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Abstract. Mind wandering (MW) is a ubiquitous phenomenon where attention
involuntarily shifts from task-related processing to task-unrelated thoughts.
There is a need for adaptive systems that can reorient attention when MW
is detected due to its detrimental effects on performance and productivity. This
paper proposes an automated gaze-based detector of self-caught MW (i.e., when
users become consciously aware that they are MW). Eye gaze data and self-
reports of MW were collected as 178 users read four instructional texts from a
computer interface. Supervised machine learning models trained on features
extracted from users’ gaze fixations were used to detect pages where users
caught themselves MW. The best performing model achieved a user-
independent kappa of .45 (accuracy of 74% compared to a chance accuracy of
52%); the first ever demonstration of a self-caught MW detector. An analysis of
the features revealed that during MW, users made more regression fixations,
had longer saccades that crossed lines more often, and had more uniform
fixation durations, indicating a violation from normal reading patterns.
Applications of the MW detector are discussed.
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1 Introduction

A promising strategy to improve the effectiveness of adaptive systems is to take
aspects of the user’s mental state into account - commonly referred to as user state
estimation. Monitoring a user’s mental state allows for dynamic strategies such as
reorienting their attention to the interface when they become distracted [6] or detect-
ing and responding to affective states such as confusion or boredom [3]. One user
state that has received little attention until recently is mind wandering (MW). MW is a
pervasive phenomenon that involves thinking about one thing while doing another.
For instance, while reading a book or listening to a lecture, it is possible for an indi-
vidual’s thoughts to involuntarily drift toward unrelated thoughts such as unfulfilled
plans and anxieties. The frequency of MW depends on the individual and environ-
mental context, but a large-scale experience-sampling study on about 5,000 individu-
als estimated that MW occurs roughly 40% of the time [13].

Not only is MW frequent, it is also disruptive and detrimental to performance. This
is because MW entails a shift in attention from the external environment to internal
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thoughts. Tasks requiring conscious focus are compromised when attention is directed
toward task-unrelated thoughts. Hence, research has indicated that MW leads to
performance failures on a number of tasks, such as increased error rates during
signal detection tasks [20], lower recall during memory tasks [22], and poor compre-
hension during reading tasks [9], even when users were able to catch themselves mind
wandering [18]. There are some potential benefits to MW, in that it boosts creativity
and facilitates the planning of future events [14]. However, these benefits are not the
norm as a recent meta-analysis on 49 independent samples found that MW was con-
sistently negatively correlated with performance across a range of tasks [17].

The high incidence and negative influence of MW on performance suggests that
there might be advantages for adaptive interfaces that reorient attention to the task at
hand when MW occurs. This requires MW detection, which is a challenging proposi-
tion because MW has more covert cues than some other user states (e.g., facial
expressions conveying emotions). This raises the pertinent question of how one col-
lects labeled data (MW reports) to train supervised classifiers for MW detection. Two
common methods have emerged in the literature. The first is to ask users to provide
MW reports in response to thought probes (probe-caught) [22]. Users are asked to
indicate if they are MW (positive instances) or not (negative instances) at the moment
the probe is triggered. The second is to ask users to provide MW reports whenever
they catch themselves MW (self-caught) [20]. There is a distinct difference between
probe-caught and self-caught reports of MW, so it is possible that a detector built
from probe-caught MW would not be useful for detecting self-caught MW. First,
detection of self-caught episodes of MW does not require the use of potentially dis-
ruptive thought-probes. Second, self-caught reports rely on a user’s ability to monitor
their own thoughts and realize that they are MW. Therefore, they reflect a form of
MW that occurs with metacognitive awareness. As discussed in the related works
below, all of the previous work on MW detection has focused on probe-caught re-
ports. In this paper we introduce the first automatic user-independent detector of MW
with metacognitive awareness. As elaborated below, this raised a number of technical
challenges that needed to be addressed.

Related Work. A large amount of research has been done in the field of attentional
state estimation, which is a subfield of user state estimation. Attentional state estima-
tion has been explored in a variety of domains and with a variety of end-goals. For
example, attention has been used to evaluate adaptive hints in an educational game
[15] and to optimize the position of news items on a screen [16]. Attentional state
estimators have been developed for several tasks such as identifying object saliency
during video viewing [25], and for monitoring driver fatigue and distraction [7]. Al-
though both attentional state estimation and MW detection entail identifying aspects
of a user’s attention, MW detection is concerned with detecting more covert forms of
involuntary attentional lapses as opposed to determining which aspects of the stimulus
were being attended to.

In recent years, there have been five studies that have explicitly investigated detec-
tion of MW [1, 2, 5, 8, 10]. MW was tracked in each study with online self-reports
and with behavioral measures derived from eye gaze, speech, physiology, or reading
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times. Supervised machine learning was then used to predict the occurrence of each
self-report from the behavioral measures.

The first study, by Drummond and Litman [8], entailed detecting MW using acous-
tic-prosodic information while users read a biology paragraph aloud and then provided
a verbal summary. MW was tracked at set intervals where users indicated their degree
of “zoning out” on a 7 point Likert scale. Their model discriminated between “high”
versus “low” zone outs with an accuracy of 64%, which reflects a 22% improvement
over chance. However, it is unclear if their model will generalize to new users.

The second study, by D’Mello et. al [5], used eye gaze data to detect MW during
reading with reports of MW obtained in response to auditory probes that were trig-
gered at random points during the reading session. Their best performing model
yielded a detection accuracy of 60% on a down-sampled corpus containing 50% “yes”
and 50% “no” responses (20% improvement over chance). This study did ensure ge-
neralizability to new users, but both the training and testing set were down-sampled
prior to classification, so it is unclear if a similar level of fidelity will be observed
with the authentic MW distribution.

The third study, by Franklin et. al [10], used reading times to detect MW. Users
read 5000 words one at a time, using the space bar to advance to the next word. MW
probes were triggered if a user spent too much or too little time on a group of ten
words. They were able to classify mind wandering with an accuracy of 72% com-
pared to an expected accuracy of 49%. However, the word-by-word reading paradigm
is not necessarily representative of normal reading, and it is unclear if their method
will generalize due to the method used to set parameters (parameter values were fixed
rather than learned).

The fourth study, by Blanchard et. al [2], detected MW during reading using gal-
vanic skin response and skin temperature obtained with the Affectiva Q sensor. They
were able to achieve an above-chance classification accuracy of 22% in a manner that
generalized to new users.

The fifth study by, Bixler et. al [1], extended the work of D’Mello et. al [5] and at-
tempted to improve on the results of the Blanchard et. al study [2]. Using an expanded
version of the data set from the Blanchard et. al study, we included additional eye-
gaze features and performed a more comprehensive analysis of the models developed
by D’Mello et al. [5]. Out best models attained an above chance improvement of 28%
in a user-independent fashion.

Current Work. Our work entails two major contributions over previous MW detec-
tors: (1) we use a refined and extended feature set, and (2) we focus on building mod-
els of MW with metacognitive awareness. We refined our feature set by removing
features derived from the task context, as these did not contribute to the performance
of previous models and are not generalizable to other tasks. We then added several
new features, including those derived from blinks [11], pupil diameters [23], and sac-
cade angles.

Our second contribution is that we focused on detecting self-caught MW (MW
with metacognitive awareness). Previous work focused on probe-caught MW, which
makes our work the first self-caught MW detector. The lack of a self-caught MW
detector represents a gap in the MW detection literature because self-caught MW is
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distinct from probe-caught MW. Probes have the potential to disrupt the MW expe-
rience, while, in reality, MW fades naturally as users realize they are MW. There is
also a limit to the number of probes that can be given. Probing too often may be per-
ceived as irritating and may be disruptive to the primary task. Self-caught reports, on
the other hand, are provided whenever a user catches themselves MW, which allows
reports of MW to be collected whenever it occurs, provided the user is sufficiently
capable at monitoring their thoughts. Self-caught MW detectors also have unique
applications as listed in the General Discussion.

In line with this, the present study focuses on the use of eye-gaze for detection
of self-caught MW during reading. The dataset used is the same as in our previous
study [1], but in this study we use the self-caught reports, which have not been ana-
lyzed before. As discussed above, self-caught MW is different from probe-caught
MW, so it is an entirely open question as to whether it is possible to detect self-caught
MW from eye gaze. Furthermore, building a model from self-caught reports has its
own set of complications that need to be addressed. For one thing, there is no explicit
indication of when MW does not occur (called negative instances). Each self-caught
report is a positive instance of MW, and each instance without a self-caught report has
no data on whether MW occurred or not. A user could have been MW without realiz-
ing that they were MW (i.e., MW without meta self-awareness) and thus did not
report it. Deciding what constitutes a negative instance of MW is a hurdle that is not
encountered when building a model based on probe-caught reports of MW, as each
probe response can be explicitly labeled as either a negative or positive instance of
MW. There is also the issue of how to select an appropriate window of data to consid-
er for each MW instance. There is a simple solution when using probe-caught MW —
simply consider windows that backtrack from the time of the probe. However, the
same method cannot be used for negative instances of self-caught MW because they
do not include an explicit probe from which to backtrack. The present paper considers
multiple approaches to obtain negative instances of MW as well as multiple methods
for window selection.

The present work studies MW in the context of reading - an every-day activity that
is supported by a number of systems. There is also ample data to suggest that reading
comprehension is impaired by MW [9, 22], so there could be considerable benefits
from embedding MW detectors in systems that support large amounts of reading (e.g.,
educational materials, legal texts, news articles, and many others). Further, in addition
to demonstrating the first detector of self-caught MW in the context of reading, the
results of our systematic experimentation to address the technical challenges dis-
cussed above should be useful for researchers interested in building self-caught MW
detectors for their own application domains.

2 Data Collection

Users. The users in this study were 178 undergraduate students that participated for
course credit. Of these, 93 users were from a medium-sized private Midwestern uni-
versity while 85 were from a large public university in the mid-South. The average



Automatic Gaze-Based Detection of Mind Wandering 35

age of users was 20 years (SD = 3.6). Demographics included 62.7% female, 49%
Caucasian, 34% African American, 6% Hispanic, and 4% “Other”. Thus, there was
considerable gender- and ethnic- diversity in our sample.

Procedure. Users read four different texts on research methods topics (i.e., experi-
menter bias, replication, causality, and dependent variables). Each text contained
1500 words on average (SD = 10) split into 30-36 pages with approximately 60 words
per page. Texts were presented on a computer screen with 36pt Courier New font.
The typeface and size were chosen to make text layout simpler and to make it easier
to determine when a word was being gazed upon.

Users were given standard instructions [21] on reporting MW. MW was defined as
having “no idea what you just read” and realizing that “you were thinking about
something else altogether.” Both self- and probe-caught MW reports were collected.
Probe-caught reports were collected in response to 9 auditory probes triggered on
different pages at a randomly chosen point between 4 and 12 seconds from the ap-
pearance of the page. Users were also required to supply a report if they tried to ad-
vance to the next page before the probe was triggered. Alternatively, the self-caught
method entailed users reporting MW whenever they found themselves MW.

Instances of Mind Wandering. Overall, users read 33,595 pages of text. About a
third of these were discarded for the present study due to failure to register eye gaze.
Of the remaining pages, 30% (6,718 pages) contained a mind wandering report. 6,237
of these reports were probe-caught reports, while 481 were self-caught reports. Of the
probe-caught reports, 32% were positive instances of mind wandering. Only a subset
of all users (78) provided self-caught reports of mind wandering, but all 178 users
were included in the analysis when selecting negative instances of MW.

3 Model Building

Both negative and positive instances of MW are tracked when using probe-caught
reports, so it is readily apparent that the classification task involves distinguishing
negative probe-caught reports from positive probe-caught reports. When building
models using only self-caught reports, however, there are no negative reports of MW.
This raises the question: what should be used as a negative instance of MW?

There were three considerations taken when selecting negative instances of MW in
our study. The first consideration regarded the types of pages that should be used as
negative instances of MW. Pages fell into four categories; self-caught pages, positive
probe-caught pages, negative probe-caught pages, and non-report pages (pages with
no report). Positive probe-caught pages were not considered further since the goal was
to detect self-caught MW. Pages that included reports of both types were considered
to be a self-caught page if the self-caught report occurred first, and vice versa. All
self-caught pages were included in the models as positive instances of MW. Negative
instances were taken to be (a) only negative probe-caught pages (PC No), (b) only
non-report pages (NR), or (c) both negative probe-caught pages and non-report pages
(PC No + NR).
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The second consideration was how to select the number of negative instances. We
chose to randomly select from all available negative instances of MW to achieve a 0.3
proportion of positive instances of MW. This proportion corresponds to the propor-
tion of positive probe-caught reports in our data and is similar to proportions of MW
reported in previous studies on MW during reading [11, 23].

The third pertinent issue was to identify a point at which to analyze gaze data for
the negative instances for non-report pages. For self-caught report pages we use a
window that ended two seconds prior to the self-caught report in order to avoid any
confounds associated with the user pressing the report key (e.g., movement, looking
at the keyboard). The length of the window was a parameter that varied as noted be-
low. For negative probe-caught pages, the window also ended two seconds before the
probe response. One of three methods was used to select comparable windows of data
within non-report pages (Figure 1).

Page End (30s)

A Page Start (0s)
Window of data at the Data (24-28s)
end of the page | A
Offset (2s)
Average Time of Self-caught
Page Start (0s) Reports (14.73s) Page End (30s)

B K
Window of data at the Data (8.73-12.73s) |
average time of self- |
caught reports /I\
Offset (2s)

Time of Randomly Selected

Page Start (0s)

C Self-caught Report (12s) Page End (30s)
Window of data at the time o o0 &< |
of a randomly selected ata (6-10s)
self-caught report |

/I\

Offset (2s)

Fig. 1. Three different methods of selecting a window of data within a hypothetical 30s non-
report page. The first method (A) is to use a window of data at the end of the page. The second
method (B) is to use a window of data at the average time of the report for self-caught pages.
The third method (C) is to use a window of data at the same time as the report within a random-
ly selected self-caught page. A two second offset is used to avoid confounds associated with the
button press (to either advance to the next page (A) or provide a self-caught report (B, C)).

The first method was to simply use data from the end of the page (EoP) after in-
cluding a 2-second offset to account for the key press to advance pages. For example,
when selecting a four second window from a 30 second non-report page, gaze data
from 24 seconds to 28 seconds within the page would be used. The second method is
to select the window on the basis of the average time a report occurred within self-
caught pages (Avg. SC). For our dataset this is 14.73 seconds. Thus, when selecting a
four-second window from a 30 second non-report page, gaze data from 8.73 seconds
to 12.73 seconds within the page would be used for feature calculation. The third
method is to select the window based on a randomly selected self-caught page (Rand.
SC). For example, when selecting a four second window from a 30 second non-report
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page, a self-caught page would be randomly selected. If the self-caught report oc-
curred 12 seconds into the page, then gaze data from 6 seconds to 10 seconds within
the page would be used for feature calculation (last 2-seconds are considered to be the
offset).

Feature Engineering. Raw data was processed into gaze fixations (points where gaze
is maintained on the same location) and saccades (movements between subsequent
fixations) using a fixation filter from the OpenGazeAndMouseAnalyzer (OGAMA),
an open source gaze analyzer [24]. The series of gaze fixations and saccades were
segmented into windows of varying length (4, 6, 8, 10, or 12 seconds), each ending at
a certain point on the page as noted in the previous section. Windows that contained
fewer than five fixations or windows that were shorter than four seconds were elimi-
nated because these windows did not contain sufficient data to compute gaze features.
The features used were similar to those used in our previous work [1]. Two sets of
features were computed: 46 global gaze features and 20 local gaze features, yielding
66 features overall. A third set of features that relied on the context of the reading task
(context features) were tested, but will not be discussed further because they did not
improve classification accuracy and are not generalizable to different contexts.

Global gaze features were independent of the actual words being read. These in-
cluded properties of eye movements such as fixation duration (ms), saccade duration
(ms), saccade length (pixels), saccade angle (degrees between two saccade vectors),
and pupil diameter (standardized using a within-subject z-score). For these five mea-
surement distributions, the min, max, mean, median, standard deviation, skew, kurto-
sis, and range were computed, totaling 40 features. Additional features included a
measure of fixation dispersion, the fixation duration/saccade duration ratio, and the
number of saccades. Three new features were the number of blinks, the proportion of
time spent blinking, and the proportion of horizontal saccades, which were saccades
with angles less than 30 degrees above or below the horizontal axis.

In contrast to global features, local features were sensitive to the words being read.
These included measures of the number of specific fixation types as well as the mean
and standard deviations their durations. These features were calculated from first pass
fixations (first fixation on a word during the first pass through a text), regression fixa-
tions (fixations back onto words already passed), single fixations (fixations on words
that were only fixated on once), gaze fixations (consecutive fixations on the same
word), and non-word fixations, totaling 15 features. Additional local features captured
known relationships between fixation durations and the semantic properties of words,
such as their length, frequency of use, number of synonyms, and semantic specificity
(e.g. “blue” is more specific than “color”). The final local feature was the ratio of
reading time to expected reading time, calculated as 200ms times the number of
words read.

Tolerance analysis and feature selection were applied to each model. Tolerance
analysis consisted of removing highly multicollinear features, as redundant informa-
tion invites bias towards that information. Similarly, feature selection consisted of
using correlation based feature selection (CFS) as implemented in Weka [12], an open
source machine learning workbench, to remove features that were strongly correlated
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with other features and weakly correlated with the class label. Feature selection was
performed using just the training set to avoid overfitting.

Model Building. We explored five different parameters at the model building stage in
order to ascertain which parameter combination resulted in the most accurate models.
First, we varied which features were included in our models. Possibilities were
(1) global, (2) local, and (3) global and local. This allowed us to narrow down which
set of features was best able to detect MW. Second, we varied the window sizes used
in the model. Window sizes of 4, 6, 8, 10, and 12 seconds were used in order to de-
termine the ideal amount of data for detecting MW. Third, we used three different
sampling methods for our training set (testing set was never sampled). We either used
the entire data set, downsampled the training set, or synthetically oversampled the
training set using SMOTE (Synthetic Minority Over-sampling Technique [4]). Each
sampling method was applied to the same training set five separate times, and the
average values of all five runs were taken. Fourth, we used three different types of
outlier treatment. Outliers were either left in the dataset, trimmed, or Winsorized.
Trimming consisted of removing values greater/lower than 3 standard deviations
above/below the mean, while Winsorization consisted of replacing those values with
the corresponding value +3 or -3 standard deviations above/below the mean.

We used 10 classifiers implemented in Weka, including Bayes net, naive Bayes,
logistic regression, SVM, and decision trees. We considered a wide array of classifi-
ers at this early stage of the research as it is unclear which classifier is the best in this
domain.

Our results were evaluated with a leave-several-user-out validation method. Data
from a random 66% of the users were included in the training set, while the data from
the remaining 34% were included in the training set. This process was repeated 20
times for each model and performance metrics were averaged across these iterations.

Cohen’s kappa was used to evaluate model performance because it corrects for
random guessing when there are uneven class distributions, as is the case in the cur-
rent dataset. The kappa value is calculated using the formula K = (observed accuracy -
expected accuracy) / (1 - expected accuracy), where observed accuracy is equivalent
to recognition rate and expected accuracy is computed from the confusion matrix to
account for the pattern of misclassifications. A kappa value of 0 indicates chance
agreement while a kappa value of 1 indicates perfect agreement.

4 Results

We built seven types of models that detected self-caught (SC) MW. Models varied on
the type of pages that were included for negative instances of MW (negative probe-
caught, non-report pages, or both) and the method to select the window of data for
non-probe report pages (end-of-page, average SC, or random SC). Results for the best
model of each type are shown in Table 1. Window selection was only necessary for
models with non-report pages as there was no explicit point at which MW occurred.
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Table 1. Best performing models for each type of negative instance

Negative Window Instances Classifier Window Feature Feature Kappa
Instances Selection Size (s) Types Count

PC No - 540 Logistic 10 G 10 .33 (.07)
NR EoP 523 Logistic 12 G 10 .39 (.07)
NR Avg.SC 410 SVM 12 GL 18 .45 (.06)
NR Rand. SC 400 SVM 12 GL 22 .39 (.07)
PC No + NR EoP 681 Logistic 12 G 10 .36 (.05)
PCNo +NR Avg. SC 415 SVM 12 GL 21 43 (.07)
PC No + NR Rand. SC 361 SVM 12 GL 21 .35 (.09)

Note. Bolding indicates the model with the highest kappa value. Standard deviations are in
parentheses. PC No = Probe-caught negative instances; NR = Non-report; EoP = End of page;
Avg. SC = Average self-caught; Rand SC = Random self-caught; Acc. = Accuracy; G = Glob-
al; L = Local; GL = Global + Local

The best performing model used only non-report pages as negative instances of
MW, with a 12 second window located at the same point as the average time of self-
caught reports. This model achieved a kappa value of 0.45, with an accuracy of 74%
compared to an expected accuracy of 52%. The confusion matrix for this best model
highlights the model’s accuracy in classifying positive instances correctly, with a hit
rate of .82 compared to a prior probability of .32. The false-alarm rate of 0.30 is not
high enough to be of concern depending on the MW intervention (see Discussion).

Parameter Analysis. It is ideal to perform the least number of operations on the data
in order to decrease complexity in real time systems. With that in mind, we analyzed
the parameters to determine which resulted in the best models. We analyzed each of
the parameters across all 108 individual models (3 sampling methods * 3 outlier
treatments * 3 window sizes * 4 feature types). For each parameter, the model with
the best kappa value (across the 10 classifiers) was selected for further analysis.
Window size and feature type displayed
clear trends, but there was no clear trend for 0.5
either sampling method or outlier treatment.
In particular, kappas were higher for larger
window sizes as seen in Figure 2. When ana-
lyzing feature type, it is apparent that global
features were the most useful for detecting
MW. The best model using both global and
local features resulted in the best perfor-
mance (kappa = .45), but performance of the
best local feature model was quite poor (kap- Fig. 2. The effect of window size on
pa = .24) compared to the best global feature  1,5pa value
model (kappa = .43). This suggests that glob-
al features were responsible for much of the performance of the combined model.
This could be due to the level of precision needed for local features. When using a
desk mounted eye tracker, gaze data can be affected by a user’s head movements.

Kapp% Value
o
(6]

4 6 8 10 12
Window Size (Seconds)
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Head movements have a drastic effect on local features because they require precise
information on which words are being gazed upon. Global features, however, are
independent of the information being displayed.

Feature Analysis. We performed a deeper analysis of how the features varied be-
tween positive and negative instances of MW in order to obtain a better understanding
of a user’s eye gaze during MW. We analyzed the dataset belonging to the best per-
forming model shown in Table 1 above. Each feature was analyzed with a paired
samples t-test of the difference in the mean value of the feature between positive and
negative instances of MW. We analyzed data from the 31 participants for which there
were both positive (self-report) and negative (non-report pages) instances of MW.
There were five features that were significantly different between positive and nega-
tive instances of MW below the 0.05 level: (1) proportion of line cross saccades
(Mean MW = .125 (standard deviation = .100), Mean not MW = .078 (.101));
(2) proportion of regression fixations (MW = .162 (.062), not MW = .130 (.057));
(3) minimum saccade duration MW = 7.29 (6.74), not MW = 6.38 (5.89)); (4) fixa-
tion duration kurtosis (MW = 3.99 (4.52), not MW = 7.01 (5.75)); and (5) fixation
duration skew (MW = 1.66 (.81), not MW = 2.13 (.95)). These features were indica-
tive of a break in normal reading patterns. First of all, there was a greater proportion
of regression fixations and line cross saccades during MW, and saccades had a greater
duration. Furthermore, the skew and kurtosis of the fixation durations indicate that
they were more uniform during MW, whereas fixation durations during normal read-
ing would vary with word difficulty.

5 General Discussion

Our major contribution consists of building the first eye-gaze detector of self-caught
MW, studying its accuracy, its parameters, and the features that were most diagnostic
of MW. In the remainder of this section, we highlight our main findings, consider
applications of the MW detector, and discuss limitations and avenues for future work.

Main Findings. Our results highlight a number of important findings for building
detectors of self-caught MW. First, we have developed the first MW detector built
using self-caught reports. The overall classification accuracy of 74% is moderate but
might be sufficiently high for meaningful interventions, especially if the interventions
are fail-soft in that they are not harmful if delivered when detection errors occur
(more on this below). Second, we found that the best performing models used non-
report pages as negative instances of MW, and had features calculated from a window
of data located at the same time as the average time of reports within self-caught pag-
es. This information might be useful to other researchers interested in building self-
caught MW detectors in similar contexts. Third, similar to our previous study using
probe-caught reports [1], global features were shown to be particularly useful in clas-
sifying MW for self-caught reports. This is a significant finding because global fea-
tures are easier to compute, do not require very high-precision eye tracking, and are
more likely to generalize to different tasks beyond reading. Fourth, we found that
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larger window sizes were associated with more accurate MW detection rates. This
shows that a greater amount of information at the page level is important for more
accurate MW detection. Finally, an analysis of the features revealed that normal read-
ing patterns were disrupted during MW, such that users made more regression fixa-
tions, had a larger proportion of line cross saccades, and saccades were of greater
duration. Furthermore, the distribution of fixation durations was more uniform during
MW, which may indicate that they were not as affected by word difficulty as they
would be during normal reading.

Applications. A self-caught MW detector has a number of applications. For example,
it would allow for measurement of MW without interrupting the user. It could be used
to advance basic scientific research on MW itself, or to study user strategies for re-
gaining focus. Finally, it could be embedded in any adaptive system that includes a
text comprehension component. MW has been shown to negatively affect text com-
prehension, so any interface that includes text comprehension could be improved by
dynamically responding to MW. One example of an intervention would be to recom-
mend that a user re-read or self-explain a passage when the system detects MW. Other
possibilities include presenting the information in a different format, such as showing
a short animation or film; offering positive encouragement; or suggesting that the user
switches topics. It is important to note that interventions should not disrupt the user if
MW s detected incorrectly and should be used sparingly so users are not over-
whelmed.

Limitations and Future Work. There are several limitations to the current study.
First, the data was collected in a lab environment and users were limited to undergra-
duates from two universities located in the United States. This limits our claims of
generalizability to individuals from different populations. Quantifying our method
with a more diverse population and setting would boost our claims of generalizability.
Second, the font size was larger than what would normally be read, an intentional
decision in order to improve eye tracking precision for computing local features. Giv-
en that global features did most of the work, future studies could consider smaller font
sizes. Third, an expensive, high quality eye tracker was used for data collection,
which limits the scalability of using eye gaze as a modality for MW detection. How-
ever, this could eventually be addressed by the decreasing cost of consumer-grade eye
tracking technology, such as Eye Tribe ($99) and Tobii EyeX ($195), or with promis-
ing alternatives that use webcams for gaze tracking [19]. Fourth, it is possible that
users did not provide accurate or honest self-caught reports. However, both the probe-
caught and self-caught methods have been validated in a number of studies [20, 21],
and there is no clear alternative for tracking a highly internal state like MW.

Concluding Remarks. In summary, the present study demonstrated that global eye
movements could be used to build a moderately accurate user-independent detector of
self-caught MW, or MW with metacognitive awareness. Importantly, our approach
used a relatively unobtrusive remote eye tracker that allowed for unrestricted head
and body movement and involved an ecologically-valid reading activity. The next
step involves integrating the detector into an adaptive system in order to trigger inter-
ventions that attempt to reorient attentional focus when MW is detected.
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