
© Springer International Publishing Switzerland 2015
F. Ricci et al. (Eds.): UMAP 2015, LNCS 9146, pp. 183–194, 2015.
DOI: 10.1007/978-3-319-20267-9_15

Cross-System Transfer of Machine Learned
and Knowledge Engineered Models of Gaming the System

Luc Paquette1(), Ryan S. Baker1, Adriana de Carvalho2, and Jaclyn Ocumpaugh1

1 Teachers College, Columbia University, New York, NY, USA
{paquette,jo2424}@tc.columbia.edu,
baker2@exchange.tc.columbia.edu

2 Google, New York, NY, USA

Abstract. Replicable research on the behavior known as gaming the system, in
which students try to succeed by exploiting the functionalities of a learning en-
vironment instead of learning the material, has shown it is negatively correlated
with learning outcomes. As such, many have developed models that can auto-
matically detect gaming behaviors, towards deploying them in online learning
environments. Both machine learning and knowledge engineering approaches
have been used to create models for a variety of software systems, but the
development of these models is often quite time consuming. In this paper, we
investigate how well different kinds of models generalize across learning envi-
ronments, specifically studying how effectively four gaming models previously
created for the Cognitive Tutor Algebra tutoring system function when applied
to data from two alternate learning environments: the scatterplot lesson of Cog-
nitive Tutor Middle School and ASSISTments. Our results suggest that the si-
milarity between the systems our model are transferred between and the nature
of the approach used to create the model impact transfer to new systems.

Keywords: Gaming the system · Cognitive tutors · ASSISTments · Machine
learning · Cognitive modeling · Cross-system transfer

1 Introduction

In intelligent tutoring systems (ITSs) and other learning environment, student disen-
gagement often manifests in a behavior known as gaming the system. This behavior,
which is neither clearly off-task nor on-task, is defined as "attempting to succeed in
an educational environment by exploiting properties of the system rather than by
learning the material and trying to use that knowledge to answer correctly" [1].
Research in multiple learning environments [1, 2, 3, 4, 5, 6, 7] has linked gaming to
poor learning outcomes [8, 9, 10, 11], increased boredom [2] and lower long-term
levels of academic attainment [12]. Both knowledge engineering [4, 5, 6, 7, 13, 14]
and machine learning [1, 3, 7] approaches have been used to create models of gaming
the system for specific learning environments. These detectors have been successfully
applied (driving interventions) [15, 16] and used in discovery with models analyses
[17], but only after a painstaking development process where researchers essentially
start from scratch for each new learning environment.

184 L. Paquette et al.

Little work has focused on the generalizability of gaming detectors. Nearly a
decade ago, researchers showed that gaming detectors developed using machine
learning could be generalized across different lessons in the same tutoring system [1].
Since that time, others have applied models to multiple learning systems [e.g., 6], but
without validating that the model reliably captures gaming behavior across systems.
Validating that some gaming detectors can be effectively applied across learning sys-
tems would facilitate broader use of gaming detectors. Currently, creating a model of
gaming the system is a time consuming process that requires either field observations
or the use of text replays, where log files of students interactions with the learning
environment are segmented and formatted for presentation to a trained expert human
coder who then labels whether each segment includes gaming behavior [18]. After
this step, the feature engineering and model development process is time-consuming,
complicated, and costly. The development of a model that allows us to skip (or re-
duce) the time-intensive development process for new learning systems would facili-
tate greater use of gaming detectors in intervention and analysis.

In this paper, we evaluate the generalizability of four recently published gaming
models. Each were initially developed for use within an ITS known as Cognitive Tu-
tor Algebra, but were constructed using different modeling techniques [19]. Specifi-
cally, we compare the generalizability of a detector developed with a form of know-
ledge engineering known as cognitive modeling [20] to that of three detectors that
were developed by using machine learning to improve the cognitive model [21]. We
assess each model’s generalizability by comparing its performance when applied to
two other ITSs for mathematics: the scatterplot lesson of Cognitive Tutor Middle
School [22] (also called the scatterplot tutor) and ASSISTments [23]. Studying the
generalizability of each model to these different systems allows us to investigate the
degree to which each captures characteristics of the gaming construct that extend
beyond a single system’s features. We investigate how the nature of each system and
the nature of each model interacts. More broadly, we discuss how the procedures used
in this study might facilitate future development of detectors that generalize across
learning environments, increasing their applicability and impact.

2 Gaming the System in Cognitive Tutor Algebra

2.1 Data

All four models of gaming behavior discussed in this paper were created using Cogni-
tive Tutor Algebra (CTA) data [1, 21]. Specifically, these models were constructed
from data produced by 59 students who used CTA as part of their regular mathemat-
ics curriculum throughout an entire school year (Pittsburgh Science of Learning Cen-
ter DataShop "Algebra I 2005-2006 (Hampton only)" dataset [24]). The Cognitive
Tutor environment presents students with complex mathematical problems that have
been broken down into component steps, using a cognitive model of the task to assess
whether answers correctly map to each step. Struggling students can request help at
any time, and the tutor will provide increasingly specific, multi-step hints.

 Cross-System Transfer of Machine Learned and Knowledge Engineered Models 185

Data from 12 CTA lessons were segmented into short sequences of actions, called
clips. For this study, clips were defined as sequences of at least 5 actions with a min-
imum duration of 20 seconds. If a 5-action sequence lasted less than 20 seconds, addi-
tional 5-action sequences were added to the clip until the total time duration was
greater than 20 seconds. A total of 10,397 clips were randomly selected from this
dataset; the chance of a clip being selected was weighted for each lesson based on the
total number of clips in that lesson, so that each of the lessons in CTA were equally
represented.

These clips were then presented to an expert coder (the 3rd author, henceforth ex-
pert #1), who had previously reached an interrater reliability with another expert (Co-
hen’s Kappa > 0.6) through an extensive training process [22]. Cohen’s Kappa [26]
assesses the degree to which agreement between the expert is better than chance. A
Kappa of 0 indicates chance level agreement and a Kappa of 1 indicates perfect
agreement.

The clips were presented to expert #1 in the form of text replays [25, 18], where
each clip is presented in a layout that highlights the relevant information needed to
code student behaviors in a contextualized manner. Fig. 1 shows an example of a text
replay taken from our CTA data. It displays each action’s time (relative to the 1st ac-
tion in the clip), the step’s context, the input entered, the relevant skill (production)
and the system’s assessment of the action (a right or wrong answer, a help request or a
predicted wrong answer, called a "bug"). In this way coders can quickly assess the
actions in each clip to determine whether the student’s interactions suggest gaming
behaviors. In this case, the coder classified 6.81% (708) of clips as involving gaming
the system behaviors and 93.19% (9,689) as not gaming.

Fig. 1. The last actions of a 5-action text replay clip

2.2 Cognitive Model

The first step toward developing a generalizable model of gaming the system was to
achieve a deeper understanding of how experts think about this construct [20]. To this
end, we conducted a cognitive task analysis [27, 28] of expert #1’s coding task using

186 L. Paquette et al.

text replays from CTA. This involved a combination of active participation [28, 29]
(in which the person performing the cognitive task analysis actively participated in
the coding of text replays), think aloud observations [30] and interviews to explicate
the coding process. Results indicated that the expert’s coding method could be classi-
fied into two cognitive processes: interpreting the student’s individual actions and
identifying patterns of gaming across those actions. Although the expert executes
these in parallel, our resulting cognitive model executes these as consecutive steps
without changing the fundamental reasoning process.

In [1], we modeled expert #1’s assessment of individual actions by constructing a
list of 19 constituents—meaningful units of student behavior that the expert regularly
relies upon when making gaming judgments, sometimes across more than one action.
For example, the expert interprets a short pause between actions as a [guess], which is
likely to indicate gaming behavior. She is similarly suspicious when a student enters a
[similar answer] in two consecutive actions. (A detailed list of the 19 constituents we
identified is available in [1].) Next, we developed a set of 13 action patterns, composed
of 2-4 actions, each matching a predefined set of gaming constituents [1]. For example,
consider a 2-action sequence where a student’s 1st answer is incorrect. If they quickly
attempt to answer a different problem step using the same response, the expert is likely
to interpret the second action as a [guess], which she is trained to recognize as typical
gaming behavior. This pattern was modeled as the following sequences of actions and
constituents: incorrect → [guess] & [same answer/diff. context] & incorrect. In our
Cognitive model of gaming the system, any clip containing actions that matching these
13 patterns was given a gaming label. These patterns were validated (Kappa = 0.330) on
a test set, composed of 25% of the data from 2.1, which was held out during the cogni-
tive task analysis [1]. This Cognitive model performed better on new data than a ma-
chine-learned model previously built for CTA (Kappa = 0.24) [25].

2.3 Machine Learned Models

In this paper we compare generalizability of the knowledge-engineered model we
developed through cognitive modeling [20] to three machine-learned models derived
from it [21]. The latter combine the Cognitive model’s constituents into new patterns
that were not apparent to human experts. More specifically, we developed an algo-
rithm to generate and filter a large number of action patterns (similar to the one pre-
sented above) from the constituents identified in the Cognitive model, selecting those
that best detected gaming behaviors, which we termed pattern features. We combined
these with what we called count features, which tallied the number of times each of
the 25 action types and constituents were present in a given clip.

Naïve Bayes classification was then used to generate three cross-validated, ma-
chine-learned models. The first, CognitiveHybrid-PF, contained 22 features, includ-
ing 20 pattern features and 2 count features (Kappa = 0.477, A' = 0.770). The second,
CognitiveHybrid-C, was trained using only the count features. The resulting model
contained 6 features (Kappa = 0.332, A' = 0.875). The performance differences be-
tween these models reflect the nature of their features. Pattern features better capture
the sequential nature of gaming behaviors, improving that model’s Kappa, but their

 Cross-System Transfer of Machine Learned and Knowledge Engineered Models 187

binary nature prevents it from achieving a high A'. Likewise, the gradient nature of
the count features improves that modes’ A' performance despite its lower Kappa. For
this reason, we created a third model, CognitiveHybrid-E, that Ensembled the predic-
tions from both these models. CognitiveHybrid-E achieves a high performance for
both Kappa (0.457) and A' (0.901).

3 Evaluation of Cross-System Transfer

Because the four CTA gaming models were constructed from features that closely
match the expert’s conception of gaming, we hypothesized that they might capture
characteristics of gaming that extend beyond system-specific behaviors, thereby
allowing them to generalize to new systems. In this section we report on the perfor-
mance of each model when it was applied, without additional training or modifica-
tion, to data collected from the scatterplot lesson of Cognitive Tutor Middle School
and ASSISTments.

3.1 Transfer to the Scatterplot Lesson of Cognitive Tutor Middle School

The 1st system we attempted to transfer our gaming models to was the scatterplot
lesson of Cognitive Tutor Middle School [19]. This system was built using the same
platform as CTA, meaning that their hint features, bug messages, and common inter-
faces (e.g., virtual problem worksheets) are quite similar. The primary differences are
in the mathematical domain taught by each, which result in some interface differenc-
es. For example, the scatterplot lesson has additional interfaces for creating data re-
presentations (e.g., histograms) but lacks some of the complex algebraic equation
manipulation seen in CTA. Nonetheless, given their similarities, we assumed transfer
would be more successful for this system than ASSISTments (discussed below).

Data. The data for evaluating the transfer of the CTA models to the scatterplot lesson
of Cognitive Tutor Middle School system was taken from a study of interrater agree-
ment of experts coding text replays [18]. As such, we had access to gaming labels
from 2 coders, neither of whom is expert #1, who provided the labels for CTA. These
coders coded the same 600 clips (with some disagreement on which text replays con-
stituted “bad clips,” which did not get coded). We used these experts’ gaming labels
to develop three datasets for the scatterplot tutor. The first dataset (N = 595) was
coded by expert #2, who labeled 29 as gaming and 566 as not. The second dataset
(N = 592) was coded by expert #3, who labeled 33 as gaming and 559 as not. Finally,
a third “Agreement” dataset is composed of all clips that were consistently coded by
both experts (N=571), which includes 19 labeled as gaming and 552 labeled as not.

One important difference between the text replays from the scatterplot tutor and
CTA is in the definition of a clip. Although clips from both systems have at least 20
seconds of data, the scatterplot tutor clips do not enforce a minimum number of
actions (so may contain fewer than 5). Since gaming the system is a systematic pat-
tern of behaviors, this could make it more challenging for experts to identify gaming
actions within the scatterplot tutor clip.

188 L. Paquette et al.

Performance. We applied each of the four CTA gaming models to the three datasets
from the scatterplot lesson of Cognitive Tutor Middle School. Table 1 summarizes the
performance achieved by each on the new datasets, using both the Kappa and the A'
[31] metrics. A' is the probability that given a pair of two clips, one coded as gaming
and the other coded as not-gaming, the model can accurately detect which clip was
coded as gaming. A' is equivalent to the area under the ROC curve in signal detection
theory [31]. Note that A' could not be calculated for the Cognitive model, which does
not produce confidences.

Table 1. Comparison of the models performance across the Cognitive Tutor Algebra (CTA)
and the scatterplot lesson of Cognitive Tutor Middle School datasets

Model
Cognitive Tutor
Algebra (CTA)

Scatterplot
Expert #2

Scatterplot
Expert #3

Scatterplot
Agreement

Cognitive
Kappa = 0.330

A' = N/A
Kappa = 0.459

A' = N/A
Kappa = 0.479

A' = N/A
Kappa = 0.483

A' = N/A

CogHybrid-PF
Kappa = 0.477

A' = 0.770
Kappa = 0.440

A' = 0.819
Kappa = 0.438

A' = 0.795
Kappa = 0.451

A' = 0.877

CogHybrid-C
Kappa = 0.332

A' = 0.875
Kappa = 0.345

A' = 0.894
Kappa = 0.360

A' = 0.889
Kappa = 0.331

A' = 0.949

CogHybrid-E
Kappa = 0.457

A' = 0.901
Kappa = 0.430

A' = 0.917
Kappa = 0.427

A' = 0.905
Kappa = 0.438

A' = 0.973

All four models transfer well to the scatterplot lesson of Cognitive Tutor Middle

School despite differences in the mathematical domain, in the definition of a clip, and
among the experts who labeled the data. The most notable finding was that, when
applied to the scatterplot tutor data, the Cognitive model achieved a higher Kappa
than the machine-learned models. Surprisingly, the Cognitive model achieved consi-
derably higher performance for the scatterplot tutor than for CTA. The machine-
learned models also transfer well, achieving performance metrics for the scatterplot
tutor datasets that are comparable to those for the CTA data. CogHybrid-PF obtains a
slightly lower Kappa on each of the three scatterplot datasets, whereas its A' perfor-
mance actually increased. Performance for CogHybrid-C slightly increases for both
metrics. The ensemble model, CogHybrid-E, achieves slightly lower Kappa for the
scatterplot datasets than for CTA, similar A' for both experts, and an increase in A' for
the Agreement set.

In general, models transfer best to the Agreement dataset. Kappa performance is
slightly higher for three of the four models (Cognitive, CogHybrid-PF and CogHybrid-
E), and A' performance is considerably greater. This may suggest that the text replays
that showed expert disagreement were contributing significant noise to the datasets.

3.2 Transfer to ASSISTments

We also studied the degree to which these models could generalize to ASSISTments
[23], a web-based tutoring system for middle school mathematics. Two models of
gaming the system have previously been developed for ASSISTments. The first, pub-
lished in 2006 [7], achieved a Kappa of 0.181 for new data. The second, published in
2013 [11], achieved a Kappa of 0.370 and A' of 0.802 [11].

 Cross-System Transfer of Machine Learned and Knowledge Engineered Models 189

Although both ASSISTments and CTA are problem-solving intelligent tutors for
mathematics, the structure and presentation of problems in ASSISTments is quite
different from either of the Cognitive Tutor platforms. In Cognitive Tutor, problems
are partitioned in multiple steps that must be completed to finish each problem. The
Cognitive Tutor indicates whether each step is right or wrong, providing assistance as
necessary. In ASSISTments, when students are presented with an “original” problem,
they only need to provide its final answer. Individual steps are not required of stu-
dents who solve the problem on the first attempt. However, students who do not pro-
vide the correct answer may be required to correctly answer scaffolding questions in
order to successfully complete the problem.

At the same time, there are considerable similarities between the two systems. Both
provide immediate feedback indicting whether their answer was right or wrong, in-
cluding detailed feedback for “bugs,” where the student’s error indicates a known
misconception. ASSISTments also offers help functionality similar to that found on
the Cognitive Tutor platforms.

Data. ASSISTments data produced by 1,367 students was used to test the generaliza-
bility of our CTA gaming models. This data includes a total of 822,233 problem-solving
steps, which were segmented into 240,450 clips. A selection of these (discussed below)
was presented to expert #1 for coding.

Again the definition of a clip for the new system was different than it was for CTA,
this time because of differences in how the systems present problems to students.
Whereas Cognitive Tutor platform always requires students to solve multiple steps
before completing a main problem, ASSISTments problems can be solved in one step
if the student’s first attempt is correct. As such, we define a clip in ASSISTments as
starting from the first action on an original unscaffolded problem to the last attempt
before the next original, unscaffolded problem. This definition means that a clip can
be composed of only 1 action or it can contain more than 50.

As such, when selecting clips for coding by expert #1 (who also coded the CTA
data), we filtered them with respect to length. Clips containing more than 25 actions
were removed from the dataset because it was difficult to present such a large number
of actions in a text replay. We also felt that it was unlikely that the constituent beha-
viors (e.g., [20]) that comprise gaming behaviors would be different in clips contain-
ing 40 or 50 actions than they would be in clips containing 20-25. On the other hand,
if there were longer action patterns present in these clips, which comprised less than
0.7% of the dataset, it could create a serious bias towards a different gaming pattern
that was being identified by the expert.

Shorter clips (fewer than 3 actions) presented a different problem. Because gaming
is a systematic pattern of behavior that often occurs among students who do not un-
derstand the material, it is unlikely to be seen in clips where students solve the prob-
lem correctly in very few attempts [20, 21]. On the other hand, shorter clips comprise
73.0% of the original data, so filtering them entirely could have biased the coding.

As such, we created two datasets for ASSISTments. Sample #1 was comprised of
1,000 clips with 1-25 actions each, so that clip length distribution closely matches the
original dataset. Sample #2 was comprised of 1,000 clips with 4-25 actions; this

190 L. Paquette et al.

allowance was intended to increase the odds that clips containing gaming behaviors
would be presented to the coder.

As in [1], clips were presented to expert #1 in the form of text replays. The order in
which the expert coded these replays was randomized, mixing clips from both sam-
ples in order to avoid coding biases. A technical glitch kept the expert from complet-
ing all 2000 clips (with the replay software hanging after 1063 codes). Randomization
ensured that the two samples had balanced numbers (N1 = 520, N2 = 543). The expert
identified gaming behaviors in 3.46% of sample #1 and 8.47% of sample #2 (N1 = 18,
N2 = 46), in line with the design of the latter, which increased the odds of drawing
clips which contain this systematic behavior. Combining samples provided 64 gaming
clips (6.02%) 996 non-gaming clips (93.70%) and 3 clips where the replay software
or data had an error (0.28%).

Performance. Each of the four models of gaming the system were applied to sample
#1, sample #2, and the two samples combined. As Table 2 shows, each performed
above chance when applied to the ASSISTments datasets, but both Kappa and A'
were considerably lower than when these models were applied to either of the Cogni-
tive Tutor platforms.

Performance of the Cognitive model was similar across all three ASSISTments da-
tasets (Kappa = 0.228-0.256), and as with the scatterplot lesson of Cognitive Tutor
Middle School, it generally outperformed the machine-learned models. This differ-
ence seems to be driven primarily by the performance of the detectors on sample #1,
which was far more likely to contain shorter clips than sample #2. Although the Cog-
nitive model performed slightly worse on sample 1 than it had on the CTA data (Kap-
pa = 0.228 compared to Kappa = 0.330), the Kappa values for the machine-learned
models were quite low for this sample (Kappa = 0.075-0.124).

Table 2. Comparison of the models performance across the Cognitive Tutor Algebra (CTA)
and ASSISTments datasets

Model
Cognitive Tutor
Algebra (CTA)

ASSISTments
Sample #1

ASSISTments
Sample #2

ASSISTments
Combined

Cognitive
Kappa = 0.330

A' = N/A
Kappa = 0.228

A' = N/A
Kappa = 0.240

A' = N/A
Kappa = 0.256

A' = N/A

CogHybrid-PF
Kappa = 0.477

A' = 0.770
Kappa = 0.075

A' = 0.565
Kappa = 0.285

A' = 0.694
Kappa = 0.248

A' = 0.665

CogHybrid-C
Kappa = 0.332

A' = 0.875
Kappa = 0.124

A' = 0.890
Kappa = 0.156

A' = 0.763
Kappa = 0.173

A' = 0.810

CogHybrid-E
Kappa = 0.457

A' = 0.901
Kappa = 0.121

A' = 0.892
Kappa = 0.246

A' = 0.803
Kappa = 0.235

A' = 0.829

Among the machine-learned models, Kappa performance was variable. CogHybr-

id-PF’s performance was unstable across the three data sets. Performance on sample
#2 and the combined dataset was acceptable (Kappa = 0.285, Kappa = 0.248), if
lower than its performance on either of the Cognitive Tutor systems. However,

 Cross-System Transfer of Machine Learned and Knowledge Engineered Models 191

performance on sample #1, where the number of actions per clip most closely
matches what is typical in ASSISTments, was low (Kappa = 0.075). CogHybrid-C
achieved relatively poor but more stable performance across the 3 datasets (Kappa =
0.124-0.173). Kappa results for the ensemble model, CogHybrid-E, were similar to
CogHybrid-PF, performing more poorly on sample #1 than on the other 2 datasets. Its
A' values were closely aligned to those of CogHybrid-C.

The A' performance of these models (which was not calculated for the Cognitive
model) was more promising. CogHybrid-PF’s performance, which had been low even
on the CTA data, was particularly low for Sample #1, but other A' values were surpri-
singly high. For instance, CogHybrid-C, which was constructed by counting the num-
ber of gaming constituents (action sequences) that were present in a clip had an A' for
Sample #1 that was higher than for CTA, and CogHybrid-E, had an A' for Sample #1
that was nearly as high as the one it achieved for CTA.

Although performance decreased when transferring from CTA to ASSISTments, our
models still performed substantially above chance (Kappa = 0.075-0.256 and
A' = 0.665-0.829). Their performance is also comparable to previous models of gaming
the system developed specifically for the ASSISTments system. For Kappa, perfor-
mance was moderately worse than the model in [11] (0.370), but, except for CogHybr-
id-C, our models performed better than that in [7] (0.181). Likewise, one of the
previously published gaming model for ASSISTments achieved an A' of 0.802 [11], and
two of our machine learned models outperform that. (Note that [7] did not report A'.)

4 Discussion and Conclusions

This paper examines the performance of gaming the system models previously devel-
oped for Cognitive Tutor Algebra (CTA) to determine the degree to which each can
be reliably applied to other systems without additional modifications. To this end, we
compared the degree to which these models, which had performed well on the CTA
data used to train them, could transfer to two other intelligent tutoring systems that
provide similar mathematics instruction: (1) the scatterplot lesson of Cognitive Tutor
Middle School, which shares many of the same design features as CTA and (2), AS-
SISTments, which has more design differences, but covers content that is similar to
that provided in CTA.

The first model we tested was developed using a cognitive task analysis to model
expert judgments about gaming behaviors [20], while the other 3 models were devel-
oped using machine learning techniques to improve the first [21]. That is, machine
learning was used to discover patterns in the behavioral constituents that were tacitly
used by the expert human coders who provide the training labels for gaming detec-
tors. It was hypothesized that since all four models were developed from features that
map to the expert’s coding process (rather than the features that were more specific to
the learning system), they would be more likely to transfer.

Results from our study indicate, perhaps unsurprisingly, that learning system dif-
ferences affected how well models were able to generalize. Models performed better
when transferred to the scatterplot lesson of Cognitive Tutor Middle School, which

192 L. Paquette et al.

shares many design features with CTA than when transferred to ASSISTments, which
has a more distinctive interface. It is likely that these interface differences lead stu-
dents using ASSISTments to adopt different gaming strategies than those used in the
Cognitive Tutor platforms.

Other results were less predictable. Our findings suggest that the machine learning
techniques used by [21] to improve performance within CTA may not be necessary
for the development of generalizable detectors. That is, the knowledge engineering
model (the Cognitive model), when applied to new systems, performed as well as or
outperformed the three machine learned models on the Kappa metric. This suggests
that machine-learning, which optimizes a model’s performance on the system it was
trained for, may overfit to the specific system.

On the other hand, the results for CognitiveHybrid-E model suggests that this find-
ing warrants further research. This model—which ensembled the confidence values of
the machine learned models produced with pattern features and with count features—
showed superior performance on the original CTA data set and performed almost as
well as the Cognitive model on the new systems. What’s more, the strong A' perfor-
mance of the machine learned models (two of which were comparable to previously
published models of gaming that were developed specifically for ASSISTments) also
suggests that this method deserves further consideration. That said, the Cognitive
model’s performance shows substantial stability across systems, an important consid-
eration, particularly for models that will be used to trigger interventions.

Although our models transferred reasonably well to two new learning systems,
both were designed for the tutoring of mathematics problem. The current study does
not present evidences that these gaming detectors will transfer to mathematics tutors
with different intervention strategies or to tutors that provide instruction in other do-
mains. Such differences are likely to trigger different gaming strategies, making this
an important area for future research.

Acknowledgments. This research was supported by a Fonds de Recherche du Québec - Nature
et Technologies (FRQNT) post-doctoral fellowship and by National Science Foundation (NSF)
grant #SBE-0836012.

References

1. de Baker, R.S.J., Corbett, A.T., Roll, I., Koedinger, K.R.: Developing a Generalizable
Detector of When Students Games the System. User Modeling & User Adapted Interaction
18, 287–314 (2008)

2. de Baker, R.S.J., D’Mello, S.K., Rodrigo, M.M.T., Graesser, A.C.: Better to be Frustrated
than Bored: The Incidence, Persistence, and Impact of Learners’ Cognitive-Affective
States During Interactions with Three Different Computer-Based Learning Environments.
Int’l Journal of Human-Computer Studies 68, 223–241 (2010)

3. de Baker, R.S.J., Mitrović, A., Mathews, M.: Detecting gaming the system in constraint-
based tutors. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075,
pp. 267–278. Springer, Heidelberg (2010)

 Cross-System Transfer of Machine Learned and Knowledge Engineered Models 193

4. Beal, C.R., Qu, L., Lee, H.: Classifying learner engagement through integration of multiple
data sources. In: Proc. of the National Conf. on Artificial Intelligence, pp. 151–156 (2006)

5. Johns, J., Woolf, B.: A dynamic mixture model to detect student motivation and proficien-
cy. In: Proc. of the National Conference on Artificial Intelligence, pp. 163–168 (2006)

6. Muldner, K., Burleson, W., Van de Sande, B., VanLehn, K.: An Analysis of Students’
Gaming Behaviors in an Intelligent Tutoring System: Predictors and Impact. User Model-
ing and User Adapted Interaction 21, 99–135 (2011)

7. Walonoski, J.A., Heffernan, N.T.: Detection and analysis of off-task gaming behavior in
intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006.
LNCS, vol. 4053, pp. 382–391. Springer, Heidelberg (2006)

8. Beck, J., Rodrigo, M.T.: Understanding wheel spinning in the context of affective factors.
In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol.
8474, pp. 162–167. Springer, Heidelberg (2014)

9. Cocea, M., Hershkovitz, A., de Baker, R.S.J.: The impact of off-task and gaming behaviors
on learning: immediate or aggregate? In: Proc. of the 14th Int’l Conference on Artificial
Intelligence in Education, pp. 507–514 (2009)

10. Fancsali, S.E.: Data-Driven Causal Modeling of “Gaming the System” and Off-Task
Behavior in Cognitive Tutor Algebra. NIPS Workshop on Data Driven Education

11. Pardos, Z.A., Baker, R.S., San Pedro, M.O.C.Z., Gowda, S.M., Gowda, S.M.: Affective
States and State Tests: Investigating how Affect and Engagement During the School Year
Predict End of Year Learning Outcomes. J. of Learning Analytics 1(1), 107–128 (2014)

12. San Pedro, M.O.Z., de Baker, R.S.J., Bowers, A.J., Heffernan, N.T.: Predicting college
enrolment from student interaction with an intelligent tutoring system in middle school.
In: Proc. of the 6th Int’l Conference on Educational Data Mining, pp. 177–184 (2013)

13. Aleven, V., McLaren, B.M., Roll, I., Koedinger, K.R.: Towards Meta-Cognitive Tutoring:
A Model of Help Seeking with a Cognitive Tutor. Int’l J. of Artificial Intelligence in Edu-
cation 16, 101–130 (2006)

14. Gong, Y., Beck, J.E., Heffernan, N.T., Forbes-Summers, E.: The fine-grained impact of
gaming on learning. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol.
6094, pp. 194–203. Springer, Heidelberg (2010)

15. Arroyo, I., et al.: Repairing disengagement with non-invasive interventions. In: Proc. of
the 13th Int’l Conference on Artificial Intelligence in Education, pp. 195–202 (2007)

16. Walonoski, J.A., Heffernan, N.T.: Prevention of off-task gaming behavior in intelligent
tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS,
vol. 4053, pp. 722–724. Springer, Heidelberg (2006)

17. de Baker, R.S.J., Yacef, K.: The State of Educational Data Mining in 2009: A Review and
Future Visions. Journal of Educational Data Mining 1(1), 3–17 (2009)

18. de Baker, R.S.J., Corbett, A.T., Wagner, A.Z.: Human classification of low-fidelity replays
of student actions. In: Proc. of the Educational Data Mining Workshop at Intelligent Tutor-
ing System 2006, pp. 29–36 (2006)

19. Koedinger, K.R., Corbett, A.T.: Cognitive tutors: technology bringing learning sciences to
the classroom. In: Sawyer, R.K. (ed.) The Cambridge Handbook of the Learning Sciences,
pp. 61–77 (2006)

20. Paquette, L., de Carvalho, A.M.J.A., Ryan, S.B.: Towards understanding export coding of
student disengagement in online learning. In: Proc. of the 36th Annual Cognitive Science
Conference, pp. 1126–1131 (2014)

21. Paquette, L., de Carvalho, A.M.J.A., Ryan, S.B., Ocumpaugh, J.: Reengineering the fea-
ture distillation process: a case study in the detection of gaming the system. In: Proc. of the
7th Int’l Conference on Educational Data Mining, pp. 284–287 (2014)

194 L. Paquette et al.

22. Baker, R.S., Corbett, A.T., Koedinger, K.R.: Learning to distinguish between representa-
tions of data: a cognitive tutor that uses contrasting cases. In: Proc. of the International
Conference of the Learning Sciences, pp. 58–65 (2004)

23. Razzaq, L., et al.: The assistment project: blending assessment and assisting. In: Proc. of
the 12 Annual Conference on Artificial Intelligence in Education, pp. 555–562 (2005)

24. Koedinger, K.R., et al.: A Data Repository for the Community: The PLSC DataShop
(2010)

25. de Baker, R.S.J., de Carvalho, A.M.J.A.: Labeling student behavior faster & more precise-
ly with text replays. In: Proc. of the 1st Int’l Conf. on Educational Data Mining 2008,
pp. 38–47 (2008)

26. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement 20(1), 37–46 (1960)

27. Clark, R.E., Feldon, D., van Merriënboer, J., Yates, K., Early, S.: Cognitive task analysis.
In: Spector, J.M., Merrill, M.D., van Merriënboer, J.J.G., Driscoll, M.P. (eds.) Handbook
of Research on Educational Communications and Technology, 3rd edn., pp. 575–593
(2008)

28. Cooke, N.J.: Varieties of Knowledge Elicitation Techniques. Int’l Journal of Human-
Computer Studies 41, 801–849 (1994)

29. Meyer, M.A.: How to Apply the Anthropological Technique of Participant Observation
to Knowledge Acquisition for Expert Systems. IEEE Transactions on Systems, Man, &
Cybernetics 22, 983–991 (1992)

30. Van Someren, M.W., Barnard, Y.F., Sandberg, J.A.C.: The Think Aloud Method: A Prac-
tical Guide to Modeling Cognitive Processes (1994)

31. Hanley, J., McNeil, B.: The Meaning and Use of the Area Under a Receiver Operating
Characteristic (ROC) Curve. Radiology 143, 29–36 (1982)

	Cross-System Transfer of Machine Learned
and Knowledge Engineered Models of Gaming the System
	1 Introduction
	2 Gaming the System in Cognitive Tutor Algebra
	2.1 Data
	2.2 Cognitive Model
	2.3 Machine Learned Models

	3 Evaluation of Cross-System Transfer
	3.1 Transfer to the Scatterplot Lesson of Cognitive Tutor Middle School
	3.2 Transfer to ASSISTments

	4 Discussion and Conclusions
	References

