. Thus, algorithm P can find a
for-loop with size k but no for-loop of size k + 1.

A Proof of Lemma 5

Proof. Let l1, . . . , lk be the length of the cyclic paths Loop1, . . . ,Loopk. We set
z = max{l1, . . . , lk} and t = N/(2nz). We set t = N/(2nz). Because we are
interested in the asymptotic behavior w.r.t. N we can assume N ≥ 8nz.
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We define a path π = ((· · · (Loopk)t · · ·Loop2)tLoop1)t. We note that π
has length Ω(Nk). We define a set I = [0, t]k and consider the lexico-
graphic order > ⊆ I × I, where (i1, . . . , ik) > (j1, . . . , jk), if there is a
1 ≤ a ≤ k such that ia > ja and ib = jb for all 1 ≤ b < a. We
note that > is a linear order on I. We define I1 = I \ {(0, . . . , 0)}. We
denote the predecessor of an element e ∈ I1 w.r.t. to > by pred(e). We use
I1 to enumerate the cyclic paths in π, i.e., π = π(t, . . . , t, t)π(t, . . . , t, t −
1) · · · π(t, . . . , t, 0)π(t, . . . , t − 1, t) · · · π(0, . . . , 0, 2)π(0, . . . , 0, 1). We note that by
the above definitions π(i1, · · · , ik) = Loopd, if and only if id �= 0 and iu = 0 for
all d < u ≤ k.

We define a function bwT : ValN → ValN that takes an SCT T and a
valuation σ ∈ ValN and returns a valuation σ′ with σ′(x) = σ(y)+1, if x > y′ ∈
T , σ′(x) = σ(y), if x ≥ y′ ∈ T , and σ′(x) = 0, otherwise.

We will recursively define valuations σ(e) for e ∈ I and traces ρ(e) for e ∈ I1.
We define σ(0, . . . , 0)(x) = 0 for all x ∈ Var . Let e ∈ I1. Let d ∈ [1, k] be chosen

such that π(e) = Loopd. Let �
Tld−−→ �ld−1

Tld−1−−−−→ · · · �1 T1−→ � be the path denoted

by Loopd. We define the trace ρ(e) by (�, σld)
Tld−−→ (�ld−1, σld−1) · · · (�1, σ1)

T1−→
(�, σ0), where σ0 := σ(pred(e)) and σi+1 := bwTi+1(σi) for all 0 < i ≤ ld. We set
σ(e) := σld and σi(e) := σi for all 0 < i < ld.

Let x ∈ Var be some variable. We define c(x) = u, if x ∈ Cu \ Cu−1, setting
C0 = ∅, or c(x) = ⊥, if there is no u with x ∈ Cu. Let (i1, · · · , ik) ∈ I. We
claim that

σ(i1, · · · , ik)(x) ≤ iu · z + (u − 1) · N/n + N/(8n),
if there is a u = c(x) �= ⊥, and

σ(i1, · · · , ik)(x) ≤ 3N/(4n) + (n − 1) · N/n, if c(x) = ⊥.

(*)

We proceed by induction on e = (i1, · · · , ik). Clearly the claim holds for e =
(0, . . . , 0). Now consider e ∈ I1. Let d ∈ [1, k] be chosen such that π(e) = Loopd.
Let (j1, . . . , jk) = pred(i1, · · · , ik). We have iu = ju for all 1 ≤ u < d and
jd + 1 = id. Let x ∈ Var be some variable. Assume there is an y ∈ Var with
x�y ∈ Loopd. Let u = c(x) and v = c(y). By the definition of a for-loop we have
sucLoopd

(Var) = Cd, and thus ⊥ �= v ≤ d. By induction assumption, we have
σ(j1, . . . , jk)(y) ≤ jv · z + (v − 1) · N/n. If 1 ≤ u ≤ d, we have sucLoopj

(Cu) =
Cu and sucLoopj

(Cu−1) = Cu−1 by the definition of a for-loop. Because A is
deterministic and 〈C1, . . . , Ck〉 is a proper context, we get u = v. For 1 ≤ u <
d we have � = ≥ by the definition of a for-loop. We get σ(i1, . . . , ik)(x) =
σ(j1, . . . , jk)(y) ≤ jv ·z +(v −1) ·N/n+N/(8n) = iu ·z +(u−1) ·N/n+N/(8n).
If u = d we have σ(i1, . . . , ik)(x) ≤ σ(j1, . . . , jk)(y) + z ≤ jv · z + (v − 1) · N/n +
N/(8n)+z = (jd +1) ·z+(d−1) ·N/n+N/(8n) = iu ·z+(u−1) ·N/n+N/(8n).
Assume that 1 ≤ u ≤ d does not hold. If u �= ⊥ we have d < u ≤ k, and thus
σ(i1, . . . , ik)(x) ≤ σ(j1, . . . , jk)(y) + z ≤ jv · z + (v − 1) · N/n + z + N/(8n) ≤
N/(2n)+(v−1)·N/n+z+N/(8n) ≤ (u−1)·N/n ≤ iu ·z+(u−1)·N/n+N/(8n).
If u = ⊥, we have σ(i1, . . . , ik)(x) ≤ σ(j1, . . . , jk)(y)+z ≤ jv ·z+(v−1)·N/n+z+
N/(8n) ≤ N/(2n)+(v−1)·N/n+z+N/(8n) = (3N/4n)+(n−1)·N/n. Otherwise,
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there is no y with x�y ∈ Loopj . We have σ(i1, . . . , ik)(x) ≤ z ≤ N/(8n). We have
established (*).

By (*) we have σ(e)(x) ≤ N − N/(4n) ≤ N for all e ∈ I and x ∈ Var .
Moreover, we have that σi(e)(x) ≤ N − N/(4n) + i ≤ N for all e ∈ I1 and
0 < i < ld. Thus,

ρ(t, . . . , t, t)ρ(t, . . . , t, t − 1) · · ·ρ(t, . . . , t, 0)
ρ(t, . . . , t − 1, t) · · · ρ(0, . . . , 0, 2)ρ(0, . . . , 0, 1)

is a trace over [0, N ] of length Ω(Nk).

B Proof of Lemma 11

Proof. We assume the exception has been raised in some recursive call
main(A, i). We have that there is a loop Loop for some location (�, C) of A
such that (1) sucLoop(Var) = last(C) and (2) x � y ∈ Loop and x, y ∈ last(C)
imply that � = ≥ because A is stable.

We define a function bwT : ValN → ValN that takes an SCT T and a
valuation σ ∈ ValN and returns a valuation σ′ with σ′(x) = σ(y)+1, if x > y′ ∈
T , σ′(x) = σ(y), if x ≥ y′ ∈ T , and σ′(x) = 0, otherwise.

Let �l
Tl−→ �l−1

Tl−1−−−→ · · · �1 T1−→ �0 with � = �l = �0 be the path denoted
by Loop. We define a valuation σ0(x) = 0 for all x ∈ Var . We define
a trace ρ0 by (�, σl)

Tl−→ (�l−1, σl−1) · · · (�1, σ1)
T1−→ (�, σ0), where σi+1 :=

bwTi+1(σi) for all 0 < i ≤ l. Moreover, we define a trace ρ by (�, σ2l)
Tl−→

(�2l−1, σ2l−1) · · · (�l+1, σl+1)
T1−→ (�, σl), where σi+1 := bwTi+1(σi) for all l < i ≤

2l. By induction we get σi ∈ [0, i] for all 0 ≤ i ≤ 2l.
We will show σ2l = σl. This is sufficient to show that ρω = ρρ · · · is an infinite

trace of A with valuations over [0, 2l].

We denote by Loop|i = �
Tl−→ �l−1

Tl−1−−−→ · · · �i+1
Ti+1−−−→ �i the prefix of Loop

until position i. We claim that σl+i(x) = σi(x) for all x ∈ sucLoop|i(Var). The
proof proceeds by induction on i. Base case i = 0: From (1) and (2) we get
that σl(x) = σ0(x) = 0 for all x ∈ sucLoop(Var) = last(C). Induction step:
We consider some x ∈ sucLoop|i(Var). Assume x does not have a successor
in Ti. Then σl+i(x) = σi(x) = 0. Assume x does have a successor in Ti, i.e.,
x � y ∈ T for some y ∈ Var . Then we have y ∈ sucLoop|i−1(Var) and thus
σl+(i−1)(y) = σi−1(y) by induction assumption. By the definition of bwT we get
σl+i(x) = bwT (σl+(i−1))(x) = bwT (σi−1)(x) = σi(x).
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Part I. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014)

7. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

8. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

9. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

10. Vidal, G.: Quasi-terminating logic programs for ensuring the termination of partial
evaluation. In: PEPM, pp. 51–60 (2007)

11. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)



Author Index

Achilleos, Antonis 27

Babenko, Maxim A. 53
Barash, Mikhail 67
Benzmüller, Christoph 398
Bova, Simone 80
Buss, Samuel R. 1

Carapelle, Claudia 94
Cassaigne, Julien 109
Cohen, Nathann 123

Dabrowski, Konrad K. 143
de Oliveira Oliveira, Mateus 157
Diekert, Volker 173
Droste, Manfred 189

Edelkamp, Stefan 204
Elmasry, Amr 204

Feng, Shiguang 94

Golovach, Petr A. 143
Gonçalves, Daniel 123

Itsykson, Dmitry 219

Jirásek, Jozef Štefan 231
Jirásková, Galina 231

Kamareddine, Fairouz 262
Karhumäki, Juhani 109
Kartzow, Alexander 94
Karzanov, Alexander V. 53
Katajainen, Jyrki 204
Kim, Eunjung 123
Knop, Alexander 283
Kozachinskiy, Alexander 296

Lohrey, Markus 94
Lonati, Violetta 310

Mandrioli, Dino 310
Martin, Florent 173
Maslennikova, Marina 325
Milovanov, Alexey 339

Narayanaswamy, N.S. 350

Okhotin, Alexander 67

Panella, Federica 310
Paul, Christophe 123
Paulusma, Daniël 143
Penelle, Vincent 364
Perevoshchikov, Vitaly 189
Podolskii, Vladimir V. 7
Pradella, Matteo 310

Rahul, C.S. 350
Rodaro, Emanuele 325

Saarela, Aleksi 109
Sau, Ignasi 123
Sénizergues, Géraud 173
Silva, Pedro V. 173
Slabodkin, Mikhail 219
Slivovsky, Friedrich 80
Sokolov, Dmitry 219
Szabari, Alexander 231

Thilikos, Dimitrios M. 123, 143

van ’t Hof, Pim 143
Ventura, Daniel 262

Weller, Mathias 123
Wells, Joe B. 262
Woltzenlogel Paleo, Bruno 398

Zimmermann, Martin 412
Zuleger, Florian 426


	Preface
	Organization
	Invited Talks
	A Theory of Regular Queries
	References

	Propositional Proofs in Frege and Extended Frege Systems (Abstract)
	The Ubiquity of Database Dependencies
	Circuit Complexity Meets Ontology-Based Data Access

	Contents
	Propositional Proofs in Frege and Extended Frege Systems (Abstract)
	1 Introduction
	References

	Circuit Complexity Meets Ontology-Based Data Access
	1 Introduction
	2 Boolean Circuits and Other Computational Models
	3 Theories, Queries and Rewritings
	4 Rewriting Size Lower Bounds: General Approach
	5 Hypergraph Programs: Origination
	6 Hypergraph Programs: Complexity
	References

	NEXP-Completeness and Universal Hardness Results for Justification Logic
	1 Introduction
	2 Background
	2.1 Syntax and Axioms
	2.2 Semantics
	2.3 The *-Calculus

	3 A Universal Lower Bound
	4 A NEXP-Complete Justification Logic
	5 Final Remarks
	References

	A Combinatorial Algorithm for the Planar Multiflow Problem with Demands Located on Three Holes
	1 Introduction
	2 Preliminaries
	3 Verifying the Cut Condition
	4 Verifying the (2,3)-Metric Condition
	5 Algorithm
	References

	Generalized LR Parsing for Grammars with Contexts
	1 Introduction
	2 Grammars with Left Contexts
	3 Data Structure and Operations on It
	4 Automaton Guiding a Parser
	5 Implementation and Complexity
	6 Conclusion
	References

	On Compiling Structured CNFs to OBDDs
	1 Introduction
	2 Preliminaries
	3 Polynomial Time Compilability
	3.1 The Few Subterms Property
	3.2 Variable Convex CNF Formulas
	3.3 Bounded Treewidth CNF Formulas
	3.4 Almost Few Subterms

	4 Polynomial Size Incompilability
	4.1 Many Subfunctions
	4.2 Bounded Degree

	5 Conclusion
	References

	Satisfiability of ECTL* with Tree Constraints
	1 Introduction
	2 Preliminaries
	2.1 Structures
	2.2 Tree-Like Structures
	2.3 Logics
	2.4 Constraint ECTL* and Definable Homomorphisms

	3 Constraint ECTL* over Semi-Linear Orders
	4 Constraint ECTL* over Ordinal Trees
	5 Trees Do Not Have the EHD-Property
	5.1 The WMSO+B-Ehrenfeucht-Fraïssé-Game
	5.2 The Embeddable and the Unembeddable Triple-U-Structures

	References

	On Growth and Fluctuation of k-Abelian Complexity
	1 Introduction
	2 Preliminaries
	3 Characterizing an Equivalence Class
	4 Lemmas About k-Abelian Equivalence
	5 k-Abelian Complexities for Different k
	6 Fluctuating Complexity
	References

	A Polynomial-Time Algorithm for Outerplanar Diameter Improvement
	1 Introduction
	2 Description of the Algorithm
	2.1 Reducing the Input Graph When There Are Cut Vertices
	2.2 Dealing with 2-Vertex Separators
	2.3 The Algorithm for Connected Outerplanar Graphs
	2.4 The Algorithm for Disconnected Outerplanar Graphs

	3 Conclusions and Further Research
	References

	Editing to a Planar Graph of Given Degrees
	1 Introduction
	2 Preliminaries
	3 The Polynomial Kernels
	4 Conclusions
	References

	On the Satisfiability of Quantum Circuits of Small Treewidth 
	1 Introduction
	2 Preliminaries
	2.1 Quantum Circuits
	2.2 Tree Decompositions and Treewidth

	3 Abstract Networks
	4 Tensor Networks
	4.1 Mapping Quantum Circuits with Initialized Inputs to Tensor Networks
	4.2 Computing the Value of a Tensor Network

	5 Feasibility Tensor Networks
	6 Approximating the Value of a Feasibility Tensor Network
	6.1 Tensor -Nets
	6.2 Approximation Algorithm

	7 Conclusion and Open Problems
	References

	Equations over Free Inverse Monoids with Idempotent Variables
	References

	A Logical Characterization of Timed Pushdown Languages
	1 Introduction
	2 Timed Pushdown Automata
	3 Timed Matching Logic
	4 Visibly Pushdown Languages
	5 Decomposition of Timed Pushdown Automata
	6 Definability Equals Recognizability
	7 Conclusion and Future Work
	References

	An In-Place Priority Queue with O(1) Time for Push and lgn + O(1) Comparisons for Pop
	1 Introduction
	2 Strong Heaps: Adding More Order
	3 Lazy Heaps: Buffering Insertions
	4 Strengthened Lazy Heaps: Putting Things Together
	5 Conclusions
	References

	Resolution Complexity of Perfect Matching Principles for Sparse Graphs
	1 Introduction
	1.1 Known Results
	1.2 Our Results

	2 Preliminaries
	3 Perfect Matching Principle
	3.1 Perfect Matching Principle for Expanders
	3.2 Expanders
	3.3 Proof of Theorem 3

	4 Existence of Subgraphs with a Given Degree Sequence
	4.1 Corollaries

	References

	Operations on Self-Verifying Finite Automata
	1 Introduction
	2 Preliminaries
	3 SVFA-to-DFA Conversion and Minimal SVFAs
	4 Lower Bound Methods for SVFAs
	5 Boolean Operations
	6 Reversal
	7 Star
	8 Left Quotient
	9 Right Quotient
	10 Concatenation
	11 Conclusions
	References

	Automath Type Inclusion in Barendregt's Cube
	1 Introduction
	2 Notions of Reduction and Typing
	3 Desirable Properties
	4 Connecting the Various Extensions of the Cube
	4.1 The i-Cube: -Reduction and Unreduced Typing
	4.2 Completing the a- and ai-Cubes: Abbreviations without/with -Reduction and Unreduced Typing
	4.3 The -Cube
	4.4 The a-Cube: Allowing -Reduction and Abbreviations
	4.5 The Q-Cube

	5 Conclusion
	A Proofs
	References

	Circuit Lower Bounds for Average-Case MA
	1 Introduction
	2 Definitions
	3 Lower Bounds for 
	4 , , and Obstacles
	References

	Making Randomness Public in Unbounded-Round Information Complexity
	1 Introduction
	2 Preliminaries
	2.1 Information Theory
	2.2 Communication Protocols
	2.3 Information Complexity

	3 Simulation of One-Bit Protocols
	4 The Generalization to All Protocols
	References

	First-Order Logic Definability of Free Languages
	1 Introduction
	2 Preliminaries
	3 Examples and First Properties of Free Languages
	4 First-Order Logic Definability of Free Languages
	5 Conclusions
	References

	Representation of (Left) Ideal Regular Languages by Synchronizing Automata
	1 Preliminaries
	2 Lower Bounds for the Reset Complexity of Principal Ideal Languages
	3 A Lifting Property for Strongly Connected Synchronizing Automata
	4 Some Properties of the Automaton Aw
	5 Representation of Regular Languages by Synchronizing Automata
	References

	Some Properties of Antistochastic Strings
	1 Introduction
	2 Preliminaries
	3 Antistochastic Strings and Their Properties
	3.1 A ``Holographic'' Property of Antistochastic Strings
	3.2 Antistochastic Strings and List Decoding from Erasures
	3.3 Antistochastic Strings and Total Conditional Complexity

	References

	Approximation and Exact Algorithms for Special Cases of Connected f-Factors
	1 Introduction
	2 Structural Properties Related to Connected f-Factors
	2.1 Properties of Alternating Circuits and f-Factors
	2.2 On the Edge-Connectivity of Undirected Graphs

	3 Deciding Connected f-Factors When f(v)n/3
	3.1 Finding the Minimum Weighted Connected f-Factor

	4 The Case of Metric Weights and f(v) nc
	References

	Rewriting Higher-Order Stack Trees
	1 Introduction
	2 Definitions and Notations
	3 Higher-Order Stack Trees
	3.1 Higher-Order Stacks
	3.2 Stack Trees
	3.3 Stack Tree Rewriting

	4 Operation Automata
	5 Rewriting Graphs of Stack Trees
	6 Perspectives
	A Properties of Operation Automata
	B Normalised Automata
	C Finite Set Interpretation
	C.1 Notations and Technical Formulæ
	C.2 The Formula 
	C.3 The Formula D Associated with an Operation
	C.4 The Formula  Associated with An Automaton

	D Example of a Language
	References

	Interacting with Modal Logics in the Coq Proof Assistant
	1 Introduction
	2 The Embedding of Modal Logics in Coq
	3 Tactics for Modalities
	4 Two Simple Modal Lemmas
	5 Modal Logics Beyond K
	6 Gödel's Ontological Argument for God's Existence
	7 Conclusions
	References

	Delay Games with WMSO+U Winning Conditions
	1 Introduction
	2 Definitions
	3 An Equivalence Relation for Max-Automata
	4 Reducing Delay Games to Delay-Free Games
	5 Conclusion
	References

	Asymptotically Precise Ranking Functions for Deterministic Size-Change Systems
	1 Introduction
	1.1 Related Work

	2 Size-Change Systems (SCSs)
	3 Adding Contexts to SCSs
	4 For-Loops
	5 Ranking Functions for SCSs
	6 Main Algorithm
	References

	Author Index



