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Abstract
Telomeres form protective caps at the ends of linear chromosomes to prevent
nucleolytic degradation, end-to-end fusion, irregular recombination, and chro-
mosomal instability. Telomeres are composed of repetitive DNA sequences
(TTAGGG)n in humans, that are bound by specialized telomere binding
proteins. Telomeres lose capping function in response to telomere shortening,
which occurs during each division of cells that lack telomerase activity—the
enzyme that can synthesize telomeres de novo. Telomeres have a dual role in
cancer: telomere shortening can lead to induction of chromosomal instability and
to the initiation of tumors, however, initiated tumors need to reactivate
telomerase in order to stabilize chromosomes and to gain immortal growth
capacity. In this review, we summarize current knowledge on the role of
telomeres in the maintenance of chromosomal stability and carcinogenesis.
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1 Telomeres and Telomerase

1.1 Telomeres Are Protective Caps at the Ends of Linear
Chromosomes

Cells with linear chromosomes have to meet several challenges: (i) cellular repair
mechanism have to discriminate between broken ends as a result of DNA damage
and the ends of the chromosomes, (ii) the ends of chromosomes must be protected
against degradation by nucleases, and (iii) as the conventional DNA polymerase
cannot replicate the most extreme ends of chromosomes (end-replication-problem),
loss of genetic material must be compensated by some end maintenance mecha-
nism. Work by Hermann Muller and Barbara McClintock provided the first evi-
dence that the ends of linear chromosomes must be capped by a specialized
structure to prevent chromosome fusions (McClintock 1939, 1941; Muller 1938).
Müller introduced the term ‘telomere’ to emphasize this specific function of
chromosome ends. A telomere is functionally defined as a region of DNA at the
molecular end of a linear chromosome that is required for replication and stability
of the chromosome (Blackburn and Szostak 1984). It has become clear now that the
telomeres are composed of short repetitive DNA-sequences and specific proteins,
the shelterin, that bind this sequence to protect the ends of linear chromosomes
(de Lange 2010).

Telomeric DNA consists of a tandem array of GT-rich repeats (e.g. TTGGGG in
Tetrahymena and TTAGGG in humans and other vertebrates). The number of the
repeats and consequently the length of telomeric DNA varies among species (Fig. 1)
ranging from 36 nucleotides present at the ends of macronuclear chromosomes of
ciliated protozoans (Klobutcher et al. 1981), *300 bp in Saccharomyces cerevisiae
(Zakian 1989) to *150,000 bp in mice (Kipling and Cooke 1990). In human
somatic cells telomeres consist of 7000–10,000 bp telomeric DNA and of about
20,000 bp in germ cells (Allshire et al. 1989; Moyzis et al. 1988).

One important feature of telomeres, which is conserved in all eukaryotes, is that
they posses a protruding 3′ single-stranded overhang due to the mechanism of the
lagging strandDNA replication (Makarov et al. 1997;McElligott andWellinger 1997).

62 J. Meena et al.



Fig. 1 Telomere-DNA is an evolutionarily conserved GT-rich repetitive sequence. Basically all
eukaryotes use GT-rich repetitive sequences at the ends of their chromosomes (telomeres). Despite
considerable variation in telomere length and telomere-sequence, telomerase activity is the major
telomere maintenance mechanism among the eukaryotes, with only few exceptions (Drosophila
melanogaster). Modified from Meyne et al. (1989)

Fig. 2 Telomeres, Protein-DNA complexes at the ends of linear chromosomes, may form a lariat
structure, the telomere-loop (T-loop). A schematic representation of the D-loop, T-loop structure at
the chromosome ends. Lagging strand blue, leading strand red. The 3′-protruding end of the
lagging strand may invade into the double stranded telomeric DNA and result in the displacement
of the double strand (displacement-loop: D-loop). A large lariat structure can be observed at the
telomeres (telomere-loop: T-loop). Several proteins have been localized to the telomeres. The
number, temporal and spatial localization of these proteins at the telomeres is not completely
understood. There is evidence that T-loop formation is facilitated by TRF2 (Doksani et al. 2013;
Griffith et al. 1999) whereas RTEL1 helicase activity is required for the faithful T-loop resolution
during replication (Vannier et al. 2012)
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In mammalian cells, this single stranded overhang may fold back and invade into the
preceding double stranded telomeric DNA to form a unique D-loop and T-loop
structure (Griffith et al. 1999). Telomere looping may be a bona fide end protecting
mechanism since it has been observed in mammals, plants and several lower
eukaryotes (Cesare et al. 2003; Griffith et al. 1999; Munoz-Jordan et al. 2001;
Murti and Prescott 1999). This special structure functions to seal the ends of
chromosomes thus protecting them from hazardous cellular actions. In its absence, the
3′-overhang is simply occupied with specific telomere-binding proteins protecting the
chromosome ends from DNA-damage.

To date a series of proteins have been described to be associated with telomeres
(Fig. 2). In human cells, six proteins, TRF1, TRF2, TIN2, TPP1, RAP1 and POT1,
form the shelterin complex and interact with several other proteins for telomere
length regulation (de Lange 2005). Among the latter, proteins involved in DNA
double-strand break repair (Ku-proteins) and non-homologous-end-joining
(RAD50-NBS1-Mre11 complex) are found. It is not yet clear whether these pro-
teins are present at the telomeres at all times or in a cell-cycle dependent manner.
Among these proteins TRF1 and TRF2 form a platform for the binding and function
of other telomere specific factors (Fig. 2).

1.2 Telomerase

Telomerase is a ribonucleo-protein complex with reverse transcriptase activity with
conserved sequence homology to non-LTR and LTR reverse transcriptases
(Shippen-Lentz and Blackburn 1990). The activity of telomerase is necessary to
overcome the ‘end replication problem’. The human telomerase enzyme is com-
posed of two essential components, the RNA component (TERC: Telomerase
RNA) which acts as a template for reverse transcription (Blasco et al. 1995); and the
catalytic subunit Telomerase reverse transcriptase (TERT) with the reverse trans-
criptase activity (Meyerson et al. 1997; Nakamura et al. 1997). In recent years, a
number of additional factors, including dyskerin, TCAB1, NOP10 and TPP1 have
been identified to be constantly or transiently associated with the telomerase
complex and have important functions in telomerase recruitment to telomeres or
subcellular localization of the telomerase complex (Cohen et al. 2007; Collins and
Mitchell 2002; Nandakumar and Cech 2013; Venteicher et al. 2009; Zhong et al.
2011; Gonzalez et al. 2014).

Telomerase is active in a variety of tumor cell lines and transformed cells in
culture but not in normal fibroblasts (Morin 1989) or embryonic kidney cells
(Counter et al. 1992) and most somatic human tissues do not exhibit telomerase
activity (Djojosubroto et al. 2003; Kim et al. 1994; Meyerson et al. 1997; Shay and
Wright 1996; Weise and Gunes 2006). In human, telomerase activity is down-
regulated during embryogenesis and cellular differentiation through repression of its
catalytic subunit (Gunes et al.2000; Wright et al. 1996; Sirma et al. 2011). Due to
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the lack of telomerase, telomeres shorten during aging in human tissues in vivo and
telomere length sets a limit to the proliferative capacity of human fibroblasts
(HFs) in vitro involving the p53 and Rb pathways (Chang and Harley 1995; Harley
et al. 1990; Shay et al. 1991). In this line, cells devoid of these two major pathways
exhibit extended life-span but telomeres continue to shorten until a ‘crisis’
checkpoint. Cells that survive the crisis checkpoint possess telomerase activity or
activate an alternative mechanism of telomere maintenance (ALT) (Counter et al.
1992). Based on these observations, Allsopp et al. (1992) proposed a model for of
telomere hypothesis of ‘cell ageing and immortalization’ (Fig. 3).

These observations together with the findings that telomerase activity can be
detected in early human development but is absent in most normal somatic cells
have led to the hypothesis that the down-regulation of telomerase activity in
somatic cells may be a tumor-protective mechanism. In line with this hypothesis it

Fig. 3 Telomere hypothesis of senescence and cancer. Proliferation-dependent telomere
shortening leads to telomere dysfunction, manifested by non-reciprocal-translocations and
end-to-end fusions, resulting in the activation of DNA-damage checkpoints, and induction of
senescence in telomerase negative, check-point proficient human cells. Checkpoint-deficient cells
continue to proliferate experiencing further telomere shortening and eventually end up in crisis,
characterized by apoptotic cell death, in the absence of a telomere maintenance mechanism.
Activation of telomerase (or the ALT mechanism) is one of the key events to overcome crisis
during tumourigenesis to stabilize telomere length and for the continuous proliferation of
malignant cells
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was shown that telomerase is required for tumorigenic conversion of primary
human cells (Hahn et al. 1999a). In adult human tissues some cell types maintain
weak but detectable telomerase activity or telomerase activity may be induced upon
stimulation. These include bone marrow stem cells, germline cells in testes, acti-
vated peripheral blood lymphocytes, skin epidermis and intestinal crypt cells (Chiu
et al. 1996; Hiyama et al. 1995, 1996; Morrison et al. 1996; Ramirez et al. 1997;
Ravindranath et al. 1997; Ritz et al. 2005; Weise and Gunes 2009).

Although telomerase activity could be detected in the vast majority of human
cancers, it is worth mentioning that about 10–15 % of human tumors do not express
detectable levels of telomerase activity. Tumors that lack telomerase activity,
maintain their telomere length via a recombination-based mechanism (ALT for
Alternative Lengthening of Telomeres) (Bryan et al. 1997). Experimental data
indicate that telomere maintenance is required for continuous tumor cell prolifer-
ation and tumor progression (Greenberg et al. 1999; Hahn et al. 1999b; Rudolph
et al. 2001). The prominent occurrence of telomerase in human cancers and data
from mouse models on its requirement for tumor progression motivated the
development of telomerase inhibitors to suppress tumor growth in pre-clinical
studies (Damm et al. 2001; Dikmen et al. 2005; Djojosubroto et al. 2005; Herbert
et al. 2002; Kumar et al. 2013; Norton et al. 1996; Zahler et al. 1991). One of these
inhibitors, a lipid-conjugated 13-mer oligonucleotide that is complementary to the
RNA template of telomerase, thereby directly inhibiting telomerase activity is a
promising candidate and has evaluated safety, tolerability and pharmacokinetics in
Phase I clinical trials. This inhibitor, Imetelstat, was developed by Geron Inc. and is
now being tested to treat Hematologic Myeloid Malignancies in Phase II clinical
trials. As a potential drawback, experimental studies on mouse models showed that
deletion of telomerase in tumors provokes the activation of ALT as an adaptive
response in cancer cells (Hu et al. 2012). It is therefore essential to explore and
understand the factors that control the ALT pathway.

2 Telomere Shortening Impairs Proliferation
of Transformed Cells but Dysfunctional
Telomeres Can Initiate Cancer Formation

The role of telomeres in human biology was unclear until the discovery of telo-
merase and subsequent demonstration that telomeres shorten during aging due to
the end-replication problem (Greider and Blackburn 1985; Harley et al. 1990;
Hastie et al. 1990). As discussed above, telomere shortening limits the proliferation
capacity of human cells, referred to as ‘Hayflick Limit’. At this stage, cells exhibit a
‘cellular senescence’ phenotype characterized by morphological changes and by the
accumulation of aneuploidy, polyploidy and chromosomal fusions (Benn 1976;
Saksela and Moorhead 1963; Thompson and Holliday 1975). Telomerase negative
human cells that can overcome the senescence checkpoint by the expression of viral
oncoproteins continue to accumulate chromosomal instability during the extended
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proliferation period (Counter et al. 1992). These observations indicated a pivotal
role of functional telomeres in genome stability and telomerase activity thwarted
telomere shortening and genomic instability (Harley 1991).

Dysfunctional telomeres can result either from alterations in the
telomere-associated proteins required for end-capping function, or from alterations
that promote the gradual or sudden loss of sufficient repeat sequence necessary to
maintain proper telomere structure. The identification of mammalian telomerase
components in the mid 90s enabled to experimentally address the functional role of
telomere shortening in aging and cancer formation in vivo (Blasco et al. 1997;
Rudolph et al. 1999).

Telomerase knockout mice exhibit progressive shortening of telomeres resulting
in loss of telomere capping function (also referred to as telomere dysfunction) in
3rd–6th generation of knockout mice. In vivo studies supported the observations
from HFs that dysfunctional telomeres are recognized by the DNA-damage-
response (DDR) machinery leading to activation of p53 and Rb dependent
checkpoints inhibiting tumorigenesis in cancer mouse models (Chin et al. 1999;
Greenberg et al. 1999). A formal experimental prove of telomere-dysfunction
induced tumor suppression in vivo was provided by studies where overexpression
of c-Myc oncogene in mice with short telomeres induced genomic instability as
determined by increased end-to-end fusions, non-reciprocal translocations and
anaphase bridges. These genomic instability induced senescence in the presence of
wild-type p53 (Feldser and Greider 2007). In fact, the tumor suppressor function
was dependent on the senescence-activation function of p53 (Cosme-Blanco et al.
2007). During aging or in the absence of functional checkpoints, however, (i.e., loss
of p53) or by the co-expression of oncogenic mutations, telomere dysfunction
promotes genomic instability and initiates tumorigenesis (Artandi et al. 2000; Chin
et al. 1999; Rudolph et al. 1999, 2001). The studies with telomerase deficient mice
also underpinned the need for telomere stability—either by activating telomerase or
by the ALT mechanism—for continuous tumor cell proliferation in vivo
(Begus-Nahrmann et al. 2012; Ding et al. 2012; Greenberg et al. 1999; Jaskelioff
et al. 2009; Rudolph et al. 2001).

In human, telomere dysfunction triggers extensive DNA fragmentation and
evolution of complex chromosome abnormalities and therefore is a cancer predis-
position factor (Gisselsson et al. 2001; Wu et al. 2003). The cellular basis of
telomere dysfunction induced genomic instability is explained by chromosomal
breakage-fusion-bridge (BFB) cycles (McClintock 1939, 1941). Persistent or
transient telomere dysfunction in telomerase knockout mice can result in increased
mutation rates and induce BFB-cycles resulting in gains and losses of chromosomes
(Blasco et al. 1997; Hackett et al. 2001; Lee et al. 1998; Rudolph et al. 2001).
Although BFB-cycles seem to be the major physiological outcome of dysfunctional
telomeres, persistent telomere dysfunction can induce genomic instability via
cytokinesis failure and tetraploidy (Davoli et al. 2010; Pampalona et al. 2012).

Progressive telomere shortening may also result from mutations in shelterin
proteins and telomerase have been shown to be associated with human pathologies.
Mutations in telomerase components (TERT, TERC, DKC1) telomerase associated
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factors (NOP10, NHP2, WRAP53) or the shelterin components (TRF1, TRF2,
POT1) forms a bigger portion of several human diseases, like dyskeratosis con-
genita, aplastic anemia, pulmonary fibrosis, malignant melanoma and late stage
liver cirrhosis (Hartmann et al. 2011; Savage et al. 2008; Shi et al. 2014; Vulliamy
et al. 2001, 2004, 2005; Walne et al. 2007, 2008; Yamaguchi et al. 2005, 2010;
Zhong et al. 2011). Mutations in telomerase components result in reduced telo-
merase activity and accelerated telomere shortening and thus accelerated stem cell
exhaustion with age, accompanied by an increased frequency of chromosomal
breaks and chromosomal aberrations and increased risk for cancer formation (Ca-
lado et al. 2012).

Together, both, mice and human studies indicate that telomere dysfunction
induced genetic instability occurs through persistent bridge-breakage events,
leading to a continuous reorganization of the tumor genome. These findings also
show that senescence and apoptosis induced by telomere dysfunction and p53
activation contribute to tumor suppression.

3 Activation of Checkpoints as a Consequence
of Telomere Dysfunction

Due to their structure and shielding by shelterin components telomeres are protected
from irregular repair activities. Studies on shelterin components have identified at
least six different DNA damage repair pathways that protect telomeres from
irregular recombination events (Martinez et al. 2012; Sfeir and de Lange 2012). The
choice of the repair pathway is dependent on the type of DNA-damage and the cell
type and dictates the cellular consequences in response to telomere dysfunction.
Mammalian DSBs are repaired primarily by homologous recombination (HR) or
non homologous end joining (NHEJ). Gene knockout studies have revealed that
loss of the shelterin components TRF1 and TRF2 activates ATM/ATR signaling for
NHEJ whereas dysfunctional telomeres due to loss of POT1 trigger ATR-signaling
or the activation of homologous DNA repair. Activation of the classical (c-NHEJ)
or alternative (alt-NHEJ) non homologous end-joining repair pathways involving
MRN complex (MRE11, NBS and Rad50), DNA-PK and Lig4 (c-NHEJ) or Lig3 or
CtIP (alt-NHEJ) (Rai et al. 2010) initiate end-to-end fusions but repair activities at
dysfunctional telomeres leads to chromosomal fusions, which are not stable during
the cell cycle and can be a source of genetic instability (d’Adda di Fagagna et al.
2004; Takai et al. 2003). Upstream protein kinases such as ataxia telangiectasia
mutated (ATM) and ATR as well as the downstream protein kinases CHK1 and
CHK2 are also involved in the 5′-end-resection at dysfunctional telomeres causing a
G1 cell cycle arrest or the senescence response by activating the tumour suppressor
p53 pathway. In the absence of p53BP, a target of the ATM kinase that accumulates
at the sides of DNA damage and suppresses end-resection, the classical NHEJ
pathway is inhibited and may direct the repair mechanism towards the homologous
repair, resulting in increased recombination at dysfunctional telomeres, a phenotype
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observed in telomerase negative, ALT-positive tumor cells (Dimitrova et al. 2008;
Martinez et al. 2012).

Whether the same pathways are activated as a consequence of physiological
telomere shortening remains to be shown but some data exist indicating that the
alt-NHEJ is the major pathway to repair DNA damage at naturally occurring
dysfunctional telomeres (Rai et al. 2010). The p16/INK4a-Rb pathway has been
implemented to contribute to the detection of telomere-induced DNA damage,
activating the senescence pathway and recent data show that p16/INK4a protects
cells against dysfunctional telomere–induced ATR-dependent DDR in Pot1b defi-
cient mice but the contribution of p16 remains still elusive yet (Shay et al. 1991;
Wang et al. 2013). Elucidating the DDR pathways in response to physiological
telomere dysfunction would be crucial to better understand the role of genomic
instability to tumorigenesis during aging.

4 Telomere-Dysfunction and Induction of Senescence
as a Tumor Suppressor Mechanism

As discussed above, telomere shortening is regarded as the main cause of telomere
dysfunction leading to induction of replicative senescence in aging cells. There is
now emerging evidence that the accumulation of telomeric DNA damage in response
to DNA replication stress can also contribute to induction of senescence. The
induction of this checkpoint involves abrupt induction of replication stress at telo-
meres, which appears to be independent of classical telomere shortening (Fig. 4).

Dysfunctional telomeres can be detected by the accumulation of telomere
dysfunction-induced foci (TIF) at the telomeres (d’Adda di Fagagna et al. 2003;
Takai et al. 2003). These foci include 53BP1 and phosphorylated H2AX
(gamma-H2AX) at the dysfunctional telomeres. Interestingly, recent observations
show the accumulation of persistent TIFs upon oncogene-induced senescence
(OIS) or stress-induced senescence (Fumagalli et al. 2012; Hewitt et al. 2012;
Suram et al. 2012). We recently showed that aneuploidy-induced senescence
(AIS) involves replication stress and TIF formation at telomeres indicating that
telomeres seem to mediate (AIS) (Meena et al. 2015). These new findings may
provide a unifying mechanism for senescence as a general tumor suppressor
mechanism whereby telomeres may converge different kinds of cellular stress in
one pathway (Reviewed in Gunes and Rudolph 2012, 2013).

The biological basis for this function of telomeres as a sensor of replication
defects may be due to their specific sequence composition and structure. Telomeres
can form G-quadruplex structures (G4) by intra-molecular Hoogsteen G-G base
pairs. G4 structures increase in a cell cycle dependent manner in human cells (Biffi
et al. 2013) and preferentially form at the 3′-end of chromosomes (Tang et al.
2008), are highly stable. G4 structures are thought difficult to resolve during rep-
lication and may provoke replication fork stalling and chromosome fragility
(Tarsounas and Tijsterman 2013). Fragile sites are particularly prone to
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chromosomal breakage and recombination events as a result of replication stress
(O’Keefe and Richards 2006). Replication stress can be induced by inappropriate
proliferation signaling such as oncogene activation or loss of cell cycle inhibitors
that deregulate transcription and generate DNA damage (Bermejo et al. 2012; Di
Micco et al. 2006). Telomeres are difficult to replicate and may lead to fork stalling
during replication upon inflated proliferation signals (Suram et al. 2012). Consis-
tently, replication stress at telomeres and thus inefficient replication of telomeric
DNA could attract DDR and induce the senescence checkpoints as a tumor sup-
pressor mechanism. In cells defective in functional repair mechanisms or faithful
telomere replication, however, dysfunctional telomeres can initiate genome
instability.

Fig. 4 Telomerase activity alleviates telomere replication stress and facilitates to overcome
oncogene-induced senescence. Oncogene activation leads to abrupt accumulation of DNA damage
at telomeres resulting in senescence and tumour suppression. Telomerase-positive stem cells could
be resistant to oncogene-induced senescence and may be selected as the cell type of origin of
tumour development
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5 TRF1 and Telomerase in the Context of Telomere
Replication Stress

There is emerging experimental evidence that replication through difficult repli-
cating sites requires coordinated action of telomerase activity, telomere binding
proteins and specific helicases that are recruited to the telomeres for faithful rep-
lication. TRF1 plays a key role in this context. Loss of mammalian TRF1 or its
fission yeast counterpart Taz1 leads to stalled replication forks and fragile telomere
phenotype (Martinez et al. 2009; Miller et al. 2006; Sfeir et al. 2009). Importantly,
MEFs from TRF1 deficient mice exhibited a premature senescence phenotype
compared to their wild type counterparts; in the absence of cellular checkpoints,
i.e., in cells expressing SV40-LT, the senescence phenotype was rescued but led to
increased chromosomal instability (Martinez et al. 2009). At organismal level, mice
lacking TRF1 in the stratified epithelia (TRF1flox/flox × K5-Cre transgenic bi-
transgenic mice) showed dysfunctional telomeres associated with skin hyperpig-
mentation and epithelial dysplasia but died perinatally. When these mice were
crossed with p53 null mice, they could survive but exhibited an increase in squa-
mous cell carcinoma. Together, these studies indicate that telomere replication is
facilitated by the shelterin factor TRF1 to prevent replication fork stalling and that
telomeric replication stress generates fragile telomeres that can instigate genomic
instability and cancer.

Interestingly, BLM helicase, which is also able to bind and resolve G4 struc-
tures, interacts with TRF1 and is recruited to telomeres during replication in late
S/G2 and cells lacking BLM accumulate dysfunctional telomeres and
telomere-dependent chromosome fusions (Barefield and Karlseder 2012). RTEL1 is
another helicase that facilitates faithful telomere replication, potentially by resolv-
ing the G-quadruplex structures at the T-loop (Vannier et al. 2012, 2013). Other
helicases with G4 resolving activity include the recQ helicases WRN, RECQL4 and
DNA2. DNA2 deficiency results in defective telomere replication, leading to ele-
vated fragile telomeres, telomeres loss, and telomere DNA damage response (Lin
et al. 2013). In the same line, it has recently been demonstrated that the activity of
the Pif1 helicase, that can associate with telomerase, is required to open telomeric
G4 structures and that the enzymatic activity of telomerase is crucial for this
function indicating that the damage present at telomeres is repaired by telomerase
(Chang et al. 2009; Mateyak and Zakian 2006; Paeschke et al. 2011). It remains
speculative whether Pif1 activity precedes and facilitates telomere replication or it is
required to resolve structures generated during replication. Studies in the ciliate
Stylonychia lemnae indicate that telomerase recruitment by the telomere binding
protein-ß, the homologue of the mammalian shelterin protein TPP1, facilitates
unfolding G4-structures. However, the exact mechanisms how these helicases act to
resolve telomeric G4 and their differential functions remain elusive.

Recent studies indicate that BRCA2 and RAD51 act in concert to heal fragile
telomeres in mouse cells, probably by enabling the restart of replication at stalled
replication forks that are processed by HR during the S-phase (Badie et al. 2010).
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BRCA2 recruits RAD51 to the telomeres during replication in S-phase and both
factors are required for maintenance of telomere length in mouse embryonic
fibroblasts (MEFs). Consistently, MEFs lacking BRCA2 or RAD51 exhibited an
increased fragility, telomere shortening and telomere dysfunction induced DNA
damage foci (TIF) indicative of loss of telomere protection. Interestingly, telome-
rase positive cells showed higher fragility in the context of BRCA2 mice when
compared to telomerase negative cells with shorter telomeres from late generation
telomerase knockout cells. This result indicates that longer telomeres have a greater
chance to accumulate fragile telomeres in the absence of repair mechanisms and in
the presence of telomerase. In conclusion, the adult stem cells, the main cell type
that retains telomerase activity in adult human tissues may represent the cell type of
origin of cancer formation (Fig. 4).

Together, telomeres have a dual role in cancer formation. Telomere shortening
and telomere replication stress in malignant cell clones serve as a tumor suppressor
mechanism by activating senescence and or crisis checkpoints. In contrast, telomere
shortening in aging tissues can also lead to an induction of chromosomal instability
by promoting chromosomal fusion and fusion-bridge-breakage cycles. In addition,
the inhibition of cell proliferation in aging tissues can also increase the selective
pressure for clonal outgrowth of (pre-) malignant cell clones by changing the tissue
environment and by impairing proliferative competition of non-transformed cells
(Bilousova et al. 2005; Braig et al. 2014; Ju and Rudolph 2006). The influence of
telomeres on tumor protection/tumor promotion may depend on the lifetime. Early
in life when telomeres are long cancer protective effects of telomere shortening/
replication stress in malignant cell clones may be dominant. In contrast,
tumor-promoting effects of telomere shortening may become dominant in aged
tissue and tissues experiencing telomere shortening in response to chronic diseases
such as liver cirrhosis in response to hepatitis or progressive stages of ulcerative
colitis (Rabinovitch et al. 1999; Rudolph et al. 2009). It remains to be investigated
whether targeting of senescence checkpoints in response to telomere shortening or
telomere replication stress could lead to development of novel anti-cancer therapies
and how these approaches affect tissue aging. Studies in mouse models indicate that
it is possible to improve tissue maintenance without increasing cancer risk by
inhibiting downstream checkpoint responses (Cdkn1a/p21) that limit proliferation
of cells in response to telomere shortening (Choudhury et al. 2007). In addition, it
was shown that p21 deletion can have anti-tumor effects in mouse models of
leukemia or irradiated human tumor cells (Lazzarini et al. 2008; Viale et al. 2009;
Waldman et al. 1996). It is possible that the tumor inhibiting effects of p21 deletion
involve the increase in telomere replication stress in genomically instable tumor
cells. Together, these studies suggest that it should be possible to define molecular
targets that can improve both tissue maintenance and cancer protection in aging
tissues.

Important areas of future research include the delineation of (i) distinct cellular
stress factors that cause telomere replication stress, (ii) molecular mechanisms that
are involved in the induction of replication stress, (iii) activation of checkpoints in
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response to replication stress at telomeres, and (iv) mechanism how telomerase
contributes to the suppression of telomere replication stress.
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