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Abstract. The terminal assignment (TA) problem is an important
problem in the design of telecommunication networks. The problem con-
sists in determining the best links for connecting a given set of terminals
to a given set of concentrators so that a given cost function is optimized.
In this paper, we have proposed an artificial bee colony algorithm based
approach for solving the TA problem. In comparison with the best meth-
ods available in the literature, the proposed approach obtained better
quality solutions in shorter time.
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1 Introduction

Due to rapid growth of internet, many new problems arose in the field of telecom-
munication network design and management. Terminal assignment (TA) prob-
lem is one such problem. In large centralized computer networks, a central com-
puters serves numerous terminals or workstations. In such cases, concentrators
are used to increase the efficiency of the network. Instead of connecting the
terminals directly to the central computers, the terminals are connected to the
concentrators and concentrators are connected to the central computer. The ter-
minals and concentrators have fixed and known locations. The capacity require-
ments of each terminal is known. This requirement may vary from terminal to
terminal. The maximum capacity of each concentrator and the costs of connect-
ing each terminal to different concentrators are also known. The objective of the
TA problem is to connect a given set of N terminals to a given set of M concen-
trators in such a way that the total cost of the network thus formed is minimum
according to a given objective function. The assignment of the terminals to the
concentrators is done under following two constraints: First, each terminal must
be connected to one and only one concentrator, second, the sumtotal of capaci-
ties of the terminals connected to a concentrator must not exceed the maximum
capacity of that concentrator [7,9].

TA problem is solved in the literature with two different objectives: First,
with the objective of minimizing the sumtotal of link costs alone and second
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with an objective which give consideration to equitable distribution of loads
among concentrators in addition to link costs. Here, we have considered the
latter objective. TA problem is proved N'P-Hard under the first objective [19].
The problem can be solved in polynomial time in the special case where all
terminals have the same capacity requirements and all concentrators have the
same maximum capacity. The TA problem is also A"P-Hard under the second
objective as first objective can be considered as a special case of the second
objective where no consideration is given to load on different concentrators. The
problem is harder to solve under second objective because we can not compute
the individual cost of assigning a terminal to a concentrator a priori, i.e., before
the complete solution is constructed.

TA problem is also closely related to a number of classical combinatorial
optimization problems in different fields. Bin packing problem, task assignment
problem, problem of assigning cells to switches in mobile communication net-
works are few examples [8].

Many different approaches have been proposed in the literature to solve
the TA problem. Abuali et al. [9] proposed a greedy heuristic and a greedy
genetic algorithm for a restricted version of the problem where all concentra-
tors have the same maximum capacity. Khuri and Chiu [7] proposed another
greedy heuristic and two penalty based genetic algorithms. Both Abuali et
al. [9] and Khuri and Chiu [7] considered the first objective as mentioned
above. Salcedo-sanz and Yao [8] considered for the first time the second
objective where a hybrid Hopfield network based genetic algorithm is pre-
sented. Xu et al. [4] presented a tabu serach based approach for TA prob-
lem. Bernardino et al. designed a local search genetic algorithm (LSGA) [5],
a tabu search (TS) [3], a hybrid differential evolution algorithm (HDE) [16], a
bees algorithm [15], an improved hybrid differential evolution algorithm with
a multiple strategy (MHDE) [6] and a discrete differential evolution algo-
rithm (DDE) [11] for solving the TA problem with second objective. The DDE
algorithm is based on discrete differential evolution model proposed by Pan
et al. [17]. DDE algorithm provides the better results in comparison to LSGA,
TS and MHDE [11].

In this paper, we have proposed an artificial bee colony algorithm based app-
roach for solving the TA problem. The artificial bee colony (ABC) algorithm is a
recently developed swarm intelligence technique proposed by Karaboga [1]. ABC
algorithm is inspired by intelligent foraging behaviour of honey bee swarm. ABC
algorithm has already been applied successfully to solve numerous discrete opti-
mization problems [12]. This has motivated us to develop an ABC algorithm for
the TA problem. We have compared our ABC approach with 4 best approaches
from the literature, viz. DDE, MHDE, TS and LSGA. In comparison to these
approaches, our approach not only obtains solution of better quality, but is also
faster.

The remaining part of this paper is organized as follows: In Sect. 2, we for-
mally define the TA problem. Section 3 provides an overview of ABC algorithm.
Section 4 describes our ABC approach for the TA problem. Section 5 reports the
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computational results and compares our approach with other state-of-the-art
approaches available in the literature. Finally, Sect.6 contains some concluding
remarks and directions for future research.

2 TA Problem

This section defines the TA problem formally. Given a set of terminals T =
{T1,T5,...,Tn}, a set of concentrators C = {C1,Cs,...,Cuy} , a set of weights
or capacities W = {W7, Wy, ..., Wx} associated with each terminal and capaci-
ties of concentrators X = {X1, Xs,..., X }. The capacity of terminals are such
that W; < min{Xy, Xo,..., Xy} V T; € T. The TA problem seeks an assign-
ment of terminals to concentrators without violating the capacity constraint of
concentrators such that the considered objective function is optimized. Hence,
any feasible solution must satisfy the following two constraints:

M
> zj=1 VIeT (1)
Jj=1
N
ZWizij < Xj VC] eC (2)
i=1

where binary variables z;; indicate whether terminal 7} is assigned to concen-
trator C; (z;; = 1) or not (z;; = 0). The Eq.1 states that each terminal can
be assigned to one and only one concentrator whereas Eq. 2 states that capacity
constraint of no concentrator should be violated.

We have considered the same objective function for TA problem as used
in [11]. This objective function considers the two factors:

— The total number of terminals assigned to each concentrator
— The distance between the terminals and their assigned concentrators

The objective is to minimize the Eq.5. Equations 3 and 4 define terms needed

for defining the objective function.

N
Totalc, = Zzij VC; e C (3)

i=1

_ 10 if (Totalc, = round($7) + 1) A
Balc; = {20>< | (round(g7) +1 —Totalc,) | otherwise vGiec ()
M N M
objective function value = 0.9 x Z Balc; + 0.1 x Z ZDijzij (5)
j=1 i=1j=1

where D;; is the distance between terminal 7; and concentrator Cj.
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3 Overview of ABC Algorithm

The artificial bee colony (ABC) algorithm introduced by Dervis Karaboga in
2005 [1] is a population based meta-heuristic algorithm based on the foraging
behavior of the real honey bees. In a bee colony, there are three types of bees:
employed, onlooker and scout. Employed bees exploit the food sources. These
bees bring loads of nectar to the hive and share the information about the food
sources exploited by them with the onlooker bees which wait in the hive for
this information to be shared. The onlooker bees tend to select a food source
with a probability that depends on the quality of that food source with respect
to other food sources. Once an onlooker bee selects a food source, it becomes
employed. Scout bees search for new food sources in the vicinity of hive and as
soon as they find a new food source they become employed. An employed bee
whose food source becomes empty will turn either into a scout or an onlooker.
Therefore, employed and onlooker bees are responsible for exploitation, whereas
exploration is left for scout bees.

Inspired by this foraging behaviour, Karaboga developed ABC algorithm.
This algorithm was initially developed for optimization in continuous domain
only [1,12-14]. Later, it was extended to solve discrete optimization problems
[2,10,18]. For a recent survey on ABC algorithm and its applications, interested
readers may refer to [12]. Some recent applications of ABC algorithm can be
found in [20-22].

In ABC algorithm, the food sources represent the possible solutions to the
problem under consideration and their nectar content indicates the fitness of the
solutions represented. The ABC algorithm also divides the colony of artificial
bees into same three types with similar function. However, unlike real bees, a
one-to-one correspondence is maintained between the food sources and employed
bees by associating each employed bee with one and only one food source. Usu-
ally but not always, the number of onlooker bees is taken to be equal to number
of employed bees. An employed bee whose food source becomes empty will turn
only into a scout but never an onlooker. Such a scout is immediately made
employed by generating a food source randomly and associating this scout with
this newly generated food source. The ABC algorithm consists of an iterative
search process. The algorithm is initialized by associating each employee bee
with a randomly generated food sources (solutions). Then the algorithm repeats
through the cycles of the employed bee and onlooker bee phases. In the employed
bee phase, each employed bee determines a food source in the vicinity of its cur-
rent food source and evaluates its nectar amount (fitness). If the nectar amount
of the new food source is better than the current one then the employee bee
moves to the new food source leaving the old one, otherwise it remains at the
old one. When all the employee bees finish this process, they share the nectar
information of the food sources with the onlookers, then the onlooker bee phase
starts.

In the onlooker bee phase, onlookers select the food sources with a probability
that depends on the nectar content of the food sources. Higher the nectar content
of a food source, higher will be the chances of its selection. As a result of this
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selection policy, good quality food sources attract more onlookers in comparison
to worse ones. After all onlookers select the food sources, they determine the
food sources in the vicinity of their selected food sources in a way similar to that
of employee bees. Among all the new food sources determined in the vicinity
of a food source i by the onlookers associated with food source ¢ and the food
source 7, the best quality food source is determined. This best food source will be
selected as the new location for food source ¢ in the next iteration. The onlooker
bee phase ends when all food sources are updated in the aforementioned manner
and the next iteration of the ABC algorithm starts. The algorithm stops when
the termination condition is satisfied. If the solution associated with a food source
does not improve over some specific number of iterations say limit then that food
source is considered as empty and is discarded by its associated employed bee.
Then that employee bee becomes scout. A new food source is generated for this
scout so as to make it again employed. This new food source is usually generated
in the same manner as an initial solution.

In the employed bee phase every solution is given a fair chance to improve
itself, whereas in the onlooker bee phase, good quality solution are given more
chance to improve themselves in comparison to poor quality solutions. This
is justified considering the fact that in the vicinity of good quality solutions,
chances of finding even better solutions are higher. However, if a solution is
locally optimal then no better solution exists in its vicinity and any attempt to
improve it through employed or onlooker bee phases will fail. Here, the concept
of scout bees plays its part by replacing the locally optimal solution with a new
solution. In a robust search process the balance between the exploration and
exploitation must be maintained. In the ABC algorithm, this balance depends on
the parameter limit. Smaller value of limit favors exploration over exploitation
whereas reverse is true for a higher value of limit. Therefore, the value of limit
should be chosen with utmost care.

4 ABC Approach for the TA Problem

In this section, we present our ABC approach for TA problem. Subsequent sub-
sections describe salient features of our proposed approach.

4.1 Solution Encoding

To encode a solution, we have used the terminal based representation proposed in
the literature [11]. The value represented by position ¢ specifies the concentrator
to which the terminal ¢ is assigned. Figure 1 explains this representation with
the help of an example where there are 10 terminals and 3 concentrators. In
this figure, terminals 1, 3 and 6 are assigned to concentrator 1, terminals 2, 4,
7 and 9 are assigned to concentrator 2, terminals 5, 8 and 10 are assigned to
concentrator 3.
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Fig. 1. Solution representation

4.2 Initial Solution Generation

Each initial solution is obtained by using a method which is partially greedy and
partially random. In this method, with probability p,s», the terminals are greed-
ily assigned to the nearest available concentrator . Here, the availability refers
to the capacity of the concentrator to serve the terminal capacity requirement.
If the capacity is not satisfied then the terminal is assigned to the next near-
est concentrator, and this process is repeated until an available concentrator is
found or none exits. With probability 1 — p,s,, terminals will be assigned to the
available concentrators randomly. The algorithm iterates through this process
until all the terminals are assigned. The terminal to be assigned next is selected
randomly.

In case no available concentrator exists for a terminal then the solution is
infeasible. This solution is discarded and we start afresh in a bid to generate
a feasible solution. If we are not able to generate a feasible solution even after
three attempts then the last infeasible solution is included in the population,
but its fitness is penalised using a penalty term as explained in Sect.4.5. In
this infeasible solution, terminals which can not be assigned to any available
concentrator are assigned to some randomly chosen concentrator.

4.3 Generation of Neighboring Solution

To generate a solution S; in the neighborhood or vicinity of a solution S;, each
terminal in 5; is reassigned with probability p,qnq using a greedy approach. In
the greedy approach the terminals are assigned to the nearest available concen-
trators. S; is replaced with the neighboring solution S; if the fitness of S;» is
better than S;. In case the neighboring solution is infeasible then we discard the
solution. This can happen only when original solution is infeasible.

The pseudo code for generating a neighboring solution S; in the vicinity of
a solution S; is as follows:

4.4 Selecting a Food Source for an Onlooker Bee

Instead of using the commonly used roulette wheel selection method, we have
used the binary tournament selection method for selecting a food source for an
onlooker bee. In the binary tournament selection two food sources are selected
randomly, and, the better of the two food sources are selected with the proba-
bility pon; and worse of the two with the probability 1 — pon;.
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Algorithm 1. generate_neighboring_solution(sS;)

for each terminal T; € T' do
p = generate a random number between 0 and 1
if p <= prand then ,
Assign T to the nearest available concentrator in \S;
else
Assign T to the same concentrator in S; asin S
end if
end for
return S’;

4.5 Fitness of a Solution

To evaluate the fitness of a solution, we have used the same fitness function
as used in [11]. This fitness function is a modification of the objective function
given in Sect. 2. The fitness function adds a penalty term called penalization to
the objective function for infeasible solutions. The penalization is computed as
follows:

penalisation = { goolf (solution is feasible) (©)

fitness = objective function value + penalisation. (7)

This fitness needs to be minimized.

4.6 Other Features

We have used different number of employee and onlooker bees unlike the usual
practice of using the same number of employed and onlooker bees. If a solution
correlated with an employed bee does not improve for limit number of iterations
then this employed bee becomes scout. There is no limit on the number of
scouts in an iteration. The number of scouts in a particular iteration depends on
how many employed bee solutions got improved limit iterations prior to current
iteration.

5 Experimental Results

Our ABC approach has been implemented in C and executed on a Intel Core
2 Duo (E8400) system with 2 GB RAM running at 3.0 GHz under Fedora 12
release. In all our computational experiments, the number of employed bees (n.)
is taken to be 50 and the number of onlooker bees (n,) is taken to be 100. We
have used prend=0.2, pasn =0.85, Pon1=0.85, ltmit=500 in all our experiments.
Our ABC approach terminates after 1500 iterations. All these parameter values
are chosen empirically, after executing the algorithm multiple times. In order to
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Table 1. Solution quality of various approaches

LSGA TS MHDE DDE ABC
prob|BestF |[AvgF |StdD|BestF [AvgF |StdD|BestF |AvgF |StdD|BestF |AvgF |StdD|BestF |AvgF |StdD
65.63| 65.63/0.00 | 65.63| 65.63|0.00 | 65.63| 65.63|0.00 | 65.63| 65.63|0.00 65.63| 65.63/0.00
134.65/134.65/0.00 |134.65|134.65|0.00 |134.65/134.65/0.00 |134.65|134.65|0.00 [{133.41|{133.41|0.00
270.26|270.69|0.23 |270.26|270.76/0.30 |270.26|270.75|0.15 |270.26|270.47|0.22 |279.94 |281.17 |0.66
286.89|286.99|0.13 |286.89|287.93|0.75 |286.89|287.17|0.14 |286.89|286.89|0.00 |286.61|/286.65|0.09
335.09|335.99|0.60 |335.09|335.99|0.59 |335.09|336.55|0.39 |335.09|335.26/0.17 |335.07|336.24 |0.32
371.12|371.68|0.24 |371.12|372.44/0.45 |371.12|373.19/0.42 |371.12|371.38|0.22 |374.55 |378.44 |1.38
401.21{402.41|0.50 |401.29/403.25|0.73 |401.21|403.61|0.33 |401.21|401.62|0.28 |399.85|400.59|0.39
563.19|/564.94|0.52 |563.34|564.5 |0.54 |563.19|572.04|0.76 |563.19|564.07|0.38 |596.65 |601.85 |2.53
642.83|/646.52|0.84 |642.86|644.18|0.48 |642.83|648.46|0.48 |642.83|/643.96|0.46 |687.52 |690.71 |1.65

©C (N[ |u s~ |Ww|( N~

test the performance of our approach, we have used the 9 benchmark instances
available in the literature [11]. On each instance, we have executed our approach
40 independent times. We compare the results of our approach with those of
LSGA [5], TS [3], MHDE [6] and DDE [11]. Results of these four approaches are
taken from [11].

Table 1 compares the different approaches in terms of best &average solution
quality and standard deviation of solution values on each of the 9 benchmark
instances. In this table, result of our approaches are shown in bold whenever
they are as good as or better than previous 4 approaches. From this table, it
can be clearly seen that performance of our approach is more-or-less comparable
to these 4 state-of-the-art approaches. Our approach obtain new best solution
values for 4 instances.

Table 2 reports the time taken by various approaches to reach the best solu-
tion. As the four previous approaches were executed on an Intel Core Duo
(T2300) based system which is different from the system used to execute our
ABC approach, therefore times can not be compared precisely. However, a
rough comparison can always be made. Even after compensating for difference in

Table 2. Time taken to reach the best solution by various algorithm

prob | LSGA | TS | MHDE | DDE | ABC
1 <1s <ls|<1s <ls | <1s
2 <ls <ls| <1s <ls |<1s
3 <ls <ls| <1s <ls |<1s
4 <1s <ls|<1s <ls | <1s
5 <ls <ls| <1s <ls |<1s
6 1s <ls| <1s <ls |<1s
7 1s 1s | 2s <ls | <1s
8 7s 1s | 10s 2s <ls
9

Ts 2s | 15s 3s <ls
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Table 3. Influence of parameter settings on solution quality

Parameter | Value | Problem 4 Problem 5
BestF | AvgF | BestF | AvgF
Ne 25 286.61 |286.87 |335.07 |336.19

50 |286.61 286.65|335.07 336.23
75 286.61 |286.65 |335.07 |336.13
100 | 286.61 |286.62 |335.07 |336.12
Mo 50 ]286.61 |286.67 |335.69 | 336.44
75 1 286.61 |286.68 |335.69 |336.41
100 | 286.61|286.65 | 335.07  336.23
125 1 286.61 |286.69 |335.56 |336.20
Pasn 0.75 |286.61 |286.79 |335.71 |336.29
0.8 286.61 |286.76 |335.07 |336.19
0.85 | 286.61 | 286.65  335.07 | 336.23
0.9 286.61 |286.67 |335.07 |336.31
0.95 |286.61 |286.68 |335.07 |336.27
Donl 0.75 |286.61 |286.68 |335.07 |336.25
0.8 286.60 |286.67 |335.07 |336.21
0.85 | 286.61 | 286.65  335.07 | 336.23
0.9 286.61 |286.70 |335.69 |336.30
0.95 |286.61 |286.66 |335.07 |336.11
Prand 0.1 286.61 |286.71 |335.84 |336.44
0.15 |286.61 |286.74 |335.69 |336.33
0.2 |286.61|286.65 335.07 | 336.23
0.25 |286.61 |286.69 |335.07 |336.16
0.3 286.61 |286.77 |335.69 |336.32
limit 300 | 286.61 |286.68 |335.52 |336.12
400 |286.61 |286.62 |335.19 |336.16
500 |286.61 | 286.65|335.07|336.23
600 |286.61 |286.72 |335.07 |336.20

processing speed, we can safely say that our approach is faster on large instances.
Our approach requires less than 1s to reach the best solution on all 9 instances.

To investigate the influence of parameter settings on solution quality, we
have taken two different instances, viz. Problem 4 and 5. We have varied all the
parameters one by one while keeping all other parameters unchanged. In doing
so all other parameters were set to their values reported at the start of this
section. The results are reported in Table 3. Values in bold in this table show
the results with original parameter values which are used in all the experiments
involving our approach. From this table it can be seen that values chosen by us
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provide either the best results or results which are very close to best results. In
those cases where we have not got the best results with chosen parameter values,
the parameter values chosen have provided best results on some other instances
not included in this table.

6 Conclusions

In this paper, we have proposed an ABC algorithm based approach for the TA
problem and compared it with the best methods proposed in the literature. The
results shows the performance of the ABC algorithm is comparable with other
methods. ABC algorithm provides good quality solutions in lesser execution
times for majority of the instances.

As a future work, we plan to improve the performance of our ABC approach
by hybridizing it with some local search procedure. We intend to investigate the
performance of our ABC algorithm under different solution encoding schemes.
Approaches similar to our ABC approach can be developed for other A/P-Hard
assignment problems.
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