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Preface

The content of this book were triggered by the 2nd International Meeting on
“Molecular based treatment of GI cancers”, which was held in Göttingen, Germany,
on March 1–2, 2013. The meeting was focused on exploring how genomic tech-
nologies, including gene expression profiling, the detection of genomic imbalances,
and next-generation sequencing can be harnessed to identify molecular portraits of
cancer with the goal to improve the treatment of patients, a goal that can also be
summarized with the terms “personalized medicine” or “precision medicine”.
Ultimately, this will improve treatment outcome and quality of life. The meeting
was organized by Drs. Michael Ghadimi, Clemens Hess, Matthias Dobbelstein
(Göttingen), Josef Rüschoff (Kassel), and Thomas Ried (Bethesda, MD).
The speakers included numerous internationally recognized leaders in their
respective fields, who covered aspects of the role of the tumor microenvironment,
microRNAs, the role of epigenetic modifications, and chromosomal instability
and intratumor heterogeneity on treatment response. A round table discussion on
how to best implement genomic information in clinical decision making completed
the meeting. The meeting agenda can be retrieved at http://www.kfo179.de/en/
kongress.html.

In the book issue presented here we invited articles that cover the role of DNA
repair and chromosomal translocations, the use of mouse and yeast models to
understand chromosomal instability and tumor progression, the role of telomere
integrity and chromosome segregation errors for the emergence of specific genomic
copy number alterations in solid tumors, the influence of the newly identified
phenomenon of chromothripsis, and how aneuploidy influences the transcriptional
equilibrium of cells. The meeting was dedicated to Prof. Heinz Becker, who, for
many years lead the Department of Surgery at the University of Göttingen. Heinz
Becker was one of the leaders of the German Rectal Cancer Study group, which
established that neoadjuvant therapy of patients with rectal cancer reduces the risk
of tumor recurrence compared to postoperative treatment. He was very supportive
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of the research activities at the Department, which culminated in the establishment
of a Clinical Research Unit supported by the Deutsche Forschungsgemeinschaft
(http://www.kfo179.de/en/home.html).

We lost our friend and colleague Heinz Becker in 2014 and dedicate this issue to
him.

Göttingen B. Michael Ghadimi
Bethesda Thomas Ried
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DNA Repair and Chromosomal
Translocations

Stefan K. Bohlander and Purvi M. Kakadia

Abstract
The balance between DNA damage, especially double strand breaks, and DNA
damage repair is a critical determinant of chromosomal translocation frequency.
The non-homologous end-joining repair (NHEJ) pathways seem to play the
major role in the generation of chromosomal translocations. The “landscape” of
chromosomal translocation identified in malignancies is largely due to selection
processes which operate on the growth advantages conveyed to the cells by the
functional consequences of chromosomal translocations (i.e., oncogenic fusion
proteins and overexpression of oncogenes, both compromising tumor suppressor
gene functions). Newer studies have shown that there is an abundance of local
rearrangements in many tumors, like small deletions and inversions. A better
understanding of the interplay between DNA repair mechanisms and the
generation of tumorigenic translocations will, among many other things, depend
on an improved understanding of DNA repair mechanisms and their interplay
with chromatin and the 3D organization of the interphase nucleus.
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1 Introduction

The study of chromosomal translocations has played a pivotal role in the analysis of
the genetic basis of cancers. In fact, it was the discovery of recurring chromosomal
translocations in acute and chronic myeloid leukemia that conclusively showed for
the first time that cancer is a genetic disease (Rowley 1973, 2001). Although we
know for many recurring translocations in great detail what their functional con-
sequences are and how they alter the regulatory circuits in a cell to convert it into a
cancer cell, much less is known about the causes of chromosomal translocations
and why we find very specific translocations occurring at high frequencies in certain
malignancies.

This chapter will focus on the interplay between DNA repair and chromosomal
translocations. It appears intuitive that translocations should be the results of DNA
repair gone slightly wrong. But there is also evidence that the fusion genes or
deregulated gene expression, which are the consequences of some translocations,
might result in increased genomic instability and lead to the acquisition of addi-
tional genomic lesions including chromosomal translocations.
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2 Genome Stability

Keeping a stable genome is an essential and non-trivial task, which is vital for every
living organism. It appears obvious that the more stable a genome is, the better it is
for the organism. So the best solution would be an absolutely stable genome.
However, an absolutely stable genome is not as desirable as one might think at first
glance, because a completely stable genome does not allow any evolutionary
changes to occur. It will thus be necessary to allow a certain level of genomic
instability that is suited for a given organism. The stability of the genome should be
high enough to allow proper functioning and faithful reproduction of an organism
and at the same time still allow evolutionary changes to occur. The stability of a
genome is the result of the balance between DNA damage and repair (Fig. 1). It is
quite “costly” for a cell or organism to maintain a stable genome. This cost comes
in several forms like the energetic costs of repairing damaged DNA, which includes
the synthesis and maintenance of the many proteins that are part of the sophisticated
DNA repair machinery.

It is becoming more and more apparent that the fine tuning of genomic stability
is not only a very important aspect of a species’ evolutionary potential but that
changing the level of genomic stability in tumor cells has a great influence on the
“evolutionary” potential of a tumor and thus on its ability to adapt to different
external challenges like chemotherapy or to its ability to find appropriate niches for
growth in the body (metastases). Recent in-depth sequencing studies and careful
evaluation of traditional molecular genetic and cytogenetic data have revealed many
examples of astounding clonal heterogeneity in tumors and provided evidence that
tumor development is governed by the evolutionary principle of selection of the
fittest (Heselmeyer-Haddad et al. 2012; Yates and Campbell 2012). It is therefore
not surprising that we find many tumors with elevated levels of genomic instability,
which allow the tumors to evolve more rapidly.

DNA 
damageRepair

Evolution
No evolution 

Cancer
Cell death 

Genomic stability 

Fig. 1 The balance of DNA
damage and DNA repair
determines the stability of a
genome
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In this context, we need to take a close look at the factors that determine
genomic stability and that are not only important for the generation of recurring
chromosomal translocations but these factors can also be altered as a consequence
of chromosomal translocations.

3 DNA Damage and Repair

3.1 Balance of DNA Damage and DNA Repair

The stability of a genome is determined by the balance of two factors (Fig. 1):
(1) the rate of DNA damage and (2) the rate of DNA repair.

3.2 Sources of DNA Damage

There are many causes of DNA damage. Most commonly one thinks of DNA
damaging external agents like ionizing radiation or ultra violet radiation, as well as
chemicals or drugs like alkylating agents. However, spontaneous chemical reactions
and cell internal sources of DNA damaging agents like reactive oxygen species
(ROS) or S-adenosyl-methionine and errors in normal DNA metabolism (tran-
scription and DNA replication) contribute considerably to the DNA damage load in
a cell. It is estimated that between one thousand and one million DNA lesion occur
in every human cell per day (Lodish et al. 2004) (Fig. 2).

It should be noted that a minimum of two DNA double-strand breaks (DSBs) is
required for a chromosomal translocation to occur (Fig. 3). Certain cells, like

abasic sites 

single strand breaks 

double strand breaks 

mismatches 

pyrimidine dimers 

interstrand crosslinks 

Sources 

external 

internal 

Types 

radiation 
UV 

chemical alkylating agents 

ROS metabolic 

methylation 

DNA metabolism Replication 

Transcription AID-assdociated 

spontaneous 
Depurination 

Deamination 

X rays 

RAG1/2-associated 

Topoisomerases 
Helicases 

alkylation, other adducts 

Fig. 2 Sources and types of DNA damage. Note that this is not an exhaustive list
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developing B and T cells, will introduce directed DSBs into their genomes as part
of the immunoglobulin or T cell receptor maturation process (Zhang et al. 2010).
This process has been especially well studied both in terms of the mechanisms
involved and in the context of its contribution to the formation of recurrent chro-
mosomal translocations found in lymphoid malignancies.

DNA replication is a considerable source of DNA damage. DNA replication is
an extremely complicated process which involves among many other steps the
initiation of replication at specific origins of replication, the synthesis of two new
DNA strands as a leading and a lagging strand and the ligation of the newly
synthesized fragments (Okazaki fragments) of the lagging strands. At any of these
steps problems can occur which might lead to abortive replication with replication
fork stalling and possibly DNA strand breaks (Halazonetis et al. 2008). The fidelity
with which the correct nucleotides are incorporated into the new DNA strands
depends on the intracellular concentration of the individual deoxyribonucleotide
triphosphates. Under certain conditions, like enhanced cellular proliferation, the
local nucleotide pools can become depleted and nucleotides incorrectly incorpo-
rated at an increased rate (Bester et al. 2011). This in turn can lead to replication
fork stalling, repair attempts, faulty repair and eventually also to DSBs, which
might result in chromosomal rearrangements.

The most widely studied source of DSBs in the context of chromosomal
translocations are the DNA breaks that are introduced by the RAG1/2 enzymes in
the course of lymphoid cell differentiation (Zhang et al. 2010).

3.3 Types of DNA Damage and Their Source

As stated above, the most relevant type of DNA damage for the formation of a
chromosomal translocation is a DSB. However, other types of DNA damage like
abasic sites, base mismatches etc., can result in DSB if these lesions cannot be
repaired properly or if the lesion (damaged nucleotide or strand cross-link) is
encountered during DNA replication. We will briefly review these types of DNA
lesions and then focus on DSBs (Fig. 2).

Consequences:

 gene fusion 

 disruption of TSG 

Fig. 3 Faulty repair of two DNA DSBs results in balanced chromosomal translation. The example
shows two DSBs on two non-homologous chromosomes

DNA Repair and Chromosomal Translocations 5



3.3.1 Uracil, Abasic Sites, 8-Oxoguanine, Single Strand Breaks,
Pyrimidine Dimers, O-6-Methylguanine

Spontaneous deamination of a cytosine residue will lead to the generation of a
uracil residue and the spontaneous depurination reaction will remove a guanine or
adenine base from the DNA strand. Both, deamination and depurination will create
an abasic site. It should be noted that these reactions occur spontaneously at an
estimated rate of 5000 depurination and about 100 deamination reactions per human
cell per day (De Bont and van Larebeke 2004).

Alkylating agents and oxygen radicals attack nucleotides at various places cre-
ating bulky DNA adducts or single stranded breaks, respectively. Oxygen radicals
will also generate 8-oxoguanine. Alkylating agents are mostly of external origin
while oxygen radicals can be derived both from external sources such as ionizing
radiation and intracellular sources such as ROS generated by metabolic processes.
Single strand DNA breaks are frequently generated due to radiation or ROS.

Photoproducts such as pyrimidine dimers are the result of direct UV radiation.
They can lead to stalled replication forks and eventually to DSBs.

Guanine nucleotides are spontaneously methylated to O-6-methylguanine in a
non-enzymatic reaction by the ubiquitous methyl group donor S-adenosyl-
methionine (De Bont and van Larebeke 2004).

3.3.2 Replication Errors and Mismatches
DNA replication is a highly complex process and requires the interplay of many
proteins that work together in the so-called replisome, which in eukaryotic cells
contains at least three different DNA polymerases. While this process has a high
fidelity, wrong nucleotides can be incorporated leading to mismatches. Replication
through microsatellite repeats can easily lead to small insertions and deletions and
the expansion or contraction of the repeat. Replication errors are more frequent
when the intracellular nucleotide pool has become depleted as might be the case in a
rapidly proliferating tumor (Bester et al. 2011).

The replisome also contains or attracts proteins that can detect replication errors
and will then recruit repair proteins. Sometimes repair attempts are not successful
and will result in DSBs (see below).

3.3.3 Double Strand Breaks (DSBs)
As mentioned above, DSBs, if not repaired faithfully, are the main source of
chromosomal translocations. Several cell external and cell intrinsic causes for DSBs
are well known. It is estimated that about 50 DSB occur every day in a normal
human cell (Vilenchik and Knudson 2003) (Fig. 4).

Random DSBs Due to External Influences
There are many external agents that can lead to DSBs in a cell. The most well
known are high-energy radiation in the form of gamma rays, alpha particles or beta
rays. All these high energy radiation sources will either directly shatter DNA or lead
to the formation of an ionization trail with highly reactive molecules such as ROS,
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which will in turn attack and react with DNA causing DSBs. The most effective
radiation in producing DSBs are alpha particles, which deposit a high amount of
energy in the form of ionization events over a very short distance in the cell.

In addition to leading directly to a DSB as a consequence of the action of ROS or
a direct shattering of the DNA strands, radiation will also generate interstrand
crosslinks which will cause a problem during replication (see below).

Random DSBs Due to Internal Influences
ROS are normally produced in a cell as the result of metabolic processes (Sallmyr
et al. 2008). If ROS are not scavenged efficiently or produced at a higher rate due to
increased metabolic activity, the likelihood that DSB are generated increases.

DNA replication can be a major source of DSB breaks. The replication fork
stalls if it encounters a mismatch or an intrastrand crosslink. Attempts to repair
mismatches generated during replication can lead to abortive repair by the mis-
match repair pathway which will lead to DSBs. As mentioned above, the frequency
of mismatches is increased if the nucleotide pools are depleted due to rapid pro-
liferation causing the DNA polymerases to incorrectly incorporate nucleotides at a
higher rate (Bester et al. 2011).

Radiation
X-rays

RAG1/2

AID

BCR and TCR maturation 

Class Switch 
Recombination

Hypermutation

ROS

Replication

External Internal

interstrand crosslinks 

Transcription 

Faulty
 BER, NER or MMR 

Random Directed

Double Strand Break 

istalled replication fork 

template switching 

Chemicals nucleotide pool depletion 

Fig. 4 Causes of DSBs. Abbreviations: ROS reactive oxygen species; BER base excision repair;
NER nucleotide excision repair; MMR mismatch repair; AID activation-induced cytidine
deaminase; RAG1/2 recombination associated genes 1 and 2; BCR B cell receptor; TCR T cell
receptor
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Directed DSBs Due to Internal Processes (e.g., Immunoglobulin
Rearrangements)
Interestingly, there are several physiological processes which introduce DSBs “on
purpose”. These processes are required for the generation of genomic rearrange-
ments at the immunoglobulin and the T cell receptor loci during the maturation of B
and T cells, respectively (Dudley et al. 2005). The mechanisms that lead to these
DSBs and their proper resolution in the form of productive rearrangements have
been studied in great detail and their involvement in the generation of chromosomal
translocations that drive lymphoid malignancies has been subject to intense scrutiny
(Zhang et al. 2010).

RAG 1/2 Associated DSBs
The RAG1/2 recombination-associated endonucleases are responsible for intro-
ducing DSB to initiate the process of VDJ recombination at IGH, TRB, and TRD
loci and the VJ recombination process at the IGK, IGL, TRA and TRG loci. The
DSBs introduced by the RAGs are the first step in recombining one of many V
(variable) segments with one of many J (joining) segments to create functional
immunoglobulin or T cell receptor genes. In the case of the IGH, TRB and TRD loci
a D (diversity) segment to J segment recombination precedes the V–J recombina-
tion for a full VDJ recombination event. The V(D)J recombination is completed by
repairing or joining the DSBs with the classical nonhomologous end-joining
pathway (C-NHEJ) (Zhang et al. 2010) (see below).

DSB are very dangerous for a cell because they compromise the integrity of its
DNA. Since the purpose of these DSBs is to produce a functional gene, the RAG
endonucleases do not cut randomly in the genome but are guided by specific
recombination signal sequences (RSS), which consist of heptamer/nonamers that
are separated either by a 12 bp or a 23 bp spacer (Tonegawa 1983). The RAGs only
introduce DSB in two heptamer/nonamer sequences if one contains a 12 bp and the
other a 23 bp spacer. Even though there is sequence specificity and several con-
straints in where DSBs can be introduced by the RAGs, some variations in the
heptamer/nonamer sequences are tolerated. This means that DSBs can be intro-
duced at other genomic loci that happen to have sequences which resemble the
heptamer/nonamer sequences of the immunoglobulin and TCR loci. It is quite
obvious that DSBs outside the immunoglobulin or TCR loci can lead to unintended
and potentially dangerous chromosomal rearrangements if joined via the C-NEHJ
pathway (Robbiani et al. 2009).

AID Associated DSBs
In addition to the diversity in the immunoglobulin and TCR genes generated by the
V(D)J recombination process, more diversity is achieved by the process of somatic
hypermutation (SHM). In SHM, mutations are introduced into the variable region
exons of the immunoglobulin or TCR genes. The key enzyme responsible for SHM
is the activation-induced cytidine deaminase (AID). AID deaminates cytidines in
single-stranded DNA regions. The AID enzyme does not only introduce mutations
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into the variable region exons (Li et al. 2004) but is also responsible for the DSB
required for class switch recombination (CSR) (Muramatsu et al. 2000). Since AID
needs single-stranded DNA, its activity is coupled to active transcription which
requires the unwinding and melting of the DNA double strand. Thus, AID is
targeted by active transcription to the switch region of the constant region exons
(for CSR) or to the variable region exons (for SHM). The cytidine deamination
events introduced by AID into the switch regions of the constant region exons are
processed to DSB through the activity of proteins involved in DNA repair
(Chaudhuri and Alt 2004; Di Noia and Neuberger 2007). What causes AID induced
deamination events to lead to single nucleotide mutations and small indels at the
variable region exons on the one hand and to DSB in the switch regions of the
constant region exons on the other hand is currently unknown (Muramatsu et al.
2007). High throughput genome-wide translocation sequencing showed that
AID-associated DSBs that occur outside the normal loci for CSR are more frequent
in actively transcribed regions (Chiarle et al. 2011).

DSB Due to Normal Chromatin Movement and Processes (Topoiso-
merase and Helicase Action)
The nucleus is a very crowded place occupied by 46 linear DNA molecules with a
total length of about 2 m crammed into a small space of just a few cubic micrometers
(approximately 100–200 µm3). Many processes in the nucleus like transcription,
DNA replication and chromosome condensation require the unwinding of super-
coiled DNA to relieve torsional stress and to allow replication and transcription
factors to gain access to specific sites. Due to topological constraints it frequently
becomes necessary to break one DNA double strand temporarily to pass another
DNA strand through this gap. Introducing a DSB into a DNA molecule to pass
another DNA strand through the gap and then repairing the gap is a very risky
process and can easily lead to a faulty repair if another DSB is in the vicinity.
Topoisomerases and helicases and a number of DNA repair proteins are involved in
this process (Kaneko et al. 2004; Plank and Hsieh 2009; Vos et al. 2011).

To relieve torsional stress of a DNA molecule, e.g., during transcription, DNA
helicases will introduce a nick in one strand of a dsDNA molecule, release the stress
and then re-ligate the single-stranded nick. This process is also risky since it can
result in a DSB (Carrasco et al. 2014).

3.4 Detecting DNA Damage

Any DNA damage in a cell has to be detected rapidly so that it can be repaired
before the lesion is passed on to the daughter cells. One of the worst consequences
of improperly DNA damage is cancer.

While many of the DNA lesions described above are detected by specific pro-
teins and mechanisms, we will focus on the pathways in place to detect DSB, which
are the predominant substrate for the generation of chromosomal translocations.

DNA Repair and Chromosomal Translocations 9



3.4.1 Detecting DSB and Signaling for Repair
It is absolutely crucial for cell survival to quickly detect any DSBs and repair them
efficiently. A DSB generates two ends of a double stranded DNA molecule, which
immediately attract the attention of several proteins. These proteins will then
orchestrate the recruitment of additional DNA repair proteins. This is an extremely
complicated process involving a great number of proteins, which is still under
intense investigation. Several pathways and proteins that are working in this DSB
surveillance network have been identified (Fig. 5).

Even though telomeres technically constitute ends of linear dsDNA molecules
they are protected or hidden from the detection of the break surveillance proteins by
their special structure and a large number of telomere-associated proteins (Sli-
jepcevic and Al-Wahiby 2005).

Immediately after a DSB occurs, the surrounding chromatin undergoes extensive
modifications which are accompanied by various posttranslational changes of his-
tones and other proteins (poly(ADP-ribosyl)ation, ubiquitylation, sumoylation,
acetylation, phosphorylation). These modifications also extend from the site of the
DSB and lead to the recruitment of DNA repair proteins (Lukas et al. 2011).

Poly(ADP-ribosyl)ation
The first detectable event after a DSB is poly(ADP-ribosyl)ation (PAR) mediated
by the PARP1-3 enzymes. PAR modifies lysine residues of the core histones tails.
PAR of the histone tails leads to the recruitment of the chromatin remodelling
complex NuRD/CHD4 and polycomb complexes (Chou et al. 2010).

detecting/signalling
recruiting repair 

proteins repair pathways 

ATM 

ATRX 

PARP1-3 

MDC1
NBN

TP53

-H2AX

HR
(homologous

recombination)

error free 

error prone 

C-NHEJ
(classical non-homologous 

end-joining)

A-EJ
(alternative end-joining) 

MRN complex 

Ku70/Ku80

RAD50

MRE11 

Fig. 5 Double strand breaks (DSBs): Detection, signalling, recruitment of repair proteins and
repair pathways. The MRN complex consists of RAD50, NBN and MRE11. The repair pathways
are divided into error free (green) and error prone (red)
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Gamma H2AX (Phosphorylated Form of H2AX)
Another early event at a DSB is the phosphorylation of histone H2AX by ATM to
form gamma-H2AX. Gamma-H2AX is recognized by its sensor MDC1 (mediator
of DNA damage checkpoint protein1), which interacts among others, with the
Nijmegen breakage syndrome protein, NBS1 (Goldberg et al. 2003). NBS1 in turn
interacts with ATM and tethers it to the DSB to increase local gamma-H2AX
concentration. MDC1 recruits a number of other proteins like RNF8 which sub-
sequently leads to the recruitment of BCRA1, RAD18, PTIP (Pax transactivation
domain interacting protein) and P53BP1 to the sites of DSBs (Lukas et al. 2011).

It should be noted that replication stress in the form of stalled replication forks
also elicit gamma-H2AX formation via ATR (ATM and Rad 3-related) kinase
activity (Wang et al. 2011).

TP53
The TP53 tumor suppressor gene plays an important role in the detection and
signaling of DNA damage in a cell and orchestrating cellular responses to DNA
damage like cell cycle control and apoptosis TP53 (Meek 2009).

53BP1
P53BP1 (P53 binding protein 1) can shield under-replicated DNA regions after the
cell has gone through mitosis from the activity of DNA nucleases until the
under-replicated DNA regions have been repaired. These under-replicated DNA
regions, which are often found at common fragile sites, can become visible in
mitosis as so-called ultrafine DNA bridges. 53BP1 nuclear bodies are found in the
nuclei of cells that have just passed through mitosis (Lukas et al. 2011).

It should be noted that the exact molecular mechanisms that lead to DSB rec-
ognition are far from being completely understood and the description above offers
only a glimpse of the complexity that is already known. These mechanisms also
vary from cell type to cell type and also depend on the origin of the DSBs.

3.4.2 Signaling During Repair
Once the cell has detected one or more DSBs or other DNA lesions, it needs to
repair the damage or make the decision that the damage is too extensive to be
repaired, halt cell division or undergo programmed cell death. How this decision is
made is not entirely clear. Rather than assessing the damage and making a ‘con-
scious’ decision that the damage is too extensive, the cell will attempt to repair the
damage and while the repair process is in progress, the progression through the cell
cycle will be blocked. Entering S phase, or even mitosis, with unrepaired DNA
lesions can have catastrophic consequences.

Several well-known tumor suppressor genes function in pathways that prevent a
cell from progressing through the cell cycle as long as there are unrepaired DNA
lesions. These include the retinoblastoma gene (RB), the TP53 gene and the
INK4A/B genes as well as proteins that are more directly involved in DNA repair
(Huen and Chen 2010; Sperka et al. 2012).
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3.5 Repairing DNA Damage

Just as there are many different types of DNA lesions, there are many damage repair
pathways that are very specific for certain lesions. We will only briefly mention
these specialized repair pathways and then focus on the pathways involved in the
repair of DSBs. However, the failure to properly repair other types of DNA damage
such as mismatches, uracil bases, abasic sites, pyrimidine dimers or chemically
modified bases (alkyl groups, O-6-methylguanine) can also result in DSBs (Fig. 6).

3.5.1 Base Excision Repair (BER)
Abasic sites, uracil bases, 8-oxoguanine and single strand breaks (check ssBreak
repair) are efficiently repaired by the base excision repair (BER) process (Krokan and
Bjørås 2013). This process involves the removal of the uracil by DNA glycosylases
and then the removal of the sugar phosphate by the action of the AP endonuclease (AP
for apurinic and apyrimidinic site) and a phosphodiesterase. This creates a one
nucleotide gap in the DNA strand with the lesion, which is then filled by the action of
DNA polymerase(s) and sealed by a DNA ligase (Krokan and Bjørås 2013).

3.5.2 Nucleotide Excision Repair (NER)
Bulky DNA adducts and pyrimidine dimers and many other types of lesions are
repaired by the nucleotide excision repair (NER) process. The altered DNA strand
is recognized by a multi-protein complex that introduces single strand nicks on
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Fig. 6 Different types of DNA lesions and their repair pathways. Note that failed repair of a
specific lesions might lead to a DSB which will then have to be repaired. Translocations and other
rearrangements are mostly the result of C-NHEJ and A-EJ joining the incorrect DNA ends
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either side of the lesion. The nicks are spaced 12 nucleotides apart in bacteria but
more than 24 nucleotides apart in eukaryotes. The intervening fragment is removed
by the action of a helicase and the resulting single strand gap is repaired by the
action of polymerases and finally sealed by ligases. Mutations in NER pathway
proteins, especially those that are involved in the initial recognition of the damaged
DNA, are found in Xeroderma pigmentosa patients (Shuck et al. 2008).

3.5.3 Direct Reversal
Certain DNA lesion like O-6-methylguanine and thymidine dimers can also be
repaired by direct reversal mechanisms. The methyl group of O-6-methylguanine is
removed by the action of MGMT (Tano et al. 1990), and UV-induced pyrimidine
dimers can be reversed by the action of the photolyases (Kneuttinger et al. 2014).
Photolyases, which catalyze the direct reversion of thymidine dimers, are not
functional in placental mammals (Lucas-Lledó and Lynch 2009).

3.5.4 Mismatch Repair
Mismatches and smaller insertions and deletions that arise frequently during DNA
replication are efficiently repaired by the mismatch repair process (MMR). A mul-
tiprotein complex, containing the components of the MMR machinery and addi-
tional proteins, is loaded onto the freshly replicated DNA double strands, scans the
DNA and recognizes distortions of the helical structure caused by base mismatches
between the two strands. Once a distortion is detected the newly synthesized DNA
strand is nicked by the endonuclease in the complex and the endonuclease exo1
removes several nucleotides including the mismatches in this strand. Then the gap
in the strand is filled by the action of DNA polymerase delta and the repair is
completed by the action of a DNA ligase (Li 2008). There are about 10 proteins
involved in MMR and mutations in several of the genes coding for these proteins
are found in hereditary cancer syndromes like HNPCC (Müller and Fishel 2002)
(Fig. 6).

3.5.5 Double Strand Break Repair
Faulty repair in any of the repair pathways described above can result in DSBs,
which can lead to chromosomal translocations. The cell will attempt to repair any
DSB using one of three or four DSB repair pathways. DSB repair pathways can be
subdivided into error-prone and error-free pathways. In this context, error-free has
to be understood as theoretically error free or usually error free. After an error free
repair, the nucleotide sequence of the repaired region will be identical to the
nucleotide sequence before the DSB.

Homologous Recombination (HR)
Homologous recombination is a usually error free DSB repair pathway. This pro-
cess operates in the S and G2 phase of the cell cycle because it requires an intact
sister chromatid, which serves as the template for the DNA repair. The
MRE11/RAD50/NBS protein complex is loaded onto the end of the DSBs where

DNA Repair and Chromosomal Translocations 13



the 5′-3′ exonuclease activity of MRE11 removes nucleotides from one of the
strands of the free dsDNA end (Daley et al. 2013; Lammens et al. 2011; Williams
et al. 2010). This leads to an exposed single-stranded 3′ DNA overhang, which is
processed with the help of replication proteins A (RPA), RAD51, BRCA2 and
several other proteins into the RAD51-ssDNA-nucleoprotein filament. The
RAD51-ssDNA-nucleoprotein filament will then invade the dsDNA of the
homologous site on the sister chromatid, which serves as a template for the
error-free synthesis of the DNA across the DSB region (Pellegrini et al. 2002; Popp
and Bohlander 2010; Yang et al. 2002). After the Holliday junctions are resolved,
the error-free repair is completed. This repair pathway can result in sister chromatid
exchange. The DSB repair by HR is a sterically very complicated process and
involves, in addition to the proteins mentioned above, several other important
proteins like RECQL2 (Werner Syndrome), BLM (RECQL3) (Bloom Syndrome),
BRCA2 (familial breast cancer), RAD54, PALB2 (familial pancreatic cancer),
FANCM, FANCC (Fanconi anemia) and others (Daley et al. 2013; Popp and
Bohlander 2010). A number of these proteins are mutated in hereditary tumor or
genome instability syndromes and are also somatically mutated in these tumors
(Bunting and Nussenzweig 2013; Ellis et al. 1995; Jones et al. 2009; Meetei et al.
2003; Strathdee et al. 1992; Wooster et al. 1995; Yu et al. 1996).

Single Strand Annealing (SSA)
SSA is a variant of HR, a homology dependent mode of joining DSB. It operates
between closely spaced direct repeats (less than 25 kbp apart) and usually results in
the deletion of one copy of the repeat (Ivanov et al. 1996; Zhang et al. 2010).

BIR (Breakage Induced Replication Template Switching)
Another, mechanism to generate a translocation would be for the DNA replication
machinery to switch to another chromosome as a template. This so-called
breakage-induced replication (BIR) template switching can be induced by a break
during DNA replication (Bunting and Nussenzweig 2013).

Classical Non-Homologous End Joining (C-NHEJ)
The C-NHEJ repair pathway for DSB is error-prone, which means that after the
joining of the broken ends there will be, mostly smaller, deletions or insertions at
the location of the former DSB (Rassool 2003; Roth and Wilson 1986). This
process does not need an intact template strand from the sister chromatid and is
therefore the major repair pathway for DSBs during the G1 and S phases of the cell
cycle. The C-NHEJ pathway is also far more likely to join DSBs that do not belong
together since it does not require homologous sequences to guide the repair process.
It is, together with alternative end joining (A-EJ), the major repair pathway for
removing DSB in the cells. C-NHEJ is used in V(D)J recombination at the
immunoglobulin and T cell receptor loci for repairing the breaks that are generated
in the process of somatic recombination and CSR.

To initiate the C-NHEJ process, the DSB DNA ends are bound by the KU70/80
proteins to prevent the drifting apart of the DSB ends (Soutoglou et al. 2007). Then
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DNA-PKCs and the MRN complex (MRE11-RAD50-NBS) are recruited to the
breaks. The MRN complex is crucial in all three DSB repair processes (HR,
C-NHEJ and A-EJ). It executes and coordinates many of the activities that are
required for DSB repair. For example, the RAD50 coiled-coil domains extend from
the core MRN complex which occupies the DSB end to connect the DSB to the
other break or the sister chromatid (Lammens et al. 2011).

The MRN complex is responsible for some resection at the DSB and then the
broken DNA ends are joined together by the activity of the DNA ligase IV-XRCC4
complex (Roth and Wilson 1986).

Other important proteins involved in C-NHEJ are Artemis (Moshous et al. 2001)
and Cerunnos (XLF) (Ahnesorg et al. 2006; Buck et al. 2006). Both proteins were
identified because mutations in these factors lead to certain severe combined
immunodeficiency syndromes, in which immunoglobulin recombination and TCR
recombination are severely compromised.

Alternative End Joining Pathway (A-EJ) or Microhomology-Mediated
End-Joining (MMEJ)
There are probably several A-EJ pathways. A-EJ is the repair of DSB in the absence
of KU70/80, XRCC4 or Ligase 4 (Daley and Wilson 2005; Wang et al. 2003). The
A-EJ pathway also relies on the MRN complex as the crucial component of the
repair process (Popp and Bohlander 2010).

A-EJ repaired DSBs are characterized by the presence of stretches of micro-
homologies of six to eight base pairs. In some models, A-EJ pathways are
responsible for the majority of DSB repairs that resulted in chromosomal translo-
cations (Boboila et al. 2010; Simsek and Jasin 2010).

In systems with inducible chromosomal translocations, the analysis of the
breakpoints showed that microhomology-based mechanisms were responsible for
only a minority of de novo translocations (Daley and Wilson 2005; Wang et al.
2003). Next generation sequencing studies also showed that less than a third of
human germ line chromosomal translocations showed microhomologies at the
breakpoints. The breakpoints showed more complicated structures with fragmen-
tation of local DNA sequences, small inversions and deletions. This suggests that
C-NHEJ rather than A-EJ contributes to a substantial fraction of human germline
chromosomal translocations (Chiang et al. 2012).

4 Translocations

4.1 Translocations—the Tip of the Iceberg

It should be noted that there is now solid evidence that translocations between
non-homologous chromosomes are rare compared to intrachromosomal rearrange-
ments (Mahowald et al. 2009; Zhang et al. 2012) between loci that are closer to
each other in the interphase nucleus than loci on different chromosomes (Campbell
et al. 2008; Pleasance et al. 2010a, b; Stephens et al. 2009).
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In addition to the classical, balanced translocation (like the t(9;22)(q34;q11) or
the t(8;14)(q24;q32) (Dalla-Favera et al. 1982; Rowley 1973; Taub et al. 1982)),
two DSBs can lead to a great variety of other chromosomal rearrangements (Fig. 7).
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Fig. 7 Possible types of rearrangements after two DSBs depending on the location of the DSB.
Note that not all possible constellations of two DSBs are shown. The case of two DSBs on two
different chromosomes is shown in Fig. 3. Ring chromosomes and dicentric chromosomes, as well
as acentric fragments are frequently mitotically unstable and lead to aneuploidies. a Two DSBs
located on the same arm of the same chromosome. This can result in a paracentric inversion or a
deletion. The acentric circular fragment will be lost during mitosis. The consequences of such
rearrangements can be a gene fusion event (resulting in a fusion gene or deregulated gene
expression) and/or the disruption or deletion of a gene (tumor suppressor gene). b Two DSBs
located on different arms of the same chromosome. This will result in a pericentric inversion or in a
ring chromosome and an acentric fragment which will be lost during mitosis. c Two DSBs located
on the same arms of two homologous chromosomes. The result is either a deletion accompanied by
a duplication or a dicentric chromosome and an acentric fragment
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4.2 DSBs and the Resulting Chromosomal Rearrangements

Depending on the number of co-occurring DSBs and whether the DSBs occur on
the same chromosome arm, on different chromosome arms of the same chromo-
some or on different chromosomes, different chromosomal rearrangements will
result. It is quite obvious that the complexity and types of rearrangements increases
rapidly with increasing number of co-occurring DSBs. We will only discuss a few
scenarios to illustrate the increasing complexity of possible rearrangements as the
number of DSB increases and that the most common rearrangements following
DSBs have only become “visible” through new technical developments in
sequencing, which allowed the analysis of whole tumor genomes at unprecedented
resolution.

4.2.1 Consequences of Two DSBs
If two DSBs occur on the same arm of a chromosome there are four free dsDNA
ends that can either be repaired in their original order or be joined in a different
order, which will result in genomic rearrangements. There are only two possible
outcomes of this non-correct joining: (1) Deletion: If the ends of the chromosome
fragment between the two breaks are joined to form a circular DNA molecule and
the two ends of the flanking fragments are joined, an interstitial deletion will be the
outcome. Since the circle does not have a centromere, it will be lost in subsequent
cell divisions. (2) Inversion: The fragment between the two breakpoints can be
inverted resulting in a paracentric inversion (Fig. 7a).

If the two DSBs occur in different arms of the same chromosome and are joined
in the incorrect order there are also only two outcomes but the consequences are
more complicated. (1) If the ends of the fragment containing the centromere are
rejoined, a ring chromosome will be produced. The fragments containing the
telomeres might then join to form an acentric chromosome, which will be lost in
subsequent cell divisions. The net result will be the deletion of the DNA sequences
distal of the two breakpoints (i.e., the sequences towards the telomeres). (2) The
alternative, incorrect order of joining the four DSB break ends will result in a
pericentric inversion of the chromosome (Fig. 7b).

If two DSBs occur on the same arm of two homologous chromosomes and are
joined incorrectly, translocations, interstitial duplications and deletions will result.
Alternatively, an acentric fragment and a dicentric chromosome can form. Both are
mitotically very unstable (Fig. 7c).

Finally, if two DSBs occur on different, non-homologous chromosomes and are
joined in the incorrect order, two possible outcomes are observed:

1. A balanced chromosomal translocation occurs if the DSB ends are joined in the
correct orientation with respect to their centromere to telomere orientation
(Fig. 3). The ends on the fragments with the centromeres need to be joined to the
ends on the fragments with the telomeres.

2. A dicentric chromosome and an acentric fragment will be generated if the two
ends connected to a centromere and the two ends connected to the telomeres are
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joined, respectively. Dicentric chromosomes are extremely unstable during cell
division and are subject to additional breakage events while the acentric frag-
ments will be lost during mitosis (see Fig. 7c, lower right half).

4.2.2 Consequences of Three and More DSBs
The number and types of possible rearrangements that can result if the ends from
three DSB breaks are joined in an incorrect order is quite large. Three DSBs will
generate six DNA ends. These six DNA ends can theoretically only be joined in
three non-correct ways. However, the type of rearrangements that can result from
three DSBs also depends on where these DSBs are located with respect to each
other. For example, if the breaks are all on the same arm of the same chromosome
the possible rearrangements are different from the situation in which all three DSBs
are on different, non-homologous chromosomes. For example, if all three DSBs are
on the same chromosomal arm, there can either be a deletion or an inversion
rearrangement. If the three breaks occur all on different chromosomes, a three way
balanced translocation can be one of the results. If two breaks occur on the same
chromosome arm and the third break on a different chromosome, interchromosomal
insertions will be observed.

If the number of DSB breaks increases, the number of possible rearrangements
will increase in a non-linear fashion. The most extreme example of rearrangements
resulting from multiple DSBs is a so-called ‘chromothripsis’ event. The complexity
of chromothripsis events has only recently been discovered and required next
generation sequencing approaches to decipher (Molenaar et al. 2012; Stephens et al.
2011). It should be noted that the exact causes of chromothripsis events are not
entirely understood at the moment. One of the explanations would be a catastrophic
event that produces many, local DSBs which are then repaired in the wrong order.
There is also the possibility that locally disrupted DNA replication leads to a chain
of microhomology-mediated template switching events (see below) (Crasta et al.
2012; Holland and Cleveland 2012) .

4.3 Steric Constraints on the Formation of Chromosomal
Rearrangements

4.3.1 Arrangement and Mobility of Chromosomes
in the Interphase Nucleus (Chromosome Territories)

In the interphase nucleus, chromosomes are not arranged randomly like spaghetti
on a plate. Each chromosome occupies a so-called chromosome territory
(CT) (Cremer and Cremer 2001) (Fig. 8). Chromosome territories are of complex
shapes. Adjacent chromosome territories interdigitate with each other (Cremer and
Cremer 2001). There is no fixed order of how CTs are arranged with respect to each
other in the interphase nuclei of a given cell type (i.e., there is no rule that the CT of
chromosome 1 should always make contact with the CT of chromosome 10, for
example). The arrangement of CTs with respect to each other seems to be dynamic
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and also changes during cellular differentiation. There is a tendency of CTs of
chromosomes with a high gene density to be located more centrally in the nucleus
and the CTs of gene poor chromosomes to be found more frequently in the nuclear
periphery (Cremer et al. 2001).

Interphase DNA is wrapped around an octamer of core histones which form the
nucleosomes. The DNA wrapped around individual nucleosomes has the appear-
ance of bead on a string and is the basic 10 nm chromatin fiber (Belmont 2006;
Misteli 2010). In the interphase nucleus, the chromatin fiber is further compacted
with linker histones and non-histone proteins and organized into so-called chro-
matin domains (CDs), containing on the order of 1 Mbp of DNA. CDs form the
basic units of higher-order chromatin organization (de Graaf and van Steensel
2013). While the interphase chromatin is not held in place by a rigid matrix, there is
evidence that the movement of the chromatin, and hence the DNA, is spatially
confined. Thus, the two ends of a DSB are not free to move to any place within the
nucleus but have been shown to move within a radius of approximately 1 µm
(Soutoglou et al. 2007).

These steric constraints, namely the packaging of chromosomes in CT, the
organization of the DNA into CD, and the resulting limited mobility of DSB ends
have very important implications for the frequency and types of chromosomal
rearrangements that can occur as a consequence of DSBs.

As stated above, a minimum of two DSBs is required for a chromosomal
rearrangement to occur. In addition, these two DSBs have to occur at the same time.
There are an estimated 50 DSBs per nucleus per day (Vilenchik and Knudson

No Translocation Intrachromosomal 
Rearrangement

Translocation 

Fig. 8 Possible scenarios for the location of two simultaneously occurring DSBs in the interphase
nucleus and the likely outcome. The width of the arrows correlates with the likelihood of the
different outcomes. Only two chromosome territories (CTs) are shown as example. Left the two
DSBs occur in different CTs which are far apart in the interphase nucleus. Middle two DSBs occur
in the same chromatin domain on the same CT. Right two DSBs occur in different, adjacent CTs
but closely spaced in intermingling chromosome domains
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2003). However, DSB repair is usually initiated within a few minutes of the
breakage event. At that time, the broken ends are still very close together and have
not moved apart very far because of the limited time available and the constraints
imposed on the DNA by the higher order chromatin organization (Soutoglou et al.
2007). In order to rejoin the ends of one DSB (DSB-A) with the ends of another
DSB (DSB-B), DSB-A and DSB-B have to occur close enough to each other in the
interphase nucleus and at almost the same time. Even if two DSBs occur at the same
time in the same nucleus but are separated by more than 1 µm, it is unlikely that the
DNA ends can move far enough so that a rearrangement can occur (Fig. 8).

Considering these limitations, it is quite safe to assume that chromosomal
rearrangements have a much higher chance to occur if the two originating DSBs
occur in close spatial and temporal proximity. Therefore, it is quite obvious, con-
sidering the arrangement of DNA in the interphase nucleus, that two DSBs that are
close enough to each other to lead to a rearrangement are much more likely to be
located on the same chromosome and also within the same or neighboring CD.
These considerations imply that intrachromosomal rearrangements that involve
breaks that are less than 1 Mbp (DSBs in the same CD) or only a few Mbp apart
(DSBs in neighboring CDs) are much more frequent than interchromosomal rear-
rangements (i.e., translocations). Data from recent high throughput sequencing
experiments of tumor genomes are supporting these assumptions. About 80 % of all
the rearrangements found in these studies were indeed intrachromosomal, with the
majority involving breakpoints that were just a few Mbp apart (Wijchers and de
Laat 2011) (Fig. 8).

4.4 Functional Consequences of Translocations

Before we ask the question of why specific translocations recur, we will briefly
consider the functional consequences of genomic rearrangements that result from
DSBs. For the sake of simplicity, we will focus on the functional consequences of
translocations, but the same principles do apply to deletions, inversions and more
complicated rearrangements.

4.4.1 Passenger Translocations
Some translocations found in tumors or as constitutional translocations do not
appear to have any functional consequences. In the tumor setting, the term “pas-
senger translocations” has been coined (Zhang et al. 2010). Whether a particular
translocation is a true passenger translocation is very difficult to determine. The
function and identity of many regulatory elements (locus control regions, enhanc-
ers, insulators) are still very poorly understood. These elements can influence gene
expression over very large (up to 1 Mbp) genomic distances. In the context of
haematological malignancies, any translocation that is non-recurring and does not
lead to an obvious fusion transcript or is in the vicinity of a known oncogene or
tumor suppressor gene is likely to be a passenger translocation.
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4.4.2 Driver Translocations
Driver translocations are those translocations whose functional consequences are
responsible or contribute to the malignant phenotype of a cell. There are two well
recognized types of driver mutation: (1) those leading to a fusion gene and (2) those
leading to the transcriptional deregulation of breakpoint adjacent genes (Fig. 9).

Fusion Genes
One of the consequences of a chromosomal translocations is the formation of a
fusion gene which gives rise to a chimeric protein. In these cases, the two DSBs
leading to the translocation occur in two gene loci, mostly in the introns. After the
translocation, a fusion transcript is produced that contains in its 5′ part coding exons
from the first gene and in its 3′ portion coding exons from the second gene. Only
so-called in frame fusion transcript will lead to the translation of a chimeric protein,
which consists of an N-terminal protein portion from the first gene and a C-terminal
portion from the second gene. The best known example is the t(9;22)(q34;q11)
translocation found in more than 90 % of all chronic myeloid leukemia cases
(Ben-Neriah et al. 1986; de Klein et al. 1982; Rowley 1973), which gives rise to the
well-known BCR/ABL fusion protein. Chimeric proteins like the
RUNX1/RUNX1T1, CBFB/MYH11, PML/RARA and various MLL fusion

Fusion protein 

Over-expressed
protein

Fig. 9 The functional consequences of a balanced translocation. Top the formation of a fusion
gene that leads to a fusion protein (blue/green). Bottom the formation of a fusion gene that leads to
the deregulation (over expression) of a gene adjacent to the breakpoint (green gene). Boxes on the
DNA strand denote exons and the ovals denote promoter or enhancer sequences. Red arrows point
to breakpoints. Please note that this diagram only shows the situation at one of the two breakpoint
junctions
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proteins can be identified in about 16–20 % of acute myeloid leukemia cases
(Mitelman et al. 2007) (Fig. 9, top right).

Deregulated Gene Expression
The second functional consequence of a chromosomal translocation is the juxta-
position of a strong enhancer element to an (onco)gene. This leads to the tran-
scriptional deregulation, in most cases the overexpression, of the affected gene. The
first example for this type of translocation was the t(8;14)(q24;q32) associated with
Burkitt’s lymphoma and leading to the overexpression of the MYC protooncogene
through the IgH intron enhancer and/or locus control regions (Erikson et al. 1983;
Madisen and Groudine 1994) (Fig. 9, bottom right).

The total number of known gene fusions, both those leading to a chimeric
protein and those leading to deregulated gene expression is presently more than
2000 (http://cgap.nci.nih.gov/Chromosomes/Mitelman, queried May 2014). Just
7 years ago, a similar count listed only 328 gene fusions (Mitelman et al. 2007).
This huge increase in the number of gene fusion in recent years is due to the
widespread use of high throughput sequencing technologies in the study of tumor
genomes.

Interestingly, translocations leading to chimeric proteins are mostly found in
myeloid leukemia and some solid tumors whereas translocations that lead to
deregulated gene expression are very common in lymphoid malignancies. Most of
the translocations found in lymphoid malignancies involve one of the immuno-
globulin loci or the T cell receptor loci. As discussed below, this is a consequence
of faulty somatic rearrangements involving these loci.

Additional Mechanisms: Disrupting Tumor Suppressor Genes, Two
Reciprocal Fusion Proteins
Even though the two mechanisms described above (fusion protein formation and
oncogene overexpression) are considered the main mechanisms through which
driver translocations exert their oncogenic potential, additional mechanisms might
be relevant in certain translocations. Balanced translocation frequently do not only
generate a single fusion protein but will often lead to the expression of two reci-
procal fusion proteins. While in most instances one of these fusion protein is
considered to be the main and sole driving force behind the malignant phenotype,
this does not always appear to be the case. For example, there is experimental
evidence that both fusion proteins contribute to malignant transformations in the
case of acute promyelocytic leukemia (APL). Mice that express the PLZF/RARA
and the RARA/PLZF fusion develop a more typical APL phenotype than mice that
just express the PLZF/RARA fusion alone (He et al. 2000). For certain MLL fusion,
the reciprocal fusion protein, X/MLL, also seems to play an important role like in
the case of AF4/MLL (Bursen et al. 2010).

Another consequence of a reciprocal translocation that generates a fusion protein
is the fact that the two gene loci involved in the translocation will not be able to
serve their wildtype function. They will be “knocked-out” in the rearranged allele,
resulting in hemizygosity for these genes. It has become very obvious, that the
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disruption of one of the fusion partner is probably playing an important role in some
translocations, especially in the case of the very frequent ETV6/RUNX1 fusions
observed in childhood B-ALL. Many of these leukemias do not only have the
ETV6/RUNX1 fusion but also have a deletion of the non-rearrangmed ETV6 allele
leading to a complete loss of wild type ETV6 function (Bohlander 2005). In
addition, there are hints that some fusion proteins might interfere with the tumor
suppressor function of one of the fusion partner proteins they are composed of
through protein protein interaction, like in the case of the INPP5D/ABL1 fusion
(Kakadia et al. 2011).

Thus the “transformational impact” of a chromosomal rearrangement can be
much stronger than that of a simple point mutation. A translocation can lead to the
formation of a new oncoprotein and at the same time compromise the function of
one (or even two) tumor suppressor genes.

4.5 Specific Mechanisms Causing Chromosomal
Translocations

One of the key questions is whether there are any mechanisms or factors that favor
the occurrence of chromosomal translocations.

4.5.1 Random DsDNA Breaks Followed by Faulty Repair via HR,
NHEJ or A-EJ (MMEJ)

The analysis of the genomic DNA sequence at translocation breakpoints can pro-
vide insights into the mechanisms that led to the joining of the chromosomes.
However, this analysis can give only very indirect information of what might have
caused the DSB itself.

In most cells, except for cells of the lymphatic lineage, it appears that DSBs are
caused by random events of the types discussed above (radiation, stalled replication
forks, failed repair of other DNA lesions, etc.) and are then repaired through either
the classical or alternative non-homologous end joining pathway (C-NHEJ or
A-EJ). The repair via the NHEJ does not need any regions of homologies between
the two DNA ends. A translocation breakpoint that was joined by the NHEJ
pathway might have small deletions or the random addition of a few nucleotides at
the breakpoint junction when the sequences are compared to the non-rearranged
chromosome regions (Weinstock et al. 2006; Zhang et al. 2010).

4.5.2 Due to Faulty RAG1-2 or AID Action
It is well known that most of the DSBs that lead to chromosomal translocations in
haematological malignancies of the lymphoid lineage are due to the off-target action
of the RAG1/2 endonucleases or the activity of AID. As discussed above, the
RAG1/2 enzymes target their endonuclease activity to special heptamer/nonamer
consensus sequences. As this targeting is not 100 % accurate and restricted to the
immunoglobulin loci or the T cell receptor loci, DSBs in other loci can occur. These
off-target breaks are again repaired by the NHEJ pathway and an analysis of the
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genomic breakpoint sequence will often identify heptamer/nonamer homologous
sequences next to the breakpoint at the off target breakage site (Raghavan et al.
2001).

4.5.3 Chromothripsis
The occurrence of very complex chromosomal rearrangements involving one or just
a few chromosomes is called chromothripsis (chromosome shattering). These
events have just recently become amenable to analysis through whole cancer
genome sequencing approaches (Stephens et al. 2011). It is likely that chro-
mosthrispsis events originate from replication fork stalling and template switching
(Lee et al. 2007) or alternatively from microhomology-mediated break-induced
replication (Hastings et al. 2009) with multiple template switching events. The local
nature of these events could be caused by this process being linked to micronuclei
formation which is especially likely in situation where various cell spindle and/or
anaphase checkpoint mechanisms are defective, like in TP53-mutated tumors
(Forment et al. 2012; Holland and Cleveland 2012; Liu et al. 2011).

4.5.4 Shortened Telomeres
As a cell undergoes cell divisions, its telomeres will shorten with each division
unless the telomerase enzyme is active. This holds true both for somatic cells as we
age as well as for premalignant and malignant cells that proliferate even more
rapidly. This process of “telomere erosion” can lead to state where the telomere
repeats become so short that the usual proteins that protect the telomeres can not
attach to the telomeres properly and protect them. As a consequence, telomeres
become exposed and will be recognized as DNA breaks, and repair proteins will be
recruited. Two telomeres can then be joined together via the NHEJ pathway. This
will result in the formation of dicentric chromosomes. Dicentric chromosomes are
mitotically unstable because the two centromeres in the chromosome might be
pulled in opposite directions (Artandi and DePinho 2010). This will result in a
chromatid break and additional cycles of repair and breakage, the so called
fusion-bridge-breakage cycles, eventually resulting in multiple rearrangements and
aneuploidies. Although this mechanism leads to genomic instability, it is less well
documented as the cause of recurring chromosomal translocations. Recently, such a
mechanism has been proposed to be responsible for a complicated amplification
event of a megabase pair regions on chromosome 21 in childhood acute lympho-
blastic leukemia (Li et al. 2014). The observed rearrangements resembled chro-
mothrispsis events.

4.5.5 Template Switching During DNA Replication, Replication
Stress

As also discussed above, DNA replication can be an abundant source of DSBs,
which lead to chromosomal translocations (Halazonetis et al. 2008; Jackson and
Loeb 2001). Especially under stress conditions such as nucleotide depletion (Bester
et al. 2011), when the replication fork encounters damaged nucleotides and stalls
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(Lee et al. 2007) or encounters regions that are difficult to replicate like fragile sites
(Arlt et al. 2006; Barlow et al. 2013; Helmrich et al. 2011; Ozeri-Galai et al. 2012),
DSBs or template switching can occur which lead to translocations or even to
chromothripsis events (Forment et al. 2012).

4.5.6 Increased Rate of Chromosomal Translocations in Certain
Mendelian Disorders

There is a small number of very rare Mendelian disorders that show an elevated
incidence of chromosomal translocations and a high tumor incidence. The identi-
fication of the causative genes in these syndromes have, not surprisingly, uncovered
genes that are involved in DSB repair. These findings underscore the importance of
DSB break repair for keeping the number of chromosomal translocations at a low
level. Since the different DSB repair pathways discussed above have several
components in common, for example the MRN complex (MRE11, RAD50, NBS
complex) is central to DSB repair via the HR, C-NEHJ, and A-EJ pathways (Popp
and Bohlander 2010), the higher frequency of chromosomal rearrangements in
several of these conditions can not be accurately attributed to defects in specific
repair pathways. However, these disorder clearly demonstrate the importance of a
well functioning repair process in keeping the number of chromosomal transloca-
tions low. These conditions include among others: Bloom Syndrome (Ellis et al.
1995), Werner Syndrome (Yu et al. 1996), Nijmegen Breakage Syndrome (Carney
et al. 1998; Varon et al. 1998), Ataxia teleangiectasia (Mahowald et al. 2009), and
Fanconi anemia. Fanconi anemia, which is characterized by bone marrow failure
and the susceptibility to a broad range of liquid and solid tumors, is caused by
mutations in more than 15 genes, including BRCA2/FANCD1, that are mainly
involved in the repair of interstrand crosslinks and homologous recombination DSB
repair (Kottemann and Smogorzewska 2013).

4.6 Why Do We See Certain Translocations Recurringly?

Considering that DSBs breaks are efficiently and quickly repaired in a cell and that
the aberrant joining of two chromosomal ends is a rare events due to steric and
temporal constraints, and also considering the lack of evidence for a specific 3D
arrangement of interphase chromosomes, which might increase the frequency of
certain translocations, the question arises: Why do we see recurring chromosomal
translocations in tumors at all?

4.6.1 Selection Theory
The main driving force behind the recurrence of specific chromosomal transloca-
tions in malignancies is selection. The fusion protein or the overexpressed onco-
gene that results from certain chromosomal translocations will convey such a strong
growth advantage to the cell harboring the translocation that its progeny will out-
compete the other cells in the tissue. As discussed in more detail below, there is
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evidence that some fusion genes or over-expressed genes resulting from chromo-
somal translocations actually increase genomic instability thereby accelerating the
acquisition of additional genetic changes that enhance the malignant phenotype of
the cell resulting in a positive “cancer evolution feedback loop”. The selection of
chromosomal translocation based on their functional consequences is a
well-established phenomenon and has to be considered the main reason why we see
recurring chromosomal translocations in tumors. For example, the expression of the
BCR/ABL fusion protein in a hematopoietic stem cell will convey such a strong
growth advantage to the progeny of this cell that the development of a rapid onset
myeloproliferative syndrome is observed in murine model systems (van Etten
1993).

4.6.2 Factors Influencing the Sites of DSBs and the Efficiency
of DSB Repair

However, the question arises whether there are factors or mechanisms that influence
the frequency or location where chromosome translocations occur?

Two questions would be of interest in this context: (1) Are there factors that lead
to more frequent DSB to occur at certain genomic loci? (2) Are certain genomic loci
more likely to be joined through incorrect repair of two DSBs than others?

Transcriptional Status and Translocation Frequency
Transcription of DNA by RNA Pol II leads to the formation of a so-called R-loop,
an area of the genome where the DNA becomes single-stranded. These
single-stranded regions are more susceptible to DNA damage. The nascent RNA
transcript can rehybridize with the template strand and cause strand breaks (Li and
Manley 2006). Transcription is also required and facilitates the action of AID
(activation-induced cytosine deaminase) to deaminate cytosine residues and gen-
erate abasic sites. This abasic site are further processed through enzymes of the
BER machinery and result in nicks and eventually DSBs for CSR (Lin et al. 2012).
However, since transcription is very widespread throughout the human genomes
and recent transcriptome sequencing experiments have shown that a much greater
proportion of the genome is being transcribed than previously thought (Djebali
et al. 2012), it is difficult to imagine that transcription-associated DSBs play a major
role in increasing the rate of DSBs at specific sites and would be able to greatly
increase the rate at which specific genes are fused in translocation events.

Evidence for Regions Targeted by AID Being More Susceptible to
Translocations
Although the action of AID (activation-induced cytosine deaminase) in the process
of somatic hypermutation and CSR requires active transcription, there are additional
factors that target AID to specific loci. It is well known that regions that are targeted
by AID are more susceptible to translocations and that chromosomal translocations
found in cells of the lymphoid lineage can be traced back to AID action. With the
help of high throughput sequencing it could be shown that the DSB frequency
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influences the likelihood that a certain genomic locus is joined in a translocation
event with another locus. These studies showed that AID target sites were more
likely to be involved in translocations than other sites in B cells (Chiarle et al. 2011;
Klein et al. 2011). It can be assumed that similar mechanisms that increase the
frequency of DSB at certain genomic loci also operate in non-lymphoid cells.
However, it is poorly understood which genomic regions might be more prone to
DSBs. Unusual DNA sequences like those found at fragile sites could be prefer-
ential sites for DSBs (Arlt et al. 2006; Barlow et al. 2013).

Evidence for Certain Drugs Causing Certain Translocations
There is some evidence that certain chemicals, like topoisomerase II inhibitors or
naturally occurring bioflavonoids, can influence the location of chromosomal
translocation breakpoints. The action of these compounds is thought to change the
location of the DSBs to be closer to nuclear matrix attachments sites. Thus the
genomic breakpoints in the MLL gene in therapy-related leukemias are closer to
topoisomerase II binding sites than in de novo leukemia (Bode et al. 2000; Broeker
et al. 1996; Rowley et al. 1997; Strick et al. 2000; Strissel et al. 1998).

Chromatin Status Plays a Role in DSB Repair
The transcriptional status of a genomic region is closely associated with a distinct
interphase chromatin configuration, the more open euchromatin. It could be dem-
onstrated that the initial response to DSBs, namely the accumulation of
gamma-H2AX and recruitment of repair factors, is much faster in euchromatin and
that DSB repair is accomplished faster in euchromatic regions (Cowell et al. 2007).
Conversely, DSBs are repaired at a slower rate if they happen to occur in heter-
chromatin or transcriptionally inactive regions (Goodarzi et al. 2008; Kim et al.
2007).

It is very difficult to estimate the effect of the sometimes opposing influences of
these various factors on the frequency and repair efficiency of DSB breaks.
Euchromatic regions are more transcriptionally active and thus more susceptible to
breakage. At the same time the recruitment of DNA repair proteins is faster, and
DSBs are repaired more rapidly in euchromatic regions, thus minimizing the time in
which a chromosomal translocation, involving the misguided repair with a second
temporally and spatially matched DSB, could occur.

Chromatin plays an important and still not completely understood role in DSB
repair. For example the chromatin protein HP1 is rapidly recruited to DSB and is
required for efficient repair (Ayoub et al. 2009; Luijsterburg et al. 2009). Certain
posttranslational histone modifications like histone 4 lysine 20 (Schotta et al. 2008)
or histone 3 lysine 79 methylation (Lin et al. 2009) also influence genome stability.
Another example of changes in epigenetic marks, in this case DNA methylation,
that can lead to genetic instability and chromosomal translocations is the
immunodeficiency-centromeric instability-facial anomalies syndrome 1 (ICF1:
OMIM 242860). ICF1 is characterized by an increased frequency of whole arm
translocations and other chromosome abnormalities (decondensation, chromatid
breaks) involving heterochromatic regions of chromosomes 1, 9 and 16 in

DNA Repair and Chromosomal Translocations 27



peripheral blood lymphocytes. This syndrome is caused by mutations in the de
novo DNA methyltransferase DNMT3B, which leads to DNA hypomethylation in
the constitutive heterochromatin (Xu et al. 1999).

Model Systems to Study Translocations
Several model systems have been developed to study the factors that might con-
tribute to the generation of specific, recurrent translocation events. Lin and col-
leagues demonstrated that genotoxic stress together with liganded androgen
receptor were able to induce the TMPRSS2/ERG fusion (Lin et al. 2009). Bastus
and colleagues could show that long term and high dosage androgen treatment of
non-malignant prostate cell lines without genotoxic stress was sufficient for the
formation of the TMPRSS2/ERG fusion (Bastus et al. 2010). A TMPRSS2/ERG
fusion could only be observed in cell lines that expressed the androgen receptor.
The androgen exposure apparently induced chromatin reorganization in the inter-
phase nucleus which led to a more frequent colocalization of the TMPRSS2 and
ERG loci. It should be noted that both TMPRSS2 and ERG are located just 3 Mbp
apart on chromosome 21. Whether this rather spontaneous cell type specific
induction of a recurrent rearrangement would also be possible for two gene loci that
are located on different chromosomes or whether this phenomenon is due to the
close proximity of both loci remains to be examined.

Gene replacement studies using the MYC genes clearly demonstrated that cel-
lular selection based on the functional consequences of a gene fusion cannot be the
only factor that leads to the occurrence of recurring translocations in certain tumors
but that also other factors (e.g. sequences flanking a gene locus, chromatin con-
figuration or transcriptional status) are playing a role in the generation of driver
translocations (Gostissa et al. 2009). However, these factors might only be relevant
in the lymphoid lineage where translocation breakpoint regions are enriched in
degenerate heptamer–nonamer sequences that can act as aberrant targets for the
RAG endonucleases.

Evidence for a Defined 3D Arrangement of Interphase Chromosomes?
As discussed above, there is no firm evidence that a defined 3D arrangement of
certain chromosome territories with respect to each other exists in the interphase
nucleus. More recent studies using high throughput sequencing approaches have
shown that the key factors in determining translocation frequency are the frequency
of DSBs and that translocation partner choice is dictated by the physical proximity
of the DSB in the interphase, which in turn is mainly a function of the physical
distance between two loci on the same chromosome (Bunting and Nussenzweig
2013; Mahowald et al. 2009; Zhang et al. 2012). Recent next generation sequence
analyses of whole tumor genomes clearly demonstrated that there is an abundance
of chromosomal rearrangements (small deletions and insertions) that involve
chromosomal loci that are in close vicinity on the same chromosome (Campbell
et al. 2008; Pleasance et al. 2010a, b; Stephens et al. 2009). It should be noted that
classical cytogenetics analyses is not able to detect these rearrangements.
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4.6.3 Translocations Have to Occur in the Right Cell Type
There is ample evidence that a single translocation event, which leads, for example,
to the generation of a fusion oncogene, is not sufficient to transform a cell fully into
a cancer cell. For example, the expression of the RUNX1/RUNX1T1 fusion protein
is not sufficient to cause leukemia (Okuda et al. 1998). Even in models where two
oncogenic drivers were introduced via retroviral transduction into hematopoietic
cells in a murine bone marrow transplantation model, there was a very long latency
until leukemia did develop (Schessl et al. 2005). These observations clearly suggest
that in order to be eventually found in a tumor, a driver translocation has to occur in
a stem cell or a similarly long-lived cell, which has a sufficiently long life expec-
tancy to acquire additional transforming mutations.

The requirement for additional genetic lesions will also favor initiating driver
translocations that increase the level of genetic instability. Some of the mechanisms
employed by driver translocations which might be responsible for an increase in
genetic instability are discussed in the following paragraphs.

4.7 Increased Genomic Instability as a Consequence
of Translocations

A slight increase in genomic instability will favor the acquisition of the additional
genetic lesions that are required for complete malignant transformation. These
additional genetic lesions are not only restricted to chromosomal translocations but
can be any change in the genome that leads to the activation of an oncogene, the
inactivation of a tumor suppressor gene or other changes in gene activity that
promote a malignant phenotype. Genetic stability is dependent on a delicate balance
between DNA damage and DNA damage repair. It is advantageous for a tumor to
shift the genomic stability rheostat slightly towards instability (Fig. 1). Too big a
shift towards instability, however, will not be tolerated by the cells.

4.7.1 Increasing DNA Damage
There are several mechanisms by which driver translocations have been shown to
increase the rate at which DNA damage is generated in a cell. Many fusion proteins,
especially those leading to the activation of a tyrosine kinase, increase the cellular
proliferation rate. An increased cellular proliferation places higher demands on
nutrients and increases the rate of DNA replication. Increased DNA replication can
lead to local or global depletion of the nucleotide pools, which in turns leads to an
increased rate of DNA damage (Bester et al. 2011). Increased cellular proliferation
goes hand in hand with an increase in energy requirement and also an increase in
the production of ROS which are also damaging DNA (Nowicki et al. 2004;
Sallmyr et al. 2008).
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4.7.2 Changing DNA Repair Efficiency
There are several ways in which chromosomal translocation might influence the
repair efficiency for DNA lesion. One is the downregulation of repair proteins and
cell cycle checkpoint genes (Mulaw et al. 2012). The other avenue is to shift DSB
repair to more error-prone pathways (Sallmyr et al. 2008).

It appears that certain fusion proteins like the CALM/AF10 fusion can also lead
to genome-wide alterations in epigenetic marks that have the potential to increase
genomic instability (Lin et al. 2009). There are probably several other, more subtle
ways in which the rheostat of genomic stability can be reset in tumor cells.

Figure 10 summarizes the various mechanisms that might play a role in
increasing genetic instability as a consequence of chromosomal translocations.

5 Open Questions and Perspectives

5.1 Open Questions

Of course, many open questions remain regarding the connection of DNA repair
and chromosomal translocations. Next generation sequencing studies have recently
uncovered many more rearrangements than had been detected by more conven-
tional methods and shown that many translocations are far more complicated than
previously thought (Chiang et al. 2012). These results will lead to new questions
and technological advances (i.e. next generation sequencing, new imaging tech-
niques) will undoubtedly help in answering these questions. A better understanding
of the extremely complicated process of DNA damage repair will be required. In
addition, we have to realize that we are very far from a comprehensive under-
standing of the 3D organization of the genome in the interphase nucleus and the
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Fig. 10 Schematic representation of the positive feedback loops involving increased DNA lesion
generation and impaired DNA repair process in the evolution to cancer
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various processes that depend on and influence this organization (epigenetic
modifications, chromatin dynamics, transcription, DNA replication, DNA damage
repair, etc.) (Misteli 2010).

5.2 Preventing Translocations

Even though it might seem far-fetched, a better understanding of the mechanisms
that lead to chromosomal translocations might one day help to develop strategies to
prevent or to reduce the incidence of translocations. Bunting and colleagues showed
that it was possible by depleting 53BP1 in Brca1 mutated cells to promote DSB
repair via the error free homologous recombination pathway instead of via the error
prone non-homologous end joining pathways (Bunting et al. 2010).

5.3 Using Genetic Instability in Cancer Cells to Generate
Synthetic Lethality

A more realistic goal might be to exploit the genetic instability of tumor cells to
develop treatment strategies that are based on the concept of synthetic lethality, like
the the use of PARP inhibitors in leukemias with compromised DSB repair or by
targeting RAD52 (Cramer-Morales et al. 2013; Gaymes et al. 2009; Skorski 2008).

5.4 Intrachromosomal Driver Translocations

Next generation sequencing studies have shown that rearrangements due to DSBs
between loci that are in the same or in adjacent chromatin domains are found much
more frequently in tumors than translocations between loci on different chromo-
some arms which can be identified easily with traditional cytogenetics methods. It is
very likely that many of these intrachromosomal rearrangements will just have
passenger nature (passenger translocations or rearrangements). However, there will
also be many driver rearrangments among these local rearrangements (e.g. the
TMPRSS2/ERG fusion (Tomlins et al. 2005)). These intrachromosomal driver
translocations might be much more frequent and much more varied than the tra-
ditional interchromosomal driver translocations. Since driver rearrangements are
usually identified on the basis of recurrence one would expect that a much great
number of tumor samples has to be analyzed to identify such low frequency in-
trachromosomal driver rearrangements.
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CINcere Modelling: What Have Mouse
Models for Chromosome Instability
Taught Us?

Judith E. Simon, Bjorn Bakker and Floris Foijer

Abstract
Chromosomal instability (CIN) is a process leading to errors in chromosome
segregation and results in aneuploidy, a state in which cells have an abnormal
number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to
ageing and age-related diseases such as Alzheimer’s. Various mouse models
have been developed to explore the role of CIN in ageing and cancer. While
these models reveal only a modest contribution of CIN to the initiation of cancer,
they also clearly show that CIN is a powerful accelerator of cancer in a
predisposed background. Other than cancer, CIN also appears to provoke
premature ageing in some of the CIN models. In this review, we discuss the
phenotypes of the various available mouse models, what we have learnt so far,
and importantly, also which questions still need to be addressed.
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1 Chromosomal Instability and Aneuploidy

During each cell division our genetic code is replicated, followed by symmetrical
segregation of all chromosomes into the emerging daughter cells. Cancer cells
occasionally exhibit errors segregating their chromosomes, a process known as
chromosomal instability (CIN), leading to cells with abnormal numbers of chro-
mosomes, a state defined as aneuploid. In addition to whole chromosome abnor-
malities, CIN can also lead to structural abnormalities such as amplifications,
deletions or translocations, either through defects in the DNA damage machinery or
as a direct result of chromosome missegregation events (Janssen et al. 2011).
Although numerical and structural abnormalities frequently coincide, in this review
we will focus on how mouse models have contributed to our understanding of the
consequences of whole chromosome instability.

David von Hansemann was the first to report abnormal chromosome numbers in
carcinoma samples in 1890, long before the relationship between chromosomes and
the genetic code had been established (Hardy and Zacharias 2005; Bignold et al.
2006; Siegel and Amon 2012). Early in the 20th century, Theodor Boveri showed
that aneuploidy leads to abnormal development or even death by injecting two
sperms instead of one into sea urchin embryos. These observations led to the
hypothesis that aneuploidy can lead to cancer or developmental defects (Boveri and
Manchester 1995; Bignold et al. 2006; Boveri 2008, Ried 2009). Since then, many
studies confirmed that CIN is a hallmark of human malignancies, affecting 2 out of
3 cancers (Duijf et al. 2013). More recently, aneuploidy has also been associated
with ageing and age-related diseases (Faggioli et al. 2012). For instance, trisomy for
chromosome 21 is frequently found in plaques in Alzheimer patients’ brains
(Iourov et al. 2009). Conversely, people with Down syndrome develop early onset
Alzheimer’s disease (Lai and Williams 1989), further emphasizing the relationship
between trisomy 21 and neurodegenerative disease.
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Although CIN has been associated with cancer for more than a century, we are
only beginning to understand the consequences of CIN and aneuploidy at the
cellular and molecular level. CIN is believed to accelerate the evolution of cancer
cells by facilitating gain of oncogenes and loss of tumour suppressor genes. Par-
adoxically, when modelled in yeast strains (Torres et al. 2007) or mouse embryonic
fibroblasts (MEFs) (Williams et al. 2008), aneuploidy appears to decrease rather
than increase cell proliferation, suggesting that cancer cells find ways to cope with
the adverse effects of aneuploidy. However, as transformation of aneuploid cells
into aneuploid cancer cells can only occur in vivo by definition, animal models for
CIN are essential to solve this paradox.

2 Provoking CIN In Vivo

Several processes that safeguard correct chromosome segregation have been tar-
geted to engineer mouse models for CIN. Figure 1 shows a schematic overview of a
large number of genes that have been targeted for this purpose. One of the first
models specifically designed to study the in vivo consequences of CIN is the Mad2
knockout mouse, targeting the spindle assembly checkpoint (SAC) (Dobles et al.
2000). The SAC prevents missegregation of chromosomes by inhibiting metaphase
to anaphase progression until all chromosomes are properly attached to kineto-
chores in a bi-oriented fashion. Defects of the SAC therefore result in flawed
chromosome segregation, which makes the SAC an attractive target to model CIN
in vivo. A second means to induce CIN in vivo is by interfering with kinetochore
integrity, a protein structure that connects the centromeric DNA to the mitotic
spindle. This has been done by removing structural components of the kinetochore
(e.g., CenpB, CenpC) or alternatively, by stabilizing kinetochore-microtubule
attachments through e.g., overexpressing Mad2 or Hec1 (Diaz-Rodríguez et al.
2008; Kabeche and Compton 2012). Centrosomes are the microtubule-organizing
centres in the cell from which the mitotic spindle emanates (Ganem et al. 2007;
Gordon et al. 2012). Abnormal centrosome numbers can either result in multipolar
divisions or, when supranumeral centrosomes cluster, predispose for lagging
chromosomes in mitosis (Ganem et al. 2009). Therefore, a third way to provoke
CIN in vivo is by inducing centrosome amplification, e.g., through overexpression
of Plk4 (Ko et al. 2005; Marthiens et al. 2013a). A fourth approach to induce CIN
in vivo is by disrupting the cohesion complex, a ring like structure that holds the
sister chromatids together during interphase. Cohesion defects have been modelled
by abrogating components of the cohesion complex (e.g., SA1), but also by
deregulating upstream players such as pRb (Coschi et al. 2010; Manning et al.
2010; Van Harn et al. 2010). Similarly, various other genes have been knocked out
in the mouse which indirectly affect chromosome segregation.
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3 In Vivo Consequences of CIN

In the last two decades, a large number of mouse models for chromosome insta-
bility have been engineered. Hereunder, we summarize the findings from these
models asking the following questions:

1. Is CIN a bona fide instigator of cancer?
2. Which genes collaborate with CIN in vivo converting aneuploid cells into

aneuploid cancer cells?
3. What are other consequences of CIN in vivo?

CenpA
CenpB
CenpC
Hec1

Chromosome passengers
APC
INCENP
Survivin

Spindle assembly checkpoint 
Aurora B
Bub1
BubR1
Bub3

Cohesin
Stag1

Securin
Pttg1

Separase
Espl1

Kinetochore

Chromosome

Microtubule

Centrosome
Aurora A
Plk1
Plk4
Usp44

Otherwise involved in mitosis 
Ccnb2
Chfr
Lzts1

Mcm4 Chaos3
Tpx2

Mad1
Mad2
Mps1
Ubch10

Ccnb1
Cdc20
Cdh1
CenpE

Fig. 1 Schematic overview of various genes targeted to provoke CIN in vivo
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4 Can CIN Initiate Cancer?

CIN has detrimental consequences for cells grown in vitro (Kops et al. 2004;
Williams et al. 2008; Torres et al. 2008), yet, two out of three human tumours are
aneuploid (Weaver and Cleveland 2006; Duijf et al. 2013). This raises the question
whether CIN is an initiating factor in cancer, a facilitator or merely a side effect of
tumorigenesis. In the vast majority of all models (see Fig. 1), full inactivation of the
targeted genes resulted in early embryonic lethality. Although the time of embry-
onic death varied between genotypes (Table 1), embryos were typically lost before
embryonic day 10, which presumably was the result of aneuploidy in the inner cell
mass of the developing embryos (Dobles et al. 2000; Weaver and Cleveland 2006;
Foijer et al. 2008; Holland and Cleveland 2009; Schvartzman et al. 2010). To
circumvent embryonic lethality, phenotypes of heterozygous mice were monitored,
or in some cases, conditional alleles were engineered. Even though tumour phe-
notypes have been reported for many of these models (Table 1) tumour incidence is
relatively low, with in most cases fewer than 50 % of the mice developing cancer.
Moreover, tumours only arise late in the life of the mice, with latencies typically
ranging from 12 to 24 months (Table 1). The most frequent pathologies observed
include lymphoma, lung and liver tumours. Furthermore, not all models develop
spontaneous tumours, for instance in case of the Bub family members [Bub1, Bub3,
Rae1 (Kalitsis 2000; Babu et al. 2003; Wang et al. 2004; Baker et al. 2006a;
Jeganathan et al. 2007; Baker et al. 2009)]. There is no clear correlation between the
severity of the tumour phenotypes and the mechanism that drove CIN in the mice
(i.e. SAC mutation, cohesion defects, centrosome abnormalities etc.). Expression
levels of the CIN-provoking genes on the other hand appear to be a better predictor
of tumour incidence: phenotypes were most severe in cases where CIN-driving
proteins were overexpressed to high levels [e.g. Mad2, Cyclin B1, Cyclin B2, Hec1,
Plk4 (Ko et al. 2005; Sotillo et al. 2007; Baker et al. 2008; Diaz-Rodríguez et al.
2008)] possibly because the relative effect on protein expression (several folds
overexpression) was more dramatic than in heterozygous mice, where protein levels
were typically reduced*50 %. However, as tumour latency is high in these models
as well, additional hits must be required for aneuploid cells to become malignant.

5 Does CIN Predispose to Cancer?

Exposure to carcinogens is a powerful tool to assess tumour predisposition in vivo.
Given the relative weak tumour phenotypes of CIN mice, various CIN models were
exposed to carcinogens (Table 1) to assess whether CIN is a powerful collaborator in
transforming cells. Indeed, carcinogens aggravated the tumour phenotypes of some
of the CIN mice, more than their control counterparts. For instance, when Mad1
heterozygous mice were treated with Vincristine (a microtubule-depolymerizing
agent), 40 % of the mice developed mostly lung tumours, while no tumours were
detected in control-treated mice (Iwanaga et al. 2007). Likewise, carcinogens
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(NMBA or DMBA) accelerated tumorigenesis in Lzts1-deficient and Chfr-deficient
mice (Yu et al. 2005; Vecchione et al. 2007). Furthermore, even in CIN mice without
a tumour phenotype (e.g., Bub1+/−, Bub3+/−, Rae1+/− and Bub3+/− Rae1+/−), DMBA
treatment had a stronger tumour promoting effect than on wild type mice (Baker
et al. 2006b; Jeganathan et al. 2007). As carcinogens reduce tumour latency and
increase tumour incidence in a CIN background, also these experiments indicate that
additional mutations are required for a CIN cell to transform into a malignant cell.

6 Which Genes Collaborate with CIN in Cancer?

To test which genetic alterations collaborate with CIN in tumorigenesis, various
CIN models were crossed into cancer-predisposed backgrounds. For instance, when
CIN was combined with p53 heterozygosity, [Bub1, Espl1, Mps1 (Baker et al.
2009; Mukherjee et al. 2011; Baker et al. 2013b)] tumour incidence dramatically
increased while tumour latencies decreased. In all reported cases, tumours had lost
the remaining p53 wild type allele, indicating that full p53 loss and CIN synergize
in tumorigenesis (Baker et al. 2009; Foijer et al. 2014). However, as CIN further
increased tumour incidence of p53null mice, CIN must have facilitated cancer for-
mation through additional genomic alterations as well. Furthermore, CIN provoked
by Bub1 hypomorphic alleles or Cyclin B1 overexpression accelerates tumours in a
Apcmin background (Baker et al. 2008, 2009). However, in other tumour predis-
posed backgrounds (e.g., pRb or Pten heterozygousity) CIN has no effect on tumour
incidence (Baker et al. 2009).

7 CIN as a Tumour Suppressor

In some cases CIN can also act in a tumour suppressive manner. For instance, CIN
driven by SA1 heterozygosity delays 3-methyl-colanthrene (3-MC)-induced fibro-
sarcoma and diethyl-nitrosamine (DEN)-induced liver tumours (Remeseiro et al.
2012). Similarly, even though Cdh1+/− mice and CenpE+/− mice are more sus-
ceptible to spontaneous tumours, they are more resistant to carcinogenic insults than
their wild type counterparts (Weaver et al. 2007; García-Higuera et al. 2008).
Furthermore, CIN can also delay tumorigenesis in some genetically predisposed
models, for instance by delaying p19Arf or Pten loss-driven tumours (Weaver et al.
2007; Baker et al. 2009). Why then is CIN tumour promoting in one setting, but
tumour suppressive in another? The answer might lie in the levels of CIN. CIN is
quite toxic and provokes an ‘aneuploidy stress’ response in untransformed cells
(Kops et al. 2004; Torres et al. 2007; Williams et al. 2008; Foijer et al. 2013).
However, aneuploid cancer cells also exhibit this stress response (Dürrbaum et al.
2014; Foijer et al. 2014), suggesting that aneuploid cancer cells still suffer from the
disadvantageous effects of CIN. Therefore, the levels of CIN occurring in prema-
lignant cells could be a determining factor for the outcome. The fact that p19Arf loss
provokes aneuploidy itself fits with this hypothesis, as CenpE heterozygosity would

CINcere Modelling: What Have Mouse Models for Chromosome … 49



exacerbate CIN to a level that is toxic for cancer cells (Silk et al. 2013). However,
further experiments are required to determine at what level CIN is beneficial for
cancer cells and at what level the balance is tipped.

8 What Other Phenotypes Are Provoked by CIN?

There is increasing evidence that aneuploidy also occurs in untransformed tissues,
with liver being the most well-known example. Up to half of both human and murine
hepatocytes are aneuploid (Duncan et al. 2012a, b), but it is unclear why hepatocytes
evolved to become aneuploid. One suggestion is that particular karyotypes are
selected for during hepatotoxic insults, making the hepatocytes more resistant to
injury (Duncan et al. 2012b). Other studies quantified over 30 % of normal human
neuroblasts to be aneuploid (Rehen et al. 2001, 2005), which has been suggested to
contribute to the plasticity of neurons (Kingsbury et al. 2005). However, when
provoked in a random fashion, CIN appears to mostly have disadvantageous effects
on brain functioning, as mice heterozygous for Cdh1 exhibit defects in neuromus-
cular coordination and learning (García-Higuera et al. 2008). The interfollicular
epidermal cells in mouse skin on the other hand appear to cope surprisingly well with
CIN as they tolerate full abrogation of the SAC provoked byMad2 loss, which results
in dramatic aneuploidy (Foijer et al. 2013). The hair follicle stem cells that reside in
the same compartment do not cope at all and disappear, resulting in mice with
functional skin, but without hair (Foijer et al. 2013). Together these data clearly
indicate that CIN is tolerated by some cell lineages, but not others, underscoring the
importance of in vivo modelling.

9 Linking Ageing and CIN In Vivo

Ageing is the time-dependent functional decline in the fitness of cells, organs and
organisms. A common hallmark of ageing is genomic instability, as exemplified by
genetic alterations in old blood cells (Forsberg et al. 2012; López-Otín et al. 2013).
Some of the CIN mouse models also suggest a role for aneuploidy in ageing. For
instance, BubR1 hypomorphic mice are not only prone to severe aneuploidization,
but also display progeroid pathologies. Similar to BubR1, combined Bub3/Rae1
haploinsufficiency also results in a premature ageing phenotype, albeit less severe
than the BubR1 hypomorphic mice (Baker et al. 2006b), MEFs isolated from
BubR1 hypomorphic mice express various ageing-associated markers such as p53,
p21, p19Arf and p16Ink4a. Interestingly, when p16Ink4a positive cells are killed
in vivo using a p16Ink4a-promotor regulated suicide construct, ageing pathologies
induced by a reduction of BubR1 protein levels are dramatically delayed (Baker
et al. 2011). The pathologies observed in BubR1 hypomorphic mice mimic those of
patients with multi-variegated aneuploidy (MVA), a disease that frequently coin-
cides with mutations in BUB1B, the gene encoding BUBR1 (Hanks et al. 2004,
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2006; Matsuura et al. 2006). Furthermore, BubR1 expression levels decline with
age providing further evidence for a role of BubR1 in ageing (Baker et al. 2011) in
mice. Even more striking, when BubR1 is overexpressed, a dose-dependent delay in
the onset of ageing is observed, as well as protection against developing
chemically-induced tumours (Baker et al. 2013a). As discussed above, in most
tested cases overexpression of CIN-controlling proteins increases CIN and pre-
disposes for cancer (Sotillo et al. 2007; Diaz-Rodríguez et al. 2008; Fernández--
Miranda et al. 2011). Apparently, BubR1 is the exception that forms the rule, but
future work should reveal whether BubR1 has a unique role in the SAC or whether
it has additional roles that can explain the beneficial effects of an overdose of
BubR1.

10 What Have We Learnt from Modelling CIN
in the Mouse so Far?

As most tumours are aneuploid to some extent, CIN makes an attractive target for
therapy. For this, understanding how CIN is signalled is crucial. A large number of
mouse models have been engineered over the last 15 years specifically for this
purpose, with a wide variety of phenotypes summarized in Table 1. Even though
many of the targeted genes will have other roles than safeguarding faithful chro-
mosome segregation, some common conclusions can be drawn from the cumulative
data. The first important conclusion is that CIN alone is not sufficient for efficient
tumourigenesis and that CIN alone mostly has disadvantageous effects on cell
proliferation. This has important implications for therapy targeting aneuploid can-
cer, as discussed below. A second conclusion is that CIN facilitates tumourigenesis
efficiently in some tumour-predisposed backgrounds, chemical or genetic. How-
ever, when CIN is aggravated and becomes too severe, it can actually suppress
tumour formation in the mouse, which can also be exploited in cancer therapy.
A third and perhaps the most important conclusion is that several unaddressed
questions remain before we can develop therapeutic strategies targeting aneuploid
cell progeny, some of which are discussed below. Although all models discussed
here were designed to study the consequences of CIN in vivo, the majority mimic a
situation that is not typically found in human cancers, as loss of genes that regulate
chromosome segregations are rarely lost in human cancer (Schvartzman et al. 2010;
Foijer 2012). Even though those models mimic chromosome missegregation and its
consequences, overexpression of CIN-modulating genes is more common [e.g.,
Mad2 overexpression, which is seen in many tumours (Hernando et al. 2004;
Sotillo et al. 2007)]. Possibly, mimicking the CIN-provoking mutations that are
found in human cancers would result in a physiologically more relevant CIN level,
thus adding to our understanding of CIN and its role in tumorigenesis. A lot can be
learned about affected pathways from in vitro studies as well. For instance, Don-
nelly and colleagues have shown that increased HSF1 activity can play a facilitating
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role in coping with aneuploidy-induced proteotoxic stress by regulating the gene
expression of various heat shock proteins (Donnelly et al. 2014)

11 Questions that Need to Be Addressed

11.1 Which Mutations Make an Aneuploid Cell an Aneuploid
Cancer Cell?

Some tumour suppressor genes, (e.g., p53) were found to accelerate the malignant
transformation of aneuploid cells, but the mechanism behind this collaboration
remains unclear. As CIN alone is a poor initiator of cancer, pathways that convert
aneuploid cells in aneuploid cancer cells make up important therapeutic targets. So
far, CIN-collaborating genes were picked in an ‘educated guess’ approach. How-
ever, to identify in an unbiased fashion the pathways that convert CIN cells into
CIN cancer cells, (in vivo) genetic screens are required.

11.2 At What Rate Is CIN Tumorigenic and at What Levels
Tumour Suppressive?

The effects of CIN across the various mouse models are diverse, but it is unclear
why. It is inevitable that the levels of CIN are different among the various CIN
models, but there is no clear correlation between the levels of aneuploidy and the
resulting phenotype based on the available data. However, as the level of CIN
might determine whether tumours are promoted or are suppressed (Silk et al. 2013),
high resolution quantification of CIN will be crucial when targeted in therapy.
Furthermore, even though aneuploidy is a hallmark of cancer, the actual rates of
chromosome missegregation (i.e., the CIN rates) in human cancer are unknown. To
quantify these, primary (tumour) cells need to be fully karyotyped at the single cell
level at various stages. So far, most studies have relied on metaphase-spread based
(spectral) karyotyping using dividing cell populations, such as primary MEFs or
tumour cell lines. However, this technique cannot be applied to most primary
tumour cells as they do not divide frequently (Mitchison 2012; McGranahan et al.
2012). A new, but costly approach to quantify karyotypes of single cells is
next-generation sequencing (NGS) (Knouse et al. 2014; Bakker et al. 2015).
However, to quantify aneuploidy, full coverage (or even multiple coverage) per cell
is not a requirement. 1–2 % coverage per cell will be sufficient to quantify chro-
mosome numbers for an individual cell, allowing sequencing libraries of many cells
to be pooled in each sequencing lane. Single cell karyotyping will allow us to
faithfully measure in vivo missegregation rates (i.e. CIN) by assessing subtle
karyotype differences between cells within one tumour (karyotype heterogene-
ity) (Bakker et al. 2015). Such technology will allow us to determine at which rate
CIN is tumorigenic or tumour suppressive in mouse models and what the CIN rates
are in human primary tumours.

52 J.E. Simon et al.



11.3 What Determines the Tissue Specific Response to CIN?

There is a marked difference as to how cell lineages respond to CIN. For instance,
CIN is highly toxic to embryonic stem cells (Burds et al. 2005), but quite well
tolerated by interfollicular epidermal cells (Foijer et al. 2013), hepatocytes and
possibly neurons (Rehen et al. 2001, 2005; Kingsbury et al. 2005; Duncan et al.
2012a). As of yet, it remains unclear what determines this differential response.
Possibly, some cell lineages such as stem cells, induce a stronger stress response
upon aneuploidy, resulting in apoptosis or differentiation. Alternatively,
aneuploidy-tolerating cells spend more time in pro-metaphase and therefore have
more time to correct improper kinetochore-microtubule attachments, thus reducing
the missegregation rates and therefore reducing aneuploidy to tolerable levels.
Indeed some cell types tolerate at least some aneuploidy including neurons and
hepatocytes. However, further in vivo experiments are required to assess which
molecular pathways make up the response to aneuploidy at the tissue level and how
the differential wiring of these pathways in different cell lineages determines the
fate of aneuploid cells.

11.4 What Are the Molecular Mechanisms that Explain
the Link Between CIN and Ageing?

Some of the CIN mouse models exhibit a premature ageing phenotype, most clearly
knockout models of Bub family proteins (BubR1, Bub3/Rae1) (Baker et al. 2004,
2006b). Conversely, BubR1 transgenic mice show increased lifespan, clearly
implicating BubR1 with ageing (Baker et al. 2013a). This data, together with the
observation that BubR1 expression decreases with ageing in wild type animals,
(Baker et al. 2004, 2006b), suggest that CIN may play a role in natural ageing. Why
were phenotypes only described for Bub protein members? Possibly, (subtle) signs
of premature ageing were overlooked in other CIN models, as these models were
developed specifically to study the relationship between CIN and cancer and not
ageing, (Ricke and van Deursen 2013). Indeed, a more detailed analysis of tran-
scriptomes of Mad2null epidermal cells suggests an ageing-like response in murine
skin following SAC abrogation (Foijer et al. 2013), suggesting that CIN indeed
provokes a premature ageing response in untransformed tissue. However, more
detailed and high resolution mapping of CIN in ageing human tissues is required to
confirm physiological relevance for a potential link between CIN and ageing. When
this link is confirmed, the underlying molecular mechanisms that link CIN and
ageing should be elucidated, employing exciting and possibly new, more human
relevant CIN mouse models.
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11.5 What Is the Potential of CIN-Targeting Therapy?

Aneuploidy is a hallmark of cancer and selectively killing aneuploid cells would
therefore be a powerful means to treat cancer. The various mouse models for CIN
have revealed that there are three possible outcomes for aneuploid cell progeny
depending on the tissue affected: (1) cell death (e.g., in case of hair follicle stem
cells), (2) cellular senescence (evidenced by premature ageing and upregulation of
the senescence marker p16Ink4a) and (3) tolerance of aneuploidy (Fig. 2). The latter
outcome is the most dangerous, as proliferating aneuploid cells can further evolve
into aneuploid cancer cells. Therefore, to target aneuploid cancer, those cells that
tolerate aneuploidy will need to be forced to either commit suicide or senesce. There
are multiple ways as to how such therapy could work, ranging from very broad
spectrum to highly ‘personalized’ therapies. As discussed above, too much CIN is
detrimental to cells (Silk et al. 2013). Therefore, further increasing CIN in aneuploid
tumours could be a broad-spectrum way to target aneuploid cancer cells. Indeed,
mild CIN renders cells more sensitive to therapeutics that exacerbate CIN such as
low doses taxol (Janssen et al. 2009). However, the inherent risk to this therapy is

CIN

Defects in e.g. SAC, cohesion, centrosomal or 
kinetochore-microtubule attachments 

The consequences of CIN possibly depend on: 
The level of CIN

Tumour predisposition (chemical or genetic)
The affected tissue

Apoptosis Senescence Tolerated

Increase level of CIN or
 increase cellular stress
  to kill aneuploid cells

Identify and target the 
aneuploidy tolerating

pathways

Is CIN a potential therapeutic target?

Fig. 2 Flowchart summarizing the in vivo consequences of CIN and therapeutic promise
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that untransformed (non-CIN) cells will also be exposed to CIN and might convert
into a new CIN tumour over time. A second approach of targeting CIN cells is by
modulating the pathways that regulate cell fate following aneuploidization. In this
approach, the pathways that result in cell death of (embryonic) stem cells following
CIN are artificially activated in aneuploid cancer cells, resulting in cancer cell death.
However, before feasibility of such therapy can be assessed, CIN-responsive path-
ways need to be mapped first. Instead of targeting aneuploidy-signalling pathways,
therapy can also target the downstream consequences of CIN. For instance, one
common response to aneuploidy is a deregulation of cellular metabolism, which
affects untransformed cells as well as cancer cells (Williams et al. 2008; Torres et al.
2008; Foijer et al. 2014). The first proof of principle evidence for such therapy is just
emerging. Recent studies are showing that energy stress inducer AICAR and the
Hsp190 inhibitor 17-AAG selectively can kill aneuploid (cancer) cells by enhancing
aneuploidy-induced stress (Tang et al. 2011; Ly et al. 2013; García Martínez et al.
2014). The next step to this will be to test whether this is also effective in vivo.
A fourth ‘personalised medicine’ approach to tackle aneuploid cancer is by targeting
the mutation that is driving CIN. One candidate for such therapy is Hec1, as it is
frequently overexpressed in a variety of cancers. Indeed, inhibition of the
Hec1/Nek2 pathway results in reduced tumour growth in a xenograft mouse model
(Wu et al. 2008), providing proof of principle evidence for this approach. Similarly,
gene products that collaborate with CIN in transformation can be targeted using
molecular therapy. For the latter, we first need to identify candidate targets, for
instance in in vivo genetic screens. However, for molecular therapy full sequencing
of the tumour is a requirement. However, as sequencing costs are rapidly decreasing
and the number of specific pathway inhibitors are rapidly increasing, this approach
might become feasible within the near future.
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Telomere Dysfunction, Chromosomal
Instability and Cancer
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Abstract
Telomeres form protective caps at the ends of linear chromosomes to prevent
nucleolytic degradation, end-to-end fusion, irregular recombination, and chro-
mosomal instability. Telomeres are composed of repetitive DNA sequences
(TTAGGG)n in humans, that are bound by specialized telomere binding
proteins. Telomeres lose capping function in response to telomere shortening,
which occurs during each division of cells that lack telomerase activity—the
enzyme that can synthesize telomeres de novo. Telomeres have a dual role in
cancer: telomere shortening can lead to induction of chromosomal instability and
to the initiation of tumors, however, initiated tumors need to reactivate
telomerase in order to stabilize chromosomes and to gain immortal growth
capacity. In this review, we summarize current knowledge on the role of
telomeres in the maintenance of chromosomal stability and carcinogenesis.
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1 Telomeres and Telomerase

1.1 Telomeres Are Protective Caps at the Ends of Linear
Chromosomes

Cells with linear chromosomes have to meet several challenges: (i) cellular repair
mechanism have to discriminate between broken ends as a result of DNA damage
and the ends of the chromosomes, (ii) the ends of chromosomes must be protected
against degradation by nucleases, and (iii) as the conventional DNA polymerase
cannot replicate the most extreme ends of chromosomes (end-replication-problem),
loss of genetic material must be compensated by some end maintenance mecha-
nism. Work by Hermann Muller and Barbara McClintock provided the first evi-
dence that the ends of linear chromosomes must be capped by a specialized
structure to prevent chromosome fusions (McClintock 1939, 1941; Muller 1938).
Müller introduced the term ‘telomere’ to emphasize this specific function of
chromosome ends. A telomere is functionally defined as a region of DNA at the
molecular end of a linear chromosome that is required for replication and stability
of the chromosome (Blackburn and Szostak 1984). It has become clear now that the
telomeres are composed of short repetitive DNA-sequences and specific proteins,
the shelterin, that bind this sequence to protect the ends of linear chromosomes
(de Lange 2010).

Telomeric DNA consists of a tandem array of GT-rich repeats (e.g. TTGGGG in
Tetrahymena and TTAGGG in humans and other vertebrates). The number of the
repeats and consequently the length of telomeric DNA varies among species (Fig. 1)
ranging from 36 nucleotides present at the ends of macronuclear chromosomes of
ciliated protozoans (Klobutcher et al. 1981), *300 bp in Saccharomyces cerevisiae
(Zakian 1989) to *150,000 bp in mice (Kipling and Cooke 1990). In human
somatic cells telomeres consist of 7000–10,000 bp telomeric DNA and of about
20,000 bp in germ cells (Allshire et al. 1989; Moyzis et al. 1988).

One important feature of telomeres, which is conserved in all eukaryotes, is that
they posses a protruding 3′ single-stranded overhang due to the mechanism of the
lagging strandDNA replication (Makarov et al. 1997;McElligott andWellinger 1997).
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Fig. 1 Telomere-DNA is an evolutionarily conserved GT-rich repetitive sequence. Basically all
eukaryotes use GT-rich repetitive sequences at the ends of their chromosomes (telomeres). Despite
considerable variation in telomere length and telomere-sequence, telomerase activity is the major
telomere maintenance mechanism among the eukaryotes, with only few exceptions (Drosophila
melanogaster). Modified from Meyne et al. (1989)

Fig. 2 Telomeres, Protein-DNA complexes at the ends of linear chromosomes, may form a lariat
structure, the telomere-loop (T-loop). A schematic representation of the D-loop, T-loop structure at
the chromosome ends. Lagging strand blue, leading strand red. The 3′-protruding end of the
lagging strand may invade into the double stranded telomeric DNA and result in the displacement
of the double strand (displacement-loop: D-loop). A large lariat structure can be observed at the
telomeres (telomere-loop: T-loop). Several proteins have been localized to the telomeres. The
number, temporal and spatial localization of these proteins at the telomeres is not completely
understood. There is evidence that T-loop formation is facilitated by TRF2 (Doksani et al. 2013;
Griffith et al. 1999) whereas RTEL1 helicase activity is required for the faithful T-loop resolution
during replication (Vannier et al. 2012)
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In mammalian cells, this single stranded overhang may fold back and invade into the
preceding double stranded telomeric DNA to form a unique D-loop and T-loop
structure (Griffith et al. 1999). Telomere looping may be a bona fide end protecting
mechanism since it has been observed in mammals, plants and several lower
eukaryotes (Cesare et al. 2003; Griffith et al. 1999; Munoz-Jordan et al. 2001;
Murti and Prescott 1999). This special structure functions to seal the ends of
chromosomes thus protecting them from hazardous cellular actions. In its absence, the
3′-overhang is simply occupied with specific telomere-binding proteins protecting the
chromosome ends from DNA-damage.

To date a series of proteins have been described to be associated with telomeres
(Fig. 2). In human cells, six proteins, TRF1, TRF2, TIN2, TPP1, RAP1 and POT1,
form the shelterin complex and interact with several other proteins for telomere
length regulation (de Lange 2005). Among the latter, proteins involved in DNA
double-strand break repair (Ku-proteins) and non-homologous-end-joining
(RAD50-NBS1-Mre11 complex) are found. It is not yet clear whether these pro-
teins are present at the telomeres at all times or in a cell-cycle dependent manner.
Among these proteins TRF1 and TRF2 form a platform for the binding and function
of other telomere specific factors (Fig. 2).

1.2 Telomerase

Telomerase is a ribonucleo-protein complex with reverse transcriptase activity with
conserved sequence homology to non-LTR and LTR reverse transcriptases
(Shippen-Lentz and Blackburn 1990). The activity of telomerase is necessary to
overcome the ‘end replication problem’. The human telomerase enzyme is com-
posed of two essential components, the RNA component (TERC: Telomerase
RNA) which acts as a template for reverse transcription (Blasco et al. 1995); and the
catalytic subunit Telomerase reverse transcriptase (TERT) with the reverse trans-
criptase activity (Meyerson et al. 1997; Nakamura et al. 1997). In recent years, a
number of additional factors, including dyskerin, TCAB1, NOP10 and TPP1 have
been identified to be constantly or transiently associated with the telomerase
complex and have important functions in telomerase recruitment to telomeres or
subcellular localization of the telomerase complex (Cohen et al. 2007; Collins and
Mitchell 2002; Nandakumar and Cech 2013; Venteicher et al. 2009; Zhong et al.
2011; Gonzalez et al. 2014).

Telomerase is active in a variety of tumor cell lines and transformed cells in
culture but not in normal fibroblasts (Morin 1989) or embryonic kidney cells
(Counter et al. 1992) and most somatic human tissues do not exhibit telomerase
activity (Djojosubroto et al. 2003; Kim et al. 1994; Meyerson et al. 1997; Shay and
Wright 1996; Weise and Gunes 2006). In human, telomerase activity is down-
regulated during embryogenesis and cellular differentiation through repression of its
catalytic subunit (Gunes et al.2000; Wright et al. 1996; Sirma et al. 2011). Due to
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the lack of telomerase, telomeres shorten during aging in human tissues in vivo and
telomere length sets a limit to the proliferative capacity of human fibroblasts
(HFs) in vitro involving the p53 and Rb pathways (Chang and Harley 1995; Harley
et al. 1990; Shay et al. 1991). In this line, cells devoid of these two major pathways
exhibit extended life-span but telomeres continue to shorten until a ‘crisis’
checkpoint. Cells that survive the crisis checkpoint possess telomerase activity or
activate an alternative mechanism of telomere maintenance (ALT) (Counter et al.
1992). Based on these observations, Allsopp et al. (1992) proposed a model for of
telomere hypothesis of ‘cell ageing and immortalization’ (Fig. 3).

These observations together with the findings that telomerase activity can be
detected in early human development but is absent in most normal somatic cells
have led to the hypothesis that the down-regulation of telomerase activity in
somatic cells may be a tumor-protective mechanism. In line with this hypothesis it

Fig. 3 Telomere hypothesis of senescence and cancer. Proliferation-dependent telomere
shortening leads to telomere dysfunction, manifested by non-reciprocal-translocations and
end-to-end fusions, resulting in the activation of DNA-damage checkpoints, and induction of
senescence in telomerase negative, check-point proficient human cells. Checkpoint-deficient cells
continue to proliferate experiencing further telomere shortening and eventually end up in crisis,
characterized by apoptotic cell death, in the absence of a telomere maintenance mechanism.
Activation of telomerase (or the ALT mechanism) is one of the key events to overcome crisis
during tumourigenesis to stabilize telomere length and for the continuous proliferation of
malignant cells
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was shown that telomerase is required for tumorigenic conversion of primary
human cells (Hahn et al. 1999a). In adult human tissues some cell types maintain
weak but detectable telomerase activity or telomerase activity may be induced upon
stimulation. These include bone marrow stem cells, germline cells in testes, acti-
vated peripheral blood lymphocytes, skin epidermis and intestinal crypt cells (Chiu
et al. 1996; Hiyama et al. 1995, 1996; Morrison et al. 1996; Ramirez et al. 1997;
Ravindranath et al. 1997; Ritz et al. 2005; Weise and Gunes 2009).

Although telomerase activity could be detected in the vast majority of human
cancers, it is worth mentioning that about 10–15 % of human tumors do not express
detectable levels of telomerase activity. Tumors that lack telomerase activity,
maintain their telomere length via a recombination-based mechanism (ALT for
Alternative Lengthening of Telomeres) (Bryan et al. 1997). Experimental data
indicate that telomere maintenance is required for continuous tumor cell prolifer-
ation and tumor progression (Greenberg et al. 1999; Hahn et al. 1999b; Rudolph
et al. 2001). The prominent occurrence of telomerase in human cancers and data
from mouse models on its requirement for tumor progression motivated the
development of telomerase inhibitors to suppress tumor growth in pre-clinical
studies (Damm et al. 2001; Dikmen et al. 2005; Djojosubroto et al. 2005; Herbert
et al. 2002; Kumar et al. 2013; Norton et al. 1996; Zahler et al. 1991). One of these
inhibitors, a lipid-conjugated 13-mer oligonucleotide that is complementary to the
RNA template of telomerase, thereby directly inhibiting telomerase activity is a
promising candidate and has evaluated safety, tolerability and pharmacokinetics in
Phase I clinical trials. This inhibitor, Imetelstat, was developed by Geron Inc. and is
now being tested to treat Hematologic Myeloid Malignancies in Phase II clinical
trials. As a potential drawback, experimental studies on mouse models showed that
deletion of telomerase in tumors provokes the activation of ALT as an adaptive
response in cancer cells (Hu et al. 2012). It is therefore essential to explore and
understand the factors that control the ALT pathway.

2 Telomere Shortening Impairs Proliferation
of Transformed Cells but Dysfunctional
Telomeres Can Initiate Cancer Formation

The role of telomeres in human biology was unclear until the discovery of telo-
merase and subsequent demonstration that telomeres shorten during aging due to
the end-replication problem (Greider and Blackburn 1985; Harley et al. 1990;
Hastie et al. 1990). As discussed above, telomere shortening limits the proliferation
capacity of human cells, referred to as ‘Hayflick Limit’. At this stage, cells exhibit a
‘cellular senescence’ phenotype characterized by morphological changes and by the
accumulation of aneuploidy, polyploidy and chromosomal fusions (Benn 1976;
Saksela and Moorhead 1963; Thompson and Holliday 1975). Telomerase negative
human cells that can overcome the senescence checkpoint by the expression of viral
oncoproteins continue to accumulate chromosomal instability during the extended
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proliferation period (Counter et al. 1992). These observations indicated a pivotal
role of functional telomeres in genome stability and telomerase activity thwarted
telomere shortening and genomic instability (Harley 1991).

Dysfunctional telomeres can result either from alterations in the
telomere-associated proteins required for end-capping function, or from alterations
that promote the gradual or sudden loss of sufficient repeat sequence necessary to
maintain proper telomere structure. The identification of mammalian telomerase
components in the mid 90s enabled to experimentally address the functional role of
telomere shortening in aging and cancer formation in vivo (Blasco et al. 1997;
Rudolph et al. 1999).

Telomerase knockout mice exhibit progressive shortening of telomeres resulting
in loss of telomere capping function (also referred to as telomere dysfunction) in
3rd–6th generation of knockout mice. In vivo studies supported the observations
from HFs that dysfunctional telomeres are recognized by the DNA-damage-
response (DDR) machinery leading to activation of p53 and Rb dependent
checkpoints inhibiting tumorigenesis in cancer mouse models (Chin et al. 1999;
Greenberg et al. 1999). A formal experimental prove of telomere-dysfunction
induced tumor suppression in vivo was provided by studies where overexpression
of c-Myc oncogene in mice with short telomeres induced genomic instability as
determined by increased end-to-end fusions, non-reciprocal translocations and
anaphase bridges. These genomic instability induced senescence in the presence of
wild-type p53 (Feldser and Greider 2007). In fact, the tumor suppressor function
was dependent on the senescence-activation function of p53 (Cosme-Blanco et al.
2007). During aging or in the absence of functional checkpoints, however, (i.e., loss
of p53) or by the co-expression of oncogenic mutations, telomere dysfunction
promotes genomic instability and initiates tumorigenesis (Artandi et al. 2000; Chin
et al. 1999; Rudolph et al. 1999, 2001). The studies with telomerase deficient mice
also underpinned the need for telomere stability—either by activating telomerase or
by the ALT mechanism—for continuous tumor cell proliferation in vivo
(Begus-Nahrmann et al. 2012; Ding et al. 2012; Greenberg et al. 1999; Jaskelioff
et al. 2009; Rudolph et al. 2001).

In human, telomere dysfunction triggers extensive DNA fragmentation and
evolution of complex chromosome abnormalities and therefore is a cancer predis-
position factor (Gisselsson et al. 2001; Wu et al. 2003). The cellular basis of
telomere dysfunction induced genomic instability is explained by chromosomal
breakage-fusion-bridge (BFB) cycles (McClintock 1939, 1941). Persistent or
transient telomere dysfunction in telomerase knockout mice can result in increased
mutation rates and induce BFB-cycles resulting in gains and losses of chromosomes
(Blasco et al. 1997; Hackett et al. 2001; Lee et al. 1998; Rudolph et al. 2001).
Although BFB-cycles seem to be the major physiological outcome of dysfunctional
telomeres, persistent telomere dysfunction can induce genomic instability via
cytokinesis failure and tetraploidy (Davoli et al. 2010; Pampalona et al. 2012).

Progressive telomere shortening may also result from mutations in shelterin
proteins and telomerase have been shown to be associated with human pathologies.
Mutations in telomerase components (TERT, TERC, DKC1) telomerase associated
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factors (NOP10, NHP2, WRAP53) or the shelterin components (TRF1, TRF2,
POT1) forms a bigger portion of several human diseases, like dyskeratosis con-
genita, aplastic anemia, pulmonary fibrosis, malignant melanoma and late stage
liver cirrhosis (Hartmann et al. 2011; Savage et al. 2008; Shi et al. 2014; Vulliamy
et al. 2001, 2004, 2005; Walne et al. 2007, 2008; Yamaguchi et al. 2005, 2010;
Zhong et al. 2011). Mutations in telomerase components result in reduced telo-
merase activity and accelerated telomere shortening and thus accelerated stem cell
exhaustion with age, accompanied by an increased frequency of chromosomal
breaks and chromosomal aberrations and increased risk for cancer formation (Ca-
lado et al. 2012).

Together, both, mice and human studies indicate that telomere dysfunction
induced genetic instability occurs through persistent bridge-breakage events,
leading to a continuous reorganization of the tumor genome. These findings also
show that senescence and apoptosis induced by telomere dysfunction and p53
activation contribute to tumor suppression.

3 Activation of Checkpoints as a Consequence
of Telomere Dysfunction

Due to their structure and shielding by shelterin components telomeres are protected
from irregular repair activities. Studies on shelterin components have identified at
least six different DNA damage repair pathways that protect telomeres from
irregular recombination events (Martinez et al. 2012; Sfeir and de Lange 2012). The
choice of the repair pathway is dependent on the type of DNA-damage and the cell
type and dictates the cellular consequences in response to telomere dysfunction.
Mammalian DSBs are repaired primarily by homologous recombination (HR) or
non homologous end joining (NHEJ). Gene knockout studies have revealed that
loss of the shelterin components TRF1 and TRF2 activates ATM/ATR signaling for
NHEJ whereas dysfunctional telomeres due to loss of POT1 trigger ATR-signaling
or the activation of homologous DNA repair. Activation of the classical (c-NHEJ)
or alternative (alt-NHEJ) non homologous end-joining repair pathways involving
MRN complex (MRE11, NBS and Rad50), DNA-PK and Lig4 (c-NHEJ) or Lig3 or
CtIP (alt-NHEJ) (Rai et al. 2010) initiate end-to-end fusions but repair activities at
dysfunctional telomeres leads to chromosomal fusions, which are not stable during
the cell cycle and can be a source of genetic instability (d’Adda di Fagagna et al.
2004; Takai et al. 2003). Upstream protein kinases such as ataxia telangiectasia
mutated (ATM) and ATR as well as the downstream protein kinases CHK1 and
CHK2 are also involved in the 5′-end-resection at dysfunctional telomeres causing a
G1 cell cycle arrest or the senescence response by activating the tumour suppressor
p53 pathway. In the absence of p53BP, a target of the ATM kinase that accumulates
at the sides of DNA damage and suppresses end-resection, the classical NHEJ
pathway is inhibited and may direct the repair mechanism towards the homologous
repair, resulting in increased recombination at dysfunctional telomeres, a phenotype
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observed in telomerase negative, ALT-positive tumor cells (Dimitrova et al. 2008;
Martinez et al. 2012).

Whether the same pathways are activated as a consequence of physiological
telomere shortening remains to be shown but some data exist indicating that the
alt-NHEJ is the major pathway to repair DNA damage at naturally occurring
dysfunctional telomeres (Rai et al. 2010). The p16/INK4a-Rb pathway has been
implemented to contribute to the detection of telomere-induced DNA damage,
activating the senescence pathway and recent data show that p16/INK4a protects
cells against dysfunctional telomere–induced ATR-dependent DDR in Pot1b defi-
cient mice but the contribution of p16 remains still elusive yet (Shay et al. 1991;
Wang et al. 2013). Elucidating the DDR pathways in response to physiological
telomere dysfunction would be crucial to better understand the role of genomic
instability to tumorigenesis during aging.

4 Telomere-Dysfunction and Induction of Senescence
as a Tumor Suppressor Mechanism

As discussed above, telomere shortening is regarded as the main cause of telomere
dysfunction leading to induction of replicative senescence in aging cells. There is
now emerging evidence that the accumulation of telomeric DNA damage in response
to DNA replication stress can also contribute to induction of senescence. The
induction of this checkpoint involves abrupt induction of replication stress at telo-
meres, which appears to be independent of classical telomere shortening (Fig. 4).

Dysfunctional telomeres can be detected by the accumulation of telomere
dysfunction-induced foci (TIF) at the telomeres (d’Adda di Fagagna et al. 2003;
Takai et al. 2003). These foci include 53BP1 and phosphorylated H2AX
(gamma-H2AX) at the dysfunctional telomeres. Interestingly, recent observations
show the accumulation of persistent TIFs upon oncogene-induced senescence
(OIS) or stress-induced senescence (Fumagalli et al. 2012; Hewitt et al. 2012;
Suram et al. 2012). We recently showed that aneuploidy-induced senescence
(AIS) involves replication stress and TIF formation at telomeres indicating that
telomeres seem to mediate (AIS) (Meena et al. 2015). These new findings may
provide a unifying mechanism for senescence as a general tumor suppressor
mechanism whereby telomeres may converge different kinds of cellular stress in
one pathway (Reviewed in Gunes and Rudolph 2012, 2013).

The biological basis for this function of telomeres as a sensor of replication
defects may be due to their specific sequence composition and structure. Telomeres
can form G-quadruplex structures (G4) by intra-molecular Hoogsteen G-G base
pairs. G4 structures increase in a cell cycle dependent manner in human cells (Biffi
et al. 2013) and preferentially form at the 3′-end of chromosomes (Tang et al.
2008), are highly stable. G4 structures are thought difficult to resolve during rep-
lication and may provoke replication fork stalling and chromosome fragility
(Tarsounas and Tijsterman 2013). Fragile sites are particularly prone to
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chromosomal breakage and recombination events as a result of replication stress
(O’Keefe and Richards 2006). Replication stress can be induced by inappropriate
proliferation signaling such as oncogene activation or loss of cell cycle inhibitors
that deregulate transcription and generate DNA damage (Bermejo et al. 2012; Di
Micco et al. 2006). Telomeres are difficult to replicate and may lead to fork stalling
during replication upon inflated proliferation signals (Suram et al. 2012). Consis-
tently, replication stress at telomeres and thus inefficient replication of telomeric
DNA could attract DDR and induce the senescence checkpoints as a tumor sup-
pressor mechanism. In cells defective in functional repair mechanisms or faithful
telomere replication, however, dysfunctional telomeres can initiate genome
instability.

Fig. 4 Telomerase activity alleviates telomere replication stress and facilitates to overcome
oncogene-induced senescence. Oncogene activation leads to abrupt accumulation of DNA damage
at telomeres resulting in senescence and tumour suppression. Telomerase-positive stem cells could
be resistant to oncogene-induced senescence and may be selected as the cell type of origin of
tumour development
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5 TRF1 and Telomerase in the Context of Telomere
Replication Stress

There is emerging experimental evidence that replication through difficult repli-
cating sites requires coordinated action of telomerase activity, telomere binding
proteins and specific helicases that are recruited to the telomeres for faithful rep-
lication. TRF1 plays a key role in this context. Loss of mammalian TRF1 or its
fission yeast counterpart Taz1 leads to stalled replication forks and fragile telomere
phenotype (Martinez et al. 2009; Miller et al. 2006; Sfeir et al. 2009). Importantly,
MEFs from TRF1 deficient mice exhibited a premature senescence phenotype
compared to their wild type counterparts; in the absence of cellular checkpoints,
i.e., in cells expressing SV40-LT, the senescence phenotype was rescued but led to
increased chromosomal instability (Martinez et al. 2009). At organismal level, mice
lacking TRF1 in the stratified epithelia (TRF1flox/flox × K5-Cre transgenic bi-
transgenic mice) showed dysfunctional telomeres associated with skin hyperpig-
mentation and epithelial dysplasia but died perinatally. When these mice were
crossed with p53 null mice, they could survive but exhibited an increase in squa-
mous cell carcinoma. Together, these studies indicate that telomere replication is
facilitated by the shelterin factor TRF1 to prevent replication fork stalling and that
telomeric replication stress generates fragile telomeres that can instigate genomic
instability and cancer.

Interestingly, BLM helicase, which is also able to bind and resolve G4 struc-
tures, interacts with TRF1 and is recruited to telomeres during replication in late
S/G2 and cells lacking BLM accumulate dysfunctional telomeres and
telomere-dependent chromosome fusions (Barefield and Karlseder 2012). RTEL1 is
another helicase that facilitates faithful telomere replication, potentially by resolv-
ing the G-quadruplex structures at the T-loop (Vannier et al. 2012, 2013). Other
helicases with G4 resolving activity include the recQ helicases WRN, RECQL4 and
DNA2. DNA2 deficiency results in defective telomere replication, leading to ele-
vated fragile telomeres, telomeres loss, and telomere DNA damage response (Lin
et al. 2013). In the same line, it has recently been demonstrated that the activity of
the Pif1 helicase, that can associate with telomerase, is required to open telomeric
G4 structures and that the enzymatic activity of telomerase is crucial for this
function indicating that the damage present at telomeres is repaired by telomerase
(Chang et al. 2009; Mateyak and Zakian 2006; Paeschke et al. 2011). It remains
speculative whether Pif1 activity precedes and facilitates telomere replication or it is
required to resolve structures generated during replication. Studies in the ciliate
Stylonychia lemnae indicate that telomerase recruitment by the telomere binding
protein-ß, the homologue of the mammalian shelterin protein TPP1, facilitates
unfolding G4-structures. However, the exact mechanisms how these helicases act to
resolve telomeric G4 and their differential functions remain elusive.

Recent studies indicate that BRCA2 and RAD51 act in concert to heal fragile
telomeres in mouse cells, probably by enabling the restart of replication at stalled
replication forks that are processed by HR during the S-phase (Badie et al. 2010).
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BRCA2 recruits RAD51 to the telomeres during replication in S-phase and both
factors are required for maintenance of telomere length in mouse embryonic
fibroblasts (MEFs). Consistently, MEFs lacking BRCA2 or RAD51 exhibited an
increased fragility, telomere shortening and telomere dysfunction induced DNA
damage foci (TIF) indicative of loss of telomere protection. Interestingly, telome-
rase positive cells showed higher fragility in the context of BRCA2 mice when
compared to telomerase negative cells with shorter telomeres from late generation
telomerase knockout cells. This result indicates that longer telomeres have a greater
chance to accumulate fragile telomeres in the absence of repair mechanisms and in
the presence of telomerase. In conclusion, the adult stem cells, the main cell type
that retains telomerase activity in adult human tissues may represent the cell type of
origin of cancer formation (Fig. 4).

Together, telomeres have a dual role in cancer formation. Telomere shortening
and telomere replication stress in malignant cell clones serve as a tumor suppressor
mechanism by activating senescence and or crisis checkpoints. In contrast, telomere
shortening in aging tissues can also lead to an induction of chromosomal instability
by promoting chromosomal fusion and fusion-bridge-breakage cycles. In addition,
the inhibition of cell proliferation in aging tissues can also increase the selective
pressure for clonal outgrowth of (pre-) malignant cell clones by changing the tissue
environment and by impairing proliferative competition of non-transformed cells
(Bilousova et al. 2005; Braig et al. 2014; Ju and Rudolph 2006). The influence of
telomeres on tumor protection/tumor promotion may depend on the lifetime. Early
in life when telomeres are long cancer protective effects of telomere shortening/
replication stress in malignant cell clones may be dominant. In contrast,
tumor-promoting effects of telomere shortening may become dominant in aged
tissue and tissues experiencing telomere shortening in response to chronic diseases
such as liver cirrhosis in response to hepatitis or progressive stages of ulcerative
colitis (Rabinovitch et al. 1999; Rudolph et al. 2009). It remains to be investigated
whether targeting of senescence checkpoints in response to telomere shortening or
telomere replication stress could lead to development of novel anti-cancer therapies
and how these approaches affect tissue aging. Studies in mouse models indicate that
it is possible to improve tissue maintenance without increasing cancer risk by
inhibiting downstream checkpoint responses (Cdkn1a/p21) that limit proliferation
of cells in response to telomere shortening (Choudhury et al. 2007). In addition, it
was shown that p21 deletion can have anti-tumor effects in mouse models of
leukemia or irradiated human tumor cells (Lazzarini et al. 2008; Viale et al. 2009;
Waldman et al. 1996). It is possible that the tumor inhibiting effects of p21 deletion
involve the increase in telomere replication stress in genomically instable tumor
cells. Together, these studies suggest that it should be possible to define molecular
targets that can improve both tissue maintenance and cancer protection in aging
tissues.

Important areas of future research include the delineation of (i) distinct cellular
stress factors that cause telomere replication stress, (ii) molecular mechanisms that
are involved in the induction of replication stress, (iii) activation of checkpoints in
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response to replication stress at telomeres, and (iv) mechanism how telomerase
contributes to the suppression of telomere replication stress.

References

Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of
G-rich repeat distributed non-randomly. Nucleic Acids Res 17:4611–4627

Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW,
Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl
Acad Sci USA 89:10114–10118

Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere
dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature
406:641–645

Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, Suram A, Jaco I,
Benitez J, Herbig U et al (2010) BRCA2 acts as a RAD51 loader to facilitate telomere
replication and capping. Nat Struct Mol Biol 17:1461–1469

Barefield C, Karlseder J (2012) The BLM helicase contributes to telomere maintenance through
processing of late-replicating intermediate structures. Nucleic Acids Res 40:7358–7367

Begus-Nahrmann Y, Hartmann D, Kraus J, Eshraghi P, Scheffold A, Grieb M, Rasche V,
Schirmacher P, Lee HW, Kestler HA et al (2012) Transient telomere dysfunction induces
chromosomal instability and promotes carcinogenesis. J Clin Investig 122:2283–2288

Benn PA (1976) Specific chromosome aberrations in senescent fibroblast cell lines derived from
human embryos. Am J Hum Genet 28:465–473

Bermejo R, Kumar A, Foiani M (2012) Preserving the genome by regulating chromatin association
with the nuclear envelope. Trends Cell Biol 22:465–473

Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA
G-quadruplex structures in human cells. Nat Chem 5:182–186

Bilousova G, Marusyk A, Porter CC, Cardiff RD, DeGregori J (2005) Impaired DNA replication
within progenitor cell pools promotes leukemogenesis. PLoS Biol 3:e401

Blackburn EHS, Szostak JW (1984) The molecular structure of centromeres and telomeres. Ann
Rev Biochem 53:163–194

Blasco MA, Funk W, Villeponteau B, Greider CW (1995) Functional characterization and
developmental regulation of mouse telomerase RNA. Science 269:1267–1270

Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997)
Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell
91:25–34

Braig M, Pallmann N, Preukschas M, Steinemann D, Hofmann W, Gompf A, Streichert T,
Braunschweig T, Copland M, Rudolph KL et al (2014) A ‘telomere-associated secretory
phenotype’ cooperates with BCR-ABL to drive malignant proliferation of leukemic cells.
Leukemia

Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an
alternative mechanism for maintaining telomere length in human tumors and tumor-derived
cell lines. Nat Med 3:1271–1274

Calado RT, Cooper JN, Padilla-Nash HM, Sloand EM, Wu CO, Scheinberg P, Ried T, Young NS
(2012) Short telomeres result in chromosomal instability in hematopoietic cells and precede
malignant evolution in human aplastic anemia. Leukemia 26:700–707

Cesare AJ, Quinney N, Willcox S, Subramanian D, Griffith JD (2003) Telomere looping in
P. sativum (common garden pea). Plant J 36:271–279 (for cell and molecular biology)

Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc
Natl Acad Sci USA 92:11190–11194

Telomere Dysfunction, Chromosomal Instability and Cancer 73



Chang M, Luke B, Kraft C, Li Z, Peter M, Lingner J, Rothstein R (2009) Telomerase is essential to
alleviate pif1-induced replication stress at telomeres. Genetics 183:779–791

Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53
deficiency rescues the adverse effects of telomere loss and cooperates with telomere
dysfunction to accelerate carcinogenesis. Cell 97:527–538

Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB, Lansdorp PM (1996)
Differential expression of telomerase activity in hematopoietic progenitors from adult human
bone marrow. Stem Cells 14:239–248

Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H,
Stepczynska A, Wang C, Buer J et al (2007) Cdkn1a deletion improves stem cell function and
lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet
39:99–105

Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein
composition of catalytically active human telomerase from immortal cells. Science 315:1850–
1853

Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579
Cosme-Blanco W, Shen MF, Lazar AJ, Pathak S, Lozano G, Multani AS, Chang S (2007)

Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating
p53-dependent cellular senescence. EMBO Rep 8:497–503

Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992)
Telomere shortening associated with chromosome instability is arrested in immortal cells
which express telomerase activity. EMBO J 11:1921–1929

d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G,
Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated
senescence. Nature 426:194–198

d’Adda di Fagagna F, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins
of the DNA-damage response. Genes Dev 18:1781–1799

Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H, Niestroj C, Daiber C,
Enenkel B, Guilliard B et al (2001) A highly selective telomerase inhibitor limiting human
cancer cell proliferation. EMBO J 20:6958–6968

Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis
and tetraploidy. Cell 141:81–93

de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres.
Genes Dev 19:2100–2110

de Lange T (2010) How shelterin solves the telomere end-protection problem. Cold Spring Harb
Symp Quant Biol 75:167–177

Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M,
Nuciforo PG, Bensimon A et al (2006) Oncogene-induced senescence is a DNA damage
response triggered by DNA hyper-replication. Nature 444:638–642

Dikmen ZG, Gellert GC, Jackson S, Gryaznov S, Tressler R, Dogan P, Wright WE, Shay JW
(2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor.
Cancer Res 65:7866–7873

Dimitrova N, Chen YC, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end
joining of telomeres by increasing chromatin mobility. Nature 456:524–528

Ding Z, Wu CJ, Jaskelioff M, Ivanova E, Kost-Alimova M, Protopopov A, Chu GC, Wang G,
Lu X, Labrot ES et al (2012) Telomerase reactivation following telomere dysfunction yields
murine prostate tumors with bone metastases. Cell 148:896–907

Djojosubroto MW, Choi YS, Lee HW, Rudolph KL (2003) Telomeres and telomerase in aging,
regeneration and cancer. Mol Cells 15:164–175

Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S, Harley CB,
Rudolph KL (2005) Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and
increase chemosensitivity of human hepatoma. Hepatology 42:1127–1136

74 J. Meena et al.



Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of
telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–356

Feldser DM, Greider CW (2007) Short telomeres limit tumor progression in vivo by inducing
senescence. Cancer Cell 11:461–469

Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M,
Matti V, Beausejour CM et al (2012) Telomeric DNA damage is irreparable and causes
persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, Hoglund M, Mitelman F, Mertens F,
Mandahl N (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution
of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA
98:12683–12688

Gonzalez OG, Assfalg R, Koch S, Schelling A, Meena JK, Kraus J, Lechel A, Katz SF, Benes V,
Scharffetter-Kochanek K, Kestler HA, Gunes C, Iben S (2014) Telomerase stimulates
ribosomal DNA transcription in hyperproliferative conditions. Nat Commun 5:4599

Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA
(1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3)
cancer-prone mouse. Cell 97:515–525

Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase
activity in Tetrahymena extracts. Cell 43:405–413

Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999)
Mammalian telomeres end in a large duplex loop. Cell 97:503–514

Gunes C, Rudolph KL (2012) Telomere dysfunction puts the brakes on oncogene-induced cancers.
EMBO J 31:2833–2834

Gunes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152:390–393
Gunes C, Lichtsteiner S, Vasserot AP, Englert C (2000) Expression of the hTERT gene is

regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res 60:
2116–2121

Hackett JA, Feldser DM, Greider CW (2001) Telomere dysfunction increases mutation rate and
genomic instability. Cell 106:275–286

Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999a)
Creation of human tumour cells with defined genetic elements. Nature 400:464–468

Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH,
Meyerson M, Weinberg RA (1999b) Inhibition of telomerase limits the growth of human
cancer cells. Nat Med 5:1164–1170

Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256:271–282
Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human

fibroblasts. Nature 345:458–460
Hartmann D, Srivastava U, Thaler M, Kleinhans KN, N’Kontchou G, Scheffold A, Bauer K,

Kratzer RF, Kloos N, Katz SF et al (2011) Telomerase gene mutations are associated with
cirrhosis formation. Hepatology 53:1608–1617

Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere
reduction in human colorectal carcinoma and with ageing. Nature 346:866–868

Herbert BS, Pongracz K, Shay JW, Gryaznov SM (2002) Oligonucleotide N3′ → P5′
phosphoramidates as efficient telomerase inhibitors. Oncogene 21:638–642

Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R,
Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA
damage response in ageing and stress-induced senescence. Nat Commun 3:708

Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S,
Yamakido M (1995) Activation of telomerase in human lymphocytes and hematopoietic
progenitor cells. J Immunol 155:3711–3715

Hiyama E, Tatsumoto N, Kodama T, Hiyama K, Shay J, Yokoyama T (1996) Telomerase activity
in human intestine. Int J Oncol 9:453–458

Telomere Dysfunction, Chromosomal Instability and Cancer 75



Hu J, Hwang SS, Liesa M, Gan B, Sahin E, Jaskelioff M, Ding Z, Ying H, Boutin AT, Zhang H
et al (2012) Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in
cancer. Cell 148:651–663

Jaskelioff M, Song W, Xia J, Liu C, Kramer J, Koido S, Gendler SJ, Calderwood SK, Gong J
(2009) Telomerase deficiency and telomere dysfunction inhibit mammary tumors induced by
polyomavirus middle T oncogene. Oncogene 28:4225–4236

Ju Z, Rudolph KL (2006) Telomeres and telomerase in stem cells during aging and disease.
Genome Dyn 1:84–103

Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE,
Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal
cells and cancer. Science 266:2011–2015

Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–402
Klobutcher LA, Swanton MT, Donini P, Prescott DM (1981) All gene-sized DNA molecules in

four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc
Natl Acad Sci USA 78:3015–3019

Kumar M, Witt B, Knippschild U, Koch S, Meena JK, Heinlein C, Weise JM, Krepulat F,
Kuchenbauer F, Iben S et al (2013) CEBP factors regulate telomerase reverse transcriptase
promoter activity in whey acidic protein-T mice during mammary carcinogenesis. Int J Cancer
132:2032–2043

Lazzarini R, Moretti S, Orecchia S, Betta PG, Procopio A, Catalano A (2008) Enhanced antitumor
therapy by inhibition of p21waf1 in human malignant mesothelioma. Clin Cancer Res
14:5099–5107 (an official journal of the American Association for Cancer Research)

Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA (1998) Essential
role of mouse telomerase in highly proliferative organs. Nature 392:569–574

Lin W, Sampathi S, Dai H, Liu C, Zhou M, Hu J, Huang Q, Campbell J, Shin-Ya K, Zheng L et al
(2013) Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for
telomere integrity. EMBO J 32:1425–1439

Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes
suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C, Flores JM,
Fernandez-Capetillo O, Tarsounas M, Blasco MA (2009) Increased telomere fragility and
fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer
in mice. Genes Dev 23:2060–2075

Martinez P, Flores JM, Blasco MA (2012) 53BP1 deficiency combined with telomere dysfunction
activates ATR-dependent DNA damage response. J Cell Biol 197:283–300

Mateyak MK, Zakian VA (2006) Human PIF helicase is cell cycle regulated and associates with
telomerase. Cell Cycle 5:2796–2804

McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at
meiosis. Proc Natl Acad Sci USA 25:405–416

McClintock B (1941) The stability of broken ends of chromosomes in zea mays. Genetics 26:
234–282

McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes.
EMBO J 16:3705–3714

Meena JK, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, Kraus JM, Speicher MR,
Wang ZQ, Kestler HA, d'Adda di Fagagna F, Günes C, Rudolph KL (2015) Telomerase
abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion.
EMBO J 10:1371–1384

Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L,
Beijersbergen RL, Davidoff MJ, Liu Q et al (1997) hEST2, the putative human telomerase
catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:
785–795

Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence
(TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 86:7049–7053

76 J. Meena et al.



Miller KM, Rog O, Cooper JP (2006) Semi-conservative DNA replication through telomeres
requires Taz1. Nature 440:824–828

Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that
synthesizes TTAGGG repeats. Cell 59:521–529

Morrison SJ, Prowse KR, Ho P, Weissman IL (1996) Telomerase activity in hematopoietic cells is
associated with self-renewal potential. Immunity 5:207–216

Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL,
Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the
telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

Muller HJ (1938) The remaking of chromosomes. Collect Net 13:181–195
Munoz-Jordan JL, Cross GA, de Lange T, Griffith JD (2001) t-loops at trypanosome telomeres.

EMBO J 20:579–588
Murti KG, Prescott DM (1999) Telomeres of polytene chromosomes in a ciliated protozoan

terminate in duplex DNA loops. Proc Natl Acad Sci USA 96:14436–14439
Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB,

Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science
277:955–959

Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev
Mol Cell Biol 14:69–82

Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR (1996) Inhibition of human
telomerase activity by peptide nucleic acids. Nat Biotechnol 14:615–619

O’Keefe LV, Richards RI (2006) Common chromosomal fragile sites and cancer: focus on
FRA16D. Cancer Lett 232:37–47

Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is
promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

Pampalona J, Frias C, Genesca A, Tusell L (2012) Progressive telomere dysfunction causes
cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet 8:e1002679

Rabinovitch PS, Dziadon S, Brentnall TA, Emond MJ, Crispin DA, Haggitt RC, Bronner MP
(1999) Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis.
Cancer Res 59:5148–5153

Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S (2010) The function of classical
and alternative non-homologous end-joining pathways in the fusion of dysfunctional
telomeres. EMBO J 29:2598–2610

Ramirez RD, Wright WE, Shay JW, Taylor RS (1997) Telomerase activity concentrates in the
mitotically active segments of human hair follicles. J Invest Dermatol 108:113–117

Ravindranath N, Dalal R, Solomon B, Djakiew D, Dym M (1997) Loss of telomerase activity
during male germ cell differentiation. Endocrinology 138:4026–4029

Ritz JM, Kuhle O, Riethdorf S, Sipos B, Deppert W, Englert C, Gunes C (2005) A novel
transgenic mouse model reveals humanlike regulation of an 8-kbp human TERT gene promoter
fragment in normal and tumor tissues. Cancer Res 65:1187–1196

Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999)
Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712

Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and
evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159

Rudolph KL, Hartmann D, Opitz OG (2009) Telomere dysfunction and DNA damage checkpoints
in diseases and cancer of the gastrointestinal tract. Gastroenterology 137:754–762

Saksela E, Moorhead PS (1963) Aneuploidy in the degenerative phase of serial cultivation of
human cell strains. Proc Natl Acad Sci USA 50:390–395

Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP (2008) TINF2, a component of
the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum
Genet 82:501–509

Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem.
Science 336:593–597

Telomere Dysfunction, Chromosomal Instability and Cancer 77



Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T
(2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication.
Cell 138:90–103

Shay JW, Wright WE (1996) The reactivation of telomerase activity in cancer progression. Trends
Genet TIG 12:129–131

Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of
human cellular senescence. Exp Cell Res 196:33–39

Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, Ghiorzo P, Bressac-de
Paillerets B, Nagore E, Avril MF et al (2014) Rare missense variants in POT1 predispose to
familial cutaneous malignant melanoma. Nat Genet 46:482–486

Shippen-Lentz D, Blackburn EH (1990) Functional evidence for an RNA template in telomerase.
Science 247:546–552

Sirma H, Kumar M, Meena JK, Witt B, Weise JM, Lechel A, Ande S, Sakk V, Guguen-Guillouzo
C, Zender L et al (2011) The promoter of human telomerase reverse transcriptase is activated
during liver regeneration and hepatocyte proliferation. Gastroenterology 141:326–337, 337,
e321–323

Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V, Fumagalli M, Di Micco R,
Mirani N, Gurung RL et al (2012) Oncogene-induced telomere dysfunction enforces cellular
senescence in human cancer precursor lesions. EMBO J 31:2839–2851

Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr
Biol CB 13:1549–1556

Tang J, Kan ZY, Yao Y, Wang Q, Hao YH, Tan Z (2008) G-quadruplex preferentially forms at the
very 3′ end of vertebrate telomeric DNA. Nucleic Acids Res 36:1200–1208

Tarsounas M, Tijsterman M (2013) Genomes and G-quadruplexes: for better or for worse. J Mol
Biol 425:4782–4789

Thompson KV, Holliday R (1975) Chromosome changes during the in vitro ageing of MRC-5
human fibroblasts. Exp Cell Res 96:1–6

Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1
dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell
149:795–806

Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z, Ding H, Boulton SJ (2013) RTEL1 is a
replisome-associated helicase that promotes telomere and genome-wide replication. Science
342:239–242

Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE
(2009) A human telomerase holoenzyme protein required for Cajal body localization and
telomere synthesis. Science 323:644–648

Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S,
Muradore I, Monestiroli S et al (2009) Cell-cycle restriction limits DNA damage and maintains
self-renewal of leukaemia stem cells. Nature 457:51–56

Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA
component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature
413:432–435

Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I (2004) Disease anticipation is
associated with progressive telomere shortening in families with dyskeratosis congenita due to
mutations in TERC. Nat Genet 36:447–449

Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I (2005) Mutations in the
reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure.
Blood Cells Mol Dis 34:257–263

Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling of S phase and mitosis
induced by anticancer agents in cells lacking p21. Nature 381:713–716

Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, Al-Qurashi FH, Aljurf M,
Dokal I (2007) Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one

78 J. Meena et al.



subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet
16:1619–1629

Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I (2008) TINF2 mutations result in very
short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related
bone marrow failure syndromes. Blood 112:3594–3600

Wang Y, Sharpless N, Chang S (2013) p16(INK4a) protects against dysfunctional
telomere-induced ATR-dependent DNA damage responses. J Clin Investig 123:4489–4501

Weise JM, Gunes C (2006) Telomeres and telomerase. A survey about methods and recent
advances in cancer diagnostic and therapy. Histol Histopathol 21:1249–1261

Weise JM, Gunes C (2009) Differential regulation of human and mouse telomerase reverse
transcriptase (TERT) promoter activity during testis development. Mol Reprod Dev 76:
309–317

Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human
germline and embryonic tissues and cells. Dev Genet 18:173–179

Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR (2003)
Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:
1211–1218

Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM,
Young NS (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic
anemia. N Engl J Med 352:1413–1424

Yamaguchi H, Inokuchi K, Takeuchi J, Tamai H, Mitamura Y, Kosaka F, Ly H, Dan K (2010)
Identification of TINF2 gene mutations in adult Japanese patients with acquired bone marrow
failure syndromes. Br J Haematol 150:725–727

Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet
DNA structures. Nature 350:718–720

Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23:579–604
Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, Chen R, Alter BP, Artandi SE (2011)

Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes
Dev 25:11–16

Telomere Dysfunction, Chromosomal Instability and Cancer 79



Genetic Instability and Disease
Prognostication

Timo Gemoll, Gert Auer, Thomas Ried and Jens K. Habermann

Abstract
Genetic instability is a striking feature of human cancers, with an impact on the
genesis, progression and prognosis. The clinical importance of genomic
instability and aneuploidy is underscored by its association with poor patient
outcome in multiple cancer types, including breast and colon cancer. Interest-
ingly, there is growing evidence that prognostic gene expression signatures
simply reflect the degree of genomic instability. Additionally, also the proteome
is affected by aneuploidy and has therefore become a powerful tool to screen for
new targets for therapy, diagnosis and prognostication. In this context, the
chapter presents the impact of genomic instability on disease prognostication
occurring in human cancers.
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1 Genomic Instability and Disease Prognostication
in Colorectal Cancer

Colorectal cancer is globally the fourth leading cause of cancer mortality, with
about 1.2 million new cases and 608,000 deaths worldwide per year (Jemal et al.
2011). The incidence of colorectal cancer is higher in developed countries although
the disease is rarely diagnosed before the age of 40. Most patients with R0 resection
of node-negative CRC are cured of their cancer by surgery, but an unacceptable
number of patients experience relapse due to regional recurrence or to distant
metastasis, or both. Today, Dukes classification of CRC and the Tumor-Node-
Metastasis (TNM) classification system for solid tumors are the routine staging
systems and the basis to evaluate patient prognosis in CRC. However, in terms of
prognosis it has been shown that genomic instability plays an important role as do
various demographical, pathological and molecular characteristics: next to age
(Kearney et al. 1993; Cascinu et al. 1996), tumor stage (Sun 2006; Gerling et al.
2010), tumor location (Zarbo et al. 1997), histopathological grade (Schillaci et al.
1990), disease free survival and overall survival (Garrity et al. 2004; Chen et al.
2002), several studies have shown that patients with aneuploid tumors had a worse
outcome compared to patients with euploid tumors (Witzig et al. 1991; Sinicrope
et al. 2006; Bosari et al. 1992). Similarly, Gerling et al. (2010) presented survival
data of CRC patients showing that advanced stage but diploid carcinomas had a
similar prognosis as compared with early stage tumors, but the outlook for aneu-
ploid carcinoma is typically unfavorable, indicating that aneuploidy in CRC more
strongly impacts on prognosis than the tumor stage itself.

In one of the most comprehensive meta-analyses of 10,126 patients, Walther
et al. (2008) demonstrated that genomic instability is associated with worse prog-
nosis in CRC and that it could be used to stratify patient prognosis, in addition to
pathological staging: CRC patients with aneuploid tumor cells—quantified by
either flow cytometry (n = 9,526 patients) or image cytometry (n = 600 patients)—
appeared to have a poorer survival irrespective of their ethnic background, ana-
tomical location and treatment with 5-fluoroucacil (5-FU)-based adjuvant chemo-
therapy. In line with this, Guastadisegni et al. (2010) confirmed the association
between MSI and favorable prognosis. Thirty-one eligible studies reporting survival
for 12,782 patients characterized for MSI indicated that MSI has the potential to be
used in the clinical setting as a prognostic and predictive marker. Being part of the
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meta-analysis, the study by Sinicrope et al. (2006) found that DNA ploidy was the
strongest prognostic marker.

Interestingly, the pattern of chromosomal aneuploidy in sporadic (SCC) and
ulcerative (UCC) colitis-associated colorectal carcinomas seems to be strinkingly
conserved. Nevertheless, in a single cohort of 31 UCCs and 257 SCCs Gerling et al.
(2010) associated the frequency of aneuploidy to clinical parameters and showed
that UCCs have a higher frequency of aneuploidy compared to SCCs (100 % versus
74.6 %; p < 0.006). A logistic regression analysis assessed age, sex, UICC stage, T-
and N-status, histologic tumor grading, underlying inflammation, and DNA ploidy
status. Out of these features, only age and DNA ploidy status were significant
contributing parameters, indicating both patients of higher age at diagnosis and
patients with aneuploid malignancy have a poor survival prognosis. Additional
logistic regression analysis comprising these two significant parameters only con-
firmed age [odds ratio (OR), 1.05; 95 % CI, 1.02–1.09; p = 0.003] and DNA ploidy
(OR, 4.07; 95 % CI, 1.46–11.36; p = 0.007) to be independent prognostic
parameters. Among those, DNA aneuploidy with an OR of 4.07 seemed to be the
strongest independent prognostic marker for R0-resected colorectal cancer patients
overall. The dominance of aneuploidy as an independent poor prognostic predictor
in patients with SCC and UCC was further supported by the fact that patients with
diploid tumors at advanced stages (UICC stage III/IV) did present a survival
comparable to that of patients with aneuploid tumors at early stages. The latter
finding might even suggest that the presence of aneuploid tumor cell populations
may influence the patient’s prognosis more dominantly than tumor stage. This was
in part supported by Laubert et al. (2013) who could demonstrate that aneuploidy
and elevated CEA levels, apart from increasing T category, could predict
metachronous metastases and thus assist individual risk assessment.

In this context, other authors report a comparable incidence of DNA aneuploidy
in SCC. Interestingly, the high incidence of aneuploidy is not restricted to late-stage
lesions but is found in more than 50 % of stage I CRC tumors. This was evaluated
on the basis of single tumor samples and did not take into account that the
intra-tumor heterogeneity could lead to an underestimation of the true occurrence of
chromosomal aneuploidy and genomic instability, respectively (Flyger et al. 1999;
Bondi et al. 2009).

The essential etiologic element of CRC is widely accepted to lie in genetic
changes of epithelial cells in the colonic mucosa. Morphologic changes from normal
mucosa and adenomatous polyps to cancer with accumulation of genetic aberrations
are well documented (Fearon and Vogelstein 1990). However, individual colorectal
adenomas and carcinomas have different propensities to progress to malignancy. In
this context, genome, transcriptome and proteome analysis with respect to DNA
ploidy data may yield aneuploidy-associated biomarkers that could assess the
individual progression risk to malignancy. On the genome/transcriptome level,
fluorescence in situ hybridization (FISH) with specific probe sets was used to screen
a total of 47 samples [centromere probes for chromosomes 17 and 18 (CEP17 and
CEP18), SMAD7 (SMAD family member 7; 18q21.1), EGFR (epidermal growth
factor; 7p12), NCOA3 (nuclear receptor coactivator 3; 20q12), TP53 (Tumor protein
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53; 17p13.1), MYC (v-myc avian myelocytomatosis viral oncogene homolog;
8q24.21), and RAB20 (member RAS oncogene family; 13q34)]. These samples
reflected different stages during colorectal cancer development and included 18
adenomas of patients without synchronous or subsequent carcinoma, 23 adenomas
of carcinoma patients, and 6 matched carcinomas (Habermann et al. 2011a). In
summary, Habermann et al. concluded that genomic instability in colorectal ade-
nomas is reflected by genomic amplification of the oncogenes EGFR,MYC, NCOA3,
and RAB20. For NCOA3 it could be shown that a diploid signal count of that gene is
associated with a longer adenoma recurrence-free observation time (p = 0.042).

On the proteome level, a comprehensive proteomic analysis of diploid and
aneuploid colorectal cancer cell lines and clinical tissues was carried out (Gemoll
et al. 2011). Two proteins, HDAC2 (histone deacetylase 2) and TXNL1
(thioredoxin-like 1), were not only significantly expressed in two-dimensional gel
electrophoresis (2-DE) analysis and validated by Western blotting, but showed
expression differences also in clinical samples, discerning aneuploid from diploid
CRCs (Fig. 1). It seems that HDAC2 is overexpressed in colorectal cancer and
associated with reduced survival (Ashktorab et al. 2009; Weichert et al. 2008).
Furthermore, HDAC2 overexpression could be induced by a loss of the
anaphase-promoting complex (APC), favoring the development of genomic insta-
bility. This is in line with the finding of HDAC2-overexpression in patients with
aneuploid tumors by Gemoll et al. (2011). In contrast, TXNL1 is involved in the
cellular response to sugar starvation stress and regulates the redox equilibrium in

Fig. 1 a HDAC2 and TXNL1 immunohistochemical detection in colorectal cancer specimens
based on a tissue microarray. Image examples are given at 800-fold magnification. b Tis-
sue-microarray-based immunohistochemical evaluation of HDAC2 and TXNL1 comparing diploid
versus aneuploid colorectal carcinoma specimens. Immunoreactivity was scored with ‘‘0’’ showing
no positivity, ‘‘1’’ presenting up to 20 % immunopositive cells, ‘‘2’’ up to 50 %, and ‘‘3’’ above
50 % stained cells. Bar plots of the TMA analysis confirmed HDAC2 and TXNL1 as significantly
(asterisk) differentially expressed proteins between diploid and aneuploid tumors. Figure adapted
from Gemoll et al. (2011)
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higher eukaryotes (Jimenez et al. 2006; Manandhar et al. 2009). TXNL1 binds to
the transcription factor B-MYb and is overexpressed in diploid as compared to
aneuploid carcinomas, thus potentially maintaining genomic stability (Gemoll et al.
2011). Interestingly, TXNL1 was also expressed at low levels in aneuploid endo-
metrial malignancies (Gemoll et al. 2012).

2 Genomic Instability and Disease Prognostication
in Breast Cancer

Breast cancer is one of the major causes of morbidity and mortality in females all
over the world (Jemal et al. 2011). Despite the fact that tremendous progress has
been achieved in chemotherapy and radiation therapy, breast cancer is still one of
the most frequent malignancies with poor prognosis. The effects of independent
prognostic factors for survival of breast cancer patients, including estrogen
receptor/progesterone receptor (ER/PR) status, HER2 gene amplification and/or
overexpression, tumor size, lymph node status, histological grade, and age have
been thoroughly recognized (Ferguson et al. 2013). Especially the tumor, node, and
metastasis (TNM) system has been extensively used. However, breast cancer is a
malignant disease with multiple driving factors involved, and it has been reported
that molecular mechanisms may affect tumor growth and progression, thereby
potentially limiting the prognostic value of the TNM system (Coradini and Daidone
2004; Song et al. 2013).

Aneuploidy is, in general, correlated to cell proliferation and poor differentiation
but not disease stage (Silvestrini 2000). However, Fallenius et al. (1988) demon-
strated that node positive non-aneuploid tumors exhibited a better survival than
node negative but aneuploid tumors, indicating that ploidy in this study cohort was
a stronger prognostic marker than node assessment.

In 2006, Kronenwett et al. (2006) introduced a new concept to measure a tumor
cell population with high levels of clonal heterogeneity. The stemline-scatter-index
(SSI) is computed with the sum of the proliferation index, the variance of the
diploid G0/G1 peak, and the 5c exceeding rate (5cER). Primarily based on the
ploidy classification by Auer et al. (1980), the SSI is able to divide cytometrically
assessed diploid, tetraploid and aneuploid samples into genomically stable and
unstable subtypes. A total of 890 invasive breast cancer patients with a mean
follow-up of 8.9 years were evaluated by using this algorithm and showed a sig-
nificantly better survival of genomically stable subtypes compared with the unstable
subtype within each ploidy category (0.04 < p < 0.004).

To evaluate potential differences in gene expression patterns between genomi-
cally stable and unstable breast tumors, Habermann et al. (2009) examined 17
diploid genomic stable, 15 aneuploid genomic stable, and 16 aneuploid genomic
unstable breast carcinomas. A 12-gene expression signature associated with
genomic instability in breast cancer was defined and demonstrated a biological and
prognostic value across multiple different cancer entities (Habermann et al. 2009;
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Mettu et al. 2010). For breast cancer, genomic unstable carcinomas in patient
cohorts from Sorlie et al. (2003), van de Vijver et al. (2002), Sotiriou et al. (2003)
were associated with distinct shorter relapse-free survival and metastasis-free sur-
vival (p < 0.04; Fig. 2). All three studies were not analyzed regarding genomic
stability/instability of the samples, initially. However, it was shown that the 12-gene
signature is independent of clinicopathological factors such as lymph node status,
the NIH criteria, the St. Gallen criteria, and grading used for breast cancer prog-
nostication. In addition, gene sets of the MammaPrint® (van de Vijver et al. 2002;
van’t Veer et al. 2002) and Oncotype DX® (Paik et al. 2004) tests—two clinically
used breast cancer prognostic gene expression signatures—were used to predict
genomic instability: 84 % (MammaPrint®) and 91 % (Oncotype DX®) of all cases
were correctly classified. Along this line, Swanton et al. (2009) corroborated the
importance of genomic instability by showing a link between aneuploidy-associated
gene expression and poor response to taxane, a microtubule-stabilizing
(MTS) agent. A pre-therapeutic assessment of genomic instability could therefore
even optimize treatment stratification.

In 2007, Yildrim-Assaf et al. (2007) published another example for histogram
reclassification: Based on thresholds in the categories of 5cER (>10 aneuploid cells)
and 9cER (>1 aneuploid cell), patients with node negative and positive breast
cancers can be stratified into a high-risk subgroup with unfavorable prognosis. In

Fig. 2 Applying the 12-gene genomic instability signature for prediction of disease-free and
overall survival in independent datasets using Kaplan-Meier analyses. The curves in red reflect
carcinoma patients harboring the genomically stable signature, the curves in green represent
patients with the one implying genomic instability. For all three examples, statistically significant
association of genomic instability with shorter disease-free and overall survival was observed.
Figure adapted from Habermann et al. (2011a, b)
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total, 370 breast cancer patients showed histology grade, lymph node status, and the
above-mentioned binary DNA histogram classification to be the three strongest
relapse predictors in a Cox multivariate analysis. The significance of rare-event
nuclei (5cER and 9cER) was emphasized by the work of Sidoni et al. (2001) who
examined fresh scrape smears from 599 breast carcinomas. According to their
results, single cell aneuploidy is a marker for genetic instability with an increased
risk of tumor recurrences despite otherwise favorable prognostic parameters.
The data seem in accordance with the concept of progressive genetic evolutionary
changes in solid tumors (Bartek et al. 1990) and with the unfavorable prognostic
significance of DNA hypertetraploidy component as demonstrated in both image
(Siitonen et al. 1993) and flow cytometry studies (Pinto et al. 1997).

3 Genomic Instability and Disease Prognostication
in Other Cancers

The relationship between genomic instability and cancer prognosis has been
explored across a range of cancer types. Next to breast and colorectal cancer (see
above), several retrospective studies, summarized in Table 1, consistently associ-
ated genomic instability with poor prognosis and demonstrated that it provided
additional prognostic information beyond conventional clinical parameters
(McGranahan et al. 2012).

In endometrial cancer, genomic instability has been quantified by either image
cytometry or flow cytometry (Evans and Podratz 1996). Next to traditional phe-
notypic variables, including stage, histologic grade and subtype, Britton et al.
(1989, 1990) showed prognostic significance in univariate analysis of 256 and 203
endometrial carcinomas. A more detailed assessment revealed DNA ploidy as an
independent prognostic factor by Ikeda et al. (1993). In 2002, Lundgren et al.
(2002) published a study of relapse free survival following surgical treatment in 358
consecutive patients and found that DNA diploidy predicted disease free-survival.
Likewise, prospective and multivariate studies successfully indicated the status of
genomic instability as an independent prognostic variable (Susini et al. 2007; Wik
et al. 2009). In this context, it seems that the grade of genomic instability correlates
with a recurrent pattern of chromosomal imbalances and dominates specific gene
and protein expression changes, irrespective of the histopathological subtypes in
endometrial cancers. In order to identify the impact of chromosomal aberrations on
protein expression, Gemoll et al. mapped genomic imbalances with associated gene
and protein expression changes of endometrial cancer patients (Gemoll et al. 2012;
Habermann et al. 2011b): Next to recurrent genomic imbalances of the chromosome
arms 1q, 3q, 8q, 4q, and 15q, two proteins, AKR7A2 (aflatoxin B1 aldehyde
reductase member 2) and ANXA2 (Annexin A2), showed translational alterations
in consistence with transcriptional changes. While AKR7A2 is involved in the
detoxification of aldehydes and ketones, there is evidence that ANXA2 facilitates
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Table 1 Summary of flow and image cytometry studies relating to genomic instability in various
cancer types

Cancer type Method of
measuring
genomic
instability

Number
of
patients

Outcome
Shorter survival/poor
prognosis of
aneuploid/genomic
instable tumors

Reference

Colorectal
cancer

Flow
cytometry

694 Higher survival rate of
diploid tumors

Witzig et al.
(1991)

Flow
cytometry

528 Higher survival rate of
diploid tumors

Sinicrope et al.
(2006)

Image
cytometry

213 Higher survival rate of
diploid tumors without
metastasis (Dukes’stage
A & B)

Bosari et al.
(1992)

Image
cytometry

288 Higher survival rate of
diploid tumors;
Aneuploidy strongest
prognostic marker for
CRC

Gerling et al.
(2010)

Flow and
image
cytometry

10,126 Higher survival rate of
diploid tumors

Walther et al.
(2008)

Image
cytometry

217 Higher survival rate of
diploid tumors

Laubert et al.
(2013)

Genotyping
of MSI
markers

12,782 Higher survival rate of
MSI tumors

Guastadisegni
et al. (2010)

Flow
cytometry

163 Higher survival rate of
diploid tumors

Flyger et al.
(1999)

Image
cytometry

219 Higher survival rate of
euploid tumors

Bondi et al.
(2009)

Image
cytometry

47 Diploid signal count of
NCOA3 is associated with
a longer adenoma
recurrence-free
surveillance

Habermann
et al. (2011a, b)

Image
cytometry

78 Higher survival rate of
diploid tumors; HDAC2
& TXNL1 marker for
genomic stability

Gemoll et al.
(2011)

Breast
cancer

Image
cytometry

227 Higher survival rate of
diploid tumors

Fallenius et al.
(1988)

Image
cytometry

890 Higher survival rate of
genomically stable
subtypes

Kronenwett
et al. (2006)

Image
cytometry

112 Higher survival rate of
diploid tumors

Auer et al.
(1980)

(continued)
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Table 1 (continued)

Cancer type Method of
measuring
genomic
instability

Number
of
patients

Outcome
Shorter survival/poor
prognosis of
aneuploid/genomic
instable tumors

Reference

Image
cytometry

48 12-gene signature predict
degree of genomic
instability and disease
prognostification

Habermann
et al. (2009),
Mettu et al.
(2010)

Image
cytometry

370 Lower survival rate of
highly aneuploid tumors

Yildrim-Assaf
et al. (2007)

Image
cytometry

599 Single cell aneuploidy as
marker for genomic
instability and biologic
aggressiveness

Sidoni et al.
(2001)

Image
cytometry

134 Lower survival rate of
tumors with cancer cells
with >5c DNA content

Siitonen et al.
(1993)

Flow
cytometry

860 Hypertetraploidy as
marker for biologic
aggressiveness

Pinto et al.
(1997)

Endometrial
cancer

Flow
cytometry

256 and
203

Higher survival rate of
diploid tumors

Britton et al.
(1989, 1990)

Flow
cytometry

76 Higher survival rate of
diploid tumors

Ikeda et al.
(1993)

Image
cytometry

358 Higher survival rate of
diploid tumors

Lundgren et al.
(2002)

Flow
cytometry

174 Higher survival rate of
diploid tumors

Susini et al.
(2007)

Flow
cytometry

363 Higher survival rate of
diploid tumors

Wik et al.
(2009)

Ovarian
cancer

Flow
cytometry

682 Higher survival rate of
diploid tumors

Akeson et al.
(2009)

Image
cytometry

284 Higher survival rate of
diploid tumors

Kristensen et al.
(2003)

Image
cytometry

47 Higher survival rate of
diploid tumors

Kildal et al.
(2004)

Large B-cell
lymphoma

H&E
staining

54 Lower survival rate of
patients with
chromosomal instability

Bakhoum et al.
(2011)

Oral
squamous
cancer

FISH 77 Lower survival rate of
patients with
chromosomal instability

Sato et al.
(2010)

Synovial
sarcoma

CGH 22 Lower survival rate of
patients with specific
chromosomal instability

Nakagawa et al.
(2006)
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the reorganization of the extracellular matrix in physiological and pathological
processes such as tumor invasion (Mai et al. 2000).

Furthermore, in a multivariate analysis of 682 and 284 ovarian cancers, genomic
instability was found to be associated with a worse prognosis. Here, Akeson et al.
(2009) determined age, stage, presence of residual tumor, histological subtype,
CA125, and DNA ploidy status as univariate predictors of survival time. Along the
same line, Kristensen et al. (2003) showed the predictive power of genomic
instability in multivariate analysis with a hazard ration of 10.3. These findings are
supported by the study of Kildal et al. (2004) that found clinical stage to be the
strongest prognostic feature, followed by the extent of residual tumor, and DNA
ploidy status.

Furthermore, studies in synovial and oral squamous cell carcinomas as well as
diffuse B-cell lymphoma, have suggested that genomic instability is associated with
poor prognosis (Mettu et al. 2010; Bakhoum et al. 2011; Sato et al. 2010; Nak-
agawa et al. 2006).

4 Conclusion

Genomic instability is a defining feature of human cancers. It has an impact on the
expression levels of resident genes but in addition also on associated protein
expression. Such aneuploidy-associated protein expression patterns could reveal
novel diagnostic and therapeutic targets. The evidence for the selective contribution
of genomic instability on prognosis is supported by several studies in which
patients with aneuploid tumors had a worse outcome compared to patients with
euploid tumors. Overall, the assessment of nuclear aneuploidy by image or flow
cytometry could become a routine practice to assist in predicting individual cancer
risk and in disease prognostication in solid tumors.
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Causes of Chromosomal Instability
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Abstract
The majority of human cancer cells are highly aneuploid harboring chromosome
numbers deviating from the modal number of 46. In cancer, aneuploidy is a
consequence of an increased rate of whole chromosome missegregation during
mitosis, a process known as chromosomal instability (CIN). In fact, CIN is a
hallmark of human cancer and is thought to contribute to tumorigenesis, tumor
progression, and the development of therapy resistance by providing a high
genetic variability that might foster rapid adaptation processes. However, the
molecular mechanisms that cause chromosome missegregation in cancer cells
are still poorly understood. So far, several mechanisms underlying CIN have
been proposed and some of them are indeed detectable in human cancer cells
exhibiting CIN. Examples include, for instance, weakened spindle checkpoint
signaling, supernumerary centrosomes, defects in chromatid cohesion, abnormal
kinetochore-microtubule attachments and increased spindle microtubule dynam-
ics. Here, the mechanisms leading to CIN in human cancer cells are summarized.
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1 Introduction

One of the most intriguing features of human cancer cells is the presence of highly
abnormal and complex karyotypes that are characterized by both, structural and
numerical aberrations. In fact, chromosomes from human cancer cells are prone to
structural rearrangements that typically include translocation, inversions, amplifi-
cations and deletions of large parts of the chromosomes resulting in “structural
aneuploidy” (Obe and Durante 2010). At the same time, most cancer cells exhibit
“numerical aneuploidy”, which is defined as chromosome numbers that are not a
multiple of the haploid chromosome number (Lengauer et al. 1998; Thompson et al.
2010; Holland and Cleveland 2009). Recent large-scale copy number analyses from
more than 3000 cancer specimens have demonstrated that about 25 % of a typical
cancer genome is affected by copy number alterations at a whole chromosome arm or
entire chromosome level. In contrast, copy number alterations on a very short (focal)
level affect only 10 % of a typical cancer genome indicating that the gain or loss of
whole chromosomes or at least of chromosome arms reflects a major route to somatic
copy number alterations in human cancer (Beroukhim et al. 2010).

It is obvious that numerical aneuploidy is the result of whole chromosome mis-
segregation, which occurs during mitotic cell division. Mitotic chromosome mis-
segregation as being a typical feature of human cancer cells has been proposed for a
long time. In fact, the German pathologist David Paul von Hansemann (1858–1920)
described already in 1890, just a few years after the discovery of chromosomes, that
cancer cells frequently show abnormal mitotic figures associated with missegregation
of the “hereditary material” (Hansemann 1890). Moreover, Hansemann was the first
who postulated that alterations in the “hereditary material” of a normal cell might be
responsible for the initiation of the “cancerous process”. Just a few years later, in

96 H. Bastians



1914, the German zoologist Theodor Boveri published his seminal book “Zur Frage
der Entstehung maligner Tumoren” (Concerning the origin of malignant tumors), in
which he hypothesized that abnormal chromosome segregation during mitosis might
be a key step towards tumorigenesis (Boveri 1914). Moreover, in his experiments,
Boveri found that abnormal numbers of centrosomes can lead to chromosome mis-
segregation, which in most cases is detrimental to a cell. Yet, only a “particular,
incorrect combination of chromosomes” could give rise to “schrankenloser Ver-
mehrung” (unlimited growth). In this regard, Boveri postulated the existence of
cancer-promoting and cancer-inhibiting chromosomes. Today we would call them
chromosomes harboring oncogenes and tumor suppressor genes, respectively. Thus,
the intriguing observations made by Hansemann and Boveri were the seed for the
definition of cancer as a genetic disease and set the stage for subsequent research on
the role of whole chromosome missegregation as a cause for cancer.

2 Aneuploidy Versus Chromosomal Instability

In full agreement with the seminal work from Hansemann and Boveri, modern
cytogenetic technologies for the detailed analyses of karyotypes that include, for
instance, fluorescence-in situ-hybridization (FISH), spectral karyotyping and
comparative genomic hybridization (CGH) clearly confirmed the highly frequent
presence of numerical aneuploidy in human cancer cells (Lengauer et al. 1998;
Camps et al. 2009; Lengauer et al. 1997). Moreover, along the hypothesis from
Boveri, certain combinations of gains and losses of specific chromosomes can
indeed frequently be detected, which is most likely the result of a long-term
selection process in these cancer cells and not a consequence of missegregation of
only particular chromosomes (Knutsen et al. 2010). Interestingly, the majority of
cancer cells exhibit chromosome numbers in a diploid range from 40 to 60 chro-
mosomes suggesting that only single chromosomes and not large parts of the
chromosome content are missegregated in cancer cells over time (Holland and
Cleveland 2009; Storchova and Kuffer 2008) (see also: http://cgap.nci.nih.gov/
Chromosomes/Mitelman). In fact, severe missegregation of many chromosomes at
a time would produce non-viable progeny, a situation that is even exploited for
anti-cancer therapy where anti-mitotic drugs induce massive chromosome mis-
segregation and cell death on purpose (for a review on anti-mitotic drugs and their
mode of action see: (Kaestner and Bastians 2010) ). It is important to emphasize
that aneuploidy represents a current state of a karyotype and does not describe its
dynamics. In principle, aneuploidy can be the result of a single chromosome
missegregation event. This is for example the case for constitutional trisomies in
humans, which are the result of a single non-disjunction event during meiosis
(Nicolaidis and Petersen 1998). In contrast, high-grade aneuploidies in human
cancer cells are the result of persistent chromosome missegregation during mitosis
and this increased rate of gains and losses of whole chromosomes is refereed to as
chromosomal instability (CIN). Thus, aneuploidy describes a state and CIN refers
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to a process (Thompson et al. 2010; Holland and Cleveland 2009; Lengauer et al.
1997; Thompson and Compton 2008). This indicates that direct measurements of
CIN in tumor tissues, which are usually available only upon fixation, is difficult and
determining karyotype variability can only provide an indirect measure for CIN. In
cancer cell lines, however, the rate of chromosome missegregation has been
determined by live cell analyses and showed that a typical human cancer cells
missegregate chromosomes on average every one to five mitoses, which is around
20–100 times higher than in a normal non-cancer cell and which leads to a
karyotype evolvement over time (Lengauer et al. 1997; Thompson and Compton
2008). This has first been demonstrated in colon carcinoma cell lines where the
karyotype evolvement from a single-cell-colony was followed over time. These
initial studies by Vogelstein and colleagues revealed that a minority of colon cancer
cells exhibit an increase in mutation rates (the so-called microsatellite instability
(MIN/MSI) phenotype), but no gross development of whole chromosome aneu-
ploidy whereas the majority of cancer cells develop numerical chromosome aber-
rations over time (Lengauer et al. 1997). Thus, these studies defining and detecting
CIN in human cancer cells initiated the investigation of the mechanisms leading to
whole chromosome missegregation and CIN in human cancer.

3 Chromosome Segregation During Mitosis

The proper and timely coordinated progression of mitosis is a prerequisite for
faithful chromosomes segregation. Thus, it is important to briefly discuss the key
regulatory steps required for proper chromosome segregation in order to understand
what defects may account for CIN in cancer cells.

Upon accomplished DNA replication, the entry into mitosis requires the activa-
tion of the cyclin dependent kinase 1 (CDK1) bound to it regulatory subunits cyclin
A and cyclin B. At the same time additional kinases such as polo-like kinase 1
(PLK1) and kinases of the Aurora family (Aurora-A and -B) are activated (Lens et al.
2010). Together, these kinases trigger the first steps of mitosis during prophase
including the breakdown of the nuclear envelope, the condensation of the chromo-
somes and the separation of the two centrosomes, which act as the main microtubule
organizing centers at the poles of the cell. In prometaphase, highly dynamic
microtubules are building up the mitotic spindle and are responsible for capturing the
kinetochores, protein structures that are assembled on centromeric DNA, in a sto-
chastic search-and-capture mechanism (Kline-Smith and Walczak 2004). The
back-to-back geometry of the two sister kinetochores (on the two sister chromatids)
favor bi-orientation of the chromosomes (Loncarek et al. 2007). However, erroneous
microtubule-kinetochore attachments can occur, but are usually corrected before the
actual chromosome segregation occurs (Cimini et al. 2003). At this stage the chro-
mosomes consist of two sister chromatids that are held together by cohesion protein
complexes that are established already during DNA replication (Remeseiro and
Losada 2013). The coordinated growth and shrinkage of microtubules bound to
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kinetochores finally lead to a complete alignment of all chromosomes on a so-called
metaphase plate. This stable state is associated with bi-orientation of all chromo-
somes and with the generation of tension across the two kinetochores. Only upon
establishment of this stable state is the separation of the two sister chromatids trig-
gered by the cleavage of the cohesion protein complexes by a protease called sep-
arase. Consequently, the two sisters are separated during anaphase (Stemmann et al.
2005). Once the sister chromatids arrive at the opposite poles, near the centrosomes,
the nuclear envelope is reformed during telophase and finally the cytoplasm is
cleaved by establishing an actin-myosin driven cleavage furrow during cytokinesis.

The progression through the different stages of mitosis requires the continuous
activity of the CDK1, PLK1 and Aurora kinases, which act at different locations
within the mitotic cells such as the centrosomes, the spindle, or at centromeres or
kinetochores. Importantly, exit from mitosis is driven by inactivation of these key
kinases, in particular of CDK1, which is inactivated by a highly regulated
ubiquitin-proteasome dependent protein proteolysis of the cyclin B subunit. This
protein destruction step requires a multi-subunit ubiquitin ligase called the “ana-
phase promoting complex” or “cyclosome” (APC/C). The APC/C is kept inactive
during the early phases of mitosis and is activated once cells have achieved a stable
metaphase state. The APC/C targets several proteins during mitosis, most notably
cyclin B at the end of mitosis and a protein called securin at the metaphase to
anaphase transition, which represents an important trigger for the onset of anaphase.
Securin is an inhibitor of separase, the protease that cleaves and releases cohesion
complexes from chromosomes. Before metaphase, the APC/C is inhibited and
securin is stable, thereby inhibiting separase and the cohesion complexes are stably
bound to the two sister chromatids holding them tightly together (Peters et al. 2008).
Once the APC/C is activated at the metaphase to anaphase transition securin deg-
radation is triggered, thereby allowing the activation of separase, which then cleaves
the cohesion complexes and initiates the separation of the two sister chromatids
(Teixeira and Reed 2013; Peters 2006).

4 The Mitotic Spindle Assembly Checkpoint

The APC/C is the key trigger for the onset of anaphase (by mediating the degra-
dation of securin) and for the exit from mitosis (by mediating the degradation of
cyclin B). Thus, it is conceivable that the ubiquitin ligase activity must only be
activated after cells have successfully achieved complete chromosome alignment.
This important regulation is provided by a signal transduction pathway known as
the mitotic spindle assembly checkpoint (Lara-Gonzalez et al. 2012; Musacchio
2011). The checkpoint involves a number of proteins such as Mad1, Mad2, Bub1,
BubR1, Bub3 and Msp1 that are specifically recruited to kinetochores that are not
properly attached to spindle microtubules. The combined action of all these proteins
and a number of other kinetochore components is needed to generate a so-called
mitotic checkpoint complex (MCC) that contains BubR1, Bub3, and Mad2 and
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which detaches from the kinetochore. The MCC binds to and sequesters cdc20, an
essential activating subunit of the APC/C, throughout the cell and thus, prevents the
activation of the APC/C ubiquitin ligase and the onset of anaphase. Hence, the
MCC generated at unattached kinetochores is currently regarded as a principle
inhibitor of the APC/C. It is remarkable that a single improperly attached kineto-
chore (out of 92) is sufficient to block the entire sister chromatid separation process,
indicating that the inhibitory signal derived from a single kinetochore is strong
enough to block the activation of the APC/C throughout the cell (Lara-Gonzalez
et al. 2012; Musacchio 2011). This is obviously essential to preclude premature
separation of sister chromatids in the early phases of mitosis.

5 Mitotic Mechanisms Underlying CIN in Human Cancer

Multiple mechanisms have been so far proposed to be involved in the generation of
CIN in human cancer cells. The following paragraphs summarize the most
important mechanisms, which are also depicted in Fig. 1.

5.1 Defects in the Mitotic Spindle Assembly Checkpoint

It is conceivable that an impairment of the spindle assembly checkpoint (SAC) results
in premature sister chromatid separation, which gives rise to chromosome misseg-
regation and aneuploidy (Lara-Gonzalez et al. 2012; Musacchio 2011). In fact, this
has been clearly demonstrated by deleting one allele of MAD2 in an otherwise
chromosomally stable colon cancer cell line HCT116, which results in persistent
chromosome missegregation and thus, is sufficient to cause CIN (Michel et al. 2001).
Moreover, weakening the checkpoint in mice by partially reducing the expression of
various SAC genes including MAD1, MAD2, BUB1, BUBR1, and BUB3 results in
premature separation of sister chromatids, chromosome missegregation and CIN.
Importantly, the majority of these mouse models demonstrated, for the first time, that
the experimental induction of aneuploidy can support tumorigenesis and thus, ver-
ified Hansemann´s and Boveri´s hypothesis of a causal relationship of aneuploidy
and tumorigenesis (Ricke et al. 2008; Pfau and Amon 2012). However, although
inactivating mutations in BUB1 and MAD2, as well as reduced expression of MAD2
has been found in some cancer cell lines (Cahill et al. 1998; Li and Benezra 1996;
Wang et al. 2002), large scale sequencing of human tumors has not revealed a
frequent rate of SAC mutations in human tumors (Greenman et al. 2007; Wood et al.
2007; Jones et al. 2008; Parsons et al. 2008; Sjoblom et al. 2006). In addition, a
functionally weakened SAC appears not to be a frequent event in cancer cells
exhibiting CIN (Tighe et al. 2001). These findings indicate that impairments of the
SAC can cause CIN by allowing chromosome segregation to occur in the presence of
unaligned chromosomes, but are rarely detected in human cancer.
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5.2 Sister Chromatid Cohesion Defects

Similar to an impairment of the SAC abnormal sister chromatid cohesion can also
result in chromosome missegregation and CIN. Sister chromatids are held toge-
ther by ring-shaped cohesin protein complexes, which consists of four different
subunits including STAG1 or STAG2, RAD21, SMC1 and SMC3, which are
loaded onto the chromosomes during DNA replication (Remeseiro and Losada
2013; Peters et al. 2008). In early mitosis the bulk of cohesin complexes disso-
ciates from the chromosome arms while cohesion at the centromere is still
maintained. The remaining cohesin complexes are released by cleavage of the
RAD21 subunit by separase at the metaphase to anaphase transition. Dysfunction
of any of the cohesin subunits can be expected to impair chromatid cohesion and
may allow unscheduled separation of sister chromatids before full alignment on a
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Fig. 1 Summary of the major mechanisms causing CIN in human cancer cells. The major defects
leading to chromosome missegregation in human cancer cells are a premature loss of sister
chromatid cohesion and the persistence of microtubule-kinetochore attachment errors that
subsequently lead to the generation of lagging chromosomes. Various mechanisms can lead to
these major causes of chromosome missegregation and the most important routes such as impaired
chromatid cohesion, defects in SAC function, increased microtubule-kinetochore attachment
stability, supernumerary centrosomes and increased microtubule plus end assembly are depicted
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metaphase plate occurs. In fact, mutations in genes encoding for cohesin subunits,
in particular in STAG2, have been identified in various human cancers including
bladder cancer, colorectal cancer, glioblastomas or myeloid neoplasms (Solomon
et al. 2011, 2013; Welch et al. 2012). These mutations are indeed associated with
improper chromatid cohesion and are sufficient to mediate CIN. Similarly, het-
erozygous knockout of STAG1 in mice also results in aneuploidy and supports
tumorigenesis, but this effect might be mediated through incomplete telomere
replication (Remeseiro et al. 2012). Since cohesin complexes also fulfill important
functions outside of mitosis, e.g., for gene transcription (Remeseiro et al. 2013) it
remains possible that cancer-associated mutations of cohesin genes might drive
tumorigenesis through mechanisms independent of premature sister chromatid
separation during mitosis.

5.3 Erroneous Microtubule-Kinetochore Attachments
and Lagging Chromosomes

Albeit detectable, premature separation of sister chromatids occurs in human cancer
at rather low rate. Thus, other mechanisms must be responsible for widespread
chromosome missegregation events as seen in cancer cells. The most common
phenotype observed in mitotic cancer cells and leading to chromosome missegre-
gation is the presence of so-called lagging chromosomes during anaphase
(Thompson and Compton 2008). Lagging chromosomes are the result of erroneous
microtubule-kinetochore attachments that are not resolved before anaphase onset
(Cimini 2008). Since the capture of kinetochores by microtubules during the early
phases of mitosis is a largely stochastic process, it is conceivable that kinetochore
mal-attachments occur at a regular basis. Those mal-attachments include mono-,
syn-, and merotelic attachments that need to be corrected, in order to establish
proper amphitelic attachments that are a prerequisite for proper chromosome
alignment and segregation (Fig. 2). In contrast to mono- and syntelic attachments,
merotelic attachments, characterized by kinetochores being attached to microtu-
bules emanating from the two opposite poles at the same time, represents a par-
ticular problem for a mitotic cell. These attachments fully occupy the kinetochores
and are not recognized by the SAC, thus allowing the onset of anaphase despite the
presence of this erroneous kinetochore attachment (Cimini 2008). This results in
one (or more) lagging sister chromatids(s) that cannot properly be segregated
towards one pole of the cell and thereby, creates a pre-stage of chromatid mis-
segregation (Fig. 2). Intriguingly, the presence of lagging chromosomes is most
prevalent in cancer cells exhibiting CIN and it is assumed that this represents a
major route to chromosome missegregation and aneuploidy in cancer (Thompson
and Compton 2008; Cimini et al. 2001). However, the molecular mechanisms
leading to the generation of erroneous kinetochore attachments might be various
and are discussed below.
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5.4 Abnormal Microtubule-Kinetochore Attachment
Stability

The interaction of microtubules with kinetochores during the early phases of
mitosis is a highly dynamic process, during which finally around 20 microtubules
are bound to one kinetochore. Erroneous attachments are resolved by
de-stabilization of these interactions while correct attachments are stabilized. The
cycles of attachment, release and re-attachment are called error correction and are
required for achieving bi-oriented amphitelic kinetochore attachments for every
chromosome (Nicklas and Ward 1994). The dynamic turnover of microtubules
bound to kinetochores (so-called k-fibres) can be measured in live cells by deter-
mining fluorescence dissipation after photo-activation of PA-GFP-tubulin within
mitotic spindles. These measurements revealed that the turnover of k-fibres is high
in early mitosis (t1/2 = 2–3 min) and low in metaphase (t1/2 = 6–7 min) indicating
that error correction is more active in early mitosis than in cells that have achieved
full chromosome alignment (Kabeche and Compton 2013; Zhai et al. 1995). It is
obvious that error correction takes place at the kinetochore-microtubule interface
and therefore, kinetochore-based microtubule depolymerases are key to error cor-
rection. In fact, microtubule depolymerases of the kinesin-13 family such as MCAK
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Fig. 2 Schematic depiction of erroneous microtubule-kinetochore attachments. a Amphitelic
attachment. Both sister kinetochores are correctly attached in a bi-oriented manner to microtubules
emating from the two opposite centrosomes. b Monotelic attachment. Only one sister kinetochore
is attached to microtubules from one centrosome. c Syntelic attachment. Both sister kinetochores
are attached to microtubules emanating from the same pole. d Merotelic attachment. Both sister
kinetochores are attached to microtubules from the two opposite poles, but one kinetochore is
bound to microtubules from both poles. After anaphase onset merotelic attachments cause the
generation of a lagging chromatid, which cannot be properly segregated
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or Kif2B are directly involved in destabilizing erroneous kinetochore attachments,
thereby releasing faulty attached kinetochores from the microtubule plus ends
(Bakhoum et al. 2009a, b; Maney et al. 1998). In addition, other kinetochore
proteins such as the Hec1-Ndc80 complex, which is frequently deregulated in
human cancer, also contribute to the stabilization of the k-fibres (DeLuca et al.
2006). Most notably, the Aurora-B kinase, which localize to the inner centromere
can directly regulate the localization and activity of MCAK and Kif2b and can
thereby contribute to destabilization of k-fibres and to error correction (Cimini et al.
2006; Hauf et al. 2003; Knowlton et al. 2006; Andrews et al. 2004). Consequently,
inhibition of Aurora-B or loss of Kif2b or MCAK causes hyper-stability of
microtubule-kinetochore attachments leading to lagging chromosomes and chro-
mosome missegregation. How a cell recognizes erroneous kinetochore attachments
and how it can discriminate between proper and improper attachment is currently
not entirely clear, but might be related to the fact that only proper amphitelic
attachments are able to provide the basis for the generation of full tension across the
two sister kinetochores. In this situation, the inner centromere-based Aurora-B
kinase might be spatially separated from their substrates, namely the
kinetochore-based microtubule depolymerases, which can then no longer
de-stabilize the microtubule-kinetochore attachments (Liu et al. 2009).

Most intriguingly, hyper-stable microtubule-kinetochore attachments are detec-
ted in many cancer cells exhibiting CIN suggesting that erroneous kinetochore
attachments cannot be properly resolved in those cancer cells (Bakhoum et al.
2009a, b). In fact, reduced turnover of microtubules bound to kinetochores corre-
lates with the subsequent appearance of lagging chromosomes during anaphase and
with an increased rate in chromosome missegregation in human cancer cell lines.
Moreover, overexpression of KIF2B or MCAK results in de-stabilization of these
hyper-stable attachments and is sufficient to suppress chromosome missegregation
in cancer cells with CIN (Bakhoum et al. 2009b). These findings suggest that cancer
cells might harbor an insufficiency of the error correction machinery, but so far no
frequent alterations in genes known to play a role in error correction have been
found. Genes such as AURORA-B, KIF2B or MCAK are found rarely or not at all
mutated or inactivated in human cancer (Greenman et al. 2007; Wood et al. 2007;
Jones et al. 2008; Parsons et al. 2008; Sjoblom et al. 2006). Nevertheless, other
genes not necessarily directly involved in error correction might contribute to
hyper-stable kinetochore attachments. An important example might be the tumor
suppressor gene APC, which is frequently inactivated in human cancer and which
was previously shown to be involved in mediating the interaction of microtubule
plus tips with kinetochores (Fodde et al. 2001). Loss of APC results in hyper-stable
kinetochore attachments, lagging chromosomes and whole chromosome misseg-
regation, but this might also reflect the generation of erroneous kinetochore
attachments per se (Bakhoum et al. 2009a). Similarly, overexpression of the SAC
gene MAD2 was found to be frequent in human cancer and instead of mediating
hyper-activity of the mitotic spindle checkpoint, it was found to cause hyper-stable
kinetochore attachments resulting in lagging chromosomes and aneuploidy (Kab-
eche and Compton 2012). Whether this also applies to other SAC genes remains to
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be seen. Interestingly, a weakened spindle checkpoint can also be associated with
the generation of lagging chromosomes. The molecular basis for this is still unclear,
but one could argue that cells without a proper SAC might have a reduced time
window for error correction before anaphase is initiated and thus, uncorrected
kinetochore attachments can persist leading to the appearance of lagging chromo-
somes during anaphase.

5.5 Supernumerary Centrosomes

Given the fact that the presence of lagging chromosomes is a major phenotype of
human cancer cells exhibiting CIN it is important to emphasize that there are at least
two ways to achieve this important route to chromosome missegregation:
(i) reduced error correction as discussed above leading to the persistence of unre-
solved erroneous kinetochore attachments. (ii) increased rate of the generation of
erroneous kinetochore attachments that might simply overwhelm the cellular (in
principle functional) error correction machinery.

As shown recently, the presence of supernumerary centrosomes is one important
way to increase the rate of erroneous kinetochore attachments (Ganem et al. 2009;
Silkworth et al. 2009). Since the days of Boveri, it is well known that cancer cells
frequently exhibit more than two centrosomes. In fact, about 20–30 % of cancer cells
might contain more than two centrosomes (Ghadimi et al. 2000). Moreover, as
Boveri already realized supernumerary centrosomes can be a source for chromosome
missegregation and it was assumed for many years that supernumerary centrosomes
can give rise to multipolar mitotic spindles, which inevitably would result in highly
unequal chromosome segregation. Indeed, multipolar spindles can be seen occa-
sionally in cancer cells with supernumerary centrosomes, which further supported
this assumption. However, Pellman, Cimini and collegues followed the fate of
cancer cells after undergoing multipolar mitoses and it became clear that multipolar
chromosome missegregation is not compatible with cell viability (Ganem et al.
2009; Silkworth et al. 2009). Instead, the majority of cells containing supernumerary
centrosomes only transiently build up a multipolar spindle, which subsequently is
re-organized into a bipolar spindle by clustering the supernumerary centrosomes
together into two poles. In the end, most cancer cells with supernumerary centro-
somes undergo bipolar mitoses, albeit with reduced fidelity. Interestingly, the
transient formation of multipolar spindle intermediates followed by centrosomes
clustering facilitates the generation of erroneous kinetochore attachments and con-
sequently, leads to lagging chromosomes. Thus, centrosome clustering provides a
plausible mechanism that explains the survival of cancer cells in the presence of
more than two centrosomes. The transient spindle geometry abnormality arising
from this explains the strong correlation between supernumerary centrosomes and
CIN in human cancer (Ganem et al. 2009; Silkworth et al. 2009). Although a number
of genes have been identified that are required for centrosome clustering in human
cancer cells (Kwon et al. 2008) the detailed mechanism of how centrosome clus-
tering is regulated is currently not well understood.
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5.6 Increased Microtubule Plus End Assembly

Most recently, an increase in microtubule plus end assembly rates within mitotic
spindles has been identified as a key trigger for CIN in human cancer cells (Ertych
et al. 2014). In fact, this increase in microtubule plus end dynamics is sufficient to
cause transient spindle geometry abnormalities that facilitate the generation of
kinetochore mal-attachments in the presence of a fully functional error correction
machinery. Importantly, restoration of proper microtubule plus end assembly rates
cannot only suppress the transient spindle abnormalities and the generation of
lagging chromosomes, but also restores chromosomal stability in otherwise chro-
mosomally instable human cancer cells. This clearly establishes a causal relation-
ship between increased spindle microtubule dynamics, lagging chromosomes, and
CIN. Moreover, this particular phenotype appears to be highly frequent in human
cancer and can be mediated by cancer-relevant genetic lesions such as amplification
of AURKA [encoding for the centrosomal Aurora-A kinase; (Marumoto et al. 2005)]
or the loss of the tumor suppressor genes CHK2 and BRCA1, which have been
previous implicated in the regulation of mitosis and for the maintenance of chro-
mosomal stability (Stolz et al. 2010, 2011). However, the molecular mechanisms
underlying the detected increase in microtubule plus end dynamics in cancer cells
are still elusive. Nevertheless, the identification of this widespread mechanism
leading to CIN further supports the notion that an increase in the rate of the
generation of erroneous kinetochore attachments might overwhelm the cellular
error correction capacity and thus, causes the persistence of lagging chromosomes
during anaphase, finally leading to increased rates of chromosome missegregation
(Ertych et al. 2014).

6 Abnormalities During Interphase Causing CIN

In addition to defects that arise during mitosis and directly causing chromosome
missegregation it is conceivable that mechanisms that originate during interphase
might also (indirectly) lead to chromosome missegregation. Some examples will be
discussed in the next paragraphs.

6.1 Centrosome Amplification

As discussed, the presence of supernumerary centrosomes during mitosis causes
transient spindle geometry abnormalities that facilitate the generation of erroneous
microtubule-kinetochore attachments leading to chromosome missegregation.
While the direct consequence of supernumerary centrosomes can clearly be seen
during mitosis, supernumerary centrosomes originate from defects in the centro-
some duplication cycle taking place during interphase (Meraldi and Nigg 2002).
Centrosomes must duplicate only once per cell cycle and this process is initiated by
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centriole duplication at the G1 to S phase transition concomitant to DNA replica-
tion. Several proteins including Cep192, HsSAS-6 and PLK4 among others are
required for proper centriole duplication. Conceivably, over expression of these key
drivers of centriole duplication results in centrosome overduplication and can be
indeed found in human cancer (Anderhub et al. 2012). Similarly, the CDK2-cyclin
E kinase activity is also involved in centrosome duplication and overexpression of
cyclin E is sufficient to induce centrosome amplification (Hinchcliffe et al. 1999).
Increased cyclin E levels are detected in human cancer cells and can be induced
either by amplification of the CYCLIN-E gene locus or by inhibition of the
ubiquitin-proteasome dependent proteolysis of cyclin E (Rajagopalan et al. 2004;
Spruck et al. 1999). In fact, the latter requires a substrate recognition subunit of the
SCF ubiquitin ligase called hCDC4/Fbw7, which is frequently mutated in human
cancer leading to an unscheduled accumulation of cyclin E. Consequently, loss of
hCDC4/Fbw7 in human tumors is associated with centrosome amplification and
aneuploidy (Rajagopalan et al. 2004).

6.2 Alterations in Gene Transcription Affecting Mitosis

In human cancer, there are numerous examples of transcription factors that are
deregulated. So far, the best studied examples include oncogenic transcription
factors such as c-myc, c-jun, or c-fos or the tumor suppressor protein p53 that
mainly contribute to a de-regulation of the G1 to S phase transition of the cell cycle.
However, there are also many examples of de-regulated gene transcription that
directly affects genes involved in mitotic processes. For example, the transcription
of MAD2 during G2 phase of the cell cycle is restrained by the
repressor-element-1-silencing transcription factor (REST; also known as:
neuron-restrictive silencing factor, NRSF) that must be degraded during G2 by the
ubiquitin-proteasome pathway in order to allow the expression of proper levels of
MAD2 (Guardavaccaro et al. 2008). However, REST is frequently over expressed
in, e.g., neuro- and medulloblastomas (Su et al. 2006) leading to reduced expression
of MAD2 resulting in an impairment of the checkpoint (Guardavaccaro et al. 2008).
As discussed before, this can directly trigger chromosome missegregation in the
presence of unaligned chromosomes.

MAD2 expression is also under control of the E2F transcription factors, which
are negatively regulated by the retinoblastoma tumor suppressor protein (pRb). In
fact, loss of RB, which is frequent in various types of cancer and associated with
aneuploidy in tumors, can result in MAD2 overexpression (Hernando et al. 2004),
which, as discussed already above, can contribute to the generation of hyper-stable
microtubule-kinetochore attachments leading to lagging chromosomes and mis-
segregation (Kabeche and Compton 2012). In addition, loss of RB has also been
implicated in altering the centromere geometry, thereby facilitating
microtubule-kinetochore attachment errors and aneuploidy (Manning et al. 2010).
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Similarly, the forkhead transcription factor FoxM1 is required for proper pro-
gression of mitosis and for the maintenance of chromosomal stability by regulating
the expression of various key regulators of mitosis including Plk1, cyclin B, and
Cenp-F. (Laoukili et al. 2005). Importantly, FoxM1 is frequently overexpressed in
human cancer resulting in overexpression of several mitotic regulators during
mitosis (Fu et al. 2008). However, the molecular consequences of elevated levels
of, e.g., cyclin B during mitosis and on chromosome segregation are currently not
clear.

6.3 Replication Stress as a Source for CIN

Most recently, impaired replication fork progression and replication stress during S
phase has been implicated as a source for chromosome missegregation during
mitosis (Burrell et al. 2013). In fact, it was shown that several genes located on
chromosome 18q, which is subject to frequent loss in cancer cells exhibiting CIN,
can act as CIN suppressor genes. Moreover, loss of these CIN suppressor genes
results in replication stress leading to the generation of acentric chromosome
fragments that are missegregated during mitosis. Importantly, the missegregation of
chromosome fragments after replication stress might also cause structural chro-
mosome abnormalities frequently found in aneuploid cancer cells. However,
whether this mechanism can also account for whole chromosome missegregation is
under debate (Bakhoum et al. 2014).

7 Conclusions

Aneuploidy in tumor cells evolves at rather low rates. Therefore, the underlying
defects causing chromosome missegregation at low rates are expected to be subtle.
This hampers the investigation of the molecular mechanisms leading to perpetual
chromosome missegregation. Nevertheless, great progress has been made to
understand how chromosome segregation is regulated and what defects might
contribute to chromosome missegregation in cancer cells. It appears that the gen-
eration of lagging chromosomes, resulting from erroneous microtubule –kineto-
chore attachments, might be a major source for CIN in cancer. However, the routes
leading to this intriguing phenotype are various and most likely, cancer cells
employ different routes to achieve the same goal. It will still be a big challenge for
future research to unravel the exact mechanisms contributing to CIN. This will be
important to develop strategies that might be used to suppress CIN in order to
prevent the high adaptation capability of human cancer cells that enables those cells
to cope with environmental challenges and to develop therapy resistance.
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Patterns of Chromosomal Aberrations
in Solid Tumors

Marian Grade, Michael J. Difilippantonio and Jordi Camps

Abstract
Chromosomal abnormalities are a defining feature of solid tumors. Such
cytogenetic alterations are mainly classified into structural chromosomal
aberrations and copy number alterations, giving rise to aneuploid karyotypes.
The increasing detection of these genetic changes allowed the description of
specific tumor entities and the associated patterns of gene expression. In fact,
tumor-specific landscapes of gross genomic copy number changes, including
aneuploidies of entire chromosome arms and chromosomes result in a global
deregulation of the transcriptome of cancer cells. Furthermore, the molecular
characterization of cytogenetic abnormalities has provided insights into the
mechanisms of tumorigenesis and has, in a few instances, led to the clinical
implementation of effective diagnostic and prognostic tools, as well as treatment
strategies that target a specific genetic abnormality.
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1 Introduction

Cytogenetic abnormalities are a hallmark of cancer cells. Clonal chromosomal
aberrations have been found in the majority of human tumor types, and their
identification continues as a result of technical improvements in genome-wide
assessment methodologies (Albertson et al. 2003). The increasing detection of such
genetic changes allowed the description of specific disease entities. Furthermore,
the molecular characterization of cytogenetic abnormalities has provided insights
into the mechanisms of tumorigenesis and has, in a few instances, led to the clinical
implementation of treatment strategies that target a specific genetic abnormality.

Chromosomal alterations in cancer are mainly classified into two broad groups:
structural chromosomal aberrations, and numerical or copy number alterations. In
fact, the detection of such alterations demands highly advanced scientific and
technological methodologies. The first theories that cancer was a disease of the
chromosomes were postulated by David von Hansemann back in the nineteenth
century (Hansemann 1890), and later established by the work of Theodor Boveri in
the 1920s (reviewed in Ried 2009). However, it was not until about 50 years ago
that the history of cancer cytogenetics began after seminal contributions of Peter
Nowell and David Hungerford with the finding of a small marker chromosome
while studying cultured cells from patients with chronic myeloid leukemia (Nowell
and Hungerford 1960). The application of conventional cytogenetic techniques in
solid tumors has been extremely challenging, especially due to the difficulty in
obtaining good quality metaphase chromosomes to generate banding-based kary-
otypes. In the last decades, numerous pioneering studies involving the hybridization
of fluorescent-labeled probes led to the identification of both numerical and struc-
tural aberrations in solid tumors (Ried 2004). In the early nineteen-nineties, com-
parative genomic hybridization (CGH) was developed to measure genetic
alterations across the cancer genome. Nevertheless, the resolution remained at the
level of chromosome bands, and the description of genetic alterations based on this
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technique was rather challenging. Thereafter, microarray-based technologies and
advances in next-generation sequencing during the early 21st century have allowed
the characterization of the landscape of genomic aberrations in almost any tumor
type at the resolution of a single nucleotide.

In this chapter, we discuss examples of the two main classes of chromosomal
abnormalities, i.e., structural and copy number alterations, with a particular focus
on the specific pattern of such alterations according to the tumor type, and the
extent to which these alterations might provide information for the development of
effective diagnostic and prognostic tools, as well as the implementation of pre-
dictive markers for anticancer therapies.

2 Methodological Approaches

Chromosome rearrangements and copy number alterations can be analyzed using a
multitude of efficient, large-scale genomic technologies including chromosomal
banding, fluorescence in situ hybridization (FISH), high-throughput CGH, loss of
heterozygosity (LOH), and recently, next-generation sequencing (Fig. 1).

2.1 Identification of Chromosome Translocations

The forty-six human chromosomes were initially organized into a karyotype based
solely on their size and the positioning of their centromere, to which the mitotic
machinery attaches. In 1968, Caspersson and his colleagues developed a method for
staining chromosomes with quinacrine mustard, which resulted in a banding pattern
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Fig. 1 Schematic illustration of commonly observed numerical and structural chromosome
alterations identified in solid tumors, and the methodologies capable of their detection. Detection of
an alteration, however, is not necessarily synonymous with the ability to unambiguously determine
the genomic origin of aberrant material. Chromosome banding, SKY/M-FISH and chromosome
comparative genomic hybridization (CGH) are low resolution techniques, whereas array-based
CGH (aCGH), single nucleotide polymorphism (SNP) arrays and next-generation sequencing
(NGS) are much higher resolution methodologies. (Adapted from Albertson et al. 2003)
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(Q-bands) that was unique to each chromosome pair (Caspersson et al. 1968).
Shortly thereafter, a similar methodology was developed involving the treatment of
the metaphase chromosome preparations with the enzyme trypsin followed by
staining with Giemsa. The binding of this stain to A-T base pairs resulted in patterns
of alternating “light” and “dark” bands, which became known as G-bands (Seabright
1971; Sumner et al. 1971). While this technique was advantageous for unequivocally
identifying and organizing normal chromosomes, it proved to be an enormous
advance in terms of demonstrating the complexity of the cancer genome. Cancer
karyotypes usually show complex rearrangements, involving genomic regions of
different chromosomal origin combining in the formation of derivative chromo-
somes. It remained extremely difficult, however, for cytogeneticists to determine the
exact composition of these “marker” chromosomes based solely on G-banding.

In the late nineteen-nineties, the development of two sophisticated multi-colored
fluorescence in situ hybridization (M-FISH) methods utilizing a combination of
whole-chromosome painting probes for uniquely labeling each chromosome pair,
i.e., spectral karyotyping (SKY) and M-FISH, represented an enormous leap forward
in our understanding of the underlying complexity of cancer karyotypes (Schrock
et al. 1996; Speicher et al. 1996). Although the resolution was limited to the level of
an individual chromosome band, these techniques allowed the assessment of specific
chromosome partners involved in both balanced and unbalanced translocations, as
well as the visualization of previously unidentified cryptic aberrations (Veldman
et al. 1997). Nevertheless, the requirement for high-quality chromosome metaphase
spreads from primary solid tumors remained a challenge, especially for tumors that
are difficult to culture or have a relatively slow rate of cell division.

The utilization of both chromosomal banding-based techniques and
SKY/M-FISH resulted in a plethora of well-annotated karyotypes for most cancer
types archived in the Mitelman Database of Chromosome Aberrations in Cancer
(http://cgap.nci.nih.gov/Chromosomes/Mitelman). It was not until the post-genome
era, with the introduction of the next-generation sequencing technology, which
allowed the in silico alignment of paired short reads from the ends of fragments
covering the whole genome, that genomic rearrangements, including balanced
translocations or inversions, could be defined at the individual nucleotide level.

2.2 Identification of Copy Number Changes

In 1992, Kallioniemi and colleagues introduced a genome-wide screening tech-
nique, termed CGH, which allowed visualization of chromosomal imbalances
without the need to prepare tumor metaphase chromosomes (Kallioniemi et al.
1992). Total genomic DNA isolated from the patient’s tumor (i.e., test DNA) and
from any other source of non-tumor tissue (i.e., reference DNA) were each labeled
with a different fluorescent molecule, or fluorochrome. Equal amounts of labeled
test and reference DNA were mixed and hybridized to normal lymphocyte meta-
phase chromosomes, which cytogeneticists were already capable of preparing for
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high resolution banding (Yunis and Chandler 1978). Deviations from a 1:1 intensity
ratio between the two fluorochromes along the length of each chromosome indi-
cated the gain or loss of genomic material in the tumor sample relative to a normal
non-tumorous reference sample. Because this technique still relied on the usage of
metaphase chromosomes, the resolution remained limited to the size of an indi-
vidual band, or about 5–10 Mb (Carter 2007). Later, metaphase chromosomes were
replaced by increasingly shorter normal genomic DNA fragments, including YACs,
BACs, or oligonucleotides representing the entire genome spotted onto glass slides
(Pinkel et al. 1998; Solinas-Toldo et al. 1997). This array-based CGH, or aCGH,
resulted in a much higher resolution and flexibility, limited only by the size and
spacing of the DNA fragments that were arrayed. Using an automated calculation of
the ratio between the intensities of the two fluorochromes for each spotted feature
on the microarray, a dedicated software provides a detailed map of genomic gains
and losses distributed across the genome. In contrast to conventional CGH, the
analysis of aCGH data does not require previous knowledge to identify chromo-
some pairs based on G-banding, which makes this methodology much more uni-
versal and powerful. Further developments in the sensitivity of array technology
resulted in the ability to detect differences in the hybridization efficiency of two
DNA fragments that differed in a single nucleotide (Carter et al. 2012). In addition
to copy number changes, these single-nucleotide polymorphism or SNP-based
arrays were capable of providing information regarding the haplotype of each allele.
If an individual has different alleles at a particular genomic locus, SNP arrays
provide the opportunity to determine if one allele is preferentially lost in the tumor.
In addition, such a LOH in the presence of two copies of the locus or chromosome
enables the detection of somatically acquired uniparental disomies (Tuna et al.
2009). Thus, the extent to which one platform is more appropriate than another
depends on the study design and the type of information one is looking for.

Undoubtedly, the major advantage of CGH and SNP arrays is the amenability of
any cancer specimen to DNA extraction. There are, however, some caveats that must
be considered when using these methodologies. First, some 60–70 % of tumor purity
is strongly recommended to be able to identify single-copy genomic alterations, i.e.,
“contamination” with normal, non-cancerous cells is highly problematic. Second,
these methodologies only take a snapshot of the tumor lifespan, so intrinsic tumor
heterogeneity may potentially dilute out the intensity ratio of the main clonal pop-
ulation. Hence, the detection of low-level copy number events may be limited due to
the natural presence of subpopulations with different DNA content. Third, the
amount of tissue available from fresh tumor samples, particularly in the case of
biopsies, is often limited. It would therefore be advantageous to be able to assess
copy number alterations by extracting DNA from formalin-fixed, paraffin-embedded
(FFPE) tissue sections once histopathology has been performed. This remains
challenging because of the low yield and poor integrity of the extracted DNA.
Currently, very few groups have been able to successfully perform aCGH using a
small number of cells isolated by microdissection from archival FFPE tissues sec-
tions (Al-Mulla 2011; Hirsch et al. 2012; Johnson et al. 2006; van Essen and Ylstra
2012) or from individual circulating tumor cells (Heitzer et al. 2013).
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Recent incorporation of next-generation sequencing-based approaches led to the
development of tools to infer copy number changes from whole-exome or
whole-genome sequencing in a pretty reliable manner (Kendall and Krasnitz 2014).
Compared with microarray experiments, these technologies not only allow the
identification of alterations at the nucleotide level, but they also have the advantage
that the signal intensity does not reach a point of saturation, thus they have a much
higher dynamic range and a higher rate of detecting aberrations. High-coverage
genome sequencing has been applied to detect clonal subpopulations to an
unprecedented level (Gerlinger et al. 2014). Nevertheless, as the number of studies
applying next-generation sequencing to large cohorts is limited by the costs, aCGH
or SNP arrays remain the gold-standard methodology to assess copy number
changes in solid tumors.

3 Structural Chromosomal Rearrangements in Solid
Tumors

The study of chromosomal abnormalities in cancer underwent a paradigm shift with
the discovery of the Philadelphia chromosome in patients with chronic myeloge-
nous leukemia (CML) by Nowell and Hungerford (1960). The genomic composi-
tion of this aberrant chromosome was later determined by Janet Rowley to result
from a balanced translocation between chromosomes 9 and 22, or t(9;22) (Rowley
1973). The staining of chromosomal preparations of cells at the metaphase stage
with Giemsa was utilized to identify the t(9;22). This landmark discovery initiated
the description of marker chromosomes in a plethora of human cancers. In leukemia
and lymphoma, the application of this technique to identify aberrant chromosomes
has led to improved treatment and clinical outcomes for many patients, and it is still
being used for clinical assessment (Rampal and Levine 2013; Rowley 2008).

While chromosome translocations, inversions, and insertions are typically
observed in cancer (Albertson et al. 2003), balanced translocations, in which
material from both partner chromosomes is retained by the cell, are often identified
in hematological malignancies (e.g., t(9;22) in CML or t(8;14) in Burkitt’s lym-
phoma). The most likely explanation is that site-specific DNA recombination of
antigen receptor genes is an essential physiological step for the development of
mature B- and T-lymphocytes. Any error in the regulation of this process could
result in the rearrangement of other genomic regions. Juxtaposition of a cellular
proto-oncogene to an actively transcribed region of the genome has the potential to
generate a cell with a growth and/or survival advantage. Thus, these aberrations tend
to be causal in the development of hematological malignancies, and therefore drugs
designed to target the resulting proteins have proven to be extremely effective.

In contrast, partial deletions, duplications, and unbalanced translocations (i.e.,
rearrangements in which genomicmaterial is lost) are themost frequent chromosomal
alterations identified in cancers of epithelial origin (Mitelman et al. 1997). Distinct
patterns of recurrent chromosomal translocations in these tumors are extremely rare
(Mitelman 2000). One explanation could be the difficulty of identifying and mapping
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structural rearrangements in these karyotypically complex tumors. Although this
issue is currently overcome by the usage of next-generation sequencing approaches,
newly generated data have failed to demonstrate the relevance of such rearrangements
in the development of epithelial cancers. Another reason for the rare occurrence of
recurrent structural chromosome aberrations in carcinomas could be tissue-specific
differences in the mechanisms responsible for their generation, such as the absence of
site-specific recombination in non-lymphocytic cells.

The identification of recurrent translocations has only been described in a few
solid tumor types. A number of approaches, including cancer outlier profiling
analysis of gene expression signatures (Tomlins et al. 2005) and next-generation
RNA and DNA sequencing, have demonstrated the presence of gene fusions that
result in altered transcriptional expression or protein activity in some of the main
epithelial cancer types, although at a frequency of only about 10 % (Mitelman et al.
2004, 2005, 2007; Giacomini et al. 2013). Prostate cancer (TMPRSS2-ETV1,
TMPRSS2-ETV4, TMPRSS2-ETV5) (Kumar-Sinha et al. 2008), colorectal cancer
(VTI1A-TCF7L2, NAV2-TCF7L1) (Bass et al. 2011; Cancer Genome Atlas Network
2012a), papillary thyroid carcinoma (RET-NTRK1) (Wells and Santoro 2009),
papillary renal cell carcinoma (PRCC-TFE3) (Kauffman et al. 2014), and
non-small-cell lung cancer (NSCLC) (RET and ROS1) (Oxnard et al. 2013; Shames
and Wistuba 2014) are examples of solid tumors with chromosomal rearrangements
generating gene fusions with biological and, potentially, clinical implications.

4 Cancer Ploidy and Chromosome Aberration Rates

Solid tumors with a chromosome number between triploid (n = 69) and tetraploid
(n = 92) have been estimated to occur in some 30 % of all epithelial cancers
(Storchova and Kuffer 2008). As it is unlikely that chromosome missegregation
alone occurs at sufficiently high rates to explain how cancer cells achieve such
pseudo-polyploid karyotypes during the tumor lifespan, it has been proposed that
the cancer genome first undergoes a whole genome duplication event. This tetra-
ploidization, being an unnatural event, is thought to be highly unstable, allowing for
the development of structural abnormalities and selective loss of chromosomes until
the genome somehow becomes stable again (Burrell et al. 2013). Tetraploidy and
high levels of aneuploidy are often correlated with disease aggressiveness, poor
prognosis and the generation of metastases (Camps et al. 2004; Gerlinger et al.
2012). In fact, ongoing rates of chromosome missegregation events define levels of
genomic instability in several cancer types (Camps et al. 2005). In colorectal cancer
(CRC), for instance, the rate of chromosomal instability is directly related to the
mutational status of genes involved in the DNA mismatch repair pathway (Leng-
auer et al. 1998). Near-diploid colorectal tumors are mismatch repair deficient,
whereas aneuploid tumors contain intact repair pathways and show higher rates of
both numerical and structural chromosome alterations, features observed in the
majority of human carcinomas (Lengauer et al. 1997). In the past, the only plausible
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strategy to identify the total number of chromosomes per cell was to prepare and
analyze metaphase chromosomes from dividing cells. Recently, application of SNP
arrays in combination with specific analytical tools attempts to further define
absolute allelic copy number changes allowing the determination of the tumor
ploidy directly from tumor tissue (Van Loo et al. 2010; Carter et al. 2012).

5 Recurrent Low-Level Copy Number Alterations
Among Different Cancer Types: Defining
the Cancer Genome

Aneuploidy represents a ubiquitous feature of cancer cells of epithelial origin, and
usually implies growth advantages, poor prognostication and shortened patient
survival (Gordon et al. 2012; Holland and Cleveland 2009); therefore, gains and
losses of chromosomes are positively selected throughout the tumor lifespan. As a
result, most cancer genomes show a modal chromosome number far from the normal
diploid genome of 46 chromosomes. Low-level copy number changes usually
include genomic imbalances that affect the entire chromosome or a chromosome
arm, regardless of parameters such as size or gene density. The identification of
low-level copy number alterations by karyotyping, CGH and next-generation
sequencing provides supporting evidence of a distinct pattern of genomic imbal-
ances depending on the tumor’s tissue of origin. In this section, we will describe
some examples of the tumor-type specific distribution of copy number alterations.

CRC, being among the more amenable solid tumors to cytogenetic analyses, is
one of the most well-studied cancer genomes. Bardi and colleagues systematically
cultured colon cancer cells from primary specimens and reported extensive cyto-
genetic data on both the tumors and derived cell lines, plotting the results as chro-
mosome maps of gains and losses (Bardi et al. 1993, 1995). Later, using
conventional CGH, Ried and his colleagues described recurrent alterations in spo-
radic (i.e., non-hereditary) CRCs in which genomic gains affecting chromosomes
7, 8q, 13, and 20q occurred with frequencies upwards of 80 %, and genomic losses of
chromosomes 4, 8p, 17p, and 18q were often observed (Ried et al. 1996). In addition,
several reports have shown that some of these aberrations, mainly the gain of 7 and
20q, can already be observed in preneoplastic polyps (Habermann et al. 2011), and
most, if not all, are still present in liver metastases of this disease and in in vitro
models derived from primary tumors or metastasis (Camps et al. 2009; Platzer et al.
2002). The plethora of conventional and array-based CGH studies applied to map
genomic imbalances in CRC convincingly confirmed these earlier results [reviewed
in (Grade et al. 2006a)], supporting the idea of a genomic ID associated with CRC.
These chromosomal aberrations, as highlighted in Fig. 2, actually accompany the
genetic (mutational) and epigenetic events comprehensively described in The Cancer
Genome Atlas (Cancer Genome Atlas Network 2012a), and serve as the basis for the
CRC progression model published by Bert Vogelstein and Eric Fearon more than
two decades ago (Fearon and Vogelstein 1990; Vogelstein et al. 1988).
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It is interesting to note the high tissue-specificity of some of the genomic
imbalances described above. For example, the gain of chromosome 13 is practically
exclusive to colorectal neoplasms. Although it is not one of the earliest chromosome
aneuploidies observed in adenomas, the incidence reaches some 70 % in carcinomas
and metastases. The presence of several driver genes (i.e., CDK8, CDX2, LNX2, and
DIS3), relevant for colorectal carcinogenesis and distributed along the length of this
chromosome, favors the gain of the whole chromosome over a short focal amplifi-
cation, and defines chromosome 13 as a CRC chromosome (Camps et al. 2013; de
Groen et al. 2014; Firestein et al. 2008; Salari et al. 2012). Although not as exclusive
as the gain of chromosome 13, the gain of chromosome arm 20q occurs in more than
60 % of CRC. Based on integrative genomic approaches, multiple putative onco-
genes could drive the selection of this region of the genome in colorectal and other
cancer types (Carvalho et al. 2009). Notably, rectal cancers exhibit mirroring
genomic profiles compared to colon cancers (Grade et al. 2006b, 2009).

Fig. 2 Progression model of colorectal carcinogenesis. The progression of low-grade adenomas to
high-grade adenomas is accompanied by gains of chromosomes 7 and 20q. Gains of chromosomes
8q and 13, as well as losses of chromosomes 4p, 8p and 18q, indicate transition into invasive
carcinomas. These chromosomal aberrations, which are specific for colorectal cancer, accompany
the genetic (mutational) changes observed at the level of individual genes that serve as the basis for
the colorectal cancer progression model, referred to as the adenoma-carcinoma-sequence by
Vogelstein and Fearon
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Additionally, besides specific focal events, similar patterns of gross genomic
imbalances are observed in other gastrointestinal adenocarcinomas such as esoph-
ageal and gastric cancers (Dulak et al. 2012). In contrast, non-small cell lung
carcinoma, prostate cancer, ovarian cancer, breast cancer, glioma and others display
a loss of chromosome 13 (Di Fiore et al. 2013), as it also contains the well-known
tumor suppressor gene RB1 at 13q14, thus demonstrating that the mechanisms to
instigate carcinogenesis depend on different driver genes in a tissue-of-origin
specific fashion.

The fact that chromosomal gains and losses define specific tumor entities also
applies to breast cancer, even though the picture is a bit more complex because of the
heterogeneity of this disease (Kallioniemi et al. 1994; Pollack et al. 2002; Ried et al.
1995). With higher resolution CGH techniques, primary breast carcinomas could be
discerned into three groups: (i) near-diploid tumors characterized by extra copies of
chromosome arm 1q and losses of 16q, thus referred to as “1q/16q” tumors;
(ii) aneuploid tumors defined by recurrent copy number gains of 8q and extensive
chromosomal instability, named “complex”; and (iii) aneuploid tumors with frequent
focal high-level amplifications, e.g., of the oncogenes CCND1, MYC, and ERBB2,
also known as the “amplifier” group (Fridlyand et al. 2006). Integration of gene
expression signatures defined five major breast cancer subtypes (basal-like, luminal
A, luminal B, ERBB2, and normal breast-like) (Perou et al. 2000), and copy number
alteration data showed that recurrent genomic aberrations differ between these
subtypes and that stratification correlated with clinical outcome (Chin et al. 2006). In
addition, recent studies that applied quantitative measurements of the nuclear DNA
content to primary breast carcinomas unambiguously established that tumors with a
higher degree of chromosome instability were associated with a worse prognosis
(Habermann et al. 2009). Of note, the genomic profiling of serous ovarian cancer
partially resembles that of basal-like breast carcinomas, including gains of 1q, 3q,
5p, and 8q, and losses of chromosome 4, 5q, 8p, and 13 (Cancer Genome Atlas
Network 2012b; Cancer Genome Atlas Research Network 2013).

In a completely different cancer lineage, the application of molecular cytogenetic
techniques also revealed that essentially all cervical carcinomas exhibit an extra
copy of the long arm of chromosome 3 (Heselmeyer et al. 1996). The gain of 3q is
already present in dysplastic precursors, and, in fact, the presence of this single
cytogenetic aberration discerns those lesions that will eventually progress from
those that will not (Heselmeyer et al. 1997). Deduced primarily from retrospective
studies of Pap smears using interphase FISH with a series of probes for the enu-
meration of 3p, 3q and cellular ploidy, the gain of 3q determines the acquisition of
invasiveness capacities, thereby demonstrating the dominant nature of this genomic
imbalance in cervical cancer. One potential driver gene located on chromosome 3q
is the human telomerase RNA component (TERC) gene, which is involved in
maintaining the end of chromosomes, the shortening of which is associated with
cellular senescence and aging (Heselmeyer-Haddad et al. 2005; Yin et al. 2012).
However, one can not overlook that many other genes at chromosome 3q will also
exhibit increased transcriptional activity, thus possibly contributing to cervical
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carcinogenesis. In other tumors of squamous cell origin, such as head and neck or
bladder squamous cell carcinoma, the gain of chromosome 3q is also a prevalent
alteration. Other genomic imbalances commonly observed in these tumor subtypes
include gains located at chromosome 1, 7, and 20, and losses located at 4, 11, 16,
17, and 19 (Cancer Genome Atlas Research Network 2014a).
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Fig. 3 Diagram of genomic profiles showing the most common gains and losses in colon, rectal,
head and neck, bladder and breast cancer. Note the prevalence of specific genomic imbalances
unique to each tumor type, thus illustrating the individual landscapes of copy number alterations.
SNP array data were collected from The Cancer Genome Atlas (http://cancergenome.nih.gov/)
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A catalog of recurrent copy number alterations has also been established for
non-small cell lung carcinoma (NSCLC) using aCGH, with specific genomic
imbalances including gains at 1q, 3q, 5p, and 8q, and losses at 3p, 8p, 9p, 13, and
17p (Tonon et al. 2005). Although driver genes on genomic sites of copy number
changes are still under discovery-based approaches, integrative analysis comprising
mutational profiling of NSCLC have identified KRAS, BRAF, EGFR, MET, and
FGFR1 as the main candidate driver oncogenes in this disease (Cancer Genome
Atlas Research Network 2014b).

Altogether, these studies and others have shown that copy number alterations are
tumor-type specific, and that they can be used for efficient tumor classification
(Fig. 3). The examples of copy number changes described above suggest that tissue
types arising from similar origin tend to share similarities as far as chromosomal
gains and losses is concerned, as seen in cancer types of squamous cell origin (i.e.,
gain of 3q in cervical, bladder, head and neck, NSCLCs), cancers in reproductive
organs, such as serous ovarian and serous-like endometrial carcinomas, and cancers
affecting gastrointestinal tract tissues (i.e., esophageal, stomach, colon and rectal
carcinomas). Comprehensive meta-analyses to understand how tissue or lineage
specific transcriptional profiles have an influence on the determination of
tumor-type associated signatures of genomic imbalances constitute a fundamental
concept underlying the nature of somatic copy number alterations in cancer.

6 Consequences of Genomic Imbalances on Global Gene
Expression

The presence of chromosome imbalances specific to the tissue of cancer origin may
lead one to ask: What consequences does this additional genomic material have on
the biology of cancer cells? The examples mentioned above suggest that recurrent
low-copy number changes provide a selective advantage to the specific cell type to
propagate indefinitely, often under sub-optimal metabolic conditions and in the
presence of genomic and mitotic defects. In both normal and cancer cells, low-level
copy number alterations, regardless if they naturally occur in tumors or are artifi-
cially induced in non-tumor cells, result in a massive transcriptional deregulation
(Grade et al. 2006b, 2007; Upender et al. 2004) (Fig. 4). In contrast to what has
been described in normal cells, aneuploidy-dependent transcriptional enhancement
must have a positive impact on the growth of cancer cells (Tang and Amon 2013).
In addition, most of the genes implicated in the pathogenesis are located in chro-
mosomal regions selected to give growth advantage to the tumor cell (e.g., gain of
MYC at 8q, loss of TP53 at 17p and loss of SMAD4 at 18q in CRC). The integrative
strategy of looking at the transcriptional profile for all of the genes confined within
regions recurrently involved in genomic imbalances has been extensively used to
discover novel cancer genes, as well as to identify genes considered targets for
cancer therapeutics (Camps et al. 2013). Therefore, minimal common regions of
gains and losses are likely to contain driver genes whose dosage-related deregu-
lation will be of high importance for carcinogenesis.
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Nevertheless, it may also be possible that over-activation of proliferative genes,
such as the oncogene MYC, impairs cell viability when expressed at “too-high”
levels or when affecting the transcription of too many genes, as they induce a
disequilibrium of the metabolic stoichiometry of the cancer cell (Sabo et al. 2014;
Wahlstrom and Henriksson 2014). Regulation of driver gene expression and their
molecular consequences must be critical to ensure cellular viability (Walz et al.
2014). This may be one of the reasons why several cancers do not show high-level
amplifications of MYC, but rather show a low-copy number gain of chromosome
arm 8q containing this gene to achieve the necessary balance in the amount of this
transcription factor (Meyer and Penn 2008). However, one must acknowledge that
in such scenarios not only MYC will be over-expressed, but many other genes as
well. Thus the question arises as to which extent other genes, e.g., those already
described in the literature as drivers, will determine the positive selection of
genomic gains (and losses in the case of tumor suppressor genes). For example, the
obvious candidate gene for the selection of the 8q gain is MYC, but due to the high
recurrence of the low-copy gain of this entire arm, other genes may play a role to
boost the cellular fitness. However, whether the transcriptional activation of genes
that accompany the target gene of a whole or partial aneuploid chromosome has
biological relevance for the cancer cell remains largely uninvestigated. In essence,
rather than a single gene, genomic imbalances (i.e., aneuploidy) remarkably rep-
resent the driver event in cancer cells.
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Fig. 4 Plot showing the correlation between copy number changes and gene expression from a set
of colorectal cancers. In yellow, genomic segments that are copy number neutral; in red, genomic
segments that show a copy number reduction; and in green, genomic segments that show a copy
number gain. The Y-axis indicates the levels of gene expression in log2 ratio. (Adapted from Ried
et al. 2012)
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7 Focal Amplifications and Deletions Point to Driver
Genes

7.1 Genomic Amplifications

The term genomic amplification is restricted to focal regions of the genome that are
represented in multiple copies (Myllykangas and Knuutila 2006). Two cytogenet-
ically distinct DNA structures have been found to harbor those amplified genomic
strings. One type of structure consists of concatenation of a genomic region that has
been duplicated numerous times, usually within that same chromosome. These
structures fail to display typical banding patterns after trypsin-Giemsa staining and
are known as homogeneously staining regions (HSR). The other type of structure
consists of small-paired extra-chromosomal bodies known as double minute
chromosomes or double minutes (DM) that have been shown to be circular DNA.
DMs are basically acentric, atelomeric extra-chromosomal elements containing
between 1 and 2 Mb of duplicated DNA that are present in tens to hundreds of
copies in a single cell (Kuttler and Mai 2007; L’Abbate et al. 2014). The nature of
DMs is still under investigation and it is not clear yet how DMs are inherited from
cell to cell. One of the biological mechanisms that originate genomic amplifications
is the breakage-fusion-bridge model. Briefly, this model was proposed by Barbara
McClintock at the beginning of the last century (McClintock 1939) and is based on
the cycling formation of uncapped DNA ends by consecutive DNA double strand
breaks and subsequent repair by recombination-based mechanisms, leading to broad
DNA amplification, progressive terminal deletions and an increase of genomic
instability. These focal regions of high-level copy number change frequently con-
tain oncogenes to promote carcinogenesis (Difilippantonio et al. 2002). The inte-
grative analysis of aCGH and gene expression profiling in cancer allowed the
discovery of numerous regions of amplifications in several cancer types, providing
evidence for the existence of genes whose oncogenic function was unreported (e.g.,
Camps et al. 2013; Lockwood et al. 2008). High-throughput analyses of large
cohorts of clinical samples resulted in the identification of some cancer lineages
with a preference to amplify specific areas of the genome, while other cancer types
accumulate low-copy number changes affecting whole chromosomes or chromo-
some arms (Zack et al. 2013).

Well-known examples of oncogenes that can be activated as a consequence of
focal genomic amplification are ERBB2 in breast cancer, MYCN in neuroblastoma,
MYC in colon, esophageal, gastric, ovarian cancer and others, CCND1 in bladder
cancer, and MDM2 and CDK4 in well-differentiated and dedifferentiated liposar-
coma, among others (Crago and Singer 2011). Cyclin D1 (CCND1), located at
chromosome band 11q13, plays an important role in cell cycle regulation, binds to
cyclin-dependent kinases (CDK4/6), and promotes phosphorylation of RB1,
orchestrating progression through the G1 restriction point. This genomic location
shows recurrent gene amplifications in several cancer types such as breast, head and
neck, bladder, ovarian cancer, and others. Integration of aCGH and gene expression
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profiling data suggest that CCND1 is not the only target in this recurrent genomic
amplification, but that there are other genes within this focal area whose expression
might also be relevant for tumorigenesis, suggesting a synergistic effect between
well-known driver oncogenes and other genes that are amplified in the same
amplicon or in different regions of the genome. For example, PPFIA1 amplification
was found exclusively in CCND1-amplified breast cancers, suggesting that PPFIA1
gene copy number changes represent cis-like events of CCND1 amplification
(Dancau et al. 2010). Co-amplification in trans at chromosomes 8p11–8p12 and
11q12–11q14, including CCND1, often occurs in breast tumors suggesting a
transcriptional crosstalk between genes in the 8p and 11q amplicons, as well as their
cooperation with major pathways of tumorigenesis (Kwek et al. 2009). As for
probably the most relevant oncogene in human cancer, MYC, the co-amplified
neighboring long non-coding RNA gene, PVT1, is essential for maintaining the
functional expression of the MYC transcription factor (Huppi et al. 2008; Tseng
et al. 2014). Another important oncogenic alteration involves focal amplifications of
the FGFR1 gene, located on chromosome 8p and encoding a membrane-bound
receptor tyrosine kinase, in up to 20 % of squamous cell lung cancers (Dutt et al.
2011; Weiss et al. 2010).

7.2 Homozygous Deletions

Array CGH played a very important role in the discovery of disease-associated
microdeletions with clinical impact, both in developmental-related delays and
cancer (Shinawi and Cheung 2008). Perhaps even more important than genomic
amplifications in cancer are homozygous deletions, which usually harbor tumor
suppressor genes. Tumor suppressor genes are subjected to the two-hit model
described by Knudson (1971), where one of the alleles is mutated either in the
germline or somatically, while the other allele loses its function either by a second
somatic deletion, an epigenetic modification, or by a somatically uniparental dis-
omy event. Among the most frequent losses in human epithelial cancers are the
homozygous deletions at 9p21 involving CDKN2A (also referred to as p16), a
CDK4 inhibitor, which can also bind the p53-stabilizing protein MDM2 (Ozenne
et al. 2010). The absence of functional CDKN2A, either by homozygous deletion,
hypermethylation or mutation, contributes significantly to the tumor phenotype
through the deregulation of CDK4 and p53, thereby inducing cell cycle G1 pro-
gression. CDKN2A is homozygously deleted or hypermethylated at high frequency
in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney,
ovary, and lymphocytes (Weisenberger 2014; Gil and Peters 2006).

Analogous to CDKN2A, loss of function for the tumor suppressor gene retino-
blastoma 1 (RB1) at 13q14 has similar effects on promoting G1 progression
(Manning and Dyson 2011). As previously stated, homozygous deletions at 13q14
have prognostic significance in a variety of not only epithelial human cancers, but
also hematological malignancies (Rowntree et al. 2002; Starostik et al. 1999). In
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colon and rectal cancer, mutations and homozygous deletions of the adenomatous
polyposis coli gene (APC) at 5q22, specially in those patients with familial ade-
nomatous syndrome (FAP), but also in a large percentage of sporadic cancer, play a
critical role in the release of cytosolic beta-catenin, enabling it to cross the nuclear
membrane and transcriptionally activate the Wnt/β-catenin signaling pathway
(Nathke 2004), which leads to increased cellular proliferation.

Of note is the high frequency of focal deletions affecting larger genes in the
genome, such as FHIT, WWOX, PTPRD, MACROD2, PARK and others, as seen by
analyzing somatic copy number alterations in primary tumors in across various
cancer cohorts. Since the functional and clinical relevance of these deletions
remains elusive, there is no solid evidence that these genes are indeed tumor
suppressor genes. Nevertheless, it has been suggested that the genomic plasticity of
the regions where these genes are located (e.g., the presence of fragile sites) might
be a causative force for these events.

8 Implications for Clinical Practice

As extensively discussed above, chromosomal aberrations play a prominent and
defining role in many human solid tumors. Due to the continuous evolution of
genomic analysis technologies, cancer genomics has moved from being purely a
descriptive enumeration of structural and numerical DNA aberrations, and is
increasingly being applied to classify cancer entities into different subtypes
(Garraway 2013; Garraway and Lander 2013; McClintock 1939; Tran et al. 2012).
For example, screening for amplifications of the MDM2 and CDK4 genes enables
classification of well-differentiated and dedifferentiated liposarcomas (Crago and
Singer 2011). Furthermore, cancer genomics are employed to identify genetic
alterations that can be targeted therapeutically, and therefore may guide clinicians in
choosing rational, molecularly defined treatment strategies (Garraway 2013;
MacConaill 2013; Tran et al. 2012).

Similar to the standard of care in hematologic malignancies, NSCLC is the prime
example of a solid tumor that should undergo extensive molecular biomarker testing
prior to starting any treatment (Rampal and Levine 2013). Apart from (activating)
mutations in genes such as EGFR, KRAS, BRAF, PIK3CA or DDR2, which do not
represent chromosomal aberrations, at least five activating alterations are clinically
relevant: ALK, RET, and ROS1 rearrangements, andMET and FGFR1 amplifications
(Li et al. 2013; Oxnard et al. 2013; Shames and Wistuba 2014). For ALK, which
encodes a transmembrane tyrosine-kinase receptor, oncogenic fusion with one of its
upstream activators, EML4, has been demonstrated (Soda et al. 2007). While
advanced tumors with EML4-ALK rearrangements are insensitive to EGFR
tyrosine-kinase inhibitors (TKIs) often used for treating NSCLC (Shaw et al. 2009),
high initial responses have been observed upon treatment with the ALK inhibitor
crizotinib (Kwak et al. 2010; Shaw et al. 2013). Nevertheless, acquired resistance to
crizotinib frequently develops (Shaw and Engelman 2013), and evidence is
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accumulating that this secondary resistance can be overcome with novel ALK
inhibitors such as ceritinib (Shaw and Engelman 2014). Several different fusion
partners of the gene encoding the tyrosine-kinase receptor ROS1 have been iden-
tified (Bergethon et al. 2012; Rimkunas et al. 2012; Takeuchi et al. 2012), and ROS1-
rearranged tumors may also benefit from treatment with crizotinib (Bos et al. 2013).

Similarly, fusions between the tyrosine-kinase receptor gene RET have been
reported with KIF5B, CCDC6 or TRIM33 (Ju et al. 2012; Kohno et al. 2012; Lipson
et al. 2012; Takeuchi et al. 2012). Because several TKIs show at least some activity
against the RET kinase, RET-rearranged tumors are amenable to targeted strategies
as well (Oxnard et al. 2013). Another prominent alteration involves amplification of
the membrane-bound tyrosine receptor gene FGFR1, which led to the development
of FGFR TKIs (Dutt et al. 2011; Gavine et al. 2012; Weiss et al. 2010; Zhang et al.
2012). Interestingly, MET amplifications have been associated with acquired
resistance of EGFR-mutated NSCLC to TKIs (Cappuzzo et al. 2009; Dziadziuszko
et al. 2012; Toschi and Cappuzzo 2010). Because amplifications in the MET gene
activate multiple signaling pathways, a number of agents targeting this trans-
membrane tyrosine-kinase receptor are in preclinical and clinical development
(Sadiq and Salgia 2013). Unfortunately, however, it was quickly realized that tar-
geted agents developed for adenocarcinoma, the most common type of lung cancer,
were largely ineffective against squamous cell carcinoma, the second most common
type of lung cancer.

Apart from NSCLC, there are many other examples of human cancers in which
the presence of chromosomal aberrations influences treatment decisions (as stated
above, gene mutations are not covered in this chapter). Historically, the detection of
gene amplifications or protein overexpression of HER2 in breast cancers was the
first example, followed by the clinical implementation of trastuzumab, a mono-
clonal antibody targeting HER2, which has been the standard of care for
HER2-positive breast cancer for more than a decade (Giordano et al. 2014; Hudis
2007; Spector and Blackwell 2009). Since HER2 amplifications and HER2 protein
over expression can be detected in other solid tumors as well (Martin et al. 2014),
strategies to target HER2 are increasingly being evaluated in non-breast related
cancers (Kasper and Schuler 2014; Okines et al. 2011). Prominently, Bang and
colleagues demonstrated improved survival rates for patients with HER2-positive
advanced gastric and gastro-esophageal junction cancers that were treated with
trastuzumab plus chemotherapy compared with chemotherapy alone (Bang et al.
2010). This led to the initiation of various clinical trials aimed at testing
combinations of trastuzumab or other HER2-targeting agents with platinum/
fluoropyrimidine-based chemotherapy for patients with HER2-positive cancers
(Kasper and Schuler 2014; Okines et al. 2011). Very recent data indicate that
targeting HER2 may represent a therapeutic strategy in patients with CRC as well
(Conradi et al. 2013; Guan et al. 2014; Seo et al. 2014).

Anaplastic oligodendroglioma (AO) is another example of how a better under-
standing of the cancer genome influences clinical practice. Patients with
co-deletions of chromosome arms 1p and 19q benefit from combined radiotherapy
and chemotherapy compared to radiation therapy alone. Consequently, it is now
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recommended to screen AO patients for these chromosomal aberrations (Anderson
and Gilbert 2013; Polivka et al. 2014).

The last example that will be discussed here are the so called “soft tissue sar-
comas” (STS). STS actually represent a heterogeneous group of different subtypes,
which are relatively rare, genetically and biologically different, and vary in their
treatment responses (Barretina et al. 2010). Interestingly, however, certain subtypes
are sensitive to trabectedin, either as single agent or in combination with conven-
tional chemotherapeutics. For instance, trabectedin has shown considerable activity
in Ewing sarcoma, Leiomyosarcomas and in myxoid liposarcomas (Grohar and
Helman 2013; Sharma et al. 2013). In myxoid liposarcomas, trabectedin appears to
block the trans-activating ability of the fusion proteins FUS-CHOP or EWS-CHOP,
which act as transcription factors in this disease (D’Incalci et al. 2014; Di Gian-
domenico et al. 2013). These proteins represent the causative abnormality and are
the result of translocations that fuse the CHOP gene, located at 12q13.1–q13.2,
with either FUS, located at 16p11.2 (t(12;16)), or EWS, located at 22q12.2 (t
(12;22)).

Nevertheless, cancer genomics also poses several substantial and critical chal-
lenges (Buettner et al. 2013; Dienstmann et al. 2013; Garraway and Lander 2013;
Wistuba et al. 2011), a few of which are listed below: First, even the most frequent
alterations represent only about 20 % of NSCLC, with each individual rearrange-
ment being rather rare. Even more, EGFR and ALK alterations predominantly occur
in lung adenocarcinomas, while FGFR1 amplifications prevail in squamous cell
carcinomas (Cancer Genome Atlas Research Network 2012; Seo et al. 2012). So
which of these aberrations should be tested? While there is consensus that
molecular testing of advanced and metastatic NSCLC with adenocarcinoma his-
tology should include EGFR mutations and ALK rearrangements, other targetable
biomarkers are excluded (Dacic 2013). Second, and particularly problematic for
NSCLC, is the fact that many tumors are either de novo resistant against
molecular-based therapies, or acquire resistance relatively quickly during treatment
(Camidge et al. 2014). Accordingly, simultaneous testing of multiple genetic/
chromosomal aberrations would be meaningful. Third, in cases in which resistance
develops, should an additional biopsy of the residual tumor be performed so that
molecular testing can be repeated? Monitoring cancer genetics through genotyping
of circulating tumor cells or DNA in the bloodstream, i.e., liquid biopsy sampling,
might help to overcome this problem (Crowley et al. 2013; Diaz and Bardelli 2014).
Fourth, in situations where multiple genetic aberrations should be analyzed
simultaneously, is there enough material available? Fifth, the best detection method
is still a matter of debate. Among “classical” techniques such as FISH and IHC,
next-generation sequencing would be an alternative. Multiplex PCR testing would
be another option to obtain maximum diagnostic information from limited tissue.
Sixth, is molecular testing standardized and robust enough to serve as the basis for
clinical decisions, i.e., the choice of therapeutic agents? Finally, and perhaps the
most problematic as it affects all of the prior points, intratumor heterogeneity can
infer with both the assessment and the interpretation of the tumor genomics land-
scape (Swanton 2012).
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Despite these challenges and problems, recent technological advances and
innovations now offer the possibility to comprehensively interrogate essentially
every relevant genetic/chromosomal aberration within the genome of individual
cancer patients. Molecular testing has already led to more accurate classification of
cancer subtypes, and to better guidance with respect to clinical decision-making.
Therefore, cancer genomics has finally come of age, from being a purely academic
endeavor used for understanding the underlying tumor biology to soon becoming
part of standard medical practice for informing clinical decisions in the therapeutic
choices for patients with solid tumors.
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Yeast as Models of Mitotic Fidelity

Eduardo Torres

Abstract
Chromosome missegregation leads to aneuploidy which is defined as the cellular
state of having a chromosome count that is not an exact multiple of the haploid
number. Aneuploidy is associated with human diseases including mental
retardation, neurodegenerative diseases and cancer. In addition, aneuploidy is
the major cause of spontaneous abortions and its occurrence increases with
aging. Therefore, it is important to understand the molecular mechanisms by
which cells respond and adapt to aneuploidy. Saccharomyces cerevisiae has
proven to be a good model to study the effects aneuploidy elicits on cellular
homeostasis and physiology. This chapter focuses on the current understanding
of how the yeast S. cerevisiae responds to the acquisition of extra chromosomes
and highlights how studies in aneuploid yeasts provide insights onto the effects
of aneuploidy in human cells.
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1 Introduction

Chromosome missegregation leading to aneuploidy during human development is
almost always lethal. Only trisomies of chromosomes 13, 18 and 21 responsible for
Patau’s, Edwards and Down syndrome, respectively, survive to birth (Nagaoka et al.
2012). Down syndrome patients are the only ones that live past the first months of
life. However, they suffer from several pathological conditions including mental
retardation, stunted growth and increased risk for heart disease, diabetes and leu-
kemias (Antonarakis et al. 2004; Hasle et al. 2000). The incidence of aneuploidy
increases with aging and is frequently observed in neurons of Alzheimer’s disease
patients (Iourov et al. 2009, 2011). Aneuploidy in somatic cells has been observed
but the fate of these cells or whether they play a role in human diseases or alter-
natively, in the physiology of healthy individuals is unclear (Duncan et al. 2012;
Rehen et al. 2005; Yurov et al. 2007). Notably, aneuploidy is an almost universal
feature of tumor cells, a hallmark of which is unlimited growth capacity (Holland
and Cleveland 2009). Although the role of aneuploidy in cancer remains a topic of
hot debate, it is evident that its occurrence and complexity increases with tumor
progression and correlates with malignancy.

A major hurdle in studying the role of aneuploidy in cancer is the fact that
significant karyotypic heterogeneity exists, not only among different tumors but
also within cells of the same tumor (Albertson et al. 2003; Mosoyan et al.
2013). In addition, tumors and cancer cell lines not only display varying degrees
of aneuploidy but also harbor other complex genomic rearrangements such as
focal amplifications and deletions, chromosomal translocations and thousands of
mutations (Beroukhim et al. 2010; Kandoth et al. 2013; Roschke et al. 2003;
TCGA 2012). It is therefore difficult to pinpoint common characteristics or
phenotypes of aneuploid cells. An important question that begs attention is
whether specific signaling pathways or cellular processes are affected by aneu-
ploidy. Addressing this question is important because exploiting aneuploidy-
specific properties of cancer cells could lead to novel therapeutic approaches that
would specifically target these cells while sparing the euploid counterparts.
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Optimally, to study the effects of aneuploidy on cellular physiology, a series of
isogenic cell lines characterized by distinct aneuploidies yet devoid of other
genomic alterations is required. The budding yeast Saccharomyces cerevisiae
provides such a system, and is therefore ideal to model aneuploidy. This chapter
summarizes studies performed in aneuploid budding yeasts that demonstrate how
aneuploidy disrupts cellular physiology and homeostasis. Because many cellular
processes affected by aneuploidy in yeast are highly conserved in human cells,
studies of aneuploid yeasts contribute significant insights into the role aneuploidy in
human diseases.

2 Generating Aneuploid Yeasts in A Common Genetic
Background

Saccharomyces cerevisiae consists of 16 or 32 chromosomes in the haploid (1n) or
diploid state (2n), respectively. Several studies have shown that acquisition of an
entire set of chromosomes, or polyploidy, is well tolerated in yeast (discussed
elsewhere) (Andalis et al. 2004). Three different approaches have been utilized to
generate aneuploid yeast strains in a homogeneous genetic background (Table 1).
One approach utilizes chromosome transfer followed by selection to generate
haploid yeast cells harboring an extra copy of a single chromosome (henceforth
disomes) (Conde and Fink 1976; Hartwell et al. 1982). Indeed, a total of 13 out the
possible 16 disomes were generated using this strategy (Torres et al. 2007). Because
aneuploidy increases chromosomal instability (discussed below), aneuploid yeast
strains generated by this method are maintained under selection. Interestingly, four
additional karyotypic stable strains were obtained that carry one or two extra
chromosomes in addition to the one that was selected for. To circumvent potential
artifacts of selection in studying the effects of aneuploidy on cellular physiology,
disomes can be grown in non-selective media for a small number of generations
while maintaining their original karyotype. A second approach to generate aneu-
ploid yeasts is through meiosis of triploid (3n) or pentaploid (5n) strains. Segre-
gation of homologous chromosomes during meioisis I of these polyploid strains
happens randomly, thus generating various aneuploidies. Aneuploid strains
recovered from this method show reduced viability (15–50 %) and high genomic
instability leading to heterogeneous populations (Parry and Cox 1970; Pavelka et al.
2010; St Charles et al. 2010; Zhu et al. 2012). Nonetheless, a total of 38 semi-stable
aneuploid strains have thus far been recovered and their phenotypic properties
analyzed (Pavelka et al. 2010). Of these, five strains were characterized in depth.
Using a third approach missegregation of a single chromosome can be induced by
centromere silencing (Anders et al. 2009; Reid et al. 2008). In haploid yeast, this
method generates unviable monosomies and disomic strains. The latter strains were
utilized to map genetic traits to specific chromosomes but other phenotypes were
not analyzed. In diploids, centromere silencing of one of the homologous chro-
mosomes generates trisomies (2n + 1) and monosomies (2n − 1). Of note,
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monosomies recovered from this method were shown to be unstable as colonies
from these strains were heterogeneous in size and endoduplication of the entire
missing chromosome was frequently observed (Reid et al. 2008). Because mono-
somies are either lethal or unstable, studies of the effects of aneuploidy on cellular
physiology have mainly focused on the consequences of one aspect of aneuploidy,
i.e. the gain of extra chromosomes. In summary, in addition to being facile and
quick, a major advantage of these approaches is that different aneuploid strains can
be generated in an isogenic background, making it possible to assess the effects of
aneuploidy on cellular physiology, in the absence of other genomic alterations.

3 Aneuploidy Hampers Cellular Proliferation

A simple hypothesis that could explain the detrimental effects of aneuploidy during
human development and the uncontrollable proliferation of cancer cells is that
aneuploidy leads to increased fitness and promotes proliferation at the cellular level.
During development, these properties would allow aneuploid cells to circumvent
regulatory mechanisms, such as senescence and apoptosis, required for normal
development. In cancer, increased cellular proliferation and resistance to death are
indeed hallmarks of the disease (Hanahan and Weinberg 2011). However, studies in
aneuploid yeast suggest that the opposite occurs, at least under normal (non-stress)
conditions; that is, without exceptions, acquisition of an extra chromosome inhibits

Table 1 Methods to generate aneuploid yeast strains

Wild-
type

Aneuploid strains Method Notes

Haploid
(1n)16
chr

Monosomies
(n − 1)

Centromere silencing (CS) Inviable

Disomies (n + 1) CS, Chromosome transfer
(CT) and meiois of 3n or 5n
(RM)

12 disomes from CT
characterized in depth

Multiple disomies
(1n + x),
(x = 2 − 6)

CT and RM 5 strains from RM
characterized in depth

Haploid
(n + YAC)

CT Yeast artificial
chromosome(YAC) with
mammalian DNA

Diploid
(2n)32
chr

Monosomies
(2n − 1)

CS Unstable, endoduplication

Trisomies
(2n + 1)

CS, CT and RM

Multiple trisomy
(2n + x),
(x = 2 − 8)

RM
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cell cycle progression and lowers cell viability, independent of the identity of the
gained chromosome (Fig. 1). Impaired proliferation of aneuploid yeasts is not
simply due to the presence of extra DNA, as yeast strains harboring yeast artificial
chromosomes (YAC) of comparable sizes to the yeast chromosomes harboring
human or mouse DNA do not show cell cycle delays (Torres et al. 2007). These
results indicate that the presence of the extra yeast genes and their products is
responsible for the proliferation defects. Interestingly, the degree to which prolif-
eration is affected in aneuploid yeast cells correlates with the number of open
reading frames (ORF) encoded by the extra chromosome, underscoring the idea that
aneuploidy is a problem of genomic imbalance. Earlier studies in plants and flies
showed that the detrimental effects of acquiring extra chromosomes correlate with
the size of the extra genomic material (Blakeslee et al. 1920; Lindsley et al. 1972).
In humans, Chromosome 21 encodes the least number of proteins compared to
other autosomes, possibly explaining why trisomy 21 is the only viable one.

The molecular mechanisms by which aneuploidy hampers cellular proliferation
are not well understood. Studies of disomic yeasts synchronized in G1 revealed that
the transition through G1/S-phase during cell cycle progression was the one most
affected by aneuploidy (Torres et al. 2007). Subsequent studies of small G1 cells
isolated by elutriation showed that disomic yeasts display a cell cycle entry delay
due to a slowed accumulation of the G1 cyclin CLN3 (Thorburn et al. 2013).
Recently, acetyl-CoA was shown to control CLN3 transcription by promoting the
acetylation of histones present in its regulatory region raising the possibility that
altered metabolism may be responsible for the cell cycle delays in aneuploid yeast
(Shi and Tu 2013). However, in aneuploid yeast cells CLN3 transcript levels do not
seem to be affected, indicating that posttranscriptional mechanisms are responsible
for the delayed Cln3 protein accumulation (Thorburn et al. 2013). It is noteworthy,
that independent of the nature of extrinsic cellular stresses, yeast cells usually arrest
in G1 (Belli et al. 2001; Lee et al. 1996; Rowley et al. 1993). This implies that the
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delays observed in aneuploid yeast strains correlate with the size of the extra chromosome they
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same molecular mechanisms that arrest yeast cells in response to extrinsic stresses
may play a role in mediating cellular responses to aneuploidy. Several pathways
and factors control Cln3 protein levels during G1 including nutrients, Map kinase
and Ras-cyclic AMP signaling pathways (Johnson and Skotheim 2013). Which of
these pathways is/are affected by aneuploidy remains to be investigated. The effects
on cell cycle progression in aneuploid yeast cells isolated from random meiosis
have not been studied, yet 38 of such strains proliferate slower than their euploid
counterparts (Pavelka et al. 2010).

Studies of aneuploid yeasts suggest that in the absence of other genomic alter-
ations, aneuploidy inhibits proliferation of mammalian cells. Consistent with this
hypothesis, embryonic fibroblasts from Down syndrome patients proliferate slower
and accumulate less biomass than fibroblasts obtained from healthy individuals
(Rosner et al. 2003; Segal and McCoy 1974). Similarly, primary mouse cells and
immortalized human cell lines harboring an extra chromosome show impaired
proliferation (Stingele et al. 2012; Williams et al. 2008). Interestingly, in a study
that induced aneuploidy in near diploid cancer cell line by chromosomal misseg-
regation, cell cycle arrest occurred in G1 in a manner dependent on p53 (Thompson
and Compton 2010). This implied a possible role for this tumor suppressor, whose
protein levels are induced by a myriad of cellular stresses (Zilfou and Lowe 2009),
in the anti-proliferative effects of aneuploidy.

In summary, aneuploidy seems to inhibit cell cycle progression from yeast to
humans, similar to other cellular stresses. However, the specific signaling pathways
mediating this effect still remain to be explored. Nevertheless, a major implication of
the aneuploidy studies described above is that other genetic alterations or environ-
mental factors must exist to allow cancer cells to overcome the aneuploidy-induced
growth inhibitory effects.

4 Transcriptional Responses to Aneuploidy

The fact that yeast strains harboring YAC with human or mouse DNA do not show
cell cycle defects indicates that expression of the yeast genes present on the extra
chromosome is responsible for the hampered proliferation of aneuploid yeasts.
Indeed, several studies have reported an increase in the levels of mRNAs encoded
by the extra chromosomal genes in aneuploid cells (Fig. 2). Gene expression
analysis of 17 aneuploid strains generated by chromosome transfer and five
aneuploid strains recovered from random meiosis showed that on average, levels of
mRNAs encoded by genes on the additional chromosome proportionally increase
with gene copy number (Pavelka et al. 2010; Torres et al. 2007). The correlation
between gene copy number and mRNA expression is so strong that gene expression
profiling alone can reveal changes in chromosome numbers (Fig. 2). For example,
gene expression analysis of hundreds of yeast strains harboring a single gene
deletion revealed widespread aneuploidy among them (22 of 290) (Hughes et al.
2000). Several studies also indicate that the correlation between increased gene
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copy number leading to changes in gene expression is also true in trisomic mouse
embryonic fibroblasts, trisomic human cell lines and aneuploid cancer cells
(Crawley and Furge 2002; Hyman et al. 2002; Stingele et al. 2012; Williams et al.
2008). Despite this correlation, the possibility that mRNA levels of a small number
of genes do not scale up with gene copy number and are subject to dosage com-
pensation through gene silencing or posttranscriptional mechanisms remains to be
investigated. While genome-wide approaches are very powerful at revealing general

(a)

(b) (c)

Extra 
chromosome

Increases in
transcription

Increases in 
protein synthesis

Transcriptional responses 
in aneuploid yeasts

Posttranslational response 
in aneuploid yeasts

ESR intensity correlates
with doubling time

APS intensity correlates
with chromosome size

0

2

C
op

y
nu

m
be

r

Chr

I II III IV V V
I

V
II

V
III IX X X

I

X
II

X
III

X
IV X
V

X
V

I I II III IV V V
I

V
II

V
III IX X X

I

X
II

X
III

X
IV X
V

X
V

I I II III IV V V
I

V
II

V
III IX X X
I

X
II

X
III

X
IV X
V

X
V

I

W
T

D
is

 I
D

is
 II

D
is

 V
D

is
 V

III
D

is
 IX

D
is

 X
D

is
 X

I
D

is
 X

II
D

is
 X

III
D

is
 X

IV
D

is
 X

V
D

is
 X

V
I

W
T

D
is

 I
D

is
 II

D
is

 V
D

is
 V

III
D

is
 IX

D
is

 X
D

is
 X

I
D

is
 X

II
D

is
 X

III
D

is
 X

IV
D

is
 X

V
D

is
 X

V
I

E
S

R
in

te
ns

ity

A
P

S
in

te
ns

ity

~600
Repressed
genes
(translation)

~300
Induced
genes

Synthetic
medium

YEPD
medium

0 1 2

2.0

2.5

3.0

3.5

ESR intensity

D
ou

bl
in

g 
T

im
e 

(h
r)

A
ve

ra
ge

 lo
g

2 
ra

tio

YEPD, r = 0.81 
Synthetic, r = 0.85 

0

1

2

3

(d) (e)

RNA Protein r = 0.62

0

1

0 0.5 1.0
0

0.2

0.4

0.6

0.8

1.0

Chromosome size (Mb) 

Response to 
oxidative stress

Metabolic 
processes

W
T

D
is

 I
D

is
 X

D
is

 X
II

D
is

 IX
D

is
 X

IV
D

is
 V

III
D

is
 V

D
is

 X
I

D
is

 X
V

D
is

 II
D

is
 X

V
I

D
is

 X
III

D
is

 IV W
T

D
is

 V
III

D
is

 X
D

is
 X

I
D

is
 V

D
is

 X
II

D
is

 I
D

is
 X

V
I

D
is

 IX
D

is
 II

D
is

 X
III

D
is

 X
IV

D
is

 X
V

D
is

 IV

Fig. 2 a Relative DNA, mRNA and protein content of cells harboring an extra copy of
chromosome II (disome II). Data obtained from Torres et al. (2007) and Dephoure et al. (2014).
b Aneuploid elicits a transcriptional response similar to the environmental stress response. c The
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posttranslational mechanisms and its intensity correlates with the size of the extra chromosome
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patterns of gene expression, a more gene-centric approach will be necessary to
unveil the identity of such genes. Nonetheless, a major conclusion from these
studies is that while dosage compensation mechanisms play a key role in regulating
gene expression of sex chromosomes, such mechanisms do not seem to be activated
upon acquisition of an extra copy of an autosome. In support of this hypothesis, the
introduction of a single copy of the gene XIST, X-inactivation gene, on Chromo-
some 21 was shown to silence transcription and suppress several phenotypes,
including deficits in proliferation in pluripotent stem cells of down syndrome
patients (Jiang et al. 2013).

In addition to changes in mRNA resulting from increased gene copy number,
aneuploidy elicits a transcriptional response similar to that of cells exposed to
cellular stresses, such as heat shock, oxidative or osmotic stress, among others
(Gasch et al. 2000) (Fig. 2b). This transcriptional signature referred to as the
environmental stress response (ESR) encompasses approximately 600 downregu-
lated and 300 upregulated genes. The common denominator between cellular
responses to extrinsic stresses is transient cell cycle arrest. In fact, gene expression
profiling of wild-type yeast grown in chemostats, where the proliferation rate can be
adjusted by changing dilutions rates of different nutrients, showed a significant
overlap between genes that respond to stress and those whose expression levels
change as a function of proliferation rate (Brauer et al. 2008). For example, ribo-
somal genes are downregulated upon several stresses and change their expression
levels as a function of proliferation rates. This raises the question of whether
aneuploid cells display a common gene expression signature due to their impaired
proliferation or to induced cellular stress. Because stress responses are tightly
coupled with cell cycle arrest this is a difficult question to answer. Nonetheless,
there is a strong correlation between the intensity of the ESR in disomic yeasts,
measured as the weighted average of up-regulated and down-regulated genes, and
cell cycle delays (Fig. 2c). Comparison of gene expression changes in disomic
strains grown in selective medium versus rich medium indicates that the slow
growth signature is ameliorated in rich media (Fig. 2b, c). Because the differences
in proliferation rates between disomic strains and wild-type cells are less in rich
media than in selective medium, the slow growth expression signature seems to be
partly a function of proliferation. Consistent with this hypothesis, euploid cells
harboring gene mutations that confer proliferation defects show similar gene
expression patterns (Torres et al. 2007). The slow growth expression signature is
also present in several aneuploid strains isolated from random meiosis, which
proliferate slower than the euploid cells (Pavelka et al. 2010; Sheltzer et al. 2012).
Importantly, similar patterns of gene expression have been observed in aneuploid
fission yeast, plants, mouse, and human cells (Sheltzer et al. 2012). Altogether,
these studies indicate that aneuploidy hampers cellular proliferation resulting in
transcriptional changes similar to those observed in cells affected by extrinsic
cellular stresses or in cells that experience hampered proliferation.
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5 Aneuploidy Alters Proteome Content of The Cell

A key question that arises from transcriptional analysis is whether changes in
mRNAs proportionally translate into changes in protein levels. Understanding how
changes in gene expression affect the proteome content of aneuploid cells is of
particular importance, as it could reveal novel cellular responses to aneuploidy
mediated by posttranscriptional mechanisms.

Quantitative proteome analyses indicate that on average, increases in gene copy
number lead to proportional increases in protein levels in all aneuploid strains
analyzed (Fig. 2a). Importantly, these results are independent of the method used to
generate the aneuploid strains, the growth conditions implemented, or mass spec-
trometry method utilized to quantify the proteomes. Utilizing stable isotope labeling
of amino acids in cell culture (SILAC) and liquid chromatography-mass spec-
trometry, quantification of protein abundances in 12 different disomic strains
revealed quantitative information for*70–80 % of all verified open reading frames
(ORFs) relative to wild-type cells (Dephoure et al. 2014). Specifically, it was shown
that on average, the levels of proteins encoded by the additional chromosome
increase by an approximate 2-fold. These results were reproduced when aneuploid
cells were grown in rich media and their proteome quantified utilizing a different
mass spectrometry approach referred to as isobaric tandem mass tag (TMT)-based
quantitative mass spectrometry (Dephoure et al. 2014). A similar conclusion was
reached using yet a another technique, multidimensional protein identification
technology or MudPIT, to analyze the proteome content of five aneuploid cells
isolated from random meiosis (Pavelka et al. 2010). Altogether, these analyses
indicate that a major consequence of gaining an extra chromosome is increased
protein synthesis. Therefore, gaining an extra chromosome leads not only to cellular
imbalances due to the extra activity of the proteins encoded on the duplicated
chromosome but also to increased burden on the protein quality control pathways
including protein synthesis, folding and turnover (see below). In addition, because
much of ATP utilization in the cell is devoted to protein synthesis, aneuploidy
causes a significant demand for energy, leading to a disruption in cellular metabolic
processes, independent of the identity of the chromosome gained.

6 Subunits of Macromolecular Complexes
are Significantly Attenuated in Aneuploid Cells

Proteome quantification of disomic yeast strains revealed that despite the general
correlation between increased gene copy number, mRNA and protein levels,
approximately 20 % of the proteins encoded by the genes located on duplicated
chromosomes do not scale up with copy number of their corresponding genes
(Fig. 3) (Dephoure et al. 2014). Neither growth conditions nor the quantitative
approach utilized affected the degree of attenuation, because quantification of
protein levels in aneuploid cells grown in selective or rich media, that were
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analyzed via two distinct mass spectrometry approaches showed reproducible
results. In addition, proteome analysis of five aneuploid strains generated by ran-
dom meiosis showed that 23–38 % of duplicated proteins were significantly
attenuated (Fig. 3b). These results indicate that although acquisition of an extra
chromosome leads on average, to 2-fold increases in protein levels of the added
genes, a large and statistically significant number of proteins do not increase pro-
portionally with copy number. Interestingly, analysis of the identity of the atten-
uated proteins revealed that most of the attenuated proteins are subunits of
macromolecular complexes. Enrichment of subunits of macromolecular complexes
among the attenuated proteins was observed in every aneuploid strain analyzed,
including 12 disomic strains generated by chromosome transfer and five aneuploid
strains generate by random meiosis.

Protein attenuation of subunits of macromolecular complexes is mainly mediated
by posttranslational mechanisms, most likely protein degradation. Indeed, ribosomal
footprinting analysis of two disomic strains demonstrate similar translation efficien-
cies for the proteins encoded by the duplicated genes, independent of whether the
cellular protein levels were attenuated (Dephoure et al. 2014; Thorburn et al. 2013).
Nevertheless, translational control may play a role in the attenuation of a small subset
of genes and remains to be investigated. In summary, these results provide direct
evidence that a major consequence of aneuploidy is increased protein degradation.

A hypothesis that could explain the attenuation of the protein levels of dupli-
cated genes is that protein stability of individual subunits is dependent upon their
ability to be incorporated into multi-subunit molecular assemblies (Fig. 3c). Cells
have evolved several mechanisms that facilitate complex assembly such as
co-transcriptional regulation and dedicated chaperone systems that help stabilize
unstable subunits so as to prevent their degradation [e.g. (Burgess and Zhang 2013;
Kunjappu and Hochstrasser 2014; Xie and Varshavsky 2001)]. Recently, analysis
of protein synthesis in Escherichia coli and yeast showed that subunits of macro-
molecular complexes are produced in equimolar amounts through similar synthesis
rates (Li et al. 2014). Acquisition of an extra chromosome disrupts such modes of
regulation, leading to the production of excess subunits that cannot be assembled
into stable complexes, and are therefore degraded. Consistently, analysis of the
ribosome and the nucleosome subunits indicate that these proteins are short-lived
unless assembled into their proper complexes (elBaradi et al. 1986; Gunjan and
Verreault 2003; Meeks-Wagner and Hartwell 1986; Tsay et al. 1988). In aneuploid
yeast, analysis of protein levels of duplicated subunits of several macromolecular
complexes showed a large range of subunit stabilities. Remarkably, almost every
complex analyzed contains at least one or more subunits that are degraded when
produced in excess. Conversely, most macromolecular complexes with the
exception of the nucleosome and ribosome contain at least one subunit that appears
to be stable on its own. These results indicate that for most complexes, a stable
scaffold protein may be required for complex assembly. Importantly, attenuation of
subunits of macromolecular complexes was also observed in immortalized human
cell lines harboring extra chromosomes (Stingele et al. 2012). These results indicate
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that, from yeast to humans, acquisition of extra chromosomes leads to increased
synthesis of unstable proteins that can create a burden on the protein folding and
degradation pathways of the cell.

7 Cellular Responses to Aneuploidy Are Mediated
by Transcriptional and Posttranscriptional
Mechanisms

Proteome analysis of aneuploid strains revealed that transcriptional changes in
aneuploid yeast associated with the ESR/slow growth signature translate into
changes in protein levels. As a result, downregulation of ribosomal genes, which is
a major part of the ESR/slow growth response, leads to lowered ribosome levels in
the aneuploid strains. Ribosomal footprinting of 2 disomic strains do not show any
signs of impaired translation. Therefore, the decreased ribosomal protein levels
observed in aneuploid cells while maintaining seemingly normal efficiencies of
protein synthesis may account for the hypersensitivity of aneuploid cells to drugs
that target the translation machinery.

In addition to changes in protein levels resulting from transcriptional changes,
clustering analysis revealed an additional signature of upregulated proteins common
among all aneuploid yeast strains analyzed (Fig. 2d, e) (Dephoure et al. 2014). This
novel protein signature, termed the aneuploidy-specific protein signature (APS),
was observed in 12 disomic strains generated by chromosome transfer and five
aneuploid strains obtained from random meiosis. Gene ontology enrichment anal-
ysis revealed that the APS proteins are associated with cellular responses to
oxidative stress and metabolic processes such as amino acid biosynthesis and
cellular bioenergetics. Interestingly, the intensity of the APS as measured by the
average increase of its 92 proteins, correlates with the size of the additional chro-
mosome, indicating that it may be a direct consequence of the cellular imbalances
resulting from the acquisition of an extra chromosome. Surprisingly, the corre-
sponding mRNA transcripts for most of the upregulated proteins are not increased
indicating that the upregulation in protein levels is mediated posttranscriptionally.
These results indicate that aneuploidy causes alterations in redox homeostasis and
metabolism (discussed below). An important question that remains to be investi-
gated is to identify the molecular mechanism by which the APS proteins are
upregulated. Ribosome footprinting analysis of disomic strains for chromosome V
and XVI suggest that posttranslational mechanisms mediate upregulation of the
APS proteins as no increases in translation efficiencies were detected. Therefore,
posttranslational modifications may certainly play a role as most of the 92 APS
proteins have been shown to be ubiquitinated or phosphorylated. Lastly, these
results highlight the importance of proteomic studies to potentially identify novel
biomarkers of aneuploid cells not detected by transcriptional analysis alone that
could be exploited therapeutically for the detection as well as targeting of aneuploid
cancer cells (Hanash and Taguchi 2010).
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8 A Major Consequence of Aneuploidy is Increased
Burden on the Protein Quality Control Pathways

Gaining extra chromosomes lead to increased protein synthesis, folding and turn-
over. As a result, aneuploid cells experience an increased burden on the protein
quality control pathways leading to proteotoxic stress. Several lines of evidence
support this hypothesis. Aneuploid cells are hypersensitive to high temperature, to
translation inhibitors such rapamycin and cycloheximide, to the Hsp90 chaperone
inhibitor geldanamycin, and to the proteasome inhibitor MG132. Introducing a
conditional loss-of-function allele of the proteasome lid subunit Rpn6 encoding
gene is synthetically lethal in two disomic strains and significantly decreases the
proliferative abilities of all several other disomic strains. In addition, aneuploid
yeast cells are prone to aggregate formation of endogenous proteins as well as
ectopically expressed hard-to-fold proteins (Oromendia et al. 2012). Most of the
signs of proteotoxic stress are present in aneuploid strains generated by chromo-
some transfer or recovered from random meiosis. Importantly, the identity of the
endogenous proteins that are prone to aggregation is unknown. An interesting
hypothesis that is yet to be investigated is that aggregate formation caused by
increased synthesis of proteins encoded by the duplicated genes could lead to the
sequestration of other abundant cellular proteins with essential housekeeping
functions, thereby causing a disruption in cellular homeostasis (Olzscha et al.
2011).

Interestingly, despite the lack of enrichment for cellular processes associated
with proteotoxic stress in the ESR/slow growth signature or the APS, several
proteins involved in protein quality control are upregulated in all aneuploid strains
analyzed. These include regulators of chaperone activity, protein folding, ubiqui-
tination, and protein trafficking. The upregulation of these proteins is consistent
with an increased demand of these processes in aneuploid cells but their functional
consequences remain to be studied. In support of an increased demand for protein
degradation, the proteasome levels in aneuploid strains showed a small but sig-
nificant increase compared to wild-type cells.

Other evidence in support of proteotoxic stress being a major consequence of
aneuploidy comes from the identification of genetic alterations that ameliorate the
detrimental consequences of aneuploidy (Torres et al. 2010). Several mutations in
genes that regulate protein turnover were identified in evolved aneuploid cells that
show improved fitness. In particular, mutations that introduce early stop codons in
the ubiquitin specific protease UBP6 (see below), as well as mutations in two E3
ligases, RSP5 and UBR1, and in RPT1, an essential subunit of the proteasome, were
identified. These results indicate that several of these mutations may improve the
fitness of aneuploid cells by helping them cope with protein imbalances associated
with aneuploidy. Altogether, these studies in aneuploid yeast raise the possibility
that aneuploid cancer cells experience profound proteotoxic stress. The increased
reliance of aneuploid tumor cells on the protein turnover pathways provide the
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rational for utilizing already approved proteasome inhibitors, such as Bortezomib,
and point to the development of novel approaches to target protein degradation
pathways in cancer cells.

9 Aneuploidy Alters Cellular Metabolism

Several lines of evidence indicate that metabolic processes are affected in aneuploid
cells. Gaining an extra chromosome leading to more protein synthesis increases the
demand for biomass production and ATP synthesis. In fact, increased burden on
cellular bioenergetics may explain several phenotypes associated with aneuploidy.
When compared to wild-type cells, disomic yeast strains exhibit increased glucose
uptake yet achieve a growth plateau at a smaller population size (measured by optical
density at 600 nm). Aneuploid strains lose viability after prolonged culturing in
stationary phase, indicating that these cells cannot survive for long periods of time
under low glucose conditions (Torres et al. 2007). In addition, intracellular ROS levels
are elevated in disomic yeast strains, and proteomic analyses suggest that aneuploid
cells respond to these increases by maintaining elevated levels of proteins associated
with redox stress (Dephoure et al. 2014). However, the source of the elevated intra-
cellular ROS levels remains to be determined. Interestingly, strains harboring YACs
with human or mouse DNA do not show increases in ROS levels, indicating that
increased DNA content is not responsible for this phenotype. One possibility is that
increased protein translation, folding and turnover creates high demand for ATP,
leading to an accumulation of ROS (Gorrini et al. 2013). Increased protein folding
leading to endoplasmic reticulum stress could also contribute to ROS accumulation
(Tu and Weissman 2002). Another yet not mutually exclusive possibility is that
altered metabolism due to the upregulation of anabolic processes alters redox
homeostasis in aneuploid cells (Gorrini et al. 2013). The fact that the average increase
in levels of theAPS,which includes ROS-associated proteins, strongly correlateswith
the size of the extra chromosome in the disomes, suggests that this response may be a
direct consequence of the acquisition of extra genes. Importantly, the functional
consequences of higher intracellular ROS levels urge the investigation as towhether it
constitutes a mechanism through which aneuploidy induces genomic instability.

10 Aneuploidy Induces Genomic Instability

How frequently chromosomes are missegregated in vivo is an important and dif-
ficult question to address in humans. It is clear that the occurrence of aneuploidy
varies depending on the tissue or cell type analyzed. Moreover, the fate of the
aneuploid cells in vivo is unknown. Given that aneuploidy inhibits proliferation and
lowers viability, aneuploid cells without further chromosomal alterations will most
likely not hyperproliferate or survive. However, if they do survive, an important
question that arises is whether aneuploidy on its own leads to increased genomic

156 E. Torres



instability thereby promoting other genomic alterations that might improve cellular
fitness, and potentially lead to neoplastic transformation. Studies in yeast suggest
that this is indeed a possibility, as aneuploid yeasts display increased genomic
instability compared to wild-type cells.

Studies of disomic yeast strains generated by chromosome transfer showed that
most of these strains displayed increased rates of gene mutations, chromosome
losses or homologous recombination events compared to wild-type cells (Sheltzer
et al. 2011). Aneuploid cells recovered from random meiosis also show high
chromosomal instability as they tend to lose or gain chromosomes (Zhu et al. 2012).
Whether recombination or mutation rates are also increased compared to euploid
cells in the latter strains remains to be determined. Consistent with aneuploidy
causing genomic instability, aneuploid yeast strains are sensitive to a variety of drugs
that induce genotoxic stress. The mere presence of extra DNA does not seem to
cause genomic instability in yeast because cells harboring YACs with human or
mouse DNA do not show similar phenotypes. Nevertheless, the molecular mecha-
nisms by which aneuploidy increases different aspects of genomic instability in each
disomic strain remains unclear. Increases in intracellular ROS could certainly lead to
increased genomic instability. Interestingly, the genomic instability traits observed
in aneuploid yeast do not seem to correlate with the size of the extra chromosome,
indicating that genomic instability could be due to aneuploidy-induced imbalances
in protein stoichiometry. Proteotoxic stress caused by introducing toxic amino acid
analogs, inhibition of the chaperone machinery or proteasome inhibition have been
shown to induce genomic instability in yeast (Chen et al. 2012; Shor et al. 2013).
Therefore, a plausible explanation for the increased genomic instability observed in
aneuploid strains is altered metabolism and/or proteotoxic stress. Direct evidence
could come from analyzing genomic instability phenotypes of aneuploid cells har-
boring genomic alterations that suppress proteotoxic or redox stress.

11 Genomic Alterations That Suppress
Aneuploidy-Associated Phenotypes

Yeast cells grown under stress conditions usually evolve and acquire genomic
alterations leading to improved fitness under that particular stress. For example,
cells grown under low glucose conditions amplify their high affinity glucose
transporters (Dunham et al. 2002). Cells grown in the presence of drugs acquire
mutations in the target genes leading to resistance (Hill et al. 2013). Due to
increased genomic instability, disomic strains grown in medium that select for the
presence of the extra chromosome quickly evolve and improve their proliferation
rates (Fig. 4). Karyotypic analysis of 52 evolved disomic yeast strains showed that
the majority of evolved strains maintained the extra chromosome suggesting that
genomic alterations other than chromosome loss are responsible for the improved
proliferation. Consistent with increased recombination rates, eight strains lost parts
of one copy of the duplicated chromosome while acquiring a duplication of parts of
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other chromosomes. Interestingly, four descendants of cells harboring an extra copy
of chromosome IV lost the entire copy of the additional chromosome and diploi-
dized, suggesting that cytokinesis may also be affected by aneuploidy.
Whole-genome sequencing of 12 evolved strains that kept the entire copy of the
extra chromosome revealed 43 gene mutations were present in those strains. Several
mutations that regulate protein turnover pathways and other cellular processes such
as metabolism and transcription were also mutated. Altogether, these results indi-
cate that aneuploidy leads to increased genomic instability and promotes the
acquisition of mutations in genes that regulate cellular processes that likely play
important roles in mediating the response to aneuploidy.

12 Increased Protein Turnover Suppresses Aneuploidy
Associated Phenotypes

Among the mutations that improve the fitness of aneuploid yeast strains are
loss-of-function mutations in the deubiquitinating enzyme UBP6. These mutations
lead to increased proteasomal activity, thus enhancing cellular protein turnover
(Hanna et al. 2006). Interestingly, they were identified in two different disomic
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strains, indicating that loss of UBP6 function may affect aneuploid strains inde-
pendent of the extra chromosome they carry. Indeed, deletion of UBP6 was shown
to improve the fitness of several aneuploid strains under standard growth condi-
tions. Strikingly, proteome analyses showed that loss of function of UBP6 results in
significant attenuation in the levels of several of the most upregulated proteins in all
aneuploid strains, independent of the identity of the extra chromosome. Gene
expression analyses indicate that protein attenuation upon loss of UBP6 is mediated
posttranscriptionally. The detailed mechanisms by which loss of UBP6 leads to
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Fig. 5 Hallmarks of aneuploidy. Gaining an extra chromosomes disrupts cellular homeostasis and
physiology. Aneuploidy causes a G1 delay due to cellular stress. Increased gene copy number
leads to increase protein synthesis causing an increased burden on protein quality control pathways
causing proteotoxic stress. Increased protein production demands higher energy utilization leading
to altered cellular metabolism. Increased reactive oxygen species (ROS) and genomic instability
are observed in almost every aneuploid strains. Genomic instability promotes the acquisitions of
genomic alterations that suppress several phenotypes associated with aneuploidy. Increased protein
turnover, due to the loss of UBP6, suppresses proteotoxic stress, lowers intracellular levels of ROS
and improves the fitness of several aneuploid strains
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such gross protein attenuation of upregulated proteins are not understood.
Nonetheless, a remarkable consequence of increased protein degradation mediated
by the loss of UBP6 is that several of the aneuploidy-associated phenotypes are
suppressed in almost every aneuploid strain analyzed (Fig. 5). These include
reduction of protein aggregate formation, suppression of proliferation defects in
several aneuploid strains grown under standard conditions and in most strains
grown under elevated temperatures, as well as the reduction in the levels of
intracellular ROS and significant amelioration of the APS. These results provide
strong evidence that proteotoxic stress is a major consequence of aneuploidy and
indicate that targeting pathways that help cells cope with such stress could be
exploited to specifically kill aneuploid cancer cells. Of high importance, identifi-
cation of the direct targets of UBP6 could shed light onto the molecular mecha-
nisms by which aneuploidy-associated phenotypes can be suppressed. Interestingly,
the human homologue of UBP6, USP14, shows loss of heterozygocity (LOH) in
33 % of humans cancers and is located next to the telomere of the short arm of
Chromosome 18, one of the most frequently lost chromosomes in tumors (Bamford
et al. 2004; Davoli et al. 2013). Therefore, the effect of USP14 loss of function in
human aneuploidy deserves further investigation.

13 Implications to Human Disease

In cancer, aneuploidy can certainly contribute to tumorigenesis by providing a
mechanism through which cells acquire extra copies of oncogenes and/or lose
tumor suppressors. Consistently, the distributions of tumor suppressor genes and
oncogenes strongly correlate with patterns of aneuploidy and copy number varia-
tion in cancer cells (Davoli et al. 2013). Furthermore, specific chromosomal ane-
uploidies are frequently found in a given type of cancer (Gordon et al. 2012;
Padilla-Nash et al. 2012). Studies in aneuploid yeast summarized in this chapter
indicate, however, that gaining an extra chromosome comes at a high cost.
Acquisition of an extra copy of a whole autosome disrupts cellular homeostasis and
physiology in a manner similar to that of other stresses. Increased protein synthesis
leading to proteotoxic stress and altered metabolism seem to be a key process
driving much of the consequences aneuploidy has on cellular physiology. Aneu-
ploid cancer cells must find ways to overcome such stress. Importantly, increases in
intracellular ROS due to aneuploidy has been shown to occur in human cells
following the induction of chromosome missegregation (Li et al. 2010). An
important implication of increased ROS levels in aneuploid cells is that they could
be a source of genomic instability in vivo, promoting genomic alterations that
suppress aneuploidy-associated phenotypes and promote tumor evolution.

Although frequently discussed in the context of cancer, aneuploidy is a main
cause of the detrimental symptoms in Down syndrome patients and likely plays an
active role in neurodegenerative diseases. Studies in yeast suggest that proteotoxic
stress may play an important role in both cases. The discovery that increased protein
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degradation ameliorates several aneuploid-associated phenotypes provides a proof
of principle and motivation to explore the potential of increased protein degradation
as a therapeutic strategy to improve the symptoms of Down patients and prevent or
delay the onset of Alzheimer’s or Huntington’s disease.
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The Diverse Effects of Complex
Chromosome Rearrangements
and Chromothripsis in Cancer
Development

Mirjam S. de Pagter and Wigard P. Kloosterman

Abstract
In recent years, enormous progress has been made with respect to the
identification of somatic mutations that contribute to cancer development.
Mutation types range from small substitutions to large structural genomic
rearrangements, including complex reshuffling of the genome. Sets of mutations
in individual cancer genomes may show specific signatures, which can be
provoked by both exogenous and endogenous forces. One of the most remarkable
mutation patterns observed in human cancers involve massive rearrangement of
just a few chromosomal regions. This phenomenon has been termed chromoth-
ripsis and appears widespread in a multitude of cancer types. Chromothripsis
provides a way for cancer to rapidly evolve through a one-off massive change in
genome structure as opposed to a gradual process of mutation and selection. This
chapter focuses on the origin, prevalence and impact of chromothripsis and
related complex genomic rearrangements during cancer development.
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1 Signatures of Genetic Changes in Cancer Genomes

Genetic changes in cancer genomes can arise from a variety of mutational mech-
anisms that are enforcing specific mutation signatures (Alexandrov et al. 2013).
Systematic evaluation of mutation signatures from large sets of cancer genomes has
uncovered more than 20 distinct profiles, associated with age of cancer diagnosis,
strand asymmetry in transcribed regions, defective homologous recombination and
drug treatment (Alexandrov et al. 2013).

A very striking mutation pattern observed in a large array of cancer genomes
involves local hypermutation characterized by C → T and C → G mutations at
TpC sites (Alexandrov et al. 2013; Nik-Zainal et al. 2012). This phenomenon has
been termed kataegis, which is Greek for thunderstorm. Kataegis occurs at sites of
structural genomic rearrangements and is mediated through deamination of cytosine
by APOBEC deaminases (Taylor et al. 2013). On the level of structural genomic
rearrangements, a remarkably complex pattern of changes has been described,
which involves reshuffling of tens to hundreds of genomic segments leading to
massively rearranged chromosomes (Stephens et al. 2011). This phenomenon has
been termed chromothripsis, Greek for chromosome (chromo) shattering (thripsis).
Chromothripsis has now been found in many different cancer types and appears a
major mutational force driving tumor development (Kloosterman et al. 2014). Here,
we will discuss our current understanding of chromothripsis, its origin and preva-
lence in cancer, functional consequences and relation to other types of complex
genome rearrangements identified in cancer genomes.

2 The Landscape of Structural Genomic
Rearrangements in Cancer

Many cancer genomes harbor structural changes, ranging from small
insertions/deletions (indels) to duplications, inversions, translocations and whole
chromosome aneuploidies. The number of acquired structural changes in cancer
genomes is typically smaller than for substitutions (Vogelstein et al. 2013). For
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example, prostate and colorectal tumors harbor 37 and 204-fold more single
nucleotide changes than structural variants, respectively (Fig. 1).

Insight into structural genomic rearrangements in cancer has first been obtained
through the identification of cytogenetically visible changes, such as whole-arm
translocations. The Philadelphia translocation (t(9;22)) was the first structural
variation observed in cancer (Rowley 1973). This translocation occurs in 95 % of
chronic myelogenous leukemia (CML) cases and results in the formation of an
oncogenic fusion gene between BCR and the tyrosine kinase gene ABL1 (Shtivel-
man et al. 1985). These initial findings have triggered subsequent investigation of
cytogenetic aberrations in cancer cells, culminating into the identification of hun-
dreds of cancer gene fusions (Mitelman et al. 2007).

The emergence of array-based techniques such as comparative genomic
hybridization (aCGH) and SNP-arrays (Box 1) has provided further crucial insight
into the impact of chromosomal rearrangements in cancer genomes (Beroukhim
et al. 2007). Pan-cancer analyses of thousands of datasets have uncovered genomic
regions and genes that show significant change in copy number across different
cancer types (Beroukhim et al. 2010; Zack et al. 2013), leading to the identification
of novel cancer genes.

Patterns of structural rearrangements can be substantially refined by the use of
next-generation sequencing technology. Paired-end sequencing strategies have been
instrumental to detect both copy number changes and balanced rearrangements in
the human genome simultaneously (Box 1) (Korbel et al. 2007). Application of this
methodology to cancer genomes has led to the classification of somatic rear-
rangements across all size ranges and types at unprecedented resolution (Campbell
et al. 2008) (Fig. 2). Sequencing data have shown that cancer genomes contain
more somatic rearrangements than previously anticipated (Stephens et al. 2009).
Also, rearrangement types may vary for different cancers, and even cancer sub-
types. This is illustrated by the predominance of tandem duplications among the
structural landscape of subsets of breast and ovarian cancers, whereas other subsets

Fig. 1 Numbers of somatic structural variants (SV) and single nucleotide variants (SNVs)
identified in prostate (Berger et al. 2011) and colorectal cancer (Bass et al. 2011)
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are mostly characterized by deletions (McBride et al. 2012). In addition, certain
tumor types show a markedly increased number of structural changes (e.g., breast
cancer and lung squamous cell cancer) when compared to others (kidney cancer)
(Yang et al. 2013). Cancer genomes harbor an overrepresentation of complex
changes, interchromosomal translocations and tandem duplications when compared
to germline rearrangements (McBride et al. 2012; Campbell et al. 2010; Hillmer
et al. 2011). Also, chromosomal rearrangements can arise throughout cancer
development and metastasis, leading to the detection of both shared and
lesion-specific rearrangements in several cancers (Campbell et al. 2010; Kloos-
terman et al. 2011a; Hoogstraat et al. 2014; Ding et al. 2010).

Fig. 2 The detection of genomic rearrangements from paired-sequencing data. a Individual reads
are aligned to a reference genome and discordant reads indicate the presence of rearrangements
(Box 1). Different SV types lead to different types of discordance; deletions show a larger distance
between aligned reads compared to the original DNA fragment length, whereas insertions will be
characterized by a smaller distance between aligned reads. In the case of an inversion and tandem
duplication the order of the reads in the pair is swapped, for inversions the reads will map to the
opposite DNA strand. In case of an inter-chromosomal translocation the reads of a read pair will
map to different chromosomes. b Intrachromosomal rearrangements lead to a change in orientation
of breakpoint junctions (Box 1). The orientation is indicated by using head (H), which indicates the
5′ end of a fragment (i.e. the lowest coordinate), and tail (T), indicating the 3′ end of a fragment
(i.e. the highest coordinate). Different rearrangement types lead to different orientation
conformations. The first letter corresponds to the fragment with the lowest coordinate and the
second to the fragment with the highest coordinate. TH orientation of the breakpoint junction
indicates the presence of a deletion, TT and HH indicate the presence of an inversion. HT (not TH)
orientation indicates a tandem duplication, due to the fact that the first letter corresponds to the
read with the lowest coordinate, which in the case of a tandem duplication is the second read in the
pair
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3 A Historical View on Complex Genome
Rearrangements and Cancer Development

The complexity of some chromosomal aberrations in cancer was noted well before
the introduction of high-resolution copy number and sequencing technologies. For
example, the vast majority of leukemia’s with a Philadelphia chromosome contain a
simple translocation between chromosomes 9 and 22, but very complex variants
involving up to five chromosomes have also been observed (Adhvaryu et al. 1988;
Kadam et al. 1990; Rosson and Reddy 1988). In addition, BCR-ABL positive cases
of leukemia without a karyotypically visible rearrangement have been described
(Fitzgerald and Morris 1991). Careful analysis of the BCR and ABL loci in these
cases has revealed complex exchanges of chromosome segments and it was sug-
gested that this was not a result of serial changes, but rather a single concerted
event, reminiscent of chromothripsis (Fitzgerald and Morris 1991). Furthermore,
cytogenetic analysis already revealed that amplification of MYCN in neuroblastoma
is a process involving complex genomic rearrangements (Nishi et al. 1992). Those
studies suggested that the complex and heterogeneous rearrangements of MYCN in
amplicons of neuroblastoma cell lines have preceded the amplification process. The
amplification of oncogenes may involve the separate propagation of chromosome
fragments by formation of episomes (double-minute chromosomes). Alternatively,
oncogene-containing chromosome segments can form an array within a chromo-
some and appear as homogeneously staining regions (HSR) (Cowell 1982; Shimizu
2009). HSRs are thought to arise via breakage-fusion bridge (BFB) cycles, a pro-
cess of chromosome fusion following telomere attrition (Shimizu et al. 2005; Co-
well and Miller 1983). Sequencing of amplified regions in cancer genomes revealed
a wide variety of configurations, including evidence for BFB cycles and integration
of double minutes into the genome (Bignell et al. 2007).

Further evidence for the importance of complex genomic aberrations for cancer
development was gained through cytogenetic studies that revealed recurrently
affected regions, such as the identification of complex rearrangements on 12q13 in
leiomyoma (Nilbert et al. 1989). The genes in this region are now known to be
important drivers for this cancer type and the underlying complex rearrangements
are frequently caused by chromothripsis. Osteosarcomas have a remarkably high
frequency of complex chromosomal rearrangements, many of which are recurrent
(Bayani et al. 2003). Notably, osteosarcomas form a cancer type with a very high
frequency of chromothripsis (Stephens et al. 2011).

Altogether, early cytogenetic studies have shown the involvement of complex
genomic rearrangements in cancer gene amplification, formation of cancer fusion
genes and recurrent changes on specific chromosomal regions. It is very likely that
at least some of these complex rearrangements resulted from chromothripsis. The
precise structure of complex rearrangements, their differences and impact on cancer
genes has only become apparent based on genome sequencing analysis (Box 1).
This has led to the discovery of chromothripsis as a distinct and well-discernable
entity among complex chromosome rearrangements.
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4 Hallmarks of Chromothripsis in Cancer Genomes

A key feature of chromothripsis is the geographic localization of rearrangements
within the genome and profound clustering of breakpoints on one or multiple parts of
one or a few chromosomes. The highly localized character of chromothripsis is
further emphasized by the fact that all rearrangements involve a single parental
chromosome (Stephens et al. 2011; Korbel and Campbell 2013). A second hallmark
is the presence of frequent oscillations between two copy number states due to the
loss of fragments to the cell, with loss-of-heterozygosity (LOH) in the lower copy
number (deleted) regions, but retainment of heterozygosity in regions with the

Fig. 3 Chromosome shattering and reassembly by chromothripsis. a One or multiple parts of one
or a few chromosomes are shattered into pieces in a one-off catastrophic event. Chromosome are
subsequently stitched back together in a random order by NHEJ, with some fragments being
incorporated into a double-minute chromosome and others getting lost to the cell. b Chromothripsis
typically leads to frequent oscillations between two copy number states in which the lower copy
state shows loss of heterozygozity (LOH)

170 M.S. de Pagter and W.P. Kloosterman



higher copy number (Stephens et al. 2011). Alternatively, three or more
copy-number states can be observed. Chromosome fragments can be incorporated
into a double-minute chromosome (Fig. 3), which can subsequently become
amplified if it contains an oncogene (Stephens et al. 2011; Rausch et al. 2012).
Additionally, partial chromosome duplication preceding or following chromoth-
ripsis may occur (Zhang et al. 2013). In those instances, three or more copy number
states can be observed: one for lost fragments, one for retained fragments and one or
more, high copy-number states for duplicated fragments and fragments of amplified
double-minute chromosomes (Stephens et al. 2011; Rausch et al. 2012). As a third
hallmark of chromothripsis, regions with the lower copy number are not caused by
simple tail-to-head deletions, but by a series of complex breakpoint junctions that
span the involved chromosomal regions. Fourth, all four possible intrachromosomal
breakpoint orientations (Fig. 2b) are represented in approximately equal numbers.
Finally, the overall chromosome configuration resulting from chromothripsis
involves joined fragments that are often not located in the proximity of each other in
the reference genome (Stephens et al. 2011).

These hallmarks of chromothripsis have led to a model, whereby one or multiple
parts of one or more chromosomes are shattered into pieces and randomly stitched
back together, with some parts getting lost to the cell, and others incorporated into a
double-minute chromosome (Fig. 3). This results in massively rearranged chro-
mosomes involving tens to hundreds of rearrangements. A lower limit for the
number of breaks constituting a chromothripsis event is not defined. It could be that
complex rearrangements constituted by just a few or many local breakpoints are
both caused by the same molecular trigger (Kloosterman and Cuppen 2013).

Chromothripsis is not restricted to cancer, but also occurs in the germline,
leading to severe congenital phenotypes (Kloosterman et al. 2011b, 2012; Chiang
et al 2012). The nature of chromosome breakage and reassembly appears similar for
cancer and germline, although germline chromothripsis rearrangements have sub-
stantially less breakpoints and display a more balanced state (Kloosterman et al.
2011b, 2012; Chiang et al 2012). Both differences are likely due to strong selective
pressure against catastrophic DNA damage during embryonic development.
Alternatively, they could reflect differences in chromothripsis mechanisms (Zhang
et al. 2013; Kloosterman and Cuppen 2013).

5 The Mechanism Behind Chromothripsis

Although chromothripsis has been found in many different cancer types and appears
a major mutational force driving tumor development, the precise origin of chro-
mothripsis is only beginning to be understood. The vast majority of chromothripsis
breakpoint junctions are characterized by microhomology of 2–4 nt (Stephens et al.
2011; Rausch et al. 2012; Morrison et al. 2014). This is consistent with repair of the
DNA fragments by nonhomologous end-joining (NHEJ) (Moore and Haber 1996).
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Several hypotheses and experimental data have shed light on possible causes of
chromothripsis (Stephens et al. 2011; Zhang et al. 2013; Kloosterman et al. 2012;
Holland and Cleveland 2012; Forment et al. 2012; Maher and Wilson 2012). The
most compelling explanation concerns the formation of micronuclei that capture
(part of) one or multiple chromosomes following chromosome segregation errors
(Crasta et al. 2012; Hatch et al. 2013). This model for chromothripsis formation
provides an elegant explanation for the clustering of rearrangements to one or a few
chromosomes, because these are physically separated during DNA damage for-
mation and repair, but can rejoin the other chromosomes in the nucleus during
subsequent cell divisions (Crasta et al. 2012; Hatch et al. 2013). It has been shown
that repair of DNA damage is defective and/or delayed in micronuclei due to
defects in DNA damage response signaling (Crasta et al. 2012; Terradas et al.
2009). Chromosomes in micronuclei showed γ-H2AX foci, but lacked efficient
recruitment of its downstream components of the DNA damage response, leading to
extended persistence of γ-H2AX foci in the micronuclei (Crasta et al. 2012). Fur-
thermore, DNA replication in micronuclei is asynchronous with the primary
nucleus as many micronuclei show DNA replication in G2-phase (Crasta et al.
2012). Premature chromosome compaction (PCC) is a well-known mechanism that
can lead to pulverization of chromosomes (Johnson and Rao 1970; Sperling and
Rao 1974). If micronuclei enter mitosis before completion of DNA replication PCC
can occur, leading to the occurrence of massive amounts of DNA double-stranded
breaks (DSBs) (Crasta et al. 2012; Donley and Thayer 2013). This damage occurs
in the first cell cycle following micronuclei formation (Crasta et al. 2012). Indeed,
chromosome paintings of micronucleated cells demonstrated small fragments from
one or two chromosomes (Crasta et al. 2012). A study by Hatch et al. (2013)
uncovered a possible explanation for DNA damage to chromosomes contained in
micronuclei. The authors showed a strong correlation between micronuclear
envelope breakdown and the occurrence of massive DNA damage, although it
remains unknown how nuclear envelope breakdown exactly leads to this damage
(Hatch et al. 2013). Recent work has now demonstrated that chromosomes captured
in micronuclei can undergo massive genomic rearrangements, including all the
known hallmarks of chromothripsis as observed in cancer genomes (Zhang et al.
2015), thus providing experimental proof for a mechanism causing chromothripsis.

Although the micronucleus model has now been tested experimentally, other
possible causes of chromothripsis may exist, including the influence of exogenous
sources of DNA damage during mitosis. It has been suggested that free radicals and
ionizing radiation can trigger chromothripsis rearrangements during mitosis when
the chromosomes are highly condensed and DNA damage signaling is suppressed
(Stephens et al. 2011; Zhang et al. 2011, 2013; Kloosterman and Cuppen 2013;
Holland and Cleveland 2012; Maher and Wilson 2012). External damage occurring
during this state of the cell cycle could possibly slice through multiple, closely
located, segments of one or a few chromosomes, thereby explaining the localized
character of chromothripsis (Stephens et al. 2011; Zhang et al. 2013).
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Finally, it has been suggested that the occurrence of repeated BFB-cycles asso-
ciated with telomere attrition could lead to chromothripsis rearrangements (Stephens
et al. 2011; Sorzano et al. 2013). Telomere attrition leads to dicentric chromosomes,
which form an anaphase bridge when the centromeres are pulled to opposite
daughter cells during anaphase. The dicentric chromosome subsequently breaks at a
random location between the two centromeres and fragments of this break are
inherited by the daughter cells (Sorzano et al. 2013). It has been suggested that the
dicentric chromosome may acquire the massive DNA damage seen in chromoth-
ripsis at the cleavage furrow during cytokinesis in a one-off event (Holland and
Cleveland 2012) or that successive BFB-cycles, over the course of multiple cell
divisions, are responsible for chromothripsis rearrangements (Sorzano et al. 2013).

Repeated BFB-cycles can explain the clustering of rearrangements near telo-
meres. However, BFB-cycles characteristically lead to multiple amplified copy
number states, which is inconsistent with the two copy number states typically
detected in chromothripsis. Furthermore BFB-cycles lead to an enrichment of
inverted-type rearrangements, while rearrangement orientations in chromothripsis
are randomly distributed (Bignell et al. 2007; Korbel and Campbell 2013; Zhang
et al. 2013). A more plausible suggestion is the incorporation of lagging dicentric
chromosomes into a micronucleus, rather than the nucleus of one of the daughter
cells. In this way, telomere attrition may facilitate the occurrence of chromothripsis
by inducing micronuclei formation (Holland and Cleveland 2012; Li et al. 2014). In
acute lymphoblastic leukemia (ALL) the occurrence of dicentric chromosomes due
to BFB-cycles or a germline Robertsonian translocation preceded chromothripsis,
possibly through micronuclei formation after the formation of an anaphase bridge
by the lagging chromosome (Li et al. 2014).

6 Other Types of Complex Genomic Rearrangements
in Cancer Genomes

Prostate cancers exhibit patterns of complex rearrangements related to chromoth-
ripsis, characterized by chains of translocations and deletions, that occur in a highly
interdependent manner (Fig. 4a). This phenomenon has been termed chromoplexy
(from the Greek pleko, which means to weave or braid) (Baca et al. 2013).
Chromoplexy chains typically contain three to over 40 rearrangements, involving
one to up to ten chromosomes. A key characteristic is the occurrence of ‘deletion
bridges’, small deletions between fusion junctions of translocation rearrangements in
a subset of rearrangements, although chromoplexy in general seems to be a relatively
copy-neutral process, when compared to chromothripsis (Zhang et al. 2013; Baca
et al. 2013). Chromoplexy has been detected in 88 % of prostate tumors and fre-
quently accounts for the dysregulation of prostate cancer genes, often disrupting
multiple genes coordinately. Strikingly, two or more separate chromoplexy chains
were detected in 63 % of prostate tumors (Baca et al. 2013). Where chromothripsis
typically leads to a very high number of rearrangements in one event, multiple
chromoplexy events can occur in successive cell cycles (Fig. 4b) (Baca et al. 2013).
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Chromoplexy rearrangements are usually not as highly localized as chromothripsis,
as chromothripsis typically involves only one or a few chromosomes, whereas
chromoplexy can involve up to ten chromosomes (Stephens et al. 2011; Baca et al.
2013). Furthermore, the total number of rearrangements in chromoplexy is smaller
than for chromothripsis. Also, the relatively high number of (large) deletions seen in
chromothripsis is not found in chromoplexy (Baca et al. 2013). Thus, chromoplexy
could be regarded as a phenomenon involving rearrangements of intermediate
complexity. In ETS + prostate cancer, well-known ERG fusions (e.g. TMPRSS2-

Fig. 4 Other mechanisms for complex rearrangements. a Chromoplexy. Multiple chromosomes
undergo one or multiple DSBs (solid lines indicate breaks). Chained translocations are formed
when chromosomes are reassembled with deletion bridges spanning translocations in some cases.
In general, chromoplexy leads to fewer copy number alterations when compared to chromothripsis.
b Differences between chromothripsis and chromoplexy. Chromothripsis generates a large number
of breakpoints in a one-off catastrophic event. Chromoplexy leads to fewer breakpoints per event,
but multiple chromoplexy chains can be formed in one cell in subsequent cell cycles. Due to this,
chromothripsis usually leads to extreme clustering of breakpoints, whereas chromoplexy
breakpoint clustering is less extreme. c Chromoanasynthesis is a replication-dependent process.
Replication fork collapse leads to serial microhomology-mediated template switching leading to
the formation of a derivative chromosome showing inversions and deletions, but also duplications
and triplications of genomic regions
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ERG) frequently result from chromoplexy (58 %) (Baca et al. 2013). This clearly
emphasized the oncogenic capability of chromoplexy in prostate tumors.

Like chromothripsis, each chromoplexy chain is suggested to form during a
one-off catastrophic event, which is supported by the fact that both ends of each
break are involved in chained translocations. A mechanism for the occurrence of
this phenomenon remains to be established, but chromoplexy in ETS + tumors
involves highly transcribed regions, which are colocalized in interphase nuclei,
suggesting a mechanistic coupling of chromosome rearrangement and transcription
(Baca et al. 2013).

An alternative category of complex genomic rearrangements was described in
patients with developmental delay and cognitive anomalies (Liu et al. 2011).
Chromoanasynthesis (anasynthesis for reconstruction) is characterized by inter-
spersed changes in copy number, including duplications, triplications and deletions,
combined with translocations and inversions (Fig. 4c). Like chromothripsis, chro-
moanasynthesis rearrangements are highly localized, usually involving only a
single chromosome. Breakpoint junctions of chromoanasynthesis rearrangements
frequently show microhomology or templated sequence insertions (54–1542 bp)
(Liu et al. 2011). Despite the similarities between chromothripsis and chromo-
anasynthesis there are marked differences concerning rearrangement clustering and
copy number changes (Zhang et al. 2013; Kloosterman and Cuppen 2013; Holland
and Cleveland 2012). Chromoanasynthesis is characterized by multiple copy
number states on a single chromosome due to a combination of deletions, dupli-
cations and triplications, as opposed to chromothripsis, where deletions are fre-
quently observed, but typically no duplications or triplications are found (Zhang
et al. 2013; Liu et al. 2011). Furthermore, detailed analysis of chromoanasynthesis
breakpoint junctions revealed that these lack the typical double-strand break sig-
natures that are found in chromothripsis (Kloosterman and Cuppen 2013).

The templated insertions and microhomology found at breakpoint junctions in
chromoanasynthesis rearrangements are a signature of replication-based mecha-
nisms, specifically microhomology-mediated breakage-induced repair (MMBIR)
(Liu et al. 2011; Carvalho et al. 2009; Zhang et al. 2009). MMBIR is initiated by a
broken DNA replication fork and leads to the incorporation of templated sequences
of rearranged segments through serial, microhomology-mediated template switch-
ing, explaining the occurrence of multiple copy number states (Fig. 4c) (Liu et al.
2011; Hastings et al. 2009).

7 Methods for Identificaton of Complex Genomic
Rearrangements in Cancer Genomes

Despite the major technical advances in the past decades (Box 1), the detection of
genomic rearrangements remains complex due to both technical issues related to
next-generation DNA sequencing, such as short sequence reads and small library
insert size, and biological factors, such as the occurrence of (highly) repetitive
regions, overlapping SVs and the complexity of breakpoints. Although different
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Table 1 Variation in criteria and methods used for chromothripsis and chromoplexy detection

Study (type) Criteria Technique (sample size) Detection tool

Stephens et al.
(2011)
(Chromothripsis)

(1) Tens to
hundreds of
genomic
rearrangements that
show geographic
localization within
the genome
(2) Pronounced
clustering of
breakpoints on
chromosomes or
chromosome arms
(3) Rearranged
regions show
frequent oscillations
between two and
occasionally three
copy number states
(4) Regions with
copy number 1 are
caused by a series
of complex
rearrangements that
span the involved
region and not by
simple deletions
(5) Heterozygosity
is retained in
regions with higher
copy number
(6) The complex
rearrangements
represent all four
intrachromosomal
breakpoint
orientations in
approximately
equal numbers
(7) The two
conjoined
fragments of
chromosomes at
each breakpoint
fusion are often not
located in the
proximity of each
other on the
reference genome

Paired-end sequencing,
SNP array (776)

In-house
SV/CNA
detection tools

(continued)
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Table 1 (continued)

Study (type) Criteria Technique (sample size) Detection tool

(8) Rearrangements
involve a single
parental copy of the
chromosome
(9) Double minute
chromosome may
form

Magrangeas
et al. (2011)
(Chromothripsis)

Identical to criteria
set by Stephens
et al. (2011)

SNP array (764) Partek Genomic
Suite

Rausch et al.
(2012)
(Chromothripsis)

At least 10 changes
in segmental copy
number involving
two or three
copy-number states
per chromosome

Paired-end/long-mate-pair
sequencing, SNP array
(605)

PEMer tool and
in-house tools

Kim et al. (2013)
(Chromothripsis)

(1) At least 10
CNAs localized to
one chromosome
(2) Occurrence of
breakpoints is
random e.g. the size
of neighboring
segment is similar

aCGH, SNP array (8227) In-house statistic
tool

Malhotra et al.
(2013)
(Chromothripsis)

Breakpoints are
assigned to the
same breakpoint
cluster if:
(1) Breakpoints are
located within
100 kb of each
other in the
reference genome
(2) Different loci
share breakpoint
calls, indicating
interconnection
between
breakpoints
Breakpoint clusters
are defined as
complex and
resulting from a
one-off event when:
(3) No more than
three copy number
states are detected

Paired-end sequencing, de
novo assembly (64)

HYDRA-MULTI
and in-house tools

(continued)
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Table 1 (continued)

Study (type) Criteria Technique (sample size) Detection tool

(4) A maximum of
one amplified copy
number state
exceeding four
predicted copies is
present in the
region and this is
not a focal
amplification of a
contiguous
amplified region.
Chromothripsis:
(5) At least 10 or
more clustered
breakpoints and
copy number
profiles are present
that meet all four
criteria described
above.

Zack et al.
(2013)
(Chromothripsis)

(1) Unexpectedly
large number of
CNAs on one
chromosome
compared to the
CNA frequency of
the sample
(2) CNAs on a
single chromosome
are highly localized,
discordant with
what is expected by
chance
(3) CNAs lead to
copy number
changes of +1 or −1
and are
non-overlapping

SNP array (4934) In-house method,
to be published

Cai et al. (2014)
(Chromothripsis)

(1) Significant
clustering of
breakpoints
(2) Segmental copy
number changes

Paired-end/mate-pair
sequencing,
whole-genome
sequencing, SNP array,
aCGH (18,394)

Scan-statistic
based algorithm

Govind et al.
(2014)
(Chromothripsis)

(1) Genome
localization: low
number of
chromosomes
involved in

Whole-genome
sequencing (21)

Various tools for
SV detection,
ShatterProof for
detection of
chromothripsis

(continued)
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Table 1 (continued)

Study (type) Criteria Technique (sample size) Detection tool

complex
rearrangements
(2) Chromosome
localization: highly
localized SV
clustering on
chromosome
(3) Low number of
copy number states,
but high number of
copy number
oscillations
(4) Translocation
clustering: high
number of localized
translocations
(5) Insertions at
translocation
breakpoints: high
fraction of
translocations
where short
insertions are found
(6) High retained
heterozygosity in
areas between
CNVs
(7) Presence of a
non-synonymous
TP53 mutation
(does currently not
influence
chromothripsis
score)

Baca et al.
(2013)
(Chromoplexy)

ChainFinder
determines whether
genomic
rearrangements
where formed in an
interdependent
manner and assigns
breakpoints that
where formed
interdependently to
the same
(rearrangement)
chain (e.g. cycle)
(1) Two
breakpoints are

NGS, paired-end
sequencing (57)

dRanger
algorithm for
detection of SVs,
ChainFinder for
detection of
chromoplexy

(continued)
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types and sizes of simple SVs can be detected relatively straightforward, the dis-
tinction of chromothripsis from other complex rearrangement types is challenging.
Several bioinformatics tools have been developed to specifically detect chromoth-
ripsis or chromoplexy rearrangements (Baca et al. 2013; Cai et al. 2014; Govind
et al. 2014; Malhotra et al. 2013; Kim et al. 2013). An essential part of these tools is
their definition of criteria to distinguish each type of complex genomic rearrange-
ment. These criteria are not entirely fixed across different studies, leading to dif-
ferences in sensitivity for detection of complex rearrangement types (Table 1).

A new software tool, termed ShatterProof, was developed to standardize
detection and quantification of chromothripsis (Govind et al. 2014). ShatterProof
identifies highly mutated regions and subsequently scans these for chromothripsis
based on seven variables (Table 1): (1) Genome localization: a high score indicates
a much higher SV density on the investigated chromosome than on other chro-
mosomes; (2) Chromosome localization: a high score indicates a high SV density in
the region compared to the SV density of the total chromosome; (3) Aberrant
CNVs: The presence of a low number of copy number states but a high number of
copy number oscillations leads to a high score; (4) Translocation clustering: regions
that show a high number of localized translocations are given a high score;
(5) Insertions of translocation breakpoints: regions with a high fraction of trans-
locations where short insertions are found receive a high score; (6) Amount of
retained heterozygosity: regions that retained heterozygosity in areas between
CNVs receive a high score; (7) TP53 mutation; the presence of non-synonymous

Table 1 (continued)

Study (type) Criteria Technique (sample size) Detection tool

assigned to the
same chain if the
p-value for the
independent
generation of the
breakpoints is
rejected with a
false-discovery rate
>10−2.
(2) All scenarios are
considered for one
or more
rearrangements in a
cycle to occur
independently.
Only if each
scenario is rejected
with a family-wise
error rate <10−2, all
rearrangements in a
cycle are assigned
to the same chain
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TP53 mutations is reported back, but does not influence the chromothripsis score.
An overall chromothripsis score is determined per region and reported back to the
user. The higher the overall score, the more chromothriptic the region is. Although
this tool provides a standardized pipeline for detection of chromothripsis, Shat-
terProof uses SV calls generated by other tools that have varying outcomes, thereby
also influencing the outcome of ShatterProof, affecting the robustness of the tool.

Other tools for chromothripsis detection required either genome sequencing data
(Malhotra et al. 2013), or copy number profiles from arrayCGH or SNParray (Cai
et al. 2014; Kim et al. 2013). The differences between each of these tools mainly
concern assumptions on the numbers of breaks involved, the numbers of copy
number states allowed and the clustering of breakpoints within chromosomes
(Table 1).

Baca et al. (2013) developed an algorithm specifically for detection of chrom-
oplexy chains, termed ChainFinder. This algorithm identifies genomic rearrange-
ments and their associated deletions that appear to have arisen interdependently
from combined analysis of somatic breakpoints junctions and segmented copy
number profiles. In order to do so, ChainFinder first identifies potential deletion
bridges and subsequently performs a statistical analysis of all closely neighboring
breakpoint pair distances to identify chain-like rearrangement patterns. Next,
ChainFinder determines the probability of observing the two detected fusion
breakpoints independently (i.e., not formed in the interdependent manner as
breakpoints formed in a chain). Only breakpoints fulfilling the criteria for inter-
dependent formation are assigned to chains (Table 1). It has been suggested that
ChainFinder may be used in a broader sense to distinguish chromoplexy and
chromothripsis events from other non-associated rearrangements on the same
chromosome or its other parental counterpart (Zhang et al. 2013).

8 Prevalence of Chromothripsis in Human Cancer

Since its initial discovery in 2011, chromothripsis has been observed in many
cancer types. Current pan-cancer estimates of the frequency of chromothripsis range
from 1 to 2 % (Stephens et al. 2011; Kim et al. 2013) to 5 % (Zack et al. 2013).
However, at the level of individual cancer types marked differences have been
observed (Fig. 5). These estimates are dependent on three main factors. First, the
detection methods used in several studies have variable capacity to detect chro-
mothripsis (Box 1). High-resolution sequencing will provide insights into
copy-neutral rearrangements and smaller changes, whereas array-based methods
only provide copy number measurements. As a result, a higher estimate for the
frequency of chromothripsis is obtained from whole-genome sequencing data
(Kloosterman et al. 2014). Second, since its initial discovery in 2011, several
studies have used different criteria to define chromothripsis (Table 1). Compre-
hensive criteria for inference of chromothripsis have only recently been outlined in
detail, but are applicable to next-generation sequencing data only (Korbel and

The Diverse Effects of Complex Chromosome Rearrangements … 181



Fig. 5 Occurrence of chromothripsis in different tumor types
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Campbell 2013). Third, biases with respect to sample selection have a strong
influence on reported rates for chromothripsis and should be taken into account.
Retinoblastoma tumors with a lack of mutations in RB1 display a chromothripsis
frequency of 27 % (3/11) (McEvoy et al. 2014), whereas, the fraction of chro-
mothripsis in retinoblastoma in general is much lower (3/94) (McEvoy et al. 2014).
Also, tumor cell lines show an overrepresentation of chromothripsis when com-
pared to primary tumors (Cai et al. 2014).

A consistently high frequency of chromothripsis is displayed by genomes of
glioblastoma as defined by copy number profiling [16 %, (Zack et al. 2013)] and
genome sequencing [39 %, (Malhotra et al. 2013)]. In another study complex
genomic changes in glioblastoma were also noted at a high frequency (Yang et al.
2013). In most tumors the complex changes were concentrated on genes known to
drive glioblastoma formation, including gain of EGFR and loss of CDKN2A. High
rates of chromothripsis were also found in bone cancers (25 %), and in most of
these tumors multiple chromosomes are involved (Stephens et al. 2011).

Chromothripsis further appears to occur at high frequency in specific subtypes or
selected groups of samples. A strong association has been found between chro-
mothripsis and mutations in TP53 in medulloblastoma (Rausch et al. 2012). Vir-
tually all medulloblastoma of sonic-hedgehog subtype (SHH-MB) that are TP53
mutated display chromothripsis, whereas SHH-MB without TP53 mutations show
no chromothripsis (Rausch et al. 2012). Several patients carried a germline TP53
mutation, leading to Li-Fraumeni syndrome, characterized by a high risk for cancer
development. Various other subtypes of medulloblastoma show much lower fre-
quencies of chromothripsis (Rausch et al. 2012), but the association of TP53 with
chromothripsis has been confirmed in group 3 medulloblastoma as well (Northcott
et al. 2012). The association between TP53 mutation and chromothripsis has been
further substantiated in acute myeloid leukemia, where 47 % of cases with TP53
mutation harbor chromothripsis versus 1 % of cases without TP53 mutation
(Rausch et al. 2012). Chromothripsis in urinary bladder cancer also seems corre-
lated with TP53 mutation (Morrison et al. 2014). These findings suggests that the
presence of TP53 mutations in specific cancer types makes the cell more permissive
for the occurrence of chromothripsis or provides a selective advantage for cells
carrying chromothripsis rearrangements (Rausch et al. 2012; Zhang et al. 2013).
However, the association between TP53 mutation and chromothripsis is certainly
not prominent in all cancers. Uterine leiomyomas contain chromothripsis with more
than 20 breaks in 17 % of the cases (Mehine et al. 2013), while none of these carry
TP53 mutations. In fact, some of the leiomyomas harboring chromothripsis were
benign tumors.

Genetic predisposition for chromothripsis was also demonstrated by the genomic
analysis of childhood acute lymphoblastic leukemia with amplifications on chro-
mosome 21 (iAMP21 ALL) (Li et al. 2014). Around 3 % of the patients with this
type of ALL, carry a constitutional Robertsonian translocation, involving chro-
mosome 15 and 21 (rob(15;21)c). Patients with rob(15;21)c have a 2700-fold
increased risk for developing iAMP21 ALL. This is attributed to the dicentric
Robertsonian chromosome, which may undergo aberrant chromosome segregation
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during mitosis. Consequently, chromothripsis may occur following pulverization
of the Robertsonian lagging chromosome in micronuclei (Crasta et al. 2012;
Li et al. 2014). Interestingly, the creation of a dicentric chromosome by BFB-cycles
in ALL iAMP21 in sporadic cases was followed chromothripsis by four out of five
patients, indicating a predisposition to chromothripsis by the presence of a dicentric
chromosome in this specific subtype of ALL (Li et al. 2014).

A final remarkable difference in chromothripsis rates in different subtypes of
tumors is highlighted by a recent study on ependymoma, a tumor of the central
nervous system (Parker et al. 2014). The authors show that virtually all ependy-
moma’s of supratentorial origin contain chromothripsis leading to C11orf95–RELA
fusions. In constrast, none of the posterior fossa ependymoma’s show chromoth-
ripsis. These differences between the two types of ependymoma’s are unexplained,
but may suggest chromothripsis-predisposing cellular conditions for the supraten-
torial type.

9 Chromothripsis Can Drive Cancer Development
by Establishing Oncogenic Lesions

The destructive nature of chromothripsis implies that it generally is not an
advantageous event for cell survival. Yet, chromothripsis has been identified in a
multitude of cancers suggesting that the maintenance of chromothripsis is due to a
positive effect of the event on cancer cell survival.

Investigation of chromothripsis breakpoints has revealed clear effects on cancer
genes through a variety of mechanisms. First, tumor suppressor genes are com-
monly disrupted. The TP53 tumor suppressor gene is located on the p arm of
chromosome 17 and is a frequent target of chromothripsis in a variety of tumors
(Cai et al. 2014). Loss of CDKN2A is another recurrent aberration resulting from
chromothripsis in glioblastoma (Yang et al. 2013), diffuse large B-cell lymphoma
(Morin et al. 2013) and chronic lymphocytic leukemia (Stephens et al. 2011).
Similar tumor-driving changes have been observed for chromoplexy in prostate
cancer, where 46 % of the tumor specimens showed disruption of at least one tumor
suppressor, among which TP53, PTEN, CDKN1B, NKX3-1 and RB1 (Baca et al.
2013). RB1 has also been discovered as a recurrent target of chromothripsis in
retinoblastoma samples without RB1 point mutations (McEvoy et al. 2014).

A second mechanism by which chromothripsis may promote tumor development
concerns the amplification of oncogenes. Although chromosomal regions affected
by chromothripsis typically contain only two copy number states, some regions
display high-level amplification within a chromothripsis context (Stephens et al.
2011; Rausch et al. 2012). This observation explained formation of double-minutes
containing oncogenes, which are beneficial to the cancer cell if present in high
numbers. Both MYC and MYCN are frequent targets of double-minute amplification
as a result of chromothripsis in neuroblastoma and medulloblastoma (Rausch et al.
2012; Kim et al. 2013; Molenaar et al. 2012). Other targets of amplification by
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chromothripsis involve the cell division kinase CDK4 (neuroblastoma), the
Sonic-Hedgehog signaling genes GLI2 and BOC (Sonic-Hedgehog subtype of
medulloblastoma) and MDM2 (glioblastoma) (Rausch et al. 2012; Kim et al. 2013;
Molenaar et al. 2012). Complex genomic rearrangements involving EGFR ampli-
fication in glioblastoma were also attributed to double-minute chromosome for-
mation (Yang et al. 2013).

Third, chromothripsis involves the connection of multiple remote chromosomal
fragments into a newly formed derivative chromosome. By chance each of the
resulting junctions may result in the formation of novel fusion genes. Indeed,
in-frame fusion genes are frequently formed due to chromothripsis. Those fusions
may simply be a coincidence of the joining of two chromosome segments and lead
to fusion genes without any role in tumor development. For example, the VCaP
prostate cancer cell line contains an extreme example of chromothripsis involving
573 breakpoints on chromosome 5q (Alves et al. 2013). Eighteen of the breakpoints
resulted in potential in-frame fusions, of which only five could be confirmed at the
mRNA level. In general, the number of fusion genes created by chromothripsis does
not appear to be higher than what is expected by chance. Furthermore, chro-
mothripsis does not lead to a higher number of fusion genes than simple structural
genomic rearrangements (Stephens et al. 2011; Alves et al. 2013). Several studies
put forward strong evidence for the oncogenic capacity of some fusion genes
caused by complex genomic rearrangements. An interesting example involves
fusions of the non-coding gene PTV1 in medulloblastoma (Northcott et al. 2012).
PTV1 is frequently co-amplified together with MYC and a large proportion of MYC-
amplified medulloblastoma display PTV1-MYC fusions resulting from chromoth-
ripsis. The PTV1 gene is a host for miR-1204, which is highly expressed in samples
with PTV1-MYC fusions and antagonizing expression of miR-1204 in a medullo-
blastoma cell line abrogates cell growth. In a recent study, whole genome
sequencing was performed for ependymoma (Parker et al. 2014). A large fraction of
the supratentorial subtype of ependymoma contains novel fusions between
C11orf95 and RELA. The latter gene is a transcription factor in the NF-κB pathway
and translocates spontaneously to the nucleus as a result of fusion to C11orf95.
Chromothripsis caused the C11orf95-RELA fusion in all examined tumors in this
study.

A fourth effect of chromothripsis rearrangements may be the disturbance of gene
expression either through direct gene deletion or by interference with gene regu-
lation (Stephens et al. 2011). Such examples have been reported in uterine leio-
myomas, where expression of HMGA1 and HMGA2 is upregulated as a result of
chromothripsis breakpoints (Mehine et al. 2013). In addition the genomic region
involving COL4A5 and COL4A6 was recurrently rearranged leading to increased
expression of the nearby gene IRS4, a downstream target of insulin-like growth
factor I, which is known to be involved in leiomyoma development (Mehine et al.
2013).

Finally, the cataclysmic nature of chromothripsis allows simultaneous targeting
of multiple cancer genes (Fig. 6). Analysis of chromothripsis in medulloblastoma
revealed amplification of both MYCN and GLI2 on a single double minute
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chromosome resulting from chromothripsis (Rausch et al. 2012). Furthermore,
several instances of double hits of cancer genes were caused by chromoplexy in
prostate cancer, including formation of a TMPRSS2-ERG fusion gene together with
disruption of the tumor suppressor SMAD4 by a single chain of rearrangements. In
exceptional cases three lesions were described that affected cancer genes, such as
simultaneous disruption of CDKN2A, WRN and FBXW7 in chordoma (Stephens
et al. 2011).

Altogether, chromothripsis and other types of complex genome rearrangements
are an important pan-cancer mechanism causing oncogenic lesions. Large-scale
cancer genome analysis demonstrated that complex rearrangements are among the
first rearrangements appearing in cancer genomes and may thus contribute to tumor
initiation (Malhotra et al. 2013). Nevertheless, effects on cancer genes are not
identified in all instances. Three neuroblastoma tumors were reported with chro-
mothripsis on chromosome 5, without causing a notable tumor-driving lesion
(Molenaar et al. 2012). In these cases chromothripsis may merely be a coincidental
passenger event, apparently without a negative effect on cell survival. Such a
scenario is underscored by the recent finding of temporal chromothripsis during the
course of chronic lymphocytic leukemia development (Bassaganyas et al. 2013).
This study indicated that a cancer subclone containing chromothripsis occurred as a
secondary event years after initiation of disease. Subsequent rapid expansion of this
subclone contributed to the aggressiveness, but the chromothripsis clone did not
survive chemotherapeutic treatment and was not found in the relapse. Alternative
explanations for the lack of oncogenic lesions resulting from chromothripsis could
be the coupling of chromothripsis to a separate oncogenic mutation on the same

Fig. 6 Illustrative example of a double-hit by chromothripsis, based on the findings of Rausch
et al. (2012). Chromothripsis leads to reshuffling of chromosome 2. During this event, a double
minute chromosome is formed containing two known oncogenes, MYCN and GLI2. Subsequent
amplification of the double minute chromosome -due to the presence of the oncogenes, which are
beneficial to the cancer cell if present in higher numbers- leads to the presence of a third, highly
amplified copy number state
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chromosome or yet unknown cellular consequences, such as global effects on
chromosome structure and gene regulation.

10 Prognostic and Therapeutic Implications
of Chromothripsis

With the overwhelming evidence that chromothripsis can promote formation of
cancer-driving changes, the question is quickly raised as to whether chromothripsis
represents a biomarker allowing clinical categorization of cancer patients. Several
studies have now provided evidence for the association of chromothripsis with poor
survival in different cancer types, including neuroblastoma, medulloblastoma, acute
lymphoblastic leukemia and multiple myeloma (Rausch et al. 2012; Cai et al. 2014;
Molenaar et al. 2012; Moorman et al. 2007; Magrangeas et al. 2011). It is unclear if
chromothripsis in these tumors is only a biomarker associated with poor survival or
whether the chromothripsis rearrangements themselves lead to more aggressive
tumor growth. In the first case, chromothripsis may be a marker of severe genomic
instability and a concomitant capacity of tumors to swiftly adapt as a response to
changing environmental conditions. Consistent with this, association between
chromosomal instability and poor clinical outcome has been observed in several
human cancers (Carter et al. 2006). In the latter scenario, the actual genes affected
by chromothripsis could result in a more aggressive disease course and lower
survival. This option poses important opportunities for targeted therapy. For
example, the RELA fusions observed in supratentorial ependymoma, which drive
NF-κB signaling, may be an interesting drug target specifically associated to
chromothripsis (Parker et al. 2014). Both scenarios sketched above may be true, but
likely depend on the tumor type and environmental conditions. This is underscored
by the observation of chromothripsis in some cases of benign uterine leiomyomas
(Mehine et al. 2013). Also, a transient subclone of chronic lymphocytic leukemia
containing chromothripsis has been described (Bassaganyas et al. 2013). In these
instances, chromothripsis likely represents a passenger event with little impact on
disease course and is therefore not a valuable biomarker. However, the routine
detection of chromothripsis breakpoints provides new opportunities for monitoring
disease status and progression. Cancer-specific breakpoints can be used for the
design of PCR amplicons to track the presence of cancer rearrangement in blood
plasma, enabling personal diagnostic strategies (Leary et al. 2010; McBride et al.
2010). Circulating tumor DNA in blood plasma can even be used for direct
sequencing and interrogation of cancer-specific chromosome aberrations, thus
allowing non-invasive detection of tumors and their genetic changes (Berger et al.
2012). The same methodology can be applied to oncogenic chromothripsis
rearrangements.
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11 Concluding Remarks

The discovery of chromothripsis has triggered a new field of research focused on
understanding and discovery of complex genomic rearrangements in cancer. This
has considerably changed our view on cancer evolution, which as we now think,
can involve catastrophic events, in addition to a gradual pattern of mutation and
selection. The field has now converged on three types of rearrangements, namely
chromothripsis, chromoplexy and chromoanasynthesis. Although chromoanasyn-
thesis displays distinct, replication-dependent genomic features, the difference
between chromothripsis and chromoplexy is far less clear. Both phenomena appear
to involve double-stranded DNA breaks in confined genomic regions and both lead
to a typical pattern including deletions. Whether chromoplexy is a phenomenon,
which is as widespread as chromothripsis is currently unclear. Chromoplexy may
be a milder form of chromothripsis, generally involving fewer rearrangements. Due
to stringent criteria for chromothripsis for the number of focal copy number changes
(>10) (Table 1) chromoplexy events may have gone unnoticed in several studies.
Furthermore, complex genomic changes in cancer genomes can be masked by
simple variants, which have preceded or followed them. Whether chromothripsis
and chromoplexy are truly two distinct phenomena or rather a more severe and
milder display of the same event will likely be uncertain until the mechanism
behind these phenomena is better understood, providing a more precise description
of characteristics per event type. Until then, we may just speculate and come up
with new models, which fit the experimental data, such as the recently proposed
translocation-induced chromothripsis (Zhang et al. 2013). This model describes the
occurrence of chromoplexy creating a platform for a chromothripsis event, possibly
explaining the mechanism for chromothripsis involving multiple chromosomes.
Whatever the mechanism, we do know that cancers may combine different complex
changes, including chromothripsis, over consecutive cell divisions, altogether cul-
minating into a chromosome configuration, which allows faster division, better
survival and reduced death of the cancer cell.

Box 1: Detection of genomic rearrangements

Array CGH
Array CGH is a molecular cytogenetic method that compares a test sample to
a reference sample by labeling DNA from both samples with different
fluorophores. Labeled DNA is denatured and hybridized in a 1:1 ratio to a
microarray containing specific cloned DNA fragments 100–200 kb in size.
The ratio of test sample versus reference is determined for every fragment.

188 M.S. de Pagter and W.P. Kloosterman



Deviations from the 1:1 ratio indicate the presence of a CNA in that specific
region (Solinas-Toldo et al. 1997). Array CGH provides a quick, relatively
affordable and genome-wide scan for CNAs, but is unable to detect copy
neutral events.

SNP array
Unlike array CGH, SNP arrays are not performed by competitive hybrid-
ization; rather a pool of normal samples is used to estimate the expected
intensity of a probe as a reference. A large number of SNPs spread out across
the genome is tested. For each SNP, the probe intensity of the sample is
compared to the reference. Like array CGH, SNP arrays are affordable and
relatively fast and easy to analyze. An advantage of SNP arrays over array
CGH is the determination of the allele frequency, which provides a per-
centage for the cells carrying the reference allele for every SNP (Conlin et al.
2010). In cancer research, the allele frequency is often used to determine the
percentage of mosaicism of a sample, using bioinformatics tools such as
Absolute (Carter et al. 2012).

Next generation sequencing (NGS)
Paired-end sequencing, is widely used for SV detection. Genomic DNA is
fragmented to a specific size, varying from a few hundred bp up to 2–3 kb or
even 10 kb in extreme cases. Paired reads from both ends of these fragments
are generated and subsequently sequenced in a massively parallel fashion
(Mardis 2009). In a typical sequencing run, 100 s of millions of short reads of
25–150 nucleotides are generated. De novo assembly, in which a genome is
reconstructed from overlapping reads and subsequently compared to a ref-
erence genome to detect genomic rearrangements, is possible but highly
complex due to the short read length that leads to fragmented assembled
genomes. Instead, resequencing is normally applied, where paired sequencing
reads are directly aligned to a reference genome. The vast majority of reads
will map concordant, in which case the distance between the aligned reads is
equal to the length of the original DNA fragment. Discordant reads indicate
the presence of an SV, characterized by a difference in distance between the
aligned reads and the length of the original DNA fragment (Fig. 2). Besides
alignment distance another essential variable for SV detection is the orien-
tation of the reads within the read pairs. The orientation of breakpoint
junctions is indicated by using head (H), which indicates the 5′ end of a
fragment, and tail (T), indicating the 3′ end of a fragment. Different rear-
rangement types lead to different orientation conformations (Fig. 2). Paired
end sequencing also enables the detection of copy number events by ana-
lyzing read density. A deletion will lead to a decreased coverage for the
deleted area when compared to the rest of the genome, a duplication to
increased coverage. In order to reliably call an SV, multiple reads have to
overlap a breakpoint, forming a cluster of discordant reads. The larger the
number of reads overlapping the breakpoint, the more precise the breakpoint
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location can be determined, from a relatively large breakpoint region up with
low coverage to the determination of the breakpoint at the nucleotide level at
high coverage. PCR and Sanger sequencing is generally used to validate
breakpoints at high resolution.
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Consequences of Aneuploidy
in Cancer: Transcriptome and Beyond
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Abstract
Cancer cells differ from normal healthy cells in multiple aspects ranging from
altered cellular signaling through metabolic changes to aberrant chromosome
content, so called aneuploidy. The large-scale changes in copy numbers of
chromosomes or large chromosomal regions due to aneuploidy alter significantly
the gene expression, as several hundreds of genes are gained or lost. Comparison
of quantitative genome, transcriptome and proteome data enables dissection of
the molecular causes that underlie the gene expression changes observed in
cancer cells and provides a new perspective on the molecular consequences of
aneuploidy. Here, we will map to what degree aneuploidy affects the expression
of genes located on the affected chromosomes. We will also address the effects
of aneuploidy on global gene expression in cancer cells as well as whether and
how it may contribute to the physiology of cancer cells.
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1 Introduction

Accurate duplication of chromosomes and their equal segregation during cell
division is essential for the maintenance of genomic stability and successful
propagation of any organism on Earth. Failure to faithfully duplicate and segregate
chromosomes leads to cell cycle arrest, cell death or to aneuploidy characterized by
a karyotype that differs from multiples of the haploid set. Aneuploid karyotypes
identified in cells can be distinguished into three main classes: somatic copy
number variations that consist of gains or losses of chromosomal regions from one
kilobase (1000 nucleotide bases) to several megabases in size, structural aneu-
ploidies up to the size of a chromosome arm, and whole chromosomal aneuploidies,
where cells gain or lose one or more entire chromosomes (Fig. 1).

Whereas copy number variations and possibly also segmental aneuploidy arise
due to incorrect DNA replication and repair, whole chromosomal aneuploidy results
from errors in chromosome segregation (reviewed in Gordon et al. 2012; Holland
and Cleveland 2012). The propagation of aneuploid cells that have missegregated
chromosomes is limited as they often arrest in the G1 phase directly following the
erroneous mitosis (Thompson and Compton 2010; Li et al. 2010; Kuffer et al. 2013;
Kumari et al. 2014). Even if aneuploid cells overcome this burden and continue to
divide, their proliferation is often markedly impaired and they may suffer from
additional detrimental changes (Torres et al. 2007; Williams et al. 2008; Stingele
et al. 2012). The altered physiology of aneuploid cells is likely due to the
large-scale changes in gene copy number and their expression. In humans, aneu-
ploidy is associated with pathologies such as trisomy syndromes and cancer.
Intriguingly, the effects of aneuploidy might become advantageous in adverse or
rapidly changing environments (Pavelka et al. 2010; Lee et al. 2011). The
molecular mechanisms underlying the cellular consequences of chromosome mis-
segregation both acute, i.e., in daughter cells immediately after chromosome seg-
regation errors, and chronic, i.e., during subsequent proliferation of aneuploid cells,
remain incompletely understood.
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The chronic consequences of aneuploidy per se can only rarely be analyzed,
because in many cases aneuploidy is accompanied by chromosomal instability (CIN),
an ongoing elevated frequency in mitotic errors that leads to additional chromosome
gains or losses in a significant proportion of cell divisions. Cancer cells with CIN
missegregate a chromosome about once every one to five divisions, compared to rates
of one chromosome per a hundred cell divisions in stable, diploid cell lines (Cimini
et al. 1999; Thompson and Compton 2008). Being accompanied by other types of
instabilities, whole chromosome CIN manifests in the complexity of karyotypes in
cancer and high inter- and intratumor genomic heterogeneity (Burrell et al. 2013).
Additionally, cancer cells display multiple genomic alterations, such as point muta-
tions, and small rearrangements, such as insertions, deletions, duplications, inver-
sions, amplifications and translocations. The ongoing CIN in cancer cells means that
both acute and chronic effects of aneuploidy act in tumor cell lines simultaneously.
Thus, studies of aneuploidy in these cells resemble studies of a continually changing
creature, a Proteus of sorts, who defies to be captured in its true nature.

Deciphering the consequences of aneuploidy has been recently advanced by
analysis of cells from embryos and patients with trisomy syndromes as well as by
novel aneuploid model systems (Fig. 2). To complete the picture, models carrying
mutations that interfere with chromosome segregation and thereby induce the CIN

Fig. 1 Karyotype aberrations. Doubling the karyotype results in polyploidy, whereas loss or gain
of one entire chromosome results in whole chromosome aneuploidy. Unbalanced structural
rearrangements such as gain or loss of regions as large as chromosome arms and unbalanced
translocations can cause structural aneuploidy. Chromotripsis, an event of complex genome
rearrangements, is often accompanied by amplifications and deletions and therefore results in
structural aneuploidy as well.
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phenotype were established (e.g. Sotillo et al. 2007; Weaver and Cleveland 2007;
Baker et al. 2009 for a review see Ricke and van Deursen 2013). With the advent of
microarray technology and mass spectrometry, transcriptome and proteome studies
in both aneuploid model cell lines and cancers gave new insights into the response
to aneuploidy. In our review we will focus on the consequences of aneuploidy in
cancer and compare them with the recently characterized effects of aneuploidy in
model systems. In the light of these findings we will discuss how these expression
changes are linked to the physiological effects of aneuploidy.

(a)

(b)

(c)

Fig. 2 Aneuploid model cell lines. a Yeast aneuploid model cell lines arise via chromosome
transfer after failed nuclear fusion or from erroneous meiosis result in aneuploidy. b Mammalian
aneuploid model cell lines of defined aneuploidy are generated by micronuclei-mediated
chromosome transfer. Random aneuploidies arise from induced chromosome missegregation or via
abnormal mitosis in tetraploid cells. c Cells derived from embryos or patients with trisomy
syndromes present a source for cell lines with defined aneuploidy
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2 Consequences of Aneuploidy on Transcriptome
and Proteome

The fundamental characteristics of aneuploid phenotypes are determined by the
impact of altered gene copy numbers on the transcriptome and proteome. In order to
detect expression changes attributable directly to aneuploidy, multiple studies
compared model cell lines with a defined aneuploidy to the parental diploid cell
line. Yet, it should be noted that the quantitative analysis of transcriptome and
proteome changes in aneuploid cells often suffers from severe technical difficulties.
Part of the problem is that the quantitative change that needs to be determined is
small, as the presence of one extra copy results in a 50 % expression increase. Thus,
normalization strategies, used thresholding cut offs and statistical analysis may
strongly affect the interpretation of the studies. The analysis of tumors is further
complicated by the fact that they consist of cancer cells with heterogeneous kary-
otypes intermixed with a fraction of normal diploid cells (Mitelman 2013; Stevens
et al. 2014). Thus, the transcriptome analysis determines the average gene
expression changes affected by both the effects of gene copy number and the tumor
heterogeneity. Despite these limitations, the global gene expression profiling
markedly progressed our understanding of the cellular consequences of aneuploidy.

2.1 Transcriptome and Proteome Response to Model
Aneuploidy

The majority of genes encoded on the supernumerary chromosomes are differen-
tially expressed according to the gene copy numbers in most model aneuploid cells,
such as in yeast (Torres et al. 2007; Chikashige et al. 2007), murine (Williams et al.
2008) and human cell lines (Stingele et al. 2012; Upender et al. 2004; Nawata et al.
2011), Arabidopsis thaliana (Huettel et al. 2008; Sheltzer et al. 2012) and maize
(Birchler 2013). The gene expression largely scales with the copy number changes
also in trisomies from patients’ samples and mouse models: trisomy of chromosome
21 resulted in correlative expression change of the genes in both human and mouse
models (Ait Yahya-Graison et al. 2007; Chou et al. 2008; Wang et al. 2011;
Vilardell et al. 2011). Markedly, gene dosage compensation was found for 25 % to
50 % of the genes on the trisomic chromosome (Ait Yahya-Graison et al. 2007;
Chou et al. 2008; Wang et al. 2011; Vilardell et al. 2011). In Drosophila the
transcripts originating from aneuploid chromosomes are buffered towards the dip-
loid levels (Stenberg et al. 2009; Zhang et al. 2010; Lundberg et al. 2012). This
reflects the specificity of gene dosage compensation mechanisms in Drosophila
rather than a general feature of aneuploidy (reviewed in Birchler 2013; Stenberg
and Larsson 2011; Donnelly and Storchova 2014).

Global protein expression scales with the gene copy number changes as well, as
the expression from the extra chromosome is increased by 1.6–1.9-fold in yeast and
mammalian cells (Stingele et al. 2012; Pavelka et al. 2010; Torres et al. 2010).
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However, initial small-scale analysis in disomic yeast strains determined that 13 out
of 16 proteins were not differentially expressed as expected from the gene copy
numbers (Torres et al. 2007). Genome-wide comparison revealed that around 20 %
of the proteins encoded on supernumerary chromosomes did not show an enhanced
expression in yeast as well as in human cell lines (Stingele et al. 2012; Torres et al.
2010). Intriguingly, the proteins whose abundance was compensated to euploid
level were enriched for subunits of macromolecular protein complexes (Torres et al.
2007, 2010; Stingele et al. 2012). In concordance, global quantitative analysis
demonstrated a significant reduction in the expression of protein complex core
subunits encoded on the aneuploid chromosomes in 3 out of 5 yeast strains with a
complex aneuploid karyotype (Pavelka et al. 2010). Moreover, other protein classes
such as protein kinases and transcription factors are subjected to dosage compen-
sation to restore the stoichiometric balance at least in human cell lines (Stingele
et al. 2012 and our unpublished results). The mechanisms enabling the dosage
compensation are not known, but it has been suggested that they may contribute to
restoring the protein stoichiometry (Torres et al. 2007; Donnelly and Storchova
2014). In summary, gene and protein expression in model aneuploid cell lines
generally scales according to the gene copy number, but specific protein classes are
compensated towards normal diploid expression levels by an unknown mechanism.

2.1.1 Global Transcriptional Response to Aneuploidy
Aneuploidy affects the expression not only of the genes located on the supernu-
merary chromosomes, but also the expression of multiple other genes across the
entire genome (Torres et al. 2007; Stingele et al. 2012; Upender et al. 2004;
Sheltzer et al. 2012; Gemoll et al. 2014). This global gene deregulation can orig-
inate from at least two sources. First, transcriptional regulators that are located on
the aneuploid chromosome regions and therefore present in altered copy numbers
can affect the expression of genes on the other chromosomes. In this case, the
response to aneuploidy should be largely dependent on the specific extra chro-
mosome. Intriguingly, a uniform transcriptional response was identified in all
aneuploidy model cell lines (Sheltzer et al. 2012; Dürrbaum et al. 2014). This rather
suggests a second model, where the expression changes throughout the whole
genome are driven by aneuploidy per se and the resulting protein imbalance triggers
a specific cellular response that feeds back to the transcriptional regulation. The
gene expression pattern in aneuploid yeast strains of different origins resembles the
transcriptional pattern of a previously described yeast environmental stress response
—ESR (Torres et al. 2007; Sheltzer et al. 2012). In particular, the enriched gene
ontology terms for differentially expressed genes suggested aneuploidy-driven
alterations in RNA processing and energy metabolism. Similarly, aneuploid
mammalian cells of different origins show a uniform aneuploid pathway response
pattern (Williams et al. 2008; Stingele et al. 2012; Sheltzer et al. 2012; Dürrbaum
et al. 2014; Foijer et al. 2013). The aneuploidy response pattern is similar also in
cultured amniocytes from trisomic pregnancies (Sheltzer et al. 2012). In detail, gene
ontology terms such as endoplasmic reticulum (ER), Golgi apparatus, lysosomes
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and vacuoles and membrane metabolism were consistently upregulated, whereas
DNA and RNA metabolic pathways—e.g., DNA replication, repair, transcription
and RNA splicing—were downregulated on the transcriptional level (Dürrbaum
et al. 2014). These deregulated pathways were confirmed by proteome analysis of
six different human aneuploid cell lines (Stingele et al. 2012).

What triggers these conserved changes? Recently, it was shown that aneuploidy
affects molecular pathways linked to the maintenance of protein homeostasis
(Torres et al. 2007; Stingele et al. 2012; Tang et al. 2011; Oromendia and Amon
2014). That is, gain of an extra chromosome may disturb cellular proteostasis by
flooding the cellular system with proteins and exhausting the resources for their
synthesis, thus causing proteotoxic stress (Donnelly and Storchova 2014; Oro-
mendia and Amon 2014). As a consequence, protein degradation pathways might
be activated to eliminate overexpressed proteins and accumulated misfolded pro-
teins. Indeed, aneuploidy activates autophagy and upregulates annotations associ-
ated with lysosome, vacuoles and membrane metabolism (Dürrbaum et al. 2014;
Tang et al. 2011; Stingele et al. 2013). In addition, the upregulation of ER and
Golgi might be also attributed to autophagy, as these organelles serve as a mem-
brane source for autophagosomes (Lamb et al. 2013). In concordance with the
hypothesis that the transcriptional response reflects the cellular changes upon
proteotoxic stress, autophagy inhibition in near- diploid HCT116 cells resulted in
transcriptional changes similar to the aneuploid transcriptional response pattern
(Dürrbaum et al. 2014) and aneuploid cells are sensitive to drugs triggering pro-
teotoxic stress (Torres et al. 2007; Oromendia and Amon 2014). Taken together, the
current data suggest that the aneuploid transcriptional response pattern arises as a
direct consequence of proteotoxic stress due to karyotypic imbalance.

Another possibility is that the transcriptional pattern of aneuploid cells reflects
their slower proliferation. Impaired proliferation and delayed progress through the
G1 and S phases was observed in disomic yeasts as well as in trisomic and tetra-
somic mammalian cell lines (Torres et al. 2007; Williams et al. 2008; Stingele et al.
2012). Two budding yeast strains carrying mutations in cell cycle regulatory factors
that delay cell cycle progression show similar transcriptional changes as observed in
response to aneuploidy (Sheltzer et al. 2012). Further, the differential transcription
was changed when disomic and euploid yeast were grown at the same growth rate
in the chemostat (Torres et al. 2007). However, slow proliferation cannot fully
explain the aneuploidy response pattern, as complex human aneuploid cell lines
exhibit the same transcriptional changes, yet their growth rate is similar to diploid
cell lines (Dürrbaum et al. 2014). Moreover, similar expression changes were also
identified in chromosomally unstable cancer cell lines of the NCI-60 panel that
generally proliferate well (Roschke et al. 2008; Sheltzer 2013). This finding sug-
gests that either both, CIN and aneuploidy, trigger a similar transcriptional response
or that the aneuploidy response pattern is in fact a cellular response to CIN, as
aneuploidy can promote CIN (Sheltzer et al. 2011, our unpublished data). Inter-
estingly, despite the striking similarities among the aneuploid pathway response,
there is no significant overlap of the individual deregulated genes between different
aneuploidies (Williams et al. 2008; Gemoll et al. 2014; Dürrbaum et al. 2014). This
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indicates that there are common physiological changes in response to aneuploidy,
but the specific molecular determinants are diverse, likely as a consequence of
heterogeneous karyotypes (Dürrbaum et al. 2014). Taken together, aneuploidy
triggers activation and inhibition of certain pathways and these global changes
likely influence all other physiological consequences of aneuploidy.

2.2 Cancer Signatures and Transcriptome Dynamics
in Aneuploid Cancers

A longstanding interest of cancer research is to characterize the transcriptome and
proteome changes of cancer tissues. This is a necessary step for classifying tumor
subtypes and for identifying molecular contributors to tumor progression and
biomarkers of tumor aggressiveness or treatment strategies (Sara et al. 2010; Eddy
et al. 2010; Chibon 2013). The gene expression changes are often seen as a result of
large-scale epigenetic remodeling or gene mutations. Recent studies of aneuploid
model cell lines emphasized that global gene expression is also altered by aneu-
ploidy. The relative contribution of aneuploidy to the cancer transcriptome remains
a subject of ongoing investigations.

2.2.1 Correlation of mRNA and DNA Copy Number Changes
in Aneuploid Cancers

In general, gene expression in regions with copy number variations as a result of
aneuploidy is correspondingly altered in all types of cancer tissues. However, the
estimations of the correlation between gene copy numbers and gene expression is
strongly influenced by the methods used to integrate the DNA copy numbers with
the gene expression data. In brief, there are three main approaches: (1) simple
comparison of the fold changes and calculation of the percentages of genes with
high/low copy number that is co-directional with mRNA expression changes;
(2) gene-by-gene correlation of gene copy number with gene expression; and
(3) correlation of the average gene expression with the averaged copy number
across a chromosome arm or segment (Fig. 3; Table 1). Using the first approach the
mRNA expression derived from trisomic chromosomes or more than twofold
amplified regions is increased within a range from 1.14 to 3-fold compared to the
normal diploid case (Schoch et al. 2005; Xu et al. 2010). This broad range already
indicates that the results of a fold change comparison will vary according to the
cutoffs applied. When no cutoffs were applied, 62.5–87 % of the genes on trisomic
chromosomes in acute myeloid carcinoma showed increased expression (Schoch
et al. 2005). Similar percentages were reported in breast cancer, when twofold
amplified regions were considered (Pollack et al. 2002) and in colon cancer, when
genes with the highest 20 % of expression were analyzed (Tsafrir et al. 2006). If
considering only more than 2.5-fold amplified regions, 44 % of genes are corre-
spondingly expressed in colon cancer (Hyman et al. 2002). In contrast, several
studies report exceptions of amplified regions that do not show correlative changes
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in gene expression (Tsafrir et al. 2006; Habermann et al. 2007; Taylor et al. 2010).
For example, the loss of 8p is common in cancer, but a study in prostate cancer did
not detect a correlative decrease in gene expression for all genes in the corre-
sponding region (Taylor et al. 2010). A silencing of chromosomal amplifications in
colon cancer has been also reported, but the results are based on a very stringent
analysis; here, only 3.8 % of genes located in twofold amplified regions showed a
twofold change in mRNA expression (Platzer et al. 2002).

In addition to the statistical method applied, sample size might influence the
results; thus, studies calculating the gene-by-gene correlation as in (Holland and
Cleveland 2012) over a large tumor sample set give more robust results. The
correlation of median gene expression and copy number was consistently reported
to be between 0.52 and 0.63 in colorectal cancer (Tsafrir et al. 2006; Grade et al.
2007). Analyses suggest that 10–40 % of the mRNA expression of five different
types of tumors can be explained by copy number changes (Xu et al. 2010; Chin
et al. 2006; Gu et al. 2008). Moreover, plotting the distribution of gene-by-gene
expression and copy number correlation results in a normal-shaped curve with the
mean shifted towards positive correlations (Xu et al. 2010; Pollack et al. 2002). The
weak positive correlation becomes stronger by applying the approach described by
Thompson and Compton (2010), i.e. correlating the average gene expression and
copy number changes of a chromosome arm or applying a segmentation algorithm.
This approach identified high correlation in three meta-studies on preexisting data
(Gu et al. 2008; Ortiz-Estevez et al. 2011; Fontanillo et al. 2012). Moreover,

(a)

(b)

(c)

Fig. 3 Consequences of aneuploidy. Aneuploidy can arise from incidental chromosome
missegregation or ongoing chromosomal instability. The acute response to chromosome
missegregation, such as proteotoxic stress, growth defects, energetic stress and DNA damage,
can activate cell cycle arrest or cell death. In a chronic response the aneuploid cells can adapt to the
cellular stresses. Ongoing genomic instability generates genetic diversity and increases the
adaptive potential. Cells adapt to aneuploidy by overcoming the adverse effects on i.e. proliferation
due to growth-promoting mutations or by mutating the p53 signaling pathway
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Table 1 Selection of recent results on correlation of gene copy number and gene expression in
aneuploid cancers

Cancer tissue Method Results Remarks Publication

Comparison of fold changes

Oral squamous
cell carcinoma

Genes were divided
into subgroups
according to their
level of copy number
change and compared
to the average gene
expression fold
change of the
respective groups

Dosage-response
relation between
copy number
changes and mRNA
expression

20 samples Xu et al.
(2010)

Colorectal
carcinomas

Upper/Lower 20 % of
global mRNA and
CGH levels were
used as cut offs for
comparison of
expression levels and
corresponding copy
number changes

63 % of genes
overexpressed
showed also
amplification; 62 %
of downregulated
genes showed also
lower CGH (in
lowest 20 %)

114 samples Tsafrir et al.
(2006)

Ovarian
carcinomas

Analysis of 93 genes
on chromosome 22

Correlation of gene
copy number and
expression changes

18 samples Benetkiewicz
et al. (2005)

Acute myeloid
leukemia

Average expression
on aneuploid/trisomic
chromosome was
calculated

1.14–1.27-fold
increase in gene
expression and 62.5–
87 % of genes
expressed higher
than in diploid

7–12 samples per
trisomy, 104 controls

Schoch et al.
(2005)

Colon cancer
liver/hepatic
metastases

Twofold cut off for
amplified regions on
7p, 8q, 13q, and 20q

3.8 % genes in the
amplified regions
with ≥2 fold change
in mRNA
expression; 90 % of
genes showed a 0.5–
2-fold change

23 samples, only 7p,
8q, 13q, and 20q

Platzer et al.
(2002)

Breast cancer
cell lines

2.5-fold cut off for
amplified regions;
overexpression
defined as top 7 % of
global expression
levels

44 % genes in
amplified regions
showed
overexpression;
10.5 % of
overexpressed genes
showed >2.5-fold
copy number
amplification

14 cell lines Hyman et al.
(2002)

Primary breast
cancer

≥4-fold change cut
off for highly
amplified genes

62, 42 % of high
amplified genes
showed >2-fold,
>4-fold increase in
mRNA expression,
respectively

44 samples Pollack et al.
(2002)

(continued)
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Table 1 (continued)

Cancer tissue Method Results Remarks Publication

Gene-by-gene correlation of copy number and mRNA expression

Oral squamous
cell carcinoma

Gene-by-gene
correlation of mRNA
expression and copy
number

Normal distribution
of correlations with a
peak shifted towards
positive correlations.
Significant
correlation of 30 %
of transcripts

20 samples Xu et al.
(2010)

Primary breast
cancer, breast,
pancreatic,
prostate, lung
cancer cell
lines

Median of gene-wise
correlation of mRNA
expression and gene
copy number

Copy number
variations explain
12–40 % of
expression changes

Metaanalysis of
Pollack et al. (2002),
Hyman et al. (2002),
Heidenblad et al.
(2005), Zhao et al.
(2005), Kim et al.
(2006)

Gu et al.
(2008)

Colorectal
carcinoma

Gene-by-gene
correlation of mRNA
expression and gene
copy number

Correlation value:
0.52 colon
carcinoma; 0.56
rectal
adenocarcinoma

32 colon carcinomas,
17 rectal
adenocarcinoma

Grade et al.
(2006, 2007)

Primary breast
cancer

Gene-by-gene
correlation of mRNA
expression and gene
copy number

10 % of genome
showed significant
correlations

145 samples Chin et al.
(2006)

Colorectal
carcinomas

Correlation of
average mRNA and
gene copy number
expression over all
samples for each
probe

mRNA and CGH
correlation r = 0.69

114 samples Tsafrir et al.
(2006)

Primary breast
cancer

Gene-by-gene
correlation of mRNA
expression and gene
copy number

Distribution of
correlations showed
normal- shaped
curve with a peak
shifted towards
positive correlations

44 samples Pollack et al.
(2002)

Correlation of averaged copy number and mRNA expression over chromosome segments

Glioblastoma
multiforme

Gene expression and
copy number for a
chromosome segment
defined in a
segmentation
algorithm

Positive correlations
of ≥0.6 was found
for 55 % of the
human gene loci

64 samples Fontanillo
et al. (2012)

Gastric cancer Correlation of
average mRNA and
gene copy number
over samples of
20 Mb chromosome
arm bins

Positive correlation
of mRNA expression
with gene copy
number of the
respective genomic
region

64 samples Fan et al.
(2012)

(continued)
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average gene expression along a chromosome has been shown to predict chro-
mosomal aneuploidy (Hertzberg et al. 2007).

Taken together, the effect of aneuploidy on the transcriptome is less pronounced
in cancer tissues compared to model aneuploid cell lines owing to the population
heterogeneity as well as genetic and epigenetic changes that were selected
throughout the tumor evolution. Thus, aneuploidy is only one of many factors
influencing the gene expression. Despite the heterogeneity of the approaches and
interpretations, there is a trend towards a weak but consistent correlation of chro-
mosome copy number changes and abundance of transcripts in cancer, which is
prone to noise at the gene level, but becomes robust when only distinct regions of
copy number changes are considered. In future, single cell analysis of cancer cells
may provide more insights into the transcriptome changes and their correlation with
copy number changes within cancer cell populations.

Table 1 (continued)

Cancer tissue Method Results Remarks Publication

Glioblastoma
multiforme
and acute
lymphoblastic
leukemia

Gene expression and
copy number for a
chromosome segment
defined in a
segmentation
algorithm

Segmented gene
expression and copy
number significantly
correlated with
r = 0.6 and 0.19,
respectively

Metaanalysis of
Kotliarov et al.
(2006), Bungaro
et al. (2009)

Ortiz-Estevez
et al. (2011)

Liver
carcinoma

Transcriptome
correlation map
method (Stransky
et al. 2006) was used
to identify regions
with strong
concordance in gene
expression and copy
number changes

General strong
association of gene
expression and copy
number changes

139 samples Woo et al.
(2009)

Colon
carcinoma

Chromosome arm
average gene
expression compared
to chromosomal copy
number

Positive correlated
shift in expression
profiles

32 samples Grade et al.
(2007)

Neck
squamous cell
carcinoma

For each
chromosome arm
average Z-score gene
expression was
compared to average
CGH; for arms 3p
and 22q, averaged
expression of smaller
chromosomal regions
was analyzed

9/39 arms showed
concordance in the
direction of average
gene expression
versus copy number,
4/39 was opposite;
loss of 3p and gain
of 22q were reflected
in consistent
expression changes

13 samples Masayesva
et al. (2004)
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2.2.2 Aneuploidy and the Cancer Proteome
There are only a few studies that have systematically investigated the influence of
aneuploidy on the cancer proteome. Myhre et al. (2013) compared DNA copy
number, mRNA and protein levels of 52 breast cancer-related proteins in order to
determine at which level the protein expression in cancer is regulated. A large
fraction of the analyzed proteins (48.07 %) exhibited no correlation to DNA or
mRNA expression values, 28 and 26 % showed a correlation of DNA to mRNA
and mRNA to protein, respectively, and 15 % showed a correlation on all three
levels. However, the sample size is too small to assume a general genome-wide
effect of gene copy number on protein expression. In-depth proteomic analysis of
two breast cancer cell lines revealed only weak correlations of 0.22 and 0.28
between gene copy number and protein expression changes (Geiger et al. 2010).
Comparison of average expression to average copy number of adjacent chromo-
some regions increased the correlation. These results indicate that the effect of copy
number alterations on the proteome level is even smaller than the effect on the
transcriptome level. However, it should be noted that protein levels are influenced
not only by gene copy numbers, but also by regulation of transcription, translation
and by protein stability. In fact, only 40 % of individual protein concentrations can
be explained by mRNA abundance in normal eukaryotic cells (Vogel and Marcotte
2012), which may partially explain the rather minor effects of gene copy number on
mRNA and protein expression observed in cancer samples. This also suggests that
many gene copy number changes are not reflected on protein levels and extensive
proteome analysis will be required to fully estimate the effects of copy number
changes on cancer proteome.

2.2.3 Gene Expression Signatures and Aneuploidy in Cancer
Finding commonly deregulated genes associated with cancer subtypes, prognosis or
response to treatment remains central to cancer research (reviewed in Chibon 2013).
Since aneuploidy is mostly associated with poor prognosis (McGranahan et al.
2012), a predictive gene expression signature for aneuploidy might be a promising
approach for tumor classification. A gene signature is a group of genes, for which
the expression is associated with a characteristic feature of cancer such as prog-
nosis, subtype, instability or aneuploidy (Chibon 2013). In most cases, gene sig-
natures are derived from transcriptome data, where the gene expression is correlated
with cancer features and genes with the highest correlation build the signature.
A well-known signature is the CIN70 signature derived from the NCI60 cancer cell
line panel of cells to characterize cells with high CIN (Carter et al. 2006). The
signature consists of 70 genes strongly correlated with the “total functional aneu-
ploidy” as a proxy of overall aneuploidy across the NCI60 cancer cell lines.
Therefore, CIN70 correlates with both CIN and aneuploidy without clear distinc-
tion. CIN70 successfully predicts the clinical outcome in multiple cancers, as a high
net expression of the 70 signature genes predicts poor prognosis in the majority of
cancer samples tested (Carter et al. 2006; Birkbak et al. 2011; Muthuswami et al.
2013). Recently, it was suggested that the CIN70 signature does not correlate with
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numerical heterogeneity in the NCI60 cancer cell line panel, but with proliferation
(Sheltzer 2013). Nevertheless, the high predictive potential of CIN70 was con-
firmed. Moreover, a novel “HET70” gene signature, whose expression correlates
with karyotype heterogeneity in the NCI60 panel was also shown to predict poor
prognosis (Sheltzer 2013). In addition, more signatures, mostly for very specific
cancer subtype classifications were published in recent years, all either based on or
enriched for CIN genes (Chung et al. 2013; Ying et al. 2013; Szasz et al. 2013;
Al-Ejeh et al. 2014). In uveal melanoma, a direct transcriptional comparison of high
aneuploid and low aneuploid tumors, defined as tumors with >20 and <5 % of
nondiploid chromosome arms, respectively, identified a 54-gene signature (Ehlers
et al. 2008). Significant overlap of this 54-gene signature genes with genes
upregulated in breast cancer, multiple myeloma, keratinocytes treated with UVB
irradiation, and with cell cycle genes was found, but the prognostic relevance
remains to be proven.

All above described gene signatures are linked to proliferative cellular processes
such as replication, chromosome segregation (CIN70) and centrosome function, cell
cycle regulation, DNA damage repair (54-gene signature), and the high net
expression of the signatures are predictive. In contrast, these gene ontology terms
are largely downregulated in model aneuploid cell lines. Accordingly, a gene sig-
nature (TRI70) associated with aneuploidy in model aneuploid cell lines predicted
good prognosis (Sheltzer 2013), whereas aneuploidy in cancer is generally asso-
ciated with poor prognosis (McGranahan et al. 2012). These results reflect a general
reverse transcriptional pathway deregulation observed when comparing the tran-
scriptome of aneuploid model cell lines and aneuploid cancers (Sheltzer 2013 and
our unpublished results). We hypothesize that aneuploidy per se acts as a cellular
stress factor and impairs essential cellular pathways. This results in a strong
selection pressure for enhanced expression of the impaired factors. Thus, cells that
gained mutations, gene amplification, additional aneuploidies and other changes
that reverse the aneuploidy response may overcome the adverse effects. Along this
line, comparison of different colorectal cancer stages revealed a selection for spe-
cific chromosomal imbalances throughout tumor progression that was accompanied
by correlating transcriptional changes affecting an increasing number of cellular
pathways (Habermann et al. 2007). In future, this hypothesis should be tested by
determining the effects of the evolutionary adaptation to aneuploidy on transcrip-
tome and proteome in aneuploid model cell lines and aneuploid tumors.

3 Consequences of Aneuploidy on Proliferation

In describing the cellular response to aneuploidy it is useful to distinguish the acute
response to sporadic chromosome missegregation from the chronic consequences of
aneuploidy (Fig. 4). In the acute response cells that missegregate their chromo-
somes often arrest their cell cycle or die (e.g., Thompson and Compton 2010; Li
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et al. 2010; Kuffer et al. 2013; Basu et al. 1998; Lanni and Jacks 1998; Dobles et al.
2000). The high frequency of cell cycle arrest after chromosome missegregation in
higher eukaryotes suggests that not only chromosome loss but also chromosome
gain is detrimental for cells. Missegregating cells accumulate the tumor suppressor
p53 and the cyclin kinase inhibitor p21 in their nuclei in subsequent G1 (Thompson
and Compton 2010; Li et al. 2010; Kuffer et al. 2013). Deletion of p53 or inhibition
of the p38 mitogen-activated protein kinase (MAPK), which directly phosphory-
lates p53, abolishes the cell cycle arrest following chromosome missegregation
(Thompson and Compton 2010). Thus, chromosome missegregation generates a
p38 kinase–dependent stress response that activates p53 and triggers the cell cycle
arrest. Other reports have described a role for the ataxia-telangiectasia mutated

Fig. 4 Correlation of gene copy and mRNA expression. a Gain of a chromosome (1) or
unbalanced structural changes (2) result in DNA copy number changes, such as 1.5 fold increase in
case of trisomy. b As a result, mRNA expression levels change as well, but the percentage of genes
with mRNA abundance in concordance with DNA copy numbers might vary largely and depends
on the applied cut off (light blue; see method 1). c Segmentation algorithms or averaging of the
expression values improves the correlation of gene copy number and gene expression by
diminishing the signal noise at the single gene level (see method 3)
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(ATM) gene product and its activation by increased levels of reactive oxygen
species (ROS) and possibly also by oxidative DNA damage (Li et al. 2010; Kuffer
et al. 2013). The high levels of oxidative DNA damage and ROS generated in cells
immediately upon chromosome segregation errors might arise due to increased
energy metabolism in aneuploid cells or due to the response to protein folding
defects. The transcriptional pattern of chronic aneuploidy is suggestive of increased
oxidative metabolism, although there is no overlap with transcriptional changes
observed in cells subjected to oxidative stress (Stingele et al. 2012; Dürrbaum et al.
2014). In Drosophila epithelial cells, the response to chromosome missegregation is
characterized by the activation of the c-Jun N-terminal kinase (JNK) signaling
cascade, which triggers apoptosis independently of p53 (Dekanty et al. 2012;
Clemente-Ruiz et al. 2014). Both JNK pathway and p38 MAP kinase belong to the
class of MAP kinases that are responsive to stress stimuli such as osmotic shock,
inflammatory cytokines, translation inhibitors, heat shock and ER stress, growth
factors and elevated ROS. However, it remains to be clarified whether the presence
of a single extra chromosome can indeed cause oxidative or ER stress and how
quickly this response commences.

Even if the progeny of abnormal mitoses survive, a marked impairment in cell
cycle progression and proliferation is often observed in model aneuploid cells
(Torres et al. 2007; Williams et al. 2008; Stingele et al. 2012). Cell lines derived
from patients with trisomy syndromes or from the available mouse models suffer
from impaired proliferation as well (Segal and McCoy 1974; Contestabile et al.
2009; Gimeno et al. 2014). Although the reasons for the growth delay remain
unclear, three possible explanations have recently been proposed. First, prolifera-
tion might be affected by the type of aneuploidy, such as gains of chromosomes or
chromosome arms carrying a gene whose overexpression impairs proliferation;
indeed, aneuploidies of some chromosomes are lethal (Torres et al. 2007; Hassold
et al. 2007; Thorburn et al. 2013). Second, the recently suggested proteotoxic stress
caused by aneuploidy might compromise cell cycle progression and cell division, as
has been shown experimentally in budding yeast, where as little as 0.1 % of
misfolded proteins significantly reduce cellular proliferation and fitness
(Geiler-Samerotte et al. 2011). Finally, as aneuploidy leads to increased levels of
genomic and CIN (Sheltzer et al. 2011; Zhu et al. 2012), this might impair cellular
proliferation.

Interestingly, cells with complex karyotypic changes appear to suffer less from
the adverse effects of aneuploidy (Pavelka et al. 2010; Zhu et al. 2012). This is
likely due to a selection process, in which only aneuploid cells with the most
beneficial karyotype combinations survive and outgrow the other aneuploids. Thus,
aneuploidy can also be advantageous for proliferation, if for example a gene sup-
porting proliferation is carried on the extra chromosome or if growth suppressor has
been lost. The advantageous effects are highly context-dependent. Chromosome-
specific effects on immortalization capacity were determined in aneuploid MEFs
(Williams et al. 2008). Trisomy of 13 or 19 allowed faster immortalization than
diploid MEFs, whereas cells with trisomy of chromosome 1 or 16 failed to
immortalize or immortalized slower, respectively. Since immortalization is an event
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that requires multiple mutations in various genes leading to the increased prolif-
eration, this finding could be due to chromosome-specific increased genomic
instability observed in aneuploids. Indeed, immortalized MEFs showed an altered
complex near-tetraploid karyotype (Williams et al. 2008). Similar effects can be
observed in cancer as well; chromosomes 7, 12 and 20 that carry EGFR, BRAF,
SHH, KRAS, CDK4, MDM2, BCL2L1, E2F1 and CDC25B oncogenes are prefer-
entially gained in tumor samples (Duijf et al. 2013). In a large-scale analysis on
4934 cancers, 140 recurrent regions of copy number alterations with 70 amplified
regions and 70 lost regions were identified. These regions showed a remarkable
percentage of oncogenes and tumor suppressors, respectively, among those were
the oncogenes described above (Zack et al. 2013). In colorectal cancer, specific
copy number alterations during cancer progression support the tumor development
(Habermann et al. 2007). The interplay between negative and positive effects of
altered gene copy numbers might be a major force in shaping the genome of cancer
cells. Indeed, analysis of karyotype composition of more than 8.200 tumor-normal
tissue pairs revealed that cumulative loss or gain of gene copy due to copy number
variations shapes the composition of the cancer genome and can predict the com-
plex pattern of aneuploidy or local copy number changes observed in cancers
(Davoli et al. 2013). Taken together, copy number changes may have both
advantageous and deleterious effects that depend on specific karyotypic composi-
tions and on the environment.

Although beyond the scope of this review it is worth noting that spontaneous
aneuploidy often occurs during in vitro expansion of stem cells (Peterson et al. 2011;
Lund et al. 2012). This is likely due to the fact that the cell cycle regulation and the
checkpoint linkage to apoptosis is attenuated in stem cells and thus aneuploid stem
cells can readily proliferate (Mantel et al. 2007). Many of the chromosomal aber-
rations observed in stem cells are recurrent and can be found in both embryonic stem
cells as well as in induced pluripotent stem cell (iPSC). These include trisomy 12,
trisomy 8, and amplification of 20q11.21 (Martins-Taylor et al. 2011; Taapken et al.
2011). Similarly, human neural progenitor cells gain chromosome 7 and 19 in up to
a quarter of the cells, reflecting selection for epidermal growth factor receptor
(EGFR) overexpression in cells trisomic for chromosome 7 and 19, which was
determined by immunofluorescence (Sareen et al. 2009). Although aneuploidy
provides a growth advantage to the stem cells, as aneuploids successfully compete
with their diploid counterparts in the culture, it also exerts negative effects. Human
mesenchymal stem cells often gain an extra chromosome, but the trisomic lines
underwent replicative senescence after 50–60 population doublings and never
showed neoplastic changes (Estrada et al. 2013). Thus, depending on the cell type
and culture conditions, aneuploidy in general or of a particular chromosome pro-
vides a growth advantage; however, in some context aneuploidy can also lead to
delayed proliferation or premature senescence. In future it will be necessary to
dissect which conditions lead to advantageous situation and which to adversity.
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4 Aneuploidy and Its Link to Chromosomal Instability

4.1 Genomic Instability in Eukaryotic Aneuploid Model Cell
Lines

The genome is subject to multiple changes during tumorigenesis due to the insta-
bility intrinsic to most cancers. Genomic instability can be divided into several
distinct forms based on the scale of genomic changes: nucleotide instability due to
point mutations, microsatellite instability, structural genomic/CIN, and whole CIN.
These four types of instability frequently coexist in the same cells. Whether any of
these instabilities can be driven by chromosomal imbalance alone has not been
conclusively resolved. Therefore, analysis of cells from patients with constitutional
trisomies as well as of defined aneuploidy models provides useful insights, as the
isolated effects of aneuploidy can be analyzed.

Studies from patients with constitutional trisomy syndromes showed conflicting
results likely caused by the fact that interphase fluorescence in situ hybridization
(FISH) is prone to artifacts. In FISH analyses applied to interphase cells using
enumeration probes for chromosomes 8, 15, and 16, the frequency of cells with
altered copy number for each of these chromosomes showed a significant twofold
increase in the 14 samples derived from trisomic patients compared to 14 samples
derived from control subjects, with a strong bias to chromosome losses (Reish et al.
2011). Recent analysis that used two independent FISH probes simultaneously for
chromosomes 2 and 17 (dual-color FISH) determined a two to threefold increase in
levels of chromosome abnormalities in samples from trisomic patients in compar-
ison to the normal population (Valind et al. 2013). This increase was not statisti-
cally significant and markedly below the increase observed in both chromosomally
stable and chromosomally unstable cancer cell lines (DLD1 up to 10-fold, SW480
up to 30-fold, respectively) (Valind et al. 2013). One way of explaining this finding
is that only embryos with either normal or near-normal levels of chromosome
segregation errors survive. This notion is supported by the fact that the vast majority
of embryos with trisomy do not survive until birth; for example, 80 % of trisomy 21
embryos die during embryogenesis (Biancotti et al. 2010). The second possibility is
that aneuploidy, or at least trisomy, does not grossly impair chromosome misseg-
regation. Intriguingly, trisomy syndromes are not associated with accelerated
tumorigenesis; rather, the spectrum of tumors changes: there is an increased risk of
acute lymphoblastic leukemia, acute myeloid leukemia and testicular germ cell
tumors in trisomy 21 patients, and Wilms’ tumor and hepatoblastoma in trisomy 18,
whereas decreased risk of carcinoma in trisomy 21 patients has been identified to
date (Ganmore et al. 2009).

Little is known about genomic instability in model aneuploid cell lines. Budding
yeast that contain a single extra chromosome show a two to fourfold increase in
mutation rates at two independent loci (Sheltzer et al. 2011). In addition, abnor-
malities such as DNA repair and recombination defects, indicated by increased
Rad52-GFP foci and sensitivity to double-strand break-inducing drugs,
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demonstrated the wide range of aneuploidy-induced genetic instabilities (Sheltzer
et al. 2011). A genome-wide screening for genetic requirements of aneuploidy
revealed that aneuploid yeasts can not survive without a functional homologous
recombination pathway (Tange et al. 2012). Interestingly, the genomic instability
phenotypes depend on the type of aneuploidy, since different disomies show dif-
ferent levels of genomic instability that do not correlate with the size of chromo-
somes (Sheltzer et al. 2011). Similarly, different combinations of aneuploid
chromosome pairs resulted in a range of different CIN levels after propagation of
random aneuploid yeast strains (Zhu et al. 2012).

Genomic instability was also reported in human aneuploid model cell lines:
human embryonic stem cells carrying an extra copy of chromosome 8 accumulate
low levels of additional chromosomal aberrations unrelated to chromosome 8
(Nawata et al. 2011), while unbalanced chromosome translocations were observed
in renal carcinoma cell lines after trisomy of chromosome 3 was induced
(Kost-Alimova et al. 2004). Chromosome-specific effects are also suggested by
analysis of the diploid colorectal cancer cell line DLD1 with trisomies of chro-
mosome 7 and 13 (DLD1 + 7, DLD1 + 13), the non-cancerous immortalized
diploid epithelial cell line hTERT-RPE1 that had spontaneously gained chromo-
some 12 (RPE1 + 12), and primary cells derived from amniocentesis that are
trisomic for chromosome 13 (AF + 13). Whereas DLD1 + 7, DLD1 + 13, and
AF + 13 exhibited higher rates of chromosome missegregation, affecting only
particular chromosomes, RPE1 + 12 cells displayed no increase in chromosome
missegregation (Nicholson and Cimini, personal communication). The
chromosome-specific effect was most apparent for trisomy of chromosome 13, as
the increased abundance of the cytokinesis regulator SPG20 (Spartin) on chro-
mosome 13q13.3 caused cytokinesis failure in both DLD1 + 13 and AF + 13 cells
(Nicholson and Cimini, personal communication). Both chromosome-specific and
non-specific effects were observed by our group: tetrasomy of chromosome 5 and
trisomy of chromosome 3 in the diploid colorectal cancer cell line HCT116 leads to
a small, but significant increase in mitotic errors, whereas trisomy of chromosome 5
in HCT116 and trisomy of chromosome 21 in hTert-RPE1 did not affect chro-
mosome segregation significantly (our unpublished results).

The molecular mechanisms underlying increased genome instability are cur-
rently unclear. Aneuploidy per se leads to downregulation of multiple pathways
linked to DNA metabolism, such as DNA repair and replication, this may lead to
insufficient DNA repair or to replication defects. Alternatively, increased metabolic
requirements and oxidative stress might elevate the levels of DNA damage and
chromosome missegregation. The genomic instability might be also due to an
altered expression of a specific gene coding for an essential DNA repair factor
located on a lost chromosome. Stoichiometric imbalances might also impair the
molecular processes essential for maintenance of genomic stability. The importance
of protein stoichiometry for the function of proteins has been previously demon-
strated in this context. For example, correct stoichiometry of Mad1 and Mad2,
proteins involved in the spindle assembly checkpoint, markedly affects checkpoint
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functionality (Foijer et al. 2013; Zhu et al. 2012; Heinrich et al. 2013). Changes in
stoichiometry may be responsible for CIN in complex aneuploid yeasts, as chro-
mosomally stable aneuploid strains displayed a MAD2: MAD1 ratio of 1:1,
whereas 40 % of the chromosomally unstable aneuploid budding yeast strains
displayed a ratio closer to 0.5 (Zhu et al. 2012). Similarly, components of the
minichromosome maintenance complex MCM2-7, a putative heterohexameric he-
licase required for DNA replication, show exquisite gene dosage sensitivity: already
one hypomorphic allele (called Chaos3) that results in significantly decreased
MCM4 protein levels triggers elevated chromosome missegregation and increased
tumor formation in mice heterozygous for Mcm4Chaos3 (Shima et al. 2007). The
effect of protein imbalance on genome integrity seems to scale with the degree of
aneuploidy, since the degree of CIN is higher in aneuploids close to the diploid state
than near haploid yeast strains (Zhu et al. 2012). Taken together, increased genomic
instability is often detected in the aneuploid context, but the molecular processes
involved in the maintenance of genomic stability that are impaired by abnormal
chromosomal content remain to be determined.

4.2 Genomic Instability as a Consequence of Aneuploidy
in Cancer

A study of somatic copy number changes by CGH in 3,131 cancer samples cor-
responding to 26 histological types found 25 % of the cancer genome to be affected
by whole arm or whole-chromosome SCNAs, whereas 10 % is affected by focal
SCNAs (Beroukhim et al. 2010). The investigators observed an average of 24 gains
and 18 losses per cancer genome as well as a mean of 17 and 16 % of the genome
affected by gain and deletions, respectively. In addition to aneuploidy, cancer
genomes are largely unstable, which is probably best reflected in the can-
cer karyotype heterogeneity (Mitelman 2013; Lengauer et al. 1998;
Heselmeyer-Haddad et al. 2012). Aneuploidy and genomic instability are closely
intertwined and together they have been proposed as drivers for tumorigenesis (e.g.,
in Gordon et al. 2012; Williams et al. 2008; Lengauer et al. 1997, 1998; Duesberg
et al. 1998; Storchova and Pellman 2004; Pfau and Amon 2012). The mechanisms
of genomic instability in cancer have been extensively reviewed (Negrini et al.
2010; Thompson et al. 2010). However, little is known on whether aneuploidy
directly contributes to genomic instability in cancer. Aneuploidy arises from
ongoing genomic instability and it has been suggested that both can drive each
other autocatalytically in a vicious cycle (reviewed in Potapova et al. 2013; Fig. 4).
This is further supported by the observation that chromosome instability in cancer
increases with the degree of aneuploidy (Zhu et al. 2012; Duesberg et al. 1998,
2004; Fabarius et al. 2003). Similar as in cell line models of aneuploidy, there are
multiple mechanisms by which aneuploidy can promote genomic instability
(Gordon et al. 2012). Yet, none of these above mentioned mechanisms have been
convincingly demonstrated to date. It is beyond doubt that understanding the
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molecular processes that contribute to genomic instability in aneuploid tumors will
substantially add to our knowledge of tumorigenesis and might open new avenues
to cancer treatments.

5 Additional Changes in Response to Aneuploidy in
Cancer Cells

Tumors are characterized by altered signaling pathways that affect cellular
metabolism. The metabolic alterations are usually seen as adaptations to the unique
biochemical microenvironment, to provide the energy production and sufficient
macromolecular biosynthesis and for maintenance of redox balance. Additionally,
the identified metabolic alterations may not merely be an adaptation to malignancy,
but could also be required for malignant transformation (for review see Cairns et al.
2011; Ward and Thompson 2012). A prominent metabolic phenotype observed in
tumor cells is the Warburg effect (Vander Heiden et al. 2009). This effect is
characterized by the use of glycolysis rather than mitochondrial oxidative phos-
phorylation as the main source of ATP even under normal oxygen-rich concen-
trations, resulting in abnormally high rates of glucose uptake into tumor cells and
elevated production of the glycolytic metabolite lactate. Remarkably, model
mammalian aneuploids also show striking metabolic changes (Williams et al. 2008;
Stingele et al. 2012; Sheltzer et al. 2012). First, the expression of genes involved in
oxidative metabolism and glycolytic pathways is elevated in model aneuploid cells
(Torres et al. 2007; Williams et al. 2008; Stingele et al. 2012; Sheltzer et al. 2012;
Dürrbaum et al. 2014). Additionally, metabolic features of the Warburg effect such
as increased glucose uptake or elevated lactate production have been observed in
trisomic MEFs (Williams et al. 2008). Model aneuploid cells are hypersensitive to
metabolic inhibitors such as AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-
carboxamide), an analog of AMP that stimulates AMP-dependent protein kinase,
and the sensitivity to AICAR correlates with the size of the extra chromosome
(Tang et al. 2011). There were also greater growth inhibitory effects of AICAR
observed in aneuploid cancer cell lines than in chromosomally stable cancer cell
lines, suggesting that the sensitivity is indeed linked to aneuploidy and is not a
general phenomenon of cancerous cells (Tang et al. 2011). The mechanism
underlying the metabolic switch as well as what advantage it might provide to both
cell line models of aneuploidy and aneuploid cancers remains unclear.

Aneuploidy may be tumor suppressive or tumor promoting by inducing
non-cell-autonomous effects. Tumors are not a homogeneous mass of malignant
cells, but consist of different, often highly heterogeneous subclones of cancer cells
as well as of a variety of normal cell types, including fibroblasts, endothelial cells
and pericytes of the tumor vasculature (Lorusso and Ruegg 2008; Chouaib et al.
2010; Augsten 2014; Moschetta et al. 2014). Moreover, the surrounding tissue and
the context-specific interactions between cancer cells and normal tissues contribute
to formation of a unique microenvironment that affects the growth and the
cell-to-cell interactions within the tumor (Liotta and Kohn 2001). CIN can also
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facilitate signalling in cancer cells that stimulate their own eradication by cytotoxic
leukocytes or inhibit their growth facilitation by other cell types (Galon et al. 2006).
One such signal could be the production of novel immunogenic proteins due to, for
instance, mutations, translocations or changes of chromosome composition. Such
proteins are also known as tumor-specific antigens and are actively sought after in
order to develop cancer immunotherapies. Intriguingly, increased expression of
inflammatory response factors was identified in human model aneuploid cells
(Dürrbaum et al. 2014). Especially, MHC protein complex and genes associated
with antigen processing were upregulated, which possibly increase peptide pre-
sentation and elevated immunogenicity. Interestingly, tetraploidy can induce
translocation of calreticulin (CRT) to the plasma membrane surface response to ER
stress and this in turn stimulates an anticancer immune response (Senovilla et al.
2012). The exposure of CRT on the surface of stressed and dying cancer cells
facilitates their uptake by dendritic cells and the subsequent presentation of
tumor-associated antigens to T lymphocytes. Accordingly, the growth of tetraploid
cancer cells was restricted in immunocompetent mice, but not in immunosupressed
mice, suggesting that cancer cells with increased DNA content are subjected to
immunosurveillance (Senovilla et al. 2012). Since tetraploidy constitutes a ge-
nomically metastable state that leads to aneuploidy and genomic instability, it is
possible that aneuploid cells with complex karyotypes derived from tetraploid cells
might elicit a similar response. In contrast, human colon carcinoma DLD-1 + 7 cells
(trisomy 7) did not display a constitutive ER stress response and the CRT trans-
location, suggesting that extensive changes in the karyotype composition are
required to induce this type of response (Senovilla et al. 2012). Taken together,
karyotype changes that effect gene expression might also alter the spectrum of
peptide presentation, thus facilitating immunogeneity of aneuploid cells. Whether
and how this contributes to immune and inflammatory response to cancer remains
to be addressed.

6 Conclusion and Perspectives

Aneuploidy affects the cellular physiology on multiple levels. Recent genome-wide
approaches provide new means to uncover the scope of the somatic copy number
changes in cancer cells and to determine their effects on gene expression. Yet, it
remains to be clarified how the aneuploidy-induced gene expression changes
contribute to tumorigenesis and the physiological features of aneuploid cancer cells.
Since aneuploidy impairs cell growth in most models, it is of interest to identify the
pathways that lead to growth suppression as well as the adaptive changes that allow
proliferation with an altered karyotype. Moreover, the effects of aneuploidy appear
to be context-dependent, yet the specific determinants have not been identified.
Finally, the recent identification of a common stress response to aneuploidy brings
about the possibility that aneuploidy can be exploited therapeutically for the
treatment of cancer. Yet, similar response has not been found in tissues from
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aneuploid cell lines. Thus, in future it will be necessary to identify the differences
between cellular response to aneuploidy in non-cancerous cells and in cancer
tissues.
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