
MOOClm: User Modelling for MOOCs

Ronny Cook(B), Judy Kay, and Bob Kummerfeld

School of Information Technology, University of Sydney,
Sydney, NSW 2006, Australia

{ronald.cook,judy.kay,bob.kummerfeld}@sydney.edu.au
http://chai.it.usyd.edu.au/

Abstract. Emerging MOOC platforms capture huge amounts of learner
data. This paper presents our MOOClm platform, for transforming data
from MOOCs into independent learner models that can drive person-
alisation and support reuse of the learner model, for example in an
Open Learner Model (OLM). We describe the MOOClm architecture
and demonstrate how we have used it to build OLMs.

Keywords: MOOCs · Learner modelling · Open Learner Modelling
(OLM) · Learner model server

1 Introduction and Background

MOOCs (Massively Open Online Courses) are based on platforms designed for
teaching on a massive scale. These can support SPOCs, Small Private Online
Courses [Fox, 2013] and MOOClets [Williams, 2014] which teach one topic.
These platforms log learner activity extensively. Our MOOClm platform has
been designed to harness this data by transforming it into an independent
learner model. This means that the model can be reused in other learning sys-
tems. We illustrate one such use, in an Open Learner Model (OLM) interface
[Bull and Kay, 2010]. This offers promise of the demonstrated benefits of OLMs
[Bull and Kay, 2013; Mitrović and Martin, 2002]. It may also help address the
problem of high dropout rates in MOOCs [Kizilcec et al., 2013]. Drawing on
studies of learner preferences for OLMs [Bull, 2012] and the potential to support
metacognitive processes [Bull and Kay, 2013], we designed the learner model
and OLM to enable a learner (or other stakeholder, such as a mentor or teacher)
answer the following questions:

1. Overview: What is the overall progress of this student on the learning
activities?

2. On-track: In which learning objectives has the learner met the teacher
expectations?

3. Behind: In which learning objectives are they lagging behind expectations?
4. Activity-Type-Progress: What are the answers to Q2-3 for a particular

class of activity (video, exercise, discussions.... )
5. Act: How can the student find learning resources associated with any given

learning outcome?
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Current MOOCs store detailed logs for use of learning resources and per-
formance on assessment tasks. There has been work towards standards for such
data, for example MOOCdb [Veeramachaneni et al., 2013] and the eXperience
API (aka Tin Can) [Mueller et al., 2014]. A recent review of analytics for major
MOOC platforms [Muñoz-Merino et al., 2015] concludes they are rudimentary
and they do not address our questions. Some MOOCs have analytics that par-
tially answer Q1 and 4; for example Khan Academy’s math course has a skillome-
ter for fine-grained skills and badges for coarse grained ones. MOOClm moves
beyond these to create a learner model of the course learning objectives. This is
an independent learner model server [Brusilovsky et al., 2005; Kay et al., 2002].

2 Related Work

MOOCs (Massively Open Online Courses) are defined by the goal to deliver
high quality tertiary level courses to thousands of students, at low per-student
cost. They are characterised by online video lectures for delivery of content and
support for low cost formative assessment based on self-assessment exercises,
online discussion forums and peer review tools [Breslow et al., 2013; Kay et al.,
2013]. MOOC platforms have also been used for SPOCs (Small Private Online
Courses) [Fox, 2013] where they have been used very effectively for blended
learning [Waldrop, 2014].

High budget MOOCs draw upon considerable expertise in learning design.
This makes use of careful curriculum design, including careful definition of the
learning objectives. Some MOOCs, notably some Khan Academy courses, make
the learning objectives and individual progress in them available to the learner,
in forms of skill-meter like displays and badges [Thompson, 2011]. However, there
has been no report of a systematic approach to curriculum mapping to define
MOOC curricula and inform the design of the MOOC. This is in stark contrast
to the widespread practice in K-12 education [Jacobs, 1997, 2004] where the
curriculum as seen as a work-in-progress, with the curriculum designer refining
it to ensure that the actual learning materials match the intended learning goals.

For the purposes of this mapping, we define learning objectives as what the
curriculum is intended to teach and we link these to the learning objects. Cur-
riculum mapping distinguishes those learning objectives that are taught (as in
video lectures) and those that are assessed. The latter are critical for evaluating
the effectiveness of the curriculum as they can provide evidence of the learning
outcomes actually achieved by learners. Gluga’s ProGoSs [Gluga et al., 2012,
2013] provided a platform for systematic curriculum mapping, and it completes
the loop by linking summative assessment data into the system.

Open Learner Models (OLMs) make the system’s model of the learner knowl-
edge and characteristics available to the student [Bull and Kay, 2010]. They
vary markedly, with their design driven by the particular purposes of the OLM
[Bull and Kay, 2007]. They have been primarily designed for use by learners, to
support reflection, planning and seeing progress. A key challenge for the design
of an OLM is to create a suitable interface. Some key examples are INGRID
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[Conejo et al., 2012] a public tool for visualising learner models and the extensive
work of Susan Bull and colleagues, such as their “OLMlets” [Bull et al., 2008].
Our work aims to create a OLM, and associated underlying learner model, that
is for use by the MOOC curriculum designer.

3 MOOClm Architecture for the Open edX Platform

Figure 1 gives an overview of the MOOClm architecture. At the left is the MOOC
platform, the Open edX platform. This is widely used and open source. This was
the reason it was chosen for our SPOC on C and Unix. The right of the figure
shows the MOOClm server. We now explain its design, in terms of the underlying
ontology and the approach to representing the elements needed for a OLM that
could enable learners to answer the questions described above.

A key first step in designing the learner model was to create the ontology,
or namespace, for the model. To make this systematic, we build upon the stan-
dard learning design practice which defines the intended learning outcomes for
a course. These form a hierarchy, with more general learning objectives being
refined as a set of detailed learning objectives.

As our SPOC was a core area of computer science, we started the process
of defining the learning objectives by drawing upon those defined in the ACM
CS2013 curriculum [ACM Joint Task Force, 2013]. Our approach is similar to
ProGoSs [Gluga et al., 2012] with its interface for teachers to define their course
in terms of its intended learning objectives, taking foundations from a standard
curriculum. This also similar to the approach in [Apted et al., 2004] where an
authoritative resource, such as an online dictionary, can be mined to create a
base set of key terms that can be used as learning objectives. It is desirable
to build from a standard set of learning objectives since that facilitates learner
model reuse, across MOOCs and other learning platforms and towards a lifelong
learner model [Kay, 2008].

In addition to the standard learning objectives, we found that additional
objectives were needed if we were to provide useful answers to our core OLM
questions. This happened also in the work of Apted et al. [Apted et al., 2004]
where the teacher needed to add local specialised terms, where there were multi-
ple synonyms in wide use, and there the course structure made use of additional
concepts. In the case of MOOClm , we needed to augment the ACM CS2013
curriculum because it is lacks the fine grained detail that is relevant for a learner
who needs to track their progress in the important MOOC concepts. For exam-
ple, the ACM CS2013 curriculum has a single learning objective for a collection
of several data structures; but the focus of key lectures and exercises in our
SPOC were specifically about C linked lists. In addition, the ACM CS2013 cur-
riculum is language agnostic but our students see the subject in terms of the
language used in the teaching. To make the OLM ontology meaningful, we need
to augment the ACM CS2013 curriculum with these concepts. While this com-
promises the potential reuse of the learner model across MOOCs/SPOCs, it is
essential.
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Figure 1 shows how MOOClm augments the MOOC. We will illustrate this
with an example of a student ‘Alice” tackling a set of learning objectives on C
pointers. facilitate re-use of the model in other contexts. [Kay, 2008] She views
a video and then does the first three self-test exercises in a set.

Fig. 1. MOOClm Architecture

First, consider the MOOC platform on the left of the figure. The top left box
represents the MOOC interface the users see. Below this is the basic analytics
tools. At the upper right, we show the MongoDB “Courseware” database of
all learning resources and references, including text for exercises and YouTube
references for videos. At the lower right is the raw logs of date-stamped events
stored in JSON format. The most recent response for each problem is in the
analytics database; the JSON logs have the full history.

The logs are comprehensive but need care to transform into a learner model.
For example, when Alice views the video, this is logged as a load video event
when the page is opened, then several play video events at two minute intervals
until the video finishes. When Alice does an exercise, edX logs a problem check
event from browser to server, a problem check event internal to the server, then
a problem graded request from server to browser which gives the result. Only the
problem graded event indicates if the submission was correct.

We illustrate some event types to indicate challenge in designing MOOClm :

play video : occurs at a timestamped start of play, then every two minutes.
seek video : is when the student skips back or forward while playing the video.

This indicates more active interaction than play video.
load video : indicates that the static opening frame video is being shown on a

page. Of negligible interest.
pause video : indicates that the video has been paused. When play is resumed,

a play video event is logged.
problem check : occurs when the learner submits a short-answer question.

This event is always followed by problem graded. A problem check event may
or may not also include whether the submitted answer is correct.
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problem graded : is an internal entry, logged when edX checks a submitted
problem. Unfortunately the result is not clearly logged as correct or incor-
rect - instead the HTML for the generated result is logged and this must be
parsed to determine the result.

load document : is for document download - e.g. PDF the slides used in a
video.

show transcript : Show how well the student has done in the MOOC so far.
hide transcript : Closing the performance transcript.
Others : covers numerous other event types which can be course specific. Our

system logs have 474 event types, 16 native and 458 were courseware links.

After careful analysis, we concluded that a core set of events should be
used for our learner model. These are problem graded, problem check, play video,
seek video and pause video. These capture the information needed to answer our
questions. We ignore the others.

As indicated in the lower left of the diagram, evidence can also originate from
external sources, such as examinations or other MOOCs. Any such evidence must
also be interpreted in light of relevant learning objectives.

We now explain how the log data is treated as evidence in the learner model,
on the right of the diagram. This transformation required several design deci-
sions. This process unifies our learner model ontology of learning objectives with
the raw MOOC data. The log entries use edX’s internal courseware ID for learn-
ing materials such as video and exercises. To process the JSON log files, this
ID is checked against the courseware database, mapping it to a human-readable
form, for example:

2014-05-19T09:58:46.369909+00:00 COMP2129 RonnyCook2 problem
check Operating Systems and Machine Principles/Week 2/C Aggregates
and Pointers/Scope quiz/Multiple Choice #2 (correct);

The source line from the log here is about half a page; we omit it for brevity.
Pardos et al [Pardos and Kao, 2015] have more recently done useful work in
standardising the edX logs as part of a larger work.

Alice’s events show that she viewed the Week 2 “Pointers” video and
answered the first three exercises. These events are then cross-checked against
our MOOClm mapping of learning objectives for each learning object. Video
events are recorded as evidence if part of the individual event occurs within the
time interval when that learning objective was taught.

In our example, as Alice watched the introductory material explaining point-
ers, we transform the associated log data to a series of play video evidence items
in part of the learner model for C and the learning objective: “Understands how
to use the ∗, & and − > C operators to reference and dereference pointers”
in the C language portion of the model. The exercises problem graded events
also contribute to the same learning objective. A single MOOC resource may be
associated with multiple learning outcomes; in this instance, the same material
is associated with the learning objective: Understands the nature and use of C
pointers.
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The end result of this process is a collection of evidence events for each
learning objective. The next step is to draw conclusions from this evidence about
what the student knows. For this, Personis supports creation of interpretive
elements called “Resolvers”. MOOClm provides several of these. Each Resolver
examines the evidence for and against for each learning outcome and draws a
conclusion about the “knowledge level” of a learning objective. One very simple
resolver, “Optimistic” treats a learning objective as known if there is any positive
evidence for it. A more useful resolver compares the evidence for this learner
against the model shown in the figure as the “expected standard”. This indicates
the expected evidence available for a learner who has completed all the materials
that the teacher had expected for this time in the course.

In this fashion we create a set of “reference models” against which the student
can compare their own performance. This set can include models belonging to
other students. The specific reference models we build included:

– A complete reference model, as outlined above, populated with evidence for
all recorded learner outcomes.

– A model covering all learning objectives covered by the MOOC, as an
overview of the student’s use of the MOOC.

– Three models covering: just the material taught in videos; just the material
tested in exercises; and just the material tested in the exam. These facilitate
seeing in which parts of the course the student participated, and in seeing
how coverage by the different teaching and assessment mechanisms overlap.

– A model showing the material taught by the MOOC up until week 4, to
check whether students had progressed beyond this point in the MOOC.

– A model covering all learning objectives in the ACM CS2013 curriculum,
as a guide to the level of overlap between MOOC materials and the ACM
curriculum

– a model showing all learning objectives not in the ACM curriculum, to check
how much of students are learning is additive to ACM learner outcomes.

In service of interpreting the OLM, we built a simple interface based on
the “pack” visualisation in the Javascript D3 library. This interface permits
comparing different OLMs, applying a structure/visibility filter, and selection of
the preferred resolver and timestamp.

The MOOC’s use of the OLM is subject to some restrictions due to cross-site
scripting protections in many browsers. This limits embedding of javascript into
HTML sources which may wish to connect to the OLM API directly. Instead,
we use a CGI script which consults the OLM before selecting appropriate text.
Use of a web service is another possible approach.

The approach used here has some marked similarities to CUMULATE
[Brusilovsky et al., 2005] but also several important differences. Where CUMU-
LATE breaks down material by topic, MOOClm attempts to approach atomicity
in its learning objectives, so that differently structured courses covering similar
material can be compared. MOOClm integrates the evidence store with its user
models rather than using a separate store, making migration easier. The Personis
resolvers used by MOOClm are very similar in function to the inference agents
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used by CUMULATE, but there is a greater emphasis on student feedback for
the model to ensure accuracy rather than a strict reliance on observed student
activities.

Some elements of our visualisation interface, particularly the overlay and
filtering facilities, provide insights that can be obscured with the CUMULATE
framework.

4 Validation

To validate the MOOClm framework, we implemented a learner model for a
SPOC being run for a computer science course at the University of Sydney.
Participation in the SPOC was voluntary; although students were expected to
view all videos, access to the videos was not exclusively through the SPOC.

The SPOC consisted of 37 videos, which in turn were broken down into a
total of 187 topic-specific segments, with 156 multiple-choice and short-answer
self-assessment questions. We added evidence from the students’ final exam, with
38 questions of which 32 were multiple-choice.

We identified 514 ties to our learning objectives in this material, with 170
distinct learning objectives assessed. The model as a whole consisted of 1105
learning objectives extracted from the ACM CS2013 curriculum, plus 171 supple-
mentary objectives not addressed by the ACM curriculum but covered, directly
or indirectly, in the SPOC course materials. Only 19 of the ACM course objec-
tives were addressed in the course, as the ACM curriculum is largely language-
and platform-agnostic whereas the material in the SPOC is specific to C and
UNIX.

The SPOC had 345 participants, with 1753506 lines of edX logs collected, of
which 814035 were classified as useful evidence by the criteria discussed earlier.

All examples here use the Optimistic (“any evidence is good evidence”)
resolver to interpret Alice’s model.

Figure 2 shows a simple view of “Alice’s” knowledge as represented in our
OLM. This answers the first of our representative questions, giving a broad
overview of the student’s knowledge. Black dots represent “known” items; white
dots are “unknown”. The full (complete reference) ontology has been narrowed
by a software filter in our viewer to show only those learner outcomes present
in the MOOC; that is, it incorporates both ACM and “augmented” outcomes,
but omits any outcome which is not present in the videos or self-assessment
questions from the MOOC.

When Alice clicks on the circle at bottom right, she sees the zoomed view of
the UNIX subtopic represented in figure 3. She can zoom in or out of the model
freely, down to the level of individual learning objectives.

Figure 4 attempts to address our second and third questions by comparing
Alice’s performance against a sample benchmark for an “expected standard”
student who has completed all MOOC material through to week 4. With this
colour scheme, black shows items that are known and expected to be known, yel-
low shows outcomes that are expected to be known but which she does not know,
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Fig. 2. Alice’s OLM Fig. 3. Alice’s OLM - Zoomed View

and the sole green dot, between the cluster of three black dots and the singleton
at the bottom of the “ProgrammingLanguages” bubble, is where Alice knows
something beyond the Week 4 material. Unfortunately the colour scheme does
not show up well in black and white; green shows up as dark grey and yellow as
very light grey.

Essentially, the yellow dots tell us where Alice is failing to meet expected per-
formance as of week 4. The green dot tells us where she is exceeding expectations.

A similar view can be used to compare student performance against any of
the reference models mentioned in section 2. Several colour schemes are available,
to address colour-blindness issues and to lend emphasis to particular types of
comparison.

Figure 5 answers an interesting compound question related to our earlier
question 4: Of the learning objectives tested in the exam, how many have been
taught by week 4 of the course? Of this set of exam-tested objectives, how well
is Alice doing?

This is done by specifying a filter that only displays exam-tested results, then
applying an overlay to compare our student against the set of outcomes tested
by week 4 (the “week 4 curriculum”).

The set involved is much smaller, since the exam can only test a small portion
of the course. We see that the exam mostly tests objectives categorised under
“ProgrammingLanguages”, with remaining outcomes spread across “Operat-
ingSystems” and “ParallelandDistributedComputing”. The MOOC has by this
time taught the material corresponding to learning outcomes for the yellow and
black bubbles. Alice has learned one additional exam-related topic not covered
by week 4.

In fact, comparing with figure 4 we can see that Alice has been very lucky.
The former figure shows that there is a great deal of MOOC material up to week
4 of which Alice has not demonstrated knowledge. Figure 5 tells us that most of
the material that Alice missed was not covered in the exam.
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Fig. 4. Student performance against
Week 4 complete reference model

Fig. 5. Student performance against
Week 4 benchmark for exam-tested
learning outcomes

Fig. 6. Sample Evidence Snapshot

If we want to look at Alice’s exam results in particular, ignoring MOOC
evidence, we select a resolver that ignores MOOC evidence and only uses exam
evidence. (As Alice did not participate in the final exam, the diagram showing
this is quite boring.)

This viewpoint is also useful as a quick-and-dirty check that no particular
part of the course was favoured in the exam. Figure 5 suggests that the UNIX-
specific material may have been covered inadequately. On the other hand, it
may be that the UNIX learning objectives are much more complex, so fewer
individual objectives could be tested.

Figure 6 shows a snapshot of the detail for one particular learning out-
come. The component’s path in the model is shown, as well as a description,
the resolved outcome, and a scrollable list of the evidence used to conclude this
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outcome. A link is also included to a list of reference resources that the student
may follow for further learning on a specified topic, directly addressing our fifth
foundational question.

The interface also offers the viewer an option to override or force a value
for the component, inserting an evidence item specifying the value to be resolved.
This allows the student to override the value for any learning outcome that they
believe to be incorrect, in principle enhancing the reliability of the model. If there
is a need to exclude such explicit changes, a suitable Resolver may be used.

The same view, used against the “expected standard” model, can be used
to address our fifth question. Students can view the “expected standard” model
to examine evidence stored for a particular learning objective and see which
learning resources will assist them with any particular learning outcome.

The interface blocks any attempt to make changes to reference models.

5 Conclusion

We have demonstrated MOOClm as a uniform framework tying together MOOCs
and Open Learner models to facilitate lifelong learner models.

Integration of target models for typical and “plausibly ideal” usage gives
the student a guide to their present progress, while opening the model ensures
that it remains accurate. By opening the aspirational models, complete with
sample evidence, we also give the learner a guide to where they should target
additional learning. The MOOC may also adapt its presentation to data in the
OLM, ensuring a two-way data flow.

Our contribution is the end-to-end integration of curriculum design, MOOC
course construction and OLM in an integrated, open framework which facilitates
re-use and lifelong learning.

In future work, we intend to adapt the framework for easier use across mul-
tiple MOOCS. The model was designed with a standardised curriculum for this
reason. Use as an integrating agent across multiple MOOCs and MOOClets
[Williams, 2014] will allow students to take advantage of the best parts of each
platform towards lifelong learning goals. Currently, Open edX has no facility to
integrate specification of learning objectives against learning objects. A critical
next step is to add this capability to edX. Importantly, we need to conduct user
studies to evaluate and refine the interfaces and to gain insights into the ways
that learners make use of the OLM.
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