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Abstract. The wide adoption of smartphones eliminates the time and
location barriers for people’s daily information access, but also limits
users’ information exploration activities due to the small mobile screen
size. Thus, cross-device web search, where people initialize information
needs on one device but complete them on another device, is frequently
observed in modern search engines, especially for exploratory informa-
tion needs. This paper aims to support the cross-device web search,
on top of the commonly used context-sensitive retrieval framework, for
exploratory tasks. To better model users’ search context, our method
not only utilizes the search history (query history and click-through) but
also employs the mobile touch interactions (MTI) on mobile devices. To
be more specific, we combine MTI’s ability of locating relevant subdoc-
ument content [10] with the idea of social navigation that aggregates
MTIs from other users who visit the same page. To demonstrate the
effectiveness of our proposed approach, we designed a user study to col-
lect cross-device web search logs on three different types of tasks from
24 participants and then compared our approach with two baselines: a
traditional full text based relevance feedback approach and a self-MTI
based subdocument relevance feedback approach. Our results show that
the social navigation-based MTIs outperformed both baselines. A further
analysis shows that the performance improvements are related to several
factors, including the quality and quantity of click-through documents,
task types and users’ search conditions.

Keywords: Mobile touch interaction · Cross-device web search · Social
navigation

1 Introduction

The wide adoption of mobile phones facilitates people’s information seeking pro-
cess so that they can search for information at any time/place when their infor-
mation needs are triggered. Although bringing the convenience, it is also observed
that mobile users sometimes cannot complete a whole search task at one time
and on one device. This is particularly common when users were handling com-
plex search tasks [16]. Therefore, users may sometimes halt a search task on
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mobile and resume it on desktop. This is called the cross-device web search in
literature [16,22]. Existing studies of cross-device search mainly focused on pro-
viding simple descriptive statistics for cross-device web searches and predicting
device transition. In contrast, this paper explores automatic support of cross-
device search queries (e.g., better ranking of relevant documents). Since simple
tasks that can be fulfilled by one or two queries are less common in cross-device
web search, we focus specifically on the exploratory search tasks. Furthermore,
considering the difficulty of inferring search contexts for the search queries in
late stage of a search process [7,15], we set our target to support these queries.

A common approach for modeling search context is to utilize search history
[12,18]. The history from mobile devices may be sparse – given the same time,
users may produce fewer histories because of the input difficulty on mobile [13].
One solution is to use search and interaction histories from other users who
undertook similar tasks. This method, known as social search or social naviga-
tion [5,6], has been explored by Farzan [8], Smyth et al. [19] and White et al.
[23]. For example, Farzan [8] found that providing social cues (e.g. highlighted
content) from other users helped the current user quickly identify relevant infor-
mation. Our study is closer to [23] because our goal is to provide better docu-
ment ranking for search queries rather than visualizing social cues to end users.
However, we still name our method as social navigation because it is based on
user exploration data that are traditionally used by social navigation. Including
additional information increases the risk of having noise. Previous studies found
that applying subdocument relevant information can help to reduce noise [4,10].
Such information can be inferred either from gaze attention [4] or from mobile
touch interactions (MTI) [10]. The latter does not require additional resources
to obtain eye-gaze information, and thus is easier to scale up in live systems.

Fig. 1. Self MTI-based and social navigation MTI-based document chunks

Our method combines MTI’s ability of pinpointing relevant subdocument
content with social navigation’s ability of aggregating relevant information. The
aggregated content is then used as relevance feedback to support queries in cross-
device web searches. To be more specific, a user can have two types of MTI: self
MTI and social navigation MTI. The former refers to the MTIs performed by
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the user herself while the latter refers to the MTIs performed by other users on
the web pages visited by the given user. This can be illustrated by Figure 1.
Suppose that we have three users (U1, U2 and U3) working on the same task.
They visited three web pages (P1, P2 and P3). Based on the logged MTIs, we can
infer six relevant document chunks (C1, C2, ..., C6) using the method described
in Section 3.2. To support a new query qi for U3, besides using qi itself, we can
also incorporate U3’s search history (i.e., P1). Instead of using the full text of P1,
we may only use C6 because we have identified that U3 is only interested in C6.
We name it as the self MTI based method. When applying social navigation
MTIs, we use C1, C3 and C4 (C6 is not included because it is self MTI) as
relevant document chunks because other users (i.e., U1 and U2) who conducted
the same task have shown interests in those document chunks. Note that, we do
not include C2 and C5 because U3 didn’t click on P2 or P3.

Social navigation information can only be applied when users performed the
same or similar tasks. White et al. [23] computed the similarity of two tasks
by their query similarity. This approach requires a large-scale search log, which
is difficult to acquire. Thus, we followed the approach used in Farzan [8] that
performed lab-based user studies and preset the same task goals for all partici-
pants. To make our search tasks resemble real-world cross-device web searches,
our tasks were directly adopted from Han et al. [10], where tasks were designed
based on the results of an online survey. Among the collected information needs,
we selected the ones that seek for multi-facet answers to simulate the intrinsic
diversity (ID) tasks, which was identified as a popular type of information need
in modern search engines [17].

Overall, we are interested in the following two research questions. First, can
social navigation MTIs be used to improve the cross-device web search (we
only study mobile-to-desktop web search in this paper) performance? Second,
can social navigation-based MTIs also be used to improve the same-device cross-
session web search (we only study the desktop-to-desktop web search in this
paper) performance when MTIs are unavailable?

2 Related Work

Despite the popularity of cross-device web search in modern search engines [16],
related studies on this topic, particularly the automatic support of such search
scenario, are still rare. Existing work mainly focused on providing simple descrip-
tive statistics and predicting device continuation [16,22]. For example, Wang
et al. [22] studied the task resumption in cross-device web search tasks and iden-
tified several interesting patterns that are associated with device transition. The
support of mobile web search was explored in Song et al. [20]. They studied
the search process on different devices (desktop, tablet and smartphones) and
found that mobile search performance could be improved by transferring user
behaviors from desktop. However, their focus is not on cross-device web search.

To support cross-device web searches, the techniques from context-sensitive
information retrieval [18] and search personalization [1] can be used. A com-
mon approach is to treat users’ search history as relevance feedback to re-rank
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relevant documents. Shen et al. [18] found that both query history and click-
through are useful feedback resources but the latter is more effective. When
applying the click-through, previous studies either incorporated the full text [12]
or subdocument chunks within a document [4]. It is reported that using subdoc-
ument content is more effective [4,14]. However, obtaining subdocument chunks
is a non-trivial task. Liu and Croft [14] treated the best-matched passages in a
document for the given query as relevant subdocument chunks. Buscher et al.
[4] obtained subdocument chunks through eye-tracking, where the content with
more gaze attentions are chosen as relevant subdocument chunks. Han et al.
[11] located subdocument chunks through touch-based interactions. The study
presented in this paper takes a similar approach as Han et al. [11], but also
differs from their study. In addition to the touch position and touch speed used
in Han et al.[11], the inactive time is also adopted in our work based on a recent
study [9], finding that the inactive time is a strong indicator for content rel-
evance. Besides, we study both self MTIs and social navigation-based MTIs,
which were not considered in Han et al. [11].

One challenge of utilizing search history is to handle the data sparseness.
White et al. [23] found that it is possible to include the feedback information from
other users who conducted similar search tasks. Similar idea were also explored
as social navigation in literature [6], where social cues generated from other users
are used to assist the current user on navigating the complex information space.
Previous studies showed that applying social navigation in web search [8] and
e-learning systems [3] enables people to access and utilize relevant information
more effectively. However, social navigation has the risk of introducing noise
because different users may have different search intentions, even when visiting
the same page. A possible remedy is to differentiate user?s intentions and utilize
the social cues only from people within the same user cohorts [23] or search
community [19]. These approaches require acquiring user information which may
be hard to obtain. Other information such as users’ MTI behaviors can also help
to identify a fine-grained user interest, and thus can be used to filter out the
noise [10]. In this paper, we try to combine the advantages of social navigation
and MTIs, and expect further improvement on search performance.

3 Experiment Setup

We built a cross-device web search dataset through a controlled lab study. In this
paper, the cross-device search referred to mobile-to-desktop (M-D) web search.
A desktop-to-desktop (D-D) search was also included for two reasons. First,
one of our research questions is to apply social navigation based MTIs in D-D.
Second, users can explore information more conveniently and thoroughly on
desktop, which help us build a more reliable ground truth. After obtaining such
dataset, we applied the context-sensitive retrieval model [18] to re-rank search
results for the queries from the second session, as stated in the Introduction.
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3.1 Data Collection

Obtaining our experimental data requires: (1) a cross-device web search system
to record user behaviors; (2) properly designed cross-device web search tasks;
(3) a well-designed experiment procedure; and (4) a ground-truth.

CrossSearch. Recording user behaviors, particularly the MTIs, is the most impor-
tant component in our study. Such information was logged in CrossSearch, our
self-developed system. When receiving a query, CrossSearch triggers Google API
and displays search results returned by Google. Besides, CrossSearch also logs
users? queries and clicked documents.

Search Tasks. As stated, the cross-device search tasks we used are directly
adopted from Han et al. [10], which included six tasks from three categories:
news search (NE), product search (PD) and people search (PE). Each category
had two tasks, each task was designed on top of the results from an online survey.

User Study Design. Our study included both M-D and D-D. We employed a
within subject design so that each participant searched for all six tasks with
three under M-D and the other three under D-D. The combination of tasks,
search conditions (M-D or D-D) and task sequence were rotated based on Latin
square to minimize fatigue and learning effects. Each task was divided into two
sessions, 7 minutes for each. In the first session, the participants performed three
tasks on mobile and the other three on desktop and all the six tasks were resumed
on desktop in the second session. Whenever they found relevant documents, the
participants can save the documents. At the end of each task, the participants
were asked to rate the relevance of each saved webpage on a 5-point Likert scale
with 1 denoting not relevant and 5 being highly relevant.

Data Collection. We recruited 24 participants (15 females and 9 males, 16 under-
graduates and 8 graduates) from University of Pittsburgh and Carnegie Mellon
University during October to November in 2013. All participants were self-rated
experienced searchers. The participants issued 961 unique search queries, visited
1,790 unique webpages and saved 1,125 of them. In total, we logged 3,286 MTIs
on the clicked web pages, where the dragdown (53.1%), dragup (17.5%) and
tap (12.7%) were three dominating behavior types. Pinch-in and pinch-out were
ignored because of the number was too few (less than 1%).

Ground Truth. The ground-truth relevance of each document was computed
based on users’ post-task self-rated document relevance. Since a document can
be saved by different users with different relevance scores, the simplest way for
aggregation is to compute average. However, it may be biased for the documents
saved only by few users. Thus, a Bayesian smoothing method was adopted to
remove this bias [10,21]. When generating ground truth for the search queries
on M-D, we aggregated the saved documents from D-D because the informa-
tion from M-D was used for producing the relevance feedback. When generating
ground truth for D-D, we excluded information from a given participant but
included that from all other participants.
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3.2 Applying Context-Sensitive Retrieval Model

Our next step is to re-rank search results based on the context-sensitive retrieval
model [18]. In this paper, we only used the click-through information. First, pre-
vious studies [10,12,18] identified that the click-through is superior to query his-
tory. Second, the focus of our later studies is to recognize relevant subdocument
content chunks from click-through documents. Using click-through makes our
results more consistent in comparing to different click-through models. Follow-
ing the majority of previous studies [10,12,18], we employed language modeling
approach to represent different click-through models.

Unigram Click-Through Language Model was inferred by the method proposed
in Shen et al. [18]. Their approach estimated the click-through language model
through averaging all unigram word distributions inferred from the full text of
click-through documents.

MTI-Based Click-Through Language Model. Biedert et al. [2] found that users’
touch positions usually lie within their reading zones. Thus, we assumed that if
a user touched on position P (string index of the touched content in the whole
document), she can read at most M characters before and after P, which means
that the reading zone is [P-M, P+M]. We further measured the relevance of a
reading zone based on inactive time and gesture speed [9,11] because they are
two strongest indicators for content relevance. We used two rules to define a rele-
vant reading zone: (1) the reading speed that is slower than S and had an inactive
time longer than I; (2) top M characters of a clicked document are used as rele-
vant content if there are no MTIs. In this paper, we set S=500(pixels/second),
I=1(second) and M=85(characters, ∼14-15 words) because of their best per-
formance in training datasets. The employed MTIs were dragup and dragdown
because they took high proportion in MTIs. Tap was not used because it is the
same as click in desktop. Finally, depending on the MTIs we used, we can either
build a self-MTI or social navigation-MTI based click-through language model.

Utilizing Estimated Language Model for Document Re-Ranking. We applied the
following procedure to re-rank relevant documents for each query in the second
session: for each to-be-ranked candidate document, we estimated its document
language model. The matching between a candidate document and the click-
through was measured by the KL divergence between their language models.
The matching between a candidate document and the given query was measured
by Google rank position. The two scores were combined for a final document
ranking. Instead of using linear interpolation as [18], we used LambaMART in
RankLib (http://sourceforge.net/p/lemur/wiki/RankLib/) because of its better
performance and easy parameter tuning. Therefore, for each query-document
pair, we applied two ranking features: the Google rank position, and the KL-
divergence between the click-through language model and candidate document
language model. Depending on the methods we used for estimating the click-
through language model, we had different variants of KL divergence.

Evaluation. The dataset was divided into the training and testing parts. The
training part was used to estimate model parameters and the testing part was
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used to test the effectiveness of each method. Training-testing division was based
on task type. Then, we can obtain three datasets: PD (PD for testing and the rest
for training), PE (PE for testing and the rest for training) and NE (NE for testing
and the rest for training). We chose nDCG@20 as an evaluation metric because
our study is to support exploratory search tasks, where users usually explored
the result space in depth and saved many relevant web pages. In our study, the
participants saved 13.00(±6.65) documents on M-D and 15.88(±9.77) documents
on D-D. This is different from studying the navigational information needs, where
nDCG at lower cutoffs were often used. Besides, in another study [10] with similar
experiment setting, we found that using nDCG at different cutoffs produced
consistent results. Therefore, we only reported nDCG@20 results.

4 Results Analysis and Discussions

This section begins with testing the utility of applying social navigation-based
MTIs in M-D. Then, a similar approach is applied for D-D, in which the MTIs
from M-D are adopted. The compared baselines and context-sensitive retrieval
models include: (1) pure Google search results (G); (2) Google ranks with click-
through language model estimated from the full-text of click-through documents
(G+HF); (3) Google ranks with click-through language model estimated from the
self MTI-based document chunks (G+HMTI−S); and (4) Google ranking position
with social navigation MTI-based document chunks (G+HMTI−SN).

4.1 Applying Social Navigation-Based MTIs in M-D

Overall results. As the results shown in Table 1, G+HMTI−SN achieves the best
performance, which demonstrates the usefulness of social navigation MTIs. Com-
paring to the use of full text, MTIs indeed help locate more relevant content: both
G+HMTI−S and G+HMTI−SN are significantly better than G+HF. The social
navigation MTIs (G+HMTI−SN) further improve the search performance over
the self-MTIs. The reasons might be that the social navigation MTIs are less
likely to encounter the data sparseness problem and the document chunks iden-
tified by social navigation MTIs can also vote for the most relevant information.

Table 1. nDCG of different runs on M-D. ↑/↓ mean the increase/decrease; ∼Hx means
a significance test comparing to Hx. p-values are based on Wilcoxon signed-rank test.

nDCG@20 Sig.(∼HF) Sig.(∼HMTI−S)

G 0.3974 ↓,p<0.001 ↓,p<0.001

G+HF 0.4298 - ↓,p=0.004

G+HMTI−S 0.4421 ↑,p=0.004 -

G+HMTI−SN 0.4497 ↑,p<0.001 ↑,p<0.003



150 S. Han et al.

Task Effects. We separate the search performance by task to understand the task
effect. The results are provided in Table 2. We find that PE and NE tasks show
the same trends as the overall nDCG changes while PD presents fewer significant
differences. We think it may be related to the task nature: some tasks may need
to explore diverse topics while the others tend to find more similar results. If
PD belongs to the former task type, simply applying relevant information from
search history may not work. To test this hypothesis, we compute the overall
query similarity between the first and second search session. If our hypothesis is
correct, the query similarity of PD should be smaller.

Query similarity is measured by the cosine similarity (with tf-idf weights) of
their corresponding Google search result pages. We did not use the query key-
word matching due to the word mismatching problem. The final query similarity
is averaged over all of the possible query pairs between the first and the second
session. We find that the average query similarity for PD is 0.0146, which is sta-
tistically significantly lower than 0.0199 for NE (p-value=0.041) and 0.0194 for
PE (p-value=0.039). This indicates that users are more likely to explore differ-
ent information in PD. This result suggests the importance of considering task
nature when utilizing MTI-based relevant content.

Table 2. nDCG of different runs on M-D. Numbers in bold (italics) indicates p<0.05
compare with HF (HMTI−S) using Wilcoxon signed-rank test.

PD PE NE

G 0.4012↓ 0.4648↓ 0.3286↓
G+HF 0.4300 0.4835 0.3773

G+HMTI−S 0.4276 0.5077↑ 0.3902

G+HMTI−SN 0.4249 0.5197↑ 0.4019↑

Impacts of Click-Through. We also examine the impacts of the quantity and
quality of click-through documents to the search performance. First, we cate-
gorize the to-be-supported queries into three groups based on the number of
corresponding click-through documents: “1-7”, “8-10” and “11+”. Each group
has about equal number (∼110) of queries. To achieve a better understanding
of how different feedback information performs in each click-through group, we
compute nDCG changes, ΔnDCG=nDCG(G+HX)–nDCG(G), before (G) and
after (G+HX) applying the click-through in each group and then plot them in
Figure 2. A positive value means that applying the click-through is better than
pure Google results. Here, HX refers to different types of feedback information,
which can either be HF, HMTI−S or HMTI−SN. We name the corresponding nDCG
changes as ΔNDCG HF, ΔNDCG HMTI S and ΔNDCG HMTI SN.

All three curves in Fig. 2 are above zero, which shows the effectiveness
of applying click-through information. In the ideal case, increasing the click-
through quantity can result in a better performance because of having more
information. However, although nDCG of G+HF is positive in “11+”, it is
smaller than that in “8-10”. We think the quality of click-through may also
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Fig. 2. ΔNDCG (Y axis) against the quantity of click-through (X axis) on M-D

play important role here. Indeed, the average relevance for the click-through
documents in “11+” is 2.11, while it is 2.40 in “8-10”. The two values have
significant difference (p=0.01).

One way to improve search performance is to employ the relevant subdocu-
ment content instead of the full text. In the group “11+”, we indeed observe that
the nDCG of G+HMTI−S (p-value=0.034) and G+HMTI−SN (p-value<0.001) are
statistically significantly higher than the nDCG of G+HF. The same trend is also
observed in the group “1-7”. This shows the robustness of MTI-based approaches.
However, we do not observe significant differences in the group “8-10”, proba-
bly because they have already achieved very good performance. Furthermore,
the performance of the self-MTI method does not always increase as the click-
through quantity increases while that of the social navigation-based method
keeps increasing. This also shows the robustness of social navigation-based MTIs
in comparison with self-MTIs.

4.2 Applying Social Navigation-Based MTIs in D-D

Overall results. Social navigation MTI-based method does not use information
from the current querying user, which enables us to employ MTIs from mobile
devices (there are no MTIs on desktop) to support the search queries in D-D.
Suppose that we know a user Ui’s click-through C(c1, c2, ..., cn) in the first session
of D-D. For each to-be-supported query qm of user Ui, when applying the click-
through C, we can use MTIs from M-D on ci to infer the relevant subdocument
chunks and then apply them to estimate the click-through language models for
document ranking. Given the best performance of social navigation MTI-based
approach on M-D, we expect the same effects on D-D.

Yet, applying the same method as we did on M-D does not result in per-
formance improvement as we expected (see Table 3). There are no significant
difference between G+HMTI−SN and G+HF. Further studies on the impact of
click-through quantity/quality and task effect (see later sections) also do not
reveal any difference. We think this is due to the device difference between M-D
and D-D in the first session. Since there are more click-through documents in
D-D, the social navigation based method may potentially introduce more noise,
particularly when considering that users who visited the same documents may
not have the same purposes. Therefore, we conduct further studies to understand
whether it is possible to identify and differentiate users’ search purposes.
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Table 3. nDCG of different runs on D-D. Notations are the same as Table 1.

nDCG@20 Sig.(∼HF) Sig.(∼HMTI−SN)

G 0.4068 ↓,p<0.001 ↓,p<0.001

G+HF 0.4452 - ↓,p=0.610

G+HMTI−SN 0.4491 ↑,p=0.610 -

G+HMTI−SN−Q 0.4549 ↑,p=0.021 ↑,p=0.006

Utilizing MTIs from Similar Search Queries. To find relevant documents, users
need to issue queries, click webpages and interact with these webpages. Thus,
each webpage and each interaction are associated with at least one query. We
hypothesize that the same webpage under the same/similar queries may better
reveal users’ similar search purposes. In this case, when applying the social nav-
igation MTI-based approach, we can use MTIs that are not only from the same
webpage but also associated with similar queries. Query similarity is computed
using cosine similarity (with tf-idf weights) of their corresponding Google search
result pages. If cosine similarity is higher than 0.125, we define the two queries
as similar. Based on this, we can build a new MTI-based click-through language
model, where we still use social navigation MTI-based document chunks but filter
out the MTIs that are not associated with similar queries. We named this feed-
back information as HMTI−SN−Q. Results in Table 3 show that G+HMTI−SN−Q

does improve the search performance: it is significantly better than both G+HF,
and G+HMTI−SN. This indicates the importance of differentiating the MTIs
under similar search queries when applying the social navigation based app-
roach.

Task Effects. Table 4 presents the performance for each task, which shows
that the effectiveness of social navigation approach is different for different
tasks. Applying the query-based differentiation on MTIs (G+HMTI−SN−Q) does
improve nDCG, but its effect is task-dependent. It improves nDCG on NE, and
has a trend on PE. However, it still has no impact on PD. The explanation may
be the same as we hypothesized for M-D (see Table 2). This, again, illustrates
the importance of considering task effects when applying such method.

Table 4. nDCG on the use of different runs on D-D. Numbers in bold (italics) indicates
p<0.05 compare with HF(HMTI−SN) using Wilcoxon signed-rank Test.

PD PE NE

G+HF 0.3612 0.5420 0.4308

G+HMTI−SN 0.3575 0.5462 0.4498

G+HMTI−SN−Q 0.3608 0.5529↑(p=0.06) 0.4576↑

Impacts of Click-Through. We also analyze the impact of click-through to the
search performance. Similar to our M-D analysis, we divide the to-be-supported
queries into three groups (each has ∼100 queries): “4-10”, “11-17” and “18+”. In
each group, we compute ΔNDCG: the nDCG of each approach minus the nDCG
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of pure Google search (G). The results are plotted in Figure 3. G+HF shows the
same trend as that on M-D: ΔNDCG is growing from the “smallest” group to the
“medium” group but is decreasing from the “medium” to the “largest”. However,
it is different from the trend on M-D for G+HMTI−SN: the performance does not
grow from the “medium” group to the “largest” group. Thus, we analyze the
change of relevance for the click-through documents from the “medium” group
to the “largest” one on both M-D and D-D. The value is calculated using the
“largest” group minus the “medium”. We find that the change is -0.48 for D-D
and -0.29 for M-D. The drop of click-through document quality may account for
decreasing of ΔNDCG from the “medium” group to the “largest” group in D-D.

Fig. 3. ΔNDCG (Y axis) against the quantity of click-through (X axis) on D-D

4.3 Summarizations, Discussions and Implications

Consistent with our previous study [10], we observed that the self MTI-based
subdocument relevance feedback outperformed both the initial Google ranking
and the full text-based relevance feedback. This study went further by prov-
ing that the social navigation-based relevance feedback could achieve even bet-
ter results than self MTI-based relevance feedback. The effectiveness of social
navigation-based approach may come from two aspects: (1) it relieves the data
sparseness problem when users’ own behaviors provide too little information;
and (2) MTIs from different users can vote for the most relevant subdocument
chunks. More importantly, we demonstrated that the social navigation-based
MTI can be applied to both D-D and M-D conditions. This would be a very
exciting finding for modern search engines since they have search logs about
users from both their mobile and desktop search activites. Rich and fine-grained
interactions obtained from MTIs enable search engines to accurately infer user
interests, which in turn could better support both mobile and desktop searches.

A critical prerequisite for applying social navigation is that users share com-
mon task goals. Our study showed that this might not be enough. Different search
queries might focus on different aspects even within the same task. Therefore,
it is critically needed to have proper search intention discernment mechanisms
such as using query similarity to differentiate social navigation information.

5 Conclusion and Future Work

With the wide adoption of smartphones, it is more common for people to con-
duct cross-device web search. Therefore, more and more users’ mobile touch
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interactions (MTI) are collected when they access information through mobile
devices. In this paper, we study whether the social navigation-based MTIs (MTIs
collected from other users who visited the same webpages) can be employed
to support the current user’s cross-device web search. The MTIs used in this
paper were collected through a lab study with 24 participants working on six
cross-device web search tasks. Using the collected data, we then setup a rel-
evance feedback experiment to evaluate our proposed approach. We find that
the social navigation-based MTIs indeed help to improve search performance
for cross-device web search over the methods of not using MTIs or only using
self-performed MTIs. Further studies show that the effectiveness of social nav-
igational based MTI is relates to many factors such as the quantity/quality of
click-through and the task nature.

There could be several topics to be explored further. Firstly, we only consid-
ered the support of cross-device search queries in the late search stages, while
it is also interesting to support queries at the beginning stage. This would be
more challenging because of insufficient search history. Secondly, we found that
both self-MTI and social navigation-based MTI can lead to the performance
improvements. However, we have not studied whether they could be combined
to further improve the search performance. Thirdly, we recruited only 24 partic-
ipants and performed our study in a lab-controlled environment, which may not
trully reflect users’ interactions in a live search environment. Thus, a large-scale
analysis of our approach from real search engine logs might be needed to confirm
some of our findings. Finally, although we focused on cross-device web search in
this paper, our approach can be easily adapted to other search scenarios such as
pure mobile search or desktop search. Overall, MTI provides us many interesting
challenges and opportunities.
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