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Abstract. The problem of trajectory planning and obstacle avoidance in
redundant robots is addressed in this paper. Four variants of Particle Swarm
Optimization (PSO) and a Differential Evolution (DE) algorithm are proposed to
solve this problem. Simulation experiments on a 5 degree-of-freedom
(DOF) robot manipulator in an environment with static obstacles are con-
ducted. The manipulator is required to move from a start position to a goal
position with minimum error while avoiding collision with the obstacles in the
workspace. The performance of the proposed algorithms is compared with the
results reported in the literature and the comparative results are presented. It is
observed that qPSO-C performs better in free space and PSO-C performs better
in environment with obstacles in terms of minimizing error average convergence
time. The performance of DE improves when the number of obstacles increases.

Keywords: Trajectory planning � Obstacle avoidance � Redundant robot �
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1 Introduction

Robot manipulators are extensively used in repetitive tasks which require excellent
accuracy and precision. These robot manipulators may have several degrees of freedom
while it may also require avoiding collisions with obstacles which may exist in the
surrounding environment. There are two common approaches for controlling such
robot manipulators: forward kinematics and inverse kinematics. Forward kinematics
approach can be better realized in joint space where the changes in joint angle values
would immediately affect end-effector position. In contrary, inverse kinematics can be
viewed as Cartesian space mapping problem where exact joint angle values are
required to be computed according to the input of desired end-effector position. Thus
heuristic approach may offer rich dividends in tackling this issue. Kim and Lee [1]
proposed a hybrid algorithm with fuzzy logic and the procedure does not require
solving the inverse kinematics of manipulators. Behesti and Tehrani [2] also used fuzzy
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logic concept and obstacle avoidance. Nearchou [3] proposed a genetic algorithm to
determine the solution set of joint angles. Secară and Vlădăreanu [4] presented a strategy
for obstacles avoidance of a redundant manipulator based on an iterative genetic
algorithm. The objective of the strategy is to simultaneously minimize the end-effector
location error and the manipulator total joint displacement while the collision with the
obstacles is avoided. Zhang and Wang [5] developed a recurrent neural network and
applied for kinematic control of redundant manipulators with obstacle avoidance
capability. Differential Evolution [6] has also been used in robot manipulator problems
[7, 8]. Particle Swarm Optimization which uses a swarm, moving in a continuously
adjusting velocity towards the global best caught the eye of many researchers [9–11] as a
possible route in achieving suitable algorithm for trajectory planning and obstacle
avoidance. When enhancing the performance of the algorithm, issues such as avoiding
singularities [12] and including a feedback using image processing was also addressed
in [13, 14]. Goh and Ponnambalam [15] tested the performance of four variants of PSO
for obstacle avoidance control of redundant robots.

The aim of this paper is to further improve the performance of the variants proposed
by Goh and Ponnambalam [15] and also to propose a differential evolution algorithm.
The paper is organized as follows. Section 2 presents the problem statement. Sections 3
and 4 present the implementation details of PSO and DE respectively. Section 5 details
the parameter fine tuning for PSO and DE. Results and discussion are presented in
Sect. 6. Conclusion is presented in Sect. 7.

2 Problem Statement

The objective of this paper is to propose DE and PSO to find Collision-free configu-
ration of a 5-DOF planar redundant robot manipulator that allows the robot end effecter
to travel from an initial position to the desired goal point with minimal error (greatest
accuracy). The obstacles are static and presented as polygon in which closed loop of
straight lines is formed. The performance of the proposed DE and the variants of PSO
are evaluated.

2.1 Kinematics of a Robot Manipulator

A standard method introduced by Denavit and Hartenberg (D-H) [16] is useful to
define joint matrices and link matrices to standardize the coordinate frames for spatial
linkages. In the D-H convention, coordinate frames are attached to the joints between
two links such that one transformation is associated with the joint and the second is
associated with the link. This concept will allow the user to define the entire robot
kinematics with a strict but yet simple representation. With respect to the robot
manipulator, the corresponding D-H table is presented in Table 1. When the D-H table
is available, devising the corresponding transformation matrix is a simple task. Take
one row at a time and substitute appropriately those values to the standard transfor-
mation matrix which is given in Fig. 1.
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Using the above transformation matrix if all the link lengths and joint angles are
known, by doing the matrix multiplication as shown in Fig. 2, position of the end
effecter could be calculated.

3 Objective Function and Constraint

The main objective of this paper is to minimize the positional error between the
end-effector and goal point. Also, the secondary objective is to satisfy the constraint of
collision-free positioning of the robot manipulator. Considering the ability for robot to
avoid collision with obstacle in workspace during movement to goal point, an addi-
tional weight called ‘collision’ is added to the error equation. Considering the ability
for robot to avoid collision with obstacle in workspace during movement to goal point,
this is included in the objective function with the property shown in Eq. (1).

collision ¼ 1; if collision - free movement

0; otherwise

(
ð1Þ
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Fig. 1. The standard transformation matrix
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Fig. 2. Transformation matrices to obtain end effecter position
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Simple logic is used to check if any of the links are colliding with any boundary of
an obstacle. The process is carried out by iteratively selecting each link and by testing if
the coordinates of the link cut through the area belongs to the obstacle. If it cuts
through, then an additional weight is added to the error function which will result the
specific joint angle combination to be disregarded during the search process.

The objective function is to minimize the error and to avoid collision. The objective
function is shown in Eq. (2).

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TargetX � CurrentXð Þ2þ TargetY � CurrentYð Þ2

q
þ Collution ð2Þ

Where Targetx and Cuurentx are the x-cordinastes of the goal position and the
current position, and Targety and Cuurenty are the y-cordinastes of the goal position
and the current position of the manipulator.

Singularities of the kinematic mapping, which determines the position of the end–
effecter in terms of the manipulator’s joint variables, may impede control algorithms,
lead to large joint velocities, forces and torques and reduce instantaneous mobility.
However they can also enable fine control, and the singularities exhibited by trajec-
tories of the points in the end–effecter can be used to mechanical advantage.

Strictly speaking singularity can be simply defined as two links working as one
link, which results the manipulator to have a lesser degree of freedom. Avoiding
singularities is a necessity in a robotic manipulator.

Joint angle values are checked after each iteration and if the joint angle lie between
−2.5 and 2.5°, it is randomly set to a different value to avoid singularities.

4 Differential Evolution

Differential Evolution [6] is a metaheuristic search algorithm tries to optimize the
candidate solution space by iteratively making modifications to the existing solution.
Even though the most optimum answer is not guaranteed, it is possible to obtain a
solution with an acceptable error margin.

4.1 Generation of Initial Solution

Initial solution space generated is common to both PSO and DE algorithms. User can
define the number of solution in a sample space but number of members in one solution
is fixed as the numbers of joint angles which is fixed as five. Keeping practical aspects
such as maximum and minimum servo angle, solution space should be randomly
generated to accommodate the range of the servo motor.

Given below are sample strings (target vectors) with angles generated randomly
within a specified range.
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½65:74 12:77 �51:69 24:44 76:73�
½15:13 �76:71 �64:62 35:47 64:00�

: : : : :
½�60:85 41:96 71:60 �45:14 �14:49�

The three main steps in DE are Mutation, Crossover and Selection and the
implementation details are explained below.

4.1.1 Mutation
Mutation operation is applied to every individual in the population. Equation (1) is
used to do mutation.

Ma ¼ Ir1 þMF � Ir2 � Ir3ð Þ ð1Þ

Where, Ma is the donor vector, MF is the mutation factor and Ir1, Ir12 and Ir3 are
randomly selected target vectors.

4.1.2 Crossover
Crossover operation is performed taking one joint angle at a time in to consideration.
A random number is generated and if it is larger than the crossover factor, corre-
sponding crossover vector point will be replaced by the donor vector point. Otherwise
crossover vector point will use the value of the target vector point. Equations (2), (3)
and (4) are used for crossover.

K ¼ rand !2 0; 1½ � ð2Þ

K�CF;Ca;b ¼ Ma;b ð3Þ

K\CF;Ca;b ¼ Ia;b ð4Þ

Where, K is the random number, Ma,b is the donor vector, Ia,b is the target vector,
CF is the crossover factor and Ca,b is the trail Vector Point.

4.1.3 Selection
The selection operator of DE adopts a one-to-one competition between the target vector
and the trial vector. If the objective function value of the trial vector is less than or
equal to that of the target vector, then the trial vector will survive into the next
generation, otherwise, the target vector will enter the next generation.

5 Particle Swarm Optimization

Particle Swarm Optimization [17] is an optimization method which uses an existing
candidate solution iteratively to achieve the solution with the required quality. In PSO
existing solution will move in the search space according to a simple mathematical
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formula over the particles position and velocity, up until it finds the optimal solution. In
addition each particle will remember the best solution achieved (personnel best) and
exchange information with other particles to determine the best solution (global best).
Particles will move into a new position by adjusting its velocity in every generation.
Thus the new position will be the sum of previous position and the current velocity.

In a standard PSO there are only two equations governing the performance. The
first equation will update the velocity while second equation will update the position.

Vid¼wVid þ C1r1 Pib � Xidð Þ þ C2r2 Pgb � Xid
� � ð5Þ

Xid ¼ Xid þ Vid ð6Þ

Vid is the current/new velocity while Xid is the current/new position. w is the current
velocity factor and r1 and r2 are random numbers distributed uniformly in [0, 1]. Pib is
the personnel best solution achieved by the selected particle whereas Pgb is the global
best solution achieved by the whole Swarm. C1 and C2 are weights for personnel best
and global best.

5.1 Variants of PSO

The four variants used by Chyan and Ponnambalam [14] are used in this paper. By
conducting various experiments the performance of these four variants are improved.
The performance improvement is by adopting suitable weights and by employing
mechanisms to escape from local optima, if it happens. Reader can refer [14] for details
of the four variants namely, namely PSO-C, PSO-W, qPSO-C and qPSO-W.

6 Parameter Fine Tuning for DE and PSO

Fine tuning parameters are an essential aspect as it aids immensely to enhance the
performance of the respective algorithm. However deciding on what is the best
parameter takes ample lot of time as many experiments have to be conducted. Nev-
ertheless when an algorithm is fine-tuned perfectly, boost in performance can be quite
rewarding. After conducting sensitivity analysis on the parameters, it is found that the
mutation factor of 0.7 and the crossover factor of 0.5 perform better for DE algorithm
implemented in this paper.

A rigorous analysis on the parameters for PSO-c and PSO-W variants is conducted
and the parameters used in the paper are provided in table below. It is found that with
these parameters and a local search approach implemented in the PSO variants, which
is explained in Sect. 6.1 could obtain better results than the results reported in [14]. For
the better understanding the parameter used in [14] and the optimal parameters found in
this paper after the analysis conducted are presented in Table 2.
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6.1 Strategies to Escape from Local Optima

One of the main issues of the metaheuristic search algorithms is that they converge too
fast at times and due to this it may get stuck in local optima. Getting stuck in local
optima may significantly reduce the performances of these algorithms. Identification of
entrapment in local optima could be identified by a counter, where the counter is
incremented by one when the quality of the solution is not improved. When this
counter reaches a certain fixed value it could be concluded that the search process stuck
in a local optima. If the solution gets stuck in local optima, it is difficult to move out
from the local optima. To avoid this situation, an Iterated Local Search approach is
adopted in this paper. The approach is to regenerate the solution space after a user
defined number of counts when the process stuck in local optima. Another approach
followed is the elite preserve strategy. Five best solutions in the previous generation is
also randomly injected into the next generation. The PSO variants perform better with
the optimal parameters and the strategies adopted in this paper. The other parameter
values required for the variants are the same as in [15].

7 Experimental Conditions

The experimental conditions of the simulations conducted are detailed in this section.
The initial position of the manipulator is at X = Y = 0. The target position is

X = Y = 22. The termination condition for all the algorithms is 500. Maximum error
margin is set to 0.1. The population size is 60. The maximum loop count to start
regeneration is set 50. Experiments are conducted with no obstacle, one obstacle and

Table 2. Details of parameter fine tuning

Variant Parameters Parameters used in [15] Parameter’s used in this paper
Range
tested

Optimal parameter Range
tested

Optimal parameter
linearly decreasing
from 0.9 to 0.4

All PSO
variants

w 0.9 to
0.4

Linearly
decreasing from
0.9 to 0.4 for
first 100
iterations

0.9 to
0.4

Linearly
decreasing from
0.9 to 0.4 for first
100 iterations

PSO-W C1 0.1 to
3

0.7 0.4 to
1.7

0.4

C2 0.1 to
3

1.0 0.4 to
1.7

0.6

PSO-C C1 2 to 6 5.8 2 to 4 2.4
C2 2 to 6 2.8 2 to 4 3.2

DE Mutation
factor

n/a n/a 0.1 to
1.0

0.7

Cross over
factor

n/a n/a 0.1 to
1.0

0.5

602 S. Warnakulasooriya and S.G. Ponnambalam



two obstacles in the environment. The obstacles are in the shape of rectangle with
different positions.

The X-Y coordinates of the vertices of the obstacles are given below.
Obstacle-1 = [(−10, 8), (−10, 16), (11, 16), (11, 8), (−10, 8]
Obstacle-2 = [(28, 15), (28, 35), (38, 35), (38 15), (28, 15)]

8 Results and Discussion

The results of the experiments conducted in three scenarios are presented in this
section. Each experiment is conducted ten time and the average values are reported.
The measures used to evaluate the algorithms are average error, average converging
time (in Sec) and average loop count. Table 3 shows the performance results of the
algorithms in the environment with no obstacles.

In the above table performances of each of the algorithms is analyzed. A main
criterion of concern is if algorithm can produce a result with an acceptable error
margin. As it is illustrated from the above table all the algorithms will converge within
the given margin. So in order to compare the algorithms, secondary criterions such as
Converging Time and Loop Count should be taken in to consideration. Considering the
loop count it is revealed from the above results that qPSO-C is the best algorithm
closely followed by PSO-C for free space.

Table 4 shows the performance results of the algorithms in the environment with
one obstacle.

It is evident from the results in Table 4 that all the algorithms converge within the
acceptable error margin and thus secondary evaluation criterions should be considered.
Above results for one obstacle space reveals a significant change with the results from
the free space condition with PSO-C performs better over other algorithms.

Table 5 shows the performance results of the algorithms in the environment with
two obstacles. Still PSO-C performs better over other algorithms. It is also observed
that the performance of DE is improving as the number of obstacles increase.

Table 4. Performance of the algorithms with one obstacle

One obstacle DE PSO_C PSO_W qPSO_C qPSO_W

Average error 0.0715 0.0675 0.0742 0.0676 0.0632
Average converging time (s) 0.6028 0.1901 0.5501 0.2534 0.7313
Average loop count 42.0 7.1 35.4 8.7 48.8

Table 3. Performance of the algorithms in free space (no obstacles)

Free space DE PSO_C PSO_W qPSO_C qPSO_W

Average error 0.0788 0.0589 0.0657 0.0790 0.0694
Average converging time (s) 0.4787 0.1724 0.3908 0.1832 0.3969
Average loop count 46.8 9.3 41.0 8.1 31.7
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9 Conclusions

Trajectory planning and obstacle avoidance problem for a robot manipulator is studied
in this research. Four variants (PSO-C, PSO-W, qPSO-C and qPSO-W) of Particle
Swarm Optimization (PSO) and Differential Evolution (DE) are proposed to solve this
problem. Simulation experiments on a 5 degree-of-freedom (DOF) robot manipulator
in an environment with static obstacles are conducted. Joint angles are used to generate
the strings for DE and PSO. Mechanisms are introduced in these algorithms to escape
from local optima during the search process. The performance of the four variants of
PSO compared to the results reported in the literature. With the optimal parameters
identified through sensitivity analysis, the four PSO variants are performing better than
the earlier reported results. Performances of all five algorithms are evaluated. Since all
the algorithms converge to a satisfactory error margin, convergence time and loop
count are used as the parameters for comparison. Based on the results presented, it is
concluded that qPSO-C is performing better in free space while PSO-C is performing
better when obstacles are present. The performance of DE improves with the increase
in number of obstacles. Additional experiments are to be conducted to test the per-
formance of DE. Future work is also planned to conduct experiments in 3D real
environments with feedback control to minimize the error.
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