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Abstract. Collaborative filtering inherently suffers from the data spar-
sity and cold start problems. Social networks have been shown useful to
help alleviate these issues. However, social connections may not be avail-
able in many real systems, whereas implicit item relationships are lack
of study. In this paper, we propose a novel matrix factorization model by
taking into account implicit item relationships. Specifically, we employ
an adapted association rule technique to reveal implicit item relation-
ships in terms of item-to-item and group-to-item associations, which are
then used to regularize the generation of low-rank user- and item-feature
matrices. Experimental results on four real-world datasets demonstrate
the superiority of our proposed approach against other counterparts.

1 Introduction

Recommender systems have become a prevalent tool to help satisfy users’ need of
personalization over the exponentially increasing amount of information on Web
2.0. Collaborative filtering (CF) is a widely accepted recommendation technique
built upon the concept of user (or item) similarity. That is, a user’s preference
can be inferred by aggregating the taste of similar users. However, CF inherently
suffers from the data sparsity and cold start problems [1].

To address these issues, trust-aware recommender systems [1–5] are emerg-
ing with the advent of social networks. Many recently proposed approaches are
designed upon the matrix factorization technique [6]. The intuition behind is
that social friends share similar preferences and influence each other by recom-
mending items. It has been shown that such additional side information among
users is useful to deal with the concerned issues and thus to improve recommen-
dation performance. However, the reliance on social connections may restrict the
application of trust-based approaches to other scenarios where social networks
are not available or supported. The potential noise and weaker social ties (than
trust) in social networks can further hinder the generality of these approaches [7].

Similarly, the side information of items is also exploited for recommender
systems, given its effectiveness in improving recommendation performance [6].
c© Springer International Publishing Switzerland 2015
F. Ricci et al. (Eds.): UMAP 2015, LNCS 9146, pp. 252–264, 2015.
DOI: 10.1007/978-3-319-20267-9 21



Exploiting Implicit Item Relationships for Recommender Systems 253

The basic assumption is that users tend to have similar preferences towards a
set of associated items. For example, a person is likely to enjoy the movie series
of The Lord of the Rings, and possibly appreciates the associated background
soundtracks. A number of approaches [8–10] have been proposed by making use
of explicit item relationships such as category, genre, location, etc. However, sim-
ilar as additional social information, items’ side information may be unavailable
for some real applications, or it is prohibitively expensive (or time-consuming)
to extract the side information due to the large volume of items. Furthermore,
only few works [6,11] have considered and demonstrated the value of implicit
item relationships for recommender systems.

In this paper, we propose a novel matrix factorization model by exploit-
ing association rule-based implicit item relationships, called IIR. It is developed
merely based on user-item rating information, and requires no reliance of addi-
tional user or item side information. We ascribes this feature to the essential dif-
ference from other literature studies. Specifically, we employ an adapted associate
rule technique to reveal the implicit item relationships in the form of item-to-item
and group-to-item associations, which are then used to regularize the generation
of low-rank user- and item-feature matrices in the proposed IIR model. In addi-
tion, we design four different strategies to select the most reliable item associa-
tions to train the model. Experimental results on four real-world datasets show
that our approach achieves superior performance against other counterparts, and
that group-to-item associations are more effective than item-to-item associations.

2 Related Work

Additional side information is often incorporated in collaborative filtering to
improve recommendation performance. We give a brief overview below regard-
ing such kind of recommendation approaches from the perspectives of users and
items, respectively. First, a notable research field is the trust-aware recommender
systems which take into account additional user relationships. Many approaches
have been proposed to date. Ma et al. [2] propose the RSTE approach by linearly
combining a basic matrix factorization model and a trust-based neighborhood
approach. The same authors later find that using social information as a regular-
izer works better than using it to decompose the user-item rating matrix [4]. This
finding is endorsed by Jamali and Ester [3] where a user’s latent feature vector
is regularized by those of her trusted users. Therefore, to incorporate item rela-
tionships in the IIR model, we follow the same rule to utilize item relationships
to regularize the generation of items’ latent feature vectors. More recent works
consider more aspects of social trust such as implicit trust influence [5,7], etc.
However, trust-based approaches may fail to work if being applied to the situa-
tions where social networks are not built-in or connected. Our work is intended
for a more general case where only user-item ratings exist.

Second, some researchers also attempt to make use of item relationships to
enhance recommender systems. In this paper, we classify two kinds of item rela-
tionships: explicit and implicit. Typical examples of explicit item relationships
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include items’ extrinsic properties: category, location and tag, just to name a
few. For example, Hu et al. [10] contend that the quality of a business shop
has some implicit indication on that of other shops in a certain geographical
neighborhood. Shi et al. [9] show that tags can be used to bridge cross-domain
knowledge to provide better recommendation. Implicit item relationships refer
to the relationships that cannot be explicitly observed between items. A clas-
sic example is that a man buying diaper is likely to buy beer as well, though
the diaper and beer are distinct items. Kim and Kim [8] apply association rule
mining techniques to reveal multi-level item associations in the light of item
categories. Our approach also adopts association rule to identify implicit item
relationships, but differs in that we do not classify item associations to multiple
levels in terms of category. Instead, we consider simple rules (one item indicat-
ing another, or item-to-item) and then generalize to group-to-item (a group of
items indicating another item) associations. Wang et al. [11] identify item rela-
tionships using a similarity measure, and claim that an item’s feature vector
can be influenced by those of other similar items. However, they build the item-
item similarity matrix with some ad-hoc settings when item similarity equals 0
or uncomputable. Another issue is that their model is very time-consuming in
training and thus prevents from being applied to large-scale datasets. In this
paper, we are more interested in association rule-based item relationships rather
than item similarity, the explanation of which is deferred to Section 3.2.

3 Recommendation with Implicit Item Relationships

In this section, we first introduce the IIR recommendation model, and then elab-
orate how item-to-item associations can be identified by an adapted association
rule technique, followed by the generalization to group-to-item associations.

3.1 The IIR Model

Matrix factorization (MF) techniques have been widely applied in recommender
systems. The basic assumption is that a user’s preference can be characterized by a
few number of latent features. In particular, MF models [6] factorize the user-item
rating matrix R ∈ R

m×n into two low-rank user-feature U ∈ R
m×d and item-

feature V ∈ R
n×d matrices, where m,n are the number of users and items, respec-

tively; and d � min(m,n) is the number of latent features. The rating matrix R is
very sparse due to the fact that a user generally only rates a small portion of items.
Let ru,i be a rating given by user u on item i, and r̂u,j be a rating prediction for user
u on a target item j. We preserve symbols u, v, p for users, and i, j, k for items. The
rating prediction r̂u,j can be estimated by the inner product of user-specific feature
vector Uu and item-specific feature vector Vj , given by:

r̂u,j = U�
u Vj ,

where the matrices U and V can be learned by minimizing the differences
between the prediction and the ground truth over all the users and items.
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In this paper, we propose the IIR model which focuses on the incorporation
of implicit item relationships in order to better factorize the rating matrix R.
Assume that two items j, k are implicitly associated with the strength of sj,k. In
this case, we contend that the two items should be close to each other in terms
of feature vectors. Inspired by the usage of social relationships in [4], we devise
the implicit item relationships as a regularizer to adjust the decomposition of
rating matrix R. Specifically, the IIR model is given as follows.

L=
1
2

m∑

u=1

n∑

j=1

Iu,j(ru,j−r̂u,j)2+
α

2

n∑

j=1

∑

k∈Aj

sk,j‖Vj−Vk‖2F+
λu

2
‖U‖2F+

λv

2
‖V ‖2F (1)

where Iu,j is an indicator function that equals 1 if user u rated item j and equals
0 otherwise; α > 0 is a regularization parameter to control the importance of
regularization by implicit item relationships; sk,j indicates the extent to which
item k is associated with item j; Aj is a set of reliable association rules for item
j; ‖·‖F is the Frobenius norm; and λu, λv are regularization parameters to avoid
over-fitting. Suppose that we have identified two implicit item relationships from
i to j and from k to j, the IIR model will add the following two regularizers:

si,j ‖ Vj − Vi ‖2F and sk,j ‖ Vj − Vk ‖2F
In other words, the IIR model can indirectly minimize the differences between
the feature vectors of related items i and k to some extent. We treat it as an
advantage of our model to capture both the influence of direct and indirect
implicit item relationships.

Equation 1 indicates that it is necessary for our model to effectively identify
the set of item associations Aj and the corresponding strength with other items
sk,j . We proceed to describe how to achieve them in the next subsection.

3.2 Mining Implicit Item Relationships

Item Similarity. A straightforward method to define implicit item relation-
ships is item similarity. If many users like both items, it indicates that the two
items have some similarity in common. This intuition underpins the well-known
item-based collaborative filtering. The most popular similarity measures are the
Pearson correlation coefficient (PCC) and cosine similarity (COS). However,
with the following concerns, we believe that item similarity measures are not
suitable for our work. First, a key characteristic of similarity measures is sym-
metry, i.e., sj,k = sk,j . In our case, we would like to distinguish the influence of
items j to k from that of items k to j. For example, a man buying beer may
not buy diaper, though a man buying diaper is likely to buy beer. Second, the
computation of similarity measures is generally based on the overlapping rat-
ings between two rating vectors. However, we argue that the non-overlapping
ratings may help define the differences between the two items. Third, PCC and
COS may produce misleading similarity measurements as pointed out by Guo
et al. [12], especially when the size of overlapping ratings is small. Lastly, sim-
ilarity measures often consider the correlation between two individual items,
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whereas we intend to measure more generalized correlations between a group
of items and a single item (i.e., group-to-item) other than item-to-item implicit
relationships.

Item-to-Item Associations. We define the implicit item relationships as the
item associations between a target item and another item or a set of other items.
This definition directs us to adopt association rule techniques to measure item
associations. The association rule mining is to search the associated item pairs
that often co-occur in transaction events. Assume that item i appears frequently
together with item j, and an association rule can then be denoted by li,j : i → j.
Note that the occurrence of item j may not frequently indicate the occurrence
of item i, i.e., the association is asymmetric as we demand. Generally, an asso-
ciation rule is valid only if its support and confidence (indicating the usefulness
and certainty) are greater than a user-specified minimum support (denoted by
minSup) and confidence (denoted by minCon) thresholds, respectively.

By regarding the rating matrix as a user-item transaction matrix, we can
apply association rules to reveal implicit relationships among items. Generally,
we need to determine proper values for thresholds minSup and minCon. The
settings are not trivial considering that: (1) higher thresholds will decrease the
available number of association rules due to the sparseness of rating matrix; and
(2) lower thresholds will result in too many association rules, which may signifi-
cantly slow the model training and take into account many unreliable association
rules. Both issues can greatly deteriorate recommendation performance. Instead
of empirically tuning the two parameters, we define a new measure reliability as
the extent to which a mined association rule is reliable in terms of both support
and confidence measures. The reliability of an association rule li,j is defined as:

reliability(li,j) =
support(li,j)

support(li,j) + C
∗ confidence(li,j), (2)

where support(li,j) and confidence(li,j) are the support and confidence measures
of an association rule li,j , respectively; and C is a constant to adapt the impor-
tance of association rule support. This formulation produces high reliability only
if both support and confidence values are high. Then, we sort all the association
rules in the descending order of computed reliability values, and select the top-K
most reliable association rules to form the association set Aj for target item j.

Group-to-Item Associations. A natural generalization to item-to-item asso-
ciations is group-to-item associations. That is, we further consider whether a set
of items can be associated with a specific item. We represent such kind of associ-
ation rules as lG,j : G → j, where G denotes a set of associated items. Similarly,
this kind of association rules can be also identified by applying association rule
techniques as well as the computation of association rule reliability. Hence, the
objective function in Equation 1 can be rewritten as follows:



Exploiting Implicit Item Relationships for Recommender Systems 257

L =
1
2

m∑

u=1

n∑

j=1

Iu,j(ru,j − r̂u,j)2 +
α

2

n∑

j=1

∑

G∈Aj

sG,j‖Vj − |G|−0.5
∑

k∈G

Vk‖2F

+
λu

2
‖U‖2F +

λv

2
‖V ‖2F ,

(3)

where sG,j is the strength (i.e., reliability) of association rule lG,j . Note that
we represent the characteristic of a group G by the average of all group items’
feature vectors. In other words, we constrain that a target item’s feature vector
should be close to the majority of its associated group.

For simplicity, hereafter we only consider group-to-item associations with
group size 2, i.e., |G| = 2.1 This is due to that, |G| = 0 indicates no items are
associated with item j while |G| = 1 implies that group-to-item associations
are equivalent with item-to-item associations. Now that there are two kinds of
item association rules, we propose the following four strategies to select the
association neighborhood of item j, i.e., Aj .

Half: select half a number of group-to-item and the other half a number of
item-to-item association rules separately as the baseline strategy.

Mix: select the top-K most reliable association rules after sorting all kinds of
association rules in term of reliability values.

Group: select the top-K most reliable group-to-item association rules only, and
ignore all item-to-item association rules.

Group+: select the top-K most reliable group-to-item association rules. In case
of insufficient rules, we select item-to-item association rules to complement.

Note that we do not incorporate the strategy of selecting item-to-item associ-
ation rules only by setting |G| = 1. The reason is that, by definition the strength
of item-to-item association rules is generally weaker than that of group-to-item
association rules. Hence, incorporating weaker rules will have smaller effect in
regularizing the objective function, and result in less-performing recommenda-
tions. The experimental results on real-world datasets have also confirmed our
intuition (see Section 4.2).

3.3 Model Learning

The stochastic gradient descent (SGD) method is widely used to achieve a local
minimum of the objective function given by Equation 3. Specifically, the SGD
update rules for variables Uu and Vj of the IIR2 model are given as follows.

1 We empirically noted that groups with size greater than 2 did not provide visibly
better performance or even provide worse performance sometimes. We are aware
that the observed effect may not be the same on other datasets we did not use.

2 Source code is included in the Librec library at www.librec.net.
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Table 1. Statistics of the used datasets

Dataset #Users #Items #Ratings Sparsity

FilmTrust 1058 2071 35,497 98.86%
MoiveLens 943 1682 100,000 93.70%
Ciao 8000 9749 38,591 99.95%
Epinions 7941 10,000 107,552 99.86%

∂L
∂Uu

=
n∑

j=1

Iu,j
(
g(U�

u Vj) − ru,j
)
g′(U�

u Vj)Vj + λuUu,

∂L
∂Vj

=
m∑

i=1

Iu,j
(
g(U�

u Vj) − ru,j
)
g′(U�

u Vj)Uu + λvVj

+ α
∑

G∈Aj

sG,j

(
Vj − |G|−0.5

∑

i∈G

Vi

)
− α

∑

M ∈ Ak,
j ∈ M

sM,k√|M |
(
Vk − |M |−0.5

∑

g∈M

Vg

)
,

where g(x) = 1/(1 + exp(−x)) is a logistic function used to bound the value
rang of rating prediction into [0, 1], and g′(x) is the derivative of function g(x).
To be consistent, we adopt the max-min normalization approach to convert the
observed ratings to the same value range [0, 1].

4 Experiments and Results

4.1 Experimental Setup

Datasets. Four real-world datasets are used in our experiments, namely
FilmTrust3, MoiveLens4, Ciao3 and Epinions5. FilmTrust is a movie sharing
website that allows users to assign numerical ratings (scaled from 0.5 to 4.0 with
step 0.5) to movies. MoiveLens is a personalized movie recommendation website,
where users can rate movies with integers from 1 to 5. The data set has been
preprocessed such that each user has rated at least 20 items. Both Ciao and
Epinions are product review sites, where consumers can review various products
with ratings from 1 to 5 stars. The statistics of our datasets is presented in
Table 1.

Comparison Methods. We compare our IIR model with the following meth-
ods: (1) PMF [13] is a basic matrix factorization method without any additional
side information. (2) IR-P [11] is the item relationship-based approach where
PCC is used to compute item similarity.6 For fair comparison, we remove the
influence of social networks from the original model. (3) IR-I is a substitute of
IR-P by replacing PCC with item-to-item associations. (4) IIR-C is a variant

3 http://www.librec.net/datasets.html
4 http://www.cs.umn.edu/Research/GroupLens
5 http://www.trustlet.org/wiki/Epinions
6 We convert the original PCC value from [-1,1] to [0,1] by function f(x) = (x + 1)/2.

http://www.librec.net/datasets.html
http://www.cs.umn.edu/Research/GroupLens
http://www.trustlet.org/wiki/Epinions
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of the IIR model which adopts COS to identify implicit item relationships. (5)
IIR-I is our approach merely based on item-to-item relationships. (6) IIR-G is
our approach with the incorporation of group-to-item relationships.

Evaluation Metrics. We perform 5-fold cross validation in our experiments.
Specifically, we randomly split each dataset into five folds and in each iteration
four folds are used as the training set and the remaining fold as the test set. All
folds will be tested, and the average results are reported as the final performance.
Predictive performance is evaluated by two widely used measures: the mean
absolute error (MAE) and root mean square error (RMSE), defined by:

MAE =

∑
u,j |ru,j − r̂u,j |

N
, RMSE =

√∑
u,j(ru,j − r̂u,j)2

N

where N is the number of test ratings. Smaller MAE and RMSE values imply
better predictive accuracy.

Parameter Settings. The number of latent features d is selected in
{5, 10, 20, 50}. We empirically find that the following parameter settings can
help achieve the best performance for each comparison method. For IR-P
and IR-I, the importance of item relationship-based rating prediction is set
0.005, 0.01, 0.1, 0.005 corresponding to FilmTrust, MovieLens, Ciao and Epin-
ions, respectively.7 All these item relationship-based approaches reach the best
performance when the size of association neighborhood is set 50, i.e., K = 50.
For all the methods, we apply grid search in {0.00001, 0.0001, 0.001, 0.01, 0.1}
for regularization parameters λu, λv, and in {0.0001, 0.001, 0.01} for the learning
rate.

4.2 Results and Analysis

Effect of Parameters C and K. In our approach, C controls the importance
of association rule support. We apply a grid search in {0,10,20,50,100,150,200}
to find the optimal setting for parameter C. The results are shown in Figure 1,
where the best settings are around 100.8 To select the top-K most reliable asso-
ciation neighbors for each item j (see Equation 3), we tune the value of K from
0 to 100 stepping by 10, where K = 0 indicates that no implicit item relation-
ships are considered, i.e., our model is degrading to the basic matrix factorization
model. The performance is illustrated in Figure 2.8 The results show that adding
implicit item relationships can help improve predictive performance (K > 0), but
further improvements tend to be negligible when K > 50 across all the datasets.
In other words, the top-50 association rules have the most important influence.
For the association rules after that, their strength of associations with the target
item may be too small to have a visible impact.

7 Due to space limitation, we do not present the results of tuning this parameter.
8 For simplicity, we only present the results when d = 5, and similar trends are

observed on other settings including d values and IIR variants.
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Fig. 1. The effect of parameter C in our approaches IIR-I (d = 5)
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Fig. 2. The effect of number of association rules K in our approach IIR-I (d = 5)

Effect of Parameter α. The parameter α in Equation 3 controls the importance
of item relationship regularization. We apply a grid search in {0.0001,0.001,0.01,
0.1,0.2,0.5,1.0} to find the optimal setting for parameter α. The results are plot-
ted in Figure 3, where the best settings for parameter α are around 0.5 on the
Epinions dataset and 0.1 ∼ 0.2 on the other datasets. Note that for the IIR-
G method, similar trends are obtained when any one of the four strategies is
adopted to select group-to-item association rules (see Section 3.2).

Effect of Four Strategies. We have identified four different association rule
selection strategies for our approach IIR-G in Section 3.2, namely Half, Mix,
Group and Group+. Table 2 summarizes the performance obtained by applying
the four strategies to all the datasets and across the different number of latent
features d. The results are consistent across all the cases, and demonstrate that
(1) Half reaches the poorest performance; (2) Group works better than Mix; and
(3) Group+ achieves the best performance. These results confirm our previous
claim, that is, the strength of group-to-item associations is stronger than that of
item-to-item associations. When only half of group-to-item associations are used,
the performance is the worst; as more group-to-item associations are selected (by
Mix, Group and Group+), the performance is improved accordingly. It suggests
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Fig. 3. The effect of regularization parameter α in our approaches IIR-I

Table 2. The effect of four strategies to select association rules for our approach IIR-G

d Metrics
FilmTrust MovieLens

Half Mix Group Group+ Half Mix Group Group+

5
MAE 0.621 0.620 0.619 0.615 0.724 0.721 0.721 0.718
RMSE 0.809 0.810 0.809 0.807 0.914 0.916 0.914 0.911

10
MAE 0.615 0.614 0.614 0.611 0.720 0.717 0.716 0.712
RMSE 0.804 0.805 0.804 0.802 0.909 0.908 0.907 0.903

20
MAE 0.611 0.611 0.610 0.608 0.718 0.714 0.714 0.707
RMSE 0.798 0.800 0.796 0.792 0.906 0.905 0.904 0.899

50
MAE 0.610 0.606 0.605 0.603 0.716 0.713 0.711 0.703
RMSE 0.794 0.792 0.790 0.789 0.904 0.902 0.901 0.896

d Metrics
Ciao Epinions

Half Mix Group Group+ Half Mix Group Group+

5
MAE 0.757 0.754 0.754 0.750 0.827 0.824 0.823 0.820
RMSE 0.977 0.976 0.977 0.969 1.067 1.066 1.064 1.063

10
MAE 0.746 0.746 0.744 0.741 0.826 0.823 0.821 0.817
RMSE 0.968 0.970 0.962 0.960 1.064 1.063 1.058 1.056

20
MAE 0.738 0.739 0.738 0.732 0.823 0.820 0.817 0.816
RMSE 0.959 0.960 0.957 0.952 1.059 1.056 1.056 1.053

50
MAE 0.731 0.731 0.730 0.728 0.819 0.816 0.815 0.812
RMSE 0.954 0.956 0.950 0.946 1.054 1.050 1.050 1.050

that we should always first select stronger group-to-item associations, and adopt
relatively weaker associations only if stronger ones do not suffice.

Comparison with Other Methods. Table 3 presents the results of all com-
parison methods on the four real-world datasets, where the best performance is
highlighted in bold and the second best performance among the first four meth-
ods9 is denoted by * symbol. A number of interesting observations can be noted
from the present results. First, all the methods exploiting item relationships
perform better than the basic PMF method, indicating the usefulness of incor-

9 We tend to treat IIR-C as a baseline as it uses item similarity-based rather than
association rule-based implicit item relationships.



262 Z. Sun et al.

Table 3. The experimental results on the four datasets, where * indicates the best
performance among the first four methods, and the column “Improve” indicates the
relative improvements that our approaches achieve relative to the * results.

Dataset d Metrics PMF IR-P IR-I IIR-C IIR-I IIR-G Improve

FilmTrust

5
MAE 0.639 0.630 0.627 0.627* 0.622 0.615 1.91%
RMSE 0.839 0.835 0.825 0.818* 0.812 0.807 1.34%

10
MAE 0.638 0.629 0.622* 0.623 0.617 0.611 1.77%
RMSE 0.837 0.832 0.812 0.811* 0.805 0.802 1.11%

20
MAE 0.636 0.625 0.620* 0.621 0.613 0.608 1.94%
RMSE 0.830 0.826 0.807 0.805* 0.799 0.792 1.61%

50
MAE 0.632 0.620 0.617* 0.618 0.618 0.603 2.27%
RMSE 0.824 0.814 0.798* 0.798 0.790 0.789 1.13%

MoiveLens

5
MAE 0.743 0.737 0.735 0.734* 0.724 0.718 2.18%
RMSE 0.954 0.951 0.947 0.930* 0.919 0.911 2.04%

10
MAE 0.742 0.737 0.730* 0.732 0.720 0.712 2.47%
RMSE 0.944 0.946 0.935 0.927* 0.913 0.903 2.59%

20
MAE 0.735 0.728 0.725* 0.726 0.715 0.707 2.48%
RMSE 0.935 0.931 0.924* 0.925 0.906 0.899 2.71%

50
MAE 0.733 0.725 0.723* 0.724 0.713 0.703 2.77%
RMSE 0.921 0.924 0.919 0.916* 0.903 0.896 2.18%

Ciao

5
MAE 0.868 0.788 0.779 0.770* 0.760 0.750 2.60%
RMSE 1.150 1.101 1.081 0.991* 0.979 0.969 2.22%

10
MAE 0.832 0.785 0.775 0.766* 0.749 0.741 3.26%
RMSE 1.134 1.096 1.078 0.984* 0.970 0.960 2.44%

20
MAE 0.828 0.770 0.765 0.760* 0.740 0.732 3.68%
RMSE 1.126 1.074 1.060 0.978* 0.959 0.952 2.66%

50
MAE 0.823 0.769 0.762 0.754* 0.732 0.728 3.45%
RMSE 1.124 1.067 1.050 0.972* 0.952 0.946 2.67%

Epinions

5
MAE 0.855 0.845 0.838 0.836* 0.825 0.820 1.91%
RMSE 1.134 1.130 1.123 1.090* 1.069 1.063 2.48%

10
MAE 0.848 0.843 0.833 0.833* 0.824 0.817 1.92%
RMSE 1.128 1.120 1.112 1.082* 1.063 1.056 2.40%

20
MAE 0.846 0.836 0.826* 0.830 0.822 0.816 1.21%
RMSE 1.117 1.094 1.090 1.075* 1.058 1.053 2.05%

50
MAE 0.839 0.826 0.818* 0.828 0.816 0.812 0.73%
RMSE 1.106 1.070 1.064* 1.065 1.051 1.050 1.32%

porating item relationships for recommender systems. Second, IR-I consistently
obtains lower values of MAE and RMSE than IR-P, implying that item-to-item
associations are more effective than item similarity computed by similarity mea-
sures. This is further confirmed by the fact that IIR-I outperforms IIR-C. In
Section 3.2, we explained in detail why item similarity may not be suitable to
reveal implicit item relationships. Third, among the three variants of the IIR
model, IIR-G achieves the best performance from which we may conclude that:
group-to-item associations are stronger than item-to-item associations which are
then preferred to similarity-based item associations. Last, our approach IIR-G
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reaches the superior performance to the other counterparts, and the percentages
of improvements relative to other baselines are put to the last column in Table 3.
On the average, the percentages of relative improvements across different num-
ber of latent features are summarized as follows in terms of (MAE, RMSE) pair:
(1.97%, 1.30%) on FilmTrust, (2.48%, 2.38%) on MovieLens, (3.25%, 2.50%)
on Ciao, (1.44%, 2.06%) on Epinions and (2.29%, 2.06%) over all the datasets.
Koren [6] has pointed out that even small improvements in predictive accuracy
can have great impact on real applications. Hence, we claim that our approach
obtains important improvements by exploiting implicit item relationships.

5 Conclusion and Future Work

This paper proposed a novel matrix factorization model that incorporated the
influence of implicit item relationships for recommender systems. We introduced
an adapted association rule technique to reveal implicit item relationships, and
justified that item similarity may not be a good measure for implicit item rela-
tionships. A new measure reliability of an association rule was defined to help
sort and select item associations. We investigated not only item-to-item asso-
ciations but also generalized group-to-item associations. Four strategies were
designed to choose the most reliable set of association rules, which were used to
regularize the generation of low-rank user- and item-feature matrices. Empiri-
cal results on four real-world datasets demonstrated that our approach gained
important improvements relative to other comparison methods. For future work,
we intend to incorporate both explicit and implicit item relationships to further
improve recommendation performance.
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