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    Abstract     During the middle school years, students frequently show signifi cant 
declines in motivation toward school in general and mathematics in particular. 
One way in which researchers have sought to spark students’ interests and build 
their sense of competence in mathematics and in STEM more generally is through 
the use of game-based learning environments. Yet evidence regarding the motiva-
tional effectiveness of this approach is mixed. Here, we evaluate the impact of three 
brief game-based technology activities on students’ short-term motivation in math. 
A total number of 16,789 fi fth to eighth grade students and their teachers    in one 
large school district were randomly assigned to three different game-based technology 
activities, each representing a different framework for motivation and engagement 
and all designed around an exemplary lesson related to algebraic reasoning. We 
investigated the relationship between specifi c game-based technology activities that 
embody various motivational constructs and students’ engagement in mathematics 
and perceived competence in pursuing STEM careers. Results indicate that the 
effect of each game-based technology activities on students’ motivation was quite 
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modest. However, these effects were modifi ed by students’ grade level and not by 
their demographic variables. In addition, teacher-level variables did not have an 
effect on student outcomes.  

  Keywords     STEM education   •   Motivation   •   Algebraic reasoning   •   Self-effi cacy   • 
  Implicit theories of ability  

     Success in algebra during the middle grades is widely recognized to be a critical 
gatekeeper that constrains students’ decisions about whether to pursue further 
educational opportunities in Science, Technology, Engineering, and Mathematics 
(STEM) fi elds (Adelman,  2006 ). Unfortunately, during this developmental period 
many students show signifi cant declines in motivation toward school in general 
and mathematics in particular (e.g., Archambault, Eccles, & Vida,  2010 ; Blackwell, 
Trzesniewski, & Dweck,  2007 ). One way that researchers have sought to spark 
students’ interests and build their sense of competence in mathematics is through 
the use of various technological media. These technologies have ranged in com-
plexity and cost from the simple and inexpensive, such as repurposing television 
programs, to the more complicated and expensive, such as specially designed 
mathematical experiences based on immersive virtual environments and computer 
games. We refer to the collection of these various types of technology media that 
aim to improve learning and motivation in school settings as game-based technology 
activities. 

 Despite the widely accepted notion that all game-based technology activities are 
inherently engaging, the evidence regarding their motivational effectiveness is mixed 
(Moos & Marroquin,  2010 ). Part of the reason may be that many different types of 
technologies are available, and each can be designed well or poorly to leverage vari-
ous aspects of motivation (e.g., engagement, self-effi cacy, tenacity) in different ways. 
As a step toward improving our understanding of the potential impact of game-based 
technology activities on students’ motivation in mathematics, the goal of this project 
was to investigate the relationship between (a) specifi c game- based technology 
activities that exemplify various motivational constructs, (b) students’ engagement in 
mathematics and perceived competence in pursuing STEM careers, and (c) students’ 
mathematics learning from a short algebra lesson. 

 Our research questions were as follows. First, what is the impact of the 4-day 
intervention on students’ motivation in mathematics, including interest in pursuing 
STEM careers? Second, to what extent is this impact infl uenced by factors such as 
the type of game-based technology activity the students received and/or students’ 
demographic and academic characteristics (e.g., gender, race/ethnicity, prior 
achievement)? Third, to what extent is this impact infl uenced by teacher-level 
 factors such as credentialing in mathematics education, undergraduate major, years 
of experience, and teachers’ beliefs (e.g., teaching self-effi cacy)? 

 We begin by reviewing evidence on how and why game-based technology activities 
might impact students’ motivation in STEM fi elds. 
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    Motivating Students to Learn STEM 

 As the National Academy of Sciences ( 2011 ) indicated, certain key ingredients are 
relevant for students who want to pursue STEM careers. These ingredients include 
a robust confi dence in math and science capability (self-effi cacy), the ability to see 
one’s abilities in STEM as able to improve over time (implicit theories of ability), 
and the ability to develop a passion or sustained interest in becoming a scientist or 
engineer (value beliefs). We discuss each in turn. 

 Capable students plagued by a loss of confi dence about their capacity to succeed 
in math and science typically avoid careers that require a strong background in 
those subjects (Lent et al.,  2005 ). Decades of research have shown that students’ 
self- effi cacy, defi ned by Bandura ( 1997 ) as “the belief in one’s capabilities to orga-
nize and execute courses of action required to produce given attainments” (p. 3), is 
a powerful infl uence on motivation and achievement. Bandura ( 1997 ) hypothesized 
several sources of self-effi cacy, including  mastery experience  (the interpreted results 
of one’s past performance),  vicarious experience  (observations of others’ activities, 
particularly individuals perceived as similar to oneself), and  physiological and 
affective states  (anxiety, stress, and fatigue)—each of which has been linked to per-
formance in math and science, including students’ persistence in STEM fi elds and 
choice of STEM majors (e.g., Britner & Pajares,  2001 ; Gwilliam & Betz,  2001 ; Lau 
& Roeser,  2002 ; Lent, Brown, & Larkin,  1984 ). 

 Like self-effi cacy, implicit theory of ability (defi ned as a belief about the nature 
of intellectual ability (Dweck & Leggett,  1988 )) plays an important role in motiva-
tion. Some individuals believe that their abilities are a fi xed characteristic, and that 
nothing can be done to change that (i.e., “I’m not smart in math, and there isn’t 
anything I can do about it”). This is referred to as a  fi xed theory  of ability. On the 
other hand, other individuals believe that, with suffi cient effort and the proper strat-
egies, one can become more able (i.e., “If I work hard in my math class, I can get 
smarter in math”). This is known as an incremental theory of ability. A large body 
of research has shown that implicit theory of ability plays a key role in students’ 
academic motivation, achievement, and career choices (e.g., Blackwell et al.,  2007 ; 
Good, Rattan, & Dweck,  2012 ; Grant & Dweck,  2003 ; Hong, Chiu, Dweck, Lin, & 
Wan,  1999 ). 

 In addition to the self-effi cacy and implicit theories of ability, value beliefs are 
also a signifi cant determinant in students’ motivation and achievement (Eccles 
et al.,  1983 ). Value beliefs in mathematics and science deal with the question, “Do 
I want to pursue more opportunities in mathematics and science?” Eccles et al. 
defi ned values as being composed of several distinct constructs. First, students’ 
 interest  or intrinsic value can affect the activities they pursue—activities that are 
more enjoyable are more likely to be pursued than are activities that are perceived 
to be lackluster. Second, students’ perceptions of the  utility  of an activity refer to 
how valuable students perceive an activity to be. If an activity is perceived to be a 
steppingstone toward students’ desired future endeavors, then students are more 
likely to pursue it. Finally, doing well in mathematics and science may infl uence 
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students’ identity or feelings of self-worth. This  attainment  value describes how 
important doing well in mathematics and science is to students’ identity or feelings 
of self-worth. Numerous studies have found that interest value predicts STEM 
career choice (Lent, Lopez, Lopez, & Sheu,  2008 ; Lent, Paixão, da Silva, & Leitão, 
 2010 ), as well as choice in taking STEM courses (Eccles, Midgley, & Adler,  1984 ; 
Watt, Eccles, & Durik,  2006 ).  

    Motivation and Game-Based Technology Activities 

 How can the constructs described above be targeted through game-based technology 
activities to support the motivation of students in mathematics and science? 
Although the literature on technology and motivation is quite large, relatively few 
of these studies employ frameworks that are grounded in well-studied psychologi-
cal theories of motivation (Moos & Marroquin,  2010 ). Moos and Marroquin noted 
that the results about the effectiveness of game-based technology activities as a 
motivational tool are mixed. 

 With regard to self-effi cacy, there is some evidence that engagement with 
innovative game-based technology activities in academic settings can positively 
impact self-effi cacy toward STEM. For example, Ketelhut and colleagues (Ketelhut, 
 2007 ; Ketelhut, Nelson, Clarke, & Dede,  2010 ) found that students’ self-effi cacy for 
scientifi c inquiry before using a Multi-User Virtual Environment (MUVE) called 
River City was related to their behaviors within the virtual world. In particular, less 
self- effi cacious students manifested a self-effi cacy boost through mastery experi-
ences gained through engagement in the activities of the MUVE (see also Liu, 
Hsieh, Cho, & Schallert,  2006 ). 

 Game-based technology activities also seem to be a promising avenue for impacting 
implicit theory of ability. In particular, Dweck and her colleagues have developed a 
web-enabled intervention, Brainology ® , which is designed to enhance implicit the-
ory of ability. Students are introduced to two cartoon characters who guide them 
through the web-based environment, where they learn about the functions of the 
brain, including that the brain is like a muscle—with conditioning, it can get 
stronger—an attitude which is linked to an incremental view. Donohoe, Topping, 
and Hannah ( 2012 ) conducted a quasi-experimental study on 33 adolescents 
(ages 13–14) and found that Brainology ®  led to a signifi cant increase in students’ 
incremental view of ability. 

 With respect to value beliefs, researchers have argued that well-designed game- 
based technology activities can be used to target students’ interest value beliefs by 
making learning goals relevant and meaningful, and by allowing students to identify 
with characters within the technology environment (Gee,  2003 ; Squire,  2003 ). 
For example, Hickey, Moore, and Pellegrino ( 2001 ) showed that the use of 
 The Adventures of Jasper Woodbury  videodisc activity led to gains in students’ math-
ematics interest, although these gains appeared to result both from the game-based 
technology activities as well as from teachers’ beliefs and instructional practices.  
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    Context of the Present Study 

 To investigate the potential impact of game-based technology activities on students’ 
mathematics motivation, we designed three different types of game-based technol-
ogy activities (or “inductions”). The inductions differed along two main dimen-
sions. First, the design of each induction was based on a different motivational 
construct; in other words, the theory of change underlying each induction differed. 
Second, the inductions differed in the expense and technical sophistication that 
were required for their creation and implementation, ranging from the very 
expensive- to-produce and technically advanced to the modest and inexpensive. 
Below we describe each induction in more depth. 

    Induction 1: Virtual Environment 

 At the core of Induction 1 was an Immersive Virtual Environment (IVE)—a game- 
based technology activity we designed to introduce students to the mathematical 
concepts that were to follow in a subsequent lesson. The IVE was professionally 
produced such that it was similar in look and feel to video games that students may 
have had experience playing. 

 For the story line of the IVE, students were provided with the opportunity to 
explore an outer space environment in the context of a space rescue mission. Various 
mathematical puzzles were encountered as students moved around the planet; all 
puzzles related to the generation of and identifi cation of mathematical patterns, simi-
lar to what would subsequently be discussed in a mathematics lesson. The initial 
puzzle was designed to be relatively easy; in later stages of the experience, mathe-
matically related, more complex puzzles were broken down into many smaller steps 
to scaffold students’ progress and to reduce the likelihood that students would be 
overly frustrated. Similarly, hints were also provided by the IVE for students who 
requested help in completing any of the puzzles. 

 Prior to beginning the IVE, each student viewed a short (5-min) video clip of 
a young STEM professional who talked about the nature of the work they do 
(e.g., designing astronaut space suits), the diffi culties they had encountered in 
their K-12 math and science classes, and how they were able to overcome these 
diffi culties. Students were provided with a selection of several of these videos, 
which varied according to the demographic attributes of the STEM professionals 
(e.g., gender, ethnicity). 

 Motivationally, Induction 1 was designed to primarily impact students’ self- 
effi cacy. In particular, the IVE experience supported mastery experiences by allow-
ing students to experience incrementally more diffi cult mathematical challenges, 
and by providing the scaffolds necessary for students to succeed when they were 
met with obstacles. Vicarious experiences were included in Induction 1 by including 
real-life, young, STEM professionals who discussed their jobs and the types of 
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obstacles that they faced (and overcame) as they pursued a STEM career. Finally, 
emotional and physiological states were addressed by ensuring that students felt 
comfortable and relaxed about solving the mathematical challenges in the IVE. For 
example, we made the design decision  not  to include a timer that gently reminded 
students to work more quickly if they were taking too long because such a timer 
would likely cause a good deal of anxiety—a common experience for many stu-
dents in mathematics.  

    Induction 2: Brainology ®  Web-Based Activity 

 For the second induction, we used a commercially available series of web-based 
modules designed to teach students about an incremental view of ability in a 
game- based manner. These modules are based on the work of Dweck and col-
leagues and have been shown to be successful at infl uencing students’ motiva-
tion and achievement (e.g., Blackwell et al.,  2007 ). Students assigned to 
Induction 2 were given access to an abridged version of the Mindset Works ®  
StudentKit—Brainology ®  program (  www.mindsetworks.com    ) described above. 
The intervention that students experienced was relatively short compared to the 
entire Brainology ®  program, which contains over 2 h of online instruction and 
up to 10 h of additional activities to do over a recommended period of 5–16 
weeks. 

 With respect to motivation, the Brainology ®  program is explicitly designed to 
impact students’ implicit theory of ability. As noted above, Dweck and her col-
leagues (Blackwell et al.,  2007 ; Dweck & Leggett,  1988 ) have shown students pos-
sess particular “mindsets” that can infl uence their motivational and developmental 
trajectories through the course of school (e.g., fi xed theory of ability vs. incremental 
theory of ability). The Brainology ®  program activities have been found to encour-
age students toward an incremental view of ability.  

    Induction 3: Video on Mathematical Patterns 

 Induction 3 was intended to provide an off-the-shelf experience for students related 
to some of the mathematical ideas that were to come in the mathematics lesson. We 
selected a commercially available PBS NOVA video on fractals because of its engag-
ing story line and graphics, its focus on mathematical patterns, and the accessibility 
of the content to our target population of students in grades 5–8. The 2009 video, 
 Fractals :  Hunting the Hidden Dimension , is 56 min long and includes visually 
appealing animations, interviews with mathematicians, and accessible explanations 
of the mathematics of fractals and their applications to everyday life, such as building 
smartphone antennas and generating visual effects in movies. However, note that (to 
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contrast with the other two inductions), viewing the video on mathematical patterns 
was intentionally intended not to be game-like. 

 In terms of motivation, movies have long been used by educators to motivate and 
engage students in the classroom. Although this movie did not specifi cally target a 
particular motivation construct, movies are often used in educational settings as an 
inexpensive, simple means that teachers can employ to help students see connec-
tions between what they are learning and real-world applications.  

    Mathematics Content Focus 

 Within the general landscape of STEM, we chose to situate the present study in the 
content area of algebra. Algebra is widely recognized as a crucial peg in the trajec-
tory of mathematical learning because of the conceptual and procedural ground-
work it lays for accessing higher mathematics and because it presents a shift in how 
students are expected to think mathematically (Kieran,  1992 ). Algebra is often the 
fi rst time students are introduced to some of the most important and useful ideas in 
the fi eld of mathematics, such as the concept of a “variable” or the generalization of 
patterns in generated data (Star & Rittle-Johnson,  2009 ). Within the larger land-
scape of algebra, we focus here on an aspect of algebra that many mathematics 
educators refer to as algebraic reasoning (e.g., Kaput,  1999 ), which includes using 
arithmetic for generalizing, working with patterns to describe functional relation-
ships, and modeling as a way to formalizing generalizations.  

    Hypotheses 

 We hypothesized that Inductions 1 and 2 would have the strongest effect on the 
motivational constructs that they were designed to infl uence. In particular, we 
hypothesized that Induction 1 would have the strongest impact on students’ self- 
effi cacy and that Induction 2 would have the strongest impact on students’ implicit 
theory of math ability. Because Induction 3 was not designed with a particular the-
ory of motivation in mind, it did not intentionally target any particular motivation 
variable. However, because of the content in the movie, we hypothesized that this 
third induction would have an impact on students’ value beliefs. Finally, with 
respect to developmental issues in motivation, the literature is clear that there is a 
general decline in motivation as students progress through school (Archambault 
et al.,  2010 ; Eccles et al.,  1984 ). Because the structure of schooling for students in 
middle school (Grades 6–8) is different from that of elementary school students 
(Grade 5) and because students conceive of competence differently based on age 
(Dweck,  1986 ), we expected the fi rst two inductions to have differential impacts on 
students depending on their age.   
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    Method 

    Sample 

 Data come from all fi fth, sixth, seventh, and eighth grade students and their teachers 
in the Chesterfi eld County Public School district in Virginia. A total of 18,628 stu-
dents participated in the study, along with their 476 teachers, from 38 elementary 
and 12 middle schools. 

 A number of teachers in our original teacher pool were assistant, ESL, or special 
education teachers who did not have their own classroom. We removed these teach-
ers from our sample, ending up with 339 teachers in our active teacher sample who 
participated in random assignment. In the elementary schools, the 163 fi fth grade 
teachers, who taught all subjects to the same group of students each day, imple-
mented the intervention with their homeroom students. In the middle schools, the 60 
sixth, 57 seventh, and 59 eighth grade teachers were all math specialists and imple-
mented the intervention in each mathematics classes that they taught. 

 We removed students who did not have parental consent to be a part of the study, 
which left us with 16,879 students. In addition, we had to exclude the 8979 students 
(and their 113 teachers from fi ve schools) who were missing pretest or posttest data 
used in our analyses, as a result of a miscommunication between the research team 
and the district relating to the student identifi cation numbers that students were 
instructed to use at pretest. 1  After removing those students with missing data, we 
report on the 7900 students and 226 teachers from 44 schools who remained in our 
analyses. These students were approximately equally divided across grade levels 
(see Table  1  for demographic information about the sample). We also collected stu-
dents’ most recent scores on the state standardized test in mathematics, the Virginia 
Standards of Learning (VA-SOL) test; this test is given annually to students in 
grades 3–8.

       Design and Procedure 

 We used a pretest/posttest 2  experimental design. Prior to the start of the interven-
tion, students and teachers were administered a pretest. After pretest administration, 
teachers were randomly assigned to one of three inductions described above. 
Participation in the main part of the intervention occurred over a period of 4 

1   Little’s ( 1988 ) Missing Completely at Random (MCAR) test confi rmed that these data were not 
missing completely at random ( χ 2  (1576) = 7162.88,  p   <  .001). In particular, students with missing 
data were more likely to be male, African-American or Hispanic/Latino, with ELL status, and 
from schools with a high percentage of free or reduced lunch. For a more in-depth discussion of 
the impact of this missing data on our results, see Star et al. ( 2014 ). 
2   A delayed posttest was also administered, 2 months after the end of the intervention. However, 
due to large amounts of missing data, delayed posttest results were not easily interpretable and thus 
are not included in the present analysis. 
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consecutive days. On Day 1, students worked on the induction to which they were 
assigned. On Days 2 and 3, teachers taught the 2-day mathematics lesson. On Day 
4, students again worked on the induction to which they were assigned. 

 For students in Induction 1, Day 1 of the intervention was spent in the school’s 
computer lab. Each student sat at his/her own computer, with headphones, and 
watched the short interview of a STEM professional and then played the IVE game 
for approximately 30 min. On Day 4, students returned to the computer lab and 
restarted the game-based technology activity, including watching a video of a STEM 
professional and restarting the IVE game from the beginning—again playing for 
about 30 min. Similarly, for students in Induction 2, Days 1 and 4 were spent in the 
school’s computer lab, with one student at each computer with headphones, playing 
the Brainology ®  program. Finally, Induction 3 students watched the fi rst half of the 
 Fractals :  Hunting the Hidden Dimension  video (about 28 min) on Day 1; on Day 4, 
these students watched the second half of the video.  

    Professional Development 

 All teachers were provided with a 1-day (6.5 h) professional development (PD) 
workshop, administered within 1 week of the start of the intervention. The PD 
workshop was designed and implemented by project staff. Most of the PD (approxi-
mately 4 h) was devoted to introducing teachers to the 2-day mathematics lesson. 
Teachers were provided with detailed lesson plans as well as visual aids, handouts, 
and manipulatives that accompanied the lesson. For the remainder of the PD, we 
provided teachers with induction-specifi c training.  

   Table 1    Student demographic information by condition   

 Variable 

 Induction 1  Induction 2  Induction 3  Total 

  n   %   n   %   n   %   n   % 

 Gender  Male  1373  51  1071  49  1516  50  3960  50 
 Female  1308  49  1115  51  1517  50  3940  50 

 Ethnicity  Native American  11  <1  5  <1  7  <1  23  <1 
 Asian  89  3  77  4  91  3  257  3 
 African-American  691  26  516  24  647  21  1854  23 
 Hispanic/Latino  260  10  194  9  202  7  656  8 
 White  1500  56  1309  60  1938  64  4747  60 
 Pacifi c Islander  1  <1  4  <1  4  <1  9  <1 
 Multi-race  129  5  81  4  144  5  354  4 

 Grade  5  768  29  523  24  845  28  2136  27 
 6  877  33  370  17  515  17  1762  22 
 7  572  21  615  28  898  30  2085  26 
 8  464  17  678  31  775  26  1917  24 

 ELL  125  5  81  4  83  3  289  4 
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    Measures 

 All assessments were administered to teachers and students online, via a password- 
protected website. 

  Student motivational measures . All students were administered a pre- and postas-
sessment, in a proctored computer lab in each school, during the regular school day. 
The pretest, taken between 1 and 3 weeks prior to the start of the intervention, 
targeted students’ motivation, with measures corresponding to the three motiva-
tional constructs that were related to the inductions—self-effi cacy, implicit theories 
of ability, and value (see Table  2  for descriptive information on student variables; 
see Table  3  for sample items and alphas). The posttest was administered on Day 4, 
after the implementation was completed.

    The motivational items on the posttest were identical to the pretest. We 
assessed self-effi cacy students with a 13-item measure that was drawn from 
Bandura’s ( 2006 ). The degree to which students endorsed an incremental view 
of ability (as opposed to a fi xed view of ability) was assessed using a 6-item 
instrument that was adapted from Dweck ( 1999 ). Finally, interest, attainment, 
and utility value beliefs concerning their mathematics class were assessed using 
scales taken from the Michigan Study on Adolescent Life Transitions (MSALT), 
which has been used extensively in the past (e.g., Eccles, Barber, Stone, & Hunt, 
 2003 ). 

  Student mathematics learning measure . Assessing students’ mathematics learning 
was not a major focus of the present study, mainly because of the absence of a priori 
hypotheses related to the differential impact of the three technology inductions on 
student learning and also the short duration of the math lesson. However, as a manip-
ulative check, we included a short fi ve-item assessment on mathematics learning on 
both the pre- and posttests. These fi ve items were on algebraic reasoning as related 
to the 2-day mathematics lesson, specifi cally data organization, pattern identifi ca-
tion, and the ability to make generalizations. The reliability of the math learning 
measure was low ( α  = 0.30 and 0.40 for the pre- and posttest); as a consequence, the 
results from this measure must be interpreted with caution. 

  Teacher measures . Teachers were given a pretest immediately prior to the start of 
the professional development workshop. The pretest collected background and 
demographic information about teachers, such as number of years teaching, 
undergraduate major, advanced degrees held, and national board certifi cation status. 
In addition, the teacher pretest included items that tapped teachers’ own teaching 
self- effi cacy for instruction and student engagement (22 items), technology use 
(7 items), and mathematics (12 items). Items were drawn or adapted from Bandura 
( 2006 ). Teachers were also administered a 6-item measure of implicit theory of 
ability that was adapted from Dweck ( 1999 ). See Table  3  for sample items and 
alphas.  
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    Table 3    Motivational measures   

 Construct  Alpha  Measure 
 Sample question (all on a 6 point 
scale) 

 Student 
measures 

 Self-effi cacy 
( n  = 13) 

 0.93, 
0.95 

 General math 
self-effi cacy ( n  = 4) 

 How confi dent are you that you can 
master the math skills that will be 
taught this year? 

 Algebraic reasoning 
self-effi cacy ( n  = 5) 

 If you are given fi ve numbers in a 
sequence, how confi dent are you 
that you can fi gure out the pattern 
and get the next number in the 
sequence right? 

 Math performance 
self-effi cacy ( n  = 4) 

 How confi dent are you that you can 
do well on standardized tests in 
math? 

 Implicit theory 
of math ability 
( n  = 6) 

 0.77, 
0.79 

 Fixed view of math 
ability ( n  = 3) 

 My math ability is something about 
me that can’t be changed very much 

 Incremental view of 
math ability ( n  = 3) 

 No matter who I am, I can change 
my math abilities a lot 

 Value ( n  = 6)  0.83, 
0.87 

 Interest value ( n  = 3)  How much do you like math? 
 Utility value ( n  = 2)  In general, how useful is what you 

learn in math? 
 Attainment value 
( n  = 1) 

 For me, how important is being 
good at math? 

 Teacher 
measures 

 Self-effi cacy 
for instruction 
and student 
engagement 
( n  = 22) 

 0.96  Self-effi cacy for 
student engagement 
( n  = 4) 

 How confi dent are you that you can 
motivate students who show low 
interest in math class? 

 Self-effi cacy for 
classroom 
management ( n  = 4) 

 How confi dent are you that you can 
calm a student who is disruptive 
and noisy? 

 Self-effi cacy for 
instructional 
strategies ( n  = 4) 

 How confi dent are you that you can 
use a variety of assessment 
strategies? 

 Self-effi cacy for 
math inquiry 
teaching ( n  = 6) 

 How confi dent are you that you can 
use computer technologies to 
communicate with your students? 

 Self-effi cacy for 
instructional 
methods ( n  = 4) 

 How confi dent are you that you can 
teach well even if you are told to 
use instructional methods that 
would not be your choice? 

 Self-effi cacy 
for technology 
use ( n  = 7) 

 0.89  How confi dent are you that you can 
facilitate a whole- class discussion? 

 Math 
self-effi cacy 
( n  = 12) 

 0.92  How confi dent are you that you can 
successfully determine the amount 
of sales tax on a clothing purchase? 

 Implicit theory 
of math ability 
( n  = 6) 

 0.86  Fixed view about 
students’ abilities in 
math ( n  = 3) 

 Students come into math with a 
certain level of math ability, and it 
is hard to change that 

 Incremental view 
about students’ 
abilities in math 
( n  = 3) 

 Even if students don’t initially 
possess a certain “knack” for math 
they can develop their math ability 
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    Data Analysis 

 Given that many students had the same teacher and many teachers were in the same 
school, we used multilevel modeling (Raudenbush & Bryk,  2002 ) to account for this 
nesting of students within teachers and teachers within schools. The fi rst level of the 
model, the student level, included students’ prior knowledge (VA-SOL) scores, pretest 
math learning scores, pretest self-effi cacy scores, pretest implicit theory of ability 
scores, pretest value scores, and demographic information, including ELL status, 
grade, gender (male coded as 1 and female coded as 0), and ethnicity. 

 The second level of the model, the teacher level, measured the effect of experi-
mental condition, teachers’ self-effi cacy for student engagement and instruction, 
teachers’ self-effi cacy for technology use, teachers’ mathematics self-effi cacy, and 
teachers’ implicit theory of math ability. We specifi ed Induction 1 (the immersive 
virtual environment) as the referent condition to compare it to the other two induc-
tions. This resulted in the effect of condition being captured by two variables. One 
variable indicated the difference between Induction 1 and Induction 2, and the other 
variable indicated the difference between Induction 1 and Induction 3. To test the 
difference between Inductions 2 and 3, a Wald test (similar to an incremental  F  test) 
was used to examine whether the parameter estimates for these conditions were 
signifi cantly different from one another. 

 The third level of the model, the school level, measured the percentage of 
students receiving free or reduced lunch in each school. Finally, we also included 
two cross-level interactions to test for possible interactions between induction and 
grade, as well as two cross-level interactions to test for possible interactions between 
induction and prior math knowledge (VA-SOL). We ran these models to evaluate 
our four posttest student outcomes: math learning, self effi cacy, implicit theory of 
ability, and value.   

    Results 

 We begin by overviewing students’ scores on the motivational variables at pretest 
and posttest and then reporting the effects of condition at posttest. 

    Student and Teacher Pretest Scores 

 To begin, we measured whether there were any differences between the inductions 
on our outcome measures at pretest and on demographic variables (see Table  2 ). 
When controlling for other independent variables in the model, there were no 
signifi cant differences ( p  > .05) between inductions on any of the pretest or demo-
graphic variables, with the exception of prior knowledge (VA-SOL). Students in 
Induction 2 had lower prior knowledge than students in Induction 1,  β  = −15.76, 
 p  = .003, and Induction 3,  χ  2 (2) = 13.63,  p  = .001. Students in Induction 3 also had 
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slightly lower prior knowledge than students in Induction 1,  β  = −15.69,  p  = .001. 
Prior knowledge was included in all subsequent models, so we controlled for these 
differences between conditions.  

    Pre-/Post Gains 

 Before examining the effects of condition, we fi rst consider whether the interven-
tion generally led to gains in students’ motivation (see Table  2 ). Overall, students 
did not have statistically signifi cant gains on our measure of self-effi cacy ( M  pre  = 4.54, 
 M  post  = 4.55,  t  = −1.16,  p  = .246,  d  = −0.01). For implicit theory of ability, students’ 
incremental view of math ability decreased after the intervention, although this was 
a small effect ( M  pre  = 4.22,  M  post  = 4.16,  t  = −6.93,  p  < .001,  d  = −0.07). For value, stu-
dents’ scores generally decreased after the intervention as well, although the effect 
was again small ( M  pre  = 4.24,  M  post  = 4.19,  t  = −8.71,  p  < .001,  d  = −0.06). For math 
learning, the intervention led to an average gain on students’ scores on the fi ve-item 
mathematics learning assessment of 10 % points, and this was a moderate effect 
( M  pr e   = 0.60,  M  post  = 0.70,  t  = 28.60,  p  < .001,  d  = 0.40).  

    Effects of Condition at Posttest 

 At posttest, there were signifi cant effects of condition on several of our outcome 
variables (see Table  4 ).

    Math learning . Comparing Inductions 1 and 2, students in Induction 2 earned simi-
lar math learning scores to students in Induction 1,  β  = 0.003,  p  = .872. There was 
also no signifi cant interaction between Induction 2 and grade,  β  = 0.01,  p  = .129. 
Comparing Inductions 1 and 3, students in Induction 3 had similar math learning 
scores to students in Induction 1,  β  = −0.01,  p  = .409. However, there was a signifi -
cant interaction between Induction 3 and grade. In particular, students in lower 
grades benefi ted more from Induction 1 than from Induction 3. Then as grade 
increased, Induction 3 became more effective,  β  = 0.02,  p  = .013. Thus, for students 
in grade 5, being in Induction 1 led to higher scores on average. For students in 
grades 6, 7, and 8, being in Induction 3 led to higher scores on average. Finally, post 
hoc Wald tests comparing Inductions 2 and 3 suggested that there were no signifi -
cant differences between Inductions 2 and 3 ( χ  2 (2) = 1.06,  p  = .589); however, there 
was a signifi cant interaction when considering grade ( χ  2 (2) = 6.22,  p  = .045). 
Essentially, Induction 2 was more effective for lower grades, and as grade increased, 
Induction 3 became more effective. There were no signifi cant interactions between 
induction and prior knowledge (VA-SOL) ( p ’s > .532). 

  Self - effi cacy.  There were no signifi cant differences between any of the inductions on 
the student self-effi cacy variable, nor were there any signifi cant interactions between 
inductions and grade or inductions and prior knowledge ( p ’s > .128). 
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      Table 4    Parameter estimates for student outcomes   

 Fixed effects 

 Posttest math learning  Posttest self-effi cacy 

 Coeffi cient  SE   z   Coeffi cient  SE   z  

 Intercept  0.67  0.02  41.82***  4.67  0.04  107.55*** 
 Student-level 

 VASOL  0  0  11.34***  0  0  1.49 
 Pretest math learning  0.20  0.01  16.42***  0.14  0.04  3.69*** 
 Pretest self-effi cacy  0.02  0  5.87***  0.70  0.01  62.80*** 
 Pretest implicit theory of 
math ability 

 0  0  0.44  0.05  0.01  6.20*** 

 Pretest value  0.01  0  3.99***  0.15  0.01  14.11*** 
 ELL status  −0.01  0.01  −0.70  −0.07  0.04  −1.70 
 Grade  0  0.01  0.08  −0.05  0.02  −2.87** 
 Gender (male)  −0.02  0.01  −3.61***  0  0.02  0.05 
 Ethnicity  0  0  0.99  −0.01  0.01  −1.89 τ  

 Teacher-level 
 Induction 2  0  0.02  0.16  −0.01  0.04  −0.18 
 Induction 3  −0.01  0.01  −0.83  −0.04  0.03  −1.27 
 Self-effi cacy for student 
engagement and 
instruction 

 0.02  0.01  2.18*  0.02  0.02  1.00 

 Self-effi cacy for 
technology use 

 −0.02  0.01  −3.07**  −0.02  0.01  −1.58 

 Math self-effi cacy  0  0.01  −0.06  0  0.01  −0.39 
 Implicit theory of math 
ability 

 0  0.01  −0.06  −0.01  0.01  −0.83 

 School-level 
 % free/reduced lunch  −0.11  0.03  −3.90***  −0.06  0.06  −0.92 

 Cross-level interactions 
 Induction 2 by Grade  0.01  0.01  1.52  0.03  0.02  1.52 
 Induction 3 by Grade  0.02  0.01  2.49*  0  0.02  0.17 
 Induction 2 by VASOL  0  0  0.62  0  0  0.25 
 Induction 3 by VASOL  0  0  0.23  0  0  0.94 

  
 Random effects  Estimate  SE  Estimate  SE 

 Level-1 residual variance  0.21  0  0.66  0.01 
 Level-2 residual variance  0.05  0  0.07  0.01 
 Level-3 residual variance  0.01  0.01  0  0 

 Fixed effects 

 Posttest implicit theory of 
math ability  Posttest value 

 Coeffi cient  SE   z   Coeffi cient  SE   z  

 Intercept  4.16  0.05  79.50***  4.28  0.04  96.23*** 
 Student-level 

 VASOL  0  0  −0.04  0  0  1.74 
 Pretest math learning  0.04  0.05  0.86  0  0.04  −0.01 
 Pretest self-effi cacy  0.09  0.01  6.32***  0.09  0.01  7.79*** 

(continued)
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  Implicit theory of ability . Comparing Inductions 1 and 2, students in Induction 2 had 
higher implicit view of math ability scores than students in Induction 1,  β  = 0.09, 
 p  = .039, meaning that being in Induction 2 led to an implicit theory of math ability 
score that was 0.09 standard deviations higher than being in Induction 1. There was 
also a signifi cant interaction between Induction 2 and grade. In particular, students 
in lower grades had similar implicit view of math ability scores in Induction 2 and 
Induction 1. Then as grade increased, Induction 2 led to higher implicit view of 
math ability scores than Induction 1,  β  = 0.12,  p  < .001. In addition, there was a sig-
nifi cant interaction between Induction 2 and prior knowledge (VA-SOL),  β  = 0.001, 
 p  = .018; however, as the coeffi cient indicates, this was a very small interaction. 

Table 4 (continued)

 Fixed effects 

 Posttest implicit theory of 
math ability  Posttest value 

 Coeffi cient  SE   z   Coeffi cient  SE   z  

 Pretest implicit theory of 
math ability 

 0.60  0.01  56.85***  0.02  0.01  2.76** 

 Pretest value  0.08  0.01  6.21***  0.83  0.01  79.77*** 
 ELL status  −0.04  0.05  −0.76  0.07  0.04  1.65 
 Grade  −0.07  0.02  −3.55***  0  0.02  −0.26 
 Gender (male)  −0.05  0.02  −2.51*  0  0.02  −0.03 
 Ethnicity  0  0.01  0.32  −0.02  0.01  −2.16* 

 Teacher-level 
 Induction 2  0.09  0.05  2.07*  0.02  0.04  0.43 
 Induction 3  0.05  0.04  1.17  0.01  0.04  0.26 
 Self-effi cacy for student 
engagement and instruction 

 0.04  0.02  1.84  0.01  0.02  0.70 

 Self-effi cacy for technology 
use 

 −0.01  0.02  −0.52  −0.01  0.01  −0.56 

 Math self-effi cacy  −0.03  0.01  −1.76  0.01  0.01  0.55 
 Implicit theory of math 
ability 

 −0.03  0.02  −1.88  0.02  0.01  1.39 

 School-level 
 % free/reduced lunch  0  0.08  0  0.03  0.07  0.38 

 Cross-level interactions 
 Induction 2 by grade  0.12  0.03  4.57***  −0.01  0.02  −0.64 
 Induction 3 by grade  0.03  0.02  1.10  −0.04  0.02  −2.10* 
 Induction 2 by VASOL  0  0  2.37*  0  0  −1.82 
 Induction 3 by VASOL  0  0  0.89  0  0  −1.34 

  
 Random effects  Estimate  SE  Estimate  SE 

 Level-1 residual variance  0.81  0.01  0.66  0.01 
 Level-2 residual variance  0.07  0.02  0.08  0.01 
 Level-3 residual variance  0.02  0.03  0.03  0.02 

   τ  p  < .06, * p  < .05, ** p  < .01, *** p  < .001  
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Students with lower prior knowledge had slightly higher implicit view of math ability 
scores in Induction 1 than Induction 2. Comparing Inductions 1 and 3, students in 
Induction 3 had similar scores to students in Induction 1,  β  = 0.05,  p  = .243. There 
was also not a signifi cant interaction between Induction 3 and grade,  β  = 0.03, 
 p  = .271, nor between Induction 3 and prior knowledge (VA-SOL),  β  < 0.001, 
 p  = .371. A post hoc Wald test indicated that overall students in Induction 3 had simi-
lar implicit theory of ability scores to those in Induction 2 ( χ  2 (2) = 4.34,  p  = .114   ). 
However, there was a signifi cant interaction when considering grade ( χ  2 (2) = 23.62, 
 p  < .001). In lower grades, students in Induction 3 had similar implicit view of math 
ability scores as students in Induction 2, but as grade increased, students in Induction 
2 tended to have higher scores than students in Induction 3. When comparing 
Inductions 2 and 3, there was also a marginally signifi cant interaction between 
Induction and prior knowledge (VA-SOL) ( χ  2 (2) = 5.75,  p  = .057). 

  Value . For value, in comparing Inductions 1 and 2, overall students in Induction 2 
had similar value scores to students in Induction 1,  β  = 0.02,  p  = .668. There was also 
no signifi cant interaction between Induction 2 and grade,  β  = −0.01,  p  = .520. When 
comparing Inductions 1 and 3, students in Induction 3 had similar value scores to 
students in Induction 1,  β  = 0.01,  p  = .795. There was a signifi cant interaction 
between Induction 3 and grade. In particular, students in lower grades had  similar 
value scores in Induction 3 and Induction 1. Then as grade increased, Induction 1 
led to higher value scores,  β  = −0.04,  p  = .036. Post hoc Wald tests suggested that 
there was no signifi cant difference between Inductions 2 and 3 ( χ  2 (2) = 0.19, 
 p  = .910). There was also no signifi cant interaction when considering grade 
( χ  2 (2) = 4.76,  p  = .093). Finally, there were no signifi cant interactions between con-
dition and prior knowledge (VA-SOL) ( p ’s > .069).   

    Discussion 

 Perhaps not surprisingly given the size and complexity of the present study, our 
results are informative, modest, and not defi nitive. 

    RQ1: Impact on Students’ Motivation 

 Our fi rst research question concerned the general impact of the 4-day intervention 
on students’ motivation in mathematics, particularly self-effi cacy, implicit theory of 
ability, and value. Overall, results from the 4-day intervention were mixed. No gains 
were found in self-effi cacy; for implicit theory of ability, a lower incremental view 
of ability was found; we found modest declines in value beliefs. With respect to 
math learning, students in all three inductions had modest improvements in their 
scores on the math learning measure.  
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    RQ2: Infl uences of Induction Type and Student Characteristics 

 Second, we were interested in whether the impact of the intervention was infl uenced 
by the type of induction that student received and other student-level demographic 
or academic characteristics. No effects related to self-effi cacy were found, and 
effects related to value were very minor. For implicit theory of ability, there were 
indications that Induction 2 was more successful than Inductions 1 and 3 in impact-
ing students’ views, especially for older students. Induction 2 led to higher incre-
mental views of math ability for students, particularly for students in grades 7 and 
8. Induction type also appeared to have a small impact on value, with some evidence 
that Induction 3 had the strongest impact on utility and attainment value for the 
younger students, as compared to the other two inductions. 

 Despite the complexity of these results for our second research question, three 
clear patterns did emerge. 

  Absence of effects on self-effi cacy.  First, Induction 1 did not have the hypothesized 
impact on students’ self-effi cacy. Despite the fact that the IVE was designed specifi -
cally to foster changes in self-effi cacy, there is no evidence that Induction 1 improved 
self-effi cacy any more than the other inductions. There are several possible explana-
tions for this fi nding. First, given the relatively short intervention, the fact that stu-
dents in any induction did not experience dramatic gains in a construct as fundamental 
and multidimensional as self-effi cacy is not surprising. Second, Induction 1 was the 
most complex in terms of cognitive and temporal “overhead” required for students 
to enact the experience. We hypothesize that, had a longer time period been avail-
able for students to shift their focus from learning to enact Induction 1 to refl ecting 
on the content of the experience, effects on self-effi cacy would have been greater. 

 Recall that the three inductions also differed on the expense and technical sophis-
tication required to create and implement them. Does the present fi nding about 
Induction 1 and self-effi cacy suggest that use of virtual worlds is not worth the 
trouble and expense? Particularly when inculcating sophisticated knowledge and 
skills, a substantial body of research suggests that this is not the case (National 
Research Council,  2011 ; U.S. Department of Education,  2010 ). We interpret our 
results as indicating that this type of complex game-based technology activity with 
high cognitive overhead may require more instructional “dosage” than short dura-
tion provided in the present intervention. Thus, well-designed virtual worlds, which 
are expensive and technically demanding, can realize their power for engagement 
and learning only when a suffi cient investment of classroom time is made. 

  Effects linked to students’ age . A second pattern that emerges from the complex 
results of our second research question is that the effects of each induction on stu-
dents’ motivation were infl uenced by students’ age, as evidenced by the frequency 
of signifi cant induction type by grade interactions. These grade-level interactions 
held while controlling for prior mathematics knowledge (VA-SOL scores), indicat-
ing that the differential impact of the inductions was developmental and not merely 
the result of differing mathematics ability. Because the structure of schooling for 
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students in middle school (Grades 6–8) is different from that of elementary school 
students (Grade 5), and because students conceive of competence differently based 
on age (Dweck,  1986 ), these fi ndings indicating differential impacts on students 
depending on their age are confi rmatory of prior work and reinforce the importance 
for practitioners and policy makers of tailoring such interventions to students’ 
developmental level. 

  Absence of effects for student demographics . Finally, we did not fi nd interactions 
between induction type and other student demographic variables such as free and 
reduced lunch, ethnicity, and gender. From a curricular perspective, this is a positive 
outcome indicating that, in contrast to many educational experiences, these types of 
intervention may narrow—not widen—troubling achievement gaps. That good 
design can produce motivational learning experiences effective across the full spec-
trum of students is very encouraging.  

    RQ3: Infl uences of Teacher-Level Factors 

 Our third research question asked about impact of teacher-level factors on students’ 
motivation, including credentialing in mathematics education, undergraduate major, 
years of experience, and teachers’ beliefs. Based on the extant literature, we had 
hypothesized that these factors might infl uence students’ motivation. However, 
teacher-level factors were not signifi cant predictors of student outcomes. Viewing 
the intervention from a curricular perspective, this is a positive fi nding suggesting 
that our design and implementation ensured that all students received a roughly 
equivalent instructional experience. 

 With respect to the absence of a relationship between teachers’ beliefs and student 
motivation, although there is good theoretical and empirical evidence to suggest that 
these variables could predict student outcomes, it is also true that linking teacher-level 
beliefs to student outcomes is not a clear and straight path (Holzberger, Philipp, & 
Kunter,  2013 ; Klassen, Tze, Betts, & Gordon,  2011 ). In fact, Klassen et al. ( 2011 ) 
noted that there is a lack of evidence that links teachers’ self-effi cacy to student out-
comes, despite the commonly held belief by researchers that this relationship exists. 
Their review of the literature noted that correlations between teachers’ self-effi cacy 
and student achievement were low to modest. Our fi ndings confi rm this perspective.  

    Limitations 

 There were several limitations to the present study that suggest caution in the 
interpretation of our results. First and foremost, as noted above, there was a very 
large amount of missing data—53 % of students were missing demographic, 
pre-, and/or posttest data. Second, it is important to note that the length of the interven-
tion was relatively short, both in terms of the game-based technology activities, 
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the professional development, and the mathematics lesson. Although we were able to 
fi nd some infl uence of the intervention on students’ motivation, these effects were 
quite modest. Further, although a delayed posttest was administered, results were 
not interpretable; thus, we are not able to report whether or not the effects at posttest 
were sustained after the end of the intervention. Third, recall that the fi ve-item math 
assessment had low reliability. Taken together, all of these results raise questions 
about any attempt to generalize our fi ndings. Future studies—both additional 
large- scale studies of longer duration, as well as shorter-term studies that afford 
opportunities for more qualitative exploration—can attempt to address these limita-
tions and continuing moving toward improving our understanding of the relation-
ship between technology, motivation, and STEM learning.   

    Conclusion 

 Investigating along a developmental span the relationship between game-based 
technology activities and student interest in STEM careers is important because 
much potential talent in STEM is now lost. Our research interweaved alternative 
motivational activities with effective and authentic mathematics learning, in order to 
take initial steps toward developing insights about the added value of game-based 
technology activities for building confi dence in math and science capability, seeing 
one’s abilities in STEM as able to improve over time, and developing a passion or 
sustained interest in becoming a scientist or engineer. Further, we studied the 
impacts of media with substantially different production costs, providing the basis 
for a cost-benefi t analysis and for articulating contrasting conditions for success. 

 Our fi ndings highlight the importance of tailoring motivational experiences to 
students’ developmental level. Our results are also encouraging about developers’ 
ability to create instructional interventions and professional development that can 
be effective when experienced by a wide range of students and teachers. Further 
research is needed to determine the degree, duration of, and type of instructional 
intervention necessary to substantially impact multidimensional, deep-rooted 
motivational constructs, such as self-effi cacy.     
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