
Integrating Context Similarity with Sparse
Linear Recommendation Model

Yong Zheng(B), Bamshad Mobasher, and Robin Burke

School of Computing, Center for Web Intelligence, DePaul University,
243 South Wabash Ave, Chicago, IL 60604, USA
{yzheng8,mobasher,rburke}@cs.depaul.edu

Abstract. Context-aware recommender systems extend traditional rec-
ommender systems by adapting their output to users’ specific con-
textual situations. Most of the existing approaches to context-aware
recommendation involve directly incorporating context into standard
recommendation algorithms (e.g., collaborative filtering, matrix fac-
torization). In this paper, we highlight the importance of context
similarity and make the attempt to incorporate it into context-aware
recommender. The underlying assumption behind is that the recom-
mendation lists should be similar if their contextual situations are sim-
ilar. We integrate context similarity with sparse linear recommendation
model to build a similarity-learning model. Our experimental evalua-
tion demonstrates that the proposed model is able to outperform several
state-of-the-art context-aware recommendation algorithms for the top-N
recommendation task.

Keywords: Context · Context-aware recommendation · Context
similarity

1 Introduction and Background

Recommender systems are an effective way to alleviate information overload in
many application areas by tailoring recommendations to users’ personal pref-
erences. Context-aware recommender systems (CARS) emerged to go beyond
user preferences and also take into account the contextual situation of users in
generating recommendations.

The standard formulation of the recommendation problem begins with a two
dimens-ional (2D) matrix of ratings, organized by user and item: Users × Items
→ Ratings. The key insight of context-aware recommender systems is that users’
preferences for items may be a function of the context in which those items are
encountered. Incorporating contexts requires that we estimate user preferences
using a multidimensional rating function – R: Users × Items × Contexts →
Ratings [1].

Context-aware recommendation algorithms, such as context-aware matrix
factorization [2], seeks to incorporate context into the traditional recommen-
dation framework without considering the relationships among contextual con-
ditions. In this paper, we position the importance of context similarity, where
c© Springer International Publishing Switzerland 2015
F. Ricci et al. (Eds.): UMAP 2015, LNCS 9146, pp. 370–376, 2015.
DOI: 10.1007/978-3-319-20267-9 33



Integrating Context Similarity with Sparse Linear Recommendation Model 371

the assumption behind is that the recommendation lists should be similar if
their contextual situations are similar. Furthermore, we propose the Similarity-
Learning Model (SLM) which attempts to integrate context similarity with the
sparse linear recommendation model. We explore different ways to represent and
model the context similarity in order to build SLM and evaluate these methods
using multiple data sets.

2 Similarity-Based Contextual Recommendation

In this paper, we use contextual dimension to denote the contextual variable, e.g.
“Time”. The term contextual condition refers to a specific value in a dimension,
e.g. “weekday” and “weekend” are two conditions for “Time”. A context or
contextual situation is, therefore, a set of contextual conditions, e.g. {weekend,
home, family}.

We consider the context-aware recommendation task to be a top-N recom-
mendation problem, where a ranked list of items should be recommended to a
user in specific contextual conditions (i.e., the input is a pair <user, context>).
Therefore, the recommendation list should be updated accordingly if the con-
textual conditions are changed. Previous work [7] has incorporated contextual
deviation into the sparse linear recommendation model and demonstrated its
effectiveness. In this paper, we switch to integrate context similarity with the
sparse linear method, and propose the similarity-learning model (SLM) which
avoids similarity calculation by learning context similarity directly while opti-
mizing the ranking score in the algorithm. Previous research has found that
similarity calculations relying on existing ratings, yield unreliable results if the
rating space is sparse. In SLM, simply, a ranking score prediction function for
<user, item, context> is required in which the similarity between contexts is an
integral part. The algorithm learns context similarity by minimizing the ranking
score error and provides contextual recommendations to the end user based on
the predicted ranking score.

In this paper, we choose the Sparse LInear Method (SLIM) [4] as our base
algorithm, where SLIM is a ranking-based recommendation algorithm aggregat-
ing users’ ratings with item coefficients. And the General Contextual Sparse
LInear Method (GCSLIM) [7] is our previous work which integrates the contex-
tual deviations. Alternatively, we try to modify the GCSLIM and replace the
rating deviation term by the context similarity in this work. More specifically,
the goal in GCSLIM is to create a prediction function shown in Equation 1
to estimate the ranking score, ̂Si,j,k, for ui on item tj in contexts ck. th is an
item in the set of items rated by ui (h �= i), and cm is the contextual situation
where ui placed rating on th (note: it is allowed that cm = ck). Ri,h,m is one
contextual rating placed by ui on th under context cm. Assume there are L con-
textual dimensions in total, thus cm,l denotes the contextual condition in the
lth dimension in context cm. The function Dev measures the contextual rating
deviation between two contextual conditions – it is zero if cm,l = ck,l. Meantime,
Wj,h measures the coefficient between item tj and th. Simply, GCSLIM learns



372 Y. Zheng et al.

the coefficients between items and the contextual rating deviations, where the
optimization goal is to minimize the ranking score prediction error and the loss
function can be generated accordingly by using gradient descent [7].

̂Si,j,k =

N
∑

h=1
h�=i

(Ri,h,m +

L
∑

l=1

Dev(cm,l, ck,l))Wj,h (1)

Inspired by GCSLIM, it is also possible to incorporate the notion of context
similarity into the model to formulate the SLM by replacing the deviation term
in Equation 1:

̂Si,j,k =

N
∑

h=1
h�=j

Ri,h,m × Sim(ck, cm) × Wj,h (2)

In SLM, we aggregate the ranking score by the contextual rating score Ri,h,m

with the similarity between ck and cm multiplying by the coefficient between item
tj and th. Note that we set h �= j to avoid bias by using ui’s other contextual
ratings on tj . This strategy will ensure that we learn the coefficients between as
many different items as possible. The loss function and parameter updating rules
can be generated accordingly by using gradient descent. However, the form of the
similarity term will vary if the context similarity is represented in different ways.
The remaining challenge is how to represent or model the similarity of contexts
in the prediction function shown in Equation 2. In this paper, we introduce four
ways to represent similarity of contexts.

2.1 Independent Context Similarity (ICS)

Time=Weekend Time=Weekday Loc=Home Loc=Cinema
Time=Weekend 1 0.54 N/A N/A
Time=Weekday 0.54 1 N/A N/A

Loc=Home N/A N/A 1 0.82
Loc=Cinema N/A N/A 0.82 1

Fig. 1. Example of a similarity matrix

Table 1. Sample of Contexts
Time (WT ) Location (WL)

Weekend Weekday Home Cinema
ck 1 0 1 0
cm 0 1 1 0

An example of a similarity matrix can be seen in Table 1. With ICS, we only mea-
sure the similarity between two contextual conditions when they lie on the same
dimension. Each pair of contextual dimensions are assumed to be independent.
Assuming there are L contextual dimensions in total, the similarity represented
by ICS can be depicted by Equation 3, where l is the index of context dimension.

Sim(ck, cm) =

L
∏

l=1

similarity(ck,l, cm,l) (3)

These similarity values (i.e., similarity(ck,l, cm,l)) can be learned by the opti-
mization process in SLM. The risk of this representation is that some information
may be lost, if context dimensions are not in fact independent, e.g., if users usu-
ally go to cinema to see romantic movies with their partners, the “Location” (e.g.
at cinema) and “Companion” (e.g. partners) may have significant correlations
as a result.



Integrating Context Similarity with Sparse Linear Recommendation Model 373

2.2 Latent Context Similarity (LCS)

As noted earlier, contextual rating data is often sparse, since it is unusual to
have users rate items repeatedly within multiple situations. This poses a diffi-
culty when new contexts are encountered. For example, the similarity between
a new pair of contexts <“Time=Weekend”, “Time=Holiday”> may be required
in the testing set, but it may not have been learned from the training data, while
the similarity for two existing pairs, <“Time=Weekend”, “Time=Weekday”>
and <“Time=Weekday”, “Time=Holiday”>, may have been learned. In this
case, the representation in ICS suffers from the sparsity problem. Alternatively,
we represent each contextual condition by a vector of weights over a set of latent
factors (we use 5 latent factors in our experiments), where the weights are initial-
ized at the beginning and learnt by the optimization process. Even if the newly
observed pair does not exist in the training data, the vectors representing the
two individual conditions (i.e., “Time=Weekend” and “Time=Holiday”) will be
learned over existing pairs, and the similarity for the new pair can be computed
by the dot product of those two updated vectors. Then context similarity can be
computed as in Equation 3. We call this approach the Latent Context Similarity
(LCS) model, and we learn the vectors representing contextual conditions, which
may increase computational costs in contrast to ICS.

2.3 Weighted Jaccard Context Similarity (WJCS)

Another approach to calculate context similarity is to associate weights with each
dimension. An example is shown in the Table 1, where weight WT is associated
with the dimension Time, and WL is assigned to Location. This representation
of contextual similarity is an adaptation of the differential context weighting
algorithm [5].

The weight is used as part of similarity computation only when the conditions
within a dimension match. The similarity can be calculated by Equation 4, where
l denotes the index of contextual dimension. Given the example in Table 1, only
the conditions in Location are the same, therefore, the similarity of ck and cm is
calculated as WL

WT+WL
.

Sim(ck, cm) =

∑

l∈ck,l∩cm,l
Wl

∑

l∈ck,l∪cm,l
Wl

(4)

When all the conditions in the same dimension are different, we assign a
small fixed value (e.g., 0.01) to the similarity to avoid the zero values being used
in the prediction function. In WJCS, the weights for each contextual dimension
are the ones to be learned in the optimization process. The computational cost
is correlated with the number of contexts in the data set – the more dimensions,
the more weights to be learned. However, the number of contextual dimensions
can be reduced by a pre-selection process.



374 Y. Zheng et al.

2.4 Multidimensional Context Similarity (MCS)

In the multidimensional context similarity model, we assume that contextual
dimensions form a multidimensional coordinate system. An example is depicted
in Figure 2.

(2.5,0,0)

(5,0,0)

(0,2,0) (0,6,0)(0,0,1)

(0,0,4)

(0,0,1)

(0,0,4)

(2.5,0,0)

(5,0,0)

(0,3,0) (0,6,0)

Fig. 2. Example of Multidimensional Coordinate System

Let us assume that there are three contextual dimensions: time, location
and companion. We assign a real value to each contextual condition in those
dimensions, so that each condition can locate a position in the corresponding
axis. In this case, a contextual situation can be viewed as a point in the mul-
tidimensional space. Accordingly, the distance between two such points can be
used as the basis for a similarity measure. In this approach, the real values for
each contextual condition are the parameters to be learned in the optimization
process. For example, the values for “family” and “kids” are updated in the
right-hand side of the figure. Thus, the position of the data points associated to
those two contextual conditions will be changed, as well as the distance between
the corresponding two contexts. The similarity can be measured as the inverse
of the distance between two data points. In our experiments, we use Euclidean
distance to measure the distances, though other distance measures can also be
used. The computational cost is directly associated with the number of contex-
tual conditions in the data set, which may make this approach the highest-cost
model. Again, the number of contextual conditions can be reduced by context
selection, as with WJCS.

3 Experimental Evaluation

In our experiments, we use three context-aware data sets: the Restaurant, Music
and Tourism data sets where the data descriptions can be found in [7]. We
use a five-fold cross validation, performing top 10 recommendation task eval-
uated by precision and mean average precision (MAP). The algorithm pro-
posed in this paper is build upon the GCSLIM; therefore, we choose the best
performing deviation-based GCSLIM (denoted by “Deviation Model”) [7] as



Integrating Context Similarity with Sparse Linear Recommendation Model 375

baseline. In addition, we compare our approach to the state-of-the-art context-
aware recommendation algorithms, including context-aware splitting approaches
(CASA) [6], context-aware matrix factorization (CAMF) [2] and tensor factor-
ization (TF) [3]. We vary different parameters for those algorithms and present
the best performing one in this paper, which is the same setting used in [7].

Fig. 3. Results in Precision and MAP @ Top-10 Context-aware Recommendations

The experimental results can be described by the Figure 3. We see that the
MCS model outperforms all the baselines for the restaurant and tourism data,
and the WJCS model is the best similarity model for the music data set. Note
that the LCS model usually outperforms the ICS model. We can conclude that
the latent factor approach is able to alleviate the sparsity problem suffered in
ICS and improve performance.

The WJCS model has inconsistent performance. It is worse than the
deviation-based baseline on the restaurant data, achieves comparable results
to the deviation model with the tourism data, and is the best performer on the
music data. We would expect the performance of the WJCS model to be influ-
enced by a number of factors. The first is the number of contextual dimensions
– more dimensions, more weights to be learned. This requires the rating profiles
to be dense enough so that the weights for each dimension can be fully learned.



376 Y. Zheng et al.

The second factor is the density of contextual ratings inferred by the data statis-
tics reported in [7]. Based on those two factors, we can see that there are many
more dimensions in the Tourism data, and the density in the restaurant data is
pretty low, which explains the poor performance of WJCS model in these two
data sets.

The multidimensional model seems to be an excellent representation. How-
ever, the computational cost is directly correlated with the number of conditions
in this model. Context selection should be performed in preprocessing to alleviate
this problem.

4 Conclusions and Future Work

We highlighted the notion of context similarity and incorporated it into the
recommendation algorithm. We developed similarity-learning models in which
contextual similarity is learned by optimizing the ranking score for top-N rec-
ommendations. We have shown that similarity of contexts can be represented in
a variety of ways and our multidimensional context similarity approach outper-
forms other state-of-the-art baselines.

References

1. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender
systems. AI Magazine 32(3), 67–80 (2011)

2. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context
aware recommendation. In: Proceedings of the Fifth ACM Conference on Recom-
mender Systems, pp. 301–304. ACM (2011)

3. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommen-
dation: n-dimensional tensor factorization for context-aware collaborative filter-
ing. In: Proceedings of the Fourth ACM Conference on Recommender Systems,
pp. 79–86. ACM (2010)

4. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender systems.
In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506. IEEE
(2011)

5. Zheng, Y., Burke, R., Mobasher, B.: Recommendation with differential context
weighting. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP
2013. LNCS, vol. 7899, pp. 152–164. Springer, Heidelberg (2013)

6. Zheng, Y., Burke, R., Mobasher, B.: Splitting approaches for context-aware recom-
mendation: an empirical study. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pp. 274–279. ACM (2014)

7. Zheng, Y., Mobasher, B., Burke, R.: Deviation-based contextual SLIM recom-
menders. In: Proceedings of the 23rd ACM Conference on Information and Knowl-
edge Management, pp. 271–280. ACM (2014)


	Integrating Context Similarity with Sparse Linear Recommendation Model
	1 Introduction and Background
	2 Similarity-Based Contextual Recommendation
	2.1 Independent Context Similarity (ICS)
	2.2 Latent Context Similarity (LCS)
	2.3 Weighted Jaccard Context Similarity (WJCS)
	2.4 Multidimensional Context Similarity (MCS)

	3 Experimental Evaluation
	4 Conclusions and Future Work
	References


